WO2019220597A1 - Support-sleeve protective member and solid fuel burner provided with same - Google Patents

Support-sleeve protective member and solid fuel burner provided with same Download PDF

Info

Publication number
WO2019220597A1
WO2019220597A1 PCT/JP2018/019172 JP2018019172W WO2019220597A1 WO 2019220597 A1 WO2019220597 A1 WO 2019220597A1 JP 2018019172 W JP2018019172 W JP 2018019172W WO 2019220597 A1 WO2019220597 A1 WO 2019220597A1
Authority
WO
WIPO (PCT)
Prior art keywords
support sleeve
protection member
solid fuel
fuel
fuel nozzle
Prior art date
Application number
PCT/JP2018/019172
Other languages
French (fr)
Japanese (ja)
Inventor
岡田 修
昌平 水戸
勝輝 栗栖
圭一郎 福島
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to JP2019537848A priority Critical patent/JP6632776B1/en
Priority to AU2018423543A priority patent/AU2018423543B2/en
Priority to PCT/JP2018/019172 priority patent/WO2019220597A1/en
Priority to KR1020197021309A priority patent/KR102266012B1/en
Priority to TW108116852A priority patent/TWI715981B/en
Publication of WO2019220597A1 publication Critical patent/WO2019220597A1/en
Priority to PH12020551887A priority patent/PH12020551887A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • F23D1/02Vortex burners, e.g. for cyclone-type combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2201/00Burners adapted for particulate solid or pulverulent fuels
    • F23D2201/30Wear protection

Definitions

  • the present invention relates to a protective member for a support sleeve that supports members such as an oil burner and a fuel concentrator provided in a fuel nozzle of a solid fuel burner, and a solid fuel burner including the same.
  • Patent Documents 1-7 below With respect to solid fuel burners used in boilers used in thermal power plants and the like, the techniques described in Patent Documents 1-7 below are conventionally known.
  • Patent Document 1 US Pat. No. 6,474,250
  • a mixed flow of coal and primary air is supplied from the supply port (50) to the nozzle, and the merged portion of the supply port (50)
  • a sleeve (88) is provided that protects the tube (86) penetrating the central portion of the nozzle from ablation.
  • Patent Document 2 Korean Patent Publication No. 2002-0024430 discloses a cylindrical member (900) on the outer periphery of an oil burner (500) in an elbow portion bent in a solid fuel supply path in a solid fuel burner. A configuration in which is supported is described. Patent Document 2 describes a configuration in which a tubular member (900) is formed in a streamlined shape with a downward cross section so that a fluid containing pulverized coal from below is guided outward from an oil burner (500). Has been.
  • Patent Literature 3 Japanese Patent No. 3986182
  • Patent Literature 4 Japanese Patent No. 3344694
  • Patent Literature 5 Japanese Patent No. 3634461
  • Patent Literature 6 Japanese Patent Laid-Open No. 9-318014
  • Patent Literature 7 Patent No. 3099109 describes an example in which a pulverized coal combustion burner is provided with an oil gun (oil burner) that penetrates the pulverized coal nozzle (fuel nozzle) and assists combustion at the start of the burner or low-load combustion. Has been.
  • oil gun oil gun
  • members (not shown) that support members such as a fuel concentrator (obstacle 32 of Patent Document 3) are disposed inside the solid fuel burner.
  • a member (not shown) that supports the oil gun on the outer peripheral side may be provided.
  • the outer cylinder member of the oil gun, the member that supports the oil gun, or the member that supports the fuel concentrator is called a support sleeve, and is formed in a long cylindrical shape that extends to the vicinity of the opening of the pulverized coal nozzle (fuel nozzle). ing.
  • Patent Documents 3 to 7 have a configuration in which a short cylindrical member covering the outer periphery of an oil gun (oil burner) is disposed in an elbow (shoulder-shaped bent portion) upstream of the pulverized coal nozzle. This member is provided on the outer peripheral side of the support sleeve described above.
  • FIG. 8 is an explanatory view of an example of a conventional protective cylinder of an elbow part
  • FIG. 8 (A) is a sectional view of a main part
  • FIG. 8 (B) is a perspective view.
  • the protective cylinder is fixed through the nozzle.
  • the protective cylinder 01 is provided with the flange 02 of the elbow portion inclined portion.
  • This is a cast product that is integral with the collision plate 03 provided in a semicircular shape.
  • the progress of wear is not uniform in the longitudinal direction of the protective cylinder, and there is a case where a specific narrow area is concentrated and eroded considerably locally.
  • the present invention has a technical problem of reducing the number of replacements without waste of parts during replacement, as compared with a configuration in which the support sleeve protection member is replaced integrally with the collision plate.
  • the support sleeve protection member of the invention according to claim 1,
  • a support sleeve protection member Arranged in a region corresponding to a bent portion in the middle of the transport path of the mixed fluid in the fuel nozzle, Formed in a cylindrical shape detachable from the support sleeve, It is characterized by that.
  • the invention according to claim 2 is the support sleeve protection member according to claim 1, It is characterized in that it is configured separately from a collision protection member for protecting a region where solid fuel collides with the inner surface of the fuel nozzle.
  • the invention according to claim 3 is the support sleeve protection member according to claim 1, In the cross-section along the axial direction of the support sleeve, the support sleeve is formed in a point-symmetric shape with the central portion in the axial direction as the center.
  • the invention according to claim 4 is the support sleeve protection member according to claim 1, It is formed at the end in the axial direction, and is formed along the inner surface of the bent portion of the fuel nozzle, and rotates around the inner surface of the bent portion to suppress the rotation of the support sleeve in the circumferential direction.
  • An inclined portion having a stopping function is provided.
  • a solid fuel burner according to claim 5 is provided.
  • a cylindrical fuel nozzle that ejects a mixed fluid of solid fuel and air, wherein the fuel nozzle is provided with a bent portion in the middle of the transport path of the mixed fluid;
  • a support sleeve disposed coaxially with the fuel nozzle and radially inside the downstream of the bent portion in the flow direction of the mixed fluid;
  • a support sleeve protection member that is disposed in a region corresponding to the bent portion, covers the outer periphery of the support sleeve and is formed in a cylindrical shape that can be attached to and detached from the support sleeve, and protects the solid fuel from colliding with the support sleeve When, It is provided with.
  • the invention according to claim 6 is the solid fuel burner according to claim 5, A collision protection member having a collision protection part for protecting a region where solid fuel collides with the inner surface of the fuel nozzle, and a cylinder part covering the outer periphery of the support sleeve;
  • the support sleeve protection member mounted on the outer periphery of the cylindrical portion of the collision protection member; It is provided with.
  • the invention according to claim 7 is the solid fuel burner according to claim 5, A positioning portion that is formed at a position corresponding to an end portion in the axial direction of the support sleeve protection member, and performs positioning by contacting the end portion of the support sleeve protection member; It is provided with.
  • the support sleeve protection member can be removed once and rotated around the symmetry point for attachment. Therefore, when one surface side of the support sleeve protection member is worn, the opposite surface can be made to face the side where the wear is remarkable by rotating around the symmetry point. Therefore, the life of the support sleeve protection member can be extended compared to a configuration that cannot be rotated.
  • the support sleeve protection member can be prevented from rotating due to the collision of the solid fuel and the vibration during operation, compared with the case where the rotation prevention function is not provided.
  • the support sleeve protection member is formed separately from the other collision protection member, and the support sleeve protection member and the other collision protection member can be exchanged separately. Therefore, when replacing the support sleeve protection member, waste of parts can be reduced and costs can be reduced compared to a configuration in which another collision protection member is also replaced.
  • the seventh aspect of the invention it is possible to suppress the shift of the position of the support sleeve protection member as compared with the case where the positioning portion is not provided, and it is possible to minimize the fixed parts.
  • FIG. 1 is an explanatory diagram of a solid fuel burner according to a first embodiment.
  • FIG. 2 is an enlarged explanatory view of the elbow part of the first embodiment.
  • 3A and 3B are explanatory views of the support sleeve protection member of Example 1
  • FIG. 3A is a cross-sectional view along the axial direction
  • FIG. 3B is a view seen from the direction of arrow IIIB in FIG. It is.
  • FIG. 4 is an operation explanatory view of the support sleeve protection member of Example 1
  • FIG. 4 (A) is an explanatory view showing a state where the lower surface of the support sleeve protection member is worn
  • FIG. 4 (B) is a view of FIG. 4 (A).
  • FIG. 5A and 5B are explanatory diagrams of a first modification of the first embodiment.
  • FIG. 5A corresponds to FIG. 3A
  • FIG. 5B is a cross-sectional view taken along the line VB-VB in FIG.
  • FIG. 6 is an explanatory diagram of modification examples 2 and 3
  • FIG. 6A is an explanatory diagram of modification example 2
  • FIG. 6B is an explanatory diagram of modification example 3.
  • FIG. 7 is an explanatory diagram of the modification example 4, and corresponds to FIG. 2 of the first embodiment.
  • FIG. 8 is an explanatory view of an example of a conventional protective cylinder of an elbow part
  • FIG. 8 (A) is a sectional view of a main part
  • FIG. 8 (B) is a perspective view.
  • FIG. 1 is an explanatory diagram of a solid fuel burner according to a first embodiment.
  • the solid fuel burner 7 according to the first embodiment includes a fuel nozzle 21 through which a carrier gas and solid fuel flow.
  • the opening at the downstream end of the fuel nozzle 21 is provided in the wall surface (furnace wall, water pipe wall) 23 of the furnace 22 of the boiler.
  • the fuel nozzle 21 is connected to the upstream end of the fuel pipe 8.
  • the fuel nozzle 21 is formed in a hollow cylindrical shape, and a flow path 24 through which solid fuel (pulverized coal or pulverized biomass fuel) and carrier gas flow is formed inside the fuel nozzle 21.
  • the fuel nozzle 21 of the first embodiment is connected to the fuel pipe 8 by bending downward from the upstream side of the main body portion 21 a of the fuel nozzle 21 and the main body portion 21 a of the fuel nozzle 21 extending perpendicularly to the wall surface 23 of the furnace 22. And an elbow part (bent part) 21b. Accordingly, when the fluid containing the solid fuel and the carrier gas supplied from the fuel pipe 8 passes through the elbow part 21b and flows into the main body part 21a, the fluid is biased outward in the radial direction of the main body part 21a.
  • An inner combustion air nozzle (secondary combustion air nozzle) 26 that ejects combustion air to the furnace 22 is installed on the outer periphery of the fuel nozzle 21. Further, an outer combustion air nozzle (third combustion air nozzle) 27 is installed on the outer peripheral side of the inner combustion air nozzle 26. Each of the combustion air nozzles 26, 27 ejects air from a wind box 28 toward the furnace 22.
  • a guide vane 26 a is formed at the downstream end of the inner combustion air nozzle 26, which is inclined radially outward with respect to the center of the fuel nozzle 21 (diameter increases as it goes downstream). .
  • combustion air is ejected so as to diffuse from the axial center.
  • combustion air is used.
  • combustion air and combustion air are not strictly limited to air, and a mixed gas of air and combustion exhaust gas, oxygen, or the like is used. It does not prevent.
  • a flame holder 31 is supported in the opening at the downstream end of the fuel nozzle 21.
  • a support sleeve (oil burner, disperser) 32 is disposed through the center of the cross section of the flow path of the fuel nozzle 21. The support sleeve 32 is supported in a state of penetrating the elbow portion 21b.
  • a venturi 33 is installed on the inner wall surface of the fuel nozzle 21.
  • the venturi 33 is formed in a shape that expands after the inner diameter of the fuel nozzle 21 is narrowed from the upstream side to the downstream side in the solid fuel flow direction. Therefore, in the venturi 33 according to the first embodiment, the mixed fluid of the fuel and the carrier gas supplied to the fuel nozzle 21 is throttled inward in the radial direction when passing through a region where the inner diameter is reduced. Therefore, it is possible to move the fuel biased near the inner wall surface of the main body 21a of the fuel nozzle 21 toward the center.
  • a fuel concentrator 34 is installed on the outer surface of the support sleeve 32 on the downstream side of the venturi 33.
  • the fuel concentrator 34 is formed in a shape that decreases after the outer shape of the fuel concentrator 34 expands from the upstream side to the downstream side along the flow direction of the solid fuel. Therefore, in the fuel concentrator 34 of the first embodiment, when the mixed fluid of the fuel and the carrier gas passes through the region where the outer shape is enlarged, a velocity component toward the outside in the radial direction is given. Therefore, the fuel is concentrated toward the inner wall surface of the fuel nozzle 21.
  • the present invention can also be applied to a burner without the fuel concentrator 34.
  • FIG. 2 is an enlarged explanatory view of the elbow part of the first embodiment. 1 and 2, in the solid fuel burner 7 according to the first embodiment, a collision protection member 41 is supported by the support sleeve 32.
  • the collision protection member 41 has a collision plate flange (collision plate mounting portion) 41a that is detachably fixed to the elbow portion 21b with a bolt or the like (not shown).
  • the collision plate flange 41a is integrally formed with a cylindrical portion 41b through which the support sleeve 32 penetrates.
  • a protection cylinder 42 is provided as a separate and independent member from the support sleeve 32 and the collision protection member 41 on the outer peripheral side of the cylinder portion 41b.
  • a collision plate 41c as an example of a collision protection portion is formed on the upper portion of the collision plate flange 41a in order to protect the upper inner surface of the elbow portion 21b.
  • the collision plate 41c is formed in a semi-cylindrical shape with the lower part opened as in the conventional configuration.
  • the collision plate flange 41a is integrally formed with a positioning ring 41d as an example of a positioning portion of the protective cylinder 42 on the outer peripheral side of the cylinder portion 41b.
  • FIG. 3A and 3B are explanatory views of the support sleeve protection member of Example 1, FIG. 3A is a cross-sectional view along the axial direction, and FIG. 3B is a view seen from the direction of arrow IIIB in FIG. It is.
  • a protection cylinder 42 as an example of a support sleeve protection member is disposed on the outer periphery of the cylinder portion 41b.
  • the protective cylinder 42 is formed in a cylindrical shape that extends along the axial direction of the support sleeve 32.
  • the protective cylinder 42 of the first embodiment is formed in a parallelogram shape in a cross-sectional view along the axial direction.
  • the protective cylinder 42 is formed in a point-symmetric shape with the symmetry point 42b at the center in the axial direction as the center.
  • inclined surfaces 42a as an example of a rotation preventing portion are formed.
  • the inclined surface 42a is formed in a shape along the inner surface of the elbow portion 21b (or the collision plate flange 41a facing each other).
  • the outer diameter of the protective cylinder 42 is formed so as to fit between the cylindrical portion 41b and the positioning ring 41d when the end of the protective cylinder 42 is abutted against the collision plate flange 41a.
  • An O-ring 43 is mounted between the protective cylinder 42 and the cylinder portion 41b of the first embodiment. Therefore, the protection cylinder 42 is less likely to move in the axial direction due to the frictional force of the O-ring 43 when attached.
  • the solid fuel supplied from the fuel pipe 8 is protected by the protective cylinder 42 even if it tries to collide with the support sleeve 32 in the elbow portion 21b. Therefore, wear of the support sleeve 32 is prevented.
  • the protective cylinder 42 of the first embodiment has a configuration (separate configuration) independent of the collision plate flange 41a and the collision plate 41c. Therefore, when the protective cylinder 42 is worn due to the collision of the solid fuel, only the protective cylinder 42 can be easily removed and replaced.
  • the protective cylinder 42 suppresses waste and cost waste for exchanging parts that do not need to be exchanged (such as the collision plate 41c) as compared with a configuration in which the protection cylinder 42 is integrally replaced with the collision plate 41c and the like. Can do.
  • FIG. 4A and 4B are diagrams for explaining the operation of the support sleeve protection member according to the first embodiment.
  • FIG. 4A is a diagram illustrating a state where the lower surface of the support sleeve protection member is worn due to the collision of the solid fuel, and FIG. It is explanatory drawing of the state which rotated the support sleeve protection member centering
  • the protective cylinder 42 according to the first embodiment is formed in a parallelogram shape that is a point-symmetric shape with the symmetry point 42 b as the center. Therefore, as shown in FIG.
  • the protective cylinder 42 when the lower part upstream of the solid fuel conveyance direction is worn, the protective cylinder 42 is detached from the support sleeve 32 and rotated around the symmetry point 42b to be attached to the protective cylinder 42. By doing so, it is possible to install so that the wear region 51 is on the upper side, and the surface with little wear is the lower surface with significant wear. Therefore, even when the protective cylinder 42 is worn, it can be reused without having to replace the protective cylinder 42 by rotating it around the symmetry point 42b and reattaching it. Therefore, the life of the protective cylinder 42 can be extended, and the cost of parts and the maintenance cost can be reduced.
  • the support sleeve 32 is protected by the collision protection member 41 and the protection cylinder 42. Therefore, the collision protection member 41 and the protection cylinder 42 can be made of wear-resistant steel, and the support sleeve 32 can be a member having a relatively low cost than the protection cylinder 42 and the like. By doing in this way, it is also possible to reduce the whole cost of the solid fuel burner 7.
  • the support sleeve 32 is double protected by the cylindrical portion 41b of the collision protection member 41 and the protective cylinder 42 which is a member independent of the cylindrical portion. As a result, it becomes easy to grasp the amount of wear / thinning of the support sleeve protection member and determine the time for replacement / repair.
  • the protective cylinder 42 is easier to remove from the burner than the collision protection member 41, and thus has an advantage that it can be easily attached and removed during periodic inspections and the amount of wear and thinning thereof can be measured. In addition, it is not necessary to measure the amount of wear / thinning of the protective cylinder 42 every time a periodic inspection is performed. Handling such as judgment is possible.
  • Example 1 the inclined surface 42a at the end is abutted against the collision plate flange 41a. Therefore, even if the protective cylinder 42 tries to rotate in the circumferential direction due to the collision of the solid fuel with the protective cylinder 42, the inclined surface 42a that is inclined interferes with the collision plate flange 41a. Therefore, the rotation of the protective cylinder 42 is restricted. Accordingly, the protection cylinder 42 is restricted from rotating and changing its position.
  • the movement of the protective cylinder 42 in the axial direction is restricted by the O-ring 43. Therefore, the position of the protective cylinder 42 in the axial direction is stabilized and the rotation of the protective cylinder 42 due to the collision of the solid fuel is also restricted as compared with the case where the movement in the axial direction is not restricted.
  • FIG. 5A and 5B are explanatory diagrams of a first modification of the first embodiment.
  • FIG. 5A corresponds to FIG. 3A
  • FIG. 5B is a cross-sectional view taken along the line VB-VB in FIG. It is.
  • FIG. 5 instead of the configuration of the first embodiment shown in FIG. 3, it is possible to form the thick portion 42c centering on the portion where the wear is remarkable.
  • the thick portion 42c is provided, a sufficient wear allowance can be provided in a portion where wear due to the collision of the solid fuel is remarkable. Therefore, the life of the protective cylinder 42 can be further extended.
  • FIG. 6 is an explanatory diagram of modification examples 2 and 3
  • FIG. 6A is an explanatory diagram of modification example 2
  • FIG. 6B is an explanatory diagram of modification example 3.
  • FIG. 6 it is not limited to the form shown in FIG. 5 (B).
  • a shape (rectifying shape) 42d for guiding the fluid containing the solid fuel sent from below to the outside is provided.
  • a streamline shape can be used.
  • FIG. 7 is an explanatory diagram of the modification example 4, and corresponds to FIG. 2 of the first embodiment.
  • the configuration in which the positioning ring 41d as an example of the positioning portion is formed on the collision protection member 41 is illustrated, but the configuration is not limited thereto.
  • the anti-rotation is also prevented by the collision protection member 41 (collision plate flange 41a) and the inclined surface of the protection cylinder 42, and the movement in the axial direction is also restricted by the frictional force due to the weight of the protection cylinder 42. It is also possible to adopt a configuration in which the positioning portions 41d and 41e are not installed.
  • the shape of the protective cylinder 42 is preferably a point-symmetric shape, but is not limited to this.
  • An asymmetric shape may be sufficient and a line symmetrical shape may be sufficient.
  • the point-symmetric shape is not limited to a parallelogram shape in cross section, and any shape such as a rhombus or hexagon can be used.
  • H02 In the above-described embodiment, when the thick portions 42c and 42d are provided, the shape is not limited to the illustrated shape, and any shape can be used.
  • the anti-rotation portion constituted by the inclined surface 42a is exemplified, but the present invention is not limited to this.
  • Arbitrary detent structures such as a key and key groove shape can be employed.
  • it is desirable to provide a rotation prevention part it is also possible to adopt a configuration in which it is not provided.
  • the positioning portions 41d and 41e are exemplified, but a configuration in which the positioning portions 41d and 41e are not provided is also possible.
  • the shape of the positioning portions 41d and 41e is not limited to the illustrated shape, and can be changed to any positioning shape such as a fit, a claw shape, and a screwing shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spray-Type Burners (AREA)

Abstract

Provided is a support-sleeve protective member (42) that protects a support sleeve (32), which is disposed radially inside and coaxially with a fuel nozzle (21) for jetting a mixed fluid of solid fuel and air, from collision of the solid fuel against the support sleeve (32) by covering the outer circumference of the support sleeve (32). The support-sleeve protective member (42) is characterized by: being disposed in a region corresponding to a bent portion (21b) in the middle of a conveying path for the mixed fluid in the fuel nozzle (21); and being formed in a cylindrical shape attachable to and detachable from the support sleeve (32), thereby reducing the number of wasteful parts and wasteful costs at the time of replacement, compared to the configuration in which a protective member and a collision plate are integrally replaced.

Description

サポートスリーブ保護部材およびこれを備えた固体燃料バーナSupport sleeve protecting member and solid fuel burner provided with the same
 本発明は、固体燃料バーナの燃料ノズル内に設けられる油バーナや燃料濃縮器等の部材を支持するサポートスリーブの保護部材およびこれを備えた固体燃料バーナに関する。 The present invention relates to a protective member for a support sleeve that supports members such as an oil burner and a fuel concentrator provided in a fuel nozzle of a solid fuel burner, and a solid fuel burner including the same.
 火力発電所等で使用されるボイラで使用される固体燃料バーナに関し、以下の特許文献1-7に記載の技術が従来公知である。 With respect to solid fuel burners used in boilers used in thermal power plants and the like, the techniques described in Patent Documents 1-7 below are conventionally known.
 特許文献1(米国特許第6474250号公報)には、バーナノズル(10)において、供給ポート(50)からノズルに石炭と一次空気の混合流が供給され、供給ポート(50)の合流部分には、ノズルの中央部を貫通するチューブ(86)をアブレーションから保護するスリーブ(88)が設置された構成が記載されている。 In Patent Document 1 (US Pat. No. 6,474,250), in the burner nozzle (10), a mixed flow of coal and primary air is supplied from the supply port (50) to the nozzle, and the merged portion of the supply port (50) A configuration is described in which a sleeve (88) is provided that protects the tube (86) penetrating the central portion of the nozzle from ablation.
 特許文献2(韓国特許公開2002-0024430号公報)には、固体燃料バーナにおいて、固体燃料が供給される経路において屈曲するエルボ部分において、油バーナ(500)の外周に筒状の部材(900)が支持された構成が記載されている。特許文献2には、筒状の部材(900)が下方からの微粉炭を含む流体を油バーナ(500)から外側にガイドするように、断面が下方に尖った流線型に形成された構成が記載されている。 Patent Document 2 (Korean Patent Publication No. 2002-0024430) discloses a cylindrical member (900) on the outer periphery of an oil burner (500) in an elbow portion bent in a solid fuel supply path in a solid fuel burner. A configuration in which is supported is described. Patent Document 2 describes a configuration in which a tubular member (900) is formed in a streamlined shape with a downward cross section so that a fluid containing pulverized coal from below is guided outward from an oil burner (500). Has been.
 特許文献3(特許第3986182号公報)、特許文献4(特許第3344694号公報)、特許文献5(特許第3643461号公報)、特許文献6(特開平9-318014号公報)、特許文献7(特許第3099109号公報)には微粉炭燃焼バーナにおいて、微粉炭ノズル(燃料ノズル)を貫通してバーナ起動時または低負荷燃焼時の助燃のためのオイルガン(油バーナ)を備えた例が記載されている。
 ここで、全ての固体燃料バーナが、このオイルガン(油バーナ)を備えているとは限らない。しかし、固体燃料バーナの内部には、燃料濃縮器(特許文献3の障害物32)等の部材を支持する図示されない部材が配置されている。また、オイルガンを外周側で支持する図示されない部材が設けられる場合もある。オイルガンの外筒部材や、オイルガンを支持する部材、あるいは燃料濃縮器等を支持する部材は、サポートスリーブと称され、微粉炭ノズル(燃料ノズル)開口部付近まで伸びる長い筒状に形成されている。
 一方、特許文献3-7には、微粉炭ノズルの上流側のエルボ(肩形状の屈曲部)の部分に、オイルガン(油バーナ)の外周を覆う短い筒状の部材が配置された構成が記載されており、この部材は前述のサポートスリーブの外周側に設けられるものである。
Patent Literature 3 (Japanese Patent No. 3986182), Patent Literature 4 (Japanese Patent No. 3344694), Patent Literature 5 (Japanese Patent No. 3634461), Patent Literature 6 (Japanese Patent Laid-Open No. 9-318014), Patent Literature 7 ( (Patent No. 3099109) describes an example in which a pulverized coal combustion burner is provided with an oil gun (oil burner) that penetrates the pulverized coal nozzle (fuel nozzle) and assists combustion at the start of the burner or low-load combustion. Has been.
Here, not all solid fuel burners are equipped with this oil gun (oil burner). However, members (not shown) that support members such as a fuel concentrator (obstacle 32 of Patent Document 3) are disposed inside the solid fuel burner. Further, a member (not shown) that supports the oil gun on the outer peripheral side may be provided. The outer cylinder member of the oil gun, the member that supports the oil gun, or the member that supports the fuel concentrator is called a support sleeve, and is formed in a long cylindrical shape that extends to the vicinity of the opening of the pulverized coal nozzle (fuel nozzle). ing.
On the other hand, Patent Documents 3 to 7 have a configuration in which a short cylindrical member covering the outer periphery of an oil gun (oil burner) is disposed in an elbow (shoulder-shaped bent portion) upstream of the pulverized coal nozzle. This member is provided on the outer peripheral side of the support sleeve described above.
米国特許第6474250号公報(第3欄第12行-第53行、図1)US Pat. No. 6,474,250 (column 3, line 12-line 53, FIG. 1) 韓国特許公開2002-0024430号公報(図3、図6-図9)Korean Patent Publication No. 2002-0024430 (FIGS. 3, 6-9) 特許第3986182号公報(図1、図3、図7、図8)Japanese Patent No. 3986182 (FIGS. 1, 3, 7, and 8) 特許第3344694号公報(図1、図3、図8-図10)Japanese Patent No. 3344694 (FIGS. 1, 3, and 8-10) 特許第3643461号公報(図1、図3-図7、図9、図10)Japanese Patent No. 3643461 (FIGS. 1, 3 to 7, 9, and 10) 特開平9-318014号公報(図1-図4、図7、図8)Japanese Patent Laid-Open No. 9-31814 (FIGS. 1-4, 7 and 8) 特許第3099109号公報(図1、図3、図4、図7)Japanese Patent No. 3099109 (FIGS. 1, 3, 4, and 7)
 従来の固体燃料バーナでは、供給される固体燃料は、エルボ部分においてサポートスリーブに対して径方向から衝突する方向に流れる。したがって、固体燃料がサポートスリーブに衝突して、表面が摩耗していく問題がある。サポートスリーブが摩耗した場合、スリーブ内部への微粉炭の侵入、堆積により発火の原因となる可能性がある。また、内部に油バーナが設置されている場合は、油バーナの摩耗により油の漏洩から発火して火災の原因となる可能性があるためサポートスリーブ、油バーナを摩耗から守る必要がある。したがって、特許文献1-7に記載されているように、サポートスリーブ、油バーナが摩耗しないように保護する筒状の部材(保護筒)が従来から設けられていた。 In the conventional solid fuel burner, the supplied solid fuel flows in the direction of colliding from the radial direction against the support sleeve at the elbow portion. Therefore, there is a problem that the solid fuel collides with the support sleeve and the surface is worn. When the support sleeve is worn, there is a possibility that ignition may be caused by the penetration and accumulation of pulverized coal inside the sleeve. In addition, when an oil burner is installed inside, it is necessary to protect the support sleeve and the oil burner from abrasion because the oil burner may ignite from oil leakage due to wear and cause a fire. Therefore, as described in Patent Documents 1-7, a cylindrical member (protective cylinder) that protects the support sleeve and the oil burner from wear is conventionally provided.
 しかしながら、この構成では、サポートスリーブには固体燃料が直接衝突しなくなるが、保護筒に固体燃料が衝突するため、保護筒が摩耗していく。特に、固体燃料が直接衝突しやすい上流側の面(各図面では下面)での摩耗が顕著となる。したがって、下面での摩耗代(まもうしろ)が大きくなるように、特許文献2に記載されているように、下面側に肉厚が厚い(尖った)形状とすることも行われている。 However, in this configuration, solid fuel does not directly collide with the support sleeve, but since the solid fuel collides with the protective cylinder, the protective cylinder is worn out. In particular, wear on the upstream surface (the lower surface in each drawing) where solid fuel is likely to collide directly becomes significant. Therefore, as described in Patent Document 2, a shape having a thick wall (pointed) is also formed on the lower surface side so as to increase the wear allowance (lower margin) on the lower surface.
 図8は従来のエルボ部の保護筒の一例の説明図であり、図8(A)は要部断面図、図8(B)は斜視図である。
 特許文献1-7に記載の構成では、保護筒はノズルを貫通して固定された構成となっているが、図8に示す従来の例は、保護筒01が、エルボ部傾斜部のフランジ02を介して半円状に設けられる衝突板03と一体の鋳造品となっているものである。
 ここで摩耗の進展は、保護筒の長手方向に一様ではなく、かなり局部的に、特定の狭い範囲が集中して浸食されたような形態となるケースも見受けられる。
 そのような場合、摩耗していない衝突板を含めて保護筒と一体に全てを交換することは不経済であるため、保護筒の摩耗・浸食された部分にのみスラリ状の耐摩耗材を塗布・肉盛し、硬化させる応急的な補修を行うこともある。しかし、保護筒の材質自体が耐摩耗鋼であり、このスラリ状の耐摩耗材を固定するためのスタッド他の溶接固定ができないため、使用に伴う摩耗等に起因して、当該耐摩耗材が剥落しやすいという問題があった。
FIG. 8 is an explanatory view of an example of a conventional protective cylinder of an elbow part, FIG. 8 (A) is a sectional view of a main part, and FIG. 8 (B) is a perspective view.
In the configuration described in Patent Documents 1-7, the protective cylinder is fixed through the nozzle. However, in the conventional example shown in FIG. 8, the protective cylinder 01 is provided with the flange 02 of the elbow portion inclined portion. This is a cast product that is integral with the collision plate 03 provided in a semicircular shape.
Here, the progress of wear is not uniform in the longitudinal direction of the protective cylinder, and there is a case where a specific narrow area is concentrated and eroded considerably locally.
In such a case, it is uneconomical to replace the entire protective cylinder including the collision plate, which is not worn, so apply a slurry-like wear-resistant material only to the worn / eroded part of the protective cylinder. Emergency repairs that build up and harden may be performed. However, the material of the protective cylinder itself is wear-resistant steel, and it is impossible to weld and fix studs and other wear-resistant materials to fix the slurry-like wear-resistant material. There was a problem that it was easy.
 本発明は、サポートスリーブ保護部材を衝突板と一体的に交換する構成に比べて、交換時の部品の無駄が無く、交換の回数を抑制することを技術的課題とする。 The present invention has a technical problem of reducing the number of replacements without waste of parts during replacement, as compared with a configuration in which the support sleeve protection member is replaced integrally with the collision plate.
 前記技術的課題を解決するために、請求項1に記載の発明のサポートスリーブ保護部材は、
 固体燃料と空気との混合流体を噴出させる燃料ノズルと同軸上且つ径方向内側に配置されたサポートスリーブに対して、前記サポートスリーブの外周を覆って固体燃料の前記サポートスリーブへの衝突から保護するサポートスリーブ保護部材であって、
 前記燃料ノズルにおける前記混合流体の搬送路の途中の屈曲部分に対応する領域に配置され、
 前記サポートスリーブに対して着脱可能な筒状に形成された、
 ことを特徴とする。
In order to solve the technical problem, the support sleeve protection member of the invention according to claim 1,
A support sleeve disposed coaxially and radially inward with respect to a fuel nozzle that ejects a mixed fluid of solid fuel and air covers the outer periphery of the support sleeve and protects the solid fuel from colliding with the support sleeve. A support sleeve protection member,
Arranged in a region corresponding to a bent portion in the middle of the transport path of the mixed fluid in the fuel nozzle,
Formed in a cylindrical shape detachable from the support sleeve,
It is characterized by that.
 請求項2に記載の発明は、請求項1に記載のサポートスリーブ保護部材において、
 前記燃料ノズルの内面に固体燃料が衝突する領域を保護するための衝突保護部材とは別体に構成された
 ことを特徴とする。
The invention according to claim 2 is the support sleeve protection member according to claim 1,
It is characterized in that it is configured separately from a collision protection member for protecting a region where solid fuel collides with the inner surface of the fuel nozzle.
 請求項3に記載の発明は、請求項1に記載のサポートスリーブ保護部材において、
 前記サポートスリーブの軸方向に沿った断面において、軸方向の中央部を中心とする点対称形状に形成された
 ことを特徴とする。
The invention according to claim 3 is the support sleeve protection member according to claim 1,
In the cross-section along the axial direction of the support sleeve, the support sleeve is formed in a point-symmetric shape with the central portion in the axial direction as the center.
 請求項4に記載の発明は、請求項1に記載のサポートスリーブ保護部材において、
 前記軸方向の端部に形成されると共に、前記燃料ノズルの屈曲部分の内面に沿った形状に形成され、前記屈曲部分の内面に接触して前記サポートスリーブの周方向への回転を抑制する回り止め機能を有した傾斜部を備えたことを特徴とする。
The invention according to claim 4 is the support sleeve protection member according to claim 1,
It is formed at the end in the axial direction, and is formed along the inner surface of the bent portion of the fuel nozzle, and rotates around the inner surface of the bent portion to suppress the rotation of the support sleeve in the circumferential direction. An inclined portion having a stopping function is provided.
 前記技術的課題を解決するために、請求項5に記載の発明の固体燃料バーナは、
 固体燃料と空気との混合流体を噴出させる筒状の燃料ノズルであって、前記混合流体の搬送経路の途中に屈曲部分が設けられた前記燃料ノズルと、
 前記屈曲部分よりも混合流体の流れ方向の下流側において、前記燃料ノズルと同軸上且つ径方向の内側に配置されたサポートスリーブと、
 前記屈曲部分に対応する領域に配置され、前記サポートスリーブの外周を覆い且つ前記サポートスリーブに着脱可能な筒状に形成されて、前記固体燃料の前記サポートスリーブへの衝突から保護するサポートスリーブ保護部材と、
 を備えたことを特徴とする。
In order to solve the technical problem, a solid fuel burner according to claim 5 is provided.
A cylindrical fuel nozzle that ejects a mixed fluid of solid fuel and air, wherein the fuel nozzle is provided with a bent portion in the middle of the transport path of the mixed fluid;
A support sleeve disposed coaxially with the fuel nozzle and radially inside the downstream of the bent portion in the flow direction of the mixed fluid;
A support sleeve protection member that is disposed in a region corresponding to the bent portion, covers the outer periphery of the support sleeve and is formed in a cylindrical shape that can be attached to and detached from the support sleeve, and protects the solid fuel from colliding with the support sleeve When,
It is provided with.
 請求項6に記載の発明は、請求項5に記載の固体燃料バーナにおいて、
 前記燃料ノズルの内面に固体燃料が衝突する領域を保護するための衝突保護部と、前記サポートスリーブの外周を覆う筒部と、を有する衝突保護部材と、
 前記衝突保護部材の前記筒部の外周に装着された前記サポートスリーブ保護部材と、
 を備えたことを特徴とする。
The invention according to claim 6 is the solid fuel burner according to claim 5,
A collision protection member having a collision protection part for protecting a region where solid fuel collides with the inner surface of the fuel nozzle, and a cylinder part covering the outer periphery of the support sleeve;
The support sleeve protection member mounted on the outer periphery of the cylindrical portion of the collision protection member;
It is provided with.
 請求項7に記載の発明は、請求項5に記載の固体燃料バーナにおいて、
 前記サポートスリーブ保護部材の軸方向の端部に対応する位置に形成され、前記サポートスリーブ保護部材の端部に接触して位置決めを行う位置決め部、
 を備えたことを特徴とする。
The invention according to claim 7 is the solid fuel burner according to claim 5,
A positioning portion that is formed at a position corresponding to an end portion in the axial direction of the support sleeve protection member, and performs positioning by contacting the end portion of the support sleeve protection member;
It is provided with.
 請求項1,5に記載の発明によれば、サポートスリーブ保護部材を衝突板と一体的に交換する構成に比べて、交換時の部品の無駄が無く、交換の回数を抑制することができる。
 請求項2に記載の発明によれば、サポートスリーブ保護部材が衝突保護部材と一体に構成された場合に比べて、交換時期の判断が容易になる。
 請求項3に記載の発明によれば、サポートスリーブ保護部材を一度取り外して、対称点を中心として回転させて装着することができる。したがって、サポートスリーブ保護部材の一面側が摩耗した場合に、対称点を中心として回転させることで、反対側の面を摩耗が顕著な側に対向させることができる。よって、回転させることができない構成に比べて、サポートスリーブ保護部材の寿命を長くすることができる。
According to the first and fifth aspects of the invention, compared to a configuration in which the support sleeve protection member is replaced integrally with the collision plate, there is no waste of parts during replacement, and the number of replacements can be suppressed.
According to the second aspect of the present invention, it is easier to determine the replacement time than when the support sleeve protection member is integrally formed with the collision protection member.
According to the third aspect of the present invention, the support sleeve protection member can be removed once and rotated around the symmetry point for attachment. Therefore, when one surface side of the support sleeve protection member is worn, the opposite surface can be made to face the side where the wear is remarkable by rotating around the symmetry point. Therefore, the life of the support sleeve protection member can be extended compared to a configuration that cannot be rotated.
 請求項4に記載の発明によれば、回り止め機能を有しない場合に比べて、サポートスリーブ保護部材が固体燃料の衝突及び運転時の振動で回転することを抑制できる。
 請求項6に記載の発明によれば、サポートスリーブ保護部材が他の衝突保護部材と別体で構成されており、サポートスリーブ保護部材と他の衝突保護部材とを別々に交換することができる。よって、サポートスリーブ保護部材を交換する際に他の衝突保護部材も交換する構成に比べて、部品の無駄を削減し、費用を抑えることができる。
 請求項7に記載の発明によれば、位置決め部を有しない場合に比べて、サポートスリーブ保護部材の位置がずれることを抑制でき固定部品の最小化が可能となる。
According to the fourth aspect of the present invention, the support sleeve protection member can be prevented from rotating due to the collision of the solid fuel and the vibration during operation, compared with the case where the rotation prevention function is not provided.
According to the sixth aspect of the present invention, the support sleeve protection member is formed separately from the other collision protection member, and the support sleeve protection member and the other collision protection member can be exchanged separately. Therefore, when replacing the support sleeve protection member, waste of parts can be reduced and costs can be reduced compared to a configuration in which another collision protection member is also replaced.
According to the seventh aspect of the invention, it is possible to suppress the shift of the position of the support sleeve protection member as compared with the case where the positioning portion is not provided, and it is possible to minimize the fixed parts.
図1は実施例1の固体燃料バーナの説明図である。FIG. 1 is an explanatory diagram of a solid fuel burner according to a first embodiment. 図2は実施例1のエルボ部の拡大説明図である。FIG. 2 is an enlarged explanatory view of the elbow part of the first embodiment. 図3は実施例1のサポートスリーブ保護部材の説明図であり、図3(A)は軸方向に沿った断面図、図3(B)は図3(A)の矢印IIIB方向から見た図である。3A and 3B are explanatory views of the support sleeve protection member of Example 1, FIG. 3A is a cross-sectional view along the axial direction, and FIG. 3B is a view seen from the direction of arrow IIIB in FIG. It is. 図4は実施例1のサポートスリーブ保護部材の作用説明図であり、図4(A)はサポートスリーブ保護部材の下面が摩耗した状態の説明図、図4(B)は図4(A)の状態からサポートスリーブ保護部材を対称点を中心として回転させた状態の説明図である。FIG. 4 is an operation explanatory view of the support sleeve protection member of Example 1, FIG. 4 (A) is an explanatory view showing a state where the lower surface of the support sleeve protection member is worn, and FIG. 4 (B) is a view of FIG. 4 (A). It is explanatory drawing of the state which rotated the support sleeve protection member centering | focusing on the symmetrical point from the state. 図5は実施例1の変更例1の説明図であり、図5(A)は図3(A)に対応する図、図5(B)は図5(A)のVB-VB線断面図である。5A and 5B are explanatory diagrams of a first modification of the first embodiment. FIG. 5A corresponds to FIG. 3A, and FIG. 5B is a cross-sectional view taken along the line VB-VB in FIG. It is. 図6は変更例2,3の説明図であり、図6(A)は変更例2の説明図、図6(B)は変更例3の説明図である。FIG. 6 is an explanatory diagram of modification examples 2 and 3, FIG. 6A is an explanatory diagram of modification example 2, and FIG. 6B is an explanatory diagram of modification example 3. 図7は変更例4の説明図であり、実施例1の図2に対応する図である。FIG. 7 is an explanatory diagram of the modification example 4, and corresponds to FIG. 2 of the first embodiment. 図8は従来のエルボ部の保護筒の一例の説明図であり、図8(A)は要部断面図、図8(B)は斜視図である。FIG. 8 is an explanatory view of an example of a conventional protective cylinder of an elbow part, FIG. 8 (A) is a sectional view of a main part, and FIG. 8 (B) is a perspective view.
 次に図面を参照しながら、本発明の実施の形態の具体例としての実施例を説明するが、本発明は以下の実施例に限定されるものではない。
 なお、以下の図面を使用した説明において、理解の容易のために説明に必要な部材以外の図示は適宜省略されている。
Next, examples as specific examples of embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following examples.
In the following description using the drawings, illustrations other than members necessary for the description are omitted as appropriate for easy understanding.
 図1は実施例1の固体燃料バーナの説明図である。
 図1において、実施例1の固体燃料バーナ7は、搬送気体及び固体燃料が流れる燃料ノズル21を有する。燃料ノズル21の下流端の開口は、ボイラの火炉22の壁面(火炉壁、水管壁)23に設けられている。燃料ノズル21は、燃料配管8が上流端に接続される。燃料ノズル21は中空の筒状に形成されており、燃料ノズル21の内部には、固体燃料(微粉炭や粉砕されたバイオマス燃料)と搬送気体とが流れる流路24が形成されている。
FIG. 1 is an explanatory diagram of a solid fuel burner according to a first embodiment.
In FIG. 1, the solid fuel burner 7 according to the first embodiment includes a fuel nozzle 21 through which a carrier gas and solid fuel flow. The opening at the downstream end of the fuel nozzle 21 is provided in the wall surface (furnace wall, water pipe wall) 23 of the furnace 22 of the boiler. The fuel nozzle 21 is connected to the upstream end of the fuel pipe 8. The fuel nozzle 21 is formed in a hollow cylindrical shape, and a flow path 24 through which solid fuel (pulverized coal or pulverized biomass fuel) and carrier gas flow is formed inside the fuel nozzle 21.
 実施例1の燃料ノズル21は、火炉22の壁面23に垂直に伸びる燃料ノズル21の本体部21aと、燃料ノズル21の本体部21aの上流側から下方に屈曲して燃料配管8に接続されるエルボ部(屈曲部)21bとを有する。したがって、燃料配管8から供給された固体燃料と搬送気体を含む流体は、エルボ部21bを通過して本体部21aに流入する際に、慣性で本体部21aの径方向の外側に偏る。 The fuel nozzle 21 of the first embodiment is connected to the fuel pipe 8 by bending downward from the upstream side of the main body portion 21 a of the fuel nozzle 21 and the main body portion 21 a of the fuel nozzle 21 extending perpendicularly to the wall surface 23 of the furnace 22. And an elbow part (bent part) 21b. Accordingly, when the fluid containing the solid fuel and the carrier gas supplied from the fuel pipe 8 passes through the elbow part 21b and flows into the main body part 21a, the fluid is biased outward in the radial direction of the main body part 21a.
 燃料ノズル21の外周には、燃焼用空気を火炉22に噴出する内側燃焼用エアノズル(2次燃焼用エアノズル)26が設置されている。また、内側燃焼用エアノズル26の外周側には、外側燃焼用エアノズル(3次燃焼用エアノズル)27が設置されている。各燃焼用エアノズル26,27は、ウインドボックス(風箱)28からの空気を火炉22内に向けて噴出する。実施例1では、内側燃焼用エアノズル26の下流端には、燃料ノズル21の中心に対して径方向外側に傾斜(下流側に行くに連れて径が拡大)するガイドベーン26aが形成されている。また、外側燃焼用エアノズル27の下流部には、軸方向に沿ったスロート部27aと、ガイドベーン26aに平行する拡大部27bとが形成されている。したがって、各燃焼用エアノズル26,27から噴出された燃焼用空気は、軸方向の中心から拡散するように噴出される。
 なお、上記の説明では、燃焼用空気、燃焼用エア等の語を用いたが、厳密に空気のみに限定されるものではなく、空気と燃焼排ガスや酸素等との混合気体が使用されることを妨げるものではない。
An inner combustion air nozzle (secondary combustion air nozzle) 26 that ejects combustion air to the furnace 22 is installed on the outer periphery of the fuel nozzle 21. Further, an outer combustion air nozzle (third combustion air nozzle) 27 is installed on the outer peripheral side of the inner combustion air nozzle 26. Each of the combustion air nozzles 26, 27 ejects air from a wind box 28 toward the furnace 22. In the first embodiment, a guide vane 26 a is formed at the downstream end of the inner combustion air nozzle 26, which is inclined radially outward with respect to the center of the fuel nozzle 21 (diameter increases as it goes downstream). . A throat portion 27a along the axial direction and an enlarged portion 27b parallel to the guide vane 26a are formed in the downstream portion of the outer combustion air nozzle 27. Accordingly, the combustion air ejected from the combustion air nozzles 26 and 27 is ejected so as to diffuse from the axial center.
In the above description, the terms “combustion air”, “combustion air” and the like are used. However, the term “combustion air” and “combustion air” are not strictly limited to air, and a mixed gas of air and combustion exhaust gas, oxygen, or the like is used. It does not prevent.
 燃料ノズル21の下流端の開口部には、保炎器31が支持されている。
 燃料ノズル21の流路断面の中心部には、サポートスリーブ(油バーナ、分散器)32が貫通して配置されている。サポートスリーブ32は、エルボ部21bを貫通した状態で支持されている。
A flame holder 31 is supported in the opening at the downstream end of the fuel nozzle 21.
A support sleeve (oil burner, disperser) 32 is disposed through the center of the cross section of the flow path of the fuel nozzle 21. The support sleeve 32 is supported in a state of penetrating the elbow portion 21b.
 燃料ノズル21の内壁面には、ベンチュリ33が設置されている。ベンチュリ33は、固体燃料の流れ方向に沿って、上流側から下流側に行くにつれて、燃料ノズル21の内径が窄まった後、広がる形状に形成されている。
 したがって、実施例1のベンチュリ33では、燃料ノズル21に供給された燃料と搬送気体との混合流体が、内径が縮小する領域を通過する際に、径方向の内側に絞られる。したがって、燃料ノズル21の本体部21aの内壁面近傍に偏った燃料を中心側に移動させることが可能である。
A venturi 33 is installed on the inner wall surface of the fuel nozzle 21. The venturi 33 is formed in a shape that expands after the inner diameter of the fuel nozzle 21 is narrowed from the upstream side to the downstream side in the solid fuel flow direction.
Therefore, in the venturi 33 according to the first embodiment, the mixed fluid of the fuel and the carrier gas supplied to the fuel nozzle 21 is throttled inward in the radial direction when passing through a region where the inner diameter is reduced. Therefore, it is possible to move the fuel biased near the inner wall surface of the main body 21a of the fuel nozzle 21 toward the center.
 ベンチュリ33の下流側には、燃料濃縮器34がサポートスリーブ32の外表面に設置されている。燃料濃縮器34は、固体燃料の流れ方向に沿って、上流側から下流側に行くにつれて、燃料濃縮器34の外形が拡大した後、減少する形状に形成されている。
 したがって、実施例1の燃料濃縮器34では、燃料と搬送気体との混合流体が、外形が拡大する領域を通過する際に、径方向の外側に向かう速度成分が付与される。よって、燃料が燃料ノズル21の内壁面に向かって濃縮される。
 なお、本発明は燃料濃縮器34の無いバーナにも適用できる。
A fuel concentrator 34 is installed on the outer surface of the support sleeve 32 on the downstream side of the venturi 33. The fuel concentrator 34 is formed in a shape that decreases after the outer shape of the fuel concentrator 34 expands from the upstream side to the downstream side along the flow direction of the solid fuel.
Therefore, in the fuel concentrator 34 of the first embodiment, when the mixed fluid of the fuel and the carrier gas passes through the region where the outer shape is enlarged, a velocity component toward the outside in the radial direction is given. Therefore, the fuel is concentrated toward the inner wall surface of the fuel nozzle 21.
The present invention can also be applied to a burner without the fuel concentrator 34.
 図2は実施例1のエルボ部の拡大説明図である。
 図1、図2において、実施例1の固体燃料バーナ7では、サポートスリーブ32に、衝突保護部材41が支持されている。衝突保護部材41は、エルボ部21bに図示しないボルト等で着脱可能に固定される衝突板フランジ(衝突板取付部)41aを有する。衝突板フランジ41aには、サポートスリーブ32が内部を貫通する筒部41bが一体的に形成されている。筒部41bの外周側には保護筒42がサポートスリーブ32および衝突保護部材41とは別の分離独立した部材として設けられている。
FIG. 2 is an enlarged explanatory view of the elbow part of the first embodiment.
1 and 2, in the solid fuel burner 7 according to the first embodiment, a collision protection member 41 is supported by the support sleeve 32. The collision protection member 41 has a collision plate flange (collision plate mounting portion) 41a that is detachably fixed to the elbow portion 21b with a bolt or the like (not shown). The collision plate flange 41a is integrally formed with a cylindrical portion 41b through which the support sleeve 32 penetrates. A protection cylinder 42 is provided as a separate and independent member from the support sleeve 32 and the collision protection member 41 on the outer peripheral side of the cylinder portion 41b.
 また、衝突板フランジ41aの上部には、エルボ部21bの上側の内面を保護するために、衝突保護部の一例としての衝突板41cが形成されている。衝突板41cは、従来構成と同様に、下方が開放された半円筒状に形成されている。
 さらに、衝突板フランジ41aには、筒部41bの外周側に保護筒42の位置決め部の一例としての位置決めリング41dが一体的に形成されている。
In addition, a collision plate 41c as an example of a collision protection portion is formed on the upper portion of the collision plate flange 41a in order to protect the upper inner surface of the elbow portion 21b. The collision plate 41c is formed in a semi-cylindrical shape with the lower part opened as in the conventional configuration.
Further, the collision plate flange 41a is integrally formed with a positioning ring 41d as an example of a positioning portion of the protective cylinder 42 on the outer peripheral side of the cylinder portion 41b.
 図3は実施例1のサポートスリーブ保護部材の説明図であり、図3(A)は軸方向に沿った断面図、図3(B)は図3(A)の矢印IIIB方向から見た図である。
 筒部41bの外周には、サポートスリーブ保護部材の一例としての保護筒42が配置されている。保護筒42は、サポートスリーブ32の軸方向に沿って延びる筒状に形成されている。図3(A)において、実施例1の保護筒42は、軸方向に沿った断面図において、平行四辺形状に形成されている。よって、実施例1の保護筒42は、軸方向の中央部の対称点42bを中心とする点対称の形状に形成されている。
 保護筒42の軸方向の両端部には、回り止め部の一例としての傾斜面42aが形成されている。傾斜面42aはエルボ部21bの内面(や対面する衝突板フランジ41a)に沿った形状に形成されている。
3A and 3B are explanatory views of the support sleeve protection member of Example 1, FIG. 3A is a cross-sectional view along the axial direction, and FIG. 3B is a view seen from the direction of arrow IIIB in FIG. It is.
A protection cylinder 42 as an example of a support sleeve protection member is disposed on the outer periphery of the cylinder portion 41b. The protective cylinder 42 is formed in a cylindrical shape that extends along the axial direction of the support sleeve 32. In FIG. 3A, the protective cylinder 42 of the first embodiment is formed in a parallelogram shape in a cross-sectional view along the axial direction. Therefore, the protective cylinder 42 according to the first embodiment is formed in a point-symmetric shape with the symmetry point 42b at the center in the axial direction as the center.
At both end portions in the axial direction of the protective cylinder 42, inclined surfaces 42a as an example of a rotation preventing portion are formed. The inclined surface 42a is formed in a shape along the inner surface of the elbow portion 21b (or the collision plate flange 41a facing each other).
 また、保護筒42の外径は、保護筒42の端部が衝突板フランジ41aに突き当てられた場合に、筒部41bと位置決めリング41dとの間に嵌まる大きさに形成されている。
 実施例1の保護筒42と筒部41bとの間には、Oリング43が装着されている。したがって、保護筒42は、装着された状態では、Oリング43の摩擦力で軸方向に移動しにくくなっている。
Further, the outer diameter of the protective cylinder 42 is formed so as to fit between the cylindrical portion 41b and the positioning ring 41d when the end of the protective cylinder 42 is abutted against the collision plate flange 41a.
An O-ring 43 is mounted between the protective cylinder 42 and the cylinder portion 41b of the first embodiment. Therefore, the protection cylinder 42 is less likely to move in the axial direction due to the frictional force of the O-ring 43 when attached.
(実施例1の作用)
 前記構成を備えた実施例1の固体燃料バーナ7では、燃料配管8から供給される固体燃料が、エルボ部21bにおいてサポートスリーブ32に衝突しようとしても、保護筒42で保護される。したがって、サポートスリーブ32の摩耗が防止される。
 ここで、実施例1の保護筒42は、従来構成と異なり、衝突板フランジ41aや衝突板41cとは独立した構成(別体の構成)となっている。したがって、固体燃料の衝突で保護筒42が摩耗した場合に、保護筒42だけを容易に取り外して交換することが可能である。よって、実施例1の保護筒42は、衝突板41c等と一体的に交換する構成に比べて、交換する必要のない部品(衝突板41c等)を交換する無駄や費用の無駄を抑制することができる。
(Operation of Example 1)
In the solid fuel burner 7 according to the first embodiment having the above-described configuration, the solid fuel supplied from the fuel pipe 8 is protected by the protective cylinder 42 even if it tries to collide with the support sleeve 32 in the elbow portion 21b. Therefore, wear of the support sleeve 32 is prevented.
Here, unlike the conventional configuration, the protective cylinder 42 of the first embodiment has a configuration (separate configuration) independent of the collision plate flange 41a and the collision plate 41c. Therefore, when the protective cylinder 42 is worn due to the collision of the solid fuel, only the protective cylinder 42 can be easily removed and replaced. Therefore, the protective cylinder 42 according to the first embodiment suppresses waste and cost waste for exchanging parts that do not need to be exchanged (such as the collision plate 41c) as compared with a configuration in which the protection cylinder 42 is integrally replaced with the collision plate 41c and the like. Can do.
 図4は実施例1のサポートスリーブ保護部材の作用説明図であり、図4(A)はサポートスリーブ保護部材の固体燃料の衝突により下面が摩耗した状態の説明図、図4(B)は図4(A)の状態からサポートスリーブ保護部材を対称点を中心として回転させた状態の説明図である。
 図3、図4において、実施例1の保護筒42は、対称点42bを中心とする点対称形状である平行四辺形状に形成されている。したがって、図4に示すように、固体燃料の搬送方向の上流側である下部が摩耗した場合、保護筒42をサポートスリーブ32から取り外して、対称点42bを中心として回転させて保護筒42に装着することで、摩耗領域51が上方となり、摩耗がほとんどない面が、摩耗が顕著な下面になるように設置することができる。よって、保護筒42の摩耗時でも、対称点42bを中心として回転させて装着しなおすことで、保護筒42を交換しなくても、再使用することが可能である。よって、保護筒42の寿命を延ばすことができ、部品の費用、メンテナンス費用を削減できる。
4A and 4B are diagrams for explaining the operation of the support sleeve protection member according to the first embodiment. FIG. 4A is a diagram illustrating a state where the lower surface of the support sleeve protection member is worn due to the collision of the solid fuel, and FIG. It is explanatory drawing of the state which rotated the support sleeve protection member centering | focusing on the symmetrical point from the state of 4 (A).
3 and 4, the protective cylinder 42 according to the first embodiment is formed in a parallelogram shape that is a point-symmetric shape with the symmetry point 42 b as the center. Therefore, as shown in FIG. 4, when the lower part upstream of the solid fuel conveyance direction is worn, the protective cylinder 42 is detached from the support sleeve 32 and rotated around the symmetry point 42b to be attached to the protective cylinder 42. By doing so, it is possible to install so that the wear region 51 is on the upper side, and the surface with little wear is the lower surface with significant wear. Therefore, even when the protective cylinder 42 is worn, it can be reused without having to replace the protective cylinder 42 by rotating it around the symmetry point 42b and reattaching it. Therefore, the life of the protective cylinder 42 can be extended, and the cost of parts and the maintenance cost can be reduced.
 また、実施例1では、サポートスリーブ32は衝突保護部材41や保護筒42で保護されている。したがって、衝突保護部材41や保護筒42は、耐摩耗鋼で作製し、サポートスリーブ32は、保護筒42等よりも比較的低コストの部材を使用することも可能である。このようにすることで、固体燃料バーナ7の全体の費用を削減することも可能である。
 また、サポートスリーブ32は、衝突保護部材41の筒部41bと、当該筒部とは独立した部材である保護筒42とで二重に保護される。これにより、サポートスリーブ保護部材の摩耗・減肉量の把握、交換・補修の時期判断が容易となる。即ち、保護筒42は衝突保護部材41に比べてバーナからの取り外しが容易なので、定期検査時等に脱着してその摩耗・減肉量を測定しやすい利点がある。また、定期検査時等の都度、毎回保護筒42の摩耗・減肉量を測定しなくても、保護筒42に孔開き(貫通)が生じたことを以って、交換・補修の時期と判断する等の取扱いが可能となる。
In the first embodiment, the support sleeve 32 is protected by the collision protection member 41 and the protection cylinder 42. Therefore, the collision protection member 41 and the protection cylinder 42 can be made of wear-resistant steel, and the support sleeve 32 can be a member having a relatively low cost than the protection cylinder 42 and the like. By doing in this way, it is also possible to reduce the whole cost of the solid fuel burner 7.
The support sleeve 32 is double protected by the cylindrical portion 41b of the collision protection member 41 and the protective cylinder 42 which is a member independent of the cylindrical portion. As a result, it becomes easy to grasp the amount of wear / thinning of the support sleeve protection member and determine the time for replacement / repair. That is, the protective cylinder 42 is easier to remove from the burner than the collision protection member 41, and thus has an advantage that it can be easily attached and removed during periodic inspections and the amount of wear and thinning thereof can be measured. In addition, it is not necessary to measure the amount of wear / thinning of the protective cylinder 42 every time a periodic inspection is performed. Handling such as judgment is possible.
 さらに、実施例1では、端部の傾斜面42aが衝突板フランジ41aに突き当てられている。したがって、固体燃料の保護筒42への衝突で、保護筒42が周方向に回転しようとしても、傾斜する傾斜面42aが衝突板フランジ41aに干渉する。よって、保護筒42の回転が規制される。したがって、保護筒42が回転して位置が変動することが規制される。 Furthermore, in Example 1, the inclined surface 42a at the end is abutted against the collision plate flange 41a. Therefore, even if the protective cylinder 42 tries to rotate in the circumferential direction due to the collision of the solid fuel with the protective cylinder 42, the inclined surface 42a that is inclined interferes with the collision plate flange 41a. Therefore, the rotation of the protective cylinder 42 is restricted. Accordingly, the protection cylinder 42 is restricted from rotating and changing its position.
 さらに、実施例1では、Oリング43で保護筒42の軸方向の移動が規制されている。よって、保護筒42の軸方向の位置が安定するとともに、軸方向の移動が規制されない場合に比べて、固体燃料の衝突で保護筒42が回転することも規制される。 Furthermore, in the first embodiment, the movement of the protective cylinder 42 in the axial direction is restricted by the O-ring 43. Therefore, the position of the protective cylinder 42 in the axial direction is stabilized and the rotation of the protective cylinder 42 due to the collision of the solid fuel is also restricted as compared with the case where the movement in the axial direction is not restricted.
(変更例の説明)
(変更例1)
 図5は実施例1の変更例1の説明図であり、図5(A)は図3(A)に対応する図、図5(B)は図5(A)のVB-VB線断面図である。
 図5において、図3に示す実施例1の構成に変えて、摩耗が顕著な部分を中心として、厚肉部42cを形成することも可能である。図5に示すように、厚肉部42cを設けた場合、固体燃料の衝突に伴う摩耗が顕著な部分において、摩耗代を十分に設けることができる。よって、保護筒42をさらに長寿命化することができる。
(Explanation of changes)
(Modification 1)
5A and 5B are explanatory diagrams of a first modification of the first embodiment. FIG. 5A corresponds to FIG. 3A, and FIG. 5B is a cross-sectional view taken along the line VB-VB in FIG. It is.
In FIG. 5, instead of the configuration of the first embodiment shown in FIG. 3, it is possible to form the thick portion 42c centering on the portion where the wear is remarkable. As shown in FIG. 5, when the thick portion 42c is provided, a sufficient wear allowance can be provided in a portion where wear due to the collision of the solid fuel is remarkable. Therefore, the life of the protective cylinder 42 can be further extended.
(変更例2,3)
 図6は変更例2,3の説明図であり、図6(A)は変更例2の説明図、図6(B)は変更例3の説明図である。
 図6において、図5(B)に示す形態に限定されず、図6(A)に示すように、下方から送られてくる固体燃料を含む流体を外側に案内する形状(整流形状)42dを設けることで、固体燃料が保護筒42に真正面から接触しにくくして、保護筒42が受ける力を低減することも期待できる。
 また、図6(B)に示すように、流線形状とすることも可能である。
(Modification examples 2 and 3)
FIG. 6 is an explanatory diagram of modification examples 2 and 3, FIG. 6A is an explanatory diagram of modification example 2, and FIG. 6B is an explanatory diagram of modification example 3.
In FIG. 6, it is not limited to the form shown in FIG. 5 (B). As shown in FIG. 6 (A), a shape (rectifying shape) 42d for guiding the fluid containing the solid fuel sent from below to the outside is provided. By providing, it can be expected that the solid fuel is less likely to come into contact with the protective cylinder 42 from the front and the force received by the protective cylinder 42 is reduced.
Further, as shown in FIG. 6B, a streamline shape can be used.
(変更例4)
 図7は変更例4の説明図であり、実施例1の図2に対応する図である。
 図2に示す実施例1では、衝突保護部材41に位置決め部の一例としての位置決めリング41dを形成する構成を例示したが、これに限定されない。例えば、図7に示すように、位置決め部の一例としての位置決め凹部41eを形成する構成とすることも可能である。
 なお、図2の位置決めリング41dと図7の位置決め凹部41eの両方を備えた構成とすることも可能である。
 また、衝突保護部材41(衝突板フランジ41a)と保護筒42の傾斜面により回り止めもされており、かつ軸方向の動きも保護筒42自重による摩擦力にて動きが拘束されていることから、位置決め部41d,41eを設置しない構成とすることも可能である。
(Modification 4)
FIG. 7 is an explanatory diagram of the modification example 4, and corresponds to FIG. 2 of the first embodiment.
In the first embodiment illustrated in FIG. 2, the configuration in which the positioning ring 41d as an example of the positioning portion is formed on the collision protection member 41 is illustrated, but the configuration is not limited thereto. For example, as shown in FIG. 7, it is also possible to form a positioning recess 41e as an example of the positioning portion.
In addition, it is also possible to have a configuration provided with both the positioning ring 41d in FIG. 2 and the positioning recess 41e in FIG.
Further, the anti-rotation is also prevented by the collision protection member 41 (collision plate flange 41a) and the inclined surface of the protection cylinder 42, and the movement in the axial direction is also restricted by the frictional force due to the weight of the protection cylinder 42. It is also possible to adopt a configuration in which the positioning portions 41d and 41e are not installed.
(変更例)
 以上、本発明の実施例を詳述したが、本発明は、前記実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内で、種々の変更を行うことが可能である。本発明の変更例(H01)~(H05)を下記に例示する。
(H01)前記実施例において、保護筒42の形状は、点対称の形状であることが望ましいが、これに限定されない。非対称の形状であってもよいし、線対称形状であってもよい。また、点対称形状も断面が平行四辺形状に限定されず、断面ひし形、六角形状等、任意の形状とすることが可能である。
(H02)前記実施例において、厚肉部42c,42dを設ける場合、例示した形状に限定されず、任意の形状とすることが可能である。
(Example of change)
As mentioned above, although the Example of this invention was explained in full detail, this invention is not limited to the said Example, A various change is performed within the range of the summary of this invention described in the claim. It is possible. Modification examples (H01) to (H05) of the present invention are exemplified below.
(H01) In the embodiment described above, the shape of the protective cylinder 42 is preferably a point-symmetric shape, but is not limited to this. An asymmetric shape may be sufficient and a line symmetrical shape may be sufficient. The point-symmetric shape is not limited to a parallelogram shape in cross section, and any shape such as a rhombus or hexagon can be used.
(H02) In the above-described embodiment, when the thick portions 42c and 42d are provided, the shape is not limited to the illustrated shape, and any shape can be used.
(H03)前記実施例において、傾斜面42aで構成された回り止め部を例示したが、これに限定されない。キーとキー溝のような形状等、任意の回り止め構造を採用することが可能である。また、回り止め部は設けることが望ましいが、設けない構成とすることも可能である。
(H04)前記実施例において、位置決め部41d,41eを例示したが、設けない構成とすることも可能である。また、位置決め部41d,41eの形状も例示した形状に限定されず、嵌め合いや爪形状、ネジ止め形状等、任意の位置決め形状に変更可能である。
(H03) In the above-described embodiment, the anti-rotation portion constituted by the inclined surface 42a is exemplified, but the present invention is not limited to this. Arbitrary detent structures such as a key and key groove shape can be employed. Moreover, although it is desirable to provide a rotation prevention part, it is also possible to adopt a configuration in which it is not provided.
(H04) In the above-described embodiment, the positioning portions 41d and 41e are exemplified, but a configuration in which the positioning portions 41d and 41e are not provided is also possible. Further, the shape of the positioning portions 41d and 41e is not limited to the illustrated shape, and can be changed to any positioning shape such as a fit, a claw shape, and a screwing shape.
(H05)前記実施例において、Oリング43で保護筒42が軸方向に移動しないようにする構成を例示したが、これに限定されない。例えば、クリップやボルト止め或いは柔軟性を有したクッション材等を採用することも可能である。 (H05) In the above-described embodiment, the configuration in which the protective cylinder 42 is prevented from moving in the axial direction by the O-ring 43 is illustrated, but the present invention is not limited to this. For example, a clip, bolting, or a cushioning material having flexibility can be employed.
7…固体燃料バーナ、
21…燃料ノズル、
21b…屈曲部分、
24…搬送路、
32…サポートスリーブ、
41…衝突保護部材、
41a…衝突板フランジ、
41b…筒部、
41c…衝突保護部、
41d,41e…位置決め部、
42…サポートスリーブ保護部材、
42a…回り止め部、
42b…中央部。
7 ... Solid fuel burner,
21 ... Fuel nozzle,
21b ... bent portion,
24 ... transport path,
32 ... Support sleeve,
41 ... Collision protection member,
41a ... collision plate flange,
41b ... cylinder part,
41c ... collision protection unit,
41d, 41e ... positioning part,
42 ... Support sleeve protective member,
42a ... rotation prevention part,
42b ... Central part.

Claims (7)

  1.  固体燃料と空気との混合流体を噴出させる燃料ノズルと同軸上且つ径方向内側に配置されたサポートスリーブに対して、前記サポートスリーブの外周を覆って固体燃料の前記サポートスリーブへの衝突から保護するサポートスリーブ保護部材であって、
     前記燃料ノズルにおける前記混合流体の搬送路の途中の屈曲部分に対応する領域に配置され、
     前記サポートスリーブに対して着脱可能な筒状に形成された、
     ことを特徴とするサポートスリーブ保護部材。
    A support sleeve disposed coaxially and radially inward with respect to a fuel nozzle that ejects a mixed fluid of solid fuel and air covers the outer periphery of the support sleeve and protects the solid fuel from colliding with the support sleeve. A support sleeve protection member,
    Arranged in a region corresponding to a bent portion in the middle of the transport path of the mixed fluid in the fuel nozzle,
    Formed in a cylindrical shape detachable from the support sleeve,
    A support sleeve protective member.
  2.  前記燃料ノズルの内面に固体燃料が衝突する領域を保護するための衝突保護部材とは別体に構成された
     ことを特徴とする請求項1に記載のサポートスリーブ保護部材。
    The support sleeve protection member according to claim 1, wherein the support sleeve protection member is configured separately from a collision protection member for protecting a region where solid fuel collides with an inner surface of the fuel nozzle.
  3.  前記サポートスリーブの軸方向に沿った断面において、軸方向の中央部を中心とする点対称形状に形成された
     ことを特徴とする請求項1に記載のサポートスリーブ保護部材。
    2. The support sleeve protection member according to claim 1, wherein the support sleeve protection member is formed in a point-symmetric shape with a central portion in the axial direction as a center in a cross section along the axial direction of the support sleeve.
  4.  前記軸方向の端部に形成されると共に、前記燃料ノズルの屈曲部分の内面に沿った形状に形成され、前記屈曲部分の内面に接触して前記サポートスリーブの周方向への回転を抑制する回り止め機能を有した傾斜部を備えたことを特徴とする請求項1に記載のサポートスリーブ保護部材。 It is formed at the end in the axial direction, and is formed along the inner surface of the bent portion of the fuel nozzle, and rotates around the inner surface of the bent portion to suppress the rotation of the support sleeve in the circumferential direction. The support sleeve protection member according to claim 1, further comprising an inclined portion having a stopping function.
  5.  固体燃料と空気との混合流体を噴出させる筒状の燃料ノズルであって、前記混合流体の搬送経路の途中に屈曲部分が設けられた前記燃料ノズルと、
     前記屈曲部分よりも混合流体の流れ方向の下流側において、前記燃料ノズルと同軸上且つ径方向の内側に配置されたサポートスリーブと、
     前記屈曲部分に対応する領域に配置され、前記サポートスリーブの外周を覆い且つ前記サポートスリーブに着脱可能な筒状に形成されて、前記固体燃料の前記サポートスリーブへの衝突から保護するサポートスリーブ保護部材と、
     を備えたことを特徴とする固体燃料バーナ。
    A cylindrical fuel nozzle that ejects a mixed fluid of solid fuel and air, wherein the fuel nozzle is provided with a bent portion in the middle of the transport path of the mixed fluid;
    A support sleeve disposed coaxially with the fuel nozzle and radially inside the downstream of the bent portion in the flow direction of the mixed fluid;
    A support sleeve protection member that is disposed in a region corresponding to the bent portion, covers the outer periphery of the support sleeve and is formed in a cylindrical shape that can be attached to and detached from the support sleeve, and protects the solid fuel from colliding with the support sleeve When,
    A solid fuel burner comprising:
  6.  前記燃料ノズルの内面に固体燃料が衝突する領域を保護するための衝突保護部と、前記サポートスリーブの外周を覆う筒部と、を有する衝突保護部材と、
     前記衝突保護部材の前記筒部の外周に装着された前記サポートスリーブ保護部材と、
     を備えたことを特徴とする請求項5に記載の固体燃料バーナ。
    A collision protection member having a collision protection part for protecting a region where solid fuel collides with the inner surface of the fuel nozzle, and a cylinder part covering the outer periphery of the support sleeve;
    The support sleeve protection member mounted on the outer periphery of the cylindrical portion of the collision protection member;
    The solid fuel burner according to claim 5, comprising:
  7.  前記サポートスリーブ保護部材の軸方向の端部に対応する位置に形成され、前記サポートスリーブ保護部材の端部に接触して位置決めを行う位置決め部、
     を備えたことを特徴とする請求項5に記載の固体燃料バーナ。
    A positioning portion that is formed at a position corresponding to an end portion in the axial direction of the support sleeve protection member, and performs positioning by contacting the end portion of the support sleeve protection member;
    The solid fuel burner according to claim 5, comprising:
PCT/JP2018/019172 2018-05-17 2018-05-17 Support-sleeve protective member and solid fuel burner provided with same WO2019220597A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019537848A JP6632776B1 (en) 2018-05-17 2018-05-17 Support sleeve protection member and solid fuel burner provided with the same
AU2018423543A AU2018423543B2 (en) 2018-05-17 2018-05-17 Support-sleeve protective member and solid fuel burner provided with same
PCT/JP2018/019172 WO2019220597A1 (en) 2018-05-17 2018-05-17 Support-sleeve protective member and solid fuel burner provided with same
KR1020197021309A KR102266012B1 (en) 2018-05-17 2018-05-17 Support sleeve protection member and solid fuel burner having same
TW108116852A TWI715981B (en) 2018-05-17 2019-05-16 Support sleeve protection member and solid fuel burner provided with the same
PH12020551887A PH12020551887A1 (en) 2018-05-17 2020-11-06 Support-sleeve protective member and solid fuel burner provided with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/019172 WO2019220597A1 (en) 2018-05-17 2018-05-17 Support-sleeve protective member and solid fuel burner provided with same

Publications (1)

Publication Number Publication Date
WO2019220597A1 true WO2019220597A1 (en) 2019-11-21

Family

ID=68539710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019172 WO2019220597A1 (en) 2018-05-17 2018-05-17 Support-sleeve protective member and solid fuel burner provided with same

Country Status (6)

Country Link
JP (1) JP6632776B1 (en)
KR (1) KR102266012B1 (en)
AU (1) AU2018423543B2 (en)
PH (1) PH12020551887A1 (en)
TW (1) TWI715981B (en)
WO (1) WO2019220597A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811308A (en) * 1981-07-14 1983-01-22 Sumitomo Cement Co Ltd Pulverized coal combustion burner
JPS58193006A (en) * 1982-05-06 1983-11-10 Babcock Hitachi Kk Burner for ground coke
JPS58219310A (en) * 1982-06-15 1983-12-20 Babcock Hitachi Kk Pulverized coal burner with improved resistance to wear
JPS58224208A (en) * 1982-06-19 1983-12-26 Babcock Hitachi Kk Uniform dispersion type pulverized coal firing equipment
JPH055507A (en) * 1990-06-29 1993-01-14 Babcock Hitachi Kk Burning equipment
JP2012513012A (en) * 2008-12-18 2012-06-07 アルストム テクノロジー リミテッド Head assembly for pulverized coal nozzle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3934522A (en) * 1974-11-01 1976-01-27 The Detroit Edison Company Coal burning system
JPS643461A (en) 1987-06-25 1989-01-09 Noritz Corp Hot water feeder
JPH09318014A (en) 1996-05-27 1997-12-12 Hitachi Ltd Pulverized coal combustion burner
JP3344694B2 (en) 1997-07-24 2002-11-11 株式会社日立製作所 Pulverized coal combustion burner
JP3986182B2 (en) 1998-10-27 2007-10-03 株式会社日立製作所 Pulverized coal combustion burner and combustion apparatus provided with the same
KR100376619B1 (en) 2000-09-25 2003-03-19 두산중공업 주식회사 Low Nitrogen Oxide Coal Firing Burner
US6474250B1 (en) 2001-05-24 2002-11-05 Babcock Borsig Power, Inc. Nozzle assembly for a pulverized coal burner
JP3099109U (en) 2003-07-08 2004-03-25 株式会社アドバネクス Commutator
JP5811308B1 (en) 2014-12-02 2015-11-11 富士電機株式会社 DC power supply output voltage control method and output voltage control apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811308A (en) * 1981-07-14 1983-01-22 Sumitomo Cement Co Ltd Pulverized coal combustion burner
JPS58193006A (en) * 1982-05-06 1983-11-10 Babcock Hitachi Kk Burner for ground coke
JPS58219310A (en) * 1982-06-15 1983-12-20 Babcock Hitachi Kk Pulverized coal burner with improved resistance to wear
JPS58224208A (en) * 1982-06-19 1983-12-26 Babcock Hitachi Kk Uniform dispersion type pulverized coal firing equipment
JPH055507A (en) * 1990-06-29 1993-01-14 Babcock Hitachi Kk Burning equipment
JP2012513012A (en) * 2008-12-18 2012-06-07 アルストム テクノロジー リミテッド Head assembly for pulverized coal nozzle

Also Published As

Publication number Publication date
JPWO2019220597A1 (en) 2020-05-28
TW201947158A (en) 2019-12-16
AU2018423543B2 (en) 2022-03-17
AU2018423543A1 (en) 2020-12-17
PH12020551887A1 (en) 2021-07-05
TWI715981B (en) 2021-01-11
KR20190132349A (en) 2019-11-27
JP6632776B1 (en) 2020-01-22
KR102266012B1 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
JP4272451B2 (en) Apparatus for placing an igniter in a liner port of a gas turbine engine
EP2851619B1 (en) Dual-fuel burning gas turbine combustor
US20120227373A1 (en) Combustion chamber having a ventilated spark plug
JP4673419B2 (en) Combustion equipment
JP5794419B2 (en) Solid fuel burner
CN108700291B (en) Burner tip and maintenance method of burner tip
US11041625B2 (en) Fuel nozzle with narrow-band acoustic damper
JP2009204302A (en) Combustor fuel nozzle structure
US6467272B1 (en) Means for wear reduction in a gas turbine combustor
WO2019220597A1 (en) Support-sleeve protective member and solid fuel burner provided with same
JP4652990B2 (en) Gas turbine combustor
US20100068667A1 (en) Demountable burner
KR20200090243A (en) Solid fuel burners and flame retarders for solid fuel burners
US20220228742A1 (en) Incineration plant for solid material and method for replacing its nozzle insert
US8196531B2 (en) Compact pulverized coal burner
JPH01314803A (en) Pulverized coal burner
JP2022154412A (en) Burner for powder fuel
JP4809084B2 (en) Combustion air supply port
KR200397581Y1 (en) Tertiary air guide structure of boiler coal burner
EP2592341B1 (en) Pulverized fuel burner
JP2017044394A (en) Guard protector for heat transfer pipe, boiler with guard protector, additional installation method for guard protector for heat transfer pipe
FI127294B (en) nose
KR20000066928A (en) nozzle tip assembly of boiler for suppling of pulverized coal
JP2011117636A (en) Spot burner
AU2002247476A1 (en) Means for wear reduction in a gas turbine combustor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019537848

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197021309

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: KR1020197021309

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018423543

Country of ref document: AU

Date of ref document: 20180517

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18919357

Country of ref document: EP

Kind code of ref document: A1