WO2019219699A1 - Schlupfregelvorrichtung - Google Patents

Schlupfregelvorrichtung Download PDF

Info

Publication number
WO2019219699A1
WO2019219699A1 PCT/EP2019/062368 EP2019062368W WO2019219699A1 WO 2019219699 A1 WO2019219699 A1 WO 2019219699A1 EP 2019062368 W EP2019062368 W EP 2019062368W WO 2019219699 A1 WO2019219699 A1 WO 2019219699A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
actuator
slip
vehicle
control device
Prior art date
Application number
PCT/EP2019/062368
Other languages
English (en)
French (fr)
Inventor
Dirk Odenthal
Michael Sailer
Elias REICHENSDOERFER
Wolfgang DEGEL
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP18173045.8A external-priority patent/EP3569436B1/de
Priority claimed from DE102018212505.8A external-priority patent/DE102018212505A1/de
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to CN201980030709.7A priority Critical patent/CN112218777B/zh
Priority to ATA9122/2019A priority patent/AT524084B1/de
Publication of WO2019219699A1 publication Critical patent/WO2019219699A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/175Brake regulation specially adapted to prevent excessive wheel spin during vehicle acceleration, e.g. for traction control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/10Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle 
    • B60K28/16Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle  responsive to, or preventing, skidding of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1761Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to wheel or brake dynamics, e.g. wheel slip, wheel acceleration or rate of change of brake fluid pressure
    • B60T8/17616Microprocessor-based systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1763Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to the coefficient of friction between the wheels and the ground surface
    • B60T8/17636Microprocessor-based systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/86Optimizing braking by using ESP vehicle or tire model

Definitions

  • the invention relates to a slip control device for motor vehicles, which is basically already known in different form for uniaxially driven or multi-axially driven vehicles.
  • An all-wheel function can, among other things, be individually controlled
  • the invention has for its object to provide a slip control device for new drive concepts, which despite high dynamic demand has a high control quality.
  • the invention relates to a slip control device which can be used in particular for non-linear multi-slip control for scalable drive concepts.
  • a slip control device for specifying a desired drive or desired braking torque for at least one drive and / or brake actuator (in particular an internal combustion engine, a
  • a linear controller unit for determining an initially nominal desired drive or brake torque based on a detected control deviation from the slip-related desired speed value
  • a reference model unit which receives the nominal nominal drive or braking torque and at least one detected actual speed value as input signals and which based on an idealized (drive and / or brake) actuator-related synthesis model has an idealized desired jerk (also : Acceleration change, third derivative of position after time), and
  • An idealization unit which receives the idealized desired acceleration change and predetermined non-ideal actual feedback signals as inputs and based on these input signals a desired drive or desired braking torque for driving the corresponding actuator determined in such a way that a unwanted (non-ideal) vehicle behavior is compensated.
  • the synthesis model is a simplified, complexity-reduced rule-distance model of the vehicle, taking into account in particular the actuator (s) dynamics.
  • the detected actual rotational speed values which are input signals of the reference model unit are preferably the axle rotational speed values determined for each driven axle as well as their numerical derivative and / or the rotational speed of the respective actuator to be controlled and their numerical derivative.
  • the idealization unit preferably comprises a control law based on an input-output linearization (EAL).
  • EAL input-output linearization
  • Your non-ideal (Especially resulting from a non-linear dynamics) actual feedback signals are preferably also from the EAL.
  • speed is meant a quantity proportional to the speed, e.g. also the slip. If z. B. is spoken by a target speed, under this term, a target slip to
  • the invention is based on the following considerations:
  • An all-wheel function can, among other things, be individually controlled
  • a traction controller based on the input-output linearization is developed in this invention.
  • the control design is carried out with a synthesis model that takes the powertrain and longitudinal dynamics of the vehicle into account. For the nonlinear control loop, the resulting
  • this invention is of a known per se
  • T r suresregelsystem, which has the task in the drive case, to prevent the wheel spin.
  • the speed of the wheels is far greater than the speed of the vehicle body. This ratio is with the size slip
  • T r traction slip control systems
  • the engine drag torque control (MSR) still exists for the control of slip.
  • MSR engine drag torque control
  • Stain drive is reduced in the simplest case, the drive power of the engine. This is the driver's request on the gas pedal in such a way
  • the ASR can be used when starting on a roadway with different coefficients of friction for the left and right side of the vehicle (p sp iit). In such a driving situation, the maximum deductible force is limited to the low coefficient of friction. To increase the drive power, the wheels are decelerated to the low coefficient of friction, which on the side with the higher coefficient of friction more power is deposited. For vehicles with four-wheel drive and a variable moment distribution between the axles there is an additional possibility for the
  • Wheel speeds on the primary axle drop This principle can also be realized by the distribution of the drag torque of the engine, the aforementioned MSR.
  • the four-wheel drive systems differ by a fixed or variable
  • Torque distribution whereby many systems can completely decouple a drive axle. Modern vehicles use this option to let the driver choose between a vehicle with front / stain drive or four-wheel drive via an appropriate operating concept. This is a special challenge for an ASR because the functionality must be equally ensured in both cases, the requirements and Influences, however, fundamentally differ as described above.
  • the invention is essentially based on the state of the art regarding slip control and on an input-output linearization (EAL) concept.
  • Nonlinearities contain uncertain parameters in many studies that can not be measured directly and must be monitored with great effort. These include the coefficient of friction of the road, the vehicle mass and the
  • Vehicle speed should therefore not be used in the inner loop of the traction control.
  • the aim of the invention is the development of a slip control with the aid of the known EAL.
  • the basic idea of the EAL is the linearization of a non-linear system by choosing a suitable feedback, in order to then be able to apply methods of linear control engineering to the linearized equivalent system.
  • the input u enters the equation of state linearly.
  • EAL Input-output linearization
  • - Logic shares can - be calculated centrally on a central control unit with fast communication to the actuator-related control unit
  • the slip control device according to the invention is particularly suitable for traction control and
  • Delay slip control engine drag control, recuperation
  • Fig. 1 is a schematic representation of an overview of the
  • FIG. 2 shows an example of the relevant parameters of a control path including its actuator in the form of a drive motor for a motor vehicle with uniaxial drive
  • Fig. 3 shows an example of the relevant parameters of a control path for a motor vehicle with four-wheel transfer case under
  • Driving components of a scalable on the type of drive four-wheel motor vehicle with transfer case and a drive motor here, for example, internal combustion engine
  • the one with uniaxial drive here stain drive
  • the other with biaxial drive here four-wheel drive with rear axle as the primary axis and with front axle as
  • Fig. 1 is an overview of the essential components of the entire control structure is shown, in which the erfindungsffleße
  • Slip control device is included in particular with the linear regulator unit 8, with the reference model unit 9 and with the idealization unit 10.
  • Reference model unit 9 and with the idealization unit 10 is for each speed or slip specification applied, so for example four times for example the following cose t:
  • a linear regulator unit 8 for determining a nominal nominal drive or braking torque w (as a nominal vector) based on a detected control deviation e or Dw,
  • a reference model unit 9 which receives the nominal nominal drive or braking torque w and at least one detected actual speed value ohct or yist as input signals and which based on an idealized actuator-related synthesis model an idealized desired acceleration change v (as a nominal vector ), and
  • Actuator determined in the way that a non-ideal
  • FIG. 2 shows relevant parameters of a control path including its actuator in the form of a drive motor for a motor vehicle
  • FIG. 3 shows relevant parameters of a control path for a motor vehicle with four-wheel transfer case taking into account only one actuator in the form of an electric motor for the
  • Embodiment has a switchable four-wheel drive, in which a variable torque distribution between the front and rear axles is possible via a variable disc clutch.
  • VM total drive power of the engine
  • G Vehicle transmission
  • SD limited slip differential
  • the vehicle shown schematically here therefore has a scalable drive concept, since the vehicle can be driven depending on the driver's request or depending on the position of the multi-plate clutch on one or two axes.
  • the traction control is designed on the basis of the above-mentioned parameterization determination of the vehicle model, wherein the complexity of the model for the controller design is reduced according to the invention.
  • the traction control prevents too much slippage on the
  • the transmission behavior of the ignition path with the time constant Tvm is used.
  • the torque of the internal combustion engine is passed through the gear ratio i ge tr to the transfer case VTG and divided on the drive axles.
  • the front axle receives the proportion of the electric motor X3 and the rear axle the remaining moment xi igetr- X3.
  • Vx, v which is calculated from the set of impulses in the X-direction.
  • the state vector x, the input vector u and the outputs y (here yi and i) yield the nonlinear state differential equations x with the tire forces F x , va and F x , ha, the static wheel loads F z , va and F z , ha and the hatching s va and Sha.
  • the derivative of the first Output yi therefore depends on the coefficient of friction m, the tire parameters, the dynamic tire radius and the vehicle mass.
  • a reference model 9 (a reference model 9.1 for the

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulating Braking Force (AREA)

Abstract

Erfindungsgemäß ist eine Schlupfregelvorrichtung zur Vorgabe eines Soll-Antriebs- oder Soll-Bremsmoments für mindestens einen Antriebs- und/oder Brems-Aktuator zur Regelung eines schlupfbezogenen Soll-Drehzahlwertes in einem Kraftfahrzeug mit mindestens einer elektronischen Steuereinheit vorgesehen, die folgende Teilfunktionseinheiten umfasst: - eine lineare Regler-Einheit zur Bestimmung eines zunächst nominalen Soll-Antriebs- oder Bremsmoments basierend auf einer erfassten Regelabweichung vom schlupfbezogenen Soll-Drehzahlwert, - eine Referenzmodell-Einheit, die das nominale Soll Antriebs- oder Bremsmoment und zumindest einen erfassten Ist-Drehzahlwert als Eingangssignale erhält und die auf Basis eines idealisierten Aktuator-bezogenen Synthesemodells eine idealisierten Soll-Beschleunigungsänderung ermittelt, und - eine Idealisierung-Einheit, die die idealisierte Soll-Beschleunigungsänderung und vorgegebene nicht-ideale Ist-Rückführungssignale als Eingangssignale erhält und die auf Basis dieser Eingangssignale ein Soll-Antriebs- oder Bremsmoment zur Ansteuerung des entsprechenden Aktuators in der Weise ermittelt, dass ein unerwünschtes (nicht-ideales) Fahrzeugverhalten kompensiert wird.

Description

Schlupfregelvorrichtung
Die Erfindung betrifft eine Schlupfregelvorrichtung für Kraftfahrzeuge, die in unterschiedlicher Ausprägung für einachsig angetriebene oder für mehrachsig angetriebene Kraftfahrzeuge grundsätzlich bereits bekannt ist.
Neueste Entwicklungen der letzten Jahre im Bereich der Antriebstechnologie befassen sich mit elektromotorischen Antriebskonzepten und hoch aufgeladenen Verbrennungsmotoren mit einer deutlich gegenüber dem Stand der Technik erhöhten Dynamik und verbessertem Ansprechverhalten. Eine Allradfunktion kann unter anderem über einzeln ansteuerbare
Antriebseinheiten an Vorder- und Hinterachse oder durch einen klassischen mechanischen Allrad mittels elektronisch angesteuerter Lamellenkupplung (xDrive) realisiert werden. Dafür gibt es derzeit noch keine hinreichend genauen regelungstechnischen Algorithmen.
Stand der Technik zur Schlupf-/Drehzahl-/Traktionsregelung
V. Ivanov, D. Savitski, and B. Shyrokau,“A survey of traction control and antilock braking Systems of full electric vehicles with individually controlled electric motors,” IEEE Transactions on Vehicular Technology, vol. 64, no. 9, pp. 3878-3896, 2015.
Stand der Technik zu Allradkonzepten:
Metin Ersoy und Stefan Gies. Fahrwerkhandbuch. Springer Vieweg,
Wiesbaden, 5. Auflage, 2017.
Stefan Pischinger und Ulrich Seiert (Hg.). Vieweg Handbuch
Kraftfahrzeugtechnik. Springer Vieweg, Wiesbaden, 8. Auflage, 2016.
Stand der Technik zur Eingangs-Ausgangs-Linearisierung (EAL):
Alberto Isidori. Nonlinear Control Systems. Springer, Berlin, 2. Auflage, 1989. Jürgen Adamy. Nichtlineare Systeme und Regelungen. Springer Vieweg, Berlin, Heidelberg, 2. Auflage, 2014.
Der Erfindung liegt die Aufgabe zugrunde, eine Schlupfregelvorrichtung für neue Antriebskonzepte zu schaffen, die trotz höherer Dynamik-Anforderung eine hohe Regelgüte aufweist.
Erfindungsgemäß wird diese Aufgabe durch die Merkmale der unabhängigen Ansprüche gelöst, während in den abhängigen Ansprüchen bevorzugte Weiterbildungen der Erfindung angegeben sind.
Die Erfindung betrifft eine Schlupfregelvorrichtung, die insbesondere zur nichtlinearen Multi-Schlupfregelung für skalierbare Antriebskonzepte verwendbar ist.
Erfindungsgemäß ist eine Schlupfregelvorrichtung zur Vorgabe eines Soll- Antriebs- oder Soll-Bremsmoments für mindestens einen Antriebs- und/oder Brems-Aktuator (insbesondere einen Verbrennungsmotor, einen
Elektroantriebsmotor und/oder einen Elektromotor für Verteilergetriebe eines Allradfahrzeuges) zur Regelung mindestens eines schlupfbezogenen Soll- Drehzahlwertes in einem Kraftfahrzeug mit mindestens einer elektronischen Steuereinheit vorgesehen, die folgende Teilfunktionseinheiten umfasst:
- eine lineare Regler-Einheit (z. B. PID-Regler) zur Bestimmung eines zunächst nominalen Soll-Antriebs- oder Bremsmoments basierend auf einer erfassten Regelabweichung vom schlupfbezogenen Soll- Drehzahlwert,
- eine Referenzmodell-Einheit, die das nominale Soll Antriebs- oder Bremsmoment und zumindest einen erfassten Ist-Drehzahlwert als Eingangssignale erhält und die auf Basis eines idealisierten (Antriebs- und/oder Brems-) Aktuator-bezogenen Synthesemodells einen idealisierten Soll-Ruck (auch: Beschleunigungsänderung, dritte Ableitung der Position nach der Zeit) ermittelt, und
- eine Idealisierung-Einheit, die die idealisierten Soll- Beschleunigungsänderung und vorgegebene nicht-ideale Ist- Rückführungssignale als Eingangssignale erhält und die auf Basis dieser Eingangssignale ein Soll-Antriebs- oder Soll-Bremsmoment zur Ansteuerung des entsprechenden Aktuators in der Weise ermittelt, dass ein unerwünschtes (nicht-ideales) Fahrzeugverhalten kompensiert wird.
Vorzugsweise ist das Synthesemodell ein vereinfachtes, komplexitäts- reduziertes Regel-Streckenmodell des Fahrzeugs, das insbesondere die Aktuator(en)-Dynamik berücksichtigt.
Vorzugsweise sind die erfassten Ist-Drehzahlwerte, die Eingangssignale der Referenzmodell-Einheit sind, die aus den Raddrehzahlen ermittelten Achs- Drehzahlwerte für jede angetrieben Achse sowie deren numerische Ableitung und/oder die Drehzahl des jeweils anzusteuernden Aktuators sowie deren numerische Ableitung.
Die Idealisierung-Einheit umfasst vorzugsweise ein Regelgesetz auf Basis einer Eingangs-Ausgangs-Linearisierung (EAL). Ihre nicht-idealen (insbesondere aus einer nicht-linearen Dynamik resultierenden) Ist- Rückführungssignale sind vorzugsweise ebenfalls die aus den
Raddrehzahlen ermittelten Achs-Drehzahlwerte für jede angetrieben Achse und deren numerische Ableitung und/oder die Drehzahl des jeweils anzusteuernden Aktuators sowie deren numerische Ableitung sowie zusätzlich das geschätzte Antriebs- bzw. Brems-Moment jedes zur
Schlupfregelung zu stellenden Aktuators.
Unter dem Begriff„Drehzahl“ wird eine der Drehzahl proportionale Größe verstanden, wie z.B. auch der Schlupf. Wenn z. B. von einer Soll-Drehzahl gesprochen wird, ist unter diesem Begriff auch ein Soll-Schlupf zu
subsumieren.
Der Erfindung liegen folgende Überlegungen zugrunde:
Neueste Entwicklungen der letzten Jahre im Bereich der Antriebstechnologie befassen sich mit elektromotorischen Antriebskonzepten und hoch
aufgeladenen Verbrennungsmotoren mit einer deutlich gegenüber dem Stand der Technik erhöhten Dynamik und verbessertem Ansprechverhalten. Eine Allradfunktion kann unter anderem über einzeln ansteuerbare
Antriebseinheiten an Vorder- und Hinterachse oder durch einen klassischen mechanischen Allrad mittels elektronisch angesteuerter Lamellenkupplung (xDrive) realisiert werden. Dafür wurden erfindungsgemäß Algorithmen und regelungstechnische Ansätze für eine skalierbare, auf mehrere,
vorzugsweise Aktuator-nahe Steuergeräte verteilte Fahrdynamik und
Schlupfregelung entwickelt. Durch geschickte Partitionierung der einzelnen Regleranteile auf diese Steuergeräte werden Latenzzeiten minimiert und eine verbesserte Closed-Loop Performance erreicht.
In der vorliegenden Erfindung wird der Entwurf eines Systems zur
Traktionsregelung für Straßenfahrzeuge gezeigt. Es werden speziell Fahrzeuge betrachtet, die je nach Fahrerwunsch eine oder zwei
angetriebene Achsen besitzen. Solche skalierbaren Antriebskonzepte stellen eine besondere Herausforderung dar, da sich die Fahreigenschaften zwischen einem Fahrzeug mit Front/Heckantrieb und einem Fahrzeug mit Allradantrieb grundlegend unterscheiden. Hierfür wird in dieser Erfindung ein Traktionsregler auf Basis der Eingangs-Ausgangs-Linearisierung entwickelt. Der Regelungsentwurf wird mit einem Synthesemodell durchgeführt, das den Antriebsstrang und die Längsdynamik des Fahrzeugs berücksichtigt. Für den nichtlinearen Regelkreis konnte durch Analyse der resultierenden
Nulldynamik globale asymptotische Stabilität für alle auftretenden
Parameterkombinationen gezeigt werden. Die Eignung des entwickelten Regelungskonzepts für das skalierbare Antriebskonzept wird simulativ über ein nichtlineares Analysemodell sichergestellt. Simulative und experimentelle Ergebnisse zeigen, dass in einer Vielzahl von unterschiedlichen
Fahrsituationen die Ziele bezüglich der Regelgüte und der Stabilität in robuster Weise erreicht werden.
Technischer Hintergrund:
Grundsätzlich geht diese Erfindung von einem an sich bekannten
T raktionsregelsystem aus, das im Antriebsfall die Aufgabe besitzt, das Durchdrehen der Räder zu verhindern. In einer solchen Fahrsituation ist die Geschwindigkeit der Räder weitaus größer als die Geschwindigkeit des Fahrzeugaufbaus. Dieses Verhältnis wird mit der Größe Schlupf
beschrieben, weshalb T raktionsregelsysteme auch als Antriebs-Schlupf- Regelsysteme (ASR) bezeichnet werden.
Neben dem ABS und dem ASR existiert noch die Motor-Schleppmomenten- Regelung (MSR) für die Beherrschung des Schlupfs. Wenn der Fahrer bei einem Fahrzeug mit Verbrennungsmotor herunterschaltet oder das Gas wegnimmt, wird dadurch ein Bremsmoment erzeugt, das zu einem erhöhten Schlupf an den angetriebenen Rädern führt. In einem solchen Fall reduziert die MSR den zu großen Schlupf durch eine Erhöhung des Antriebsmoments.
Je nach Antriebskonzept existieren unterschiedliche Möglichkeiten zur Realisierung einer Traktionsregelung. Für Fahrzeuge mit Front oder
Fleckantrieb wird im einfachsten Fall die Antriebsleistung des Motors reduziert. Dazu wird der Fahrerwunsch über das Gaspedal derart
manipuliert, dass eine möglichst optimale Traktion erreicht wird. Als weiterer Anwendungsfall kann das ASR beim Anfahren auf einer Fahrbahn mit unterschiedlichen Reibwerten für die linke und rechte Fahrzeugseite (pspiit) verwendet werden. In einer solchen Fahrsituation wird die maximal absetzbare Kraft auf den niedrigen Reibwert limitiert. Um die Antriebsleistung zu erhöhen werden die Räder auf dem niedrigen Reibwert abgebremst, wodurch auf der Seite mit dem höheren Reibwert mehr Kraft abgesetzt wird. Für Fahrzeuge mit Allradantrieb und einer variablen Momentenverteilung zwischen den Achsen existiert eine zusätzliche Möglichkeit für die
Traktionsregelung. Wenn die Räder der primären Achse einen zu großen Schlupf aufbauen, wird ein Teil der Antriebsleistung über den Allradantrieb an die sekundäre Achse geleitet, wodurch das Moment und die
Raddrehzahlen an der primären Achse sinken. Über dieses Prinzip kann auch, durch die Verteilung des Schleppmoments des Motors, die eingangs erwähnte MSR realisiert werden.
Die Allradsysteme unterscheiden sich durch eine feste oder variable
Momentenverteilung, wobei viele Systeme eine Antriebsachse komplett abkoppeln können. Moderne Fahrzeuge nutzen diese Möglichkeit, um den Fahrer über ein entsprechendes Bedien konzept zwischen einem Fahrzeug mit Front/Fleckantrieb oder Allradantrieb wählen zu lassen. Dies stellt eine besondere Flerausforderung für ein ASR dar, weil die Funktionalität in beiden Fällen gleichermaßen sichergestellt werden muss, die Voraussetzungen und Einflussmöglichkeiten sich jedoch wie oben beschrieben grundlegend unterscheiden.
Im aktuellen Stand der Technik für Traktionsregelsysteme existiert kein durchgängiges Konzept für ein Fahrzeug mit einem skalierbaren
Antriebskonzept. Deshalb beschäftigt sich diese Erfindung mit der
Entwicklung eines ASR, das für ein Antriebskonzept mit ein oder zwei angetriebenen Achsen ausgelegt ist.
Die Erfindung basiert im Wesentlichen auf aktuellem Stand der Technik bezüglich der Schlupfregelung und auf einem Konzept der Eingangs- Ausgangs-Linearisierung (EAL).
Der aktuelle Stand der Technik für die Schlupfregelung mit Hilfe der EAL weist einige Probleme auf. Das Regelgesetz zur Kompensation der
Nichtlinearitäten enthält in vielen Arbeiten unsichere Parameter, die nicht direkt gemessen werden können und aufwändig beobachtet werden müssen. Dazu gehören der Reibwert der Straße, die Fahrzeugmasse und die
Parametrierung der Reifen für das jeweils verwendete Reifenmodell. Für die Industrialisierung eines Ansatzes zur Schlupfregelung muss zudem
sichergestellt werden, dass die geschätzten Werte jederzeit eine
ausreichende Genauigkeit besitzen. Darüber hinaus entsteht bei der
Durchführung der EAL in der Regel eine nicht beobachtbare interne
Dynamik. Diese muss separat auf Stabilität überprüft werden.
Die meisten Ansätze verwenden das klassische Viertelfahrzeugmodell mit den beiden Freiheitsgraden Schlupf und Fahrzeuggeschwindigkeit und vernachlässigen die Aktuatordynamik des Antriebs. Des Weiteren werden viele Ansätze lediglich simulativ untersucht und es findet keine
experimentelle Bestätigung des Konzepts statt. Im aktuellen Stand der Technik werden keine Fahrzeuge mit skalierbarem Antriebskonzept, wie oben erwähnt, behandelt. Diese stellen jedoch eine besondere Herausforderung für Traktionsregelsysteme dar, da das Fahrzeug je nach Fahrerwunsch und Fahrsituation einen Front/Heckantrieb oder einen Allradantrieb besitzt und dementsprechend die Regelstrategie angepasst werden muss. Dabei ist die Bestimmung der Fahrzeuggeschwindigkeit erschwert, da im Gegensatz zu Fahrzeugen mit einer Antriebsachse alle Räder schlupfen und die Berechnung der Geschwindigkeit aus den
Raddrehzahlen der nicht angetriebenen Achsen nicht möglich ist. Die
Fahrzeuggeschwindigkeit sollte daher nicht in der inneren Schleife der Traktionsregelung genutzt werden.
Das Ziel der Erfindung ist die Entwicklung einer Schlupfregelung mit Hilfe der an sich bekannten EAL. Die Grundidee der EAL ist die Linearisierung eines nichtlinearen Systems durch Wahl einer geeigneten Rückführung, um anschließend auf das linearisierte Ersatzsystem Methoden der linearen Regelungstechnik anwenden zu können.
Zunächst wird ein Single Input / Single Output (SISO) System mit dem Zustandsvektor x, dem Eingang u und dem Ausgang y in der folgenden Form betrachtet: x = a(x) + b(x) u, y = c(x) (1 )
Der Eingang u geht linear in die Zustandsgleichungen ein.
Wenn das System (1 ) in der nichtlinearen Regelungsnormalform (RNF), also
Tn-l %n
xn = a(x) + ß(x)u. vorliegt werden über das folgende Regelgesetz Nichtlinearitäten des
Systems kompensiert und der neue Eingang v eingeführt: u=-1/ß(x) (a(x)+v).
Für den Eingang v=k(x) wird ein Referenzmodell angesetzt, das von einer idealisierten Strecke ausgeht.
Das Ziel der EAL ist also das Finden einer mathematischen Vorschrift, um eine Klasse nichtlinearer Systeme mittels des Regelgesetzes zu linearisieren bzw. zu idealisieren. Mit Hilfe des Referenzmodells wird eine gewünschte Dynamik aufgeprägt. Anschließend liegt das System in der linearen RNF vor. Erfindungsgemäß werden folgende Kriterien zusammenfassend
berücksichtigt:
- Eingangs-Ausgangs-Linearisierung (EAL) für Mehrgrößensysteme.
- Referenzmodellvorgabe.
- Nichtlineare Rückführung von Motordrehzahl, Raddrehzahlen und geschätztem Motor-Ist-Moment sowie numerische Ableitungsbildung der Motor- und Raddrehzahlen.
- Vorgabe eines linearen Referenzmodells für die Eingangs-Ausgangs- Linearisierung in dem Sinne, dass das Closed Loop Übertragungsverhalten von Regelstrecke und nichtlinearer Rückführung dem Übertragungsverhalten des Referenzmodells entspricht. Überlagert wird ein linearer Regler verwendet, um verbleibende Modellfehler und Störgrößeneinflüsse auszuregeln.
- Um eine quasistationär genaues Folgeverhalten auf eine rampenförmige Sollvorgabe zu erreichen wird in einer bevorzugten Ausführungsform über das Regelungskonzept ein doppelt integrierendes Verhalten im offenen Regelkreis realisiert.
- Logikanteile können - zentral gerechnet werden auf zentralem Steuergerät mit schneller Kommunikation zum aktuatornahen Steuergerät
- in einer„Whitebox“ integriert werden auf einem aktuatornahen Steuergerät
- in einer„Blackbox“ integriert werden auf einem aktuatornahen Steuergerät.
Durch die Erfindung wird eine Schlupfregelung erreicht, die insbesondere folgende Systemanforderungen erfüllt:
- Anwendbar auf alle Varianten von Hybridantrieben (z. B. E-Allrad oder Achshybrid)
- Skalierbarkeit: Ansatz anwendbar auf Fahrzeuge bei denen während der Fahrt umgeschaltet wird zwischen verschiedenen Betriebsmodi:
- Primärachse wird angetrieben
- Primärachse wird geregelt
- Differenz Primär-ZSekundärachse wird geregelt
- Primär- und Sekundärachsen werden angetrieben
- Sekundärachse wird angetrieben
- Die erfindungsgemäße Schlupfregelvorrichtung ist insbesondere geeignet für Antriebsschlupf-Regelung und
Verzögerungsschlupfregelung (Motorschleppregelung, Rekuperation)
- Einsteilbarkeit über Bedienkonzept leicht gegeben über Vorgabe Sollschlüpfe, Solldrehzahlen
- Mit und ohne Drehzahlfehler funktionsfähig
Ausführungsbeispiele der Erfindung sind in Zeichnungen veranschaulicht und werden im Folgenden näher beschrieben. Es zeigt
Fig. 1 in schematischer Darstellung eine Übersicht über die
wesentlichen Komponenten der gesamten Regelstruktur, in der die erfindungsmäße Schlupfregelvorrichtung als innerer Regelkreis, der für jede Soll-Drehzahl-Vorgabe angewandt wird, enthalten ist,
Fig. 2 ein Beispiel für die relevanten Parameter einer Regel-Strecke einschließlich ihres Aktuators in Form eines Antriebsmotors für ein Kraftfahrzeug mit einachsigem Antrieb,
Fig. 3 ein Beispiel für die relevanten Parameter einer Regel-Strecke für ein Kraftfahrzeug mit Allrad-Verteilergetriebe unter
Berücksichtigung ausschließlich eines Aktuators in Form eines Elektromotors für das Verteilergetriebe zwischen den Achsen,
Fig. 4 ein Beispiel für die relevanten Parameter einer Regel-Strecke einschließlich zweier Aktuatoren in Form zweier
Antriebsmotoren für ein Kraftfahrzeug mit zweiachsigem Antrieb (z. B. bei straßengekoppeltem Ailrad-Hybrid-Fahrzeug ohne Verteilergetriebe),
Fig. 5 ein Beispiel für die relevanten Parameter einer Regel-Strecke für ein Kraftfahrzeug mit zweiachsigem Antrieb (z. B. bei Allrad mit einem Antriebsmotor und mit Verteilergetriebe) einschließlich zweier Aktuatoren in Form eines Antriebsmotors auf der Primärantriebsachse und eines Elektromotors für das Verteilergetriebe,
Fig. 6 eine schematische Gegenüberstellung der wesentlichen
Antriebskomponenten eines bezogen auf die Antriebsart skalierbaren Allrad-Kraftfahrzeugs mit Verteilergetriebe und einem Antriebsmotor (hier z.B. Verbrennungsmotor), das zum einen mit einachsigen Antrieb (hier Fleckantrieb) und zum anderen mit zweiachsigem Antrieb (hier Allradantrieb mit Hinterachse als Primärachse und mit Vorderachse als
Sekundärachse) betreibbar ist,
Fig. 7 die für ein Fahrzeug-Analysemodell wirksamen Parameter,
Fig. 8 eine Übersicht über das Regelungskonzept des inneren
Regelkreises am Beispiel des Synthesemodells für zweiachsigen Antrieb mit genauerer Darstellung der
Funktionsweise des Regelgesetzes,
Fig. 9 eine schematische Darstellung eines Synthesemodells für
zweiachsigen Antrieb und
Fig. 10 ein Beispiel für die mathematische Herleitung eines
Regelgesetzes aus dem beispielhaften Synthesemodell als wesentlicher Bestandteil der erfindungsgemäßen Idealisierungs-Einheit.
In Fig. 1 ist eine Übersicht über die wesentlichen Komponenten der gesamten Regelstruktur dargestellt, in der die erfindungsmäße
Schlupfregelvorrichtung insbesondere mit der linearen Regler-Einheit 8, mit der Referenzmodell-Einheit 9 und mit der Idealisierungseinheit 10 enthalten ist. Der innere Regelkreis mit der linearen Regler-Einheit 8, mit der
Referenzmodell-Einheit 9 und mit der Idealisierungseinheit 10 wird für jede Drehzahl- bzw. Schlupfvorgabe
Figure imgf000014_0001
angewendet, also beispielsweise viermal für z.B. folgende cose t:
®HA__soll, die Soll-Drehzahl an der Hinterachse
<®VA_soll, die Soll-Drehzahl an der Vorderachse
/t®HA_soll, die Differenzdrehzahl zwischen den Rädern der Hinterachse 2\<»VA_soll, die Differenzdrehzahl zwischen den Rädern der Vorderachse
Je nach Antriebsart und Aktuator-Art werden die jeweiligen Referenzmodelle als Synthesemodell für die Referenzmodell-Einheit 9 empirisch ermittelt und im jeweils verwendeten Steuergerät (z. B. für den Elektromotor des
Verteilergetriebes das am Verteilergetriebe angebrachte elektronische Steuergerät zur Ansteuerung der Lamellenkupplung) abgespeichert. In den Figuren 2 bis 5 werden Beispiele von verschiedenen Antriebsarten mit einem oder zwei Aktuatoren als Regel-Strecke mit Aktuator-Berücksichtigung schematisch dargestellt. Aus den hier berücksichtigen Parametern werden die jeweiligen Synthesemodelle ermittelt. Die erfindungsgemäßen Schlupfregelvorrichtung zur Vorgabe eines Soll- Antriebs- oder Soll-Bremsmoments u bzw. Msoii für mindestens einen
Antriebs- und/oder Brems-Aktuator zur Regelung eines schlupfbezogenen
Soll-Drehzahlwertes ySoii bzw. Oke t bzw. wi, wϊ, in einem Kraftfahrzeug weist mindestens eine jeweils aktuatornahe Steuereinheit auf, die folgende
Teilfunktionseinheiten umfasst:
- eine lineare Regler-Einheit 8 zur Bestimmung eines zunächst nominalen Soll-Antriebs- oder Bremsmoments w (als nominaler Vektor) basierend auf einer erfassten Regelabweichung e bzw. Dw,
- eine Referenzmodell-Einheit 9, die das nominale Soll Antriebs- oder Bremsmoment w und zumindest einen erfassten Ist-Drehzahlwert ohct bzw. yist als Eingangssignale erhält und die auf Basis eines idealisierten Aktuator-bezogenen Synthesemodells eine idealisierten Soll- Beschleunigungsänderung v (als nominaler Vektor) ermittelt, und
- eine Idealisierung-Einheit 10, die die idealisierte Soll- Beschleunigungsänderung v und vorgegebene nicht-ideale Ist- Rückführungssignale x (als nominaler Vektor) bzw. ®act und Mact als Eingangssignale erhält, die vorzugsweise zumindest einen erfassten Ist-Drehzahlwert (ohcC, yist) umfasst, und die auf Basis dieser
Eingangssignale über ein komplexitätsreduziertes Regelgesetz 100 (siehe Fig. 8 und Fig. 10) ein reales Soll-Antriebs- oder Bremsmoment u (als nominaler Vektor) zur Ansteuerung des entsprechenden
Aktuators in der Weise ermittelt, dass ein nicht-ideales
Fahrzeugverhalten kompensiert wird.
Bei einachsigem Antrieb sind die Ist-Rückführungssignale x vorzugsweise zumindest :
CO act co Rad (HA oder VA), ist: die Ist-Drehzahl der mittleren Raddrehzahlen an der angetriebenen Achse (Hinterachse HA oder Vorderachse VA) und deren numerische Ableitung
Ant (HA oder VA), ist: die Ist-Drehzahl des Aktuators, z.B. die
Kurbelwellendrehzahl des Antriebsmotors (Verbrennungsmotor oder Elektroantriebsmotor), und deren numerische Ableitung und
Mact:= MAPI,(HA oder VA), ist: das Ist-Antriebsmoment des Aktuators, das
beispielsweise aus einem geschätztem Ist-Antriebsmoment Mest und/oder einem gefilterten Ist-Antriebsmotor Mfnt gewichtet abhängig vom jeweiligen Betriebszustand des Aktuators (hier Antriebsmotors) gebildet wird.
Bei zweiachsigem Antrieb mit einem Antriebsmotor an der Primär-Achse (PA), dessen Moment über ein Verteilergetriebe (VTG) ganz oder teilweise auf eine Sekundär-Achse (SA) übertragbar ist, sind die Ist- Rückführungssignale x vorzugsweise zumindest:
CO act := w Rad, (SA), ist: die Ist-Drehzahl der mittleren Raddrehzahlen an der Sekundär- Achse SA und deren numerische Ableitung sowie <z>Ant (PA), ist: die Ist-Drehzahl des Antriebsmotors als Aktuator (z.B. die
Kurbelwellendrehzahl des Verbrennungsmotors) auf der Primär-Achse PA (z. B. Hinterachse HA) und deren numerische Ableitung
oder
0) ha, (PA), ist: die Ist-Drehzahl der mittleren Raddrehzahlen an der Primär-Achse
PA und deren numerische Ableitung sowie
<®va,(SA),ist: die Ist-Drehzahl der mittleren Raddrehzahlen an der Sekundär- Achse SA und deren numerische Ableitung und
Mactl—
Mgetr.out; MAnt,(PA),ist: das geschätzte und/oder gefilterte Ist-Antriebsmoment an der Primärachse PA und
Mem st; MEM,(VTG),ist: das geschätzte und/oder gefilterte Ist-Antriebsmoment am
Elektromotor des Verteilergetriebes
Bei einachsigem Antrieb ist das Soll-Moment Msoii
beispielsweise:
MAPI,(HA oder VA), SOII : das Antriebsmoment des Antriebsmotors an der
angetriebenen Achse (z. B. Hinterachse HA oder Vorderachse
VA)
Bei zweiachsigem Antrieb sind die Soll-Momente Msoii
beispielsweise:
Mvm.soii; MAnt,(PA),soii: das Antriebsmoment des Antriebsmotors an der Primär- Achse PA (z. B. Verbrennungsmotor vm)
Mem.soii; MEM,(VTG),SOII : das Antriebsmoment des Elektromotors em am
Verteilergetriebe VTG
oder (z. B. bei einem Straßen-gekoppeltem Hybrid-Fahrzeug ohne
Verteilergetriebe)
MAnt,(PA),soii: das Antriebsmoment des Antriebsmotors an der Primär-Achse PA
(z. B. Verbrennungsmotor)
MAnt,(SA),soii: das Antriebsmoment des Antriebsmotors an der Primär-Achse PA
(z. B. Elektroantriebsmotor)
Die Ist-Drehzahl-bezogenen Eingangssignale (üact der Idealisierungs-Einheit
10 sind vorzugsweise dieselben wie die der Referenzmodell-Einheit 9. Fig. 2 zeigt relevante Parameter einer Regel-Strecke einschließlich ihres Aktuators in Form eines Antriebsmotors für ein Kraftfahrzeug mit
einachsigem Antrieb. Fig. 3 zeigt relevante Parameter einer Regel-Strecke für ein Kraftfahrzeug mit Allrad-Verteilergetriebe unter Berücksichtigung ausschließlich eines Aktuators in Form eines Elektromotors für das
Verteilergetriebe zwischen den Achsen. Fig. 4 zeigt relevante Parameter einer Regel-Strecke einschließlich zweier Aktuatoren in Form zweier Antriebsmotoren für ein Kraftfahrzeug mit zweiachsigem Antrieb (z. B. bei straßengekoppeltem Allrad-Hybrid-Fahrzeug ohne Verteilergetriebe). Fig. 5 zeigt relevante Parameter einer Regel-Strecke für ein Kraftfahrzeug mit zweiachsigem Antrieb (z. B. bei Allrad mit einem Antriebsmotor und mit Verteilergetriebe) einschließlich zweier Aktuatoren in Form eines
Antriebsmotors auf der Primärantriebsachse und eines Elektromotors für das Verteilergetriebe. Die Antriebs- und Aktuator-Art gemäß Fig. 5 wird im Folgenden als Ausführungsbeispiel zur genaueren Erläuterung der
Referenzmodell-Einheit 9 und zur Idealisierungs-Einheit 10 einschließlich Regelgesetz 100 verwendet:
Bei den erfindungsgemäßen Ausführungsbeispielen gemäß den Figuren 6 bis 10 wird lediglich die Reduktion des Antriebsmoments (hier des
Verbrennungs-Motormoments) und der steuerbare Allradantrieb zur
Realisierung der Traktionsregelung im Antriebsfall betrachtet.
Das Ausführungsbeispiel gemäß Fig. 6 bezieht sich auf ein
T raktionsregelsystem für ein Fahrzeug, bei dem der Fahrer über ein entsprechendes Bedienkonzept manuell zwischen Heck und Allradantrieb wählen kann („skalierbarer“ Antrieb). Das Fahrzeug gemäß
Ausführungsbeispiel hat einen zuschaltbaren Allradantrieb, bei dem über eine regelbare Lamellenkupplung eine variable Momentenverteilung zwischen Vorder- und Hinterachse möglich ist. Standardmäßig wird die gesamte Antriebsleistung des Verbrennungsmotors (VM) über das Fahrzeuggetriebe (G) und das Sperrdifferentialgetriebe (SD) an die
Hinterachse geleitet. Die Lamellenkupplung (LK) im Verteilergetriebe (VTG) ist offen, so dass die Vorderachse nicht angetrieben oder verzögert wird (linke Seite der Fig. 6). Bei Bedarf wird der Antriebsstrang der Vorderachse über die regelbare Lamellenkupplung an die Hinterachse angehängt und das Antriebsmoment verteilt sich zwischen den beiden Achsen. Die Ansteuerung der Lamellenkupplung erfolgt über einen Elektromotor (EM), der das
Lamellenpaket zusammendrückt und je nach Stellung der Kupplung eine variable Momentenverteilung einstellt. Das Antriebsmoment wird weiterhin über ein offenes Differential an die Räder der Vorderachse geleitet (rechte Seite der Fig. 6). Das hier schematisch dargestellt Fahrzeug besitzt demnach ein skalierbares Antriebskonzept, da das Fahrzeug je nach Fahrerwunsch beziehungsweise je nach Stellung der Lamellenkupplung über ein oder zwei Achsen angetrieben werden kann.
In Fig. 7 wird der für eine Modellierung des beschriebenen Allradantriebs berücksichtigte Aufbau des Fahrzeugmodells dargestellt. Das
Fahrzeugmodell besteht aus den drei Teilen Antriebsstrang, Fahrdynamik und dem gesondert behandelten Teil Reifen. Als Fahrereingangsgrößen stehen das Antriebswunschmoment über das Gaspedal, das
Bremswunschmoment über das Bremspedal, die Lenkradwinkelstellung und der eingelegte Gang zur Verfügung. Der Antriebsstrang enthält die
Nachbildung von der Energieerzeugung in der Verbrennungskraftmaschine bis zur Berechnung der Drehzahlen w der einzelnen Räder des Fahrzeugs. Die Fahrdynamik unterteilt sich weiter in die Längs und Querdynamik sowie die Vertikaldynamik. Hier werden alle fahrdynamischen Größen wie beispielsweise die Fahrzeugbeschleunigung ax und ay, die Schlüpfe s und Schräglaufwinkel a der Räder sowie die Radlasten Fz berechnet. Zuletzt werden verschiedene Reifenmodelle eingeführt, um die wirkenden
Reifen kräfte Fx und Fy auf die Straße abzubilden. Auf die genaue
Berechnung der verschiedenen Größen wird hier nicht genauer eingegangen, da sie auf grundsätzlich bekannten Berechnungen von
Modellen basiert. Dabei wird das Fahrzeugmodell als ein Zweispurmodell dargestellt. Es wird angenommen, dass es sich sich lediglich in der Ebene bewegt. Längssteigungen oder Querneigungen der Fahrbahn werden dementsprechend nicht berücksichtigt. Diese Annahme ist gerechtfertigt, da Änderungen der Fahrbahn nur auf die entstehenden Reifen kräfte wirken. Da während einer Fahrt keine Informationen über den verwendeten Reifen vorliegen, sind die Reifenparameter unsicher und Änderungen in der
Längssteigung oder der Querneigung werden in diese abgebildet.
Für die Schlupfregelung werden erfindungsgemäß vereinfachend keine Gangwechsel betrachtet. Die Modellierung einer Kupplung zwischen
Verbrennungsmotor und Fahrzeuggetriebe wird nicht benötigt. Das
Antriebsmoment wird weiterhin im Verteilergetriebe auf die beiden Achsen verteilt und anschließend an der Vorderachse über ein Differentialgetriebe an die Räder geleitet. Das Moment wird gleichmäßig zwischen linker und rechter Seite aufgeteilt. Es werden bei der Erstellung des Modells insbesondere folgende Größen berücksichtigt:
- Antriebsstrang (insbesondere Aktuatoren (VM, EM), Fahrzeug und
Differentialgetriebe (SD), Rollwiderstand und Raddynamik,
Verteilergetriebe (VTG))
- Reifen (insbesondere Reifen kräfte in X- und Y-Richtung)
- Fahrdynamik (insbesondere Längs und Querdynamik, Schräglaufwinkel und Längsschlupf, Vertikaldynamik, )
Erfindungsgemäßer Regelungsentwurf:
Die Traktionsregelung wird auf Basis der oben genannten Parametrierungs- Bestimmung des Fahrzeugmodells konzeptioniert, wobei die Komplexität des Modells für die Reglerauslegung erfindungsgemäß reduziert wird. Die Traktionsregelung verhindert einen zu großen Schlupf an den
Antriebsrädern, da in einer solchen Fahrsituation der Lenkwunsch des Fahrers nicht mehr umgesetzt wird und das Fahrzeug nicht oder nur noch erschwert kontrolliert werden kann. Darüber hinaus soll bei Aktivierung der Regelung die maximal mögliche Kraft auf die Straße übertragen und damit die maximale Beschleunigung sichergestellt werden. Das Kraftoptimum wird aus einer Reifenkraftkurve ermittelt und liegt beispielsweise für eine trockene Straße in einem Bereich von 10 bis 20 % Schlupf. Das Ziel der
Traktionsregelung ist demnach das Einstellen eines bestimmten
Schlupfwertes. Als Stellgrößen für das skalierbare Antriebskonzept gemäß Fig. 6 werden der Verbrennungsmotor (VM) und der Elektromotor (EM) genutzt. Dadurch ergeben sich insgesamt drei Anwendungsfälle: Die
Regelung erfolgt nur über den Elektromotor im Verteilergetriebe
(Anwendungsfall 1 ), nur über den Verbrennungsmotor (Anwendungsfall 2) oder parallel über beide Antriebsmaschinen (Anwendungsfall 3). Das konzeptionelle Verhalten für die drei Möglichkeiten zur Traktionsregelung wird im Folgenden veranschaulicht:
In der Ausgangssituation fährt das Fahrzeug mit reinem Heckantrieb. Der mittlere Radschlupf der beiden Räder an der Hinterachse befindet sich in einem linearen Bereich, während die Vorderachse nicht angetrieben wird und deshalb ein mittlerer Schlupf von 0 % für die Räder der Vorderachse vorliegt. Der Fahrer fordert nun ein hohes Antriebsmoment an und es stellt sich ein großer Schlupfwert ein, wodurch die Räder der Hinterachse anfangen durchzudrehen. Nun wird das gesamte Antriebsmoment über den
Elektromotor im Verteilergetriebe zwischen der Vorder- und Hinterachse verteilt. Der Regler erhöht das gewünschte Moment für den Elektromotor, wodurch die Räder der Vorderachse angetrieben werden und sich ein Schlupfwert im linearen Bereich einstellt. Durch die Erhöhung des
Antriebsmoments an der Vorderachse verringert sich gleichzeitig das Antriebsmoment an der Hinterachse und es ergibt sich indirekt der optimale Schlupfwert.
Im zweiten Fall wird ausgehend von derselben Ausgangssituation nicht das Antriebsmoment über den Elektromotor im Verteilergetriebe geregelt, sondern das Antriebsmoment direkt im Verbrennungsmotor reduziert.
Dadurch ergibt sich der optimale Schlupf. Während des gesamten Zeitraums besitzt das Fahrzeug einen reinen Heckantrieb und das Moment an der Vorderachse ist gleich Null.
Zuletzt lassen sich die Regelungsstrategien aus den ersten beiden Fällen gleichzeitig betreiben. Dabei wird das gesamte Antriebsmoment im
Verbrennungsmotor reduziert und gleichzeitig über den Elektromotor eine dynamische Anpassung der Momentenverteilung zwischen den beiden Antriebsachsen vorgenommen.
Die Aufgabe der Traktionsregelung ist es demnach, die gewünschten Vorgaben für den Schlupf umzusetzen. Die Sollwerte variieren je nach den gewählten Fahrzeugeinstellungen (Heck/Allradantrieb), den Fahrervorgaben (Gaspedal/Lenkwinkel), der aktuellen Fahrsituation (Untergrund/Reibwert) und den verwendeten Reifen. Es ergibt sich ein übergeordneter
Fahrdynamikregler, der entsprechende Sollwerte für die Schlupfregelung generiert. Der Fahrdynamikregler ist nicht Teil dieser Erfindung und es wird vorausgesetzt, dass die Sollwerte nahe dem optimalen Wert liegen und von der Traktionsregelung grundsätzlich umsetzbar sind.
Die bisherigen Überlegungen basieren auf dem Zusammenhang zwischen dem Schlupf und der Reifen kraft. In der Praxis wird jedoch nicht der Schlupf, sondern die Drehzahl als Regelgröße genutzt. Über den Zusammenhang mit der Geschwindigkeit und dem Rollradius lassen sich die beiden Größen Schlupf und Raddrehzahl ineinander umrechnen und es liegt eine äquivalente Problemstellung vor. Die Verwendung von Drehzahlen bietet den Vorteil, dass diese hochfrequent als Messsignal zur Verfügung stehen und keine Umrechnung nötig ist. Es hat sich daher als vorteilhaft erwiesen, die Vorgaben für die Traktionsregelung auf Basis der Drehzahlen durchzuführen. Das vorgestellte Verhalten auf Basis des Schlupfes ist deshalb äquivalent für die Betrachtung von Drehzahlen möglich.
Zur Umsetzung der vorgestellten Regelungsstrategien wird der Ansatz der oben beschriebenen EAL verwendet und es ergibt sich die konzeptionelle Darstellung nach Fig. 8 zum Ausführungsbeispiel mit zwei Aktuatoren, z.B. mit einem Verbrennungsmotor als erster Aktuator und mit einem
Elektromotor für das Allrad-Verteilergetriebe als zweiten Aktuator (siehe auch Fig. 1 zum allgemeinen Konzept).
Die Eingangsgrößen für die Regelung des Fahrzeugs sind das Sollmoment für den Verbrennungsmotor ui = Mvm.soii und das Sollmoment für den
Elektromotor im Verteilergetriebe U2 = Mem.soii. Die Regelgrößen sind die gemittelten Raddrehzahlen der beiden Antriebsachsen yi und y2.
Die EAL liefert ein Regelgesetz mit dem insbesondere die Nichtlinearitäten der Strecke kompensiert werden und führt gleichzeitig die beiden neuen Eingänge v, mit i £ {1 , 2} ein. Für diese neuen Eingänge wird jeweils ein Referenzmodell vorgegeben, wodurch die Eigenwerte der externen Dynamik festgelegt werden. Für die Eingänge der beiden Referenzmodelle wird ein klassischer PID-Regler verwendet. Die Regelfehler ei ergeben sich aus der Differenz der gemessenen Ist-Drehzahlen y und der Solldrehzahlen m. Die Solldrehzahl wi entspricht einer oberen Drehzahlgrenze. Gleiches gilt für die Solldrehzahl W2 und eine untere Drehzahlgrenze. Die Vorgabe der
Drehzahlen wi und W2 erfolgt in einer externen Berechnungseinheit und wird in dieser Erfindung nicht weiter berücksichtigt. Die oben beschriebene Fahrzeugmodellierung (Analysemodell) ist eine umfangreiche Simulationsumgebung, welche das reale Fahrzeugverhalten qualitativ abbildet. Für die Reglerauslegung ist das Modell jedoch auf Grund seiner Komplexität ungeeignet. Daher wird erfindungsgemäß ein
Synthesemodell mit den relevanten Dynamiken für die Regelung hergeleitet.
Für die Betrachtung der Drehzahlregelung wird nur die Längsdynamik des Fahrzeugs benötigt, da die Drehzahlen und der Schlupf lediglich von Größen in X-Richtung abhängig sind. Die Querdynamik und damit insbesondere der Impulssatz in Y-Richtung sowie der Drallsatz um die Hochachse des
Fahrzeugs werden vernachlässigt. Mit Hilfe dieser Annahme sind die
Schräglaufwinkel und die dynamische Wankmomentenverteilung gleich Null. Die Geschwindigkeit des Schwerpunkts in X-Richtung ist an jedem Punkt im Fahrzeug gleich, weshalb eine Umrechnung auf die Radmittelpunkte nicht notwendig ist.
Da die Modellierung der Querdynamik entfällt, besteht kein Unterschied zwischen der linken und rechten Seite des Fahrzeugs und die beiden Räder an den Antriebsachsen werden zu einem Rad zusammengefasst. Das Zweispurmodell vereinfacht sich zu einem Fahrzeugmodell, dass nur die Längsdynamik berücksichtigt. Für das Verteilergetriebe ist nur der Fall einer teilgesperrten Kupplung von Interesse, da im Fall einer offenen Kupplung und einer vollständig gesperrten Kupplung keine Regelung möglich ist. Die Drehzahlen für die Ausgangswellen des Verteilergetriebes stehen in direktem Zusammenhang mit denen der Räder, weshalb diese nicht erneut berechnet werden müssen und lediglich die Momentenverteilung zwischen Vorder- und Hinterachse benötigt wird. Die Wirkungsgrade im Antriebsstrang sind gleich eins.
In Fig. 9 ist die schematische Darstellung des Synthesemodells zu sehen. Für die Regelung der Drehzahlen an Vorder- und Hinterachse werden die Sollmomente für den Verbrennungsmotor ui = Mvm.soii und den Elektromotor im Verteilergetriebe (VTG) U2 = Mem.soii vorgegeben. Mit Hilfe der
Aktuatordynamik ergeben sich die Zustände xi = Mvm.ist und X3 = Memjst. Für den Verbrennungsmotor wird das Übertragungsverhalten des Zündpfads mit der Zeitkonstante Tvm verwendet. Das Moment des Verbrennungsmotors wird über die Getriebeübersetzung igetr an das Verteilergetriebe VTG geleitet und auf die Antriebsachsen aufgeteilt. Die Vorderachse erhält den Anteil des Elektromotors X3 und die Hinterachse das verbleibende Moment xi igetr— X3. Mit den Übersetzungen der Differentiale an Vorder- und Hinterachse ergibt sich das Antriebsmoment an den Rädern. Die beiden Räder werden an den beiden Achsen zu einem Rad zusammengefasst und bilden die Zustände xi=
Ü)va=( Ü0vl+ ü)vr)/2 Und X2= ü)ha=( (JÜhl+ ü)hr)/2.
Der letzte Zustand ist die nicht dargestellte Fahrzeuggeschwindigkeit xs =
Vx,v, die aus dem Impulssatz in X-Richtung berechnet wird.
Nachfolgend wird mit Fig. 10 die Herleitung des Regelgesetzes 100 (siehe auch Fig. 8) als Teil der Idealisierungs-Einheit 10 (siehe auch Fig. 1 ) für den Eingangsvektor u hier mit Hilfe der EAL dargestellt.
Mit dem Zustandsvektor x, dem Eingangsvektor u und den Ausgängen y (hier yi und i) ergeben sich die nichtlineare Zustandsdifferenzialgleichungen x mit den Reifenkräften Fx,va und Fx,ha, den statischen Radlasten Fz,va und Fz,ha und den Schlüpfen sva und Sha.
Zuerst werden die einzelnen Elemente des Ausgangsvektors y solange abgeleitet, bis ein Element des Eingangsvektors u auftaucht und deshalb die Ableitung des Ausgangsvektors nur vom Zustandsvektor x abhängt.
Für die Reifenkraft Fx,ha werden die Zusammenhänge für die statische
Radlast und den Längsschlupf eingesetzt. Die Ableitung des ersten Ausgangs yi hängt demnach von dem Reibwert m, den Reifenparametern, dem dynamischen Reifenradius sowie der Fahrzeugmasse ab.
All diese Parameter sind im Fahrzeug als unsicher anzusehen und sind während einer Fahrt und damit während der Regelung nicht bekannt. Um diese Unsicherheiten zu umgehen, wird die Reifen kraft Fx.ha als Konstante angenommen. Die Annahme einer konstanten Reifenkraft Fx,ha ist
gerechtfertigt, da das Ziel der Regelung das Einstellen eines konstanten Schlupfs und damit einer konstanten Reifen kraft ist.
Daraus ergibt sich ein Regelgesetz u(x), das die beiden Ausgänge yi und y2 entkoppelt und für die neuen Eingänge vi wird ein Referenzmodell 9 (9.1 , 9.2) vorgegeben. Im Regelgesetz werden die Übersetzungen igetr, iva und iha, die Trägheitsmomente Jva und Jha sowie die Zeitkonstanten für die beiden Aktuatoren TVm und Tem benötigt. Die Übersetzungen und Trägheitsmomente werden aus Datenblättern der einzelnen Bauteile entnommen, während die Aktuatordynamik über Sprunganregungen identifiziert werden kann. Das Regelgesetz 100 enthält somit keine unsicheren Parameter und lautet vorzugsweise wie in Fig. 10 mit u(x) angegeben.
Vorgabe der Referenzmodelle:
Das oben beschriebene Regelgesetz 100 entkoppelt die beiden Ausgänge des Synthesemodells und führt die neuen Eingänge vi ein. Für die Eingänge wird (jeweils) ein Referenzmodell 9 (ein Referenzmodell 9.1 für die
Hinterachse (HA) und ein Referenzmodell 9.2 für die Vorderachse (VA)) eingeführt. Das Übertragungsverhalten zwischen dem Sollmoment eines Aktuators und der zu regelnden Drehzahl setzt sich hier aus dem
angenommenen PT1 -Glied für die Aktuatordynamik und einem Integrator für die Abbildung der Raddrehzahl zusammen. Es ergibt sich demnach ein IT1 - Glied. Der Eingang des Referenzmodells 9.1 und 9.2 entspricht dem
Ausgang des dazugehörigen PID-Reglers. Zusammenfassung:
Der Regelungsentwurf wird mit einem Synthesemodell für ein Allradfahrzeug durchgeführt und enthält die Aktuatordynamik für den Verbrennungsmotor und den Elektromotor im Verteilergetriebe. Als Regelungskonzept wurde die EAL verwendet. Dabei ergeben sich zwei neue Eingänge, für die ein lineares Referenzmodell und zusätzlich ein PID-Regler zur Kompensation von
Störungen und Modellungenauigkeiten vorgegeben werden. Im gesamten Regelungsentwurf wurde darauf geachtet, die Verwendung von unsicherer Parameter wie beispielsweise des Reibwerts zwischen Reifen und Fahrbahn, den Reifenparametern und der Fahrzeugmasse zu vermeiden. Als
Messgrößen werden nur die Raddrehzahlen der vier Räder sowie das aktuelle Moment der beiden Antriebseinheiten benötigt. Dadurch wird sichergestellt, dass weder ein aufwändiger Zustandsbeobachter noch die aktuelle Fahrzeuggeschwindigkeit verwendet werden muss.
Erweiterte Anwendungsmöglichkeiten des erfindungsgemäßen
Regelungskonzepts:
Antriebseinheit
Der Versuchsträger besitzt als primäre Antriebsmaschine einen
Verbrennungsmotor und zusätzlich einen Elektromotor im Verteilergetriebe, über den ein Teil der Antriebsleistung an die Vorderachse geleitet wird. Im Synthesemodell für den Reglerentwurf wird die Dynamik der beiden
Aktuatoren mit berücksichtigt. Für das Regelungskonzept ist es jedoch unerheblich, ob das verfügbare Moment über einen Verbrennungsmotor, einen Elektromotor oder beispielsweise eine Brennstoffzelle bereitgestellt wird. Demnach ist das Konzept auch für andere Antriebseinheiten einsetzbar.
Antriebskonzept Die zweite Erweiterung betrifft das Antriebskonzept des Fahrzeugs. In dieser Arbeit wurde ein Fahrzeug mit einem permanenten Fleckantrieb genutzt, bei dem die Vorderachse zugeschaltet werden kann und sich dadurch ein Allradantrieb ergibt. Das Konzept lässt sich analog auf einen permanenten Frontantrieb mit der Hinterachse als sekundäre Achse anwenden. Darüber hinaus ist das Regelungskonzept für Fahrzeuge mit reinem Front- oder Heckantrieb geeignet, da dies dem ersten Anwendungsfall, der alleinigen Regelung über den Verbrennungsmotor, entspricht. Bei aktuellen
Elektrofahrzeugen wird beispielsweise für jede Achse eine eigene
Antriebsmaschine eingesetzt. In diesem Fall sind die beiden Achsen nicht miteinander gekoppelt, die Regelung entspricht jedoch erneut dem ersten Anwendungsfall. Für Fahrzeuge mit radindividuellem Antrieb ist das
Vorgehen analog, nur dass die Räder einer Achse nicht zusammengefasst werden.
Fahrmodi
In vielen heutigen Fahrzeugen werden verschiedene Fahrmodi wie beispielsweise Komfort, Sportlich oder Rennstrecke angeboten. Diese lassen sich per Knopfdruck aktivieren, wodurch sich diverse interne
Fahrzeugeinstellungen ändern. Dazu gehört das Traktionsregelsystem, dessen Funktionalität sich zum Beispiel bei Deaktivieren des Elektronischen Stabilitätsprogramms (ESP) verändert. In diesem speziellen Fall wird mehr Schlupf an den Antriebsachsen zugelassen, um eine sportlichere Auslegung des Fahrzeugs zu erlangen. Für das vorgestellte T raktionsregelsystem erfolgt die Vorgabe des Schlupfs bzw. der entsprechenden Drehzahlen von einer externen Einheit. Das Regelsystem stellt unabhängig von der Vorgabe die gewünschte Drehzahl ein, wodurch eine Anpassung an Fahrmodi oder Ähnliches nicht nötig ist. Dies hat außerdem den Vorteil, dass bei der Entwicklung keine zusätzlichen Anforderungen an die Traktionsregelung gestellt werden und sich die Komplexität reduziert. Das erfindungsgemäße Konzept ist nicht nur zur achsbezogenen
Schlupfregelung mit Antriebs-Aktuatoren, sondern auch zur radselektiven Einzel-Radschlupfregelung anwendbar, wenn weitere Aktuatoren, wie beispielsweise radselektive Bremseingriff-Systeme und/oder steuerbare Querdifferenziale eingesetzt und in den Referenzmodellen, den
Synthesemodulen sowie im Rechengesetz der Idealisierung-Einheit berücksichtigt werden.

Claims

Patentansprüche
1. Schlupfregelvorrichtung zur Vorgabe eines Soll-Antriebs- oder Soll- Bremsmoments (u; Msoii; MAnt,(HA oder VA),soii; MAnt,(PA),soii, M EM,(VTG),SOII ;
MAnt,(PA),soii, MAnt,(SA),soii; Mvm.soii Mem.soii) fü r mindestens einen Antriebs- und/oder Brems-Aktuator zur Regelung mindestens eines
schlupfbezogenen Soll-Drehzahlwertes (ySOii; rötet; CÖI, <%;) in einem Kraftfahrzeug mit mindestens einer elektronischen Steuereinheit, die folgende Teilfunktionseinheiten umfasst:
- eine lineare Regler-Einheit (8) zur Bestimmung eines zunächst nominalen Soll-Antriebs- oder Bremsmoments (w) basierend auf einer erfassten Regelabweichung (e; Dw),
- eine Referenzmodell-Einheit (9), die das nominale Soll Antriebs- oder Bremsmoment (w) und zumindest einen erfassten Ist-
Drehzahlwert (rötet; yist) als Eingangssignale erhält und die auf Basis eines idealisierten Aktuator-bezogenen Synthesemodells eine idealisierte Soll-Beschleunigungsänderung (v) ermittelt, und
- eine Idealisierung-Einheit (10), die die idealisierte Soll-
Beschleunigungsänderung (v) und vorgegebene nicht-ideale Ist- Rückführungssignale (x; r act, Mact) als Eingangssignale erhält und die auf Basis dieser Eingangssignale über ein komplexitätsreduzierendes Regelgesetz (100) ein reales Soll- Antriebs- oder Bremsmoment (u) zur Ansteuerung des entsprechenden Aktuators in der Weise ermittelt, dass ein nicht- ideales Fahrzeugverhalten kompensiert wird.
2. Schlupfregelvorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass in der Referenzmodell-Einheit (9; 9.1 , 9.2) das gewünschte Verhalten der jeweiligen Aktuatordynamik vorgegeben wird.
3. Schlupfregelvorrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Ist-Rückführungssignale (x; oact, Mact) als Eingangssignale der Idealisierung-Einheit (10) bei einem einachsig angetriebenem Fahrzeug zumindest die Ist-Drehzahl der mittleren
Raddrehzahlen an der angetriebenen Achse (<21 Rad (HA oder VAJ, ist) und deren numerische Ableitung, die Ist-Drehzahl des Aktuators (ö nt (HA oder VA), ist) und deren numerische Ableitung und das geschätzte und/oder gefilterte Ist-Antriebsmoment (Mact:= MADUHA oder VA), ist) des Aktuators sind.
4. Schlupfregelvorrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Ist-Rückführungssignale (x; w a, Mact) als Eingangssignale der Idealisierung-Einheit (10) bei einem zweiachsig angetriebenem Fahrzeug zumindest
- die Ist-Drehzahl (<z> Rad,(SA),ist; <®va,(SA),ist) der mittleren Raddrehzahlen an der Sekundär-Achse und deren numerische Ableitung sowie
- die Ist-Drehzahl (<z>Ant (PAjjst) des Aktuators auf der Primär-Achse und deren numerische Ableitung oder die Ist-Drehzahl (<® ha,(PA),ist) der mittleren Raddrehzahlen an der Primär-Achse und
- das geschätzte und/oder gefilterte Ist-Antriebsmoment (Mgetr,out;
MAnt,(PA),ist) an der Primärachse und das geschätzte und/oder gefilterte Ist-Antriebsmoment (Mem.ist; MEM,(VTG),ist) am Elektromotor (EM) des Verteilergetriebes (VTG) sind.
5. Schlupfregelvorrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das Synthesemodell ein
komplexitätsreduziertes Fahrzeug-Analysemodell darstellt, das vorrangig das gewünscht Verhalten der jeweiligen Aktuatordynamik berücksichtigt.
6. Schlupfregelvorrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass zur Bildung des Regelgesetzes (100) die erfassten Ist-Drehzahlwert (ahct; yist) in Form eines Ausgangsvektors (y) , die nicht-idealen Ist-Rückführungssignale Oact, Mact) in Form eines Zustandsvektors (x) und das reale Soll-Antriebs- oder Bremsmoment (u) in Form eines Eingangsvektors (u) dargestellt werden und dass der Ausgangsvektors (y) solange abgeleitet wird, bis ein Element des
Eingangsvektors (u) erhalten wird und deshalb die Ableitung des
Ausgangsvektors (y) nur vom Zustandsvektor (x) abhängt.
7. Schlupfregelvorrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass bekannte nicht ideale Parameter als Konstanten vorgesehen werden, die durch die Ableitung der Elemente (yi, y2) des Ausgangvektors (y) eliminiert werden und die Elemente (yi , y2) des Ausgangsvektors (y) durch das Regelgesetz (100; u(x)) voneinander entkoppelt sind.
8. Verwendung einer Schlupfregelvorrichtung nach einem der
vorangegangenen Ansprüche zur nichtlinearen Multi-Schlupfregelung für skalierbare Antriebskonzepte.
9. Software-Funktionsmodul (8, 9, 10) für mindestens eine elektronische Steuereinheit der Schlupfregelvorrichtung, wobei die mindestens eine elektronische Steuereinheit aktuatornah ist und wobei bei Vorhandensein von mehreren Aktuatoren die erfindungsgemäße Schlupfregelvorrichtung in jedem Steuergerät des jeweiligen Aktuators vorgesehen ist.
10. Software-Funktionsmodul (8, 9, 10) für mindestens eine elektronische Steuereinheit einer Schlupfregelvorrichtung für ein Allrad-Kraftfahrzeug mit einem Verteilergetriebe (VTG), das einem Regelungsentwurf unterliegt, das mit einem Synthesemodell für ein Allradfahrzeug durchgeführt wird und die Aktuatordynamik für den Antriebsmotor (VM) und den Elektromotor (EM) des Verteilergetriebes (VTG) berücksichtigt, wobei das Regelungskonzept eine Eingangs-Ausgangs-Linearisierung (10) verwendet, durch das sich zwei neue Eingänge (vi, V2) ergeben, für die ein lineares Referenzmodell (9) und zusätzlich ein PID-Regler (8) zur Kompensation von Störungen und Modellungenauigkeiten vorgegeben werden, wobei im gesamten Regelungsentwurf die Verwendung von unsicheren Parametern, die zu einem ungewünschte Fahrzeugverhalten führen könnten, vermieden werden und wobei als Messgrößen nur die Raddrehzahlen der vier Räder sowie das aktuelle Moment der beiden Aktuatoren verwendet werden.
PCT/EP2019/062368 2018-05-17 2019-05-14 Schlupfregelvorrichtung WO2019219699A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980030709.7A CN112218777B (zh) 2018-05-17 2019-05-14 滑移控制装置
ATA9122/2019A AT524084B1 (de) 2018-05-17 2019-05-14 Schlupfregelvorrichtung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP18173045.8 2018-05-17
EP18173045.8A EP3569436B1 (de) 2018-05-17 2018-05-17 Traktionssteuerungssystem
DE102018212505.8 2018-07-26
DE102018212505.8A DE102018212505A1 (de) 2018-07-26 2018-07-26 Schlupfregelvorrichtung

Publications (1)

Publication Number Publication Date
WO2019219699A1 true WO2019219699A1 (de) 2019-11-21

Family

ID=66484083

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2019/062368 WO2019219699A1 (de) 2018-05-17 2019-05-14 Schlupfregelvorrichtung
PCT/EP2019/062367 WO2019219698A1 (en) 2018-05-17 2019-05-14 Traction control system

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/062367 WO2019219698A1 (en) 2018-05-17 2019-05-14 Traction control system

Country Status (4)

Country Link
US (1) US11760199B2 (de)
CN (2) CN112088105B (de)
AT (1) AT524084B1 (de)
WO (2) WO2019219699A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020112598A1 (de) 2020-05-08 2021-11-11 Bayerische Motoren Werke Aktiengesellschaft Zentrale Steuereinheit zur Vorgabe radselektiver Soll-Antriebs- und/oder Soll-Bremsmomente
DE102020112597A1 (de) 2020-05-08 2021-11-11 Bayerische Motoren Werke Aktiengesellschaft Zentrale Steuereinheit zur Vorgabe radselektiver Soll-Antriebs- und/oder Soll-Bremsmomente

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3082162B1 (fr) * 2018-06-11 2020-06-05 Renault S.A.S Procede et dispositif de mise au point d'une boucle fermee d'un dispositif d'aide a la conduite avance
DE102018216515A1 (de) * 2018-09-26 2020-03-26 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Bedaten eines Steuergeräts sowie Verfahren zum Betreiben eines Kraftfahrzeugs
CN110979024B (zh) * 2019-12-20 2021-11-19 合肥工业大学 一种基于内模的电动汽车速度跟踪控制方法
US11603102B2 (en) * 2020-12-28 2023-03-14 GM Global Technology Operations LLC Efficient and robust methodology for traction control system
CN113085574B (zh) * 2021-04-26 2022-08-16 浙江吉利控股集团有限公司 一种基于模糊pid的扭矩分配限滑控制方法及其装置
KR20230037722A (ko) * 2021-09-09 2023-03-17 현대자동차주식회사 차량의 주행 상태 판단 방법
CN114326404B (zh) * 2021-12-30 2024-01-23 中国航发控制系统研究所 基于低选-高选架构的航空发动机超限保护控制律设计方法
DE102022115515A1 (de) 2022-06-22 2023-12-28 Bayerische Motoren Werke Aktiengesellschaft Regelsystem für ein Kraftfahrzeug sowie Verfahren zur Erzeugung von einem radspezifischen Moment
CN115257762B (zh) * 2022-09-15 2023-09-26 广州汽车集团股份有限公司 车辆扭矩的控制方法及相关设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4129984A1 (de) * 1991-09-10 1993-03-11 Vdo Schindling Verfahren und einrichtung zur leistungsregelung einer brennkraftmaschine
DE10104600A1 (de) * 2001-02-02 2002-08-08 Bosch Gmbh Robert Regelungseinrichtung und Verfahren zum Regeln des dynamischen Verhaltens eines Rades
US20090210128A1 (en) * 2006-09-07 2009-08-20 Yokohama National University Slip ratio estimating device and slip ratio control device
WO2011003544A2 (en) * 2009-07-07 2011-01-13 Volvo Lastvagnar Ab Method and controller for controlling output torque of a propulsion unit.
DE102011085103A1 (de) * 2011-10-24 2013-04-25 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum Regeln der Fahrdynamik eines Kraftfahrzeugs und Vorrichtung zur Durchführung eines derartigen Verfahrens
FR2990656A1 (fr) * 2012-05-15 2013-11-22 Renault Sa Dispositif d'elaboration en temps reel de consigne de couple et vehicule equipe de ce dispositif
US20140343774A1 (en) * 2013-05-15 2014-11-20 Bayerische Motoren Werke Aktiengesellschaft Control System For A Motor Vehicle Having An Electronic Control Unit By Which The Drive Torque Of A Drive Unit Can Be Variably Distributed, As Required, On At Least Two Axles

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3052031B2 (ja) * 1993-04-30 2000-06-12 本田技研工業株式会社 車両の駆動輪トルク制御装置
US20120059538A1 (en) * 2010-09-07 2012-03-08 GM Global Technology Operations LLC Closed-loop speed and torque damping control for hybrid and electric vehicles
DE102013208329A1 (de) 2013-05-07 2014-11-13 Robert Bosch Gmbh Verfahren und Vorrichtung zum betreiben eines Kraftfahrzeugs
DE102014213663B4 (de) 2013-07-15 2024-04-11 Magna Powertrain Of America, Inc. Traktionssteuersystem für Vierrad-/Allradantrieb-Fahrzeuge mit Bordkamera
DE102013226894A1 (de) 2013-12-20 2015-06-25 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Vermeidung von Schwingungen im Antriebsstrang eines Kraftfahrzeugs mit Elektroantrieb
US9809213B2 (en) * 2014-01-14 2017-11-07 Ford Global Technologies, Llc Power split hybrid electric vehicle motor torque control using state estimation
US9296391B2 (en) * 2014-03-25 2016-03-29 Ford Global Technologies, Llc E-drive torque sensing vehicle state estimation methods for vehicle control
DE102014208796A1 (de) 2014-05-09 2015-11-12 Continental Teves Ag & Co. Ohg Verfahren zur Verbesserung des Regelverhaltens eines elektronischen Kraftfahrzeugbremssystems
SE538118C2 (sv) * 2014-05-30 2016-03-08 Scania Cv Ab Styrning av ett fordons drivlina baserat på en tidsderivataför dynamiskt vridmoment
DE102015222059A1 (de) 2015-11-10 2017-05-11 Bayerische Motoren Werke Aktiengesellschaft Fahrdynamikregelsystem in einem Kraftfahrzeug und elektronische Fahrdynamiksteuereinheit für ein Fahrdynamikregelsystem
US10994721B2 (en) 2016-09-13 2021-05-04 Ford Global Technologies, Llc Engine and motor control during wheel torque reversal in a hybrid vehicle
US10060373B2 (en) * 2017-01-18 2018-08-28 GM Global Technology Operations LLC Linear parameter varying model predictive control for engine assemblies
CN106809207B (zh) * 2017-01-19 2019-04-05 无锡南理工新能源电动车科技发展有限公司 一种电动车辆载重和坡度自适应控制方法及其车辆
DE102017216203A1 (de) 2017-09-13 2019-03-14 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Schwingungsdämpfung mittels Differenzdrehzahlregelung des Antriebs eines Fahrzeugs im nicht-linearen Reifenschlupfbereich
CN107719372B (zh) * 2017-09-30 2019-07-12 武汉理工大学 基于动态控制分配的四驱电动汽车动力学多目标控制系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4129984A1 (de) * 1991-09-10 1993-03-11 Vdo Schindling Verfahren und einrichtung zur leistungsregelung einer brennkraftmaschine
DE10104600A1 (de) * 2001-02-02 2002-08-08 Bosch Gmbh Robert Regelungseinrichtung und Verfahren zum Regeln des dynamischen Verhaltens eines Rades
US20090210128A1 (en) * 2006-09-07 2009-08-20 Yokohama National University Slip ratio estimating device and slip ratio control device
WO2011003544A2 (en) * 2009-07-07 2011-01-13 Volvo Lastvagnar Ab Method and controller for controlling output torque of a propulsion unit.
DE102011085103A1 (de) * 2011-10-24 2013-04-25 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum Regeln der Fahrdynamik eines Kraftfahrzeugs und Vorrichtung zur Durchführung eines derartigen Verfahrens
FR2990656A1 (fr) * 2012-05-15 2013-11-22 Renault Sa Dispositif d'elaboration en temps reel de consigne de couple et vehicule equipe de ce dispositif
US20140343774A1 (en) * 2013-05-15 2014-11-20 Bayerische Motoren Werke Aktiengesellschaft Control System For A Motor Vehicle Having An Electronic Control Unit By Which The Drive Torque Of A Drive Unit Can Be Variably Distributed, As Required, On At Least Two Axles

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Vieweg Handbuch Kraftfahrzeugtechnik", 2016, SPRINGER VIEWEG
ALBERTO ISIDORI: "Nonlinear Control Systems", 1989, SPRINGER
JÜRGEN ADAMY: "Nichtlineare Systeme und Regelungen", 2014, SPRINGER VIEWEG
METIN ERSOY; STEFAN GIES: "Fahrwerkhandbuch", 2017, SPRINGER VIEWEG
V. IVANOV; D. SAVITSKI; B. SHYROKAU: "A survey of traction control and antilock braking systems of full electric vehicles with individually controlled electric motors", IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, vol. 64, no. 9, 2015, pages 3878 - 3896, XP011669017, DOI: doi:10.1109/TVT.2014.2361860

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020112598A1 (de) 2020-05-08 2021-11-11 Bayerische Motoren Werke Aktiengesellschaft Zentrale Steuereinheit zur Vorgabe radselektiver Soll-Antriebs- und/oder Soll-Bremsmomente
DE102020112597A1 (de) 2020-05-08 2021-11-11 Bayerische Motoren Werke Aktiengesellschaft Zentrale Steuereinheit zur Vorgabe radselektiver Soll-Antriebs- und/oder Soll-Bremsmomente

Also Published As

Publication number Publication date
US20210114457A1 (en) 2021-04-22
CN112088105B (zh) 2024-04-05
US11760199B2 (en) 2023-09-19
AT524084A5 (de) 2022-02-15
AT524084B1 (de) 2022-08-15
WO2019219698A1 (en) 2019-11-21
CN112218777A (zh) 2021-01-12
CN112218777B (zh) 2023-10-13
CN112088105A (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
AT524084B1 (de) Schlupfregelvorrichtung
EP1056630B1 (de) Vorrichtung und verfahren zur stabilisierung eines fahrzeuges
DE102010014971B4 (de) Verfahren zum Betreiben eines Kraftfahrzeugs mit zumindest zwei Antrieben sowie Kraftfahrzeug mit zumindest zwei Antrieben
DE4028320C2 (de)
DE10157976A1 (de) Fahrzeuganhängersteuersystem
DE102008041897A1 (de) Verfahren zum Betreiben eines Antriebs eines Kraftfahrzeugs sowie Antriebsvorrichtung und elektronisches Steuergerät
DE4111023A1 (de) Elektronisches system fuer ein fahrzeug
EP0996558A1 (de) Verfahren und vorrichtung zur stabilisierung eines fahrzeuges
DE19838336A1 (de) System zur Steuerung der Bewegung eines Fahrzeugs
WO2001089898A1 (de) Verfahren und vorrichtung zur koordination mehrerer fahrsystemeinrichtungen eines fahrzeugs
DE102013208965A1 (de) Steuerungsvorrichtung für ein Kraftfahrzeug mit einer elektronischen Steuereinheit, durch die das Antriebsmoment einer Antriebseinheit bedarfsweise auf mindestens zwei Achsen variabel verteilbar ist
DE102007051590A1 (de) Verfahren zum Verteilen von Antriebs- oder Schleppmomenten auf die angetriebenen Räder eines Kfz
DE102006033257A9 (de) Lastverlagerungsadaptive Antriebs-Schlupf-Regelung
DE19849508B4 (de) Verfahren zur Regelung des Fahrverhaltens eines Fahrzeuges
DE102011085103B4 (de) Verfahren zum Regeln der Fahrdynamik eines Kraftfahrzeugs
EP0700822B1 (de) Verfahren zur Begrenzung des Knickwinkels zwischen dem Vorderwagen und dem Nachläufer eines Gelenkomnibusses
DE102018212505A1 (de) Schlupfregelvorrichtung
DE19831249A1 (de) Verfahren und Regel- und Steuereinheit zur Beeinflussung der Fahrdynamik eines Kraftfahrzeugs
WO2019174716A9 (de) Verfahren zur steuerung eines antriebsmoments und antriebsstranganordnung zur durchführung des verfahrens
DE102018201189A1 (de) Verfahren zum Betrieb eines Fahrerassistenzsystems
WO2000018623A1 (de) Vorrichtung und verfahren zur beeinflussung des vortriebes eines fahrzeuges
DE102017109975A1 (de) Zugdämpfungssystem
DE102017212650A1 (de) Steuersystem in einem vierradangetriebenen Kraftfahrzeug sowie Verfahren zur Steuerung
DE102013019902A1 (de) Vorrichtungen und Verfahren zum Verteilen einer Gesamtsollmoment-Vorgabe
DE102019128459A1 (de) Steuervorrichtung für ein Fahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19723422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19723422

Country of ref document: EP

Kind code of ref document: A1