WO2019221180A1 - タイヤトレッド用ゴム組成物および空気入りタイヤ - Google Patents

タイヤトレッド用ゴム組成物および空気入りタイヤ Download PDF

Info

Publication number
WO2019221180A1
WO2019221180A1 PCT/JP2019/019335 JP2019019335W WO2019221180A1 WO 2019221180 A1 WO2019221180 A1 WO 2019221180A1 JP 2019019335 W JP2019019335 W JP 2019019335W WO 2019221180 A1 WO2019221180 A1 WO 2019221180A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
mass
group
rubber
diene rubber
Prior art date
Application number
PCT/JP2019/019335
Other languages
English (en)
French (fr)
Inventor
佐藤 正樹
理起 餝矢
秀彬 佐和
芦浦 誠
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018094890A external-priority patent/JP6791206B2/ja
Priority claimed from JP2018094460A external-priority patent/JP6791202B2/ja
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to EP19804264.0A priority Critical patent/EP3795629A4/en
Priority to CN201980032378.0A priority patent/CN112135873B/zh
Publication of WO2019221180A1 publication Critical patent/WO2019221180A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/08Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • C08F297/046Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes polymerising vinyl aromatic monomers and isoprene, optionally with other conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/14Organic medium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a rubber composition for a tire tread and a pneumatic tire.
  • Claim 1 of Patent Document 1 includes a rubber composition for a tire tread containing a conjugated diene rubber produced by a method for producing a conjugated diene rubber comprising steps A, B, and C in this order. Things are disclosed. Patent Document 1 describes that the tire tread rubber composition exhibits excellent wet performance and rolling performance when formed into a tire.
  • the present inventors prepared a rubber composition for a tire tread with reference to the example of Patent Document 1, and made wet performance when made into a tire, rolling performance when made into a tire, and made into a tire.
  • the present invention provides a tire tread rubber composition excellent in wet performance when made into a tire, rolling performance when made into a tire, and dry maneuvering stability performance when made into a tire, and the tire tread rubber composition It is an object to provide a pneumatic tire using an object.
  • the present inventors have found that the above problems can be solved by using a specific conjugated diene rubber, and have reached the present invention. That is, the present inventors have found that the above problem can be solved by the following configuration.
  • the specific conjugated diene rubber polymerizes a monomer containing a conjugated diene compound and an aromatic vinyl compound in an inert solvent using a polymerization initiator to obtain a conjugated diene polymer chain having an active terminal.
  • polyorganosiloxane represented by the following general formula (1) is used with respect to 1 mol of the polymerization initiator used in the first step.
  • the second step of adding and reacting at a ratio of 1 mol or more in terms of the number of repeating units of the siloxane structure (—Si—O—) in the polyorganosiloxane and the polyorganosiloxane obtained in the second step are reacted.
  • a conjugated diene rubber produced by a method for producing a conjugated diene rubber comprising a third step of reacting a compound represented by the following general formula (2) with the conjugated diene polymer chain thus produced.
  • the content of the aromatic vinyl monomer unit in the specific conjugated diene rubber is 20 to 80% by mass, and the vinyl bond content in the conjugated diene monomer unit in the specific conjugated diene rubber is 20 to 80%. Mass%,
  • Mw weight average molecular weight
  • the styrene butadiene rubber has a molecular weight distribution (Mw / Mn) determined from a weight average molecular weight (Mw) and a number average molecular weight (Mn) of 2.0 or more, according to any one of [1] to [3]. Rubber composition for tire tread.
  • the specific conjugated diene rubber is A polymer block (A) comprising 80 to 100% by mass of isoprene monomer units and 0 to 20% by mass of aromatic vinyl monomer units;
  • the polymer block (B) containing 50 to 100% by mass of 1,3-butadiene monomer units and 0 to 50% by mass of aromatic vinyl monomer units has a structure formed in a continuous manner [1 ]
  • a pneumatic tire comprising a tire tread portion manufactured using the rubber composition for a tire tread according to any one of [1] to [6].
  • wet performance when tired
  • rolling performance hereinafter also simply referred to as “rolling performance”
  • dry handling stability performance a rubber composition for a tire tread which is excellent in dry handling stability performance
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • each component contained in the rubber composition for tire treads of this invention may be used individually by 1 type, or may use 2 or more types together.
  • content refers to the total content about the component.
  • “(meth) acryl” is a notation representing “acryl” or “methacryl”
  • “(meth) acrylonitrile” is a notation representing “acrylonitrile” or “methacrylonitrile”.
  • the rubber composition for tire tread of the present invention contains 30% by mass or more of the specific conjugated diene rubber, and the specific conjugated diene system described above.
  • a conjugated diene rubber containing 20% by mass or more of styrene butadiene rubber other than rubber hereinafter also referred to as “styrene butadiene rubber (A)”
  • silica styrene butadiene rubber
  • silane coupling agent a silane coupling agent.
  • the content of the silica is 30 parts by mass or more with respect to 100 parts by mass of the conjugated diene rubber
  • the content of the silane coupling agent is 3 to 30 masses with respect to the content of the silica. %.
  • the specific conjugated diene rubber is obtained by polymerizing a monomer containing a conjugated diene compound and an aromatic vinyl compound in an inert solvent using a polymerization initiator, and having a conjugated diene polymer chain having an active terminal.
  • the polyorganosiloxane represented by the following general formula (1) is added to 1 mol of the polymerization initiator used in the first step in the conjugated diene polymer chain having the active terminal.
  • a second step of adding and reacting at a ratio of 1 mol or more in terms of the number of repeating units of the siloxane structure (—Si—O—) in the polyorganosiloxane, and the polyorganosiloxane obtained in the second step A conjugated diene rubber produced by a method for producing a conjugated diene rubber comprising a third step of reacting a compound represented by the following general formula (2) with a reacted conjugated diene polymer chain: .
  • the content of the aromatic vinyl monomer unit in the specific conjugated diene rubber is 20 to 80% by mass
  • the vinyl bond content in the conjugated diene monomer unit in the specific conjugated diene rubber is 20% by mass. ⁇ 80% by mass.
  • the specific conjugated diene rubber has a glass transition temperature of ⁇ 35 to 0 ° C. and a weight average molecular weight (Mw) of 100,000 or more. Since the composition of this invention takes such a structure, it is thought that the effect mentioned above is acquired. The reason is not clear, but it is presumed that it is as follows.
  • the composition of the present invention contains silica, it is expected that the wet performance and the rolling performance are compatible at a high level. However, silica easily aggregates, and the above effect is actually satisfied. There is a problem that it is not expressed.
  • the specific conjugated diene rubber contained in the composition of the present invention has a polyorganosiloxane structure having a structure similar to silica, the polyorganosiloxane structure has an affinity for silica and prevents aggregation of silica. Conceivable.
  • the specific conjugated diene rubber also has a structure derived from a nitrogen atom-containing silane such as aminosilane, it is considered that this promotes silanization between the silane coupling agent and silica and further suppresses aggregation of silica. . As a result, it is considered that the effect of silica (coexisting wet performance and rolling performance at a high level) is sufficiently exhibited. In addition, it is considered that the dry steering stability is sufficiently exhibited by increasing the rubber component bonded to silica and improving the reinforcement to the rubber and enhancing the rigidity of the rubber compound.
  • conjugated diene rubber contained in the composition of the present invention contains 30% by mass or more of a specific conjugated diene rubber and 20% by mass or more of a styrene butadiene rubber (A).
  • the weight average molecular weight (Mw) of the conjugated diene rubber is a value measured by gel permeation chromatography in terms of polystyrene, and is preferably 100,000 or more.
  • the specific conjugated diene rubber contained in the composition of the present invention is a conjugated diene rubber produced by a method for producing a conjugated diene rubber comprising the following first to third steps.
  • First Step First a monomer containing a conjugated diene compound and an aromatic vinyl compound is polymerized in an inert solvent using a polymerization initiator to obtain a conjugated diene polymer chain having an active terminal.
  • Step (2) Second Step
  • the polyorganosiloxane represented by the general formula (1) described later is added to the conjugated diene polymer chain having an active end with respect to 1 mol of the polymerization initiator used in the first step.
  • the conjugated diene polymer chain obtained by reacting the polyorganosiloxane obtained in the second step is reacted with a compound represented by the following general formula (2).
  • a 1 in the compound represented by the general formula (2) has binds to react with the reactive residues formed by the reaction of a conjugated diene polymer chain polyorganosiloxane having active terminal.
  • the reaction residue generated by the reaction of the conjugated diene polymer chain having an active terminal and the polyorganosiloxane can have various structures, the reaction residue is represented by the general formula (2).
  • the first step is a step of polymerizing a monomer containing a conjugated diene compound and an aromatic vinyl compound in an inert solvent using a polymerization initiator to obtain a conjugated diene polymer chain having an active end. .
  • a polymerization initiator to obtain a conjugated diene polymer chain having an active end.
  • a conjugated diene compound used as a monomer to obtain a conjugated diene polymer chain having an active end is not particularly limited, but 1,3-butadiene, isoprene, 2,3-dimethyl- 1,3-butadiene, 2-phenyl-1,3-butadiene, 1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 4,5-diethyl-1,3-octadiene, Examples include 3-butyl-1,3-octadiene. Among these, 1,3-butadiene and isoprene are preferable because the effects of the present invention are more excellent. These conjugated diene compounds may be used alone or in combination of two or more.
  • Aromatic vinyl compounds used as monomers include styrene, methylstyrene, ethylstyrene, t-butylstyrene, ⁇ -methylstyrene, ⁇ -methyl-p-methylstyrene, chlorostyrene, bromostyrene, methoxystyrene, dimethylamino Examples thereof include methyl styrene, dimethylaminoethyl styrene, diethylaminomethyl styrene, diethylaminoethyl styrene, cyanoethyl styrene and vinyl naphthalene. Among these, styrene is preferable because the effect of the present invention is more excellent.
  • the conjugated diene polymer chain having an active terminal obtained in the first step preferably contains 20 to 80% by mass of a conjugated diene monomer unit for the reason that the effect of the present invention is more excellent, and 55 to 80% by mass. %, More preferably 55 to 75% by mass, particularly preferably 20 to 80% by mass of aromatic vinyl monomer units, more preferably 20 to 45% by mass. Those containing 25 to 45% by mass are particularly preferable.
  • a compound copolymerizable with the conjugated diene compound (other copolymerizable compounds) other than the aromatic vinyl compound may be used together with the conjugated diene compound.
  • the compounds copolymerizable with such conjugated diene compounds include chain olefin compounds such as ethylene, propylene and 1-butene; cyclic olefin compounds such as cyclopentene and 2-norbornene; 1,5-hexadiene and 1,6- Non-conjugated diene compounds such as heptadiene, 1,7-octadiene, dicyclopentadiene, 5-ethylidene-2-norbornene; (meth) (methyl acrylate), ethyl (meth) acrylate, (Meth) acrylic acid ester; (meth) acrylonitrile, other (meth) acrylic acid derivatives such as (meth) acrylamide; and the like.
  • chain olefin compounds such as ethylene, propylene and 1-butene
  • cyclic olefin compounds such as cyclopentene and 2-norbornene
  • the compounds copolymerizable with these conjugated diene compounds are 10 monomer units in the conjugated diene polymer chain having an active end obtained in the first step. It is preferable to set it as mass% or less, and it is more preferable to set it as 5 mass% or less.
  • the inert solvent used for the polymerization is not particularly limited as long as it is one usually used in solution polymerization and does not inhibit the polymerization reaction.
  • Specific examples of the inert solvent include chain aliphatic hydrocarbons such as butane, pentane, hexane and heptane; alicyclic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as benzene, toluene and xylene; Etc. These inert solvents may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the amount of the inert solvent used is not particularly limited, but the monomer concentration is, for example, 1 to 50% by mass, and the reason why the effect of the present invention is more excellent is 10 to 40% by mass. preferable.
  • the polymerization initiator used for the polymerization is not particularly limited as long as it can polymerize a monomer containing a conjugated diene compound to give a conjugated diene polymer chain having an active end.
  • Specific examples thereof include a polymerization initiator having an organic alkali metal compound, an organic alkaline earth metal compound, a lanthanum series metal compound, or the like as a main catalyst.
  • organic alkali metal compounds examples include organic monolithium compounds such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium, and stilbenelithium; dilithiomethane, 1,4-dilithiobutane, Organic polyvalent lithium compounds such as 4-dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene, 1,3,5-tris (lithiomethyl) benzene; organic sodium compounds such as sodium naphthalene; organic such as potassium naphthalene Potassium compounds; and the like.
  • organic monolithium compounds such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium, and stilbenelithium
  • dilithiomethane 1,4-dilithiobutane
  • Organic polyvalent lithium compounds such as 4-di
  • organic alkaline earth metal compound examples include di-n-butylmagnesium, di-n-hexylmagnesium, diethoxycalcium, calcium distearate, di-t-butoxystrontium, diethoxybarium, and diisopropoxy.
  • examples thereof include barium, diethyl mercaptobarium, di-t-butoxybarium, diphenoxybarium, diethylaminobarium, barium distearate, and diketylbarium.
  • a polymerization initiator having a lanthanum series metal compound as a main catalyst for example, a lanthanum series metal comprising a lanthanum series metal such as lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, a carboxylic acid, and a phosphorus-containing organic acid.
  • a polymerization initiator composed of this salt and a cocatalyst such as an alkylaluminum compound, an organoaluminum hydride compound, and an organoaluminum halide compound.
  • an organic monolithium compound and an organic polylithium compound are preferably used, an organic monolithium compound is more preferably used, and n-butyllithium is particularly preferable because the effects of the present invention are more excellent.
  • the organic alkali metal compound is previously reacted with a secondary amine compound such as dibutylamine, dihexylamine, dibenzylamine, pyrrolidine, piperidine, hexamethyleneimine, and heptamethyleneimine to form an organic alkali metal amide compound. May be used.
  • These polymerization initiators may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Examples of the organic alkali metal amide compound include those obtained by reacting an organic alkali metal compound with a secondary amine compound. Among them, the following general formula (3) is used because the effect of the present invention is more excellent. The compound represented can be used suitably.
  • M 1 represents an alkali metal atom
  • R 11 and R 12 are each independently an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an amino group protecting group, or a hydrolysis group.
  • R 11 and R 12 may be bonded to each other to form a ring structure together with the nitrogen atom to which they are bonded, and in the case of forming the ring structure, these are bonded to each other.
  • a ring structure may be formed together with a hetero atom other than the nitrogen atom to which they are bonded.
  • the alkyl group is not particularly limited, but an alkyl group having 1 to 20 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable because the effect of the present invention is more excellent.
  • alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, and n-to.
  • Examples include xyl group, n-heptyl group, n-octyl group, n-decyl group and the like.
  • the cycloalkyl group is not particularly limited, but a cycloalkyl group having 3 to 20 carbon atoms is preferable and a cycloalkyl group having 3 to 12 carbon atoms is more preferable because the effect of the present invention is more excellent.
  • Examples of such cycloalkyl groups include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and a cyclododecyl group.
  • the aryl group is not particularly limited, but an aryl group having 6 to 12 carbon atoms is preferable, and an aryl group having 6 to 10 carbon atoms is more preferable because the effect of the present invention is more excellent.
  • Examples of such an aryl group include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
  • the aralkyl group is not particularly limited, but an aralkyl group having 7 to 13 carbon atoms is preferable, and an aralkyl group having 7 to 9 carbon atoms is more preferable because the effect of the present invention is more excellent.
  • Examples of such aralkyl groups include benzyl group and phenethyl group.
  • the amino-protecting group is not particularly limited and may be any group that acts as an amino-protecting group, and examples thereof include an alkylsilyl group.
  • alkylsilyl groups include trimethylsilyl group, triethylsilyl group, triphenylsilyl group, methyldiphenylsilyl group, ethylmethylphenylsilyl group, tert-butyldimethylsilyl group, and the like.
  • R 11 and / or R 12 is a protecting group for an amino group
  • the protecting group for the amino group is removed, so that at one end of the polymer chain forming the resulting conjugated diene rubber, A structure in which R 13 and / or R 14 in the general formula (5) described later is a hydrogen atom can be introduced.
  • the group that can be hydrolyzed to form a hydroxyl group is not particularly limited, and may be any group that generates a hydroxyl group by hydrolysis in the presence of an acid, for example, an alkoxyalkyl group, an epoxy group, and the like.
  • a group containing Examples of the alkoxyalkyl group include a methoxymethyl group, an ethoxymethyl group, an ethoxyethyl group, a propoxymethyl group, a butoxymethyl group, a butoxyethyl group, and a propoxyethyl group.
  • Examples of the group containing an epoxy group include a group represented by the following general formula (4).
  • Z 1 is an alkylene group or alkylarylene group having 1 to 10 carbon atoms
  • Z 2 is a methylene group, a sulfur atom or an oxygen atom
  • E 1 is a glycidyl group.
  • R 11 and R 12 may be bonded to each other to form a ring structure together with the nitrogen atom to which they are bonded, and in this case, formed by R 11 and R 12 and the nitrogen atom that is bonded to this.
  • Specific examples of the structure to be formed include an azetidine ring (R 11 and R 12 are propylene groups), a pyrrolidine ring (R 11 and R 12 are butylene groups), a piperidine ring (R 11 and R 12 are pentylene groups). And hexamethyleneimine ring (R 11 and R 12 are hexylene groups) and the like.
  • the ring structure is preferably a 4- to 8-membered ring structure.
  • M 1 is an alkali metal atom, and examples of such an alkali metal atom include a lithium atom, a sodium atom, and a potassium atom. Among these, from the viewpoint of polymerization activity. A lithium atom is preferable.
  • the amine structure forming the organic alkali metal amide compound remains in a state of being bonded to the polymerization initiation terminal of the polymer chain. Will be. Therefore, when a compound represented by the general formula (3) is used as a polymerization initiator, a structure represented by the following general formula (5) is formed at one end of the polymer chain forming the resulting conjugated diene rubber. Is introduced.
  • R 13 and R 14 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a protective group for an amino group, or a hydroxyl group upon hydrolysis.
  • R 13 and R 14 may be bonded to each other to form a ring structure together with the nitrogen atom to which they are bonded, and in the case of forming the ring structure, in addition to the nitrogen atom to which they are bonded, A ring structure may be formed together with a hetero atom other than the nitrogen atom to which they are bonded.
  • Examples of the alkyl group, cycloalkyl group, aryl group, aralkyl group, amino-protecting group which can be R 13 and R 14 , or a group capable of hydrolyzing to generate a hydroxyl group include R 11 and R 12 in formula (3).
  • R 13 and R 14 are bonded to each other to form a ring structure together with the nitrogen atom to which R 13 and R 14 are bonded, R 11 and R 12 in the general formula (3) Can be the same.
  • the hydrogen atom which can become R ⁇ 13 >, R ⁇ 14 > is introduce
  • the specific conjugated diene rubber obtained has an amine structure at one end and a specific structure derived from a modifier at the other end. Can be. As a result, the effect of the present invention is more excellent due to the effect of such an amine structure.
  • the method of adding the organic alkali metal amide compound as a polymerization initiator to the polymerization system is not particularly limited, and a secondary amine compound is reacted with the organic alkali metal compound in advance to obtain an organic alkali metal amide compound.
  • a method of mixing this with a monomer containing a conjugated diene compound and allowing the polymerization reaction to proceed can be employed.
  • an organic alkali metal amide compound is generated in the polymerization system by adding the organic alkali metal compound and the secondary amine compound separately to the polymerization system and mixing them with a monomer containing a conjugated diene compound.
  • a method of advancing the polymerization reaction may be employed.
  • the reaction conditions such as the reaction temperature are not particularly limited, and may be according to the intended polymerization reaction conditions, for example.
  • the amount of secondary amine compound used may be determined according to the amount of the desired polymerization initiator added, but is usually 0.01 to 1.5 mmol, 0.1 to 1 per 1 mmol of the organic alkali metal compound. 0.2 mmol is preferred, and 0.5 to 1.0 mmol is more preferred.
  • the amount of the polymerization initiator used may be determined according to the molecular weight of the target conjugated diene polymer chain, but is usually 1 to 50 mmol, preferably 1.5 to 20 mmol per 1000 g of monomer. A range of ⁇ 15 mmol is more preferred.
  • the polymerization temperature is usually from ⁇ 80 to + 150 ° C., and from the reason that the effect of the present invention is more excellent, 0 to 100 ° C. is preferable, and a range of 30 to 90 ° C. is more preferable.
  • the polymerization mode any of batch type and continuous type can be adopted. However, when copolymerizing a conjugated diene compound and an aromatic vinyl compound, a conjugated diene monomer unit and an aromatic vinyl monomer are used. The batch method is preferable because the randomness of the bond with the unit can be easily controlled.
  • a polar compound When polymerizing a monomer containing a conjugated diene compound, a polar compound is added to an inert organic solvent in order to adjust the vinyl bond content in the conjugated diene monomer unit in the resulting conjugated diene polymer chain. It is preferable.
  • the polar compound include ether compounds such as dibutyl ether, tetrahydrofuran and 2,2-di (tetrahydrofuryl) propane; tertiary amines such as tetramethylethylenediamine; alkali metal alkoxides; phosphine compounds.
  • an ether compound and a tertiary amine are preferable, a tertiary amine is more preferable, and tetramethylethylenediamine is particularly preferable because the effect of the present invention is more excellent.
  • These polar compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the amount of the polar compound used may be determined according to the target vinyl bond content, and is preferably 0.001 to 100 mol, more preferably 0.01 to 10 mol, relative to 1 mol of the polymerization initiator. When the amount of the polar compound used is within this range, it is easy to adjust the vinyl bond content in the conjugated diene monomer unit, and problems due to deactivation of the polymerization initiator hardly occur.
  • the vinyl bond content in the conjugated diene monomer unit in the conjugated diene polymer chain having an active end obtained in the first step is preferably 20 to 80% by mass because the effect of the present invention is more excellent. It is more preferably 20 to 70% by mass, further preferably 25 to 65% by mass, and particularly preferably 30 to 63% by mass.
  • the weight average molecular weight (Mw) of the conjugated diene polymer chain having an active terminal obtained in the first step is not particularly limited, it is measured by gel permeation chromatography in terms of polystyrene because the effect of the present invention is more excellent. 100,000 or more is preferable, 100,000 to 1,500,000 is more preferable, 350,000 to 1,000,000 is still more preferable, 400,000 to 900,000 is particularly preferable, and 450 000 to 800,000 is most preferred.
  • the molecular weight distribution represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the conjugated diene polymer chain having an active end obtained in the first step is also particularly limited. However, 1.0 to 3.0 is preferable, and 1.0 to 2.5 is more preferable. When the molecular weight distribution (Mw / Mn) of the conjugated diene polymer chain having an active end is within the above range, the production of the conjugated diene rubber is facilitated.
  • the first step is preferably the following step because the effect of the present invention is more excellent. That is, isoprene or a monomer containing isoprene and an aromatic vinyl compound is polymerized with a polymerization initiator in an inert solvent to obtain 80 to 100% by mass of isoprene monomer units and 0% of aromatic vinyl monomer units.
  • a polymer block (A) having an active end comprising ⁇ 20% by weight; and The polymer block (A) having an active end is mixed with 1,3-butadiene or a monomer containing 1,3-butadiene and an aromatic vinyl compound to continue the polymerization reaction, and 1,3 -A polymer block (B) having an active terminal containing 50 to 100% by mass of butadiene monomer units and 0 to 50% by mass of aromatic vinyl monomer units is formed continuously with the polymer block (A). It is preferable to provide Step B to obtain a conjugated diene polymer chain having an active end.
  • the content of at least one aromatic vinyl monomer unit in the polymer block (A) and the polymer block (B) is more than 0% by mass.
  • the conjugated diene polymer chain having an active terminal obtained in the first step is converted to 80 to 100% by mass of isoprene monomer units and 0 to 20 masses of aromatic vinyl monomer units.
  • the structure formed in this manner (hereinafter also referred to as “PI block”) can be included.
  • the specific conjugated diene rubber obtained also has a PI block.
  • the polymer block (A) formed in the step A is one containing 80 to 100% by mass of isoprene monomer units and 0 to 20% by mass of aromatic vinyl monomer units in the polymer block (A).
  • those containing 85 to 95% by mass of isoprene monomer units and 5 to 15% by mass of aromatic vinyl monomer units are preferred, and isoprene monomer units 89 to More preferred are those containing 95% by mass and 5 to 11% by mass of aromatic vinyl monomer units.
  • aromatic vinyl compound used for constituting the aromatic vinyl monomer unit contained in the polymer block (A) the same aromatic vinyl compound as described above can be used, and the effect of the present invention is achieved.
  • styrene is preferred for reasons of superiority.
  • these aromatic vinyl compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the polymer block (A) is preferably composed of only an isoprene monomer unit or an isoprene monomer unit and an aromatic vinyl monomer unit because the effects of the present invention are more excellent.
  • other monomer units may be included.
  • Other compounds used to constitute other monomer units include 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, 1,3 Conjugated diene compounds other than isoprene such as pentadiene and 1,3-hexadiene; ⁇ , ⁇ -unsaturated nitriles such as acrylonitrile and methacrylonitrile; unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and maleic anhydride Or acid anhydrides; unsaturated carboxylic acid esters such as methyl methacrylate, ethyl acrylate, and butyl acrylate; 1,5-hexadiene, 1,6-heptadiene, 1,7-octadiene, dicyclopentadiene, and 5 Non-conjugated dienes such as ethylidene-2-norbornene; Among these, 1,3-butadiene is preferable because the effects
  • the content ratio of the other monomer units in the polymer block (A) is preferably 20% by mass or less, more preferably 10% by mass or less, and more preferably 6% by mass or less because the effect of the present invention is more excellent. Further preferred.
  • the polymer block (A) in the conjugated diene polymer chain is obtained by polymerizing a monomer containing isoprene or isoprene and an aromatic vinyl compound with a polymerization initiator in an inert solvent. It is formed.
  • the formed polymer block (A) has an active end.
  • the same inert solvent as described above may be used as the inert solvent used for the polymerization of the monomer containing isoprene or isoprene and an aromatic vinyl compound. it can.
  • the amount of the inert solvent used is preferably such that the monomer concentration is 1 to 80% by mass, more preferably 10 to 50% by mass, because the effect of the present invention is more excellent.
  • polymerization initiator used to form the polymer block (A) isoprene or a monomer containing isoprene and an aromatic vinyl compound is polymerized to give a polymer chain having an active end. If it can do, it will not specifically limit. As a specific example thereof, the same polymerization initiator as described above can be used.
  • the amount of the polymerization initiator used may be determined in accordance with the target molecular weight. However, for the reason that the effect of the present invention is more excellent, it is 4 per 100 g of monomer containing isoprene or isoprene and an aromatic vinyl compound. ⁇ 250 mmol is preferable, 6 to 200 mmol is more preferable, and the range of 10 to 70 mmol is particularly preferable.
  • the polymerization temperature at the time of polymerizing isoprene or a monomer containing isoprene and an aromatic vinyl compound is preferably ⁇ 80 to + 150 ° C., more preferably 0 to 100 ° C., because the effect of the present invention is more excellent. A range of 20 to 90 ° C. is particularly preferred.
  • the polymerization mode any mode such as batch mode or continuous mode can be adopted.
  • bonding mode it can be set as various coupling
  • a polar compound may be added to the inert solvent during the polymerization.
  • a polar compound the same thing as the polar compound mentioned above can be used.
  • the amount of the polar compound used may be determined according to the target vinyl bond content, and is preferably 0.01 to 30 mol, more preferably 0.05 to 10 mol, relative to 1 mol of the polymerization initiator.
  • the vinyl bond content in the isoprene monomer unit can be easily adjusted, and problems due to the deactivation of the polymerization initiator hardly occur. Moreover, the vinyl bond content in an isoprene monomer unit can be increased by increasing the usage-amount of a polar compound within the said range.
  • the vinyl bond content in the isoprene monomer unit in the polymer block (A) is preferably from 5 to 90 mass%, more preferably from 5 to 80 mass%, because the effect of the present invention is more excellent.
  • the vinyl bond content in the isoprene monomer unit includes the isoprene monomer unit having a 1,2-structure and the 3,4-structure in the isoprene monomer unit. It shall refer to the proportion of the total amount of isoprene monomer units.
  • the weight average molecular weight (Mw) of the polymer block (A) is preferably from 500 to 15,000 as a polystyrene-equivalent value measured by gel permeation chromatography because the effect of the present invention is more excellent. 1,000 is more preferable, and 1,500 to 10,000 is particularly preferable.
  • the molecular weight distribution represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polymer block (A) is 1.0 because the effect of the present invention is more excellent. Is preferably 1.5, more preferably 1.0 to 1.3.
  • the value (Mw / Mn) of the molecular weight distribution of the polymer block (A) is within the above range, the production of the conjugated diene rubber becomes easier.
  • the polymer block (B) in the conjugated diene polymer chain formed in the step B is composed of 50 to 100% by mass of 1,3-butadiene monomer units and an aromatic vinyl monomer in the polymer block (B).
  • 52 to 95% by mass of 1,3-butadiene monomer unit and 5 to 5% of aromatic vinyl monomer unit are preferable. What contains 48 mass% is preferable.
  • the content ratio of the 1,3-butadiene monomer unit and the aromatic vinyl monomer unit is within the above range, it becomes easier to produce the conjugated diene rubber.
  • aromatic vinyl compound used for constituting the aromatic vinyl monomer unit contained in the polymer block (B) the same aromatic vinyl compound as described above can be used.
  • Styrene is preferred because the effect of the invention is more excellent.
  • the polymer block (B) is composed only of 1,3-butadiene monomer units or composed of 1,3-butadiene monomer units and aromatic vinyl monomer units because the effects of the present invention are more excellent. However, as long as the essential characteristics of the present invention are not impaired, the 1,3-butadiene monomer unit or the 1,3-butadiene monomer unit and the aromatic vinyl monomer unit are optionally added. In addition, other monomer units may be included. As other monomers used for constituting other monomer units, the same compounds as those exemplified in the polymer block (A) described above (excluding 1,3-butadiene) are used. be able to. In the polymer block (B), isoprene can be used as another monomer. The content of other monomer units in the polymer block (B) is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 35% by mass or less.
  • the polymer block (B) in the conjugated diene polymer chain is a polymer block (A) having an active terminal as described above and a single unit containing 1,3-butadiene, or 1,3-butadiene and an aromatic vinyl compound.
  • the polymer block is continuously formed with the polymer block (A) by mixing the monomer and continuing the polymerization reaction.
  • the formed polymer block (B) has an active end. On the other hand, the active terminal disappears from the polymer block (A).
  • the solvent is not particularly limited, and the same inert solvent as described above can be used.
  • the amount of the polymer block having an active terminal (A) may be determined according to the target molecular weight, but because the effect of the present invention is more excellent, 0.1 to 5 mmol is preferable, 0.15 to 2 mmol is preferable, and 0.1 to 1.5 mmol is preferable per 100 g of monomer containing 1,3-butadiene or 1,3-butadiene and an aromatic vinyl compound. Particularly preferred is mmol.
  • the mixing method of the polymer block (A) and 1,3-butadiene, or a monomer containing 1,3-butadiene and an aromatic vinyl compound is not particularly limited, and 1,3-butadiene, or 1,3 -
  • the polymer block (A) having an active terminal may be added to a solution of a monomer containing butadiene and an aromatic vinyl compound, or 1,3 in the solution of the polymer block (A) having an active terminal.
  • -Monomers containing butadiene or 1,3-butadiene and aromatic vinyl compounds may be added. From the viewpoint of controlling the polymerization, a method of adding the polymer block (A) having an active terminal to a solution of monomer containing 1,3-butadiene or 1,3-butadiene and an aromatic vinyl compound is preferable.
  • the polymerization temperature in polymerizing 1,3-butadiene or a monomer containing 1,3-butadiene and an aromatic vinyl compound is preferably ⁇ 80 to + 150 ° C. because the effect of the present invention is more excellent. It is more preferably from -100 ° C, particularly preferably from 20 to 90 ° C.
  • the polymerization mode any mode such as batch mode or continuous mode can be adopted.
  • the polymer block (B) is used as a copolymer chain, a batch system is preferable because the randomness of the bonds can be easily controlled.
  • the bonding mode of each monomer may be various bonding modes such as a block shape, a taper shape, and a random shape. Among these, random is preferable because the effect of the present invention is more excellent.
  • the bonding mode of 1,3-butadiene and the aromatic vinyl compound is random, the total of 1,3-butadiene and the aromatic vinyl compound is added in the polymerization system because the effect of the present invention is more excellent.
  • 1,3-butadiene or 1,3-butadiene and the aromatic vinyl compound are continuously or intermittently supplied into the polymerization system for polymerization so that the ratio of the aromatic vinyl compound to the amount does not become too high. It is preferable.
  • the isoprene unit amount in the polymer block (A) Similarly to the adjustment of the vinyl bond content in the body unit, it is preferable to add a polar compound to the inert solvent during the polymerization. However, at the time of preparing the polymer block (A), a polar compound in an amount sufficient to adjust the vinyl bond content in the 1,3-butadiene monomer unit in the polymer block (B) to the inert solvent Is added, a new polar compound may not be added.
  • the same polar compound as described above can be used as the polar compound used for adjusting the vinyl bond content.
  • the amount of the polar compound used may be determined according to the target vinyl bond content, and the polymerization start used for the first polymerization reaction (polymerization reaction for forming the first polymer block (A))
  • the amount is preferably adjusted in the range of 0.01 to 100 mol, more preferably in the range of 0.1 to 30 mol, relative to 1 mol of the agent.
  • the amount of the polar compound used is within this range, the vinyl bond content in the 1,3-butadiene monomer unit can be easily adjusted, and problems due to the deactivation of the polymerization initiator are unlikely to occur.
  • the vinyl bond content in the 1,3-butadiene monomer unit in the polymer block (B) is preferably 1 to 90% by mass, more preferably 3 to 80% by mass, because the effect of the present invention is more excellent. 5 to 70% by mass is particularly preferable.
  • the conjugated diene polymer chain having an active end is composed of a polymer block (A) -polymer block (B) from the viewpoint of productivity, and the end of the polymer block (B) is an active end.
  • it may have a plurality of polymer blocks (A), or may have other polymer blocks.
  • Examples thereof include a conjugated diene polymer chain having an active end such as polymer block (A) -polymer block (B) -polymer block (A).
  • an active terminal is formed at the terminal of the polymer block (A) formed subsequent to the polymer block (B).
  • the amount of isoprene used is the first polymerization reaction (first polymer block) because the effect of the present invention is more excellent. 10 to 100 mol is preferable, 15 to 70 mol is more preferable, and 20 to 35 mol is particularly preferable with respect to 1 mol of the polymerization initiator used in (polymerization reaction for forming (A)).
  • the mass ratio of the polymer block (A) to the polymer block (B) in the conjugated diene polymer chain having an active end (when there are a plurality of polymer blocks (A) and polymer blocks (B), (Mass ratio based on the total mass of) is 0.001 to 0 in terms of (mass of polymer block (A)) / (mass of polymer block (B)) because the effect of the present invention is more excellent. .1 is preferable, 0.003 to 0.07 is more preferable, and 0.005 to 0.05 is particularly preferable.
  • the content ratio with the aromatic vinyl monomer unit is such that the isoprene monomer unit and the 1,3-butadiene monomer are present in the conjugated diene polymer chain having an active end because the effect of the present invention is more excellent.
  • total monomer units of isoprene monomer units and 1,3-butadiene monomer units 55 Is more preferably from 80 to 80% by weight and aromatic vinyl monomer units from 20 to 45% by weight, and 55 to 75% by weight of total monomer units of isoprene monomer units and 1,3-butadiene monomer units, And aromatic vinyl monomer units 25 to 45 mass% is more preferred.
  • the total content of is preferably 20 to 80% by mass, more preferably 20 to 70% by mass, still more preferably 25 to 65% by mass, and particularly preferably 30 to 63% by mass, because the effects of the present invention are more excellent. .
  • the second step is a polymerization initiator 1 in which a polyorganosiloxane represented by the following general formula (1) is used in the first step for the conjugated diene polymer chain having an active terminal obtained in the first step.
  • This is a step of adding and reacting at a ratio of 1 mole or more in terms of the number of repeating units of the siloxane structure (—Si—O—) in the polyorganosiloxane with respect to the mole.
  • the siloxane structure interacts with silica. Therefore, the specific conjugated diene rubber has a functional group that interacts with silica.
  • R 1 to R 8 are an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and these may be the same as or different from each other.
  • X 1 and X 4 are composed of an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, and a group having 4 to 12 carbon atoms containing an epoxy group. Any group selected from the group may be the same or different.
  • X 2 is an alkoxy group having 1 to 5 carbon atoms or a group having 4 to 12 carbon atoms containing an epoxy group, and a plurality of X 2 may be the same or different from each other.
  • X 3 is a group containing 2 to 20 alkylene glycol repeating units, and when there are a plurality of X 3 , they may be the same as or different from each other.
  • m is an integer of 3 to 200
  • n is an integer of 0 to 200
  • k is an integer of 0 to 200
  • m + n + k is 3 or more.
  • examples of the alkyl group having 1 to 6 carbon atoms that can constitute R 1 to R 8 , X 1 and X 4 in the general formula (1) include, for example, methyl Group, ethyl group, n-propyl group, isopropyl group, butyl group, pentyl group, hexyl group and cyclohexyl group.
  • examples of the aryl group having 6 to 12 carbon atoms include a phenyl group and a methylphenyl group. Among these, a methyl group and an ethyl group are preferable from the viewpoint of ease of production of the polyorganosiloxane itself.
  • examples of the alkoxy group having 1 to 5 carbon atoms that can constitute X 1 , X 2 and X 4 include a methoxy group, an ethoxy group, a propoxy group, An isopropoxy group, a butoxy group, etc. are mentioned. Among these, a methoxy group and an ethoxy group are preferable from the viewpoint of ease of production of the polyorganosiloxane itself.
  • examples of the group having 4 to 12 carbon atoms containing an epoxy group capable of constituting X 1 , X 2 and X 4 include the following general formula (6 ) Is represented. -Z 3 -Z 4 -E 2 (6)
  • Z 3 is an alkylene group having 1 to 10 carbon atoms or an alkylarylene group
  • Z 4 is a methylene group, a sulfur atom, or an oxygen atom
  • E 2 is a carbon having an epoxy group.
  • Z 4 is an oxygen atom
  • Z 4 is an oxygen atom
  • E 2 is a glycidyl group.
  • Z 3 is an alkylene group having 1 to 3 carbon atoms
  • Z 4 is an oxygen atom
  • E 2 is a glycidyl group.
  • X 1 and X 4 are groups having 4 to 12 carbon atoms containing an epoxy group for the reason that the effect of the present invention is more excellent among the above.
  • an alkyl group having 1 to 6 carbon atoms is preferable.
  • X 2 is preferably a group having 4 to 12 carbon atoms containing an epoxy group because the effects of the present invention are more excellent.
  • X 1 and X 4 are alkyl groups having 1 to 6 carbon atoms, and X 2 is more preferably a group having 4 to 12 carbon atoms containing an epoxy group.
  • X 3 that is, a group containing 2 to 20 alkylene glycol repeating units is preferable because the effects of the present invention are more excellent.
  • the group represented by 7) is preferred.
  • t is an integer of 2 to 20
  • X 5 is an alkylene group or alkylarylene group having 2 to 10 carbon atoms
  • R 15 is a hydrogen atom or a methyl group
  • X 6 is carbon.
  • * is a bonding position.
  • m is an integer of 3 to 200, preferably an integer of 20 to 150, more preferably an integer of 30 to 120.
  • m is 3 or more, the coupling rate of the resulting conjugated diene rubber increases, and as a result, the effects of the present invention are more excellent.
  • m is 200 or less, the production of the polyorganosiloxane itself represented by the general formula (1) becomes easier, and the viscosity does not become too high, and handling becomes easier.
  • n is an integer of 0 to 200, preferably an integer of 0 to 150, more preferably an integer of 0 to 120.
  • k is an integer of 0 to 200, preferably an integer of 0 to 150, and more preferably an integer of 0 to 130.
  • the total number of m, n and k is 3 or more, preferably 3 to 400, more preferably 20 to 300, and particularly preferably 30 to 250.
  • the amount of polyorganosiloxane used in the second step is the number of repeating units of the siloxane structure (—Si—O—) in the polyorganosiloxane with respect to 1 mol of the polymerization initiator used in the polymerization in the first step. In terms of the above, it is 1 mol or more, and from the reason that the effect of the present invention is more excellent, 1 to 2.5 mol is preferable, and 1.1 to 2 mol is more preferable.
  • the active terminal obtained in the first step can be reduced.
  • the active ends of the conjugated diene polymer chain substantially all of the active ends can be reacted with the polyorganosiloxane, which is preferable. That is, an alkyl metal group as an active end of the conjugated diene polymer chain having an active end obtained in the first step, that is, —R ⁇ M + (R is a hydrocarbon group forming the polymer chain end. , M can be in a state in which a group represented by an alkali metal atom, an alkaline earth metal atom, or a lanthanum series metal atom) does not substantially remain.
  • the compound represented by the general formula (2) when the compound represented by the general formula (2) is reacted in the third step to be described later, the compound represented by the general formula (2) is obtained from the active terminal obtained by the first step. It is possible to substantially suppress the direct reaction with the active end of the conjugated diene polymer chain having the. As a result, the compound represented by the general formula (2) is reacted with the reaction residue generated by the reaction between the conjugated diene polymer chain and the polyorganosiloxane represented by the general formula (1). Can react appropriately. And thereby, the modified structure by the compound represented by the general formula (2) is appropriately introduced into the conjugated diene polymer chain via the structure derived from the polyorganosiloxane represented by the general formula (1). Thus, the effects of introducing such a modified structure, that is, excellent wet performance, rolling performance and dry steering stability performance can be realized.
  • the method of reacting the polyorganosiloxane and the conjugated diene polymer chain having an active end is not particularly limited, and examples thereof include a method of mixing them in a solvent in which each can be dissolved.
  • the solvent used in this case those exemplified as the inert solvent used in the first step described above can be used.
  • a method of adding polyorganosiloxane to the polymerization solution used for polymerization for obtaining a conjugated diene polymer chain having an active end is simple and preferable.
  • the polyorganosiloxane is preferably dissolved in an inert solvent and added to the polymerization system, and the solution concentration is preferably in the range of 1 to 50% by mass.
  • the reaction temperature is not particularly limited, but is usually 0 to 120 ° C.
  • the reaction time is not particularly limited, but is usually 1 minute to 1 hour.
  • the timing for adding polyorganosiloxane to a solution containing a conjugated diene polymer chain having an active end is not particularly limited, but the polymerization reaction is not completed and a conjugated diene polymer chain having an active end is contained.
  • the solution containing the monomer also has a single amount of 100 ppm or more, more preferably 300 to 50,000 ppm, more specifically, a solution containing a conjugated diene polymer chain having an active end. It is desirable to add polyorganosiloxane to this solution in the state of containing the body. By adding polyorganosiloxane in this way, side reactions between conjugated diene polymer chains having active ends and impurities contained in the polymerization system can be suppressed, and the reaction can be controlled well. It becomes.
  • the polyorganosiloxane as a modifier is reacted with the active end of the conjugated diene polymer chain having the active end obtained in the first step.
  • the active end of the combined chain will react with the silicon atom in the siloxane structure.
  • a part of the active end of the conjugated diene polymer chain is partly an alkoxy group or epoxy group of the side chain of the polyorganosiloxane (an alkoxy group or an epoxy that forms X 2 included as an essential component in the general formula (1)) Group) and the like.
  • the modified structure by a siloxane is introduce
  • the active end of the conjugated diene polymer chain reacts with a silicon atom in the siloxane structure, so that the conjugated diene polymer chain has a relationship between the silicon atom in the siloxane structure and the conjugated diene polymer chain.
  • a new bond is formed between the active end and a modified structure by siloxane is introduced at the end of the conjugated diene polymer chain, and the oxygen atom in the siloxane structure and the active end of the conjugated diene polymer chain
  • a group represented by —O ⁇ M + (M is an alkali metal atom, an alkaline earth metal atom, or a lanthanum series metal atom) Is thought to be formed.
  • the active end of the conjugated diene polymer chain reacts with the epoxy group of the side chain of the polyorganosiloxane, so that the epoxy group is ring-opened, and the carbon atom in the portion where the epoxy group is opened and the conjugated diene-based polymer chain A new bond is formed with the active end of the polymer chain, and a siloxane structure is introduced at the end of the conjugated diene polymer chain, and the oxygen atom in the epoxy group and the activity of the conjugated diene polymer chain It is considered that a group represented by —O ⁇ M + is formed as a reactive residue with the metal atom forming the terminal.
  • the active end of the conjugated diene polymer chain reacts with the alkoxy group of the side chain of the polyorganosiloxane, whereby the alkoxy group is eliminated, and the conjugated diene polymer chain is conjugated with the silicon atom in the siloxane structure.
  • a new bond is formed with the active end of the diene polymer chain, and a siloxane structure is introduced at the end of the conjugated diene polymer chain.
  • the amount of polyorganosiloxane used is 1 mol or more in terms of the number of repeating units of the siloxane structure (—Si—O—) with respect to 1 mol of the polymerization initiator.
  • a modified structure by siloxane can be introduced into almost all conjugated diene polymer chains. Therefore, the alkyl metal group as the active end of the conjugated diene polymer chain having an active end obtained in the first step, that is, a state in which almost all of —R ⁇ M + does not remain is set. Instead, a group represented by —O ⁇ M + as a reaction residue is formed.
  • a very small amount may include a conjugated diene polymer chain having an unmodified active terminal that is not modified with siloxane (in other words, a very small amount includes an alkyl metal group as an active end of the conjugated diene polymer chain having an active end obtained in the first step, that is, a group in which —R ⁇ M + remains. Well, this does not exclude such cases.
  • the effect of the present invention is not impaired.
  • a part of the active end of the conjugated diene polymer chain having an active end may be subjected to coupling or modification by adding a coupling agent or a modifier that has been conventionally used in the polymerization system. Good.
  • the third step is a step of reacting a compound represented by the following general formula (2) with the conjugated diene polymer chain obtained by reacting the polyorganosiloxane obtained in the second step.
  • R 9 is a hydrocarbyl group
  • a 1 is a group capable of reacting with a reaction residue generated by a reaction between a conjugated diene polymer chain having an active end and a polyorganosiloxane.
  • an alkyl metal group as an active end of the conjugated diene polymer chain having an active end obtained in the first step that is, about -R ⁇ M +
  • the compound represented by the general formula (2) is a group represented by —O ⁇ M + as a reaction residue (—O ⁇ M + A group represented by hydrolysis and converted into a hydroxyl group).
  • the compound represented by the general formula (2) reacts with the group represented by —R ⁇ M + , so that the general formula is directly added to the conjugated diene polymer chain. It can suppress appropriately that the modified structure by the compound represented by (2) will be introduce
  • the conjugated diene polymer chain reacted with polyorganosiloxane used in the third step is not limited as long as it has undergone the second step described above, and is a conjugated diene polymer introduced with a modified structure by siloxane.
  • the amount is very small (for example, 5% by mass or less)
  • a conjugated diene polymer chain having an unmodified active terminal having no siloxane-modified structure introduced may remain (
  • a very small amount includes an alkyl metal group as an active end of the conjugated diene polymer chain having an active end obtained in the first step, that is, a group in which —R ⁇ M + remains.
  • modified structure by siloxane is formed a result of the introduction, -O as a reaction residue - the M + portion of hydrolyzed, converted into a hydroxyl group It may include from.
  • R 9 in the general formula (2) is a hydrocarbyl group, and examples thereof include an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, and an aralkyl group. From the reason that the effect of the present invention is more excellent, an alkyl group having 1 to 6 carbon atoms is preferred. Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a butyl group, a pentyl group, and a hexyl group. Among these, the effects of the present invention are more effective. For reasons of superiority, a methyl group and an ethyl group are more preferable.
  • a 1 in the general formula (2) represents a reaction residue (typically formed by a reaction between a conjugated diene polymer chain having an active end and a polyorganosiloxane.
  • R 10 is a hydrogen atom or a hydrocarbyl group
  • Examples of the hydrocarbyl group that can form R 10 include an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, an aralkyl group, and the like. Six alkyl groups are preferred.
  • Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a butyl group, a pentyl group, and a hexyl group.
  • the effects of the present invention are more effective.
  • a methyl group and an ethyl group are more preferable.
  • a 2 in the general formula (2) is a group containing a nitrogen atom, and is not particularly limited as long as it is a group containing a nitrogen atom, but has a nitrogen atom.
  • Organic groups are preferred, for example, 3-aminopropyl group, 4-aminobutyl group, 3- (2-aminoethylamino) propyl group, 2-dimethylaminoethyl group, 3-dimethylaminopropyl group, 3-diethylaminopropyl group 3-dipropylaminopropyl group, 3-dibutylaminopropyl group, 3-phenylmethylaminopropyl group, 3- (4-methylpiperazinyl) propyl group, N, N-bis (trimethylsilyl) aminopropyl group, N , N-bis (triethylsilyl) aminopropyl group, N, N ′, N′-tris (trimethylsilyl) -N- (2
  • a group containing a secondary amino group having an active hydrogen atom is preferred.
  • the “active hydrogen atom” means a hydrogen atom bonded to an atom other than a carbon atom, and preferably has a lower binding energy than a carbon-hydrogen bond of a polymethylene chain.
  • p is an integer of 0 to 2
  • q is an integer of 1 to 3
  • r is an integer of 1 to 3
  • p + q + r 4.
  • p is an integer of 0 to 1
  • q is an integer of 2 to 3
  • R 9 contained in one molecule of the compound represented by the general formula (2) may be the same or different from each other. It may be.
  • the groups represented by A 1 contained in one molecule of the compound represented by the general formula (2) may be the same or mutually In the case where r is 2 or 3, the groups represented by A 2 contained in one molecule of the compound represented by the general formula (2) are the same when r is 2 or 3. Or they may be different from each other.
  • a 2 in the general formula (2) represents a primary amino group having an active hydrogen atom and / or an active hydrogen atom.
  • a 2 in the general formula (2) represents a primary amino group having an active hydrogen atom and / or an active hydrogen atom.
  • a 2 in the general formula (2) is a group other than a primary amino group having an active hydrogen atom and / or a group containing a secondary amino group having an active hydrogen atom
  • 3-dimethylamino Propyltrimethoxysilane 3-dimethylaminopropylmethyldimethoxysilane, 3-dimethylaminopropyldimethylmethoxysilane, 3-dimethylaminopropyltriethoxysilane, 3-dimethylaminopropylmethyldiethoxysilane, 3-dimethylaminopropyldimethylethoxysilane as a 2 such as 3- compounds having dimethylaminopropyl group; 3-diethylamino-propyl trimethoxysilane, 3-diethylamino-propyl methyl dimethoxy silane, 3-diethylaminopropyl dimethyl silane, 3-diethylamino B pills triethoxysilane,
  • the amount of the compound represented by the general formula (2) is not particularly limited, but is 0.1 to 5 with respect to 1 mol of the polymerization initiator used in the first step because the effect of the present invention is more excellent. Moles are preferred, 0.2-2 moles are more preferred, and 0.4-1.5 moles are even more preferred.
  • the time when the compound represented by the general formula (2) is added to the solution containing the conjugated diene polymer chain is after the polyorganosiloxane represented by the general formula (1) is added in the second step described above. If it is, it will not be specifically limited. For example, as in the second step described above, the polymerization reaction is not completed and the solution containing the conjugated diene polymer chain also contains a monomer, more specifically, the conjugated diene.
  • the compound represented by the general formula (2) is added to this solution in a state where the solution containing the polymer chain contains a monomer of 100 ppm or more, more preferably 300 to 50,000 ppm. Can do.
  • the compound represented by the general formula (2) When the compound represented by the general formula (2) is added to the solution containing the conjugated diene polymer chain, the compound represented by the general formula (2) may be added after being dissolved in an inert solvent. However, it may be added directly without dissolving in an inert solvent.
  • the reaction temperature and reaction time are the same as in the first step.
  • a known polymerization terminator or the like is added to deactivate the reaction system, and if desired, a phenol-based stabilizer.
  • antioxidants such as phosphorus stabilizers, sulfur stabilizers, crumbs, and scale inhibitors to the reaction solution, and then separate the polymerization solvent from the reaction solution by direct drying or steam stripping.
  • the conjugated diene rubber is recovered. Before separating the polymerization solvent from the reaction solution, an extending oil may be mixed into the polymerization solution and the conjugated diene rubber may be recovered as an oil-extended rubber.
  • Examples of the extending oil used when recovering the conjugated diene rubber as an oil-extended rubber include paraffinic, aromatic and naphthenic petroleum softeners, plant softeners, and fatty acids.
  • the content of polycyclic aromatics extracted by the IP346 method is preferably less than 3%.
  • the amount used is preferably 5 to 100 parts by mass, more preferably 10 to 60 parts by mass, and particularly preferably 20 to 50 parts by mass with respect to 100 parts by mass of the conjugated diene rubber.
  • the specific conjugated diene rubber is a polyorganosiloxane represented by the general formula (1) as a modifier in the second step described above with respect to 1 mol of the polymerization initiator used in the first step. Then, the reaction is carried out by adding 1 mol or more in terms of the number of repeating units of the siloxane structure (—Si—O—) in the polyorganosiloxane. It is obtained by carrying out the reaction using the compound represented by the formula (2). Therefore, specific conjugated diene rubbers include those in which a modified structure by siloxane and a modified structure by a compound represented by the general formula (2) are introduced at the end of the polymer chain.
  • the polymer chain terminal may include one in which only a modified structure by siloxane is introduced.
  • a modified structure with a compound represented by the general formula (2) is introduced at the polymer chain end, or any modified structure is introduced. What does not contain etc. may be contained.
  • a modified structure with siloxane and a modified structure with a compound represented by the general formula (2) are introduced at the end of the polymer chain.
  • the ratio is preferably 10% by mass or more, and more preferably 20% by mass or more.
  • the upper limit is not particularly limited.
  • the specific conjugated diene rubber contains 20 to 80% by mass of the aromatic vinyl monomer unit, and from the reason that the effect of the present invention is more excellent, the rubber containing 20 to 45% by mass is preferable, and 25 to 45% by mass. Those containing% are preferred.
  • the specific conjugated diene rubber preferably contains 55 to 80% by mass of conjugated diene monomer units, and more preferably contains 55 to 75% by mass because the effect of the present invention is more excellent.
  • the vinyl bond content in the conjugated diene monomer unit in the specific conjugated diene rubber is 20 to 80% by mass, preferably 20 to 70% by mass, and 25 to 65% by mass for the reason that the effect of the present invention is more excellent. % Is preferable, and 30 to 63% by mass is more preferable.
  • the coupling rate of the specific conjugated diene rubber is not particularly limited, but is preferably 10% by mass or more, more preferably 20% by mass or more, and particularly preferably 40% by mass or more because the effect of the present invention is more excellent. Moreover, 80 mass% or less is preferable, 75 mass% or less is more preferable, and 70 mass% or less is especially preferable.
  • a coupling rate is made to react with the polyorganosiloxane represented by General formula (1), the compound represented by General formula (2), and the coupling agent and other modifier
  • the molecular weight at this time is determined as a polystyrene-converted molecular weight by gel permeation chromatography.
  • the weight average molecular weight (Mw) of the specific conjugated diene rubber is a value measured by polystyrene permeation gel permeation chromatography and is 100,000 or more, preferably 100,000 to 1,500,000, 350 , 1,000 to 1,000,000 are more preferable, 350,000 to 800,000 are more preferable, and 400,000 to 700,000 are particularly preferable.
  • the molecular weight distribution represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the specific conjugated diene rubber is 1.1 to 3. 0 is preferable, 1.2 to 2.5 is more preferable, and 1.2 to 2.2 is particularly preferable.
  • the Mooney viscosity (ML 1 + 4 , 100 ° C.) of the specific conjugated diene rubber is preferably 20 to 100, more preferably 30 to 90, and particularly preferably 35 to 80, because the effects of the present invention are more excellent.
  • the conjugated diene rubber is an oil-extended rubber
  • the Mooney viscosity of the oil-extended rubber is preferably in the above range.
  • the glass transition temperature (Tg) of the specific conjugated diene rubber is ⁇ 35 to 0 ° C., preferably ⁇ 35 to ⁇ 15 ° C., more preferably ⁇ 30 to ⁇ 15 ° C., and particularly preferably ⁇ 30 to ⁇ 10 ° C. . If the glass transition temperature is within the above range, the effect of the present invention is more excellent. If the glass transition temperature of the specific conjugated diene rubber is within the above range, the balance between tan ⁇ (0 ° C.) and tan ⁇ (60 ° C.) can be improved.
  • the glass transition temperature is a value measured at a heating rate of 10 ° C./min according to ASTM D3418-82 using a differential thermal analyzer (DSC) manufactured by DuPont.
  • the content of the specific conjugated diene rubber in the conjugated diene rubber is 30% by mass or more, and 35% by mass or more is preferable and 40% by mass or more is more preferable because the effect of the present invention is more excellent.
  • the upper limit is preferably 80% by mass or less, more preferably 70% by mass or less, and particularly preferably 60% by mass or less, from the viewpoint that the effects of the present invention are more excellent.
  • the styrene butadiene rubber (A) contained in the composition of the present invention is a styrene butadiene rubber (SBR) other than the specific conjugated diene rubber.
  • SBR styrene butadiene rubber
  • the styrene butadiene rubber (A) can be produced using a styrene monomer and a butadiene monomer.
  • the styrene monomer used in the production of the styrene-butadiene rubber (A) is not particularly limited, and examples thereof include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2- Ethyl styrene, 3-ethyl styrene, 4-ethyl styrene, 2,4-diisopropyl styrene, 2,4-dimethyl styrene, 4-t-butyl styrene, 5-t-butyl-2-methyl styrene, dimethylaminomethyl styrene, And dimethylaminoethylstyrene.
  • styrene, ⁇ -methylstyrene, and 4-methylstyrene are preferable, and styrene is more preferable.
  • These styrene monomers can be used alone or in combination of two or more.
  • the butadiene monomer used in the production of the styrene butadiene rubber (A) is not particularly limited, and examples thereof include 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), and 2,3-dimethyl. -1,3-butadiene, 2-chloro-1,3-butadiene and the like.
  • 1,3-butadiene or isoprene is preferably used, and 1,3-butadiene is more preferably used.
  • These butadiene monomers can be used alone or in combination of two or more.
  • the production method (polymerization method) of the styrene butadiene rubber (A) is not particularly limited, and examples thereof include solution polymerization and emulsion polymerization.
  • the content of the styrene monomer unit in the styrene butadiene rubber (A) is preferably 20 to 50% by mass, and more preferably 25 to 45% by mass.
  • the content of the butadiene monomer unit in the styrene butadiene rubber (A) is preferably 50 to 80% by mass, and more preferably 55 to 75% by mass.
  • the vinyl bond content in the butadiene monomer unit in the styrene butadiene rubber (A) is preferably 10 to 80% by mass, more preferably 10 to 70% by mass, because the effect of the present invention is more excellent.
  • the styrene-butadiene rubber (A) may have a functional group that interacts with silica because the effect of the present invention is more excellent. That is, the styrene butadiene rubber (A) may be modified with a functional group that interacts with silica.
  • the bonding position of the functional group that interacts with silica is not particularly limited, and examples thereof include the main chain and terminal of the styrene butadiene rubber (A).
  • Examples of functional groups that interact with silica include hydrocarbyloxysilyl groups, silanol groups, hydroxyl groups (excluding silanol groups), aldehyde groups, carboxyl groups, amino groups, imino groups, epoxy groups, amides, and thiol groups. , Siloxane bond, ether bond and the like.
  • the styrene butadiene rubber (A) having a functional group that interacts with silica is a styrene butadiene rubber (hereinafter referred to as “styrene butadiene rubber (AS)”) formed by bonding an active terminal of a styrene butadiene polymer chain and a polyorganosiloxane.
  • AS styrene butadiene rubber
  • the styrene butadiene polymer chain has a polymer block X and a polymer block Y formed continuously with the polymer block X.
  • the polymer block X contains isoprene units and styrene units, has an isoprene unit content of 80 to 95% by mass, has a styrene unit content of 5 to 20% by mass, and has a weight average molecular weight of 500 to 15,000. It is.
  • the polymer block Y includes 1,3-butadiene units and styrene units.
  • the styrene butadiene rubber (AS) is preferably a styrene butadiene rubber produced by a method for producing a styrene butadiene rubber comprising the following steps X, Y and Z in this order because the effects of the present invention are more excellent.
  • Step X By polymerizing a monomer mixture containing isoprene and styrene, the isoprene unit content is 80 to 95% by mass, the styrene unit content is 5 to 20% by mass, and the weight average molecular weight is 500 Step of forming a polymer block X having an active end of ⁇ 15,000 / step Y: Polymerization reaction by mixing the polymer block X with a monomer mixture containing 1,3-butadiene and styrene The polymer block Y having an active end is formed in a continuous manner with the polymer block X, whereby the styrene-butadiene copolymer having an active end having the polymer block X and the polymer block Y is formed.
  • Step / Step Z for obtaining a polymer chain Step of reacting polyorganosiloxane with the active terminal of the styrene-butadiene copolymer chain Specific examples of the steps are as described in paragraphs [0017] to [0054] of JP-A-2016-47883, the contents of which are incorporated herein by reference.
  • the styrene unit content of the styrene butadiene rubber (AS) is not particularly limited, but is preferably 38 to 48% by mass and more preferably 40 to 45% by mass because the effect of the present invention is more excellent.
  • the vinyl bond content of the styrene butadiene rubber (AS) is not particularly limited, but is preferably 20 to 35% by mass and more preferably 25 to 30% by mass because the effect of the present invention is more excellent.
  • vinyl bond content refers to the ratio (mass%) which a vinyl bond accounts among the conjugated diene units contained in styrene butadiene rubber (AS).
  • the weight average molecular weight (Mw) of the styrene butadiene rubber (A) is a value measured by gel permeation chromatography in terms of polystyrene, and is preferably 100,000 to 1,800,000, more preferably 300,000 to 1,500,000. Is more preferable.
  • the molecular weight distribution represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the styrene butadiene rubber (A) is preferably 1.2 or more, excellent in workability, and suitable for tires. 2.0 or more is preferable and 3.0 or more is more preferable for the reason that the strength at the time of improvement is further improved.
  • the styrene butadiene rubber (A) is produced by a method in which a monomer and a catalyst are continuously supplied to a reactor (a so-called continuous polymerization process)
  • the above ratio tends to be 2.0 or more.
  • the styrene butadiene rubber (A) is produced by an emulsion polymerization method, the above ratio tends to be 3.0 or more.
  • the content of the styrene butadiene rubber (A) in the conjugated diene rubber is 20% by mass or more, and 25% by mass or more is preferable and 30% by mass or more is more preferable because the effect of the present invention is more excellent.
  • the upper limit is preferably 70% by mass or less, more preferably 60% by mass or less, from the viewpoint that the effect of the present invention is more excellent.
  • the content ratio of the specific conjugated diene rubber to the styrene butadiene rubber (A) in the conjugated diene rubber is preferably 0.40 to 4.0, 0.45 to 4.0 is more preferable, and 0.7 to 2.0 is particularly preferable.
  • the conjugated diene rubber may contain rubber components (other rubber components) other than the specific conjugated diene rubber and the styrene butadiene rubber (A).
  • Such other rubber components include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), acrylonitrile-butadiene copolymer rubber (NBR), butyl rubber (IIR), halogenated butyl rubber (Br-IIR). , Cl-IIR), chloroprene rubber (CR) and the like.
  • natural rubber (NR) or butadiene rubber (BR) is preferable because the effects of the present invention are more excellent.
  • the content of other rubber components in the conjugated diene rubber is not particularly limited, but is preferably 10% by mass or more, more preferably 10 to 50% by mass, for the reason that the effect of the present invention is more excellent, and 10 to 20% by mass. Is particularly preferred.
  • the total content of the rubber component having a functional group that interacts with silica in the conjugated diene rubber is preferably 80% by mass or more, more preferably 80 to 100% by mass, because the effect of the present invention is more excellent. 85 to 100% by mass is particularly preferable.
  • the rubber component having a functional group that interacts with silica specifically, a functional group that interacts with silica in the above-described specific conjugated diene rubber and the above-described styrene-butadiene rubber (A). The thing which has.
  • the average glass transition temperature of the conjugated diene rubber is preferably ⁇ 25 ° C. or higher, more preferably ⁇ 23 ° C. or higher, and further preferably ⁇ 20 ° C. or higher from the viewpoint that heat-resistant sagging performance is improved and it can be suitably used as a racing tire.
  • the temperature is preferably ⁇ 15 ° C. or higher.
  • the upper limit value is preferably 0 ° C. or less, more preferably ⁇ 5 ° C. or less, and particularly preferably ⁇ 10 ° C. or less for the reason that the effects of the present invention are more exhibited.
  • the average glass transition temperature of the conjugated diene rubber refers to the glass transition temperature itself of one rubber component when the conjugated diene rubber contains only one rubber component.
  • the value obtained by multiplying the glass transition temperature of each rubber component and the content ratio (mass basis) of each rubber component in the conjugated diene rubber is added.
  • the glass transition temperature of each rubber component is a value measured at a heating rate of 10 ° C./min in accordance with ASTM D3418-82 using a differential thermal analyzer (DSC) manufactured by DuPont.
  • silica contained in the composition of the present invention is not particularly limited, and any conventionally known silica can be used. Specific examples of the silica include wet silica, dry silica, fumed silica, diatomaceous earth, and the like.
  • the content of silica is 30 parts by mass or more with respect to 100 parts by mass of the conjugated diene rubber described above. Especially, 40 mass parts or more are preferable and 50 mass parts or more are more preferable from the reason which the effect of this invention is more excellent.
  • the upper limit of the content of silica is not particularly limited, 250 mass parts or less is preferable and 200 mass parts or less is more preferable with respect to 100 mass parts of the conjugated diene rubber described above because the effect of the present invention is more excellent. 150 parts by mass or less is more preferable.
  • the silane coupling agent contained in the composition of the present invention is not particularly limited as long as it is a silane compound having a hydrolyzable group and an organic functional group.
  • the hydrolyzable group is not particularly limited, and examples thereof include an alkoxy group, a phenoxy group, a carboxyl group, and an alkenyloxy group. Among these, an alkoxy group is preferable because the effect of the present invention is more excellent.
  • the hydrolyzable group is an alkoxy group
  • the number of carbon atoms of the alkoxy group is preferably 1 to 16, and more preferably 1 to 4, because the effects of the present invention are more excellent.
  • Examples of the alkoxy group having 1 to 4 carbon atoms include a methoxy group, an ethoxy group, and a propoxy group.
  • the organic functional group is not particularly limited, but is preferably a group capable of forming a chemical bond with an organic compound.
  • an epoxy group for example, an epoxy group, vinyl group, acryloyl group, methacryloyl group, amino group, sulfide group, mercapto group, block mercapto group ( Protected mercapto group) (for example, octanoylthio group) and the like.
  • a sulfide group particularly a disulfide group, a tetrasulfide group
  • a mercapto group, and a block mercapto group are preferable because the effects of the present invention are more excellent.
  • silane coupling agent examples include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) disulfide, mercaptopropyltrimethoxy.
  • Silane mercaptopropyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl-tetrasulfide, trimethoxysilylpropyl-mercaptobenzothiazole tetrasulfide, triethoxysilylpropyl-methacrylate-monosulfide, dimethoxymethylsilyl And propyl-N, N-dimethylthiocarbamoyl-tetrasulfide, 3-octanoylthio-1-propyltriethoxysilane, and the like. It may be used alone or in combination of two or more thereof.
  • the silane coupling agent is preferably represented by the following general formula (S) because the effects of the present invention are more excellent.
  • n represents an integer of 1 to 3
  • m represents an integer of 1 to 5 (preferably an integer of 2 to 4)
  • k represents an integer of 1 to 15 (preferably 5 to An integer of 10).
  • the content of the silane coupling agent is 3 to 30% by mass with respect to the content of silica described above. Among these, 5 to 20% by mass is preferable because the effect of the present invention is more excellent.
  • the content of the silane coupling agent is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the conjugated diene rubber described above, because the effects of the present invention are more excellent. Is more preferably 45 parts by mass, and further preferably 4-40 parts by mass.
  • composition of the present invention may contain a component (optional component) other than the components described above, if necessary.
  • a component optional component
  • examples of such components include fillers other than silica (for example, carbon black), styrene butadiene copolymers, resins having a softening point of 70 ° C. or higher, thermally expandable microcapsules, zinc oxide (zinc white), stearin.
  • Various additives commonly used in rubber compositions such as acids, antioxidants, waxes, processing aids, process oils, liquid polymers, thermosetting resins, vulcanizing agents (eg, sulfur), vulcanization accelerators, etc. Agents and the like.
  • the composition of the present invention preferably contains carbon black for the reason that the effects of the present invention are more excellent.
  • the carbon black is not particularly limited.
  • various grades such as SAF-HS, SAF, ISAF-HS, ISAF, ISAF-LS, IISAF-HS, HAF-HS, HAF, HAF-LS, FEF, GPF, SRF, etc.
  • Nitrogen adsorption specific surface area of the carbon black (N 2 SA) is not particularly limited, for the reasons the effects of the present invention is more excellent, preferably 50 ⁇ 200m 2 / g, more preferably 70 ⁇ 150m 2 / g.
  • the nitrogen adsorption specific surface area (N 2 SA) is determined according to JIS K6217-2: 2001 “Part 2: Determination of specific surface area—nitrogen adsorption method—single point method”. It is a measured value.
  • the content of carbon black is not particularly limited, but is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the diene rubber described above, because the effects of the present invention are more excellent. 10 parts by mass is more preferable.
  • the styrene butadiene copolymer contained in the composition of the present invention is a styrene butadiene rubber having a weight average molecular weight (Mw) of 2,000 or more and less than 100,000 and being liquid at room temperature (23 ° C.).
  • Mw weight average molecular weight
  • the weight average molecular weight (Mw) of the styrene-butadiene copolymer is a value measured by gel permeation chromatography in terms of polystyrene, and is 2,000 or more and less than 100,000, for the reason that the effect of the present invention is more exhibited.
  • the content of the styrene-butadiene copolymer is preferably 5 parts by mass or more, more preferably 8 parts by mass or more, from the reason that the effect of the present invention is more exerted with respect to 100 parts by mass of the conjugated diene rubber described above. 10 parts by mass or more is more preferable, and in particular, 15 parts by mass or more is particularly preferable because wet performance is more excellent.
  • the upper limit is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and more preferably 30 parts by mass or less with respect to 100 parts by mass of the conjugated diene rubber described above, because the effect of the present invention is more exhibited. Particularly preferred.
  • the composition of the present invention may contain a resin having a softening point of 70 ° C. or higher from the viewpoint that the effects of the present invention are more excellent and the heat-resistant sagging property is improved.
  • the resin having a softening point of 70 ° C. or higher is not particularly limited, but a hydrocarbon resin is preferable because the effect of the present invention is more excellent and the heat resistance is improved.
  • the hydrocarbon resin include natural resins such as terpene resins and rosin resins, synthetic resins such as petroleum resins, coal resins, phenol resins, and xylene resins, and modified products thereof. Of these, terpene resins and / or petroleum resins are preferable, and modified products of terpene resins are more preferable because the effects of the present invention are more excellent and the heat resistance drooping property is improved.
  • terpene resin for example, ⁇ -pinene resin, ⁇ -pinene resin, limonene resin, hydrogenated limonene resin, dipentene resin, terpene phenol resin, terpene styrene resin, aromatic modified terpene resin, hydrogenated terpene resin and the like are suitable.
  • a terpene phenol resin or an aromatic modified terpene resin is preferable, and a terpene phenol resin is more preferable because the effect of the present invention is more excellent and the heat resistance drooping property is improved.
  • the aromatic modified terpene resin is obtained by polymerizing a terpene and an aromatic compound.
  • terpenes include ⁇ -pinene, ⁇ -pinene, dipentene, limonene and the like.
  • the aromatic compound include styrene, ⁇ -methylstyrene, vinyl toluene, indene and the like.
  • a styrene-modified terpene resin is preferable as the aromatic-modified terpene resin because the effect of the present invention is more excellent and the heat-resistant sagging property is improved.
  • Examples of petroleum resins include aromatic hydrocarbon resins or saturated or unsaturated aliphatic hydrocarbon resins.
  • C5 petroleum resins isoprene, 1,3-pentadiene, cyclopentadiene, methylbutene, pentene.
  • Aliphatic petroleum resin obtained by polymerizing fractions such as C9)
  • C9 petroleum resin aromatic petroleum resin obtained by polymerizing fractions such as ⁇ -methylstyrene, o-vinyltoluene, m-vinyltoluene, and p-vinyltoluene.
  • C5-C9 copolymer petroleum resin and the like are examples of petroleum resins.
  • the softening point of the resin is 70 ° C. or higher, and 80 ° C. or higher is preferable, and 100 ° C. or higher is more preferable because the effect of the present invention is more excellent and the heat sag resistance is improved.
  • the upper limit value is preferably 200 ° C. or less, more preferably 180 ° C. or less, and particularly preferably 170 ° C. or less, because it is excellent in dispersibility in the composition of the present invention.
  • the softening point of the resin is measured by a method according to JIS K6220-1 (ring ball method).
  • the content of the resin having a softening point of 70 ° C. or higher is not particularly limited.
  • the diene rubber 100 described above is preferable because the effect of the present invention is more excellent and the heat resistance is improved.
  • the amount is preferably 1 to 100 parts by mass, more preferably 2 to 60 parts by mass, and particularly preferably 5 to 40 parts by mass with respect to parts by mass.
  • composition of the present invention is not particularly limited, and specific examples thereof include, for example, kneading the above-described components using a known method and apparatus (for example, a Banbury mixer, a kneader, a roll, etc.). The method etc. are mentioned.
  • a known method and apparatus for example, a Banbury mixer, a kneader, a roll, etc.
  • the method etc. are mentioned.
  • the composition of the present invention contains sulfur or a vulcanization accelerator, components other than sulfur and the vulcanization accelerator are first mixed at a high temperature (preferably 100 to 160 ° C.) and cooled, and then sulfur or It is preferable to mix a vulcanization accelerator.
  • the composition of the present invention can be vulcanized or crosslinked under conventionally known vulcanization or crosslinking conditions.
  • the pneumatic tire of the present invention is a pneumatic tire manufactured using the composition of the present invention described above. Especially, it is preferable that it is a pneumatic tire which used (arrange
  • FIG. 1 shows a partial cross-sectional schematic view of a pneumatic tire representing an example of an embodiment of the pneumatic tire of the present invention, but the pneumatic tire of the present invention is not limited to the embodiment shown in FIG.
  • symbol 1 represents a bead part
  • symbol 2 represents a sidewall part
  • symbol 3 represents a tire tread part.
  • a carcass layer 4 in which fiber cords are embedded is mounted between the pair of left and right bead portions 1, and an end portion of the carcass layer 4 extends from the inside of the tire to the outside around the bead core 5 and the bead filler 6. Wrapped and rolled up.
  • a belt layer 7 is disposed over the circumference of the tire on the outside of the carcass layer 4.
  • the rim cushion 8 is arrange
  • the tire tread portion 3 is formed of the above-described composition of the present invention.
  • the pneumatic tire of the present invention can be manufactured, for example, according to a conventionally known method. Moreover, as gas with which a pneumatic tire is filled, an inert gas such as nitrogen, argon, helium, etc. can be used in addition to normal or air with adjusted oxygen partial pressure.
  • an inert gas such as nitrogen, argon, helium, etc. can be used in addition to normal or air with adjusted oxygen partial pressure.
  • Specific conjugated diene rubbers A1 to A4 and comparative conjugated diene rubbers A1 to A4 were produced as follows.
  • the specific conjugated diene rubbers A1 to A4 are conjugated diene rubbers produced by the above-described conjugated diene rubber production method including the first to third steps, and correspond to the specific conjugated diene rubbers described above.
  • the specific conjugated diene rubbers A2 and A4 include the process A and the process B described above in the first step, and the specific conjugated diene rubber has a PI block.
  • the comparative conjugated diene rubbers A1 and A2 are conjugated diene rubbers manufactured by the method for manufacturing a conjugated diene rubber that includes the first and second steps (not including the third step described above). Not applicable to specific conjugated diene rubbers. Further, the comparative conjugated diene rubbers A3 to A5 do not correspond to the specific conjugated diene rubber described above.
  • the polyorganosiloxane represented by the following formula (11) was changed to 40 In the state of a mass% concentration of xylene solution, 1.51 g (converted to the number of repeating units of siloxane structure (—Si—O—) in polyorganosiloxane, 1.1 times mol of n-butyllithium used) And the reaction was allowed to proceed for 30 minutes.
  • the obtained conjugated diene rubber is designated as specific conjugated diene rubber A1.
  • the specific conjugated diene rubber A1 has a weight average molecular weight (Mw) of 570,000, a coupling rate of 45.0%, an aromatic vinyl monomer (styrene monomer) unit content of 41.1% by mass, vinyl The bond content was 33.5% by mass, the glass transition temperature (Tg) was ⁇ 26 ° C., and the molecular weight distribution (Mw / Mn) was 1.5.
  • X 1 , X 4 , R 1 to R 3 and R 5 to R 8 are methyl groups.
  • m is 80 and k is 120.
  • X 2 is a group represented by the following formula (12) (here, * represents a bonding position).
  • the polymer block (A) has a weight average molecular weight (Mw) of 6,500, a molecular weight distribution (Mw / Mn) of 1.12, and an aromatic vinyl monomer (styrene monomer) unit content of 7.0.
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • aromatic vinyl monomer (styrene monomer) unit content 7.0.
  • the isoprene monomer unit content was 93.0% by mass, and the vinyl bond content was 7.5% by mass.
  • the maximum temperature during the polymerization reaction was 70 ° C.
  • the polymerization reaction was continued for another 15 minutes, and after confirming that the polymerization conversion rate was in the range of 95% to 100%, the polyorganosiloxane represented by the above formula (11) was replaced by 40 In the state of xylene solution with a concentration of mass%, 1.51 g (converted to the number of repeating units of siloxane structure (—Si—O—) in polyorganosiloxane, 1.1 times mol of n-butyllithium used) And the reaction was allowed to proceed for 30 minutes.
  • the obtained conjugated diene rubber is designated as specific conjugated diene rubber A2.
  • the specific conjugated diene rubber A2 has a weight average molecular weight (Mw) of 570,000, a coupling rate of 45.0%, an aromatic vinyl monomer (styrene monomer) unit content of 41.1% by mass, vinyl The bond content was 33.5% by mass, the glass transition temperature (Tg) was ⁇ 26 ° C., and the molecular weight distribution (Mw / Mn) was 1.5.
  • conjugated diene rubber (manufactured by Ciba Specialty Chemicals) as an anti-aging agent was added to this solution in an amount of 0.15 part per 100 parts of conjugated diene rubber, and the solvent was removed by steam stripping. For 24 hours to obtain a solid conjugated diene rubber.
  • the obtained conjugated diene rubber is designated as specific conjugated diene rubber A3.
  • the specific conjugated diene rubber A3 has a weight average molecular weight (Mw) of 467,000, a coupling rate of 54.4%, an aromatic vinyl monomer (styrene monomer) unit content of 26.9% by mass, vinyl The bond content was 58.5% by mass, the glass transition temperature (Tg) was ⁇ 22 ° C., and the molecular weight distribution (Mw / Mn) was 1.4.
  • the polymer block (A) has a weight average molecular weight (Mw) of 3,500, a molecular weight distribution (Mw / Mn) of 1.10, and an aromatic vinyl monomer (styrene monomer) unit content of 7.0.
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • aromatic vinyl monomer (styrene monomer) unit content 7.0.
  • the isoprene monomer unit content was 93.0% by mass, and the vinyl bond content was 7.7% by mass.
  • the polymerization reaction was continued for another 20 minutes, and after confirming that the polymerization conversion rate was in the range of 95% to 100%, the polyorganosiloxane represented by the above formula (11) was replaced by 40 2.13 g in terms of a mass% concentration of xylene solution, converted to the number of repeating units of siloxane structure (—Si—O—) in polyorganosiloxane, 1.1 times mol of n-butyllithium used And the reaction was allowed to proceed for 30 minutes.
  • the obtained conjugated diene rubber is designated as specific conjugated diene rubber A4.
  • the specific conjugated diene rubber A4 has a weight average molecular weight (Mw) of 488,000, a coupling rate of 60.2%, an aromatic vinyl monomer (styrene monomer) unit content of 26.6% by mass, vinyl The bond content was 60.4% by mass, the glass transition temperature (Tg) was ⁇ 22 ° C., and the molecular weight distribution (Mw / Mn) was 1.4.
  • a solid conjugated diene rubber was obtained in the same manner as the specific conjugated diene rubber A2, except that 4.76 mmol of 3- (2-aminoethylamino) propyltrimethoxysilane was not added.
  • the obtained conjugated diene rubber is referred to as comparative conjugated diene rubber A1.
  • Comparative conjugated diene rubber A1 has a weight average molecular weight (Mw) of 552,000, a coupling rate of 43.0%, an aromatic vinyl monomer (styrene monomer) unit content of 41.0% by mass, vinyl The bond content was 33.0% by mass, the glass transition temperature (Tg) was ⁇ 27 ° C., and the molecular weight distribution (Mw / Mn) was 1.7.
  • Comparative conjugated diene rubber A2 has a weight average molecular weight (Mw) of 460,000, a coupling rate of 52.5%, an aromatic vinyl monomer (styrene monomer) unit content of 27.6% by mass, vinyl The bond content was 58.8% by mass, the glass transition temperature (Tg) was ⁇ 22 ° C., and the molecular weight distribution (Mw / Mn) was 1.4.
  • Comparative conjugated diene rubber A3 is NS522 manufactured by Nippon Zeon (styrene butadiene rubber, weight average molecular weight (Mw): 960,000, aromatic vinyl monomer (styrene monomer) unit content: 38% by mass, Vinyl bond content: 39% by mass, glass transition temperature: ⁇ 23 ° C., molecular weight distribution: 1.7).
  • Comparative conjugated diene rubber A4 is F3420 manufactured by Asahi Kasei Corporation (styrene butadiene rubber, weight average molecular weight (Mw): 900,000, aromatic vinyl monomer (styrene monomer) unit content: 37% by mass, vinyl Bond content: 41% by mass, glass transition temperature: ⁇ 27 ° C., molecular weight distribution: 2.3).
  • Comparative conjugated diene rubber A5 is Nipol 1739 (styrene butadiene rubber, weight average molecular weight (Mw): 760,000, aromatic vinyl monomer (styrene monomer) unit content: 39% by mass, manufactured by Nippon Zeon Co., Ltd. Vinyl bond content: 14% by mass, glass transition temperature: ⁇ 28 ° C., molecular weight distribution: 3.8).
  • ⁇ Preparation of vulcanized rubber sheet> The obtained rubber composition for tire tread (unvulcanized) was press-vulcanized at 160 ° C. for 40 minutes in a mold (15 cm ⁇ 15 cm ⁇ 0.2 cm) to prepare a vulcanized rubber sheet.
  • the pneumatic tire shown in FIG. 1 was manufactured using the obtained rubber composition for a tire tread as a tire tread. At that time, the above-mentioned average main groove depth (the maximum value from the tread surface to the groove bottom of the main groove is indicated. The main groove depth is measured by excluding partial uneven portions formed in the groove bottom. The tread pattern was formed so as to be 6.0 mm.
  • the obtained pneumatic tire was mounted on a test vehicle having a displacement of 2.0 L, and the sensory evaluation by a test driver was performed on the driving stability performance (dry driving stability performance) on a dry road surface. The results are shown in Table 1. The results were expressed as an index with Comparative Example A1 as 100. The larger the index, the better the dry steering stability performance. Practically 101 or more is preferable.
  • Specific conjugated diene rubber A1 Specific conjugated diene rubber A1 produced as described above Specific conjugated diene rubber A2: Specific conjugated diene rubber A2 produced as described above Specific conjugated diene rubber A3: Specific conjugated diene rubber A3 produced as described above Specific conjugated diene rubber A4: Specific conjugated diene rubber A4 produced as described above Comparative conjugated diene rubber A1: Comparative conjugated diene rubber A1 produced as described above Comparative conjugated diene rubber A2: Comparative conjugated diene rubber A2 produced as described above Comparative conjugated diene rubber A3: Comparative conjugated diene rubber A3 described above Comparative conjugated diene rubber A4: Comparative conjugated diene rubber A4 described above Comparative conjugated diene rubber A5: Comparative conjugated diene rubber A5 described above ⁇ NR: Natural rubber (TSR20, manufactured by VON BUNDIT) BR 1220: Nipol BR1220 (butadiene rubber, glass transition temperature: ⁇
  • Zinc oxide 3 types of zinc oxide (manufactured by Shodo Chemical Industry Co., Ltd.)
  • Stearic acid Beads stearic acid (manufactured by NOF Corporation)
  • -Anti-aging agent Ozonon 6C (manufactured by Seiko Chemical Co., Ltd.)
  • Process oil Extract No. 4 S (made by Showa Shell Sekiyu KK)
  • Sulfur Fine powder sulfur with Jinhua seal oil (sulfur content 95.24 mass%, manufactured by Tsurumi Chemical Co., Ltd.)
  • Vulcanization accelerator (DPG) 1,3-diphenylguanidine (Soccinol DG, manufactured by Sumitomo Chemical Co., Ltd.)
  • Examples A1 to A8 containing a predetermined amount of a specific conjugated diene rubber, a predetermined amount of styrene butadiene rubber (A), and a predetermined amount of a silane coupling agent have excellent wet performance, It showed rolling performance and dry maneuvering stability performance.
  • Examples A2 and A4 to A8 in which the specific conjugated diene rubber contains a PI block were shown to be superior in at least one of wet performance, rolling performance, and dry steering stability performance.
  • Example A6 in which the styrene-butadiene rubber (A) has a functional group that interacts with silica showed better wet performance, rolling performance, and dry steering stability performance.
  • Examples A4, A5 and A7 when the molecular weight distribution of the styrene butadiene rubber (A) was 2.0 or more, more excellent wet performance and dry steering stability performance were exhibited.
  • Specific conjugated diene rubbers B1 and B2 and comparative conjugated diene rubber B1 were produced as follows.
  • the specific conjugated diene rubbers B1 and B2 are conjugated diene rubbers produced by the conjugated diene rubber production method including the first to third steps described above, and correspond to the specific conjugated diene rubbers described above.
  • the specific conjugated diene rubber B1 includes the process A and the process B described above in the first step, and the specific conjugated diene rubber has a PI block.
  • the comparative conjugated diene rubber B1 is a conjugated diene rubber produced by a method for producing a conjugated diene rubber that includes the above-described first and second steps (not including the above-described third step). Not applicable to diene rubber. Further, the comparative conjugated diene rubber B2 does not correspond to the specific conjugated diene rubber described above.
  • the polymer block (A) has a weight average molecular weight (Mw) of 6,500, a molecular weight distribution (Mw / Mn) of 1.12, and an aromatic vinyl monomer (styrene monomer) unit content of 7.0.
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • aromatic vinyl monomer (styrene monomer) unit content 7.0.
  • the isoprene monomer unit content was 93.0% by mass, and the vinyl bond content was 7.5% by mass.
  • the maximum temperature during the polymerization reaction was 70 ° C.
  • the polymerization reaction was continued for another 15 minutes, and after confirming that the polymerization conversion rate was in the range of 95% to 100%, the polyorganosiloxane represented by the following formula (11) was changed to 40 In the state of xylene solution with a concentration of mass%, 1.51 g (converted to the number of repeating units of siloxane structure (—Si—O—) in polyorganosiloxane, 1.1 times mol of n-butyllithium used) And the reaction was allowed to proceed for 30 minutes.
  • the obtained conjugated diene rubber is designated as specific conjugated diene rubber B1.
  • the specific conjugated diene rubber B1 has a weight average molecular weight (Mw) of 570,000, a coupling rate of 45.0%, an aromatic vinyl monomer (styrene monomer) unit content of 41.1% by mass, vinyl The bond content was 33.5% by mass, the glass transition temperature (Tg) was ⁇ 26 ° C., and the molecular weight distribution (Mw / Mn) was 1.5.
  • X 1 , X 4 , R 1 to R 3 and R 5 to R 8 are methyl groups.
  • m is 80 and k is 120.
  • X 2 is a group represented by the following formula (12) (here, * represents a bonding position).
  • Specific conjugated diene rubber B2> It was obtained by charging an autoclave equipped with a stirrer with 4000 g of cyclohexane, 7.55 mmol of tetramethylethylenediamine, 390 g of 1,3-butadiene, and 210 g of styrene in a nitrogen atmosphere and then operating in the same manner as the specific conjugated diene rubber B1. Total amount of the polymer block (A) having an active terminal was added, and polymerization was started at 50 ° C. After 15 minutes from the start of polymerization, 260 g of 1,3-butadiene and 140 g of styrene were continuously added over 60 minutes. The maximum temperature during the polymerization reaction was 70 ° C.
  • the polymerization reaction was continued for another 15 minutes, and after confirming that the polymerization conversion rate was in the range of 95% to 100%, the polyorganosiloxane represented by the above formula (11) was replaced by 40 1.60 g (converted to the number of repeating units of siloxane structure (—Si—O—) in polyorganosiloxane) 1.1 times mol of n-butyllithium in a mass% concentration of xylene solution And the reaction was allowed to proceed for 30 minutes. Next, 4.88 mmol of 3- (2-aminoethylamino) propyltrimethoxysilane was added and allowed to react for 10 minutes.
  • the polyorganosiloxane represented by the above formula (11) was replaced by 40 1.60 g (converted to the number of repeating units of siloxane structure (—Si—O—) in polyorganosiloxane) 1.1 times mol of n-butyllithium in a mass% concentration of xylene
  • conjugated diene rubber is designated as specific conjugated diene rubber B2.
  • the specific conjugated diene rubber B2 has a weight average molecular weight (Mw) of 650,000, a coupling rate of 43%, an aromatic vinyl monomer (styrene monomer) unit content of 35% by mass, and a vinyl bond content of It was 64% by mass, the glass transition temperature (Tg) was ⁇ 15 ° C., and the molecular weight distribution (Mw / Mn) was 1.7.
  • Comparative conjugated diene rubber B1 has a weight average molecular weight (Mw) of 552,000, a coupling rate of 43.0%, an aromatic vinyl monomer (styrene monomer) unit content of 41.0% by mass, vinyl The bond content was 33.0% by mass, the glass transition temperature (Tg) was ⁇ 26 ° C., and the molecular weight distribution (Mw / Mn) was 1.7.
  • Comparative conjugated diene rubber B2 is HP755 (solution polymerized styrene butadiene rubber, glass transition temperature: -21 ° C.) manufactured by JSR.
  • ⁇ Preparation of vulcanized rubber sheet> The obtained rubber composition for tire tread (unvulcanized) was press-vulcanized at 160 ° C. for 40 minutes in a mold (15 cm ⁇ 15 cm ⁇ 0.2 cm) to prepare a vulcanized rubber sheet.
  • the pneumatic tire shown in FIG. 1 was manufactured using the obtained rubber composition for a tire tread as a tire tread. At that time, the above-mentioned average main groove depth (the maximum value from the tread surface to the groove bottom of the main groove is indicated. The main groove depth is measured by excluding partial uneven portions formed in the groove bottom. The tread pattern was formed so as to be 6.0 mm.
  • the obtained pneumatic tire was mounted on a test vehicle having a displacement of 2.0 L, and the sensory evaluation by a test driver was performed on the driving stability performance (dry driving stability performance) on a dry road surface. The results are shown in Table 2. The results were expressed as an index with Comparative Example B1 as 100. The larger the index, the better the dry steering stability performance. Practically 101 or more is preferable.
  • Average Tg of conjugated diene rubber means the average glass transition temperature of the specific conjugated diene rubber and other conjugated diene rubber in the rubber composition, and is based on the Tg and content of each rubber component. It was calculated by the method described above.
  • Specific conjugated diene rubber B1 Specific conjugated diene rubber B1 produced as described above Specific conjugated diene rubber B2: Specific conjugated diene rubber B2 produced as described above Comparative conjugated diene rubber B1: Comparative conjugated diene rubber B1 produced as described above Comparative conjugated diene rubber B2: Comparative conjugated diene rubber B2 described above
  • E680 Toughden E680 (solution polymerized styrene butadiene rubber, weight average molecular weight (Mw): 1,470,000, aromatic vinyl monomer (styrene monomer) unit content: 36 mass%, vinyl bond content: 64% by mass, glass transition temperature: ⁇ 13 ° C., manufactured by Asahi Kasei Corporation).
  • E680 does not correspond to the above-mentioned specific conjugated diene rubber.
  • -Liquid styrene butadiene copolymer 1 RICON 100 (weight average molecular weight: 4,500, manufactured by Clay Valley)
  • Liquid styrene butadiene copolymer 2 (weight average molecular weight: 30,000)
  • 7000GR ULTRASIL 7000GR (silica, manufactured by Evonik)
  • N234 Show Black N234 (Carbon Black, manufactured by Cabot Japan)
  • Si69 Si69 (silane coupling agent, bis (3-triethoxysilylpropyl) tetrasulfide)
  • T160 Polystar T160 (terpene phenol resin, softening point: 160 ⁇ 5 ° C., manufactured by Yasuhara Chemical Co., Ltd.)
  • Zinc oxide 3 types of zinc oxide (manufactured by Shodo Chemical Industry Co., Ltd.)
  • Stearic acid Be
  • Examples B1 to B6 containing a predetermined amount of a specific conjugated diene rubber, a predetermined amount of styrene butadiene rubber (A), and a predetermined amount of a silane coupling agent have excellent wet performance, It showed rolling performance and dry handling stability performance, and was excellent in heat-resistant sagging performance. From the comparison between Examples B1 and B2, Example B2 containing a specific conjugated diene rubber having a glass transition temperature of ⁇ 20 ° C. or higher showed better wet performance and heat-resistant sagging performance.
  • Example B3 in which the content of the styrene butadiene copolymer (liquid styrene butadiene copolymer) is 15 parts by mass or more with respect to 100 parts by mass of the conjugated diene rubber was more excellent. Wet performance was shown. From the comparison between Examples B3 and B4, Example B4 containing a styrene butadiene copolymer (liquid styrene butadiene copolymer) having a weight average molecular weight (Mw) of 10,000 or more shows better wet performance. It was. From a comparison between Examples B2 and B5, Example B5 containing a resin having a softening point of 70 ° C. or higher showed more excellent wet performance and heat-resistant sagging performance. From the comparison between Examples B2 and B6, Example B2 in which the content of the specific conjugated diene rubber in the conjugated diene rubber was 40% by mass or more showed better wet performance.
  • Mw weight average molecular weight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

タイヤにしたときのウェット性能、タイヤにしたときの転がり性能、および、タイヤにしたときのドライ操縦安定性能に優れるタイヤトレッド用ゴム組成物、ならびに、上記タイヤトレッド用ゴム組成物を用いた空気入りタイヤを提供する。本発明のタイヤトレッド用ゴム組成物は、特定の工程を備える共役ジエン系ゴムの製造方法により製造される特定共役ジエン系ゴムを30質量%以上と、スチレンブタジエンゴムを20質量%以上と、を含む共役ジエン系ゴムと、所定量のシリカと、所定量のシランカップリング剤とを含有し、特定共役ジエン系ゴム中の芳香族ビニル単量体単位の含有量が20~80質量%であり、特定共役ジエン系ゴムにおける共役ジエン単量体単位中のビニル結合含有量が20~80質量%であり、特定共役ジエン系ゴムのガラス転移温度および重量平均分子量が所定範囲内にある。

Description

タイヤトレッド用ゴム組成物および空気入りタイヤ
 本発明は、タイヤトレッド用ゴム組成物および空気入りタイヤに関する。
 近年、車両走行時の安全性の面から、タイヤのウェット性能(ウェットグリップ性能)(ウェット路面での制動性能)の向上が求められている。また、車両走行時の低燃費性の面から、タイヤの転がり性能(低転がり抵抗性)の向上が求められている。これに対し、タイヤのトレッド部を構成するゴム成分に、シリカを配合して、ウェット性能および転がり性能を向上させる方法が知られている。
 しかし、シリカはゴム成分との親和性が低く、また、シリカ同士の凝集性が高いため、ゴム成分に単にシリカを配合してもシリカが分散せず、ウェット性能および転がり性能を向上させる効果が十分に得られないという問題があった。
 このようななか、例えば、特許文献1の請求項1には、工程AとBとCとをこの順に備える共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴムを含有するタイヤトレッド用ゴム組成物が開示されている。特許文献1には、上記タイヤトレッドゴム組成物が、タイヤにしたときに優れたウェット性能および転がり性能を示す旨が記載されている。
特開2016-47887号公報
 昨今、求められる安全レベルの向上に伴い、タイヤのウェット性能のさらなる向上が望まれている。また、環境問題および資源問題などから、タイヤの転がり性能のさらなる向上も求められている。また、タイヤのドライ操縦安定性(ドライ路面での制動性能)のさらなる向上も望まれている。
 このようななか、本発明者らが、特許文献1の実施例を参考にタイヤトレッド用ゴム組成物を調製し、タイヤにしたときのウェット性能、タイヤにしたときの転がり性能、および、タイヤにしたときのドライ操縦安定性能を評価したところ、今後さらに高まるであろう要求を考慮するとさらなる改善が望ましいことが明らかになった。
 そこで、本発明は、タイヤにしたときのウェット性能、タイヤにしたときの転がり性能、および、タイヤにしたときのドライ操縦安定性能に優れるタイヤトレッド用ゴム組成物、ならびに、上記タイヤトレッド用ゴム組成物を用いた空気入りタイヤを提供することを課題とする。
 本発明者らは、上記課題について鋭意検討した結果、特定の共役ジエン系ゴムを用いることで、上記課題が解決できることを見出し、本発明に至った。
 すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
[1]
 特定共役ジエン系ゴムを30質量%以上と、上記特定共役ジエン系ゴム以外のスチレンブタジエンゴムを20質量%以上と、を含む共役ジエン系ゴムと、
 シリカと、
 シランカップリング剤とを含有し、
 上記シリカの含有量が、上記共役ジエン系ゴム100質量部に対して、30質量部以上であり、
 上記シランカップリング剤の含有量が、上記シリカの含有量に対して、3~30質量%であり、
 上記特定共役ジエン系ゴムが、不活性溶媒中で、重合開始剤を用いて、共役ジエン化合物および芳香族ビニル化合物を含む単量体を重合し、活性末端を有する共役ジエン系重合体鎖を得る第1工程と、上記活性末端を有する共役ジエン系重合体鎖に、後述の一般式(1)で表されるポリオルガノシロキサンを、上記第1工程で使用した重合開始剤1モルに対して、上記ポリオルガノシロキサン中のシロキサン構造(-Si-O-)の繰り返し単位数換算で1モル以上の割合にて添加して反応させる第2工程と、上記第2工程で得られるポリオルガノシロキサンを反応させた共役ジエン系重合体鎖に、後述の一般式(2)で表される化合物を反応させる第3工程とを備える共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴムであり、
 上記特定共役ジエン系ゴム中の芳香族ビニル単量体単位の含有量が20~80質量%であり、上記特定共役ジエン系ゴムにおける共役ジエン単量体単位中のビニル結合含有量が20~80質量%であり、
 上記特定共役ジエン系ゴムは、ガラス転移温度が-35~0℃であり、重量平均分子量(Mw)が100,000以上である、タイヤトレッド用ゴム組成物。
[2]
 上記スチレンブタジエンゴムが、シリカと相互作用する官能基を有する、[1]に記載のタイヤトレッド用ゴム組成物。
[3]
 上記共役ジエン系ゴム中のシリカと相互作用する官能基を有するゴム成分の含有量の合計が、80質量%以上である、[1]または[2]に記載のタイヤトレッド用ゴム組成物。
[4]
 上記スチレンブタジエンゴムは、重量平均分子量(Mw)および数平均分子量(Mn)から求められる分子量分布(Mw/Mn)が2.0以上である、[1]~[3]のいずれかに記載のタイヤトレッド用ゴム組成物。
[5]
 上記共役ジエン系ゴムが、上記特定共役ジエン系ゴムおよび上記スチレンブタジエンゴム以外のゴム成分を10質量%以上含む、[1]~[4]のいずれかに記載のタイヤトレッド用ゴム組成物。
[6]
 上記特定共役ジエン系ゴムが、
 イソプレン単量体単位80~100質量%および芳香族ビニル単量体単位0~20質量%を含む重合体ブロック(A)と、
 1,3-ブタジエン単量体単位50~100質量%および芳香族ビニル単量体単位0~50質量%を含む重合体ブロック(B)とが一続きにして形成された構造を有する、[1]~[5]のいずれかに記載のタイヤトレッド用ゴム組成物。
[7]
 [1]~[6]のいずれかに記載のタイヤトレッド用ゴム組成物を用いて製造されたタイヤトレッド部を備える、空気入りタイヤ。
 以下に示すように、本発明によれば、タイヤにしたときのウェット性能(以下、単に「ウェット性能」とも言う)、タイヤにしたときの転がり性能(以下、単に「転がり性能」とも言う)、および、タイヤにしたときのドライ操縦安定性能(以下、単に「ドライ操縦安定性能」とも言う)に優れるタイヤトレッド用ゴム組成物、ならびに、上記タイヤトレッド用ゴム組成物を用いた空気入りタイヤを提供することができる。
本発明の空気入りタイヤの実施態様の一例の部分断面概略図である。
 以下に、本発明のタイヤトレッド用ゴム組成物および上記タイヤトレッド用ゴム組成物を用いた空気入りタイヤについて説明する。
 なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本発明のタイヤトレッド用ゴム組成物に含有される各成分は、1種を単独でも用いても、2種以上を併用してもよい。ここで、各成分について2種以上を併用する場合、その成分について含有量とは、特段の断りが無い限り、合計の含有量を指す。
 また、本明細書において、「(メタ)アクリル」は、「アクリル」または「メタクリル」を表す表記であり、「(メタ)アクリロニトリル」は、「アクリロニトリル」または「メタクリロニトリル」を表す表記である。
[I]タイヤトレッド用ゴム組成物
 本発明のタイヤトレッド用ゴム組成物(以下、「本発明の組成物」とも言う)は、特定共役ジエン系ゴムを30質量%以上と、上記特定共役ジエン系ゴム以外のスチレンブタジエンゴム(以下、「スチレンブタジエンゴム(A)」とも言う。)を20質量%以上と、を含む共役ジエン系ゴムと、シリカと、シランカップリング剤とを含有する。
 ここで、上記シリカの含有量は、上記共役ジエン系ゴム100質量部に対して30質量部以上であり、上記シランカップリング剤の含有量は、上記シリカの含有量に対して3~30質量%である。
 また、上記特定共役ジエン系ゴムは、不活性溶媒中で、重合開始剤を用いて、共役ジエン化合物および芳香族ビニル化合物を含む単量体を重合し、活性末端を有する共役ジエン系重合体鎖を得る第1工程と、上記活性末端を有する共役ジエン系重合体鎖に、下記一般式(1)で表されるポリオルガノシロキサンを、上記第1工程で使用した重合開始剤1モルに対して、上記ポリオルガノシロキサン中のシロキサン構造(-Si-O-)の繰り返し単位数換算で1モル以上の割合にて添加して反応させる第2工程と、上記第2工程で得られるポリオルガノシロキサンを反応させた共役ジエン系重合体鎖に、下記一般式(2)で表される化合物を反応させる第3工程とを備える共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴムである。
 また、上記特定共役ジエン系ゴム中の芳香族ビニル単量体単位の含有量は20~80質量%であり、上記特定共役ジエン系ゴムにおける共役ジエン単量体単位中のビニル結合含有量は20~80質量%である。
 また、上記特定共役ジエン系ゴムは、ガラス転移温度が-35~0℃であり、重量平均分子量(Mw)が100,000以上である。
 本発明の組成物はこのような構成をとるため、上述した効果が得られるものと考えらえる。その理由は明らかではないが、およそ以下のとおりと推測される。
 上述のとおり、本発明の組成物はシリカを含有することで、ウェット性能と転がり性能が高いレベルで両立されることが期待されるが、シリカは凝集し易く、実際には上記効果が満足に発現されないという問題がある。
 一方で、本発明の組成物が含有する特定共役ジエン系ゴムはシリカと類似の構造を有するポリオルガノシロキサン構造を有するため、上記ポリオルガノシロキサン構造がシリカと親和し、シリカの凝集を防ぐものと考えられる。また、特定共役ジエン系ゴムはアミノシラン等の窒素原子含有シランに由来する構造も有するため、これがシランカップリング剤とシリカとのシラニゼーションを促進し、シリカの凝集をさらに抑制するものと考えられる。結果として、シリカによる効果(ウェット性能と転がり性能を高いレベルで両立)が十分に発揮されるものと考えられる。
 また、シリカと結合するゴム成分が多くなることで、ゴムに対する補強性が向上しゴムコンパウンドの剛性感が高まることでドライ操縦安定性が十分に発揮されるものと考える。
 以下、本発明の組成物に含有される各成分について詳述する。
[1]共役ジエン系ゴム
 本発明の組成物に含有される共役ジエン系ゴムは、特定共役ジエン系ゴムを30質量%以上と、スチレンブタジエンゴム(A)を20質量%以上と、を含む。
 共役ジエン系ゴムの重量平均分子量(Mw)は、ポリスチレン換算のゲルパーミエーションクロマトグラフィで測定される値で、100,000以上であるのが好ましい。
 まず、特定共役ジエン系ゴムについて説明し、続いて、スチレンブタジエンゴム(A)について説明する。
[特定共役ジエン系ゴム]
 本発明の組成物が含有する特定共役ジエン系ゴムは以下の第1~3工程を備える共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴムである。
(1)第1工程
 不活性溶媒中で、重合開始剤を用いて、共役ジエン化合物および芳香族ビニル化合物を含む単量体を重合し、活性末端を有する共役ジエン系重合体鎖を得る第1工程
(2)第2工程
 活性末端を有する共役ジエン系重合体鎖に、後述する一般式(1)で表されるポリオルガノシロキサンを、上記第1工程で使用した重合開始剤1モルに対して、上記ポリオルガノシロキサン中のシロキサン構造(-Si-O-)の繰り返し単位数換算で1モル以上の割合にて添加して反応させる第2工程
(3)第3工程
 上記第2工程で得られるポリオルガノシロキサンを反応させた共役ジエン系重合体鎖に、後述する一般式(2)で表される化合物を反応させる第3工程
 最初に、特定共役ジエン系ゴムを上述のとおり製造方法によって特定する理由について説明する。
 上述のとおり、第3工程では、第2工程で得られるポリオルガノシロキサンを反応させた共役ジエン系重合体鎖に、後述する一般式(2)で表される化合物を反応させる。ここで、一般式(2)で表される化合物が有するAが、活性末端を有する共役ジエン系重合体鎖とポリオルガノシロキサンとの反応により生成した反応残基と反応して結合する。しかしながら、後述のとおり、活性末端を有する共役ジエン系重合体鎖とポリオルガノシロキサンとの反応により生成した反応残基は様々な構造をとり得るため、反応残基に一般式(2)で表される化合物が反応した後の構造は極めて複雑であり、その構造を解析することは技術的に不可能であるか、または、その構造を特定する作業を行うことに著しく過大な経済的支出や時間を要する。そのため、特定共役ジエン系ゴムを「第1~3工程を備える共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴム」と記載することには、いわゆる「不可能・非実際的事情」が存在する。
 以下、各工程について説明する。
〔第1工程〕
 第1工程は、不活性溶媒中で、重合開始剤を用いて、共役ジエン化合物および芳香族ビニル化合物を含む単量体を重合し、活性末端を有する共役ジエン系重合体鎖を得る工程である。
 まず、第1工程で用いられる各成分等について説明する。
<共役ジエン化合物>
 第1工程において、活性末端を有する共役ジエン系重合体鎖を得るために、単量体として用いる共役ジエン化合物としては、特に限定されないが、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、2-フェニル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、4,5-ジエチル-1,3-オクタジエン、3-ブチル-1,3-オクタジエンなどを挙げることができる。これらのなかでも、本発明の効果がより優れる理由から、1,3-ブタジエンおよびイソプレンが好ましい。これらの共役ジエン化合物は、1種類を単独で使用しても2種類以上を組合せて用いてもよい。
<芳香族ビニル化合物>
 また、第1工程において、重合に用いる単量体として、共役ジエン化合物とともに芳香族ビニル化合物を用いる。単量体として用いる芳香族ビニル化合物としては、スチレン、メチルスチレン、エチルスチレン、t-ブチルスチレン、α-メチルスチレン、α-メチル-p-メチルスチレン、クロルスチレン、ブロモスチレン、メトキシスチレン、ジメチルアミノメチルスチレン、ジメチルアミノエチルスチレン、ジエチルアミノメチルスチレン、ジエチルアミノエチルスチレン、シアノエチルスチレン、ビニルナフタレンなどが挙げられる。これらのなかでも、本発明の効果がより優れる理由から、スチレンが好ましい。
 第1工程で得られる、活性末端を有する共役ジエン系重合体鎖は、本発明の効果がより優れる理由から、共役ジエン単量体単位20~80質量%を含むものが好ましく、55~80質量%を含むものがより好ましく、55~75質量%を含むものが特に好ましく、また、芳香族ビニル単量体単位20~80質量%を含むものが好ましく、20~45質量%を含むものがより好ましく、25~45質量%を含むものが特に好ましい。
<その他の共重合可能な化合物>
 さらに、第1工程においては、共役ジエン化合物とともに、芳香族ビニル化合物以外の、共役ジエン化合物と共重合可能な化合物(その他の共重合可能な化合物)を用いてもよい。このような共役ジエン化合物と共重合可能な化合物としては、エチレン、プロピレン、1-ブテンなどの鎖状オレフィン化合物;シクロペンテン、2-ノルボルネンなどの環状オレフィン化合物;1,5-ヘキサジエン、1,6-へプタジエン、1,7-オクタジエン、ジシクロペンタジエン、5-エチリデン-2-ノルボルネンなどの非共役ジエン化合物;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチルなどの(メタ)アクリル酸エステル;(メタ)アクリロニトリル、(メタ)アクリルアミドなどのその他の(メタ)アクリル酸誘導体;などが挙げられる。本発明の効果がより優れる理由から、これらの共役ジエン化合物と共重合可能な化合物は、第1工程で得られる、活性末端を有する共役ジエン系重合体鎖中に、単量体単位として、10質量%以下とするのが好ましく、5質量%以下とするのがより好ましい。
<不活性溶媒>
 重合に用いる不活性溶媒としては、溶液重合において通常使用されるものであり、重合反応を阻害しないものであれば特に限定されない。不活性溶媒の具体例としては、ブタン、ペンタン、ヘキサン、へプタンなどの鎖状脂肪族炭化水素;シクロペンタン、シクロヘキサンなどの脂環式炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;などが挙げられる。これらの不活性溶媒は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。不活性溶媒の使用量は、特に限定されないが、単量体濃度が、たとえば1~50質量%となる量であり、本発明の効果がより優れる理由から、10~40質量%となる量が好ましい。
<重合開始剤>
 重合に用いる重合開始剤としては、共役ジエン化合物を含む単量体を重合させて、活性末端を有する共役ジエン系重合体鎖を与えることができるものであれば、特に限定されない。その具体例としては、有機アルカリ金属化合物、有機アルカリ土類金属化合物、およびランタン系列金属化合物などを主触媒とする重合開始剤を挙げることができる。有機アルカリ金属化合物としては、たとえば、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、へキシルリチウム、フェニルリチウム、スチルベンリチウムなどの有機モノリチウム化合物;ジリチオメタン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン、1,3,5ートリス(リチオメチル)ベンゼンなどの有機多価リチウム化合物;ナトリウムナフタレンなどの有機ナトリウム化合物;カリウムナフタレンなどの有機カリウム化合物;などが挙げられる。また、有機アルカリ土類金属化合物としては、例えば、ジ-n-ブチルマグネシウム、ジ-n-へキシルマグネシウム、ジエトキシカルシウム、ジステアリン酸カルシウム、ジ-t-ブトキシストロンチウム、ジエトキシバリウム、ジイソプロポキシバリウム、ジエチルメルカプトバリウム、ジ-t-ブトキシバリウム、ジフェノキシバリウム、ジエチルアミノバリウム、ジステアリン酸バリウム、ジケチルバリウムなどが挙げられる。ランタン系列金属化合物を主触媒とする重合開始剤としては、たとえば、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ガドリニウムなどのランタン系列金属と、カルボン酸、およびリン含有有機酸などとからなるランタン系列金属の塩を主触媒とし、これと、アルキルアルミニウム化合物、有機アルミニウムハイドライド化合物、有機アルミニウムハライド化合物などの助触媒とからなる重合開始剤などが挙げられる。これらの重合開始剤の中でも、本発明の効果がより優れる理由から、有機モノリチウム化合物、および有機多価リチウム化合物が好ましく用いられ、有機モノリチウム化合物がより好ましく用いられ、n-ブチルリチウムが特に好ましく用いられる。
 なお、有機アルカリ金属化合物は、予め、ジブチルアミン、ジヘキシルアミン、ジベンジルアミン、ピロリジン、ピペリジン、ヘキサメチレンイミン、およびへプタメチレンイミンなどの2級アミン化合物と反応させて、有機アルカリ金属アミド化合物として使用してもよい。これらの重合開始剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 有機アルカリ金属アミド化合物としては、たとえば、有機アルカリ金属化合物に、2級アミン化合物を反応させたものなどが挙げられ、なかでも、本発明の効果がより優れる理由から、下記一般式(3)で表される化合物を好適に用いることができる。
Figure JPOXMLDOC01-appb-C000003
 一般式(3)中、Mはアルカリ金属原子を表し、R11、R12は、それぞれ独立して、アルキル基、シクロアルキル基、アリール基、アラルキル基、アミノ基の保護基、または加水分解して水酸基を生じうる基を表し、R11およびR12は互いに結合して、これらが結合する窒素原子とともに環構造を形成してもよく、該環構造を形成する場合には、これらが結合する窒素原子に加えて、これらが結合する窒素原子以外のヘテロ原子とともに環構造を形成していてもよい。
 アルキル基としては、特に限定されないが、本発明の効果がより優れる理由から、炭素数1~20のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。このようなアルキル基としては、たとえば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-へキシル基、n-ヘプチル基、n-オクチル基、n-デシル基などが挙げられる。
 シクロアルキル基としては、特に限定されないが、本発明の効果がより優れる理由から、炭素数3~20のシクロアルキル基が好ましく、炭素数3~12のシクロアルキル基がより好ましい。このようなシクロアルキル基としては、たとえば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロドデシル基などが挙げられる。
 アリール基としては、特に限定されないが、本発明の効果がより優れる理由から、炭素数6~12のアリール基が好ましく、炭素数6~10のアリール基がより好ましい。このようなアリール基としては、たとえば、フェニル基、1-ナフチル基、2-ナフチル基などが挙げられる。
 アラルキル基としては、特に限定されないが、本発明の効果がより優れる理由から、炭素数7~13のアラルキル基が好ましく、炭素数7~9のアラルキル基がより好ましい。このようなアラルキル基としては、たとえば、ベンジル基、フェネチル基などが挙げられる。
 アミノ基の保護基としては、特に限定されず、アミノ基の保護基として作用する基であればよいが、たとえば、アルキルシリル基などが挙げられる。このようなアルキルシリル基としては、たとえば、トリメチルシリル基、トリエチルシリル基、トリフェニルシリル基、メチルジフェニルシリル基、エチルメチルフェニルシリル基、tert-ブチルジメチルシリル基などが挙げられる。
 なお、R11、および/またはR12がアミノ基の保護基である場合には、アミノ基の保護基が外れることにより、得られる共役ジエン系ゴムを形成する重合体鎖の一方の末端において、後述する一般式(5)におけるR13、および/またはR14が水素原子である構造を導入することができる。
 加水分解して水酸基を生じうる基としては、特に限定されず、たとえば、酸などの存在下で加水分解することで、水酸基を生成する基であればよいが、たとえば、アルコキシアルキル基、エポキシ基を含有する基などが挙げられる。
 アルコキシアルキル基としては、メトキシメチル基、エトキシメチル基、エトキシエチル基、プロポキシメチル基、ブトキシメチル基、ブトキシエチル基、プロポキシエチル基などが挙げられる。
 また、エポキシ基を含有する基としては、たとえば下記一般式(4)で表される基などが挙げられる。
-Z-Z-E   (4)
 一般式(4)中、Zは炭素数1~10のアルキレン基またはアルキルアリーレン基であり、Zはメチレン基、硫黄原子または酸素原子であり、Eはグリシジル基である。
 また、R11およびR12は互いに結合して、これらが結合する窒素原子とともに環構造を形成していてもよく、この場合における、R11およびR12と、これと結合する窒素原子とで形成される構造の具体例としては、アゼチジン環(R11およびR12が、プロピレン基)、ピロリジン環(R11およびR12が、ブチレン基)、ピペリジン環(R11およびR12が、ペンチレン基)、ヘキサメチレンイミン環(R11およびR12が、ヘキシレン基)などが挙げられる。
 R11およびR12が互いに結合して、これらが結合する窒素原子とともに環構造を形成する場合、環構造は、4~8員環構造であることが好ましい。
 また、一般式(3)中、Mはアルカリ金属原子であり、このようなアルカリ金属原子としては、リチウム原子、ナトリウム原子、カリウム原子などが挙げられるが、これらの中でも、重合活性の観点より、リチウム原子が好ましい。
 第1工程において、重合開始剤として、一般式(3)で表される化合物を用いた場合、有機アルカリ金属アミド化合物を形成するアミン構造が、重合体鎖の重合開始末端に結合した状態で残存することとなる。そのため、重合開始剤として、一般式(3)で表される化合物を用いると、得られる共役ジエン系ゴムを形成する重合体鎖の一方の末端に、下記一般式(5)で表される構造が導入される。
Figure JPOXMLDOC01-appb-C000004
 一般式(5)中、R13およびR14は、それぞれ独立して、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、アミノ基の保護基、または加水分解して水酸基を生じうる基を表し、R13およびR14は互いに結合して、これらが結合する窒素原子とともに環構造を形成してもよく、該環構造を形成する場合には、これらが結合する窒素原子に加えて、これらが結合する窒素原子以外のへテロ原子とともに環構造を形成していてもよい。
 R13、R14となりうるアルキル基、シクロアルキル基、アリール基、アラルキル基、アミノ基の保護基、または加水分解して水酸基を生じうる基としては、一般式(3)におけるR11、R12と同じものを挙げることができ、また、R13およびR14は互いに結合して、これらが結合する窒素原子とともに環構造を形成する場合にも、一般式(3)におけるR11、R12と同じものとすることができる。
 なお、R13、R14となりうる水素原子は、アミノ基の保護基が外れることにより、導入される。
 重合開始剤として、有機アルカリ金属アミド化合物を用いた場合、得られる特定共役ジエン系ゴムを、一方の末端にアミン構造を有し、かつ、他方の末端に変性剤に由来する特定の構造を有するものとすることができる。その結果、このようなアミン構造の効果により、本発明の効果はより優れたものとなる。
 重合開始剤としての有機アルカリ金属アミド化合物を重合系に添加する方法としては、特に限定されず、予め、有機アルカリ金属化合物に、2級アミン化合物を反応させて、有機アルカリ金属アミド化合物を得て、これを共役ジエン化合物を含む単量体と混合して、重合反応を進行させる方法を採用することができる。あるいは、有機アルカリ金属化合物と、2級アミン化合物とを別々に重合系に添加し、これらを共役ジエン化合物を含む単量体と混合することで、重合系において、有機アルカリ金属アミド化合物を生成させることで、重合反応を進行させる方法を採用してもよい。反応温度等の反応条件は、特に限定されるものではなく、たとえば、目的とする重合反応条件に従えばよい。
 2級アミン化合物の使用量は、目的とする重合開始剤の添加量に応じて決定すればよいが、有機アルカリ金属化合物1ミリモル当り、通常0.01~1.5ミリモル、0.1~1.2ミリモルが好ましく、0.5~1.0ミリモルがより好ましい。
 重合開始剤の使用量は、目的とする共役ジエン系重合体鎖の分子量に応じて決定すればよいが、単量体1000g当り、通常1~50ミリモル、1.5~20ミリモルが好ましく、2~15ミリモルの範囲がより好ましい。
<重合温度等>
 重合温度は、通常-80~+150℃、本発明の効果がより優れる理由から、0~100℃が好ましく、30~90℃の範囲がより好ましい。重合様式としては、回分式、連続式などのいずれの様式をも採用できるが、共役ジエン化合物と芳香族ビニル化合物とを共重合させる場合は、共役ジエン単量体単位と芳香族ビニル単量体単位との結合のランダム性を制御しやすい点で、回分式が好ましい。
<極性化合物>
 共役ジエン化合物を含む単量体を重合するにあたり、得られる共役ジエン系重合体鎖における共役ジエン単量体単位中のビニル結合含有量を調節するために、不活性有機溶媒に極性化合物を添加することが好ましい。極性化合物としては、たとえば、ジブチルエーテル、テトラヒドロフラン、2,2-ジ(テトラヒドロフリル)プロパンなどのエーテル化合物;テトラメチルエチレンジアミンなどの第三級アミン;アルカリ金属アルコキシド;ホスフィン化合物;などが挙げられる。これらのなかでも、本発明の効果がより優れる理由から、エーテル化合物、および第三級アミンが好ましく、第三級アミンがより好ましく、テトラメチルエチレンジアミンが特に好ましい。これらの極性化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。極性化合物の使用量は、目的とするビニル結合含有量に応じて決定すればよく、重合開始剤1モルに対して、0.001~100モルが好ましく、0.01~10モルがより好ましい。極性化合物の使用量がこの範囲にあると、共役ジエン単量体単位中のビニル結合含有量の調節が容易であり、かつ重合開始剤の失活による不具合も発生し難い。
<ビニル結合含有量>
 第1工程で得られる、活性末端を有する共役ジエン系重合体鎖における共役ジエン単量体単位中のビニル結合含有量は、本発明の効果がより優れる理由から、20~80質量%が好ましく、20~70質量%がより好ましく、25~65質量%がさらに好ましく、30~63質量%が特に好ましい。
<分子量>
 第1工程で得られる、活性末端を有する共役ジエン系重合体鎖の重量平均分子量(Mw)は、特に限定されないが、本発明の効果がより優れる理由から、ポリスチレン換算のゲルパーミエーションクロマトグラフィで測定される値として、100,000以上が好ましく、100,000~1,500,000がより好ましく、350,000~1,000,000がさらに好ましく、400,000~900,000が特に好ましく、450,000~800,000が最も好ましい。
 また、第1工程で得られる、活性末端を有する共役ジエン系重合体鎖の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布も、特に限定されないが、1.0~3.0が好ましく、1.0~2.5がより好ましい。活性末端を有する共役ジエン系重合体鎖の分子量分布(Mw/Mn)が上記範囲内にあると、共役ジエン系ゴムの製造が容易となる。
<好適な態様>
 第1工程は、本発明の効果がより優れる理由から、次のような工程とすることが好ましい。
 すなわち、不活性溶媒中で、イソプレン、またはイソプレンおよび芳香族ビニル化合物を含む単量体を、重合開始剤により重合し、イソプレン単量体単位80~100質量%および芳香族ビニル単量体単位0~20質量%を含む活性末端を有する重合体ブロック(A)を形成させる工程Aと、
 上記活性末端を有する重合体ブロック(A)と、1,3-ブタジエン、または1,3-ブタジエンおよび芳香族ビニル化合物を含む単量体と、を混合して重合反応を継続させ、1,3-ブタジエン単量体単位50~100質量%および芳香族ビニル単量体単位0~50質量%を含む活性末端を有する重合体ブロック(B)を、重合体ブロック(A)と一続きにして形成させることにより、活性末端を有する共役ジエン系重合体鎖を得る工程Bと、を備えるものとすることが好ましい。
 ただし、重合体ブロック(A)および重合体ブロック(B)の少なくとも一方の芳香族ビニル単量体単位の含有量は、0質量%超である。
 このような工程を採用することにより、第1工程により得られる活性末端を有する共役ジエン系重合体鎖を、イソプレン単量体単位80~100質量%および芳香族ビニル単量体単位0~20質量%を含む重合体ブロック(A)と、1,3-ブタジエン単量体単位50~100質量%および芳香族ビニル単量体単位0~50質量%を含む重合体ブロック(B)とが一続きにして形成された構造(以下、「PIブロック」とも言う)を含むものとすることができる。この場合、得られる特定共役ジエン系ゴムもPIブロックを有するものとなる。
 以下、このような態様について説明する。
(工程A)
 工程Aで形成される重合体ブロック(A)は、重合体ブロック(A)中、イソプレン単量体単位80~100質量%および芳香族ビニル単量体単位0~20質量%を含むものであればよいが、本発明の効果がより優れる理由から、イソプレン単量体単位85~95質量%および芳香族ビニル単量体単位5~15質量%を含むものが好ましく、イソプレン単量体単位89~95質量%および芳香族ビニル単量体単位5~11質量%を含むものがより好ましい。
 重合体ブロック(A)に含まれる芳香族ビニル単量体単位を構成するために用いられる芳香族ビニル化合物としては、上述した芳香族ビニル化合物と同じものを用いることができ、本発明の効果がより優れる理由から、これらの中でもスチレンが好ましい。なお、これらの芳香族ビニル化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 重合体ブロック(A)は、本発明の効果がより優れる理由から、イソプレン単量体単位のみ、またはイソプレン単量体単位および芳香族ビニル単量体単位からなるものが好ましいが、所望により、イソプレン単量体単位、またはイソプレン単量体単位および芳香族ビニル単量体単位に加えて、その他の単量体単位を含んでいてもよい。その他の単量体単位を構成するために用いられるその他の化合物としては、1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン、1,3-ペンタジエン、および1,3-ヘキサジエンなどのイソプレン以外の共役ジエン化合物;アクリロニトリル、およびメタクリロニトリルなどのα,β-不飽和ニトリル;アクリル酸、メタクリル験、および無水マレイン酸などの不飽和カルボン酸または酸無水物;メタクリル酸メチル、アクリル酸エチル、およびアクリル酸ブチルなどの不飽和カルボン酸エステル;1,5-ヘキサジエン、1,6-へプタジエン、1,7-オクタジエン、ジシクロペンタジエン、および5-エチリデン-2-ノルボルネンなどの非共役ジエン;などが挙げられる。これらの中でも、本発明の効果がより優れる理由から、1,3-ブタジエンが好ましい。これらのその他の単量体は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。重合体ブロック(A)中における、その他の単量体単位の含有割合は、本発明の効果がより優れる理由から、20質量%以下が好ましく、10質量%以下がより好ましく、6質量%以下がさらに好ましい。
 本発明において、共役ジエン系重合体鎖中の重合体ブロック(A)は、不活性溶媒中、イソプレン、または、イソプレンおよび芳香族ビニル化合物を含む単量体を、重合開始剤により重合することにより形成される。形成された重合体ブロック(A)は、活性末端を有するものとなる。
 重合体ブロック(A)を形成するために、イソプレン、または、イソプレンおよび芳香族ビニル化合物を含む単量体の重合に用いられる不活性溶媒としては、上述した不活性溶媒と同じものを用いることができる。不活性溶媒の使用量は、本発明の効果がより優れる理由から、単量体濃度が、1~80質量%となる量が好ましく、10~50質量%となる量がより好ましい。
 重合体ブロック(A)を形成するために用いられる重合開始剤としては、イソプレン、または、イソプレンおよび芳香族ビニル化合物を含む単量体を重合させて、活性末端を有する重合体鎖を与えることができるものであれば、特に限定されない。その具体例としては、上述した重合開始剤と同じものを用いることができる。
 重合開始剤の使用量は、目的とする分子量に応じて決定すればよいが、本発明の効果がより優れる理由から、イソプレン、または、イソプレンおよび芳香族ビニル化合物を含む単量体100g当り、4~250ミリモルが好ましく、6~200ミリモルがより好ましく、10~70ミリモルの範囲が特に好ましい。
 イソプレン、または、イソプレンおよび芳香族ビニル化合物を含む単量体を重合する際における重合温度は、本発明の効果がより優れる理由から、-80~+150℃が好ましく、0~100℃がより好ましく、20~90℃の範囲が特に好ましい。重合様式としては、回分式、連続式など、いずれの様式をも採用できる。また、結合様式としては、たとえば、ブロック状、テーパー状、およびランダム状などの種々の結合様式とすることができる。
 また、本発明の効果がより優れる理由から、重合体ブロック(A)におけるイソプレン単量体単位中のビニル結合含有量を調節するために、重合に際し、不活性溶媒に極性化合物を添加することが好ましい。極性化合物としては、上述した極性化合物と同じものを用いることができる。極性化合物の使用量は、目的とするビニル結合含有量に応じて決定すればよく、重合開始剤1モルに対して、0.01~30モルが好ましく、0.05~10モルがより好ましい。極性化合物の使用量が上記範囲内にあると、イソプレン単量体単位中のビニル結合含有量の調節が容易であり、しかも、重合開始剤の失活による不具合も発生し難い。また、上記範囲内で極性化合物の使用量を増加させることで、イソプレン単量体単位中のビニル結合含有量を増加させることができる。
 重合体ブロック(A)におけるイソプレン単量体単位中のビニル結合含有量は、本発明の効果がより優れる理由から、5~90質量%が好ましく、5~80質量%がより好ましい。なお、本明細書中において、イソプレン単量体単位中のビニル結合含有量とは、イソプレン単量体単位中の、1,2-構造を有するイソプレン単量体単位および3,4-構造を有するイソプレン単量体単位の合計量の割合を指すものとする。
 重合体ブロック(A)の重量平均分子量(Mw)は、本発明の効果がより優れる理由から、ゲルパーミエーションクロマトグラフィによって測定されるポリスチレン換算の値として、500~15,000が好ましく、1000~12,000がより好ましく、1,500~10,000が特に好ましい。
 また、重合体ブロック(A)の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布は、本発明の効果がより優れる理由から、1.0~1.5が好ましく、1.0~1.3がより好ましい。重合体ブロック(A)の分子量分布の値(Mw/Mn)が上記範囲内にあると、共役ジエン系ゴムの製造がより容易となる。
(工程B)
 工程Bで形成される共役ジエン系重合体鎖中の重合体ブロック(B)は、重合体ブロック(B)中、1,3-ブタジエン単量体単位50~100質量%および芳香族ビニル単量体単位0~50質量%を含むものであればよいが、本発明の効果がより優れる理由から、1,3-ブタジエン単量体単位52~95質量%および芳香族ビニル単量体単位5~48質量%を含むものが好ましい。1,3-ブタジエン単量体単位と芳香族ビニル単量体単位との含有割合が上記範囲内にあると、共役ジエン系ゴムの製造がより容易となる。
 重合体ブロック(B)に含まれる芳香族ビニル単量体単位を構成するために用いられる芳香族ビニル化合物としては、上述した芳香族ビニル化合物と同じものを用いることができ、これらの中でも、本発明の効果がより優れる理由から、スチレンが好ましい。
 重合体ブロック(B)は、本発明の効果がより優れる理由から、1,3-ブタジエン単量体単位のみ、または1,3-ブタジエン単量体単位および芳香族ビニル単量体単位からなるものが好ましいが、本発明における本質的な特性を損なわない範囲において、所望により、1,3-ブタジエン単量体単位、または1,3-ブタジエン単量体単位および芳香族ビニル単量体単位に加えて、その他の単量体単位を含んでいてもよい。その他の単量体単位を構成するために用いられるその他の単量体としては、上述した重合体ブロック(A)において例示された化合物(ただし、1,3-ブタジエンを除く)と同じものを用いることができる。また、重合体ブロック(B)においては、その他の単量体としてイソプレンを用いることもできる。重合体ブロック(B)中における、その他の単量体単位の含有割合は、50質量%以下が好ましく、40質量%以下がより好ましく、35質量%以下がさらに好ましい。
 共役ジエン系重合体鎖中の重合体ブロック(B)は、上述した活性末端を有する重合体ブロック(A)と、1,3-ブタジエン、または1,3-ブタジエンおよび芳香族ビニル化合物を含む単量体と、を混合して重合反応を継続させることにより、重合体ブロック(A)と一続きに形成される。形成された重合体ブロック(B)は、活性末端を有するものとなる。一方、重合体ブロック(A)からは、活性末端が消失する。
 重合体ブロック(B)を形成するために、重合体ブロック(A)と、1,3-ブタジエン、または1,3-ブタジエンおよび芳香族ビニル化合物を含む単量体との重合に用いられる不活性溶媒としては、特に限定されず、上述した不活性溶媒と同じものを用いることができる。
 重合体ブロック(B)を形成する際における、活性末端を有する重合体ブロック(A)の使用量は、目的とする分子量に応じて決定すればよいが、本発明の効果がより優れる理由から、1,3-ブタジエン、または1,3-ブタジエンおよび芳香族ビニル化合物を含む単量体100g当り、0.1~5ミリモルが好ましく、0.15~2ミリモルが好ましく、0.2~1.5ミリモルが特に好ましい。
 重合体ブロック(A)と1,3-ブタジエン、または1,3-ブタジエンおよび芳香族ビニル化合物を含む単量体との混合方法は、特に限定されず、1,3-ブタジエン、または1,3-ブタジエンおよび芳香族ビニル化合物を含む単量体の溶液中に活性末端を有する重合体ブロック(A)を加えてもよいし、活性末端を有する重合体ブロック(A)の溶液中に1,3-ブタジエン、または1,3-ブタジエンおよび芳香族ビニル化合物を含む単量体を加えてもよい。重合の制御の観点より、1,3-ブタジエン、または1,3-ブタジエンおよび芳香族ビニル化合物を含む単量体の溶液中に活性末端を有する重合体ブロック(A)を加える方法が好ましい。
 1,3-ブタジエン、または1,3-ブタジエンおよび芳香族ビニル化合物を含む単量体を重合する際における重合温度は、本発明の効果がより優れる理由から、-80~+150℃が好ましく、0~100℃がより好ましく、20~90℃が特に好ましい。重合様式としては、回分式、連続式など、いずれの様式をも採用できる。重合体ブロック(B)を共重合体鎖とする場合には、結合のランダム性を制御しやすい点で、回分式が好ましい。
 重合体ブロック(B)を共重合体鎖とする場合の各単量体の結合様式は、たとえば、ブロック状、テーパー状、およびランダム状などの種々の結合様式とすることができる。これらの中でも、本発明の効果がより優れる理由から、ランダム状が好ましい。なお、1,3-ブタジエンおよび芳香族ビニル化合物の結合様式をランダム状にする場合、本発明の効果がより優れる理由から、重合系内において、1,3-ブタジエンと芳香族ビニル化合物との合計量に対する芳香族ビニル化合物の比率が高くなりすぎないように、1,3-ブタジエンまたは1,3-ブタジエンと芳香族ビニル化合物とを、連続的または断続的に重合系内に供給して重合することが好ましい。
 また、本発明の効果がより優れる理由から、重合体ブロック(B)における1,3-ブタジエン単量体単位中のビニル結合含有量を調節するために、重合体ブロック(A)におけるイソプレン単量体単位中のビニル結合含有量の調節時と同様に、重合に際し、不活性溶媒に極性化合物を添加することが好ましい。ただし、重合体ブロック(A)の調製時に、不活性溶媒に、重合体ブロック(B)における1,3-ブタジエン単量体単位中のビニル結合含有量を調節するのに十分な量の極性化合物を添加している場合は、新たに極性化合物を添加しなくてもよい。ビニル結合含有量を調節するために用いられる極性化合物としては、上述した極性化合物と同じものを用いることができる。極性化合物の使用量は、目的とするビニル結合含有量に応じて決定すればよく、初めの重合反応(1つ目の重合体ブロック(A)を形成するための重合反応)に使用した重合開始剤1モルに対して、0.01~100モルの範囲で調節するのが好ましく、0.1~30モルの範囲で調節するのがより好ましい。極性化合物の使用量がこの範囲にあると、1,3-ブタジエン単量体単位中のビニル結合含有量の調節が容易であり、かつ、重合開始剤の失活による不具合も発生し難い。
 重合体ブロック(B)における1,3-ブタジエン単量体単位中のビニル結合含有量は、本発明の効果がより優れる理由から、1~90質量%が好ましく、3~80質量%がより好ましく、5~70質量%が特に好ましい。
 このようにして、重合体ブロック(A)および重合体ブロック(B)を有する、活性末端を有する共役ジエン系重合体鎖を得ることができる。活性末端を有する共役ジエン系重合体鎖は、生産性の観点より、重合体ブロック(A)-重合体ブロック(B)で構成され、かつ、重合体ブロック(B)の末端が活性末端であることが好ましいが、重合体ブロック(A)を複数有するものであってもよいし、その他の重合体ブロックを有するものであってもよい。たとえば、重合体ブロック(A)-重合体ブロック(B)-重合体ブロック(A)などの、活性末端を有する共役ジエン系重合体鎖が挙げられる。この場合には、重合体ブロック(B)に続いて形成された重合体ブロック(A)の末端に、活性末端が形成されることとなる。共役ジエン系重合体鎖の活性末端側に重合体ブロック(A)を形成させる場合、本発明の効果がより優れる理由から、イソプレンの使用量は、初めの重合反応(1つ目の重合体ブロック(A)を形成するための重合反応)に使用した重合開始剤1モルに対して、10~100モルが好ましく、15~70モルがより好ましく、20~35モルが特に好ましい。
 活性末端を有する共役ジエン系重合体鎖における重合体ブロック(A)と重合体ブロック(B)との質量比(重合体ブロック(A)、重合体ブロック(B)が複数存在する場合は、それぞれの合計質量を基準とした質量比)は、本発明の効果がより優れる理由から、(重合体ブロック(A)の質量)/(重合体ブロック(B)の質量)で、0.001~0.1が好ましく、0.003~0.07がより好ましく、0.005~0.05が特に好ましい。
 重合体ブロック(A)および重合体ブロック(B)を有する、活性末端を有する共役ジエン系重合体鎖における、イソプレン単量体単位および1,3-ブタジエン単量体単位の合計単量体単位と、芳香族ビニル単量体単位との含有割合は、本発明の効果がより優れる理由から、活性末端を有する共役ジエン系重合体鎖中、イソプレン単量体単位および1,3-ブタジエン単量体単位の合計単量体単位20~80質量%および芳香族ビニル単量体単位20~80質量%が好ましく、イソプレン単量体単位および1,3-ブタジエン単量体単位の合計単量体単位55~80質量%および芳香族ビニル単量体単位20~45質量%がより好ましく、イソプレン単量体単位および1,3-ブタジエン単量体単位の合計単量体単位55~75質量%、および芳香族ビニル単量体単位25~45質量%がさらに好ましい。また、重合体ブロック(A)および重合体ブロック(B)を有する、活性末端を有する共役ジエン系重合体鎖における、イソプレン単量体単位中および1,3-ブタジエン単量体単位中のビニル結合の合計含有量は、本発明の効果がより優れる理由から、20~80質量%が好ましく、20~70質量%がより好ましく、25~65質量%がさらに好ましく、30~63質量%が特に好ましい。
〔第2工程〕
 第2工程は、第1工程にて得られた活性末端を有する共役ジエン系重合体鎖に、下記一般式(1)で表されるポリオルガノシロキサンを、第1工程で使用した重合開始剤1モルに対して、ポリオルガノシロキサン中のシロキサン構造(-Si-O-)の繰り返し単位数換算で1モル以上の割合にて添加して反応させる工程である。
 ここで、シロキサン構造は、シリカと相互作用する。したがって、特定共役ジエン系ゴムは、シリカと相互作用する官能基を有する。
Figure JPOXMLDOC01-appb-C000005
 一般式(1)中、R~Rは、炭素数1~6のアルキル基、または炭素数6~12のアリール基であり、これらは互いに同一であっても相違していてもよい。XおよびXは、炭素数1~6のアルキル基、炭素数6~12のアリール基、炭素数1~5のアルコキシ基、および、エポキシ基を含有する炭素数4~12の基からなる群より選ばれるいずれかの基であり、これらは互いに同一であっても相違していてもよい。Xは、炭素数1~5のアルコキシ基、またはエポキシ基を含有する炭素数4~12の基であり、複数あるXは、それらは互いに同一であっても相違していてもよい。Xは、2~20のアルキレングリコールの繰返し単位を含有する基であり、Xが複数あるときは、それらは互いに同一であっても相違していてもよい。mは3~200の整数、nは0~200の整数、kは0~200の整数であり、m+n+kは3以上である。
 一般式(1)で表されるポリオルガノシロキサンにおいて、一般式(1)中のR~R、XおよびXを構成し得る炭素数1~6のアルキル基としては、たとえば、メチル基、エチル基、n-プロピル基、イソプロピル基、ブチル基、ペンチル基、へキシル基およびシクロへキシル基などが挙げられる。炭素数6~12のアリール基としては、たとえば、フェニル基およびメチルフェニル基などが挙げられる。これらの中でも、ポリオルガノシロキサン自体の製造の容易性の観点から、メチル基およびエチル基が好ましい。
 また、一般式(1)で表されるポリオルガノシロキサンにおいて、X、XおよびXを構成し得る炭素数1~5のアルコキシ基としては、たとえば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基およびブトキシ基などが挙げられる。これらの中でも、ポリオルガノシロキサン自体の製造の容易性の観点から、メトキシ基およびエトキシ基が好ましい。
 さらに、一般式(1)で表されるポリオルガノシロキサンにおいて、X、XおよびXを構成し得るエポキシ基を含有する炭素数4~12の基としては、たとえば、下記一般式(6)で表される基が挙げられる。
-Z-Z-E   (6)
 一般式(6)中、Zは、炭素数1~10のアルキレン基、またはアルキルアリーレン基であり、Zはメチレン基、硫黄原子、または酸素原子であり、Eはエポキシ基を有する炭素数2~10の炭化水素基である。
 一般式(6)で表される基としては、本発明の効果がより優れる理由から、Zが酸素原子であるものが好ましく、Zが酸素原子であり、かつ、Eがグリシジル基であるものがより好ましく、Zが炭素数1~3のアルキレン基であり、Zが酸素原子であり、かつ、Eがグリシジル基であるものが特に好ましい。
 また、一般式(1)で表されるポリオルガノシロキサンにおいて、XおよびXとしては、上記の中でも、本発明の効果がより優れる理由から、エポキシ基を含有する炭素数4~12の基、または、炭素数1~6のアルキル基が好ましい。また、Xとしては、上記の中でも、本発明の効果がより優れる理由から、エポキシ基を含有する炭素数4~12の基が好ましい。さらに、本発明の効果がより優れる理由から、XおよびXが炭素数1~6のアルキル基であり、Xがエポキシ基を含有する炭素数4~12の基がより好ましい。
 また、一般式(1)で表されるポリオルガノシロキサンにおいて、X、すなわち2~20のアルキレングリコールの繰返し単位を含有する基としては、本発明の効果がより優れる理由から、下記一般式(7)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000006
 一般式(7)中、tは2~20の整数であり、Xは炭素数2~10のアルキレン基またはアルキルアリーレン基であり、R15は水素原子またはメチル基であり、Xは炭素数1~10のアルコキシ基またはアリールオキシ基である。これらの中でも、tが2~8の整数であり、Xが炭素数3のアルキレン基であり、R15が水素原子であり、かつ、Xがメトキシ基であるものが好ましい。なお、一般式(7)中、*は結合位置である。
 一般式(1)で表されるポリオルガノシロキサンにおいて、mは3~200の整数であり、20~150の整数が好ましく、30~120の整数がより好ましい。mが3以上であると、得られる共役ジエン系ゴムのカップリング率が高くなり、その結果、本発明の効果がより優れる。また、mが200以下であると、一般式(1)で表されるポリオルガノシロキサン自体の製造がより容易になると共に、その粘度が高くなりすぎず、取り扱いもより容易となる。
 また、一般式(1)で表されるポリオルガノシロキサンにおいて、nは0~200の整数であり、0~150の整数が好ましく、0~120の整数がより好ましい。kは0~200の整数であり、0~150の整数が好ましく、0~130の整数がより好ましい。m、nおよびkの合計数は3以上であり、3~400が好ましく、20~300がより好ましく、30~250が特に好ましい。m、nおよびkの合計数が3以上であると、一般式(1)で表されるポリオルガノシロキサンと活性末端を有する共役ジエン系重合体鎖との反応が進行し易く、さらに、m、nおよびkの合計数が400以下であると、一般式(1)で表されるポリオルガノシロキサン自体の製造が容易になると共に、その粘度が高くなりすぎず、取り扱いも容易となる。
 第2工程における、ポリオルガノシロキサンの使用量は、上述した第1工程において重合に使用した重合開始剤1モルに対して、ポリオルガノシロキサン中のシロキサン構造(-Si-O-)の繰り返し単位数に換算して、1モル以上であり、本発明の効果がより優れる理由から、1~2.5モルが好ましく、1.1~2モルがより好ましい。
 ポリオルガノシロキサンの使用量を、重合開始剤1モルに対して、シロキサン構造(-Si-O-)の繰り返し単位数換算で1モル以上とすることにより、第1工程により得られた活性末端を有する共役ジエン系重合体鎖の活性末端のうち、実質的に全ての活性末端を、ポリオルガノシロキサンと反応させることができるため、好ましい。すなわち、第1工程により得られた活性末端を有する共役ジエン系重合体鎖の、活性末端としてのアルキル金属基、すなわち、-R(Rは、重合体鎖末端を形成する炭化水素基、Mは、アルカリ金属原子、アルカリ土類金属原子、または、ランタン系列金属原子)で表される基が実質的に残存しないような状態とすることができる。
 そして、これにより、後述する第3工程において、一般式(2)で表される化合物を反応させた際に、一般式(2)で表される化合物が、第1工程により得られた活性末端を有する共役ジエン系重合体鎖の活性末端と直接反応してしまうことを実質的に抑制することができる。その結果、一般式(2)で表される化合物を、共役ジエン系重合体鎖と、一般式(1)で表されるポリオルガノシロキサンとが反応することにより生じた反応残基に対して、適切に反応させることができる。そして、これにより、共役ジエン系重合体鎖に、一般式(1)で表されるポリオルガノシロキサンに由来する構造を介した、一般式(2)で表される化合物による変性構造を適切に導入することができ、このような変性構造を導入することによる効果、すなわち、優れたウェット性能、転がり性能およびドライ操縦安定性能を実現できるものである。
 ポリオルガノシロキサンと活性末端を有する共役ジエン系重合体鎖とを反応させる方法は、特に限定されないが、これらを、それぞれが溶解可能な溶媒中で、混合する方法などが挙げられる。この際に用いる溶媒としては、上述した第1工程において用いる不活性溶媒として例示したものなどを用いることができる。また、この際においては、活性末端を有する共役ジエン系重合体鎖を得るための重合に用いた重合溶液に、ポリオルガノシロキサンを添加する方法が簡便であり好ましい。また、この際においては、ポリオルガノシロキサンは、不活性溶媒に溶解して重合系内に添加することが好ましく、その溶液濃度は、1~50質量%の範囲とすることが好ましい。反応温度は、特に限定されないが、通常0~120℃であり、反応時間も特に限定されないが、通常1分~1時間である。
 活性末端を有する共役ジエン系重合体鎖を含有する溶液に、ポリオルガノシロキサンを添加する時期は特に限定されないが、重合反応が完結しておらず、活性末端を有する共役ジエン系重合体鎖を含有する溶液が単量体をも含有している状態、より具体的には、活性末端を有する共役ジエン系重合体鎖を含有する溶液が、100ppm以上、より好ましくは300~50,000ppmの単量体を含有している状態で、この溶液にポリオルガノシロキサンを添加することが望ましい。ポリオルガノシロキサンの添加をこのように行なうことにより、活性末端を有する共役ジエン系重合体鎖と重合系中に含まれる不純物などとの副反応を抑制して、反応を良好に制御することが可能となる。
 第2工程においては、上述した第1工程にて得られた活性末端を有する共役ジエン系重合体鎖の活性末端に、変性剤としてのポリオルガノシロキサンを反応させるものであるが、共役ジエン系重合体鎖の活性末端は、シロキサン構造中のケイ素原子と反応することとなる。あるいは、共役ジエン系重合体鎖の活性末端のうち一部は、ポリオルガノシロキサンの側鎖のアルコキシ基またはエポキシ基(一般式(1)中、必須として含まれるXを形成するアルコキシ基またはエポキシ基等)と反応することとなる。そして、第2工程によれば、このような反応により、共役ジエン系重合体鎖に、シロキサンによる変性構造を導入するものである。
 具体的には、共役ジエン系重合体鎖の活性末端が、シロキサン構造中のケイ素原子と反応することで、共役ジエン系重合体鎖は、シロキサン構造中のケイ素原子と共役ジエン系重合体鎖の活性末端との間に新たな結合を形成し、共役ジエン系重合体鎖の末端に、シロキサンによる変性構造が導入されるとともに、シロキサン構造中の酸素原子と、共役ジエン系重合体鎖の活性末端を形成していた金属原子との間で、これらの反応残基として、-O(Mは、アルカリ金属原子、アルカリ土類金属原子、または、ランタン系列金属原子)で表される基が形成されると考えられる。
 あるいは、共役ジエン系重合体鎖の活性末端が、ポリオルガノシロキサンの側鎖のエポキシ基と反応することで、エポキシ基が開環し、エポキシ基が開環した部分の炭素原子と共役ジエン系重合体鎖の活性末端との間に新たな結合を形成し、共役ジエン系重合体鎖の末端に、シロキサン構造が導入されるとともに、エポキシ基中の酸素原子と、共役ジエン系重合体鎖の活性末端を形成していた金属原子との間で、これらの反応残基として、-Oで表される基が形成されると考えられる。または、共役ジエン系重合体鎖の活性末端が、ポリオルガノシロキサンの側鎖のアルコキシ基と反応することで、アルコキシ基が脱離し、共役ジエン系重合体鎖は、シロキサン構造中のケイ素原子と共役ジエン系重合体鎖の活性末端との間に新たな結合を形成し、共役ジエン系重合体鎖の末端に、シロキサン構造が導入される。
 特に、第2工程においては、ポリオルガノシロキサンの使用量を、重合開始剤1モルに対して、シロキサン構造(-Si-O-)の繰り返し単位数換算で1モル以上とするものであるため、第1工程により得られた活性末端を有する共役ジエン系重合体鎖のうち、ほぼ全ての共役ジエン系重合体鎖に、シロキサンによる変性構造が導入することができる。そのため、第1工程により得られた活性末端を有する共役ジエン系重合体鎖の活性末端としてのアルキル金属基、すなわち、-Rのうち、ほぼ全てを残存しないような状態とすることができ、これに代えて、反応残基としての-Oで表される基が形成されることとなる。ただし、本発明においては、ごく少量(たとえば、5質量%以下)であれば、シロキサンによる変性がされていない未変性の活性末端を有する共役ジエン系重合体鎖を含むものであってもよく(すなわち、ごく少量であれば、第1工程により得られた活性末端を有する共役ジエン系重合体鎖の活性末端としてのアルキル金属基、すなわち、-Rが残存したものが含まれていてもよく)、このような場合を排除するものではない。
 なお、第2工程において、活性末端を有する共役ジエン系重合体鎖に、一般式(1)で表されるポリオルガノシロキサンを反応させる前の状態のときに、本発明の効果を阻害しない範囲で、活性末端を有する共役ジエン系重合体鎖の活性末端の一部を、従来から通常使用されているカップリング剤や変性剤などを重合系内に添加して、カップリングや変性を行ってもよい。
〔第3工程〕
 第3工程は、第2工程で得られるポリオルガノシロキサンを反応させた共役ジエン系重合体鎖に、下記一般式(2)で表される化合物を反応させる工程である。
Figure JPOXMLDOC01-appb-C000007
 一般式(2)中、Rは、ヒドロカルビル基であり、Aは、活性末端を有する共役ジエン系重合体鎖とポリオルガノシロキサンとの反応により生成した反応残基と反応しうる基であり、Aは、窒素原子を含有する基であり、pは0~2の整数、qは1~3の整数、rは1~3の整数、p+q+r=4である。
 本発明によれば、上述の第2工程において、第1工程により得られた活性末端を有する共役ジエン系重合体鎖の活性末端としてのアルキル金属基、すなわち、-Rのうち、ほぼ全てを残存しないような状態とし、これに代えて、一般式(1)で表されるポリオルガノシロキサンとの反応による、反応残基としての-Oで表される基を有するものとしているため、本発明の第3工程によれば、一般式(2)で表される化合物は、このような反応残基としての-Oで表される基(-Oで表される基が加水分解され、水酸基に変換されたものを含む)と適切に反応させることができるものである。
 すなわち、本発明によれば、一般式(2)で表される化合物が、-Rで表される基と反応してしまうことにより、共役ジエン系重合体鎖に、直接、一般式(2)で表される化合物による変性構造が導入されてしまうことを適切に抑制することができ、これにより、共役ジエン系重合体鎖に、一般式(1)で表されるポリオルガノシロキサンに由来する構造を介した、一般式(2)で表される化合物による変性構造を、適切に導入することができるものである。そして、その結果として、優れたウェット性能、転がり性能およびドライ操縦安定性能を実現できるものである。
 ただし、第3工程において用いる、ポリオルガノシロキサンを反応させた共役ジエン系重合体鎖としては、上述した第2工程を経たものであればよく、シロキサンによる変性構造が導入された共役ジエン系重合体鎖に加えて、ごく少量(たとえば、5質量%以下)であれば、シロキサン変性構造が導入されていない未変性の活性末端を有する共役ジエン系重合体鎖が残存したものであってもよく(すなわち、ごく少量であれば、第1工程により得られた活性末端を有する共役ジエン系重合体鎖の活性末端としてのアルキル金属基、すなわち、-Rが残存したものが含まれていてもよく)、さらには、シロキサンによる変性構造が導入された結果形成された、反応残基としての-Oの一部が加水分解され、水酸基に変換されたものを含むものであってもよい。
 一般式(2)で表される化合物において、一般式(2)中のRは、ヒドロカルビル基であり、たとえば、アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基などが挙げられるが、本発明の効果がより優れる理由から、炭素数1~6のアルキル基が好ましい。炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、ブチル基、ペンチル基、へキシル基などが挙げられ、これらのなかでも、本発明の効果がより優れる理由から、メチル基、エチル基がより好ましい。
 一般式(2)で表される化合物において、一般式(2)中のAは、活性末端を有する共役ジエン系重合体鎖とポリオルガノシロキサンとの反応により生成した反応残基(典型的には、-Oで表される基)と反応しうる基であり、-OR10(R10は水素原子またはヒドロカルビル基)で表される基が好ましい。R10を構成し得るヒドロカルビル基としては、たとえば、アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基などが挙げられるが、上記反応残基との反応性の観点より、炭素数1~6のアルキル基が好ましい。炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、ブチル基、ペンチル基、へキシル基などが挙げられ、これらのなかでも、本発明の効果がより優れる理由から、メチル基、エチル基がより好ましい。
 一般式(2)で表される化合物において、一般式(2)中のAは、窒素原子を含有する基であり、窒素原子を含有する基であれば特に限定されないが、窒素原子を有する有機基が好ましく、たとえば、3-アミノプロピル基、4-アミノブチル基、3-(2-アミノエチルアミノ)プロピル基、2-ジメチルアミノエチル基、3-ジメチルアミノプロピル基、3-ジエチルアミノプロピル基、3-ジプロピルアミノプロピル基、3-ジブチルアミノプロピル基、3-フェニルメチルアミノプロピル基、3-(4-メチルピペラジニル)プロピル基、N,N-ビス(トリメチルシリル)アミノプロピル基、N,N-ビス(トリエチルシリル)アミノプロピル基、N,N’、N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピル基などが挙げられる。これらの中でも、本発明の効果がより優れる理由から、3-アミノプロピル基、4-アミノブチル基、3-(2-アミノエチルアミノ)プロピル基などの、活性水素原子を有する1級アミノ基および/または活性水素原子を有する2級アミノ基を含有する基が好ましい。なお、「活性水素原子」とは、炭素原子以外の原子に結合した水素原子をいい、ポリメチレン鎖の炭素-水素結合よりも結合エネルギーが低いことが好ましい。
 一般式(2)で表される化合物において、pは0~2の整数、qは1~3の整数、rは1~3の整数、p+q+r=4である。活性末端を有する共役ジエン系重合体鎖とポリオルガノシロキサンとの反応により生成した反応残基との反応性の観点より、pは0~1の整数、qは2~3の整数であり、rは1~2の整数であるのが好ましく、p=0、q=3、r=1であるのがより好ましい。なお、pが2である場合において、一般式(2)で表される化合物1分子中に2個含まれるRで表される基は、同一のものであってもよいし、互いに異なるものであってもよい。同様に、qが2または3である場合において、一般式(2)で表される化合物1分子中に複数含まれるAで表される基は、同一のものであってもよいし、互いに異なるものであってもよく、rが2または3である場合において、一般式(2)で表される化合物1分子中に複数含まれるAで表される基は、同一のものであってもよいし、互いに異なるものであってもよい。
 一般式(2)で表される化合物の具体例としては、特に限定されないが、たとえば、一般式(2)中のAが、活性水素原子を有する1級アミノ基および/または活性水素原子を有する2級アミノ基を含有する基である化合物として、3-アミノプロピルジメチルメトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルジメチルエトキシシラン、3-アミノプロピルメチルジエトキシシラン、3-アミノプロピルトリエトキシシランなどのAとして、3-アミノプロピル基を有する化合物;4-アミノブチルジメチルメトキシシラン、4-アミノブチルメチルジメトキシシラン、4-アミノブチルトリメトキシシラン、4-アミノブチルジメチルエトキシシラン、4-アミノブチルメチルジエトキシシラン、4-アミノブチルトリエトキシシランなどのAとして4-アミノブチル基を有する化合物;3-(2-アミノエチルアミノ)プロピルジメチルメトキシシラン、3-(2-アミノエチルアミノ)プロピルメチルジメトキシシラン、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルジメチルエトキシシラン、3-(2-アミノエチルアミノ)プロピルメチルジエトキシシラン、3-(2-アミノエチルアミノ)プロピルトリエトキシシランなどのAとして、3-(2-アミノエチルアミノ)プロピル基を有する化合物;などが挙げられる。
 また、一般式(2)中のAが、活性水素原子を有する1級アミノ基および/または活性水素原子を有する2級アミノ基を含有する基以外の基である化合物として、3-ジメチルアミノプロピルトリメトキシシラン、3-ジメチルアミノプロピルメチルジメトキシシラン、3-ジメチルアミノプロピルジメチルメトキシシラン、3-ジメチルアミノプロピルトリエトキシシラン、3-ジメチルアミノプロピルメチルジエトキシシラン、3-ジメチルアミノプロピルジメチルエトキシシランなどのAとして、3-ジメチルアミノプロピル基を有する化合物;3-ジエチルアミノプロピルトリメトキシシラン、3-ジエチルアミノプロピルメチルジメトキシシラン、3-ジエチルアミノプロピルジメチルメトキシシラン、3-ジエチルアミノプロピルトリエトキシシラン、3-ジエチルアミノプロピルメチルジエトキシシラン、3-ジエチルアミノプロピルジメチルエトキシシランなどのAとして、3-ジエチルアミノプロピル基を有する化合物;3-ジプロピルアミノプロピルトリメトキシシラン、3-ジプロピルアミノプロピルメチルジメトキシシラン、3-ジプロピルアミノプロピルジメチルメトキシシラン、3-ジプロピルアミノプロピルトリエトキシシラン、3-ジプロピルアミノプロピルメチルジエトキシシラン、3-ジプロピルアミノプロピルジメチルエトキシシランなどのAとして、3-ジプロピルアミノプロピル基を有する化合物;3-ジブチルアミノプロピルトリメトキシシラン、3-ジブチルアミノプロピルメチルジメトキシシラン、3-ジブチルアミノプロピルジメチルメトキシシラン、3-ジブチルアミノプロピルトリエトキシシラン、3-ジブチルアミノプロピルメチルジエトキシシラン、3-ジブチルアミノプロピルジメチルエトキシシランなどのAとして、3-ジブチルアミノプロピル基を有する化合物;3-フェニルメチルアミノプロピルトリメトキシシラン、3-フェニルメチルアミノプロピルメチルジメトキシシラン、3-フェニルメチルアミノプロピルジメチルメトキシシラン、3-フェニルメチルアミノプロピルトリエトキシシラン、3-フェニルメチルアミノプロピルメチルジエトキシシラン、3-フェニルメチルアミノプロピルジメチルエトキシシランなどのAとして、3-フェニルメチルアミノプロピル基を有する化合物;3-(4-メチルピペラジニル)プロピルトリメトキシシラン、3-(4-メチルピペラジニル)プロピルメチルジメトキシシラン、3-(4-メチルピペラジニル)プロピルジメチルメトキシシラン、3-(4-メチルピペラジニル)プロピルトリエトキシシラン、3-(4-メチルピペラジニル)プロピルメチルジエトキシシラン、3-(4-メチルピペラジニル)プロピルジメチルエトキシシランなどのAとして、3-(4-メチルピペラジニル)プロピル基を有する化合物;
 N,N-ビス(トリメチルシリル)アミノプロピルトリメトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルトリエトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルメチルジメトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシランなどのAとして、N,N-ビス(トリメチルシリル)アミノプロピル基を有する化合物;N,N-ビス(トリエチルシリル)アミノプロピルトリメトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルトリエトキシシラン、N,N-ビス(トリエチルシリル)アミノプロピルメチルジメトキシシラン、N,N-ビス(トリエチルシリル)アミノプロピルメチルジエトキシシランなどのAとして、N,N-ビス(トリエチルシリル)アミノプロピル基を有する化合物;N,N’,N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N,N’,N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N,N’,N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N,N’,N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピルメチルジエトキシシランなどのAとして、N,N’,N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピル基を有する化合物;などが挙げられる。
 一般式(2)で表される化合物の使用量は、特に限定されないが、本発明の効果がより優れる理由から、第1工程で使用した重合開始剤1モルに対して、0.1~5モルが好ましく、0.2~2モルがより好ましく、0.4~1.5モルがさらに好ましい。
 共役ジエン系重合体鎖を含有する溶液に、一般式(2)で表される化合物を添加する時期は、上述した第2工程において一般式(1)で表されるポリオルガノシロキサンを添加した後であれば、特に限定されない。たとえば、上述した第2工程と同様に、重合反応が完結しておらず、共役ジエン系重合体鎖を含有する溶液が単量体をも含有している状態、より具体的には、共役ジエン系重合体鎖を含有する溶液が、100ppm以上、より好ましくは300~50,000ppmの単量体を含有している状態で、この溶液に一般式(2)で表される化合物を添加することができる。一般式(2)で表される化合物の添加をこのように行なうことにより、共役ジエン系重合体鎖と重合系中に含まれる不純物などとの副反応を抑制して、反応を良好に制御することが可能となる。あるいは、共役ジエン系重合体鎖を含有する溶液に、一般式(2)で表される化合物を添加する前、あるいは添加した後に、この溶液に、水やメタノールなどのアルコールを添加することで、一般式(1)で表されるポリオルガノシロキサンとの反応により形成された、反応残基としての-Oで表される基を加水分解し、水酸基に変換した状態にて、変性反応を行ってもよい。一般式(2)で表される化合物を共役ジエン系重合体鎖を含有する溶液に添加する際、一般式(2)で表される化合物は不活性溶媒に溶解してから添加してもよいし、不活性溶媒に溶解せずに直接添加してもよい。反応温度、反応時間は、第1工程と同様である。
 そして、一般式(2)で表される化合物を反応させた後、必要に応じて、公知の重合停止剤などを添加して、反応系を失活させた後、所望により、フェノール系安定剤、リン系安定剤、イオウ系安定剤などの老化防止剤、クラム化剤、およびスケール防止剤などを反応溶液に添加し、その後、直接乾燥またはスチームストリッピングなどにより反応溶液から重合溶媒を分離して、共役ジエン系ゴムを回収する。なお、反応溶液から重合溶媒を分離する前に、重合溶液に伸展油を混合し、共役ジエン系ゴムを油展ゴムとして回収してもよい。
 共役ジエン系ゴムを油展ゴムとして回収する場合に用いる伸展油としては、たとえば、パラフィン系、芳香族系およびナフテン系の石油系軟化剤、植物系軟化剤、ならびに脂肪酸などが挙げられる。石油系軟化剤を用いる場合には、IP346の方法(英国のTHE INSTITUTE PETROLEUMの検査方法)により抽出される多環芳香族の含有量が3%未満が好ましい。伸展油を使用する場合、その使用量は、共役ジエン系ゴム100質量部に対して、5~100質量部が好ましく、10~60質量部がより好ましく、20~50質量部が特に好ましい。
 上述のとおり、特定共役ジエン系ゴムは、上述した第2工程において、変性剤としての、一般式(1)で表されるポリオルガノシロキサンを、第1工程で使用した重合開始剤1モルに対して、ポリオルガノシロキサン中のシロキサン構造(-Si-O-)の繰り返し単位数換算で1モル以上の割合にて添加して反応を行い、次いで、上述した第3工程において、変性剤として、一般式(2)で表される化合物を用いて反応を行うことにより、得られるものである。そのため、特定共役ジエン系ゴムは、重合体鎖末端に、シロキサンによる変性構造および一般式(2)で表される化合物による変性構造が導入されたものを含むものであるが、このようなもの以外にも、重合体鎖末端に、シロキサンによる変性構造のみが導入されたものを含むものであってもよい。さらには、本発明の効果を阻害しない範囲で、たとえば、重合体鎖末端に、一般式(2)で表される化合物による変性構造のみが導入されたものや、いずれの変性構造も導入されていないものなどを含有するものであってもよい。特に、本発明においては、本発明の効果をより適切に実現するという観点より、重合体鎖末端に、シロキサンによる変性構造および一般式(2)で表される化合物による変性構造が導入されたものの割合が、10質量%以上であるものが好ましく、20質量%以上であるものがより好ましい。なお、上限は、特に限定されない。
〔単量体単位含有量〕
 特定共役ジエン系ゴムは、芳香族ビニル単量体単位20~80質量%を含むものであり、本発明の効果がより優れる理由から、20~45質量%を含むものが好ましく、25~45質量%を含むものが好ましい。
 また、特定共役ジエン系ゴムは、本発明の効果がより優れる理由から、共役ジエン単量体単位55~80質量%を含むものが好ましく、55~75質量%を含むものがより好ましい。
〔ビニル結合含有量〕
 特定共役ジエン系ゴムにおける共役ジエン単量体単位中のビニル結合含有量は、20~80質量%であり、本発明の効果がより優れる理由から、20~70質量%が好ましく、25~65質量%が好ましく、30~63質量%がより好ましい。
〔カップリング率〕
 また、特定共役ジエン系ゴムのカップリング率は、特に限定されないが、本発明の効果がより優れる理由から、10質量%以上が好ましく、20質量%以上がより好ましく、40質量%以上が特に好ましく、また、80質量%以下が好ましく、75質量%以下がより好ましく、70質量%以下が特に好ましい。なお、カップリング率は、一般式(1)で表されるポリオルガノシロキサンおよび一般式(2)で表される化合物、ならびに、必要に応じて用いられるカップリング剤やその他の変性剤と反応させる前の活性末端を有する共役ジエン系重合体鎖のピークトップ分子量の1.8倍以上の分子量を有する重合体分子の、最終的に得られた共役ジエン系ゴムの全量に対する質量分率であり、このときの分子量の測定は、ゲルパーミエーションクロマトグラフィによりポリスチレン換算分子量として求めるものとする。
〔分子量〕
 また、特定共役ジエン系ゴムの重量平均分子量(Mw)は、ポリスチレン換算のゲルパーミエーションクロマトグラフィで測定される値で、100,000以上であり、100,000~1,500,000が好ましく、350,000~1,000,000がより好ましく、350,000~800,000がさらに好ましく、400,000~700,000が特に好ましい。特定共役ジエン系ゴムの重量平均分子量を上記範囲内とすることにより、共役ジエン系ゴムへのシリカの配合が容易となり、本発明の効果がより優れるものとなる。
 特定共役ジエン系ゴムの重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布は、本発明の効果がより優れる理由から、1.1~3.0が好ましく、1.2~2.5がより好ましく、1.2~2.2が特に好ましい。
〔粘度〕
 特定共役ジエン系ゴムのムーニー粘度(ML1+4,100℃)は、本発明の効果がより優れる理由から、20~100が好ましく、30~90がより好ましく、35~80が特に好ましい。なお、共役ジエン系ゴムを油展ゴムとする場合は、その油展ゴムのムーニー粘度を上記の範囲とすることが好ましい。
〔ガラス転移温度〕
 特定共役ジエン系ゴムのガラス転移温度(Tg)は、-35~0℃であり、-35~-15℃が好ましく、-30~-15℃がより好ましく、-30~-10℃が特に好ましい。ガラス転移温度が上記範囲内にあれば、本発明の効果がより優れたものとなる。特定共役ジエン系ゴムのガラス転移温度が上記範囲内にあれば、tanδ(0℃)とtanδ(60℃)とのバランスを良好にできる。
 ここで、ガラス転移温度は、デュポン社製の示差熱分析計(DSC)を用い、ASTM D3418-82に従い、昇温速度10℃/minで測定した値である。
〔含有量〕
 共役ジエン系ゴム中の特定共役ジエン系ゴムの含有量は、30質量%以上であり、本発明の効果がより優れる理由から、35質量%以上が好ましく、40質量%以上がより好ましい。その上限値は、本発明の効果がより優れる点から、80質量%以下が好ましく、70質量%以下がより好ましく、60質量%以下が特に好ましい。
[スチレンブタジエンゴム(A)]
 本発明の組成物が含有するスチレンブタジエンゴム(A)は、上記特定共役ジエン系ゴム以外のスチレンブタジエンゴム(SBR)である。
 スチレンブタジエンゴム(A)は、スチレン単量体およびブタジエン単量体を用いて製造することができる。
 スチレンブタジエンゴム(A)の製造に使用されるスチレン単量体としては、特に制限されないが、例えば、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、ジメチルアミノメチルスチレン、およびジメチルアミノエチルスチレンなどを挙げることができる。これらの中でも、スチレン、α-メチルスチレン、および4-メチルスチレンが好ましく、スチレンがより好ましい。これらのスチレン単量体は、それぞれ単独で、または2種以上を組み合わせて用いることができる。
 スチレンブタジエンゴム(A)の製造に使用されるブタジエン単量体としては、特に制限されないが、例えば、1,3-ブタジエン、イソプレン(2-メチル-1,3-ブタジエン)、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエンなどが挙げられる。これらの中でも、1,3-ブタジエン、またはイソプレンを用いることが好ましく、1,3-ブタジエンを用いることがより好ましい。これらのブタジエン単量体は、それぞれ単独で、または2種以上を組み合わせて用いることができる。
 スチレンブタジエンゴム(A)の製造方法(重合方法)としては、特に制限されず、例えば溶液重合や乳化重合等が挙げられる。
 スチレンブタジエンゴム(A)のスチレン単量体単位の含有量は、20~50質量%が好ましく、25~45質量%がより好ましい。
 スチレンブタジエンゴム(A)のブタジエン単量体単位の含有量は、50~80質量%が好ましく、55~75質量%がより好ましい。
 スチレンブタジエンゴム(A)におけるブタジエン単量体単位中のビニル結合含有量は、本発明の効果がより優れる理由から、10~80質量%が好ましく、10~70質量%がより好ましい。
 スチレンブタジエンゴム(A)は、本発明の効果がより優れる理由から、シリカと相互作用する官能基を有していてもよい。すなわち、スチレンブタジエンゴム(A)は、シリカと相互作用する官能基で変性されたものであってもよい。
 シリカと相互作用する官能基の結合位置としては、特に限定されず、例えば、スチレンブタジエンゴム(A)の主鎖および末端が挙げられる。
 シリカと相互作用する官能基としては、例えば、ヒドロカルビルオキシシリル基、シラノール基、ヒドロキシル基(シラノール基を除く。)、アルデヒド基、カルボキシル基、アミノ基、イミノ基、エポキシ基、アミド其、チオール基、シロキサン結合、エーテル結合などが挙げられる。
 シリカと相互作用する官能基を有するスチレンブタジエンゴム(A)は、スチレンブタジエン重合体鎖の活性末端とポリオルガノシロキサンとが結合してなるスチレンブタジエンゴム(以下、「スチレンブタジエンゴム(AS)」とも言う。)であるのが好ましい。
 ここで、上記スチレンブタジエン重合体鎖は、重合体ブロックXと、上記重合体ブロックXと一続きに形成された重合体ブロックYとを有することが好ましい。
 上記重合体ブロックXは、イソプレン単位およびスチレン単位を含み、イソプレン単位含有量が80~95質量%であり、スチレン単位含有量が5~20質量%であり、重量平均分子量が500~15,000である。上記重合体ブロックYは、1,3-ブタジエン単位およびスチレン単位を含む。
 スチレンブタジエンゴム(AS)は、本発明の効果がより優れる理由から、下記工程XとYとZとをこの順に備えるスチレンブタジエンゴムの製造方法により製造されるスチレンブタジエンゴムが好ましい。
・工程X:イソプレンおよびスチレンを含む単量体混合物を重合することにより、イソプレン単位含有量が80~95質量%であり、スチレン単位含有量が5~20質量%であり、重量平均分子量が500~15,000である、活性末端を有する重合体ブロックXを形成する工程
・工程Y:上記重合体ブロックXと、1,3-ブタジエンおよびスチレンを含む単量体混合物とを混合して重合反応を継続し、活性末端を有する重合体ブロックYを、上記重合体ブロックXと一続きにして形成することにより、上記重合体ブロックXおよび上記重合体ブロックYを有する、活性末端を有するスチレンブタジエン共重合体鎖を得る工程
・工程Z:上記スチレンブタジエン共重合体鎖の上記活性末端に、ポリオルガノシロキサンを反応させる工程
 各工程の具体例については特開2016-47883号公報の段落[0017]~[0054]に記載のとおりであり、その内容は本明細書に参照として取り込まれる。
 スチレンブタジエンゴム(AS)のスチレン単位含有量は特に制限されないが、本発明の効果がより優れる理由から、38~48質量%が好ましく、40~45質量%がより好ましい。
 スチレンブタジエンゴム(AS)のビニル結合含有量は特に制限されないが、本発明の効果がより優れる理由から、20~35質量%が好ましく、25~30質量%がより好ましい。なお、ビニル結合含有量とは、スチレンブタジエンゴム(AS)に含まれる共役ジエン単位のうち、ビニル結合が占める割合(質量%)を指す。
〔分子量〕
 スチレンブタジエンゴム(A)の重量平均分子量(Mw)は、ポリスチレン換算のゲルパーミエーションクロマトグラフィで測定される値で、100,000~1,800,000が好ましく、300,000~1,500,000がより好ましい。
 スチレンブタジエンゴム(A)の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布は、1.2以上が好ましく、加工性に優れ、またタイヤにしたときの強度がより向上する理由から、2.0以上が好ましく、3.0以上がより好ましい。
 なお、スチレンブタジエンゴム(A)が単量体および触媒を連続的に反応器に供給する方法(いわゆる、連続重合プロセス)によって製造されたものである場合、上記比が2.0以上になりやすい。
 また、スチレンブタジエンゴム(A)が乳化重合法によって製造されたものである場合、上記比が3.0以上になりやすい。
〔含有量〕
 共役ジエン系ゴム中のスチレンブタジエンゴム(A)の含有量は、20質量%以上であり、本発明の効果がより優れる理由から、25質量%以上が好ましく、30質量%以上がより好ましい。その上限値は、本発明の効果がより優れる点から、70質量%以下が好ましく、60質量%以下がより好ましい。
 共役ジエン系ゴム中の特定共役ジエン系ゴムとスチレンブタジエンゴム(A)との含有量の比(特定共役ジエン系ゴム/スチレンブタジエンゴム(A))は、0.40~4.0が好ましく、0.45~4.0がより好ましく、0.7~2.0が特に好ましい。
[その他のゴム成分]
 共役ジエン系ゴムは、上記特定共役ジエン系ゴムおよび上記スチレンブタジエンゴム(A)以外のゴム成分(その他のゴム成分)を含有してもよい。
 そのようなその他のゴム成分としては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、アクリロニトリル-ブタジエン共重合ゴム(NBR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(Br-IIR、Cl-IIR)、クロロプレンゴム(CR)などが挙げられる。なかでも、本発明の効果がより優れる理由から、天然ゴム(NR)またはブタジエンゴム(BR)が好ましい。
 共役ジエン系ゴム中のその他のゴム成分の含有量は特に制限されないが、本発明の効果がより優れる理由から、10質量%以上が好ましく、10~50質量%がより好ましく、10~20質量%が特に好ましい。
[シリカと相互作用する官能基を有するゴム成分の含有量]
 共役ジエン系ゴム中のシリカと相互作用する官能基を有するゴム成分の含有量の合計は、本発明の効果がより優れる理由から、80質量%以上が好ましく、80~100質量%がより好ましく、85~100質量%が特に好ましい。
 ここで、シリカと相互作用する官能基を有するゴム成分としては、具体的には、上述した特定共役ジエン系ゴム、および、上述したスチレンブタジエンゴム(A)のうちシリカと相互作用する官能基を有するものが挙げられる。
[共役ジエン系ゴムの平均ガラス転移温度]
 共役ジエン系ゴムの平均ガラス転移温度は、耐熱ダレ性能が向上してレース用タイヤとして好適に使用できる点から、-25℃以上が好ましく、-23℃以上がより好ましく、-20℃以上がさらに好ましく、-15℃以上が特に好ましい。その上限値は、本発明の効果がより発揮される理由から、0℃以下が好ましく、-5℃以下がより好ましく、-10℃以下が特に好ましい。
 ここで、共役ジエン系ゴムの平均ガラス転移温度とは、共役ジエン系ゴムが1種類のゴム成分のみを含む場合には、1種類のゴム成分のガラス転移温度そのものを指し、共役ジエン系ゴムが2種類以上のゴム成分を含む場合には、各ゴム成分のガラス転移温度と、共役ジエン系ゴム中の各ゴム成分の含有割合(質量基準)と、を掛け合わせて得られる値を足し合わせたものである。各ゴム成分のガラス転移温度は、デュポン社製の示差熱分析計(DSC)を用い、ASTM D3418-82に従い、昇温速度10℃/minで測定した値である。
[2]シリカ
 本発明の組成物に含有されるシリカは、特に制限されず、従来公知の任意のシリカを用いることができる。上記シリカの具体例としては、湿式シリカ、乾式シリカ、ヒュームドシリカ、珪藻土などが挙げられる。
 本発明の組成物において、シリカの含有量は、上述した共役ジエン系ゴム100質量部に対して、30質量部以上である。なかでも、本発明の効果がより優れる理由から、40質量部以上が好ましく、50質量部以上がより好ましい。
 シリカの含有量の上限は特定に制限されないが、本発明の効果がより優れる理由から、上述した共役ジエン系ゴム100質量部に対して、250質量部以下が好ましく、200質量部以下がより好ましく、150質量部以下がさらに好ましい。
[3]シランカップリング剤
 本発明の組成物に含有されるシランカップリング剤は、加水分解性基および有機官能基を有するシラン化合物であれば特に制限されない。
 上記加水分解性基は特に制限されないが、例えば、アルコキシ基、フェノキシ基、カルボキシル基、アルケニルオキシ基などが挙げられる。なかでも、本発明の効果がより優れる理由から、アルコキシ基が好ましい。加水分解性基がアルコキシ基である場合、アルコキシ基の炭素数は、本発明の効果がより優れる理由から、1~16が好ましく、1~4がより好ましい。炭素数1~4のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基などが挙げられる。
 上記有機官能基は特に制限されないが、有機化合物と化学結合を形成し得る基が好ましく、例えば、エポキシ基、ビニル基、アクリロイル基、メタクリロイル基、アミノ基、スルフィド基、メルカプト基、ブロックメルカプト基(保護メルカプト基)(例えば、オクタノイルチオ基)などが挙げられ、なかでも、本発明の効果がより優れる理由から、スルフィド基(特に、ジスルフィド基、テトラスルフィド基)、メルカプト基、ブロックメルカプト基が好ましい。
 上記シランカップリング剤の具体例としては、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、メルカプトプロピルトリメトキシシラン、メルカプトプロピルトリエトキシシラン、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイル-テトラスルフィド、トリメトキシシリルプロピル-メルカプトベンゾチアゾールテトラスルフィド、トリエトキシシリルプロピル-メタクリレート-モノスルフィド、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイル-テトラスルフィド、3-オクタノイルチオ-1-プロピルトリエトキシシラン等が挙げられ、これらのうち1種を単独で用いてもよく、2種以上を併用してもよい。
 上記シランカップリング剤は、本発明の効果がより優れる理由から、下記一般式(S)で表されるのが好ましい。
 (C2n+1O)-Si-C2m-S-CO-C2k+1   一般式(S)
 一般式(S)中、nは1~3の整数を表し、mは1~5の整数(好ましくは、2~4の整数)を表し、kは1~15の整数(好ましくは、5~10の整数)を表す。
 本発明の組成物において、シランカップリング剤の含有量は、上述したシリカの含有量に対して、3~30質量%である。なかでも、本発明の効果がより優れる理由から、5~20質量%が好ましい。
 また、本発明の組成物において、シランカップリング剤の含有量は、本発明の効果がより優れる理由から、上述した共役ジエン系ゴム100質量部に対して、1~50質量部が好ましく、2~45質量部がより好ましく、4~40質量部がさらに好ましい。
[4]任意成分
 本発明の組成物は、必要に応じて、上述した成分以外の成分(任意成分)を含有することができる。
 そのような成分としては、例えば、シリカ以外の充填剤(例えば、カーボンブラック)、スチレンブタジエン共重合体、軟化点が70℃以上の樹脂、熱膨張性マイクロカプセル、酸化亜鉛(亜鉛華)、ステアリン酸、老化防止剤、ワックス、加工助剤、プロセスオイル、液状ポリマー、熱硬化性樹脂、加硫剤(例えば、硫黄)、加硫促進剤などのゴム組成物に一般的に使用される各種添加剤などが挙げられる。
[カーボンブラック]
 本発明の組成物は、本発明の効果がより優れる理由から、カーボンブラックを含有するのが好ましい。
 上記カーボンブラックは特に限定されず、例えば、SAF-HS、SAF、ISAF-HS、ISAF、ISAF-LS、IISAF-HS、HAF-HS、HAF、HAF-LS、FEF、GPF、SRF等の各種グレードのものを使用することができる。
 上記カーボンブラックの窒素吸着比表面積(NSA)は特に制限されないが、本発明の効果がより優れる理由から、50~200m/gが好ましく、70~150m/gがより好ましい。
 ここで、窒素吸着比表面積(N2SA)は、カーボンブラック表面への窒素吸着量をJIS K6217-2:2001「第2部:比表面積の求め方-窒素吸着法-単点法」にしたがって測定した値である。
 本発明の組成物において、カーボンブラックの含有量は特に制限されないが、本発明の効果がより優れる理由から、上述したジエン系ゴム100質量部に対して、1~100質量部が好ましく、2~10質量部がより好ましい。
[スチレンブタジエン共重合体]
 本発明の組成物に含有されるスチレンブタジエン共重合体は、重量平均分子量(Mw)が2,000以上100,000未満であり、室温(23℃)で液状のスチレンブタジエンゴムである。スチレンブタジエン共重合体を含有することで、ウェット性能がより向上する。
 スチレンブタジエン共重合体の重量平均分子量(Mw)は、ポリスチレン換算のゲルパーミエーションクロマトグラフィで測定される値で、2,000以上100,000未満であり、本発明の効果がより発揮される理由から、3,000~90,000が好ましく、3,000~70,000がより好ましく、3,500~50,000がさらに好ましく、10,000~40,000が特に好ましい。
 スチレンブタジエン共重合体の含有量は、上述した共役ジエン系ゴム100質量部に対して、本発明の効果がより発揮される理由から、5質量部以上が好ましく、8質量部以上がより好ましく、10質量部以上がさらに好ましく、なかでもウェット性能がより優れる点から、15質量部以上が特に好ましい。その上限値は、本発明の効果がより発揮される理由から、上述した共役ジエン系ゴム100質量部に対して、50質量部以下が好ましく、40質量部以下がより好ましく、30質量部以下が特に好ましい。
[軟化点が70℃以上の樹脂]
 本発明の組成物は、本発明の効果がより優れる点、および、耐熱ダレ性が向上する理由から、軟化点が70℃以上の樹脂を含有してもよい。
 軟化点が70℃以上の樹脂は特に限定されないが、本発明の効果がより優れる点、および、耐熱ダレ性が向上する理由から、炭化水素樹脂が好ましい。
 炭化水素樹脂としては、例えば、テルペン系樹脂、ロジン系樹脂などの天然樹脂、石油系樹脂、石炭系樹脂、フェノール系樹脂、キシレン系樹脂などの合成樹脂、および、これらの変性物が挙げられる。なかでも、本発明の効果がより優れる点、および、耐熱ダレ性が向上する理由から、テルペン系樹脂および/または石油系樹脂が好ましく、テルペン系樹脂の変性物がより好ましい。
 テルペン系樹脂としては、例えば、α-ピネン樹脂、β-ピネン樹脂、リモネン樹脂、水添リモネン樹脂、ジペンテン樹脂、テルペンフェノール樹脂、テルペンスチレン樹脂、芳香族変性テルペン樹脂、水素添加テルペン樹脂等が好適に挙げられ、なかでも、本発明の効果がより優れる点、および、耐熱ダレ性が向上する理由から、テルペンフェノール樹脂または芳香族変性テルペン樹脂が好ましく、テルペンフェノール樹脂がより好ましい。
 芳香族変性テルペン樹脂は、テルペンと芳香族化合物とを重合することにより得られる。テルペンとしては、例えばα-ピネン、β-ピネン、ジペンテン、リモネンなどが例示される。芳香族化合物としては、例えばスチレン、α-メチルスチレン、ビニルトルエン、インデンなどが例示される。なかでも、本発明の効果がより優れる点、および、耐熱ダレ性が向上する理由から、芳香族変性テルペン樹脂としてスチレン変性テルペン樹脂が好ましい。
 石油系樹脂としては、芳香族系炭化水素樹脂、または、飽和もしくは不飽和脂肪族系炭化水素樹脂が挙げられ、例えば、C5系石油樹脂(イソプレン、1,3-ペンタジエン、シクロペンタジエン、メチルブテン、ペンテンなどの留分を重合した脂肪族系石油樹脂)、C9系石油樹脂(α-メチルスチレン、o-ビニルトルエン、m-ビニルトルエン、p-ビニルトルエンなどの留分を重合した芳香族系石油樹脂)、C5-C9共重合石油樹脂などが挙げられる。
 上記樹脂の軟化点は、70℃以上であり、本発明の効果がより優れる点、および、耐熱ダレ性が向上する理由から、80℃以上が好ましく、100℃以上がより好ましい。その上限値は、本発明の組成物中での分散性に優れる理由から、200℃以下が好ましく、180℃以下がより好ましく、170℃以下が特に好ましい。
 樹脂の軟化点は、JIS K6220-1(環球法)に準じる方法で測定される。
 本発明の組成物において、軟化点が70℃以上の樹脂の含有量は特に制限されないが、本発明の効果がより優れる点、および、耐熱ダレ性が向上する理由から、上述したジエン系ゴム100質量部に対して、1~100質量部が好ましく、2~60質量部がより好ましく、5~40質量部が特に好ましい。
[タイヤトレッド用ゴム組成物の調製方法]
 本発明の組成物の製造方法は特に限定されず、その具体例としては、例えば、上述した各成分を、公知の方法、装置(例えば、バンバリーミキサー、ニーダー、ロールなど)を用いて、混練する方法などが挙げられる。本発明の組成物が硫黄または加硫促進剤を含有する場合は、硫黄および加硫促進剤以外の成分を先に高温(好ましくは100~160℃)で混合し、冷却してから、硫黄または加硫促進剤を混合するのが好ましい。
 また、本発明の組成物は、従来公知の加硫または架橋条件で加硫または架橋することができる。
[II]空気入りタイヤ
 本発明の空気入りタイヤは、上述した本発明の組成物を用いて製造された空気入りタイヤである。なかでも、本発明の組成物をタイヤトレッド(キャップトレッド)に用いた(配置した)空気入りタイヤであることが好ましい。
 図1に、本発明の空気入りタイヤの実施態様の一例を表す空気入りタイヤの部分断面概略図を示すが、本発明の空気入りタイヤは図1に示す態様に限定されるものではない。
 図1において、符号1はビード部を表し、符号2はサイドウォール部を表し、符号3はタイヤトレッド部を表す。
 また、左右一対のビード部1間においては、繊維コードが埋設されたカーカス層4が装架されており、このカーカス層4の端部はビードコア5およびビードフィラー6の廻りにタイヤ内側から外側に折り返されて巻き上げられている。
 また、タイヤトレッド部3においては、カーカス層4の外側に、ベルト層7がタイヤ1周に亘って配置されている。
 また、ビード部1においては、リムに接する部分にリムクッション8が配置されている。
 なお、タイヤトレッド部3は上述した本発明の組成物により形成されている。
 本発明の空気入りタイヤは、例えば、従来公知の方法に従って製造することができる。また、空気入りタイヤに充填する気体としては、通常のまたは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウムなどの不活性ガスを用いることができる。
 以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。
[実施例A]
〔特定共役ジエン系ゴムおよび比較共役ジエン系ゴムの製造〕
 以下のとおり、特定共役ジエン系ゴムA1~A4および比較共役ジエン系ゴムA1~A4を製造した。
 ここで、特定共役ジエン系ゴムA1~A4は上述した第1~3工程を備える共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴムであり、上述した特定共役ジエン系ゴムに該当する。さらに、特定共役ジエン系ゴムA2およびA4は第1工程が上述した工程Aと工程Bとを備えるものであり、特定共役ジエン系ゴムがPIブロックを有する。
 一方、比較共役ジエン系ゴムA1およびA2は上述した第1~2工程を備える(上述した第3工程を備えない)共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴムであり、上述した特定共役ジエン系ゴムに該当しない。また、比較共役ジエン系ゴムA3~A5についても、上述した特定共役ジエン系ゴムに該当しない。
<特定共役ジエン系ゴムA1>
 攪拌機付きオートクレーブに、窒素雰囲気下、シクロヘキサン4000g、テトラメチルエチレンジアミン3.57mmol、1,3-ブタジエン252g、およびスチレン348gを仕込んだ後、n-ブチルリチウムを加え、50℃で重合を開始した(使用したn-ブチルリチウム1モルに対する、反応系中に存在する極性化合物としてのテトラメチルエチレンジアミンの量は0.85モル)。重合を開始してから15分経過後、1,3-ブタジエン338g、およびスチレン62gを60分間かけて連続的に添加した。重合反応中の最高温度は70℃であった。連続添加終了後、さらに15分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、下記式(11)で表されるポリオルガノシロキサンを、40質量%濃度のキシレン溶液の状態にて、1.51g(ポリオルガノシロキサン中のシロキサン構造(-Si-O-)の繰り返し単位数に換算して、使用したn-ブチルリチウムの1.1倍モルに相当する量)添加し、30分間反応させた。次いで、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン4.76mmol(使用したn-ブチルリチウムの1.0倍モルに相当する量)を添加し、10分間反応させた。その後、重合停止剤として、使用したn-ブチルリチウムの2倍モルに相当する量のメタノールを添加して、共役ジエン系ゴムを含有する溶液を得た。この溶液に、老化防止剤として、イルガノックス1520L(BASF社製)を、共役ジエン系ゴム100部に対して0.15部添加した後、スチームストリッピングにより溶媒を除去し、60℃で24時間真空乾燥して、固形状の共役ジエン系ゴムを得た。得られた共役ジエン系ゴムを特定共役ジエン系ゴムA1とする。特定共役ジエン系ゴムA1の重量平均分子量(Mw)は570,000、カップリング率は45.0%、芳香族ビニル単量体(スチレン単量体)単位含有量は41.1質量%、ビニル結合含有量は33.5質量%、ガラス転移温度(Tg)は-26℃、分子量分布(Mw/Mn)は1.5であった。
Figure JPOXMLDOC01-appb-C000008
 上記式(11)中、X、X、R~RおよびR~Rはメチル基である。上記式(11)中、mは80、kは120である。上記式(11)中、Xは下記式(12)で表される基である(ここで、*は結合位置を表す)。
Figure JPOXMLDOC01-appb-C000009
<特定共役ジエン系ゴムA2>
 窒素置換された800mlアンプル瓶に、シクロヘキサン74.3g、およびテトラメチルエチレンジアミン0.48mmolを添加し、さらに、n-ブチルリチウム4.76mmol(n-ブチルリチウム1モルに対する、極性化合物としてのテトラメチルエチレンジアミンの量が0.10モルとなる量)を添加した。次いで、イソプレン17.3g、およびスチレン1.3gをゆっくりと添加し、50℃のアンプル瓶内で120分反応させることにより、活性末端を有する重合体ブロック(A)を得た。この重合体ブロック(A)の重量平均分子量(Mw)は6,500、分子量分布(Mw/Mn)は1.12、芳香族ビニル単量体(スチレン単量体)単位含有量は7.0質量%、イソプレン単量体単位含有量は93.0質量%、およびビニル結合含有量は7.5質量%であった。
 攪拌機付きオートクレーブに、窒素雰囲気下、シクロヘキサン4000g、テトラメチルエチレンジアミン3.57mmol、1,3-ブタジエン252g、およびスチレン348gを仕込んだ後、上記にて得られた活性末端を有する重合体ブロック(A)を全量加え、50℃で重合を開始した(使用したn-ブチルリチウム1モルに対する、反応系中に存在する極性化合物としてのテトラメチルエチレンジアミンの量は0.85モル)。重合を開始してから15分経過後、1,3-ブタジエン338g、およびスチレン62gを60分間かけて連続的に添加した。重合反応中の最高温度は70℃であった。連続添加終了後、さらに15分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、上記式(11)で表されるポリオルガノシロキサンを、40質量%濃度のキシレン溶液の状態にて、1.51g(ポリオルガノシロキサン中のシロキサン構造(-Si-O-)の繰り返し単位数に換算して、使用したn-ブチルリチウムの1.1倍モルに相当する量)添加し、30分間反応させた。次いで、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン4.76mmol(使用したn-ブチルリチウムの1.0倍モルに相当する量)を添加し、10分間反応させた。その後、重合停止剤として、使用したn-ブチルリチウムの2倍モルに相当する量のメタノールを添加して、共役ジエン系ゴムを含有する溶液を得た。この溶液に、老化防止剤として、イルガノックス1520L(BASF社製)を、共役ジエン系ゴム100部に対して0.15部添加した後、スチームストリッピングにより溶媒を除去し、60℃で24時間真空乾燥して、固形状の共役ジエン系ゴムを得た。得られた共役ジエン系ゴムを特定共役ジエン系ゴムA2とする。特定共役ジエン系ゴムA2の重量平均分子量(Mw)は570,000、カップリング率は45.0%、芳香族ビニル単量体(スチレン単量体)単位含有量は41.1質量%、ビニル結合含有量は33.5質量%、ガラス転移温度(Tg)は-26℃、分子量分布(Mw/Mn)は1.5であった。
<特定共役ジエン系ゴムA3>
 攪拌機付きオートクレーブに、窒素雰囲気下、シクロヘキサン800g、テトラメチルエチレンジアミン1.42mmol、1,3-ブタジエン87.6g、およびスチレン32.4gを仕込んだ後、n-ブチルリチウム0.79mmolを加え、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、上記式(11)で表されるポリオルガノシロキサンを、40質量%濃度のキシレン溶液の状態にて、0.26g(ポリオルガノシロキサン中のシロキサン構造(-Si-O-)の繰り返し単位数に換算して、使用したn-ブチルリチウムの1.1倍モルに相当する量)添加し、30分間反応させた。次いで、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン0.79mmol(使用したn-ブチルリチウムの1.0倍モルに相当する量)を添加し、10分間攪拌させた。その後、重合停止剤として、使用したn-ブチルリチウムの2倍モルに相当する量のメタノールを添加して、共役ジエン系ゴムを含有する溶液を得た。この溶液に、老化防止剤として、イルガノックス1520L(チバスペシャリティーケミカルズ社製)を、共役ジエン系ゴム100部に対して0.15部添加した後、スチームストリッピングにより溶媒を除去し、60℃で24時間真空乾燥して、固形状の共役ジエン系ゴムを得た。得られた共役ジエン系ゴムを特定共役ジエン系ゴムA3とする。特定共役ジエン系ゴムA3の重量平均分子量(Mw)は467,000、カップリング率は54.4%、芳香族ビニル単量体(スチレン単量体)単位含有量は26.9質量%、ビニル結合含有量は58.5質量%、ガラス転移温度(Tg)は-22℃、分子量分布(Mw/Mn)は1.4であった。
<特定共役ジエン系ゴムA4>
 窒素置換された100mlアンプル瓶に、シクロヘキサン50.0g、およびテトラメチルエチレンジアミン0.66mmolを添加し、さらに、n-ブチルリチウム6.6mmolを添加した。次いで、イソプレン11.61g、およびスチレン0.87gをゆっくりと添加し、50℃のアンプル瓶内で120分間反応させることにより、活性末端を有する重合体ブロック(A)を得た。この重合体ブロック(A)の重量平均分子量(Mw)は3,500、分子量分布(Mw/Mn)は1.10、芳香族ビニル単量体(スチレン単量体)単位含有量は7.0質量%、イソプレン単量体単位含有量は93.0質量%、ビニル結合含有量は7.7質量%であった。
 次に、攪拌機付きオートクレーブに、窒素雰囲気下、シクロヘキサン4000g、テトラメチルエチレンジアミン11.lmmol、1,3-ブタジエン393.0g、およびスチレン207.0gを仕込んだ後、上記にて得られた活性末端を有する重合体ブロック(A)を全量加え、40℃で重合を開始した。重合を開始してから10分間経過後、1,3-ブタジエン337.0g、およびスチレン63.0gを40分間かけて連続的に添加した。重合反応中の最高温度は60℃であった。連続添加終了後、さらに20分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、上記式(11)で表されるポリオルガノシロキサンを、40質量%濃度のキシレン溶液の状態にて、2.13g(ポリオルガノシロキサン中のシロキサン構造(-Si-O-)の繰り返し単位数に換算して、使用したn-ブチルリチウムの1.1倍モルに相当する量)添加し、30分間反応させた。次いで、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン6.6mmol(使用したn-ブチルリチウムの1.0倍モルに相当する量)を添加し、10分間攪拌させた。その後、重合停止剤として、使用したn-ブチルリチウムの2倍モルに相当する量のメタノールを添加して、共役ジエン系ゴムを含有する溶液を得た。この溶液に、老化防止剤として、イルガノックス1520L(チバスペシャリティーケミカルズ社製)を、共役ジエン系ゴム100部に対して0.15部添加した後、スチームストリッピングにより溶媒を除去し60℃で24時間真空乾燥して、固形状の共役ジエン系ゴムを得た。得られた共役ジエン系ゴムを特定共役ジエン系ゴムA4とする。特定共役ジエン系ゴムA4の重量平均分子量(Mw)は488,000、カップリング率は60.2%、芳香族ビニル単量体(スチレン単量体)単位含有量は26.6質量%、ビニル結合含有量は60.4質量%、ガラス転移温度(Tg)は-22℃、分子量分布(Mw/Mn)は1.4であった。
<比較共役ジエン系ゴムA1>
 3-(2-アミノエチルアミノ)プロピルトリメトキシシラン4.76mmolを添加しなかったこと以外は、特定共役ジエン系ゴムA2と同様に操作して、固形状の共役ジエン系ゴムを得た。得られた共役ジエン系ゴムを比較共役ジエン系ゴムA1とする。比較共役ジエン系ゴムA1の重量平均分子量(Mw)は552,000、カップリング率は43.0%、芳香族ビニル単量体(スチレン単量体)単位含有量は41.0質量%、ビニル結合含有量は33.0質量%、ガラス転移温度(Tg)は-27℃、分子量分布(Mw/Mn)は1.7であった。
<比較共役ジエン系ゴムA2>
 攪拌機付きオートクレーブに、窒素雰囲気下、シクロヘキサン800g、テトラメチルエチレンジアミン1.42mmol、1,3-ブタジエン87.6g、およびスチレン32.4gを仕込んだ後、n-ブチルリチウム0.79mmolを加え、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、上記式(11)で表されるポリオルガノシロキサンを、40質量%濃度のキシレン溶液の状態にて、0.26g(ポリオルガノシロキサン中のシロキサン構造(-Si-O-)の繰り返し単位数に換算して、使用したn-ブチルリチウムの1.1倍モルに相当する量)添加し、30分間反応させた。その後、重合停止剤として、使用したn-ブチルリチウムの2倍モルに相当する量のメタノールを添加して、共役ジエン系ゴムを含有する溶液を得た。この溶液に、老化防止剤として、イルガノックス1520L(チバスペシャリティーケミカルズ社製)を、共役ジエン系ゴム100部に対して0.15部添加した後、スチームストリッピングにより溶媒を除去し、60℃で24時間真空乾燥して、固形状の共役ジエン系ゴムを得た。得られた共役ジエン系ゴムを比較共役ジエン系ゴムA2とする。比較共役ジエン系ゴムA2の重量平均分子量(Mw)は460,000、カップリング率は52.5%、芳香族ビニル単量体(スチレン単量体)単位含有量は27.6質量%、ビニル結合含有量は58.8質量%、ガラス転移温度(Tg)は-22℃、分子量分布(Mw/Mn)は1.4であった。
<比較共役ジエン系ゴムA3>
 比較共役ジエン系ゴムA3は、日本ゼオン社製のNS522(スチレンブタジエンゴム、重量平均分子量(Mw):960,000、芳香族ビニル単量体(スチレン単量体)単位含有量:38質量%、ビニル結合含有量:39質量%、ガラス転移温度:-23℃、分子量分布:1.7)である。
<比較共役ジエン系ゴムA4>
 比較共役ジエン系ゴムA4は、旭化成社製のF3420(スチレンブタジエンゴム、重量平均分子量(Mw):900,000、芳香族ビニル単量体(スチレン単量体)単位含有量:37質量%、ビニル結合含有量:41質量%、ガラス転移温度:-27℃、分子量分布:2.3)である。
<比較共役ジエン系ゴムA5>
 比較共役ジエン系ゴムA5は、日本ゼオン社製のNipol 1739(スチレンブタジエンゴム、重量平均分子量(Mw):760,000、芳香族ビニル単量体(スチレン単量体)単位含有量:39質量%、ビニル結合含有量:14質量%、ガラス転移温度:-28℃、分子量分布:3.8)である。
〔タイヤトレッド用ゴム組成物の調製〕
 下記表1に示す成分を、同表に示す割合(質量部)で配合した。
 具体的には、まず、下記表1に示す成分のうち硫黄および加硫促進剤を除く成分を、1.7リットルの密閉式バンバリーミキサーを用いて140℃付近に温度を上げてから、5分間混合した後に放出し、室温まで冷却してマスターバッチを得た。さらに、上記バンバリーミキサーを用いて、得られたマスターバッチに硫黄および加硫促進剤を混合し、タイヤトレッド用ゴム組成物を得た。
 なお、ゴム成分が油展品である場合、質量部はゴムの正味の量(オイルを除いた量)を表す。
〔評価〕
 得られたタイヤトレッド用ゴム組成物について下記のとおり評価を行った。
<加硫ゴムシートの作製>
 得られたタイヤトレッド用ゴム組成物(未加硫)を金型(15cm×15cm×0.2cm)中で、160℃で40分間プレス加硫して加硫ゴムシートを作製した。
<ウェット性能>
 得られた加硫ゴムシートについて、JIS K6394:2007に準じ、粘弾性スペクトロメーター(東洋精機製作所社製)を用いて、伸張変形歪率10%±2%、振動数20Hz、温度0℃の条件でtanδ(0℃)を測定した。
 結果を表1に示す。結果は比較例A1を100とする指数で表した。指数が大きい方がウェット性能(ウェットグリップ性能)に優れる。実用上、103以上が好ましい。
<転がり性能>
 得られた加硫ゴムシートについて、JIS K6394:2007に準じ、粘弾性スペクトロメーター(東洋精機製作所社製)を用いて、伸張変形歪率10%±2%、振動数20Hz、温度0℃の条件でtanδ(60℃)を測定した。
 結果を表1に示す。結果は比較例A1を100とする指数で表した。指数が小さい方が転がり性能(低転がり抵抗性)に優れる。実用上、97以下が好ましい。
<ドライ操縦安定性能>
 得られたタイヤトレッド用ゴム組成物をタイヤトレッドに用いて、図1に示される空気入りタイヤを製造した。その際、上述した平均主溝深さ(トレッド面から主溝の溝底までの最大値を指す。なお、主溝深さは、溝底に形成された部分的な凹凸部を除外して測定される。)が6.0mmになるようにトレッドパターンを形成した。
 得られた空気入りタイヤを排気量2.0Lの試験車両に装着し、ドライ路面での操縦安定性能(ドライ操縦安定性能)についてテストドライバーによる官能評価を行った。
 結果を表1に示す。結果は比較例A1を100とする指数で表した。指数が大きいほどドライ操縦安定性能に優れることを意味する。実用上、101以上が好ましい。
Figure JPOXMLDOC01-appb-T000010
 上記表1中の各成分の詳細は以下のとおりである。また、表1中、「St」および「Vn」はそれぞれ、特定共役ジエン系ゴムまたはスチレンブタジエンゴム(A)中の、芳香族ビニル単量体(スチレン単量体)単位の含有量(質量%)および共役ジエン単量体中のビニル結合含有量(質量%)を意味する。「Mw」、「Mw/Mn」および「Tg」はそれぞれ、特定共役ジエン系ゴムまたはスチレンブタジエンゴム(A)の、重量平均分子量、分子量分布およびガラス転移温度(℃)を意味する。
・特定共役ジエン系ゴムA1:上述のとおり製造した特定共役ジエン系ゴムA1
・特定共役ジエン系ゴムA2:上述のとおり製造した特定共役ジエン系ゴムA2
・特定共役ジエン系ゴムA3:上述のとおり製造した特定共役ジエン系ゴムA3
・特定共役ジエン系ゴムA4:上述のとおり製造した特定共役ジエン系ゴムA4
・比較共役ジエン系ゴムA1:上述のとおり製造した比較共役ジエン系ゴムA1
・比較共役ジエン系ゴムA2:上述のとおり製造した比較共役ジエン系ゴムA2
・比較共役ジエン系ゴムA3:上述の比較共役ジエン系ゴムA3
・比較共役ジエン系ゴムA4:上述の比較共役ジエン系ゴムA4
・比較共役ジエン系ゴムA5:上述の比較共役ジエン系ゴムA5
・NR:天然ゴム(TSR20、VON BUNDIT社製)
・BR 1220:Nipol BR1220(ブタジエンゴム、ガラス転移温度:-106℃、日本ゼオン社製)
・9100GR:ULTRASIL 9100GR(シリカ、Evonik社製)
・N339:ショウブラックN339(カーボンブラック、キャボットジャパン社製)
・NXT:上述した一般式(S)で表されるシランカップリング剤(ここで、上述した一般式(S)中、n=2、m=3、k=7である。)
・酸化亜鉛:酸化亜鉛3種(正同化学工業社社製)
・ステアリン酸:ビーズステアリン酸(日油社製)
・老化防止剤:オゾノン6C(精工化学社製)
・プロセスオイル:エキストラクト4号S(昭和シェル石油社製)
・硫黄:金華印油入微粉硫黄(硫黄の含有量95.24質量%、鶴見化学工業社製)
・加硫促進剤(CZ):大内新興化学工業社製ノクセラーCZ-G
・加硫促進剤(DPG):1,3-ジフェニルグアニジン(ソクシノールD-G、住友化学工業社製)
 表1から分かるように、所定量の特定共役ジエン系ゴム、所定量のスチレンブタジエンゴム(A)、および、所定量のシランカップリング剤を含有する実施例A1~A8は、優れたウェット性能、転がり性能およびドライ操縦安定性能を示した。なかでも、特定共役ジエン系ゴムがPIブロックを含む実施例A2およびA4~A8は、ウェット性能、転がり性能およびドライ操縦安定性能の少なくとも1つがより優れることが示された。
 実施例A4およびA6の対比から、スチレンブタジエンゴム(A)がシリカと相互作用する官能基を有している実施例A6は、より優れたウェット性能、転がり性能およびドライ操縦安定性能を示した。
 実施例A4、A5およびA7の対比から、スチレンブタジエンゴム(A)の分子量分布が2.0以上であれば、より優れたウェット性能およびドライ操縦安定性能を示した。
 共役ジエン系ゴム中の特定共役ジエン系ゴムの含有量が30質量%未満である比較例A1~A3、シリカに対するシランカップリング剤の含有量が3質量%未満である比較例A4は、ウェット性能、転がり性能およびドライ操縦安定性能の少なくとも1つが不十分であった。
[実施例B]
〔特定共役ジエン系ゴムおよび比較共役ジエン系ゴムの製造〕
 以下のとおり、特定共役ジエン系ゴムB1~B2および比較共役ジエン系ゴムB1を製造した。
 ここで、特定共役ジエン系ゴムB1~B2は上述した第1~3工程を備える共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴムであり、上述した特定共役ジエン系ゴムに該当する。さらに、特定共役ジエン系ゴムB1は第1工程が上述した工程Aと工程Bとを備えるものであり、特定共役ジエン系ゴムがPIブロックを有する。
 一方、比較共役ジエン系ゴムB1は上述した第1~2工程を備える(上述した第3工程を備えない)共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴムであり、上述した特定共役ジエン系ゴムに該当しない。また、比較共役ジエン系ゴムB2についても、上述した特定共役ジエン系ゴムに該当しない。
<特定共役ジエン系ゴムB1>
 窒素置換された800mlアンプル瓶に、シクロヘキサン74.3g、およびテトラメチルエチレンジアミン0.48mmolを添加し、さらに、n-ブチルリチウム4.76mmol(n-ブチルリチウム1モルに対する、極性化合物としてのテトラメチルエチレンジアミンの量が0.10モルとなる量)を添加した。次いで、イソプレン17.3g、およびスチレン1.3gをゆっくりと添加し、50℃のアンプル瓶内で120分反応させることにより、活性末端を有する重合体ブロック(A)を得た。この重合体ブロック(A)の重量平均分子量(Mw)は6,500、分子量分布(Mw/Mn)は1.12、芳香族ビニル単量体(スチレン単量体)単位含有量は7.0質量%、イソプレン単量体単位含有量は93.0質量%、およびビニル結合含有量は7.5質量%であった。
 攪拌機付きオートクレーブに、窒素雰囲気下、シクロヘキサン4000g、テトラメチルエチレンジアミン3.57mmol、1,3-ブタジエン252g、およびスチレン348gを仕込んだ後、上記にて得られた活性末端を有する重合体ブロック(A)を全量加え、50℃で重合を開始した(使用したn-ブチルリチウム1モルに対する、反応系中に存在する極性化合物としてのテトラメチルエチレンジアミンの量は0.85モル)。重合を開始してから15分経過後、1,3-ブタジエン338g、およびスチレン62gを60分間かけて連続的に添加した。重合反応中の最高温度は70℃であった。連続添加終了後、さらに15分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、下記式(11)で表されるポリオルガノシロキサンを、40質量%濃度のキシレン溶液の状態にて、1.51g(ポリオルガノシロキサン中のシロキサン構造(-Si-O-)の繰り返し単位数に換算して、使用したn-ブチルリチウムの1.1倍モルに相当する量)添加し、30分間反応させた。次いで、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン4.76mmol(使用したn-ブチルリチウムの1.0倍モルに相当する量)を添加し、10分間反応させた。その後、重合停止剤として、使用したn-ブチルリチウムの2倍モルに相当する量のメタノールを添加して、共役ジエン系ゴムを含有する溶液を得た。この溶液に、老化防止剤として、イルガノックス1520L(BASF社製)を、共役ジエン系ゴム100部に対して0.15部添加した後、スチームストリッピングにより溶媒を除去し、60℃で24時間真空乾燥して、固形状の共役ジエン系ゴムを得た。得られた共役ジエン系ゴムを特定共役ジエン系ゴムB1とする。特定共役ジエン系ゴムB1の重量平均分子量(Mw)は570,000、カップリング率は45.0%、芳香族ビニル単量体(スチレン単量体)単位含有量は41.1質量%、ビニル結合含有量は33.5質量%、ガラス転移温度(Tg)は-26℃、分子量分布(Mw/Mn)は1.5であった。
Figure JPOXMLDOC01-appb-C000011
 上記式(11)中、X、X、R~RおよびR~Rはメチル基である。上記式(11)中、mは80、kは120である。上記式(11)中、Xは下記式(12)で表される基である(ここで、*は結合位置を表す)。
Figure JPOXMLDOC01-appb-C000012
<特定共役ジエン系ゴムB2>
 攪拌機付きオートクレーブに、窒素雰囲気下、シクロヘキサン4000g、テトラメチルエチレンジアミン7.55mmol、1,3-ブタジエン390g、およびスチレン210gを仕込んだ後、特定共役ジエン系ゴムB1と同様に操作することで得られた活性末端を有する重合体ブロック(A)を全量加え、50℃で重合を開始した。重合を開始してから15分経過後、1,3-ブタジエン260g、およびスチレン140gを60分間かけて連続的に添加した。重合反応中の最高温度は70℃であった。連続添加終了後、さらに15分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、上記式(11)で表されるポリオルガノシロキサンを、40質量%濃度のキシレン溶液の状態にて、1.60g(ポリオルガノシロキサン中のシロキサン構造(-Si-O-)の繰り返し単位数に換算して、使用したn-ブチルリチウムの1.1倍モルに相当する量)添加し、30分間反応させた。次いで、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン4.88mmolを添加し、10分間反応させた。その後、重合停止剤として、使用したn-ブチルリチウムの2倍モルに相当する量のメタノールを添加して、共役ジエン系ゴムを含有する溶液を得た。この溶液に、老化防止剤として、イルガノックス1520L(BASF社製)を、共役ジエン系ゴム100部に対して0.15部添加した後、スチームストリッピングにより溶媒を除去し、60℃で24時間真空乾燥して、固形状の共役ジエン系ゴムを得た。得られた共役ジエン系ゴムを特定共役ジエン系ゴムB2とする。特定共役ジエン系ゴムB2の重量平均分子量(Mw)は650,000、カップリング率は43%、芳香族ビニル単量体(スチレン単量体)単位含有量は35質量%、ビニル結合含有量は64質量%、ガラス転移温度(Tg)は-15℃、分子量分布(Mw/Mn)は1.7であった。
<比較共役ジエン系ゴムB1>
 3-(2-アミノエチルアミノ)プロピルトリメトキシシラン4.76mmolを添加しなかったこと以外は、特定共役ジエン系ゴムB1と同様に操作して、固形状の共役ジエン系ゴムを得た。得られた共役ジエン系ゴムを比較共役ジエン系ゴムB1とする。比較共役ジエン系ゴムB1の重量平均分子量(Mw)は552,000、カップリング率は43.0%、芳香族ビニル単量体(スチレン単量体)単位含有量は41.0質量%、ビニル結合含有量は33.0質量%、ガラス転移温度(Tg)は-26℃、分子量分布(Mw/Mn)は1.7であった。
<比較共役ジエン系ゴムB2>
 比較共役ジエン系ゴムB2は、JSR社製のHP755(溶液重合スチレンブタジエンゴム、ガラス転移温度:-21℃)である。
〔タイヤトレッド用ゴム組成物の調製〕
 下記表2に示す成分を、同表に示す割合(質量部)で配合した。
 具体的には、まず、下記表2に示す成分のうち硫黄および加硫促進剤を除く成分を、1.7リットルの密閉式バンバリーミキサーを用いて140℃付近に温度を上げてから、5分間混合した後に放出し、室温まで冷却してマスターバッチを得た。さらに、上記バンバリーミキサーを用いて、得られたマスターバッチに硫黄および加硫促進剤を混合し、タイヤトレッド用ゴム組成物を得た。
 なお、ゴム成分が油展品である場合、質量部はゴムの正味の量(オイルを除いた量)を表す。
〔評価〕
 得られたタイヤトレッド用ゴム組成物について下記のとおり評価を行った。
<加硫ゴムシートの作製>
 得られたタイヤトレッド用ゴム組成物(未加硫)を金型(15cm×15cm×0.2cm)中で、160℃で40分間プレス加硫して加硫ゴムシートを作製した。
<耐熱ダレ性能>
 得られた各加硫ゴムシートから3号ダンベル状の試験片を打ち抜き、引張速度500mm/分での引張試験をJIS K6251に準拠して行い、100℃における300%モジュラス(M300)を測定した。結果を表2に示す。結果は、比較例B1の300%モジュラスを100とする指数で表した。この値が大きいほど、耐熱ダレ性能に優れるものとして評価できる。実用上、103以上が好ましい。
<ウェット性能>
 得られた加硫ゴムシートについて、JIS K6394:2007に準じ、粘弾性スペクトロメーター(東洋精機製作所社製)を用いて、伸張変形歪率10%±2%、振動数20Hz、温度0℃の条件でtanδ(0℃)を測定した。
 結果を表2に示す。結果は比較例B1を100とする指数で表した。指数が大きい方がウェット性能(ウェットグリップ性能)に優れる。実用上、103以上が好ましい。
<転がり性能>
 得られた加硫ゴムシートについて、JIS K6394:2007に準じ、粘弾性スペクトロメーター(東洋精機製作所社製)を用いて、伸張変形歪率10%±2%、振動数20Hz、温度0℃の条件でtanδ(60℃)を測定した。
 結果を表2に示す。結果は比較例B1を100とする指数で表した。指数が小さい方が転がり性能(低転がり抵抗性)に優れる。実用上、97以下が好ましい。
<ドライ操縦安定性能>
 得られたタイヤトレッド用ゴム組成物をタイヤトレッドに用いて、図1に示される空気入りタイヤを製造した。その際、上述した平均主溝深さ(トレッド面から主溝の溝底までの最大値を指す。なお、主溝深さは、溝底に形成された部分的な凹凸部を除外して測定される。)が6.0mmになるようにトレッドパターンを形成した。
 得られた空気入りタイヤを排気量2.0Lの試験車両に装着し、ドライ路面での操縦安定性能(ドライ操縦安定性能)についてテストドライバーによる官能評価を行った。
 結果を表2に示す。結果は比較例B1を100とする指数で表した。指数が大きいほどドライ操縦安定性能に優れることを意味する。実用上、101以上が好ましい。
Figure JPOXMLDOC01-appb-T000013
 上記表2中の各成分の詳細は以下のとおりである。また、表2中、「St」および「Vn」はそれぞれ、特定共役ジエン系ゴムまたはその他の共役ジエン系ゴム中の、芳香族ビニル単量体(スチレン単量体)単位の含有量(質量%)および共役ジエン単量体中のビニル結合含有量(質量%)を意味する。「Mw」は、特定共役ジエン系ゴム、その他の共役ジエン系ゴム、または、スチレンブタジエン共重合体の重量平均分子量を意味する。「Tg」は、特定共役ジエン系ゴムまたはその他の共役ジエン系ゴムのガラス転移温度(℃)を意味する。「共役ジエン系ゴムの平均Tg」とは、ゴム組成物中の特定共役ジエン系ゴムおよびその他の共役ジエン系ゴムの平均ガラス転移温度を意味し、各ゴム成分のTgおよび含有量に基づいて、上述の方法によって算出した。
・特定共役ジエン系ゴムB1:上述のとおり製造した特定共役ジエン系ゴムB1
・特定共役ジエン系ゴムB2:上述のとおり製造した特定共役ジエン系ゴムB2
・比較共役ジエン系ゴムB1:上述のとおり製造した比較共役ジエン系ゴムB1
・比較共役ジエン系ゴムB2:上述の比較共役ジエン系ゴムB2
・E680:タフデン E680(溶液重合スチレンブタジエンゴム、重量平均分子量(Mw):1,470,000、芳香族ビニル単量体(スチレン単量体)単位含有量:36質量%、ビニル結合含有量:64質量%、ガラス転移温度:-13℃、旭化成社製)。なお、E680は、上述の特定共役ジエン系ゴムに該当しない。
・液状スチレンブタジエン共重合体1:RICON 100(重量平均分子量:4,500、クレイバレー社製)
・液状スチレンブタジエン共重合体2:(重量平均分子量:30,000)
・7000GR:ULTRASIL 7000GR(シリカ、Evonik社製)
・N234:ショウブラックN234(カーボンブラック、キャボットジャパン社製)
・Si69:Si69(シランカップリング剤、ビス(3-トリエトキシシリルプロピル)テトラスルフィド)
・T160:ポリスター T160(テルペンフェノール樹脂、軟化点:160±5℃、ヤスハラケミカル社製)
・酸化亜鉛:酸化亜鉛3種(正同化学工業社社製)
・ステアリン酸:ビーズステアリン酸(日油社製)
・老化防止剤:オゾノン6C(精工化学社製)
・TDAEオイル:エキストラクト4号S(昭和シェル石油社製)
・硫黄:金華印油入微粉硫黄(硫黄の含有量95.24質量%、鶴見化学工業社製)¥
・加硫促進剤(CZ):大内新興化学工業社製ノクセラーCZ-G
・加硫促進剤(DPG):1,3-ジフェニルグアニジン(ソクシノールD-G、住友化学工業社製)
 表2から分かるように、所定量の特定共役ジエン系ゴム、所定量のスチレンブタジエンゴム(A)、および、所定量のシランカップリング剤を含有する実施例B1~B6は、優れたウェット性能、転がり性能およびドライ操縦安定性能を示し、耐熱ダレ性能にも優れていた。
 実施例B1およびB2の対比から、ガラス転移温度が-20℃以上の特定共役ジエン系ゴムを含有する実施例B2は、より優れたウェット性能および耐熱ダレ性能を示した。
 実施例B2およびB3の対比から、スチレンブタジエン共重合体(液状スチレンブタジエン共重合体)の含有量が共役ジエン系ゴム100質量部に対して15質量部以上である実施例B3は、より優れたウェット性能を示した。
 実施例B3およびB4の対比から、重量平均分子量(Mw)が10,000以上であるスチレンブタジエン共重合体(液状スチレンブタジエン共重合体)を含有する実施例B4は、より優れたウェット性能を示した。
 実施例B2およびB5の対比から、軟化点70℃以上の樹脂を含有する実施例B5は、より優れたウェット性能および耐熱ダレ性能を示した。
 実施例B2およびB6の対比から、共役ジエン系ゴム中の特定共役ジエン系ゴムの含有量が40質量%以上である実施例B2は、より優れたウェット性能を示した。
 共役ジエン系ゴム中の特定共役ジエン系ゴムの含有量が30質量%未満である比較例B1およびB2は、ウェット性能、転がり性能およびドライ操縦安定性の少なくとも1つが不十分であった。
 1 ビード部
 2 サイドウォール部
 3 タイヤトレッド部
 4 カーカス層
 5 ビードコア
 6 ビードフィラー
 7 ベルト層
 8 リムクッション

Claims (7)

  1.  特定共役ジエン系ゴムを30質量%以上と、前記特定共役ジエン系ゴム以外のスチレンブタジエンゴムを20質量%以上と、を含む共役ジエン系ゴムと、
     シリカと、
     シランカップリング剤とを含有し、
     前記シリカの含有量が、前記共役ジエン系ゴム100質量部に対して、30質量部以上であり、
     前記シランカップリング剤の含有量が、前記シリカの含有量に対して、3~30質量%であり、
     前記特定共役ジエン系ゴムが、不活性溶媒中で、重合開始剤を用いて、共役ジエン化合物および芳香族ビニル化合物を含む単量体を重合し、活性末端を有する共役ジエン系重合体鎖を得る第1工程と、前記活性末端を有する共役ジエン系重合体鎖に、下記一般式(1)で表されるポリオルガノシロキサンを、前記第1工程で使用した重合開始剤1モルに対して、前記ポリオルガノシロキサン中のシロキサン構造(-Si-O-)の繰り返し単位数換算で1モル以上の割合にて添加して反応させる第2工程と、前記第2工程で得られるポリオルガノシロキサンを反応させた共役ジエン系重合体鎖に、下記一般式(2)で表される化合物を反応させる第3工程とを備える共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴムであり、
     前記特定共役ジエン系ゴム中の芳香族ビニル単量体単位の含有量が20~80質量%であり、前記特定共役ジエン系ゴムにおける共役ジエン単量体単位中のビニル結合含有量が20~80質量%であり、
     前記特定共役ジエン系ゴムは、ガラス転移温度が-35~0℃であり、重量平均分子量(Mw)が100,000以上である、タイヤトレッド用ゴム組成物。
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)中、R~Rは、炭素数1~6のアルキル基、または炭素数6~12のアリール基であり、これらは互いに同一であっても相違していてもよい。
     一般式(1)中、XおよびXは、炭素数1~6のアルキル基、炭素数6~12のアリール基、炭素数1~5のアルコキシ基、および、エポキシ基を含有する炭素数4~12の基からなる群より選ばれるいずれかの基であり、これらは互いに同一であっても相違していてもよい。
     一般式(1)中、Xは、炭素数1~5のアルコキシ基、またはエポキシ基を含有する炭素数4~12の基であり、複数あるXは、それらは互いに同一であっても相違していてもよい。
     一般式(1)中、Xは、2~20のアルキレングリコールの繰返し単位を含有する基であり、Xが複数あるときは、それらは互いに同一であっても相違していてもよい。
     一般式(1)中、mは3~200の整数、nは0~200の整数、kは0~200の整数であり、m+n+kは3以上である。
    Figure JPOXMLDOC01-appb-C000002
     一般式(2)中、Rは、ヒドロカルビル基である。
     一般式(2)中、Aは、活性末端を有する共役ジエン系重合体鎖とポリオルガノシロキサンとの反応により生成した反応残基と反応しうる基である。
     一般式(2)中、Aは、窒素原子を含有する基である。
     一般式(2)中、pは0~2の整数、qは1~3の整数、rは1~3の整数、p+q+r=4である。
  2.  前記スチレンブタジエンゴムが、シリカと相互作用する官能基を有する、請求項1に記載のタイヤトレッド用ゴム組成物。
  3.  前記共役ジエン系ゴム中のシリカと相互作用する官能基を有するゴム成分の含有量の合計が、80質量%以上である、請求項1または2に記載のタイヤトレッド用ゴム組成物。
  4.  前記スチレンブタジエンゴムは、重量平均分子量(Mw)および数平均分子量(Mn)から求められる分子量分布(Mw/Mn)が2.0以上である、請求項1~3のいずれか1項に記載のタイヤトレッド用ゴム組成物。
  5.  前記共役ジエン系ゴムが、前記特定共役ジエン系ゴムおよび前記スチレンブタジエンゴム以外のゴム成分を10質量%以上含む、請求項1~4のいずれか1項に記載のタイヤトレッド用ゴム組成物。
  6.  前記特定共役ジエン系ゴムが、
     イソプレン単量体単位80~100質量%および芳香族ビニル単量体単位0~20質量%を含む重合体ブロック(A)と、
     1,3-ブタジエン単量体単位50~100質量%および芳香族ビニル単量体単位0~50質量%を含む重合体ブロック(B)とが一続きにして形成された構造を有する、請求項1~5のいずれか1項に記載のタイヤトレッド用ゴム組成物。
  7.  請求項1~6のいずれか1項に記載のタイヤトレッド用ゴム組成物を用いて製造されたタイヤトレッド部を備える、空気入りタイヤ。
PCT/JP2019/019335 2018-05-16 2019-05-15 タイヤトレッド用ゴム組成物および空気入りタイヤ WO2019221180A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19804264.0A EP3795629A4 (en) 2018-05-16 2019-05-15 TIRE AND TIRE TREAD RUBBER COMPOSITION
CN201980032378.0A CN112135873B (zh) 2018-05-16 2019-05-15 轮胎胎面用橡胶组合物及充气轮胎

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-094460 2018-05-16
JP2018094890A JP6791206B2 (ja) 2018-05-16 2018-05-16 タイヤトレッド用ゴム組成物および空気入りタイヤ
JP2018-094890 2018-05-16
JP2018094460A JP6791202B2 (ja) 2018-05-16 2018-05-16 タイヤトレッド用ゴム組成物および空気入りタイヤ

Publications (1)

Publication Number Publication Date
WO2019221180A1 true WO2019221180A1 (ja) 2019-11-21

Family

ID=68540089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019335 WO2019221180A1 (ja) 2018-05-16 2019-05-15 タイヤトレッド用ゴム組成物および空気入りタイヤ

Country Status (3)

Country Link
EP (1) EP3795629A4 (ja)
CN (1) CN112135873B (ja)
WO (1) WO2019221180A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016047883A (ja) 2014-08-27 2016-04-07 横浜ゴム株式会社 タイヤトレッド用ゴム組成物および空気入りタイヤ
JP2016047887A (ja) 2014-08-27 2016-04-07 横浜ゴム株式会社 タイヤトレッド用ゴム組成物および空気入りタイヤ
WO2016208739A1 (ja) * 2015-06-26 2016-12-29 日本ゼオン株式会社 共役ジエン系ゴムの製造方法
JP2017082235A (ja) * 2016-12-28 2017-05-18 日本ゼオン株式会社 共役ジエン系ゴムの製造方法
JP2017082236A (ja) * 2016-12-28 2017-05-18 日本ゼオン株式会社 ポリブタジエンゴムの製造方法
JP2017110230A (ja) * 2016-03-30 2017-06-22 日本ゼオン株式会社 ゴム組成物
WO2018092716A1 (ja) * 2016-11-16 2018-05-24 日本ゼオン株式会社 共役ジエン系ゴムの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073837A1 (ja) * 2010-12-03 2012-06-07 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
JP6064953B2 (ja) * 2014-08-27 2017-01-25 横浜ゴム株式会社 タイヤ用ゴム組成物および空気入りタイヤ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016047883A (ja) 2014-08-27 2016-04-07 横浜ゴム株式会社 タイヤトレッド用ゴム組成物および空気入りタイヤ
JP2016047887A (ja) 2014-08-27 2016-04-07 横浜ゴム株式会社 タイヤトレッド用ゴム組成物および空気入りタイヤ
WO2016208739A1 (ja) * 2015-06-26 2016-12-29 日本ゼオン株式会社 共役ジエン系ゴムの製造方法
JP2017110230A (ja) * 2016-03-30 2017-06-22 日本ゼオン株式会社 ゴム組成物
JP2017133026A (ja) * 2016-03-30 2017-08-03 日本ゼオン株式会社 ゴム組成物
WO2018092716A1 (ja) * 2016-11-16 2018-05-24 日本ゼオン株式会社 共役ジエン系ゴムの製造方法
JP2017082235A (ja) * 2016-12-28 2017-05-18 日本ゼオン株式会社 共役ジエン系ゴムの製造方法
JP2017082236A (ja) * 2016-12-28 2017-05-18 日本ゼオン株式会社 ポリブタジエンゴムの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3795629A4

Also Published As

Publication number Publication date
EP3795629A4 (en) 2022-01-26
CN112135873B (zh) 2023-02-17
EP3795629A1 (en) 2021-03-24
CN112135873A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
JP6331267B2 (ja) タイヤ用ゴム組成物および空気入りタイヤ
US10407517B2 (en) Rubber composition for tires and pneumatic tire
WO2018092716A1 (ja) 共役ジエン系ゴムの製造方法
US10703828B2 (en) Rubber composition for tires and pneumatic tire
JP2016047888A (ja) タイヤ用ゴム組成物および空気入りタイヤ
WO2019221182A1 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
WO2021241746A1 (ja) タイヤ用ゴム組成物及びタイヤ
JP2019199548A (ja) スタッドレスタイヤトレッド用ゴム組成物およびスタッドレスタイヤ
WO2017138553A1 (ja) タイヤ用ゴム組成物および空気入りタイヤ
WO2015194549A1 (ja) タイヤ用ゴム組成物および空気入りタイヤ
WO2019221179A1 (ja) 冬用タイヤトレッド用ゴム組成物および冬用空気入りタイヤ
JP6791203B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
WO2022080236A1 (ja) 共役ジエン系重合体、ゴム組成物、ゴム架橋物、およびタイヤ
JP6791202B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
JP6791204B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
JP6791201B2 (ja) タイヤトレッド用ゴム組成物及び空気入りタイヤ
WO2019221184A1 (ja) タイヤトレッド用ゴム組成物及び空気入りタイヤ
JP6791206B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
JP7102926B2 (ja) タイヤトレッド用ゴム組成物及び空気入りタイヤ
JP7417047B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
WO2019221180A1 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
JP7244244B2 (ja) 共役ジエン系ゴムの製造方法
JP6879263B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
JP6319469B1 (ja) タイヤトレッド用ゴム組成物及び空気入りタイヤ
JP7106980B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019804264

Country of ref document: EP

Effective date: 20201216