CN110979024B - 一种基于内模的电动汽车速度跟踪控制方法 - Google Patents

一种基于内模的电动汽车速度跟踪控制方法 Download PDF

Info

Publication number
CN110979024B
CN110979024B CN201911329029.3A CN201911329029A CN110979024B CN 110979024 B CN110979024 B CN 110979024B CN 201911329029 A CN201911329029 A CN 201911329029A CN 110979024 B CN110979024 B CN 110979024B
Authority
CN
China
Prior art keywords
follows
electric automobile
speed
model
global
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911329029.3A
Other languages
English (en)
Other versions
CN110979024A (zh
Inventor
平兆武
李垚熠
熊邦国
黄云志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201911329029.3A priority Critical patent/CN110979024B/zh
Publication of CN110979024A publication Critical patent/CN110979024A/zh
Application granted granted Critical
Publication of CN110979024B publication Critical patent/CN110979024B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种基于内模的电动汽车速度跟踪控制方法,该方法包括:步骤1,选择永磁同步电机作为驱动电机并将电机模型与电动汽车传动系统整合,建立整体系统的非线性数学模型;步骤2,将电动汽车的速度跟踪和干扰抑制问题描述为一个全局鲁棒伺服控制问题;步骤3,设计内模,将整体系统的全局鲁棒伺服控制问题转化为由整体系统和内模组成的增广系统的全局鲁棒镇定问题;步骤4,采用反步法设计状态反馈控制器,解决增广系统的全局鲁棒镇定问题。本发明针对电动汽车行驶过程中运行环境造成系统参数变化和系统外界干扰引入的现象,设计了基于内模的状态反馈控制器,实现了电动汽车速度跟踪控制。

Description

一种基于内模的电动汽车速度跟踪控制方法
技术领域
本发明涉及伺服系统控制领域,具体涉及一种基于内模的电动汽车速度跟踪控制方法。
背景技术
随着世界石油资源短缺和环境污染日益严重,寻找新形式的能源代替石油为汽车提供动力已成为必然的趋势,而电动汽车则是新能源汽车中的主力军。永磁同步电机因其功率因数高、低损耗等优良性能而被广泛应用在电动汽车中。然而,把永磁同步电机用作电动汽车的驱动装置时,电机或汽车传动系统参数的变化以及系统外界干扰的引入会直接影响电机的控制性能,进而影响车辆的行驶特性。
此外,非线性输出调节理论近年来经历了快速的发展,而作为其常用控制策略的内模控制方法能够解决复杂系统的轨迹跟踪与干扰抑制问题,并具有良好的鲁棒性。针对电动汽车的整体复杂非线性系统,内模控制方法可以实现高精度的速度跟踪与干扰抑制性能,并允许整体系统的所有参数未知。
发明内容
基于背景技术存在的技术问题,本发明提出了一种基于内模的电动汽车速度跟踪控制方法。针对电动汽车的整体复杂系统,设计了内模控制器,从而实现了高精度的速度跟踪与干扰抑制性能,并具有良好的鲁棒性。
本发明的技术方案是:
一种基于内模的电动汽车速度跟踪控制方法,其特征在于,包括以下步骤:
步骤1:选择永磁同步电机作为驱动电机并将电机模型与电动汽车传动系统整合,建立整体系统的非线性数学模型;
步骤2:将电动汽车的速度跟踪和干扰抑制问题描述为一个全局鲁棒伺服控制问题;
步骤3:设计内模,将整体系统的全局鲁棒伺服控制问题转化为由整体系统和内模组成的增广系统的全局鲁棒镇定问题;
步骤4:采用反步法设计状态反馈控制器,解决增广系统的全局鲁棒镇定问题。
进一步地,所述的一种基于内模的电动汽车速度跟踪控制方法,其特征在于,步骤1中,选择永磁同步电机作为驱动电机并将电机模型与电动汽车传动系统整合,建立整体系统的非线性数学模型,其过程如下:
1.1,永磁同步电机数学模型如下:
Figure GDA0003224493660000024
Figure GDA0003224493660000021
Figure GDA0003224493660000022
Figure GDA0003224493660000023
其中θM为电机转子角度,ωM为电机转子角速度,id,iq,ud,uq为dq轴定子电流与电压,JM为电机的转动惯量,TL为电机的负载转矩,Φv为转子磁链,p为电机极对数,Rs,L为定子电阻与电感,B为粘性摩擦系数。
1.2,通过分析电动汽车在行驶过程中的受力,可以得到电动汽车传动系统的模型如下:
Figure GDA0003224493660000034
其中v为汽车行驶速度,m为汽车的整体质量,g为重力加速度,FL为汽车受到的牵引力,χroad为路面坡度,Fwind为空气阻力,FR为滚动阻力。
1.3,建立空气阻力Fwind的模型如下:
Figure GDA0003224493660000031
其中cair为空气阻力系数,ρa为空气密度,AL为车辆迎风正面面积。
1.4,建立滚动阻力FR的模型如下:
FR=m(cr1+cr2W) (4)
其中cr1,cr2是取决于轮胎和轮胎压力的常数,r为车轮半径,ωW为车轮转速。
1.5,将车轮转速ωW与汽车行驶速度v关系表示如下:
Figure GDA0003224493660000032
1.6,根据牛顿第二定律得出车轮转速与车轮所受力矩之间的关系如下:
Figure GDA0003224493660000033
其中JW为车轮转动惯量,TW为连接车轮传动轴的输出转矩,Tf为车轮的摩擦转矩。
1.7,根据传动部分转矩关系与速度关系得出如下关系式:
TW=ntnfTLM=ntnfωW (7)
其中nt,nf分别为变速箱和主减速器的变速比。
1.8,结合公式(1)~(7),得到永磁同步电机驱动电动汽车的整体系统数学模型如下:
Figure GDA0003224493660000041
Figure GDA0003224493660000042
Figure GDA0003224493660000043
其中n=ntnf;δ=JW+mr2+n2JM;β=rm;
Figure GDA0003224493660000044
进一步地,所述的一种基于内模的电动汽车速度跟踪控制方法,其特征在于,步骤2中,将电动汽车的速度跟踪和干扰抑制问题描述为一个全局鲁棒伺服控制问题,其过程如下:
2.1,假定车轮的参考转速ωd和包含摩擦转矩的等效干扰βcr1+βgsinχroad+Tf可由如下的外部系统产生:
Figure GDA0003224493660000045
其中A1,G1,G2为定常矩阵。
2.2,令:x1,1=ωW,x1,2=iq,x2,1=id,u1=uq,u2=ud,
Figure GDA0003224493660000046
Figure GDA0003224493660000047
a16=np,
Figure GDA0003224493660000048
a22=np,
Figure GDA0003224493660000049
Figure GDA00032244936600000410
将系统(8)写为如下形式:
Figure GDA00032244936600000411
Figure GDA00032244936600000412
Figure GDA00032244936600000413
Figure GDA00032244936600000414
其中e1为车轮转速跟踪误差,e2为d轴电流跟踪误差。
2.3,考虑不确定因素所产生的系统参数摄动,定义不确定参数
Figure GDA0003224493660000051
Figure GDA0003224493660000052
其中
Figure GDA0003224493660000053
为整体系统的标称值,w∈R13。将系统(9)与(10)相结合,得到如下的紧凑形式:
Figure GDA0003224493660000054
v=A1v,
e=H(x,u,v,w). (11)
其中x=(x1,1,x1,2,x2,1)T,u=(u1,u2)T
Figure GDA0003224493660000055
2.4,此时系统(8)的全局速度跟踪控制问题已被描述为系统(11)的全局鲁棒伺服控制问题,其控制目标为在保证从任意初始值出发的闭环系统轨迹有界的情况下,跟踪误差渐近趋于0。
进一步地,所述的一种基于内模的电动汽车速度跟踪控制方法,其特征在于,步骤3中,设计内模,将整体系统的全局鲁棒伺服控制问题转化为由整体系统和内模组成的增广系统的全局鲁棒镇定问题,其过程如下:
3.1,求解如下的调节器方程:
Figure GDA0003224493660000056
0=H(x(v,w),u(v,w),v,w). (12)
其中x(v,w),u(v,w)分别是稳态状态和稳态输入。得到状态和输入的稳态解如下:
x1,1(v,w)=G1v,
Figure GDA0003224493660000061
x2,1(v,w)=0,
Figure GDA0003224493660000062
Figure GDA0003224493660000063
3.2,令g(x,u)=col(x1,2,u1,u2),用gi(x,u)表示g(x,u)中第i个元素,其中i=1,2,3。构建如下的稳态发生器来产生稳态解:
Figure GDA0003224493660000064
Figure GDA00032244936600000616
其中Ti为任意非奇异矩阵,(Φii)为一对能观测矩阵。
3.3,选择一对能控矩阵(Mi,Ni),其中Mi为Hurwitz矩阵,使得Ti满足如下的Sylvester方程:
TiΦi-MiTi=NiΨi. (14)
3.4,设计内模为如下形式:
Figure GDA0003224493660000065
Figure GDA0003224493660000066
Figure GDA0003224493660000067
3.5,进行如下的坐标变换与输入变换:
Figure GDA0003224493660000068
Figure GDA0003224493660000069
Figure GDA00032244936600000610
Figure GDA00032244936600000611
Figure GDA00032244936600000612
Figure GDA00032244936600000613
Figure GDA00032244936600000614
Figure GDA00032244936600000615
得到如下的误差方程:
Figure GDA0003224493660000071
Figure GDA0003224493660000072
Figure GDA0003224493660000073
Figure GDA0003224493660000074
Figure GDA0003224493660000075
Figure GDA0003224493660000076
其中
Figure GDA0003224493660000077
Figure GDA0003224493660000078
Figure GDA0003224493660000079
c2(v)=-a11-2a12G1v+b2,
Figure GDA00032244936600000710
Figure GDA00032244936600000711
Figure GDA00032244936600000712
c6(v)=-a16G1v,
Figure GDA00032244936600000713
Figure GDA00032244936600000714
Figure GDA00032244936600000715
Figure GDA0003224493660000081
Figure GDA0003224493660000082
c12(v)=a22G1v,
Figure GDA0003224493660000083
Figure GDA0003224493660000084
d3=-a12,
Figure GDA0003224493660000085
Figure GDA0003224493660000086
Figure GDA0003224493660000087
Figure GDA0003224493660000088
Figure GDA0003224493660000089
Figure GDA00032244936600000810
Figure GDA00032244936600000811
Figure GDA00032244936600000812
d12=-a16,
Figure GDA00032244936600000813
Figure GDA00032244936600000814
Figure GDA00032244936600000815
Figure GDA00032244936600000816
Figure GDA00032244936600000817
Figure GDA00032244936600000818
d19=a22,
Figure GDA00032244936600000819
Figure GDA00032244936600000820
3.6,此时,系统(11)的全局鲁棒伺服控制问题已经被转化为系统(17)的全局鲁棒镇定问题。
进一步地,所述的一种基于内模的电动汽车速度跟踪控制方法,其特征在于,步骤4中,采用反步法设计状态反馈控制器,解决增广系统的全局鲁棒镇定问题,其过程如下:
4.1,为了使用反步法设计控制器,首先定义如下的记号:
Figure GDA0003224493660000091
Figure GDA0003224493660000092
Figure GDA0003224493660000093
Figure GDA0003224493660000094
Figure GDA0003224493660000095
其中
Figure GDA0003224493660000096
为特定的非负光滑函数。
4.2,令
Figure GDA0003224493660000097
针对X1子系统,令
Figure GDA0003224493660000098
其中P1为一个正定对称矩阵满足
Figure GDA0003224493660000099
I为实对称矩阵,m1,m2为特定的正数。选择
Figure GDA00032244936600000910
于是存在一个足够大的增益k1满足如下的不等式:
Figure GDA00032244936600000911
其中l1为特定的正数。
4.3,针对X2子系统,令
Figure GDA00032244936600000912
其中P2为一个正定对称矩阵满足
Figure GDA00032244936600000913
m3,m4为特定的正数。选择
Figure GDA00032244936600000914
于是存在一个足够大的增益k2满足如下的不等式:
Figure GDA00032244936600000915
其中l2为特定的正数。
4.4,最后,令
Figure GDA00032244936600000916
其中P3为一个正定对称矩阵满足
Figure GDA00032244936600000918
m5,m6为特定的正数。选择
Figure GDA00032244936600000917
于是存在一个足够大的增益k3满足如下的不等式:
Figure GDA00032244936600000919
4.5,得到如下控制律解决系统(17)的全局镇定问题:
Figure GDA0003224493660000101
Figure GDA0003224493660000102
Figure GDA0003224493660000103
4.6,得到最终的控制器为如下形式:
Figure GDA0003224493660000104
Figure GDA0003224493660000105
Figure GDA0003224493660000106
Figure GDA0003224493660000107
Figure GDA0003224493660000108
Figure GDA0003224493660000109
本发明的优点是:
本发明提出的一种基于内模的电动汽车速度跟踪控制方法,针对电动汽车行驶过程中运行环境造成系统参数变化和系统外界干扰引入的现象,设计了基于内模的状态反馈控制器,实现了电动汽车速度跟踪控制,具有高精度的速度跟踪与干扰抑制性能,并具有良好的鲁棒性。
附图说明
图1为电动汽车基本受力分析图;
图2为整体系统控制框图;
图3为车轮转速跟踪曲线;
图4为车轮转速误差曲线;
图5为id电流曲线;
图6为iq电流曲线;
图7为定子电压ud曲线;
图8为定子电压uq曲线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
实施例。
如图1、2所示,一种基于内模的电动汽车速度跟踪控制方法,包含以下步骤:
步骤1,选择永磁同步电机作为驱动电机并将电机模型与电动汽车传动系统整合,建立整体系统的非线性数学模型,其过程如下:
1.1,永磁同步电机数学模型如下:
Figure GDA0003224493660000111
Figure GDA0003224493660000112
Figure GDA0003224493660000113
Figure GDA0003224493660000114
其中θM为电机转子角度,ωM为电机转子角速度,id,iq,ud,uq为dq轴定子电流与电压,JM为电机的转动惯量,TL为电机的负载转矩,Φv为转子磁链,p为电机极对数,Rs,L为定子电阻与电感,B为粘性摩擦系数。
1.2,通过分析电动汽车在行驶过程中的受力,可以得到电动汽车传动系统的模型如下:
Figure GDA0003224493660000115
其中v为汽车行驶速度,m为汽车的整体质量,g为重力加速度,FL为汽车受到的牵引力,χroad为路面坡度,Fwind为空气阻力,FR为滚动阻力。
1.3,建立空气阻力Fwind的模型如下:
Figure GDA0003224493660000121
其中cair为空气阻力系数,ρa为空气密度,AL为车辆迎风正面面积。
1.4,建立滚动阻力FR的模型如下:
FR=m(cr1+cr2W) (4)
其中cr1,cr2是取决于轮胎和轮胎压力的常数,r为车轮半径,ωW为车轮转速。
1.5,将车轮转速ωW与汽车行驶速度v关系表示如下:
Figure GDA0003224493660000122
1.6,根据牛顿第二定律得出车轮转速与车轮所受力矩之间的关系如下:
Figure GDA0003224493660000123
其中JW为车轮转动惯量,TW为连接车轮传动轴的输出转矩,Tf为车轮的摩擦转矩。
1.7,根据传动部分转矩关系与速度关系得出如下关系式:
TW=ntnfTLM=ntnfωW (7)
其中nt,nf分别为变速箱和主减速器的变速比。
1.8,结合公式(1)~(7),得到永磁同步电机驱动电动汽车的整体系统数学模型如下:
Figure GDA0003224493660000131
Figure GDA0003224493660000132
Figure GDA0003224493660000133
其中n=ntnf;δ=JW+mr2+n2JM;β=rm;
Figure GDA0003224493660000134
步骤2,将电动汽车的速度跟踪和干扰抑制问题描述为一个全局鲁棒伺服控制问题,其过程如下:
2.1,假定车轮的参考转速ωd和包含摩擦转矩的等效干扰βcr1+βgsinχroad+Tf可由如下的外部系统产生:
Figure GDA00032244936600001317
其中A1,G1,G2为定常矩阵。
2.2,令:x1,1=ωW,x1,2=iq,x2,1=id,u1=uq,u2=ud,
Figure GDA0003224493660000135
Figure GDA0003224493660000136
a16=np,
Figure GDA0003224493660000137
a22=np,
Figure GDA0003224493660000138
Figure GDA0003224493660000139
将系统(8)写为如下形式:
Figure GDA00032244936600001310
Figure GDA00032244936600001311
Figure GDA00032244936600001312
Figure GDA00032244936600001313
其中e1为车轮转速跟踪误差,e2为d轴电流跟踪误差。
2.3,考虑不确定因素所产生的系统参数摄动,定义不确定参数
Figure GDA00032244936600001314
Figure GDA00032244936600001315
其中
Figure GDA00032244936600001316
为整体系统的标称值,w∈R13。将系统(9)与(10)相结合,得到如下的紧凑形式:
Figure GDA0003224493660000141
v=A1v,
e=H(x,u,v,w). (11)
其中x=(x1,1,x1,2,x2,1)T,u=(u1,u2)T
Figure GDA0003224493660000142
2.4,此时系统(8)的全局速度跟踪控制问题已被描述为系统(11)的全局鲁棒伺服控制问题,其控制目标为在保证从任意初始值出发的闭环系统轨迹有界的情况下,跟踪误差渐近趋于0。
步骤3,设计内模,将整体系统的全局鲁棒伺服控制问题转化为由整体系统和内模组成的增广系统的全局鲁棒镇定问题,其过程如下:
3.1,求解如下的调节器方程:
Figure GDA0003224493660000143
0=H(x(v,w),u(v,w),v,w). (12)
其中x(v,w),u(v,w)分别是稳态状态和稳态输入。得到状态和输入的稳态解如下:
x1,1(v,w)=G1v,
Figure GDA0003224493660000144
x2,1(v,w)=0,
Figure GDA0003224493660000145
Figure GDA0003224493660000146
3.2,令g(x,u)=col(x1,2,u1,u2),用gi(x,u)表示g(x,u)中第i个元素,其中i=1,2,3。构建如下的稳态发生器来产生稳态解:
Figure GDA0003224493660000151
Figure GDA0003224493660000152
其中Ti为任意非奇异矩阵,(Φii)为一对能观测矩阵。
3.3,选择一对能控矩阵(Mi,Ni),其中Mi为Hurwitz矩阵,使得Ti满足如下的Sylvester方程:
TiΦi-MiTi=NiΨi. (14)
3.4,设计内模为如下形式:
Figure GDA0003224493660000153
Figure GDA0003224493660000154
Figure GDA0003224493660000155
3.5,进行如下的坐标变换与输入变换:
Figure GDA0003224493660000156
Figure GDA0003224493660000157
Figure GDA0003224493660000158
Figure GDA0003224493660000159
Figure GDA00032244936600001510
Figure GDA00032244936600001511
Figure GDA00032244936600001512
Figure GDA00032244936600001513
得到如下的误差方程:
Figure GDA00032244936600001514
Figure GDA00032244936600001515
Figure GDA00032244936600001516
Figure GDA00032244936600001517
Figure GDA00032244936600001518
Figure GDA00032244936600001519
其中
Figure GDA0003224493660000171
Figure GDA0003224493660000172
Figure GDA0003224493660000173
c2(v)=-a11-2a12G1v+b2,
Figure GDA0003224493660000174
Figure GDA0003224493660000175
Figure GDA0003224493660000176
c6(v)=-a16G1v,
Figure GDA0003224493660000177
Figure GDA0003224493660000178
Figure GDA0003224493660000179
Figure GDA00032244936600001710
Figure GDA00032244936600001711
c12(v)=a22G1v,
Figure GDA00032244936600001712
Figure GDA00032244936600001713
d3=-a12,
Figure GDA00032244936600001714
Figure GDA00032244936600001715
Figure GDA00032244936600001716
Figure GDA00032244936600001717
Figure GDA00032244936600001718
Figure GDA00032244936600001719
Figure GDA00032244936600001720
Figure GDA00032244936600001721
d12=-a16,
Figure GDA00032244936600001722
Figure GDA00032244936600001723
Figure GDA00032244936600001724
Figure GDA00032244936600001725
Figure GDA00032244936600001726
Figure GDA00032244936600001727
d19=a22,
Figure GDA0003224493660000181
Figure GDA0003224493660000182
3.6,此时,系统(11)的全局鲁棒伺服控制问题已经被转化为系统(17)的全局鲁棒镇定问题。
步骤4,采用反步法设计状态反馈控制器,解决增广系统的全局鲁棒镇定问题,其过程如下:
4.1,为了使用反步法设计控制器,首先定义如下的记号:
Figure GDA0003224493660000183
Figure GDA0003224493660000184
Figure GDA0003224493660000185
Figure GDA0003224493660000186
Figure GDA0003224493660000187
其中
Figure GDA0003224493660000188
为特定的非负光滑函数。
4.2,令
Figure GDA0003224493660000189
针对X1子系统,令
Figure GDA00032244936600001810
其中P1为一个正定对称矩阵满足
Figure GDA00032244936600001811
I为实对称矩阵,m1,m2为特定的正数。选择
Figure GDA00032244936600001812
于是存在一个足够大的增益k1满足如下的不等式:
Figure GDA00032244936600001813
其中l1为特定的正数。
4.3,针对X2子系统,令
Figure GDA00032244936600001814
其中P2为一个正定对称矩阵满足
Figure GDA00032244936600001815
m3,m4为特定的正数。选择
Figure GDA00032244936600001816
于是存在一个足够大的增益k2满足如下的不等式:
Figure GDA0003224493660000191
其中l2为特定的正数。
4.4,最后,令
Figure GDA0003224493660000192
其中P3为一个正定对称矩阵满足
Figure GDA0003224493660000193
m5,m6为特定的正数。选择
Figure GDA0003224493660000194
于是存在一个足够大的增益k3满足如下的不等式:
Figure GDA0003224493660000195
4.5,得到如下控制律解决系统(17)的全局镇定问题:
Figure GDA0003224493660000196
Figure GDA0003224493660000197
Figure GDA0003224493660000198
4.6,得到最终的控制器为如下形式:
Figure GDA0003224493660000199
Figure GDA00032244936600001910
Figure GDA00032244936600001911
Figure GDA00032244936600001912
Figure GDA00032244936600001913
Figure GDA00032244936600001914
为了验证所提方法的有效性,本发明对所提出控制器的控制效果进行仿真验证,所选用的永磁同步电机的标称值为:极对数p=4,定子电阻
Figure GDA00032244936600001915
磁链
Figure GDA00032244936600001916
定子电感
Figure GDA00032244936600001917
转动惯量
Figure GDA00032244936600001918
粘性摩擦系数
Figure GDA00032244936600001919
所选用的电动汽车传动系统的标称值为:车体总质量
Figure GDA00032244936600001920
车轮转动惯量
Figure GDA00032244936600001921
迎风面积
Figure GDA00032244936600001922
空气阻力系数
Figure GDA00032244936600001923
空气密度
Figure GDA00032244936600001924
总变速比n=7,轮胎常数
Figure GDA00032244936600001925
轮胎压力常数
Figure GDA00032244936600001926
重力加速度g=9.8m/s2,路面坡度
Figure GDA00032244936600001927
摩擦转矩设置为一个常值信号Tf=10N.m,参考速度设置为一个斜坡信号与常值信号的组合,当0<t≤20s时参考速度设置为ωd=2t(rad/s),当20<t≤40s时,参考速度设置为ωd=40rad/s,则外部系统参数如下:
Figure GDA0003224493660000201
G1=[1 0 0],G2=[0 0 1].
控制器参数设计为:
Figure GDA0003224493660000202
Figure GDA0003224493660000203
Figure GDA0003224493660000204
k1=800,k2=10,k3=300。
系统不确定参数选择如下:
Figure GDA0003224493660000205
Figure GDA0003224493660000206
设置初值为ωW(0)=0rad/s,id(0)=0.1A,iq(0)=0A,η(0)=0。
基于上述的一系列参数,图3为车轮转速跟踪曲线,图4为车轮转速误差曲线,图5为定子电流id曲线,图中曲线反映了所设计的控制器在外部干扰和整体系统参数摄动的条件下有良好的速度跟踪性能和电流跟踪性能,图6为定子电流iq曲线,图7和图8分别为永磁同步电机ud和uq曲线。从图3-图8的仿真结果可以看出,所设计的内模控制器可以实现高精度的速度跟踪与干扰抑制性能,并具有良好的鲁棒性。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (1)

1.一种基于内模的电动汽车速度跟踪控制方法,其特征在于,包括以下步骤:
步骤1:选择永磁同步电机作为驱动电机并将电机模型与电动汽车传动系统整合,建立整体系统的非线性数学模型;
步骤2:将电动汽车的速度跟踪和干扰抑制问题描述为一个全局鲁棒伺服控制问题;
步骤3:设计内模,将整体系统的全局鲁棒伺服控制问题转化为由整体系统和内模组成的增广系统的全局鲁棒镇定问题;
步骤4:采用反步法设计状态反馈控制器,解决增广系统的全局鲁棒镇定问题;
步骤1中,选择永磁同步电机作为驱动电机并将电机模型与电动汽车传动系统整合,建立整体系统的非线性数学模型,其过程如下:
1.1,永磁同步电机数学模型如下:
Figure FDA0003224493650000011
Figure FDA0003224493650000012
Figure FDA0003224493650000013
Figure FDA0003224493650000014
其中θM为电机转子角度,ωM为电机转子角速度,id,iq,ud,uq为dq轴定子电流与电压,JM为电机的转动惯量,TL为电机的负载转矩,Φv为转子磁链,p为电机极对数,Rs,L为定子电阻与电感,B为粘性摩擦系数;
1.2,通过分析电动汽车在行驶过程中的受力,可以得到电动汽车传动系统的模型如下:
Figure FDA0003224493650000021
其中v为汽车行驶速度,m为汽车的整体质量,g为重力加速度,FL为汽车受到的牵引力,χroad为路面坡度,Fwind为空气阻力,FR为滚动阻力;
1.3,建立空气阻力Fwind的模型如下:
Figure FDA0003224493650000022
其中cair为空气阻力系数,ρa为空气密度,AL为车辆迎风正面面积;
1.4,建立滚动阻力FR的模型如下:
FR=m(cr1+cr2W) (4)
其中cr1,cr2是取决于轮胎和轮胎压力的常数,r为车轮半径,ωW为车轮转速;
1.5,将车轮转速ωW与汽车行驶速度v关系表示如下:
Figure FDA0003224493650000023
1.6,根据牛顿第二定律得出车轮转速与车轮所受力矩之间的关系如下:
Figure FDA0003224493650000024
其中JW为车轮转动惯量,TW为连接车轮传动轴的输出转矩,Tf为车轮的摩擦转矩;
1.7,根据传动部分转矩关系与速度关系得出如下关系式:
TW=ntnfTLM=ntnfωW (7)
其中nt,nf分别为变速箱和主减速器的变速比;
1.8,结合公式(1)~(7),得到永磁同步电机驱动电动汽车的整体系统数学模型如下:
Figure FDA0003224493650000031
Figure FDA0003224493650000032
Figure FDA0003224493650000033
其中n=ntnf;δ=JW+mr2+n2JM;β=rm;
Figure FDA0003224493650000034
步骤2中,将电动汽车的速度跟踪和干扰抑制问题描述为一个全局鲁棒伺服控制问题,其过程如下:
2.1,假定车轮的参考转速ωd和包含摩擦转矩的等效干扰βcr1+βgsinχroad+Tf可由如下的外部系统产生:
Figure FDA0003224493650000035
其中A1,G1,G2为定常矩阵;
2.2,令:x1,1=ωW,x1,2=iq,x2,1=id,u1=uq,u2=ud,
Figure FDA0003224493650000036
Figure FDA0003224493650000037
Figure FDA0003224493650000038
将系统(8)写为如下形式:
Figure FDA0003224493650000039
Figure FDA00032244936500000310
Figure FDA00032244936500000311
Figure FDA00032244936500000312
其中e1为车轮转速跟踪误差,e2为d轴电流跟踪误差;
2.3,考虑不确定因素所产生的系统参数摄动,定义不确定参数
Figure FDA00032244936500000313
Figure FDA0003224493650000041
其中
Figure FDA0003224493650000042
为整体系统的标称值,w∈R13;将系统(9)与(10)相结合,得到如下的紧凑形式:
Figure FDA0003224493650000043
Figure FDA0003224493650000044
e=H(x,u,v,w). (11)
其中x=(x1,1,x1,2,x2,1)T,u=(u1,u2)T
Figure FDA0003224493650000045
2.4,此时系统(8)的全局速度跟踪控制问题已被描述为系统(11)的全局鲁棒伺服控制问题,其控制目标为在保证从任意初始值出发的闭环系统轨迹有界的情况下,跟踪误差渐近趋于0;
步骤3中,设计内模,将整体系统的全局鲁棒伺服控制问题转化为由整体系统和内模组成的增广系统的全局鲁棒镇定问题,其过程如下:
3.1,求解如下的调节器方程:
Figure FDA0003224493650000046
0=H(x(v,w),u(v,w),v,w). (12)
其中x(v,w),u(v,w)分别是稳态状态和稳态输入,得到状态和输入的稳态解如下:
x1,1(v,w)=G1v,
Figure FDA0003224493650000051
x2,1(v,w)=0,
Figure FDA0003224493650000052
Figure FDA0003224493650000053
3.2,令g(x,u)=col(x1,2,u1,u2),用gi(x,u)表示g(x,u)中第i个元素,其中i=1,2,3,构建如下的稳态发生器来产生稳态解:
Figure FDA0003224493650000054
Figure FDA00032244936500000516
其中Ti为任意非奇异矩阵,(Φii)为一对可观测矩阵;
3.3,选择一对可控矩阵(Mi,Ni),其中Mi为Hurwitz矩阵,使得Ti满足如下的Sylvester方程:
TiΦi-MiTi=NiΨi. (14)
3.4,设计内模为如下形式:
Figure FDA0003224493650000055
Figure FDA0003224493650000056
Figure FDA0003224493650000057
3.5,进行如下的坐标变换与输入变换:
Figure FDA0003224493650000058
Figure FDA0003224493650000059
Figure FDA00032244936500000510
Figure FDA00032244936500000511
Figure FDA00032244936500000512
Figure FDA00032244936500000513
Figure FDA00032244936500000514
Figure FDA00032244936500000515
得到如下的误差方程:
Figure FDA0003224493650000061
Figure FDA0003224493650000062
Figure FDA0003224493650000063
Figure FDA0003224493650000064
Figure FDA0003224493650000065
Figure FDA0003224493650000066
其中
b1=Ψ1T1 -1(M1+N1Ψ1T1 -1),
b2=Ψ1T1 -1N1,
Figure FDA0003224493650000067
c2(v)=-a11-2a12G1v+b2,
Figure FDA0003224493650000068
Figure FDA0003224493650000069
Figure FDA00032244936500000610
c6(v)=-a16G1v,
Figure FDA00032244936500000611
Figure FDA00032244936500000612
Figure FDA00032244936500000613
c10(v)=a22G11T1 -1,
Figure FDA0003224493650000071
c12(v)=a22G1v,
Figure FDA0003224493650000072
d2=b11Ψ1T1 -1,
d3=-a12,
Figure FDA0003224493650000073
Figure FDA0003224493650000074
Figure FDA0003224493650000075
Figure FDA0003224493650000076
Figure FDA00032244936500000713
d9=-a14Ψ1T1 -1-b1,
Figure FDA0003224493650000077
d11=Ψ2T2 -1N2-a14-b2,
d12=-a16,
Figure FDA0003224493650000078
Figure FDA0003224493650000079
Figure FDA00032244936500000710
Figure FDA00032244936500000711
Figure FDA00032244936500000714
Figure FDA00032244936500000715
d19=a22,
d20=a22Ψ1T1 -1,
Figure FDA00032244936500000712
3.6,此时,系统(11)的全局鲁棒伺服控制问题已经被转化为系统(17)的全局鲁棒镇定问题;
步骤4中,采用反步法设计状态反馈控制器,解决增广系统的全局鲁棒镇定问题,其过程如下:
4.1,为了使用反步法设计控制器,首先定义如下的记号:
Figure FDA0003224493650000081
Figure FDA0003224493650000082
Figure FDA0003224493650000083
Figure FDA0003224493650000084
Figure FDA0003224493650000085
其中
Figure FDA0003224493650000086
为特定的非负光滑函数;
4.2,令
Figure FDA0003224493650000087
针对X1子系统,令
Figure FDA0003224493650000088
其中P1为一个正定对称矩阵满足
Figure FDA0003224493650000089
I为实对称矩阵,m1,m2为特定的正数;选择
Figure FDA00032244936500000810
于是存在一个足够大的增益k1满足如下的不等式:
Figure FDA00032244936500000811
其中l1为特定的正数;
4.3,针对X2子系统,令
Figure FDA00032244936500000812
其中P2为一个正定对称矩阵满足
Figure FDA00032244936500000813
m3,m4为特定的正数;选择
Figure FDA00032244936500000814
于是存在一个足够大的增益k2满足如下的不等式:
Figure FDA00032244936500000815
其中l2为特定的正数;
4.4,最后,令
Figure FDA00032244936500000816
其中P3为一个正定对称矩阵满足
Figure FDA00032244936500000817
m5,m6为特定的正数;选择
Figure FDA00032244936500000818
于是存在一个足够大的增益k3满足如下的不等式:
Figure FDA00032244936500000819
4.5,得到如下控制律解决系统(17)的全局镇定问题:
Figure FDA0003224493650000091
Figure FDA0003224493650000092
Figure FDA0003224493650000093
4.6,得到最终的控制器为如下形式:
Figure FDA0003224493650000094
Figure FDA0003224493650000095
Figure FDA0003224493650000096
Figure FDA0003224493650000097
Figure FDA0003224493650000098
Figure FDA0003224493650000099
由此,得到最终的控制器。
CN201911329029.3A 2019-12-20 2019-12-20 一种基于内模的电动汽车速度跟踪控制方法 Active CN110979024B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911329029.3A CN110979024B (zh) 2019-12-20 2019-12-20 一种基于内模的电动汽车速度跟踪控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911329029.3A CN110979024B (zh) 2019-12-20 2019-12-20 一种基于内模的电动汽车速度跟踪控制方法

Publications (2)

Publication Number Publication Date
CN110979024A CN110979024A (zh) 2020-04-10
CN110979024B true CN110979024B (zh) 2021-11-19

Family

ID=70073701

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911329029.3A Active CN110979024B (zh) 2019-12-20 2019-12-20 一种基于内模的电动汽车速度跟踪控制方法

Country Status (1)

Country Link
CN (1) CN110979024B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112936270B (zh) * 2021-02-04 2022-05-03 合肥工业大学 一种基于神经网络的机械臂内模控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103532448B (zh) * 2013-10-23 2015-08-05 东南大学 一种电动汽车驱动系统的控制方法
CN105629737B (zh) * 2016-03-25 2018-02-16 中车永济电机有限公司 一种内燃机车异步电机内模控制方法
CN106849791B (zh) * 2017-01-05 2019-06-28 江苏大学 一种抑制永磁直线电机不匹配扰动的滑模速度控制方法
CN106985813B (zh) * 2017-02-23 2019-05-31 南京航空航天大学 一种智能轮电驱动汽车的稳定性集成控制方法
KR102118184B1 (ko) * 2018-01-10 2020-06-02 서울과학기술대학교 산학협력단 외란 관측기를 이용한 기계 부하의 강인한 에뮬레이션 방법 및 장치
AT524084B1 (de) * 2018-05-17 2022-08-15 Bayerische Motoren Werke Ag Schlupfregelvorrichtung
CN109733242B (zh) * 2018-12-12 2022-05-10 西北工业大学 电动汽车充电机的神经模糊稳定性控制系统及控制方法
CN110289795B (zh) * 2019-05-29 2020-10-23 南京金崎新能源动力研究院有限公司 一种电动汽车用永磁同步电机控制系统及控制方法
CN110518853B (zh) * 2019-09-04 2021-03-16 合肥工业大学 一种永磁同步电机电流解耦控制方法及装置

Also Published As

Publication number Publication date
CN110979024A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
Li et al. Modelling and testing of in‐wheel motor drive intelligent electric vehicles based on co‐simulation with Carsim/Simulink
CN102769425B (zh) 一种基于mras和模糊控制的永磁同步电机控制方法
CN108649847A (zh) 基于频率法和模糊控制的电机pi控制器参数整定方法
CN110266226B (zh) 一种基于模型预测控制的电动汽车能效控制方法
CN110247586B (zh) 基于效率最优的电动公交车用永磁同步电机转矩分配方法
CN107121932A (zh) 电机伺服系统误差符号积分鲁棒自适应控制方法
Peters et al. A precise open-loop torque control for an interior permanent magnet synchronous motor (IPMSM) considering iron losses
Evangelou et al. Advances in the modelling and control of series hybrid electric vehicles
CN110979024B (zh) 一种基于内模的电动汽车速度跟踪控制方法
CN106788053B (zh) 基于观测器的电动车永磁同步电机系统误差补偿控制方法
Cash et al. Fuzzy logic field-oriented control of an induction motor and a permanent magnet synchronous motor for hybrid/electric vehicle traction applications
CN109873583B (zh) 基于状态受限的永磁同步电机模糊位置跟踪控制方法
CN103986400A (zh) 基于二维模糊控制的模型参考自适应系统参数自整定方法
CN112104279B (zh) 一种基于非线性终端滑模算法的轮毂电机控制方法
Rind et al. Rotor flux-MRAS based speed sensorless non-linear adaptive control of induction motor drive for electric vehicles
CN106655962B (zh) 基于极限学习机的电动汽车异步电机驱动系统控制方法
Tomar et al. Design of powertrain model for an electric vehicle using matlab/simulink
CN106533313A (zh) 电动汽车用永磁同步电机的极限学习机命令滤波控制方法
Rebouh et al. Nonlinear control by input-output linearization scheme for EV permanent magnet synchronous motor
KR101461909B1 (ko) 친환경 자동차의 모터 제어 시스템
Li et al. Theoretical and experimental analytical study of powertrain system by hardware-in-the-loop test bench for electric vehicles
Li et al. Load emulation compensation control of a test bench based on rigid-flexible coupling transmission for a vehicle electric drive system
Li et al. An internal model approach for speed tracking control of PMSM driven electric vehicle
Croitorescu et al. Functional modeling of an electric machine used on road vehicles
Tamás et al. Model in the loop simulation of an electric propulsion system using virtual reality

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant