WO2019216106A1 - 空調装置 - Google Patents

空調装置 Download PDF

Info

Publication number
WO2019216106A1
WO2019216106A1 PCT/JP2019/015763 JP2019015763W WO2019216106A1 WO 2019216106 A1 WO2019216106 A1 WO 2019216106A1 JP 2019015763 W JP2019015763 W JP 2019015763W WO 2019216106 A1 WO2019216106 A1 WO 2019216106A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
blower
condenser
refrigerant
evaporator
Prior art date
Application number
PCT/JP2019/015763
Other languages
English (en)
French (fr)
Inventor
茜 黒田
川野 茂
道夫 西川
達博 鈴木
佳之 横山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019216106A1 publication Critical patent/WO2019216106A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/022Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing comprising a compressor cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/028Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by air supply means, e.g. fan casings, internal dampers or ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/032Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers
    • F24F1/0323Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers

Definitions

  • This disclosure relates to an air conditioner in which components such as a refrigeration cycle are housed in a housing.
  • an air conditioner a device in which components such as a vapor compression refrigeration cycle apparatus and a blower are accommodated in a casing has been developed.
  • Such an air conditioner is disposed, for example, between a seat surface portion and a floor surface of a seat disposed in a vehicle, and the seat is used as an air-conditioning target space to improve the comfort.
  • Patent Document 1 As a technique related to such an air conditioner, for example, a technique described in Patent Document 1 is known.
  • the air conditioner described in Patent Document 1 houses a refrigeration cycle including a condenser and an evaporator, and one centrifugal fan inside a main body case.
  • This indication aims at improving the heat exchange performance in the heat exchanger of a refrigerating cycle device in an air conditioner which stored a refrigerating cycle device, a blower, etc. in the inside of one case in view of the above-mentioned point.
  • an air conditioner includes a refrigeration cycle apparatus, a first blower, a second blower, and a housing.
  • the refrigeration cycle apparatus has a condenser that condenses high-pressure refrigerant and an evaporator that evaporates low-pressure refrigerant.
  • the first blower blows heated air heated by the condenser.
  • the second blower blows the cooling air cooled by the evaporator.
  • the housing accommodates the refrigeration cycle apparatus, the first blower, and the second blower.
  • the first blower is disposed closer to the inlet side than the refrigerant flow outlet side of the condenser.
  • heat can be exchanged between the heated air in the relatively high temperature portion of the condenser.
  • high-pressure refrigerant and heated air can be efficiently heat-exchanged. Therefore, the heat exchange performance in the heat exchanger of the refrigeration cycle apparatus can be improved.
  • FIG. 1 is an external perspective view of an air conditioner according to a first embodiment. It is a perspective view which shows the state which removed the upper cover of the air conditioner which concerns on 1st Embodiment. It is a perspective view which shows the state which removed the 1st air blower of the air conditioner which concerns on 1st Embodiment, and the 2nd air blower. It is a top view which shows the internal structure of the air conditioner which concerns on 1st Embodiment.
  • FIG. 5 is a cross-sectional view showing a VV cross section in FIG. 4.
  • FIG. 5 is a cross-sectional view showing a VI-VI cross section in FIG. 4.
  • the arrows indicating up, down, left, and right in each figure indicate a three-dimensional orthogonal coordinate system (for example, X axis, Y axis, Z axis) in order to facilitate understanding of the positional relationship of each component in the embodiment. ) Is exemplified as a standard corresponding to the above. Accordingly, the attitude and the like of the air conditioner according to the present disclosure are not limited to the states illustrated in the drawings, and can be changed as appropriate.
  • the air conditioner 1 is used in a seat air conditioner for improving the comfort of a passenger sitting on a seat, with a seat arranged in the vehicle interior of the vehicle as an air-conditioning target space.
  • the air conditioner 1 is disposed in a small space between the seat surface portion of the seat and the passenger compartment floor, and supplies conditioned air (for example, cold air or hot air) via a duct disposed on the seat. Thus, it is configured to enhance the comfort of the passenger sitting on the seat.
  • the air conditioner 1 includes a vapor compression refrigeration cycle device 20, a first blower 30, a second blower 31, and a hot air switching unit 35.
  • the cold air switching unit 40 is housed in the housing 10.
  • the air conditioner 1 adjusts the temperature of the air blown by the operation of the first blower 30 and the second blower 31 by the refrigeration cycle device 20 and supplies the air to the occupant sitting on the seat through a duct or the like arranged on the seat. be able to.
  • FIGS. 2 shows a state where the upper cover 11 is removed from the state of FIG. 1
  • FIG. 3 shows a state where the first blower 30 and the second blower 31 are removed from the state of FIG.
  • the housing 10 is formed in a rectangular parallelepiped shape that can be disposed between the seat surface portion of the seat and the passenger compartment floor surface. As shown in FIG. 1, the housing 10 includes an upper cover 11 and a main body case 15.
  • the upper cover 11 constitutes the upper surface of the housing 10 and is attached so as to close the opening of the main body case 15 having a box shape with the upper part opened.
  • the upper cover 11 is formed with a hot air vent 12, a cold air vent 13, a supply port 14, and an exhaust port 16.
  • the hot air vent 12 is opened at the right side of the upper cover 11.
  • the hot air vent 12 is a vent for sucking the air outside the casing 10 (that is, the air in the passenger compartment) into the casing 10 in accordance with the operation of the first blower 30 and the like which will be described later.
  • a condenser 22 of the refrigeration cycle apparatus 20 is disposed in the housing 10 at a position below the hot air vent 12. Accordingly, the air sucked from the hot air vent 12 is heated by exchanging heat with the high-pressure refrigerant when passing through the condenser 22 and supplied as hot air WA.
  • the cold air vent 13 is opened on the left side of the upper cover 11 and is arranged so as to be symmetric with the hot air vent 12.
  • the cold air vent 13 is a vent for sucking air outside the housing 10 into the interior in accordance with the operation of the first blower 30 and the like, like the hot air vent 12.
  • the evaporator 24 of the refrigeration cycle apparatus 20 is arranged at a position below the cold air vent 13 inside the housing 10. Therefore, the air sucked from the cold air vent 13 is cooled when passing through the evaporator 24 and supplied as cold air CA.
  • a supply port 14 is opened at the rear center portion of the upper cover 11.
  • the supply port 14 is a vent for supplying conditioned air (for example, hot air WA, cold air CA, mixed air MA) whose temperature has been adjusted by the refrigeration cycle apparatus 20 in the air conditioner 1 to the air-conditioning target space.
  • conditioned air for example, hot air WA, cold air CA, mixed air MA
  • FIG. 1 The duct is arranged along the side of the seat and the like, and is configured to guide the conditioned air to a space where a passenger is seated in the seat.
  • the space on the seat where the passenger is seated corresponds to the air-conditioning target space.
  • an exhaust port 16 is opened in the front center portion of the upper cover 11.
  • the exhaust port 16 is an opening through which a part of the air whose temperature has been adjusted by the refrigeration cycle apparatus 20 is exhausted inside the housing 10. The air blown out from the exhaust port 16 is blown to the outside of the air conditioning target space.
  • the main body case 15 constitutes a main part of the housing 10 and is formed in a box shape with the top opened. As shown in FIGS. 2 to 6, components such as the refrigeration cycle apparatus 20 and the first blower 30 are arranged inside the main body case 15.
  • the warm air side ventilation path 17 and the cold air side ventilation path 18 are formed in the inside of the main body case 15.
  • the warm air side ventilation path 17 is a ventilation path through which the warm air WA heated by the condenser 22 circulates
  • the cold air side ventilation path 18 is a ventilation path through which the cold air CA cooled by the evaporator 24 circulates. is there.
  • Each of the hot air side air passage 17 and the cold air side air passage 18 is configured by the housing bottom surface 15A of the main body case 15 and the constituent devices.
  • the refrigeration cycle apparatus 20 is accommodated in the housing 10 and constitutes a vapor compression refrigeration cycle.
  • the refrigeration cycle apparatus 20 includes a compressor 21, a condenser 22 that condenses the high-pressure refrigerant, a decompression unit 23, an evaporator 24 that evaporates the low-pressure refrigerant, and an accumulator 25.
  • the refrigeration cycle apparatus 20 cools or heats the air blown around the seat, which is the air-conditioning target space, by circulating the refrigerant by the operation of the compressor 21.
  • the refrigeration cycle apparatus 20 employs an HFC-based refrigerant (specifically, R134a) as a refrigerant, and uses a vapor compression subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant. It is composed.
  • an HFO refrigerant for example, R1234yf
  • a natural refrigerant for example, R744
  • the refrigerant is mixed with refrigerating machine oil for lubricating the compressor 21, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • Compressor 21 draws in refrigerant in refrigeration cycle apparatus 20, compresses it, and discharges it.
  • the compressor 21 is configured as an electric compressor that drives a fixed displacement type compression mechanism with a fixed discharge capacity by an electric motor. As shown in FIGS. 2 and 3, the compressor 21 is disposed inside the main body case 15. It is arranged on the rear side.
  • various compression mechanisms such as a scroll type compression mechanism and a vane type compression mechanism, are employable.
  • the operation of the electric motor constituting the compressor 21 is controlled by a control signal output from the control unit 60 shown in FIG. And the refrigerant
  • the inlet side of the condenser 22 is connected to the discharge pipe from which the high-pressure refrigerant compressed by the compressor 21 is discharged.
  • the condenser 22 has a heat exchanging part 22A configured by laminating a plurality of tubes and fins in a flat plate shape, and exchanges heat between the air passing through the heat exchanging part 22A and the high-pressure refrigerant flowing through each tube. Let The detailed configuration of the condenser 22 will be described later.
  • the condenser 22 is arranged on the right side of the main body case 15 and is located below the hot air vent 12.
  • the heat exchanging part 22 ⁇ / b> A of the condenser 22 is formed larger than the opening area of the hot air vent 12. Therefore, the air sucked from the hot air vent 12 passes through the heat exchanging portion 22 ⁇ / b> A of the condenser 22.
  • the condenser 22 heat-exchanges the high-temperature and high-pressure discharged refrigerant discharged from the compressor 21 and the air sucked from the hot air vent 12 to heat the air to the hot air WA. Can do. That is, the condenser 22 operates as a heat exchanger for heating and functions as a radiator.
  • the heat exchanging part 22A of the condenser 22 is formed in a flat plate shape whose longitudinal direction is the direction in which the plurality of tubes and fins extend. As shown in FIGS. 2 to 6, the condenser 22 is arranged so that the longitudinal direction of the heat exchanging portion 22 ⁇ / b> A is along the front-rear direction of the air conditioner 1.
  • the condenser 22 is arranged such that the heat exchanging portion 22A is positioned above the casing bottom surface 15A by a predetermined distance.
  • the space formed below the condenser 22 is a space through which the hot air WA that has passed through the heat exchanging portion 22 ⁇ / b> A circulates, and functions as a part of the warm air side ventilation path 17.
  • a decompression unit 23 is connected to the outlet side of the condenser 22.
  • the decompression unit 23 is configured by a so-called fixed throttle, and decompresses the refrigerant that has flowed out of the condenser 22. As shown in FIG. 4, the decompression unit 23 is disposed on the front side inside the main body case 15.
  • a fixed throttle is used as the decompression unit 23, but the present invention is not limited to this mode.
  • various configurations can be employed as the depressurization unit.
  • a capillary tube may be employed as the decompression unit 23, or an expansion valve capable of controlling the throttle opening degree by a control signal from the control unit 60 may be used for the decompression unit 23.
  • the inlet side of the evaporator 24 is connected to the outlet side of the decompression unit 23.
  • the evaporator 24 has a heat exchange part 24A configured in a flat plate shape by laminating a plurality of tubes and fins, absorbs heat from the air passing through the heat exchange part 24A, and generates low-pressure refrigerant flowing through each tube. Evaporate.
  • the evaporator 24 is disposed on the left side of the main body case 15 and is located below the cold air vent 13. Therefore, in the air conditioner 1, the evaporator 24 is disposed in the housing 10 with a space in the left-right direction with respect to the condenser 22.
  • the heat exchanging portion 24A of the evaporator 24 is formed larger than the opening area of the cold air vent 13. Accordingly, the air sucked from the cold air vent 13 passes through the heat exchanging portion 24 ⁇ / b> A of the evaporator 24.
  • the evaporator 24 can cool the air to cool air CA by heat-exchanging the air sucked from the cold air vent 13 and the low-pressure refrigerant decompressed by the decompression unit 23. That is, the evaporator 24 operates as a cooling heat exchanger and functions as a heat absorber.
  • the heat exchanging part 24A of the evaporator 24 is formed in a flat plate shape whose longitudinal direction is the direction in which the plurality of tubes and fins extend. As shown in FIGS. 2 to 6, the evaporator 24 is arranged so that the longitudinal direction of the heat exchanging portion 24 ⁇ / b> A is along the front-rear direction of the air conditioner 1.
  • the evaporator 24 is arranged so that the heat exchanging portion 24A is located above the casing bottom surface 15A by a predetermined distance.
  • the space formed below the evaporator 24 is a space through which the cold air CA that has passed through the heat exchanging section 24 ⁇ / b> A flows, and functions as a part of the cold air side ventilation path 18.
  • the accumulator 25 is connected to the outlet side of the evaporator 24 and is arranged on the left rear side of the main body case 15.
  • the accumulator 25 separates the gas-liquid refrigerant flowing out of the evaporator 24 and stores excess liquid-phase refrigerant in the refrigeration cycle.
  • the suction pipe of the compressor 21 is connected to the gas phase refrigerant outlet of the accumulator 25. Therefore, the gas phase refrigerant separated by the accumulator 25 is sucked into the compressor 21 via the suction pipe.
  • the first blower 30 is a blower configured to include an impeller having a plurality of blades and an electric motor that rotates the impeller.
  • the first blower 30 is located on the rear side between the condenser 22 and the evaporator 24, and is located below the supply port 14. Therefore, the 1st air blower 30 can blow with respect to the sheet
  • the 2nd air blower 31 is an air blower which has an impeller and an electric motor similarly to the 1st air blower 30.
  • the second blower 31 is located below the exhaust port 16. Accordingly, the second blower 31 can blow air to the outside of the air-conditioning target space through the exhaust port 16 by rotating the impeller. That is, the second blower 31 of the present embodiment is a so-called suction blower that generates an air flow from the evaporator 24 toward the second blower 31 by the rotation of the impeller.
  • a fan support portion 55 is disposed below the first blower 30 and the second blower 31.
  • the fan support portion 55 is disposed between the condenser 22 and the evaporator 24, and has a first attachment opening 56 and a second attachment opening 57.
  • the fan support portion 55 is disposed so as to be located at a predetermined height from the housing bottom surface 15A of the housing 10, and between the condenser 22 and the evaporator 24. The space is divided up and down.
  • the first attachment opening 56 is an opening to which the first blower 30 is attached, and is disposed on the rear side of the fan support portion 55.
  • the second attachment opening 57 is an opening to which the second blower 31 is attached and is disposed adjacent to the first attachment opening 56 on the front side of the fan support portion 55.
  • the first blower 30 can suck the air below the fan support portion 55 through the first mounting opening 56 and supply it to the supply port 14.
  • the second blower can suck the air below the fan support portion 55 through the second mounting opening 57 and blow it to the exhaust port 16.
  • FIG. 5 shows a VV cross section in FIG. 4 and shows an example of the flow of air (ie, cold air CA) by the first blower 30.
  • FIG. 6 shows a cross section taken along the line VI-VI in FIG. 4 and shows an example of the flow of air (that is, warm air WA) by the second blower 31.
  • the air conditioner 1 includes a hot air switching unit 35 and a cold air switching unit 40 below the first blower 30 and the second blower 31 between the condenser 22 and the evaporator 24. And have.
  • the warm air switching unit 35 is a mechanism for switching the air blow destination of the warm air WA heated by the condenser 22.
  • the cold air switching unit 40 is a mechanism for switching the air blowing destination of the cold air CA cooled by the evaporator 24.
  • the hot air switching unit 35 and the cold air switching unit 40 include a frame member 45 disposed below the fan support unit 55, a supply slide door 46, an exhaust slide door 47, a drive motor 50, and the like. ing.
  • the hot air switching unit 35 and the cold air switching unit 40 are arranged between the condenser 22 and the evaporator 24 arranged on the left and right sides in the housing 10.
  • the hot air switching unit 35 is located on the right side between the condenser 22 and the evaporator 24 (that is, the side close to the condenser 22), and the cold air switching unit 40 includes the condenser 22 and the evaporator. 24 on the left side (ie, the side close to the evaporator 24).
  • the frame member 45 is disposed below the fan support portion 55 between the condenser 22 and the evaporator 24, and extends along the front-rear direction.
  • the frame member 45 is formed in an arc shape that bulges downward with respect to a cross section perpendicular to the front-rear direction.
  • a partition 45 ⁇ / b> A is formed at the lower end of the frame member 45 swelled in an arc shape.
  • the partition portion 45A is formed in a wall shape that closes between the lower end portion of the frame member 45 and the inner surface of the housing bottom surface 15A, and extends in the front-rear direction. That is, the space below the frame member 45 is divided into left and right by the partition portion 45A.
  • the space below the frame member 45 and on the right side of the partition portion 45A communicates with the space below the condenser 22 and constitutes a part of the warm air side ventilation path 17.
  • a space below the frame member 45 and on the left side of the partition portion 45 ⁇ / b> A communicates with a space below the evaporator 24 and constitutes a part of the cold air side ventilation path 18.
  • a partition rib that partitions the space between the fan support portion 55 and the frame member 45 in the front-rear direction is formed at the center in the front-rear direction of the frame member 45.
  • the space on the rear side of the partition rib communicates with the first mounting opening 56 and functions as a supply space 56A into which air supplied from the supply port 14 flows.
  • the space on the front side of the partition rib communicates with the second mounting opening 57 and functions as an exhaust space 57A into which air blown from the exhaust port 16 flows.
  • the hot air supply opening 36 and the hot air exhaust opening 37 constituting the hot air switching section 35 are arranged on the right side of the partition 45A in the frame member 45 so as to be adjacent to each other in the front-rear direction.
  • the hot air supply opening 36 is formed at the rear right side of the frame member 45, and communicates the supply space 56 ⁇ / b> A with the hot air side ventilation path 17.
  • the hot air exhaust opening 37 is formed on the right front side of the frame member 45, and communicates the exhaust space 57 ⁇ / b> A and the hot air side ventilation path 17.
  • the frame member 45 is formed in an arc shape that bulges downward toward the center in the left-right direction, and the hot air supply opening 36 and the hot air exhaust opening 37 are The right side of the frame member 45 is opened.
  • the opening edges of the hot air supply opening 36 and the hot air exhaust opening 37 are formed so as to draw a downward arc as the distance from the right side of the housing 10 in which the condenser 22 is disposed. That is, of the opening edges of the hot air supply opening 36 and the hot air exhaust opening 37, the portion located on the condenser 22 side is separated from the partition portion through the hot air supply opening 36 and the hot air exhaust opening 37. It faces the part located on the 45A side. And the site
  • the hot air supply openings 36 and the hot air exhaust openings 37 are formed such that the hot air supply openings 36 and the like are formed so as to cross the hot air side ventilation path 17 in the left-right direction (ie, horizontal). It becomes larger than the opening area in the case.
  • the condenser 22 is arranged so that the longitudinal direction of the heat exchange part 22A is along the front-rear direction.
  • the hot air supply opening 36 and the hot air exhaust opening 37 are arranged side by side in the front-rear direction.
  • the air conditioner 1 has sufficient airflow flowing into the hot air supply opening 36 and airflow flowing into the hot air exhaust opening 37 with respect to the air that has passed through the heat exchanging portion 22A of the condenser 22. Can be secured.
  • the cold air supply opening 41 and the cold air exhaust opening 42 constituting the cold air switching unit 40 are arranged on the left side of the partition 45A in the frame member 45 so as to be adjacent to each other in the front-rear direction.
  • the cold air supply opening 41 is formed at the rear left side of the frame member 45, and communicates the supply space 56 ⁇ / b> A with the cold air side ventilation path 18. As shown in FIG. 5, the cold air supply opening 41 is adjacent to the hot air supply opening 36 in the left-right direction in the frame member 45.
  • the cold air exhaust opening 42 is formed on the left front side of the frame member 45 and communicates the exhaust space 57A and the cold air side ventilation path 18. As shown in FIG. 6, the cold air exhaust opening 42 is adjacent to the hot air exhaust opening 37 in the left-right direction in the frame member 45.
  • the frame member 45 is formed in an arc shape that bulges downward toward the central portion in the left-right direction, and the cold air supply opening 41 and the cold air exhaust opening 42 are formed on the left side of the frame member 45. Is open.
  • the opening edges of the cold air supply opening 41 and the cold air exhaust opening 42 are formed so as to draw a downward arc as the distance from the left side of the housing 10 in which the evaporator 24 is disposed. That is, of the opening edges of the cold air supply opening 41 and the cold air exhaust opening 42, the portion located on the evaporator 24 side is located on the partition 45A side via the cold air supply opening 41 and the cold air exhaust opening 42. It faces the part to do. And the site
  • the opening areas of the cold air supply opening 41 and the cold air exhaust opening 42 are the opening areas when the cold air supply opening 41 and the like are formed so as to cross the cold air side ventilation path 18 in the left-right direction (that is, horizontally). Bigger than.
  • the evaporator 24 is arranged so that the longitudinal direction of the heat exchanging section 24A is along the front-rear direction.
  • the cold air supply opening 41 and the cold air exhaust opening 42 are arranged side by side in the front-rear direction.
  • the air conditioner 1 sufficiently secures both the amount of air flowing into the cold air supply opening 41 and the amount of air flowing into the cold air exhaust opening 42 with respect to the air that has passed through the heat exchanger 24A of the evaporator 24. can do.
  • a supply slide door 46 is movably attached to the rear side of the frame member 45.
  • the supply slide door 46 is formed in a plate shape larger than the opening areas of the hot air supply opening 36 and the cold air supply opening 41, and is curved along the arc of the frame member 45.
  • the supply slide door 46 is slidably mounted along the arc of the frame member 45 between a position where the hot air supply opening 36 is closed and a position where the cold air supply opening 41 is closed. .
  • the air conditioner 1 moves the supply slide door 46 to supply the air volume of the hot air WA flowing into the supply space 56A via the hot air supply opening 36 and the cold air supply opening 41.
  • the air volume of the cold air CA flowing into the working space 56A can be adjusted. That is, the supply slide door 46 can adjust the ratio of the hot air WA and the cold air CA in the air supplied from the supply port 14 and functions as a supply-side air volume adjustment unit.
  • an exhaust slide door 47 is movably attached to the front side of the frame member 45.
  • the exhaust slide door 47 is formed in a plate shape larger than the opening areas of the hot air exhaust opening 37 and the cold air exhaust opening 42, and is curved along the arc of the frame member 45.
  • the exhaust slide door 47 is slidably mounted along the arc of the frame member 45 between a position where the hot air exhaust opening 37 is closed and a position where the cold air exhaust opening 42 is closed. .
  • the air conditioner 1 moves the exhaust slide door 47 to exhaust the warm air WA flowing into the exhaust space 57A through the hot air exhaust opening 37 and the cold air exhaust opening 42 by moving the exhaust slide door 47.
  • the air volume of the cold air CA flowing into the working space 57A can be adjusted.
  • the exhaust slide door 47 can adjust the ratio of the warm air WA and the cool air CA in the air blown from the exhaust port 16 and functions as an exhaust air volume adjustment unit.
  • a drive motor 50 is disposed inside the housing 10.
  • the drive motor 50 is constituted by a so-called servo motor, and functions as a drive source for slidingly moving the supply slide door 46 and the exhaust slide door 47.
  • the operation of the drive motor 50 is performed based on a control signal from the control unit 60.
  • a supply shaft 48 is connected to the drive shaft of the drive motor 50.
  • the supply shaft 48 extends from the drive motor 50 toward the front side, and has two gear portions 48A.
  • the supply shaft 48 is arranged so as to cross the upper side of the supply slide door 46 in the front-rear direction.
  • two tooth portions 46A are arranged on the upper surface of the supply slide door 46 so as to extend in the left-right direction.
  • the teeth 46A of the supply sliding door 46 are formed so as to mesh with the teeth in the gear 48A of the supply shaft 48, respectively.
  • the power generated by the drive motor 50 is transmitted to the supply slide door 46 via the gear portion 48A and the tooth portion 46A. That is, the air conditioner 1 can slide the supply slide door 46 to an arbitrary position in the left-right direction by controlling the operation of the drive motor 50 by the control unit 60.
  • an exhaust shaft 49 is rotatably supported on the front side of the supply shaft 48.
  • the exhaust shaft 49 extends toward the front side so as to be parallel to the supply shaft 48 and has two gear portions 49A.
  • a transmission gear portion 48B is disposed at the front end portion of the supply shaft 48 and meshes with a driven gear portion 49B disposed at the rear end portion of the exhaust shaft 49. It is configured as follows. Accordingly, the power generated by the drive motor 50 is transmitted to the exhaust shaft 49 as the supply shaft 48 rotates.
  • tooth portions 47A are arranged on the upper surface of the exhaust slide door 47 so as to extend in the left-right direction.
  • the tooth portions 47A of the exhaust slide door 47 are formed so as to mesh with the gear portions 49A of the exhaust shaft 49, respectively.
  • the power generated by the drive motor 50 is transmitted through the supply shaft 48 to rotate the exhaust shaft 49.
  • the exhaust slide door 47 slides between the hot air exhaust opening 37 and the cold air exhaust opening 42. That is, the air conditioner 1 can slide the exhaust slide door 47 to an arbitrary position in the left-right direction by controlling the operation of the drive motor 50 by the control unit 60.
  • the power of the drive motor 50 can be transmitted to the supply slide door 46 and the exhaust slide door 47 via the supply shaft 48 and the exhaust shaft 49.
  • the air conditioner 1 can link the slide movement of the supply slide door 46 and the slide movement of the exhaust slide door 47.
  • the air conditioner 1 can supply mixed air MA, which is lower in temperature than the heating mode and higher in temperature than the cooling mode, to the air conditioning target space, and can realize an air mix mode from heating.
  • the air conditioner 1 can supply the mixed air MA, which is lower in temperature than the heating mode and higher in temperature than the cooling mode, to the air conditioning target space, and can realize an air mix mode from cooling.
  • air conditioning is performed using the warm air WA heated by the condenser 22 of the refrigeration cycle apparatus 20 or the cold air CA cooled by the evaporator 24. Air-conditioned air can be supplied to the sheet that is the target space.
  • the cooling mode, the heating mode, and the air mix mode can be realized by controlling the operation of the hot air switching unit 35 and the cold air switching unit 40.
  • the air conditioner 1 can supply the cold air CA to the air-conditioning target space.
  • the air conditioner 1 can supply the hot air WA to the air-conditioning target space.
  • the air conditioner 1 can supply the mixed air MA, the temperature of which is adjusted by mixing the cold air CA and the hot air WA, to the air conditioning target space.
  • the condenser 22 is a so-called tank-and-tube heat exchanger. Therefore, the condenser 22 includes a plurality of tubes 221 through which the refrigerant flows and a pair of header tanks 222 and 223.
  • a plurality of tubes 221 are stacked in parallel in the left-right direction so that the longitudinal direction thereof coincides with the front-rear direction.
  • the shape of the cross section perpendicular to the longitudinal direction of the tube 221 is a flat oval shape (that is, a flat shape).
  • the tube 221 is disposed so that the flow direction of the air flowing outside the tube 221 matches the major axis direction in the flat shape.
  • wave-shaped fins 224 as heat transfer members are joined to the outer surface of the tube 221.
  • the fins 224 increase the heat exchange area (that is, the heat transfer area) with the air flowing around the tube 221 and promote the heat exchange between the refrigerant and the air.
  • the longitudinal direction of the tube 221 is referred to as a tube longitudinal direction
  • the stacking direction of the tubes 221 is referred to as a tube stacking direction.
  • the heat exchange unit 22A described above is configured by a stacked body in which a plurality of tubes 221 and a plurality of fins 224 are alternately stacked. Inserts 225 that extend substantially in parallel with the tube longitudinal direction and reinforce the heat exchange part 22A are provided at both ends of the heat exchange part 22A in the tube stacking direction.
  • the header tanks 222 and 223 communicate with the plurality of tubes 221, and collect or distribute the refrigerant to the plurality of tubes 221.
  • One header tank 222, 223 is provided at each of both end portions in the longitudinal direction of the tube (in this embodiment, front and rear end portions).
  • the header tanks 222 and 223 extend in a direction orthogonal to the tube longitudinal direction (in the present embodiment, the left-right direction).
  • the pair of header tanks 222 and 223 the one disposed on the rear side and distributing the refrigerant to the tube 221 is referred to as an inlet tank 222. Further, among the pair of header tanks 222 and 223, the one that is disposed on the front side and collects the refrigerant flowing out from the tube 221 is referred to as an outlet tank 223.
  • the inlet tank 222 is provided with a refrigerant inlet 226 as an inlet for allowing the high-pressure refrigerant discharged from the compressor 21 to flow into the inlet tank 222.
  • the refrigerant inlet 226 is disposed on one end side of the inlet tank 222 in the tube stacking direction (right end side in this embodiment).
  • the outlet tank 223 is provided with a refrigerant outlet 227 as an outlet through which the refrigerant flows out to the inlet side of the decompression unit 23.
  • the refrigerant outlet 227 is disposed on the other end side in the tube stacking direction of the outlet tank 223 (in the present embodiment, on the left end side).
  • the condenser 22 is formed in a rectangular shape with a long longitudinal direction of the tube.
  • the flow direction of the refrigerant flowing through each tube 221 of the condenser 22 is the same.
  • the refrigerant inlet 226 is disposed on one end side of the tube 221 in the tube longitudinal direction.
  • the refrigerant outlet 227 is disposed on the other end side of the tube 221 in the tube longitudinal direction.
  • the condenser 22 the refrigerant linearly flows in one direction from the refrigerant inlet 226 toward the refrigerant outlet 227. That is, the condenser 22 is configured so that the refrigerant does not make a U-turn inside thereof.
  • FIG. 15 shows a plan view as viewed from above the air conditioner 1.
  • the plan view viewed from the upper side of the air conditioner 1 is referred to as an upper plan view.
  • the first blower 30 is disposed closer to the refrigerant inlet 226 than the refrigerant outlet 227 of the condenser 22. That is, the first blower 30 is arranged closer to the inlet side than the refrigerant flow outlet side of the condenser 22.
  • the 1st air blower 30 is arrange
  • the first blower 30 and the heat exchange part 22 ⁇ / b> A of the condenser 22 on the upstream side of the refrigerant flow when viewed from the left-right direction of the air conditioner 1 in the upper plan view, the first blower 30 and the heat exchange part 22 ⁇ / b> A of the condenser 22 on the upstream side of the refrigerant flow.
  • the site is polymerized. That is, in the upper plan view, when viewed from the left-right direction of the air conditioner 1, the first blower 30 and the heat exchange part 22 ⁇ / b> A of the condenser 22 are arranged so as to overlap with the upstream portion of the refrigerant flow. .
  • the first blower 30 and the portion of the heat exchange part 22A of the condenser 22 on the most upstream side of the refrigerant flow are superposed.
  • the entire first blower 30 and the upstream portion of the refrigerant flow in the heat exchanging portion 22A of the condenser 22 are arranged in a superposed manner.
  • the second blower 31 is arranged closer to the inlet side than the refrigerant flow outlet side of the evaporator 24.
  • the 2nd air blower 31 is arrange
  • the second blower 31 and the heat exchange part 24 ⁇ / b> A of the evaporator 24 on the upstream side of the refrigerant flow when viewed from the left-right direction of the air conditioner 1 in the upper plan view, the second blower 31 and the heat exchange part 24 ⁇ / b> A of the evaporator 24 on the upstream side of the refrigerant flow.
  • the site is polymerized. That is, in the upper plan view, when viewed from the left-right direction of the air conditioner 1, the second blower 31 and the heat exchange part 24 ⁇ / b> A of the evaporator 24 are arranged so as to overlap with the upstream portion of the refrigerant flow. .
  • the second blower 31 and the portion on the most upstream side of the refrigerant flow in the heat exchanging portion 24A of the evaporator 24 are superposed.
  • the entire second blower 31 and the upstream portion of the refrigerant flow in the heat exchanging portion 24A of the evaporator 24 are superposed.
  • the air conditioner 1 has a control unit 60 for controlling the operation of the components of the air conditioner 1.
  • the control unit 60 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof. And the control part 60 performs various arithmetic processing based on the control program memorize
  • the compressor 21, the first blower 30, the second blower 31, and the drive motor 50 are connected to the output side of the control unit 60. Therefore, the control unit 60 adjusts the refrigerant discharge performance (for example, refrigerant pressure) by the compressor 21, the blowing performance (for example, the blowing amount) of the first blower 30, and the blowing performance of the second blower 31 according to the situation. be able to.
  • refrigerant discharge performance for example, refrigerant pressure
  • the blowing performance for example, the blowing amount
  • control unit 60 can adjust the air volume balance of the cold air CA and the hot air WA in the hot air switching unit 35 and the cold air switching unit 40 by controlling the operation of the drive motor 50. That is, the control unit 60 can change the operation mode in the air conditioner 1 to any one of the cooling mode, the heating mode, and the air mix mode.
  • a plurality of types of air conditioning sensors 61 are connected to the input side of the control unit 60.
  • the air conditioning sensor includes a plurality of types of sensors used for controlling the air conditioning operation of the air conditioner 1, and includes a pressure sensor 62.
  • the pressure sensor 62 is a detection unit for detecting the refrigerant pressure on the low-pressure side of the cycle, and is disposed, for example, in the refrigerant pipe connected to the evaporator 24. Therefore, the control unit 60 can determine the magnitude of the load during the air-conditioning operation of the air conditioner 1 according to the magnitude of the low-pressure refrigerant pressure of the cycle detected by the pressure sensor 62, and the control corresponding to the magnitude It can be performed.
  • the air conditioning sensor 61 includes a suction temperature sensor, a hot air temperature sensor, a cold air temperature sensor, and the like.
  • the suction temperature sensor detects the temperature of the air sucked through the hot air vent 12 and the cold air vent 13.
  • the hot air temperature sensor detects the temperature of the air that has passed through the condenser 22 (that is, the hot air WA).
  • the cold air temperature sensor detects the temperature of the air that has passed through the evaporator 24 (that is, the cold air CA).
  • the air conditioning sensor 61 is, for example, a temperature sensor (that is, an evaporator temperature sensor) that detects a refrigerant temperature on the low pressure side of the cycle, a high pressure sensor that detects a refrigerant pressure on the high pressure side of the cycle, and a temperature of the high pressure refrigerant.
  • a temperature sensor may be included.
  • An operation panel for instructing the operation of the air conditioner 1 may be connected to the input side of the control unit 60.
  • the air conditioner 1 according to the first embodiment can execute the cooling mode in which the cold air CA is supplied to the sheet that is the air-conditioning target space.
  • the operation of the air conditioner 1 in the cooling mode will be described with reference to FIGS.
  • control unit 60 closes the hot air supply opening 36 with the supply slide door 46 and closes the cold air exhaust opening 42 with the exhaust slide door 47 so as to close the hot air switching unit 35.
  • switching part 40 for cold air is controlled. That is, as shown in FIGS. 4 to 6, in the hot air switching unit 35, the hot air exhaust opening 37 is fully opened, and in the cold air switching unit 40, the cold air supply opening 41 is fully opened.
  • the first blower 30 when the first blower 30 is operated in this state, the first blower 30 sucks air from the supply space 56 ⁇ / b> A and supplies the air to the sheet that is the air-conditioning target space via the supply port 14. .
  • the hot air supply opening 36 is closed and the cold air supply opening 41 is opened. Therefore, as shown in FIG. 5, the first blower 30 sucks air from the cold air vent 13 and passes it through the heat exchange section 24 ⁇ / b> A of the evaporator 24.
  • the air is absorbed by the low-pressure refrigerant flowing inside the evaporator 24 and becomes cold air CA.
  • the cold air CA that has passed through the evaporator 24 flows through the cold air side ventilation path 18 and flows into the supply space 56A from the cold air supply opening 41.
  • the cold air CA is sucked from the supply space 56 ⁇ / b> A by the first blower 30 and supplied from the supply port 14 to the air-conditioning target space.
  • the cold air CA is generated by cooling the air blown by the first blower 30 by heat exchange with the low-pressure refrigerant in the evaporator 24. That is, the heat absorption amount of the refrigerant in the evaporator 24 of the refrigeration cycle apparatus 20 is greatly affected by the amount of air blown by the first blower 30.
  • the air conditioner 1 can adjust the amount of heat absorbed by the refrigerant in the evaporator 24 by adjusting the amount of air blown from the first blower 30 in the cooling mode.
  • the second blower 31 when the second blower 31 is operated in the cooling mode, the second blower 31 sucks air from the exhaust space 57A below the second blower 31, and blows it outside the air-conditioning target space through the exhaust port 16.
  • the hot air exhaust opening 37 is opened and the cold air exhaust opening 42 is closed. Accordingly, the second blower 31 sucks air from the hot air vent 12 and passes it through the heat exchanging portion 22 ⁇ / b> A of the condenser 22.
  • the air is heated by heat exchange with the high-pressure refrigerant flowing through the condenser 22 and becomes hot air WA.
  • the warm air WA that has passed through the condenser 22 flows through the warm air side ventilation passage 17 and flows into the exhaust space 57A from the warm air exhaust opening 37. Then, the warm air WA is sucked from the exhaust space 57A by the second blower 31 and blown from the exhaust port 16 to the outside of the air-conditioning target space.
  • the warm air WA is generated by heating the air blown by the second blower 31 with the heat of the high-pressure refrigerant in the condenser 22. That is, the amount of heat released from the refrigerant in the condenser 22 of the refrigeration cycle apparatus 20 is greatly affected by the amount of air blown by the second blower 31.
  • the air conditioner 1 can adjust the heat radiation amount of the refrigerant in the condenser 22 by adjusting the air flow rate of the second blower 31 in the cooling mode.
  • the air conditioner 1 supplies the cold air CA cooled by the evaporator 24 from the supply port 14 to the air-conditioning target space by the first blower 30 and the hot air WA heated by the condenser 22.
  • the second blower 31 can blow air from the exhaust port 16.
  • the air conditioner 1 can realize a cooling mode in which the cold air CA is supplied to the seat that is the air-conditioning target space.
  • the amount of heat absorbed by the refrigerant in the evaporator 24 can be adjusted by adjusting the amount of air blown by the first blower 30, and the amount of air blown by the second blower 31 is adjusted. By doing so, the heat radiation amount of the refrigerant in the condenser 22 can be adjusted.
  • the air conditioner 1 can appropriately adjust the heat radiation amount of the refrigerant in the condenser 22 and the heat absorption amount of the refrigerant in the evaporator 24 in the cooling mode, and can easily balance the refrigeration cycle apparatus 20 in a stable manner. Can be activated.
  • cooling mode functions as a cooling air blower for ventilating the cold wind CA simultaneously with the supply air blower for supplying the conditioned air to the air conditioning target space.
  • the first blower 30 sucks air through the evaporator 24 as at least one of the condenser 22 and the evaporator 24.
  • the 2nd air blower 31 in this case is functioning as an air blower for exhausting air outside the air-conditioning object space, and at the same time as an air blower for warm air WA.
  • the second blower 31 sucks air through the condenser 22 as at least the other of the condenser 22 and the evaporator 24.
  • the control unit 60 closes the cold air supply opening 41 with the supply slide door 46 and closes the hot air exhaust opening 37 with the exhaust slide door 47 to switch the hot air switching unit 35 and
  • the cool air switching unit 40 is controlled. That is, as shown in FIGS. 8 to 10, in the hot air switching section 35, the hot air supply opening 36 is fully opened, and in the cold air switching section 40, the cold air exhaust opening 42 is fully opened.
  • the first blower 30 when the first blower 30 is operated in this state, the first blower 30 sucks air from the supply space 56 ⁇ / b> A and supplies the air to the seat that is the air-conditioning target space via the supply port 14. .
  • the cold air supply opening 41 is closed and the hot air supply opening 36 is opened. Therefore, as shown in FIG. 9, the first blower 30 sucks air from the hot air vent 12 and passes the heat exchange part 22 ⁇ / b> A of the condenser 22.
  • the air is heated by the heat of the high-pressure refrigerant flowing inside the condenser 22 and becomes hot air WA.
  • the warm air WA that has passed through the condenser 22 flows through the warm air side ventilation path 17 and flows into the supply space 56 ⁇ / b> A from the warm air supply opening 36.
  • the hot air WA is sucked from the supply space 56A by the first blower 30 and supplied from the supply port 14 to the air-conditioning target space.
  • the first air blower 30 does not cause an air flow of the cold air vent 13 ⁇ the evaporator 24 ⁇ the cold air side ventilation path 18 ⁇ the cold air supply opening 41.
  • the warm air WA is generated by heating the air blown by the first blower 30 with the heat of the high-pressure refrigerant in the condenser 22. That is, the heat release amount of the refrigerant in the condenser 22 of the refrigeration cycle apparatus 20 is greatly affected by the amount of air blown by the first blower 30.
  • the air conditioner 1 can adjust the heat radiation amount of the refrigerant in the condenser 22 by adjusting the air flow rate of the first blower 30 in the heating mode.
  • the second blower 31 when the second blower 31 is operated in the heating mode, the second blower 31 sucks air from the exhaust space 57 ⁇ / b> A and blows it outside the air-conditioning target space through the exhaust port 16. As shown in FIG. 10, in the heating mode, the cold air exhaust opening 42 is opened, and the hot air exhaust opening 37 is closed. Accordingly, the second blower 31 sucks air from the cold air vent 13 and passes it through the heat exchanging portion 24 ⁇ / b> A of the evaporator 24.
  • the air is absorbed by the low-pressure refrigerant flowing through the evaporator 24 and becomes cold air CA.
  • the cold air CA that has passed through the evaporator 24 flows through the cold air side ventilation path 18 and flows into the exhaust space 57A from the cold air exhaust opening 42. Then, the cold air CA is sucked from the exhaust space 57A by the second blower 31 and is blown from the exhaust port 16 to the outside of the air conditioning target space.
  • the second air blower 31 does not cause the air flow of the hot air vent 12 ⁇ the condenser 22 ⁇ the hot air side ventilation path 17 ⁇ the hot air exhaust opening 37.
  • the cold air CA is generated by absorbing the air blown by the second blower 31 with the low-pressure refrigerant in the evaporator 24. That is, the heat absorption amount of the refrigerant in the evaporator 24 of the refrigeration cycle apparatus 20 is greatly affected by the amount of air blown by the second blower 31.
  • the air conditioner 1 can adjust the heat absorption amount of the refrigerant in the evaporator 24 by adjusting the amount of air blown by the second blower 31 in the heating mode.
  • the air conditioner 1 supplies the warm air WA heated by the condenser 22 from the supply port 14 to the air-conditioning target space by the first blower 30, and the cool air CA cooled by the evaporator 24,
  • the second blower 31 can blow air from the exhaust port 16.
  • the air conditioner 1 can realize a heating mode in which the hot air WA is supplied to a seat that is a space to be air-conditioned.
  • the air conditioner 1 in the heating mode, by adjusting the air flow rate of the first blower 30, the heat release amount of the refrigerant in the condenser 22 can be adjusted, and the air flow rate of the second blower 31 is adjusted. By doing so, the heat absorption amount of the refrigerant in the evaporator 24 can be adjusted.
  • the air conditioner 1 can appropriately adjust the amount of heat released from the refrigerant in the condenser 22 and the amount of heat absorbed from the refrigerant in the evaporator 24 during the heating mode. Can be activated.
  • the first blower 30 in the heating mode is a supply blower for supplying conditioned air to the air-conditioning target space, and also functions as a hot air blower for blowing the hot air WA. That is, the first blower 30 sucks air through the condenser 22 as at least one of the condenser 22 and the evaporator 24.
  • the 2nd air blower 31 in this case is functioning as an air blower for exhaust_gas
  • the air mix mode is an operation mode in which the mixed air MA obtained by mixing the hot air WA and the cold air CA is supplied to the air conditioning target space.
  • control unit 60 controls the position of the supply sliding door 46 so as to secure the opening area of the hot air supply opening 36 and the opening area of the cold air supply opening 41. At the same time, the control unit 60 controls the position of the exhaust sliding door 47 so that the opening area of the hot air exhaust opening 37 and the opening area of the cold air exhaust opening 42 are secured.
  • the first blower 30 when the first blower 30 is operated in this state, the first blower 30 sucks air from the supply space 56 ⁇ / b> A and supplies the air to the seat that is the air-conditioning target space via the supply port 14. .
  • the opening area is secured for both the hot air supply opening 36 and the cold air supply opening 41. Therefore, as shown in FIG. 12, the first blower 30 sucks air from the hot air vent 12 and passes the heat exchange part 22A of the condenser 22, and simultaneously sucks air from the cold air vent 13. The heat exchanger 24A of the evaporator 24 is passed through.
  • the air passing through the condenser 22 is heated by the heat of the high-pressure refrigerant flowing inside the condenser 22 and becomes hot air WA.
  • the warm air WA that has passed through the condenser 22 flows through the warm air side ventilation path 17 and flows into the supply space 56 ⁇ / b> A from the warm air supply opening 36.
  • the air passing through the evaporator 24 is absorbed by the low-pressure refrigerant flowing through the evaporator 24 and becomes cold air CA.
  • the cold air CA flows out of the evaporator 24 to the cold air side ventilation path 18 and flows into the supply space 56A from the cold air supply opening 41.
  • the hot air WA and the cold air CA flow into and mix with the supply space 56A. Then, the air inside the supply space 56A is sucked in by the first blower 30 and supplied from the supply port 14 to the air-conditioning target space as the mixed air MA.
  • the supply sliding door 46 can adjust the opening area of the hot air supply opening 36 and the opening area of the cold air supply opening 41. In other words, the supply sliding door 46 can adjust the air volume ratio of the hot air WA and the cold air CA flowing into the supply space 56 ⁇ / b> A so that the mixed air MA can be supplied from the supply port 14.
  • the air conditioner 1 can appropriately adjust the temperature of the conditioned air (that is, the mixed air MA) supplied to the air-conditioning target space by adjusting the position of the supply slide door 46 in the air mix mode. it can.
  • the second blower 31 when the second blower 31 is operated in the air mix mode, the second blower 31 sucks air from the exhaust space 57 ⁇ / b> A as in the above-described cooling mode and the like, and the air-conditioning target space via the exhaust port 16. To the outside.
  • the opening area is secured for both the hot air exhaust opening 37 and the cold air exhaust opening 42. Accordingly, the second blower 31 sucks air from the hot air vent 12 and passes it through the heat exchanging portion 22A of the condenser 22, and simultaneously sucks air from the cool air vent 13 and heat exchanging portion of the evaporator 24. Pass 24A.
  • the warm air WA that has passed through the condenser 22 flows through the warm air side ventilation path 17 and flows into the exhaust space 57A from the warm air exhaust opening 37.
  • the cold air CA that has passed through the evaporator 24 flows through the cold air side ventilation path 18 and flows into the exhaust space 57A from the cold air exhaust opening 42.
  • the hot air WA and the cold air CA flow into and mix with the exhaust space 57A. Then, the air inside the exhaust space 57A is sucked in by the second blower 31 and is blown out from the exhaust port 16 to the outside of the air conditioning target space as the mixed air MA.
  • the exhaust sliding door 47 can adjust the opening area of the hot air exhaust opening 37 and the opening area of the cold air exhaust opening 42.
  • the exhaust slide door 47 can adjust the air volume ratio of the warm air WA and the cool air CA flowing into the exhaust space 57A so that the mixed air MA can be blown from the exhaust port 16.
  • control unit 60 is configured to control the operation of the compressor 21 according to the level of the air conditioning load detected by the pressure sensor 62 of the air conditioning sensor 61 or the like.
  • the operation and the operation stop of the electric motor constituting the compressor 21 are controlled to be repeated periodically.
  • the refrigerant circulates by the operation of the compressor 21, and the refrigerant contains refrigeration oil. For this reason, when the control is performed such that the operation and stoppage of the compressor 21 are periodically repeated at low load, it is assumed that the refrigerating machine oil returning to the compressor 21 due to the circulation of the refrigerant becomes insufficient.
  • the air conditioner 1 performs an air mix mode as shown in FIGS. 11 to 13 when the air conditioning load is low.
  • the air conditioner 1 By operating the air conditioner 1 in the air mix mode, the minimum number of rotations of the electric motor of the compressor 21 can be maintained above a predetermined reference.
  • the air conditioner 1 can keep the circulating amount of the refrigerant in the refrigeration cycle apparatus 20 at or above a predetermined reference by setting the air mix mode. Thereby, the air conditioner 1 can ensure the return amount (that is, oil return) of the refrigeration oil to the compressor 21 even in the case of a low load.
  • the air conditioner 1 air-conditions the air-conditioning target space while maintaining the minimum number of rotations of the electric motor at or above a predetermined reference by setting the air mix mode. That is, the air conditioner 1 does not periodically repeat the operation and stoppage of the electric motor of the compressor 21, and can reduce vibration caused by the ON / OFF control of the compressor 21.
  • the air conditioner 1 includes the vapor compression refrigeration cycle apparatus 20, the first blower 30, the second blower 31, and the temperature as shown in FIGS.
  • the wind switching unit 35 and the cold wind switching unit 40 are configured to be housed in the housing 10.
  • the hot air WA heated by the condenser 22 is blown to the outside of the air-conditioning target space by the hot air switching unit 35, and at the same time by the cold air switching unit 40.
  • the cold air CA cooled by the evaporator 24 can be supplied to the air-conditioning target space. That is, the air conditioner 1 can realize a cooling mode for cooling the air-conditioning target space with a configuration in which constituent devices such as the refrigeration cycle device 20 are accommodated in the housing 10 in a compact manner.
  • the air conditioner 1 supplies the hot air WA heated by the condenser 22 to the air-conditioning target space by the hot air switching unit 35 and also by the cold air switching unit 40.
  • the cold air cooled by the evaporator 24 can be blown out of the air-conditioning target space. That is, the air conditioner 1 can realize a heating mode in which the air conditioning target space is heated with a configuration in which the components of the refrigeration cycle apparatus 20 are accommodated in the housing 10 in a compact manner.
  • the air conditioner 1 since the ventilation capability of the 1st air blower 30 and the 2nd air blower 31 can be adjusted separately, the thermal radiation amount of the refrigerant
  • the first blower 30 and the second blower 31 are heat exchangers (that is, a condenser 22 or an evaporator) with respect to the flow of blown air. 24) on the downstream side.
  • the degree of freedom in design can be increased with respect to the arrangement of the first blower 30 and the second blower 31 inside the casing 10, and the size of the air conditioner 1 (that is, the casing 10) can be increased. Increase in size) can be suppressed.
  • the switching part 35 for warm air is 1st in the downstream rather than the condenser 22 regarding the flow of warm air WA.
  • the cool air switching unit 40 is disposed downstream of the evaporator 24 and upstream of the first blower 30 and the second blower 31 with respect to the flow of the cool air CA. ing.
  • the air conditioner 1 allows components such as the condenser 22, the evaporator 24, the first blower 30, the second blower 31, the hot air switching unit 35, and the cold air switching unit 40 to be connected to the inside of the housing 10. And can be accommodated compactly.
  • the condenser 22 and the evaporator 24 are arranged in the housing 10 with a space in the left-right direction.
  • the hot air switching unit 35 is disposed on the right side of the condenser 22 between the condenser 22 and the evaporator 24, and the cold air switching unit 40 is disposed between the condenser 22 and the evaporator 24. It is arranged on the left side of the evaporator 24 side.
  • the switching of the hot air WA flow by the hot air switching unit 35 and the switching of the cold air CA flow by the cold air switching unit 40 are surely realized, and each component device is mounted.
  • the body 10 can be accommodated compactly.
  • the condenser 22 is arranged so that the longitudinal direction of the heat exchanging portion 22A is the front-rear direction.
  • the hot air switching unit 35 has a hot air supply opening 36 and a hot air exhaust opening 37, and the hot air supply opening 36 and the hot air exhaust opening 37 are connected to the hot air side ventilation. In the path 17, they are arranged side by side in the front-rear direction.
  • the air conditioner 1 regarding the flow of the warm air WA that has passed through the heat exchange part 22A of the condenser 22, the ventilation resistance when passing through the warm air supply opening 36 and the warm air exhaust opening 37 is reduced.
  • the air volume of the warm air WA that can pass through each of them can be secured.
  • the cold air switching unit 40 includes a cold air supply opening 41 and a cold air exhaust opening 42, and the cold air supply opening 41 and the cold air exhaust opening 42 are arranged in the front-rear direction in the cold air side ventilation path 18. Are arranged side by side.
  • the air conditioner 1 with respect to the flow of the cold air CA that has passed through the heat exchange unit 24A of the evaporator 24, while reducing the ventilation resistance when passing through the cold air supply opening 41 and the cold air exhaust opening 42, the air volume of the cool air CA that can pass through each of them can be secured.
  • the air conditioner 1 includes a supply slide door 46 and an exhaust slide door 47 that are slidably mounted by the power of the drive motor 50.
  • the supply slide door 46 adjusts the air volume ratio of the hot air WA and the cold air CA with respect to the air supplied from the supply port 14 to the air-conditioning target space.
  • the exhaust slide door 47 adjusts the air volume ratio of the hot air WA and the cold air CA with respect to the air blown from the exhaust port 16 to the outside of the air-conditioning target space.
  • the air conditioner 1 moves the supply slide door 46 to a position where the opening area in the hot air supply opening 36 and the opening area in the cold air supply opening 41 are secured. Can do. Thereby, the air conditioner 1 can supply the mixed air MA obtained by mixing the hot air WA and the cold air CA from the supply port 14 to the air-conditioning target space.
  • the air conditioner 1 moves the exhaust slide door 47 to a position where the opening area in the hot air exhaust opening 37 and the opening area in the cold air exhaust opening 42 are secured, so that the outside of the air conditioning target space is moved.
  • the mixed air MA can be blown from the exhaust port 16.
  • the air conditioner 1 can maintain the minimum rotational speed of the compressor 21 at a predetermined reference or higher by setting the above-described air mix mode to supply the mixed air MA when the air conditioning load is low.
  • the air mixing mode as shown in FIG. 11 to FIG. 13 is set so that the refrigerant discharge capacity according to the air conditioning load is obtained. Driving can be continued. That is, since the air conditioner 1 does not periodically repeat the operation and the operation stop of the compressor 21, it is possible to suppress the occurrence of vibration due to this.
  • the supply slide door 46 and the exhaust slide door 47 are configured to move by transmitting the power of the drive motor 50 through the supply shaft 48 and the exhaust shaft 49. That is, the movement of the exhaust slide door 47 is interlocked with the movement of the supply slide door 46 via the exhaust shaft 49.
  • the air volume ratio of the warm air WA can be increased.
  • the air conditioner 1 in the air mix mode, the mixed air supplied from the supply port 14 in conjunction with increasing the air volume ratio of the warm air WA in the mixed air MA blown from the exhaust port 16.
  • the air volume ratio of the cold air CA in the MA can be increased.
  • the first blower 30 is arranged closer to the inlet side than the refrigerant flow outlet side of the condenser 22. According to this, heating air can be heat-exchanged in the part which becomes high temperature among the condensers 22. For this reason, in the condenser 22, it is possible to efficiently exchange heat between the high-pressure refrigerant and the heated air. Therefore, the heat exchange performance in the condenser 22 which is a heat exchanger of the refrigeration cycle apparatus 20 can be improved.
  • the heated air flows in a portion of the condenser 22 where the temperature is relatively high. Heated. Thereby, the blowing temperature of the warm air WA supplied from the supply port 14 can be raised efficiently.
  • the air conditioner 1 since the air flows concentrated on a part of the heat exchange part 22A of the condenser 22, the effective heat exchange area of the condenser 22 is reduced. Thereby, since the high pressure of the refrigeration cycle apparatus 20 is increased, the temperature at which the hot air WA is supplied from the supply port 14 can be increased.
  • the heated air is heated in a portion of the condenser 22 where the temperature difference from the air is relatively large. Is heated. For this reason, since the heat exchange efficiency in the condenser 22 is improved, the high pressure of the refrigeration cycle apparatus 20 can be reduced. Thereby, the coefficient of performance (COP) of the refrigeration cycle apparatus 20 can be improved.
  • the second blower 31 is disposed closer to the center than both the refrigerant flow outlet side and the inlet side of the evaporator 24. That is, the 2nd air blower 31 is arrange
  • the second blower 31 and the refrigerant flow center portion in the heat exchange portion 24 ⁇ / b> A of the evaporator 24 are arranged in a polymerized manner. That is, when viewed from the left and right directions of the air conditioner 1 in the upper plan view, the second blower 31 and the refrigerant central portion of the heat exchanging portion 24A of the evaporator 24 are arranged so as to overlap each other.
  • the 2nd air blower 31 is arrange
  • FIG. According to this, since air flows over the entire surface of the heat exchanging portion 24A of the evaporator 24, the effective heat exchange area of the evaporator 24 is increased. Thereby, since the heat exchange efficiency in the evaporator 24 improves, the coefficient of performance (COP) of the refrigeration cycle apparatus 20 can be improved.
  • COP coefficient of performance
  • the third embodiment is different from the first embodiment in the arrangement of the first blower 30 and the second blower 31.
  • the distance between the condenser 22 and the evaporator 24 is shorter than the diameter of the first blower 30 in the upper plan view. Similarly, in the upper plan view, the distance between the condenser 22 and the evaporator 24 is shorter than the diameter of the second blower 31.
  • the first blower 30 and the second blower 31 are not disposed between the condenser 22 and the evaporator 24 in the upper plan view. Further, when viewed from the left and right directions of the air conditioner 1 in the upper plan view, the first blower 30 and the condenser 22 are arranged so as not to overlap. Similarly, the second blower 31 and the evaporator 24 are arranged so as not to overlap when viewed from the left-right direction of the air conditioner 1 in an upper plan view.
  • the first blower 30 is disposed so as not to overlap with either the condenser 22 or the evaporator 24 when viewed from the front-rear direction of the air conditioner 1.
  • the second blower 31 is disposed so as not to overlap with either the condenser 22 or the evaporator 24 when viewed from the front-rear direction of the air conditioner 1.
  • the first blower 30 is disposed so as to overlap the second blower 31 when viewed from the front-rear direction of the air conditioner 1.
  • the first blower 30 is arranged on the left side and the rear side with respect to the condenser 22 in an upper plan view. That is, the first blower 30 is disposed on the evaporator 24 side with respect to the condenser 22 and on the refrigerant flow outlet side of the condenser 22 in the upper plan view.
  • the second blower 31 is arranged on the right side and the front side with respect to the evaporator 24 in the upper plan view. That is, the second blower 31 is arranged on the condenser 22 side and the refrigerant flow inlet side of the evaporator 24 with respect to the evaporator 24 in the upper plan view.
  • the air conditioner 1 has a wall portion 70 that guides the warm air WA heated by the condenser 22 to the first blower 30 and guides the cool air CA cooled by the evaporator 24 to the second blower 31. is doing.
  • the wall portion 70 is disposed so as to connect an end portion on the refrigerant flow outlet side of the condenser 22 and an end portion on the refrigerant flow outlet side of the evaporator 24 in an upper plan view.
  • the fourth embodiment differs from the first embodiment in the arrangement of the first blower 30 and the second blower 31.
  • the distance between the condenser 22 and the evaporator 24 is shorter than the diameter of the first blower 30 in the upper plan view.
  • the distance between the condenser 22 and the evaporator 24 is shorter than the diameter of the second blower 31. For this reason, the first blower 30 and the second blower 31 are not disposed between the condenser 22 and the evaporator 24 in the upper plan view.
  • the first blower 30 is disposed on the right side of the condenser 22 in an upper plan view. That is, the first blower 30 is disposed on the opposite side of the evaporator 24 with respect to the condenser 22 in the upper plan view.
  • the second blower 31 is disposed on the left side of the evaporator 24 in the upper plan view. That is, in the upper plan view, the second blower 31 is disposed on the opposite side of the condenser 22 with respect to the evaporator 24.
  • the second blower 31 is disposed closer to the center than both the refrigerant flow outlet side and the inlet side of the evaporator 24.
  • the 2nd air blower 31 is arrange
  • the second blower 31 and the central portion of the refrigerant flow in the heat exchanging portion 24A of the evaporator 24 are superposed.
  • the 2nd air blower 31 is arrange
  • FIG. According to this, since air flows over the entire surface of the heat exchanging portion 24A of the evaporator 24, the effective heat exchange area of the evaporator 24 is increased. Thereby, since the heat exchange efficiency in the evaporator 24 improves, the coefficient of performance (COP) of the refrigeration cycle apparatus 20 can be improved.
  • COP coefficient of performance
  • the first blower 30 is disposed on the lower side of the condenser 22. And when it sees from the up-down direction of the air conditioner 1, the 1st air blower 30 and the site
  • the first blower 30 and the portion of the heat exchange section 22A of the condenser 22 on the most upstream side of the refrigerant flow are superposed.
  • the entire first blower 30 and the upstream portion of the refrigerant flow in the heat exchanging portion 22 ⁇ / b> A of the condenser 22 are arranged in a superposed manner.
  • the second blower 31 is disposed below the evaporator 24.
  • the 2nd air blower 31 is arrange
  • the 2nd air blower 31 is arrange
  • the second blower 31 and the central portion of the refrigerant flow in the heat exchange unit 24 ⁇ / b> A of the evaporator 24 are arranged in a superposed manner.
  • the 2nd air blower 31 is arrange
  • FIG. According to this, since air flows over the entire surface of the heat exchanging portion 24A of the evaporator 24, the effective heat exchange area of the evaporator 24 is increased. Thereby, since the heat exchange efficiency in the evaporator 24 improves, the coefficient of performance (COP) of the refrigeration cycle apparatus 20 can be improved.
  • COP coefficient of performance
  • the air conditioner 1 is applied to a seat air conditioner that uses a seat as an air-conditioning target space.
  • the present invention is not limited to this mode. If the refrigeration cycle apparatus 20, the first blower 30, the second blower 31, and the like are housed in the housing 10 as the constituent devices in the air conditioner 1 described above, they may be configured to be used for other purposes. Is possible.
  • the casing 10 of the air conditioner 1 is configured in a rectangular parallelepiped shape that can be disposed between the seat surface portion of the seat and the passenger compartment floor surface. It is not something. About the external appearance shape etc. of the housing
  • the air blowing capacity of the first blower 30 and the second blower 31 is adjusted by changing the number of rotations of each electric motor by a control signal from the control unit 60. It is not limited to the embodiment. By adopting a fan having different performance as the first fan 30 and the second fan 31, it is possible to adjust the blowing capacity.
  • the refrigeration cycle apparatus 20 is configured to include the accumulator 25, but is not limited to this mode.
  • the refrigeration cycle apparatus 20 should just comprise the refrigerating cycle which has the compressor 21, the condenser 22, the pressure reduction part 23, and the evaporator 24 at least.
  • the suction type blower is employed as the first blower 30 and the second blower 31
  • the configuration of the first blower 30 and the second blower 31 is not limited thereto.
  • the first blower 30 a so-called push-type blower that generates an air flow from the first blower 30 toward the condenser 22 by rotation of the impeller may be employed.
  • the second blower 31 a so-called push-type blower that generates an air flow from the second blower 31 to the evaporator 24 by the rotation of the impeller may be adopted.
  • the air conditioner 1 is configured to be capable of performing both the heating operation and the cooling operation, but is not limited to this mode.
  • the air conditioner 1 may be configured as a heating device dedicated to heating operation, or may be configured as a cooling device dedicated to cooling operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Abstract

空調装置(1)は、冷凍サイクル装置(20)と、第1送風機(30)と、第2送風機(31)と、筐体(10)と、を備えている。冷凍サイクル装置は、高圧冷媒を凝縮させる凝縮器(22)および低圧冷媒を蒸発させる蒸発器(24)を有する。第1送風機は、凝縮器にて加熱された加熱空気を送風する。第2送風機は、蒸発器にて冷却された冷却空気を送風する。筐体は、冷凍サイクル装置、第1送風機および第2送風機を収容する。第1送風機は、凝縮器の冷媒流れ出口側よりも入口側の近くに配置されている。

Description

空調装置 関連出願の相互参照
 本出願は、2018年5月7日に出願された日本特許出願2018-89387号に基づくもので、ここにその記載内容を援用する。
 本開示は、冷凍サイクル等の構成機器を筐体の内部に収容した空調装置に関する。
 従来、空調装置の一態様として、蒸気圧縮式の冷凍サイクル装置や送風機等の構成機器が筐体の内部に収容されているものが開発されている。このような空調装置は、例えば、車両に配置されたシートの座面部と床面との間に配置され、シートを空調対象空間として、その快適性を向上させている。
 このような空調装置に関する技術として、例えば、特許文献1に記載された技術が知られている。特許文献1に記載された空調機は、コンデンサ及びエバポレータを含む冷凍サイクルと、一台の遠心ファンを本体ケースの内部に収容している。
特開2017-187218号公報
 しかしながら、上記特許文献1に記載された空調機では、1つの筐体内に全ての構成機器を配置しているので、凝縮器および蒸発器に対して十分に空気を流すことができない。したがって、凝縮器および蒸発器の熱交換性能を十分に発揮させることができない可能性がある。
 本開示は上記点に鑑みて、冷凍サイクル装置および送風機等を1つの筐体の内部に収容した空調装置において、冷凍サイクル装置の熱交換器における熱交換性能を向上させることを目的とする。
 上記目的を達成するため、本開示の一態様による空調装置は、冷凍サイクル装置と、第1送風機と、第2送風機と、筐体と、を備えている。冷凍サイクル装置は、高圧冷媒を凝縮させる凝縮器および低圧冷媒を蒸発させる蒸発器を有する。第1送風機は、凝縮器にて加熱された加熱空気を送風する。第2送風機は、蒸発器にて冷却された冷却空気を送風する。筐体は、冷凍サイクル装置、第1送風機および第2送風機を収容する。第1送風機は、凝縮器の冷媒流れ出口側よりも入口側の近くに配置されている。
 これによれば、凝縮器のうち相対的に高温となる部分において、加熱空気を熱交換させることができる。このため、凝縮器において、高圧冷媒と加熱空気とを効率的に熱交換させることができる。したがって、冷凍サイクル装置の熱交換器における熱交換性能を向上させることができる。
 本開示についての上記及び他の目的、特徴や利点は、添付図面を参照した下記詳細な説明から、より明確になる。
第1実施形態に係る空調装置の外観斜視図である。 第1実施形態に係る空調装置の上部カバーを外した状態を示す斜視図である。 第1実施形態に係る空調装置の第1送風機、第2送風機を外した状態を示す斜視図である。 第1実施形態に係る空調装置の内部構成を示す平面図である。 図4におけるV-V断面を示す断面図である。 図4におけるVI-VI断面を示す断面図である。 第1実施形態に係る空調装置の制御系を示すブロック図である。 第1実施形態に係る空調装置の暖房モード時の内部構成を示す平面図である。 第1実施形態に係る暖房モードにおいて、供給口側への空気の流れを示す説明図である。 第1実施形態に係る暖房モードにおいて、排気口側への空気の流れを示す説明図である。 第1実施形態に係る空調装置のエアミックスモード時の内部構成を示す平面図である。 第1実施形態に係るエアミックスモードにおいて、供給口側への空気の流れを示す説明図である。 第1実施形態に係るエアミックスモードにおいて、排気口側への空気の流れを示す説明図である。 第1実施形態に係る凝縮器を示す平面図である。 第1実施形態に係る空調装置の第1送風機および凝縮器等の配置関係を説明するための説明図である。 第2実施形態に係る空調装置の第1送風機および凝縮器等の配置関係を説明するための説明図である。 第3実施形態に係る空調装置の第1送風機および凝縮器等の配置関係を説明するための説明図である。 第4実施形態に係る空調装置の第1送風機および凝縮器等の配置関係を説明するための説明図である。 第5実施形態に係る空調装置の第1送風機および凝縮器等の配置関係を説明するための説明図である。
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
 又、各図における上下、左右、前後を示す矢印は、実施形態における各構成の位置関係の理解を容易にする為に、三次元空間の直交座標系(例えば、X軸、Y軸、Z軸)に対応する基準として例示したものである。従って、本開示に係る空調装置の姿勢等は、各図に示す状態に限定されるものではなく、適宜変更可能である。
 (第1実施形態)
 第1実施形態に係る空調装置1は、車両の車室内に配置されたシートを空調対象空間として、シートに座った乗員の快適性を高めるためのシート空調装置に用いられる。空調装置1は、シートの座面部と車室床面との間の小さなスペースに配置されており、シートに配置されたダクトを介して、空調風(例えば、冷風や温風)を供給することで、シートに座った乗員の快適性を高めるように構成されている。
 図1~図3に示すように、第1実施形態に係る空調装置1は、蒸気圧縮式の冷凍サイクル装置20と、第1送風機30と、第2送風機31と、温風用切替部35と、冷風用切替部40とを、筐体10の内部に収容して構成されている。
 従って、空調装置1は、第1送風機30や第2送風機31の作動による送風空気を冷凍サイクル装置20によって温度調整し、シートに配置されたダクト等を介して、シートに座った乗員に供給することができる。
 先ず、筐体10の具体的な構成について、図1~図3を参照しつつ説明する。尚、図2は、図1の状態から上部カバー11を取り外した状態を示しており、図3は、図2の状態から第1送風機30及び第2送風機31を取り外した状態を示している。
 空調装置1において、筐体10は、シートの座面部と車室床面との間に配置可能な直方体状に形成されている。図1に示すように、筐体10は、上部カバー11と、本体ケース15とにより構成されている。
 上部カバー11は、筐体10の上面を構成しており、上方が開放された箱状を為す本体ケース15の開口部を閉塞するように取り付けられる。上部カバー11には、温風用通気口12と、冷風用通気口13と、供給口14と、排気口16が形成されている。
 温風用通気口12は、上部カバー11の右側部分に開口されている。温風用通気口12は、後述する第1送風機30等の作動に伴い、筐体10の外部の空気(即ち、車室内の空気)を筐体10の内部に吸い込む為の通気口である。
 図1~図6に示すように、筐体10の内部において、温風用通気口12の下方となる位置には、冷凍サイクル装置20の凝縮器22が配置されている。従って、温風用通気口12から吸い込まれた空気は、凝縮器22を通過する際に高圧冷媒と熱交換して加熱され、温風WAとして供給される。
 冷風用通気口13は、上部カバー11の左側部分に開口されており、温風用通気口12と対称となるように配置されている。冷風用通気口13は、温風用通気口12と同様に、第1送風機30等の作動に伴い、筐体10の外部の空気を内部に吸い込むための通気口である。
 筐体10の内部にて冷風用通気口13の下方となる位置には、冷凍サイクル装置20の蒸発器24が配置されている。従って、冷風用通気口13から吸い込まれた空気は、蒸発器24を通過する際に冷却され、冷風CAとして供給される。
 そして、上部カバー11における後側中央部には、供給口14が開口されている。供給口14は、空調装置1にて冷凍サイクル装置20で温度調整された空調風(例えば、温風WA、冷風CA、混合風MA)を空調対象空間へ供給する為の通気口である。
 尚、図示は省略するが、供給口14にはダクトの端部が接続されている。ダクトは、シートの側部等に沿って配置されており、シートにおける乗員が着席する空間へ空調風を導くように構成されている。シートにおける乗員が着席する空間は空調対象空間に相当する。
 又、上部カバー11における前側中央部には、排気口16が開口されている。排気口16は、筐体10の内部において、冷凍サイクル装置20にて温度調整された空気のうちの一部が排気される開口部である。排気口16から吹き出された空気は、空調対象空間の外部へ送風される。
 本体ケース15は、筐体10の主要部を構成しており、上方が開放された箱状に形成されている。図2~図6に示すように、本体ケース15の内部には、冷凍サイクル装置20や第1送風機30等の構成機器が配置される。
 尚、図5、図6等に示すように、本体ケース15の内部には、温風側通風路17と冷風側通風路18が形成される。温風側通風路17は、凝縮器22にて加熱された温風WAが流通する通風路であり、冷風側通風路18は、蒸発器24にて冷却された冷風CAが流通する通風路である。温風側通風路17、冷風側通風路18は、何れも本体ケース15の筐体底面15Aと、構成機器との間によって構成される。
 次に、空調装置1における冷凍サイクル装置20の構成について、図面を参照しつつ説明する。上述したように、冷凍サイクル装置20は、筐体10の内部に収容されており、蒸気圧縮式の冷凍サイクルを構成している。
 そして、冷凍サイクル装置20は、圧縮機21と、高圧冷媒を凝縮させる凝縮器22と、減圧部23と、低圧冷媒を蒸発させる蒸発器24と、アキュムレータ25とを有している。冷凍サイクル装置20は、圧縮機21の作動によって冷媒を循環させることで、空調対象空間であるシート周辺へ送風される空気を冷却或いは加熱する。
 ここで、冷凍サイクル装置20は、冷媒として、HFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。もちろん、冷媒としてHFO系冷媒(例えば、R1234yf)や自然冷媒(例えば、R744)等を採用してもよい。更に、冷媒には圧縮機21を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
 圧縮機21は、冷凍サイクル装置20において、冷媒を吸入し、圧縮して吐出する。圧縮機21は、吐出容量が固定された固定容量型の圧縮機構を電動モータにて駆動する電動圧縮機として構成されており、図2、図3等に示すように、本体ケース15の内部における後方側に配置されている。尚、圧縮機21の圧縮機構としては、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用することができる。
 圧縮機21を構成する電動モータは、図7に示す制御部60から出力される制御信号によって、その作動(すなわち回転数)が制御される。そして、制御部60が電動モータの回転数を制御することによって、圧縮機21の冷媒吐出能力が変更される。
 圧縮機21にて圧縮された高圧冷媒が吐出される吐出配管には、凝縮器22の流入口側が接続されている。凝縮器22は、複数のチューブ及びフィンを積層して平板状に構成された熱交換部22Aを有しており、熱交換部22Aを通過する空気と、各チューブを流れる高圧冷媒とを熱交換させる。尚、凝縮器22の詳細な構成については後述する。
 図2~図4に示すように、凝縮器22は、本体ケース15の右側に配置されており、温風用通気口12の下方に位置している。凝縮器22の熱交換部22Aは、温風用通気口12の開口面積よりも大きく形成されている。従って、温風用通気口12から吸い込まれた空気は、凝縮器22の熱交換部22Aを通過する。
 即ち、凝縮器22は、圧縮機21から吐出された高温高圧の吐出冷媒と、温風用通気口12から吸い込まれた空気とを熱交換させて、空気を加熱して温風WAにすることができる。つまり、凝縮器22は、加熱用熱交換器として作動し、放熱器として機能する。
 そして、凝縮器22の熱交換部22Aは、複数のチューブ及びフィンが伸びる方向を長手方向とする平板状に形成されている。図2~図6に示すように、凝縮器22は、熱交換部22Aの長手方向が空調装置1の前後方向に沿うように配置されている。
 更に、図5、図6に示すように、凝縮器22は、熱交換部22Aが筐体底面15Aから予め定められた距離だけ上方に位置するように配置される。凝縮器22の下方に形成される空間は、熱交換部22Aを通過した温風WAが流通する空間であり、温風側通風路17の一部として機能する。
 そして、凝縮器22の流出口側には、減圧部23が接続されている。減圧部23は、いわゆる固定絞りによって構成されており、凝縮器22から流出した冷媒を減圧させる。図4に示すように、減圧部23は、本体ケース15の内部における前側に配置されている。
 尚、空調装置1では、減圧部23として固定絞りを用いているが、この態様に限定されるものではない。凝縮器22から流出した冷媒を減圧可能であれば、減圧部として、種々の構成を採用することができる。例えば、キャピラリーチューブを減圧部23として採用しても良いし、制御部60の制御信号により絞り開度を制御可能な膨張弁を、減圧部23に用いても良い。
 減圧部23の流出口側には、蒸発器24の流入口側が接続されている。蒸発器24は、複数のチューブ及びフィンを積層して平板状に構成された熱交換部24Aを有しており、熱交換部24Aを通過する空気から吸熱して、各チューブを流れる低圧冷媒を蒸発させる。
 図2~図4に示すように、蒸発器24は、本体ケース15の左側に配置されており、冷風用通気口13の下方に位置している。従って、空調装置1では、蒸発器24は、筐体10の内部において、凝縮器22に対して左右方向に間隔をあけて配置されている。
 そして、蒸発器24の熱交換部24Aは、冷風用通気口13の開口面積よりも大きく形成されている。従って、冷風用通気口13から吸い込まれた空気は、蒸発器24の熱交換部24Aを通過する。
 即ち、蒸発器24は、冷風用通気口13から吸い込まれた空気と、減圧部23にて減圧された低圧冷媒とを熱交換させて、空気を冷却して冷風CAにすることができる。つまり、蒸発器24は、冷却用熱交換器として作動し、吸熱器として機能する。
 そして、蒸発器24の熱交換部24Aは、複数のチューブ及びフィンが伸びる方向を長手方向とする平板状に形成されている。図2~図6に示すように、蒸発器24は、熱交換部24Aの長手方向が空調装置1の前後方向に沿うように配置されている。
 図5、図6に示すように、蒸発器24は、熱交換部24Aが筐体底面15Aから予め定められた距離だけ上方に位置するように配置される。蒸発器24の下方に形成される空間は、熱交換部24Aを通過した冷風CAが流通する空間であり、冷風側通風路18の一部として機能する。
 そして、蒸発器24の流出口側には、アキュムレータ25が接続されており、本体ケース15における左側後方に配置されている。アキュムレータ25は、蒸発器24から流出した冷媒の気液を分離して、冷凍サイクル内の余剰液相冷媒を蓄える。
 アキュムレータ25における気相冷媒出口には、圧縮機21の吸入配管が接続されている。従って、圧縮機21には、アキュムレータ25で分離された気相冷媒が吸入配管を介して吸入される。
 図2に示すように、筐体10の内部には、第1送風機30と第2送風機31が配置されている。第1送風機30は、複数枚の羽根を有する羽根車と、羽根車を回転させる電動モータとを有して構成された送風機である。
 第1送風機30は、凝縮器22と蒸発器24の間における後方側に位置しており、供給口14の下方に位置している。従って、第1送風機30は、羽根車を回転させることによって、供給口14を介して、空調対象空間であるシートに対して送風することができる。すなわち、本実施形態の第1送風機30は、羽根車の回転により凝縮器22から第1送風機30に向かう空気流を生成する、いわゆる吸込式の送風機である。
 そして、第2送風機31は、第1送風機30と同様に、羽根車及び電動モータを有する送風機である。図2に示すように、第2送風機31は、凝縮器22と蒸発器24の間において、第1送風機30の前側に隣接するように配置されている。
 第2送風機31は、排気口16の下方に位置している。従って、第2送風機31は、羽根車を回転させることによって、排気口16を介して、空調対象空間の外部へ送風することができる。すなわち、本実施形態の第2送風機31は、羽根車の回転により蒸発器24から第2送風機31に向かう空気流を生成する、いわゆる吸込式の送風機である。
 図3等に示すように、第1送風機30及び第2送風機31の下方には、ファン支持部55が配置されている。ファン支持部55は、凝縮器22と蒸発器24の間に配置されており、第1取付開口56と、第2取付開口57とを有している。図3~図6に示すように、ファン支持部55は、筐体10における筐体底面15Aから予め定められた高さに位置するように配置されており、凝縮器22と蒸発器24の間の空間を上下に区画している。
 第1取付開口56は、第1送風機30が取り付けられる開口部であり、ファン支持部55における後方側に配置されている。一方、第2取付開口57は、第2送風機31が取り付けられる開口部であり、ファン支持部55における前方側にて、第1取付開口56に隣接するように配置されている。
 従って、第1送風機30は、第1取付開口56を介して、ファン支持部55の下方の空気を吸い込み、供給口14へ供給することができる。第2送風機は、第2取付開口57を介して、ファン支持部55の下方の空気を吸い込んで、排気口16へ送風することができる。
 そして、空調装置1における温風用切替部35及び冷風用切替部40の構成について、図面を参照しつつ説明する。
 尚、図5は、図4におけるV-V断面を示しており、第1送風機30による空気(すなわち冷風CA)の流れの一例を示している。そして、図6は、図4におけるVI-VI断面を示しており、第2送風機31による空気(すなわち温風WA)の流れの一例を示している。
 図3に示すように、空調装置1は、凝縮器22と蒸発器24の間にて、第1送風機30及び第2送風機31の下方に、温風用切替部35と、冷風用切替部40とを有している。温風用切替部35は、凝縮器22により加熱された温風WAの送風先を切り替える為の機構である。冷風用切替部40は、蒸発器24により冷却された冷風CAの送風先を切り替える為の機構である。
 温風用切替部35及び冷風用切替部40は、ファン支持部55の下方に配置されたフレーム部材45、供給用スライドドア46、排気用スライドドア47、駆動モータ50等を有して構成されている。
 つまり、温風用切替部35及び冷風用切替部40は、筐体10の内部において、左右両側に配置された凝縮器22と蒸発器24の間に配置されている。そして、温風用切替部35は、凝縮器22と蒸発器24の間における右側(即ち、凝縮器22に近い側)に位置しており、冷風用切替部40は、凝縮器22と蒸発器24の間における左側(即ち、蒸発器24に近い側)に配置されている。
 図5、図6に示すように、フレーム部材45は、凝縮器22と蒸発器24の間にて、ファン支持部55の下方に配置されており、前後方向に沿って伸びている。フレーム部材45は、前後方向に垂直な断面に関して、下方に向かって膨らんだ円弧状に形成されている。
 円弧状に膨らんだフレーム部材45の下端部には、区画部45Aが形成されている。区画部45Aは、フレーム部材45の下端部と筐体底面15Aの内面との間を閉塞する壁状に形成されており、前後方向に沿って伸びている。即ち、フレーム部材45の下方の空間は、区画部45Aによって左右に区画される。
 フレーム部材45の下方であって、区画部45Aの右側にあたる空間は、凝縮器22の下方の空間と連通し、温風側通風路17の一部を構成する。同様に、フレーム部材45の下方であって、区画部45Aの左側にあたる空間は、蒸発器24の下方の空間と連通し、冷風側通風路18の一部を構成する。
 そして、フレーム部材45の前後方向中央部には、ファン支持部55とフレーム部材45の間の空間を前後に区画する区画リブが形成されている。区画リブの後方側の空間は、第1取付開口56に連通しており、供給口14から供給される空気が流入する供給用空間56Aとして機能する。そして、区画リブの前方側の空間は、第2取付開口57に連通しており、排気口16から送風される空気が流入する排気用空間57Aとして機能する。
 温風用切替部35を構成する温風供給用開口36及び温風排気用開口37は、フレーム部材45における区画部45Aの右側において、前後方向に隣接するように配置されている。温風供給用開口36は、フレーム部材45における右側後方に開口形成されており、供給用空間56Aと温風側通風路17を連通している。そして、温風排気用開口37は、フレーム部材45における右側前方に開口形成されており、排気用空間57Aと温風側通風路17を連通している。
 図5、図6に示すように、フレーム部材45は、左右方向中央部に向かうに伴って下方に膨らんだ円弧状に形成されており、温風供給用開口36及び温風排気用開口37は、フレーム部材45の右側部分に開口されている。
 従って、温風供給用開口36及び温風排気用開口37の開口縁は、凝縮器22が配置されている筐体10の右側から離れる程、下方に向かう円弧を描くように形成される。つまり、温風供給用開口36及び温風排気用開口37の開口縁のうち、凝縮器22側に位置する部位は、温風供給用開口36及び温風排気用開口37を介して、区画部45A側に位置する部位に対向している。そして、凝縮器22側に位置する部位は、空調装置1の上下方向に関して、区画部45A側に位置する部位よりも上方側に位置している。
 これにより、温風供給用開口36及び温風排気用開口37の開口面積は、温風側通風路17を左右方向(即ち、水平)に横断するように温風供給用開口36等を形成した場合の開口面積よりも大きくなる。
 又、図4~図6に示すように、凝縮器22は、熱交換部22Aの長手方向が前後方向に沿うように配置されている。そして、温風用切替部35において、温風供給用開口36と温風排気用開口37は、前後方向に並んで配置されている。
 この結果、空調装置1は、凝縮器22の熱交換部22Aを通過した空気に関し、温風供給用開口36に流入する風量と、温風排気用開口37に流入する風量の何れについても、十分に確保することができる。
 そして、冷風用切替部40を構成する冷風供給用開口41及び冷風排気用開口42は、フレーム部材45における区画部45Aの左側において、前後方向に隣接するように配置されている。
 冷風供給用開口41は、フレーム部材45における左側後方に開口形成されており、供給用空間56Aと冷風側通風路18とを連通している。図5に示すように、冷風供給用開口41は、フレーム部材45において、温風供給用開口36と左右方向に隣接している。
 そして、冷風排気用開口42は、フレーム部材45における左側前方に開口形成されており、排気用空間57Aと冷風側通風路18とを連通している。図6に示すように、冷風排気用開口42は、フレーム部材45において、温風排気用開口37と左右方向に隣接している。
 上述したように、フレーム部材45は、左右方向中央部に向かうに伴って下方に膨らんだ円弧状に形成されており、冷風供給用開口41及び冷風排気用開口42は、フレーム部材45の左側部分に開口されている。
 従って、冷風供給用開口41及び冷風排気用開口42の開口縁は、蒸発器24が配置されている筐体10の左側から離れる程、下方に向かう円弧を描くように形成される。つまり、冷風供給用開口41及び冷風排気用開口42の開口縁のうち、蒸発器24側に位置する部位は、冷風供給用開口41及び冷風排気用開口42を介して、区画部45A側に位置する部位に対向している。そして、蒸発器24側に位置する部位は、空調装置1の上下方向に関して、区画部45A側に位置する部位よりも上方側に位置している。
 これにより、冷風供給用開口41及び冷風排気用開口42の開口面積は、冷風側通風路18を左右方向(即ち、水平)に横断するように冷風供給用開口41等を形成した場合の開口面積よりも大きくなる。
 そして、図4~図6に示すように、蒸発器24は、熱交換部24Aの長手方向が前後方向に沿うように配置されている。そして、冷風用切替部40において、冷風供給用開口41と冷風排気用開口42は、前後方向に並んで配置されている。
 この結果、空調装置1は、蒸発器24の熱交換部24Aを通過した空気に関し、冷風供給用開口41に流入する風量と、冷風排気用開口42に流入する風量の何れについても、十分に確保することができる。
 フレーム部材45の後方側には、供給用スライドドア46が移動可能に取り付けられている。供給用スライドドア46は、温風供給用開口36及び冷風供給用開口41の開口面積よりも大きな板状に形成されており、フレーム部材45の円弧に沿って湾曲している。
 そして、供給用スライドドア46は、温風供給用開口36を閉塞する位置と、冷風供給用開口41を閉塞する位置との間を、フレーム部材45の円弧に沿ってスライド可能に取り付けられている。
 従って、空調装置1は、供給用スライドドア46を移動させることで、温風供給用開口36を介して供給用空間56Aに流入する温風WAの風量と、冷風供給用開口41を介して供給用空間56Aに流入する冷風CAの風量を調整することができる。即ち、供給用スライドドア46は、供給口14から供給される空気において、温風WA及び冷風CAが占める割合を調整することができ、供給側風量調整部として機能する。
 一方、フレーム部材45の前方側には、排気用スライドドア47が移動可能に取り付けられている。排気用スライドドア47は、温風排気用開口37及び冷風排気用開口42の開口面積よりも大きな板状に形成されており、フレーム部材45の円弧に沿って湾曲している。
 そして、排気用スライドドア47は、温風排気用開口37を閉塞する位置と、冷風排気用開口42を閉塞する位置との間を、フレーム部材45の円弧に沿ってスライド可能に取り付けられている。
 従って、空調装置1は、排気用スライドドア47を移動させることで、温風排気用開口37を介して排気用空間57Aに流入する温風WAの風量と、冷風排気用開口42を介して排気用空間57Aに流入する冷風CAの風量を調整することができる。即ち、排気用スライドドア47は、排気口16から送風される空気において、温風WA及び冷風CAが占める割合を調整することができ、排気側風量調整部として機能する。
 図4等に示すように、筐体10の内部には、駆動モータ50が配置されている。駆動モータ50は、いわゆるサーボモータによって構成されており、供給用スライドドア46及び排気用スライドドア47をスライド移動させる為の駆動源として機能する。駆動モータ50の作動は、制御部60からの制御信号に基づいて行われる。
 駆動モータ50の駆動軸には、供給用シャフト48が接続されている。供給用シャフト48は、駆動モータ50から前方側に向かって伸びており、2つのギヤ部48Aを有している。又、供給用シャフト48は、供給用スライドドア46の上方を前後方向に横断するように配置されている。
 そして、供給用スライドドア46の上面には、2つの歯部46Aが左右方向に延びるように配置されている。供給用スライドドア46の歯部46Aは、それぞれ、供給用シャフト48のギヤ部48Aにおける歯と噛み合うように形成されている。
 従って、駆動モータ50で生じた動力は、ギヤ部48Aと歯部46Aを介して、供給用スライドドア46に伝達される。即ち、空調装置1は、制御部60にて駆動モータ50の作動を制御することで、供給用スライドドア46を左右方向の任意の位置にスライド移動させることができる。
 一方、供給用シャフト48の前方側には、排気用シャフト49が回転可能に支持されている。排気用シャフト49は、供給用シャフト48と平行になるように前方側に向かって伸びており、2つのギヤ部49Aを有している。
 図4に示すように、供給用シャフト48の前方側の端部には、伝達ギヤ部48Bが配置されており、排気用シャフト49の後方側の端部に配置された従動ギヤ部49Bと噛み合うように構成されている。従って、駆動モータ50で生じた動力は、供給用シャフト48の回転に伴い、排気用シャフト49に伝達される。
 そして、排気用スライドドア47の上面には、2つの歯部47Aが左右方向に延びるように配置されている。排気用スライドドア47の歯部47Aは、それぞれ、排気用シャフト49のギヤ部49Aと噛み合うように形成されている。
 従って、駆動モータ50で生じた動力が、供給用シャフト48を介して伝達され、排気用シャフト49を回転させる。これにより、排気用スライドドア47は、温風排気用開口37と冷風排気用開口42の間をスライド移動する。即ち、空調装置1は、制御部60にて駆動モータ50の作動を制御することで、排気用スライドドア47を左右方向の任意の位置にスライド移動させることができる。
 又、空調装置1によれば、供給用シャフト48及び排気用シャフト49を介して、駆動モータ50の動力を供給用スライドドア46と排気用スライドドア47に伝達させることができる。これにより、空調装置1は、供給用スライドドア46のスライド移動と、排気用スライドドア47のスライド移動を連動させることができる。
 図8~図13に示すように、冷風排気用開口42における開口面積が増大するように、排気用スライドドア47が移動すると、供給用スライドドア46は、温風供給用開口36における開口面積が増大するように移動する。
 この場合には、排気用空間57Aに流入する空気における冷風CAの風量割合が増大するとともに、供給用空間56Aに流入する空気における温風WAの風量割合が増大する。空調装置1は、空調対象空間に対して、暖房モードよりも低温で、冷房モードよりも高温な混合風MAを供給することができ、暖房よりのエアミックスモードを実現することができる。
 又、温風排気用開口37における開口面積が増大するように、排気用スライドドア47が移動すると、供給用スライドドア46は、冷風供給用開口41における開口面積が増大するように移動する。
 この場合には、排気用空間57Aに流入する空気における温風WAの風量割合が増大するとともに、供給用空間56Aに流入する空気における冷風CAの風量割合が増大する。空調装置1は、空調対象空間に対して、暖房モードよりも低温で、冷房モードよりも高温な混合風MAを供給することができ、冷房よりのエアミックスモードを実現することができる。
 このように構成された第1実施形態に係る空調装置1によれば、冷凍サイクル装置20の凝縮器22で加熱された温風WAや、蒸発器24で冷却された冷風CAを用いて、空調対象空間であるシートに対して空調風を供給することができる。
 そして、空調装置1によれば、温風用切替部35や冷風用切替部40の作動を制御することで、冷房モード、暖房モード、エアミックスモードを実現することができる。冷房モードでは、空調装置1は、空調対象空間に対して冷風CAを供給することができる。暖房モードでは、空調装置1は、空調対象空間に対して温風WAを供給することができる。エアミックスモードでは、空調装置1は、冷風CA及び温風WAを混合して温度調整した混合風MAを空調対象空間に供給することができる。
 次に、第1実施形態に係る空調装置1における凝縮器22の詳細な構成について、図面を参照しつつ説明する。図14に示すように、凝縮器22は、いわゆるタンクアンドチューブ型の熱交換器で構成されている。したがって、凝縮器22は、冷媒が流通する複数のチューブ221と、一対のヘッダタンク222、223とを備えている。
 チューブ221は、その長手方向が前後方向に一致するように、左右方向に複数本平行に積層配置されている。チューブ221における長手方向に垂直な断面の形状は、扁平な長円形状(すなわち、扁平形状)である。チューブ221は、チューブ221の外部を流れる空気の流れ方向が、扁平形状における長径方向と一致するように配置されている。
 また、チューブ221の外表面には、伝熱部材としての波形状のフィン224が接合されている。フィン224により、チューブ221周りを流れる空気との熱交換面積(すなわち、伝熱面積)が増大されて冷媒と空気との熱交換が促進される。
 以下、チューブ221の長手方向をチューブ長手方向といい、チューブ221の積層方向をチューブ積層方向という。
 上述した熱交換部22Aは、複数のチューブ221および複数のフィン224が交互に積層された積層体により構成されている。熱交換部22Aにおけるチューブ積層方向の両端部には、チューブ長手方向と略平行に延びて熱交換部22Aを補強するインサート225が設けられている。
 ヘッダタンク222、223は、複数のチューブ221と連通しており、複数のチューブ221に対して冷媒の集合または分配を行う。ヘッダタンク222、223は、チューブ長手方向の両端部(本実施形態では、前後端部)に一つずつ設けられている。ヘッダタンク222、223は、チューブ長手方向と直交する方向(本実施形態では、左右方向)に延びている。
 ここで、一対のヘッダタンク222、223のうち、後側に配置されるとともにチューブ221に対して冷媒の分配を行うものを、入口タンク222という。また、一対のヘッダタンク222、223のうち、前側に配置されるとともに、チューブ221から流出する冷媒の集合を行うものを、出口タンク223という。
 入口タンク222には、圧縮機21から吐出された高圧冷媒を入口タンク222内に流入させる流入口としての冷媒入口226が設けられている。冷媒入口226は、入口タンク222におけるチューブ積層方向の一端部側(本実施形態では、右端部側)に配置されている。
 出口タンク223には、冷媒を減圧部23の流入口側に流出させる流出口としての冷媒出口227が設けられている。冷媒出口227は、出口タンク223におけるチューブ積層方向の他端部側(本実施形態では、左端部側)に配置されている。
 凝縮器22は、チューブ長手方向が長い矩形状に形成されている。凝縮器22の各チューブ221を流通する冷媒の流れ方向は、いずれも同一である。冷媒入口226は、チューブ221におけるチューブ長手方向の一端側に配置されている。冷媒出口227は、チューブ221におけるチューブ長手方向の他端側に配置されている。
 このため、凝縮器22では、冷媒が冷媒入口226から冷媒出口227に向かって一方向に直線的に流れる。すなわち、凝縮器22は、その内部で冷媒がUターンしないように構成されている。
 次に、第1実施形態に係る空調装置1における凝縮器22および第1送風機30等の配置関係について、図面を参照しつつ説明する。図15は、空調装置1の上方側から見た平面視を示している。以下、空調装置1の上方側から見た平面視を、上方平面視という。
 なお、図15に図示した凝縮器22や第1送風機30等の大きさを含む配置等は説明の便宜上のものであって、実際の配置を示すものではない。また、図15において、実線矢印は冷媒の流れを模式的に示しており、白抜き矢印は空気の流れを模式的に示している。
 図2および図15に示すように、第1送風機30は、凝縮器22の冷媒出口227よりも冷媒入口226の近くに配置されている。すなわち、第1送風機30は、凝縮器22の冷媒流れ出口側よりも入口側の近くに配置されている。換言すると、第1送風機30は、凝縮器22の熱交換部22Aのうち冷媒流れ上流側の部位にて加熱された加熱空気を送風するように配置されている。
 本実施形態では、図15に示すように、上方平面視において、空調装置1の左右方向から見たときに、第1送風機30と、凝縮器22の熱交換部22Aのうち冷媒流れ上流側の部位とが重合配置されている。すなわち、上方平面視において、空調装置1の左右方向から見たときに、第1送風機30と、凝縮器22の熱交換部22Aのうち冷媒流れ上流側の部位とが重なるように配置されている。
 具体的には、上方平面視において、空調装置1の左右方向から見たときに、第1送風機30と、凝縮器22の熱交換部22Aのうち冷媒流れ最上流側の部位とが重合配置されている。また、上方平面視において、空調装置1の左右方向から見たときに、第1送風機30の全体と、凝縮器22の熱交換部22Aのうち冷媒流れ上流側の部位とが重合配置されている。
 また、図2および図15に示すように、第2送風機31は、蒸発器24の冷媒流れ出口側よりも入口側の近くに配置されている。換言すると、第2送風機31は、蒸発器24の熱交換部24Aのうち冷媒流れ上流側の部位にて冷却された冷却空気を送風するように配置されている。
 本実施形態では、図15に示すように、上方平面視において、空調装置1の左右方向から見たときに、第2送風機31と、蒸発器24の熱交換部24Aのうち冷媒流れ上流側の部位とが重合配置されている。すなわち、上方平面視において、空調装置1の左右方向から見たときに、第2送風機31と、蒸発器24の熱交換部24Aのうち冷媒流れ上流側の部位とが重なるように配置されている。
 具体的には、上方平面視において、空調装置1の左右方向から見たときに、第2送風機31と、蒸発器24の熱交換部24Aのうち冷媒流れ最上流側の部位とが重合配置されている。また、上方平面視において、空調装置1の左右方向から見たときに、第2送風機31の全体と、蒸発器24の熱交換部24Aのうち冷媒流れ上流側の部位とが重合配置されている。
 次に、第1実施形態に係る空調装置1の制御系について、図面を参照しつつ説明する。図7に示すように、空調装置1は、空調装置1の構成機器の作動を制御する為の制御部60を有している。
 制御部60は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。そして、制御部60は、そのROMに記憶された制御プログラムに基づいて各種演算処理を行い、各構成機器の作動を制御する。
 制御部60の出力側には、圧縮機21と、第1送風機30と、第2送風機31と、駆動モータ50とが接続されている。従って、制御部60は、圧縮機21による冷媒吐出性能(例えば、冷媒圧力)や、第1送風機30の送風性能(例えば、送風量)、第2送風機31の送風性能を状況に応じて調整することができる。
 又、制御部60は、駆動モータ50の作動を制御することで、温風用切替部35、冷風用切替部40における冷風CA、温風WAの風量バランスを調整することができる。即ち、制御部60は、空調装置1における運転モードを、冷房モード、暖房モード、エアミックスモードの何れかに変更することができる。
 そして、制御部60の入力側には、複数種類の空調用センサ61が接続されている。空調用センサは、空調装置1の空調運転の制御に用いられる複数種類のセンサによって構成されており、圧力センサ62を含んでいる。
 圧力センサ62は、サイクルの低圧側の冷媒圧力を検出する為の検出部であり、例えば、蒸発器24に接続された冷媒配管に配置されている。従って、制御部60は、圧力センサ62により検出されたサイクルの低圧側冷媒圧力の大きさに応じて、空調装置1の空調運転時における負荷の大きさを判定することができ、それに応じた制御を行うことができる。
 又、空調用センサ61は、吸込温度センサ、温風温度センサ、冷風温度センサ等を含んでいる。吸込温度センサは、温風用通気口12、冷風用通気口13にて吸い込まれる空気の温度を検出する。温風温度センサは、凝縮器22を通過した空気(即ち、温風WA)の温度を検出する。冷風温度センサは、蒸発器24を通過した空気(即ち、冷風CA)の温度を検出する。
 尚、空調用センサ61は、例えば、サイクルの低圧側における冷媒温度を検出する温度センサ(即ち、蒸発器温度センサ)、サイクルの高圧側の冷媒圧力を検出する高圧センサ、高圧冷媒の温度を検出する温度センサを含んでいても良い。そして、制御部60の入力側に対して、空調装置1の作動を指示する為の操作パネルを接続してもよい。
 上述したように、第1実施形態に係る空調装置1は、空調対象空間であるシートに対して冷風CAを供給する冷房モードを実行できる。ここで、冷房モードにおける空調装置1の作動について、図4~図6を参照しつつ説明する。
 この冷房モードに際して、制御部60は、供給用スライドドア46で温風供給用開口36を閉塞すると共に、排気用スライドドア47で冷風排気用開口42を閉塞した状態に、温風用切替部35及び冷風用切替部40を制御する。つまり、図4~図6に示すように、温風用切替部35では、温風排気用開口37が全開となり、冷風用切替部40では、冷風供給用開口41が全開となる。
 図5に示すように、この状態で第1送風機30を作動させると、第1送風機30は、供給用空間56Aから空気を吸い込み、供給口14を介して、空調対象空間であるシートに供給する。
 上述したように、冷房モードでは、温風供給用開口36が閉塞されており、冷風供給用開口41が開放されている。従って、図5に示すように、第1送風機30は、冷風用通気口13から空気を吸い込み、蒸発器24の熱交換部24Aを通過させる。
 この時、空気は、蒸発器24の内部を流れる低圧冷媒によって吸熱されて、冷風CAとなる。蒸発器24を通過した冷風CAは、冷風側通風路18を流通して、冷風供給用開口41から供給用空間56Aに流入する。そして、冷風CAは、第1送風機30により供給用空間56Aから吸い込まれ、供給口14から空調対象空間へ供給される。
 尚、この冷房モードにおいては、温風供給用開口36は、供給用スライドドア46によって閉塞されている為、温風側通風路17側の空気が、第1送風機30の作動によって供給用空間56Aに吸い込まれることはない。つまり、この場合、第1送風機30により、温風用通気口12→凝縮器22→温風側通風路17→温風供給用開口36という空気の流れが生じることはない。
 従って、空調装置1の冷房モードにおいて、冷風CAは、第1送風機30により送風される空気を、蒸発器24における低圧冷媒との熱交換で冷却して生成される。即ち、冷凍サイクル装置20の蒸発器24における冷媒の吸熱量は、第1送風機30による送風量の影響を大きく受けることになる。換言すると、空調装置1は、冷房モードにおいて、第1送風機30の送風量を調整することで、蒸発器24における冷媒の吸熱量を調整することができる。
 又、冷房モードにおいて、第2送風機31を作動させると、第2送風機31は、その下方の排気用空間57Aから空気を吸い込み、排気口16を介して、空調対象空間の外部に送風する。
 図6に示すように、冷房モードでは、温風排気用開口37が開放されており、冷風排気用開口42が閉塞されている。従って、第2送風機31は、温風用通気口12から空気を吸い込み、凝縮器22の熱交換部22Aを通過させる。
 この時、空気は、凝縮器22を流れる高圧冷媒との熱交換によって加熱され、温風WAとなる。凝縮器22を通過した温風WAは、温風側通風路17を流通して、温風排気用開口37から排気用空間57Aに流入する。そして、温風WAは、第2送風機31により排気用空間57Aから吸い込まれ、排気口16から空調対象空間の外部へ送風される。
 尚、この冷房モードにおいては、冷風排気用開口42は、排気用スライドドア47によって閉塞されている為、冷風側通風路18側の空気が、第2送風機31の作動によって排気用空間57Aに吸い込まれることはない。つまり、この場合、第2送風機31により、冷風用通気口13→蒸発器24→冷風側通風路18→冷風排気用開口42という空気の流れが生じることはない。
 従って、空調装置1の冷房モードにおいて、温風WAは、第2送風機31により送風される空気を、凝縮器22における高圧冷媒の熱で加熱して生成される。即ち、冷凍サイクル装置20の凝縮器22における冷媒の放熱量は、第2送風機31による送風量の影響を大きく受けることになる。換言すると、空調装置1は、冷房モードにおいて、第2送風機31の送風量を調整することで、凝縮器22における冷媒の放熱量を調整することができる。
 このように、空調装置1は、蒸発器24にて冷却された冷風CAを、第1送風機30により供給口14から空調対象空間に供給すると共に、凝縮器22で加熱された温風WAを、第2送風機31により排気口16から送風することができる。即ち、空調装置1は、空調対象空間であるシートに冷風CAを供給する冷房モードを実現することができる。
 そして、空調装置1によれば、冷房モードにおいて、第1送風機30の送風量を調整することで、蒸発器24における冷媒の吸熱量を調整することができ、第2送風機31の送風量を調整することで、凝縮器22における冷媒の放熱量を調整することができる。
 これにより、空調装置1は、冷房モードに際して、凝縮器22における冷媒の放熱量と、蒸発器24における冷媒の吸熱量を適切に調整することができ、冷凍サイクル装置20をバランスさせやすく、安定して作動させることができる。
 尚、冷房モードにおける第1送風機30は、空調対象空間に空調風を供給する為の供給用送風機であると同時に、冷風CAを送風する為の冷風用送風機として機能する。即ち、第1送風機30は、凝縮器22及び蒸発器24の少なくとも一方として、蒸発器24を介して空気を吸い込んでいる。
 そして、この場合における第2送風機31は、空調対象空間の外部へ送風する為の排気用送風機であると同時に、温風WAを送風する為の温風用送風機として機能している。つまり、第2送風機31は、凝縮器22及び蒸発器24の少なくとも他方として、凝縮器22を介して空気を吸い込んでいる。
 次に、暖房モードにおける空調装置1の作動について、図8~図10を参照しつつ説明する。暖房モードにおいて、制御部60は、供給用スライドドア46で冷風供給用開口41を閉塞すると共に、排気用スライドドア47で温風排気用開口37を閉塞した状態に、温風用切替部35及び冷風用切替部40を制御する。つまり、図8~図10に示すように、温風用切替部35では、温風供給用開口36が全開となり、冷風用切替部40では、冷風排気用開口42が全開となる。
 図9に示すように、この状態で第1送風機30を作動させると、第1送風機30は、供給用空間56Aから空気を吸い込み、供給口14を介して、空調対象空間であるシートに供給する。
 上述したように、暖房モードでは、冷風供給用開口41が閉塞されており、温風供給用開口36が開放されている。従って、図9に示すように、第1送風機30は、温風用通気口12から空気を吸い込み、凝縮器22の熱交換部22Aを通過させる。
 この時、空気は、凝縮器22の内部を流れる高圧冷媒の熱によって加熱されて、温風WAとなる。凝縮器22を通過した温風WAは、温風側通風路17を流通して、温風供給用開口36から供給用空間56Aに流入する。そして、温風WAは、第1送風機30により供給用空間56Aから吸い込まれ、供給口14から空調対象空間へ供給される。
 尚、暖房モードにおいては、冷風供給用開口41は、供給用スライドドア46によって閉塞されている為、冷風側通風路18側の空気が、第1送風機30の作動によって供給用空間56Aに吸い込まれることはない。つまり、この場合、第1送風機30により、冷風用通気口13→蒸発器24→冷風側通風路18→冷風供給用開口41という空気の流れが生じることはない。
 従って、空調装置1の暖房モードにおいて、温風WAは、第1送風機30により送風される空気を、凝縮器22における高圧冷媒の熱で加熱して生成される。即ち、冷凍サイクル装置20の凝縮器22における冷媒の放熱量は、第1送風機30による送風量の影響を大きく受けることになる。換言すると、空調装置1は、暖房モードにおいて、第1送風機30の送風量を調整することで、凝縮器22における冷媒の放熱量を調整することができる。
 又、暖房モードにおいて、第2送風機31を作動させると、第2送風機31は、排気用空間57Aから空気を吸い込み、排気口16を介して、空調対象空間の外部に送風する。図10に示すように、暖房モードでは、冷風排気用開口42が開放されており、温風排気用開口37が閉塞されている。従って、第2送風機31は、冷風用通気口13から空気を吸い込み、蒸発器24の熱交換部24Aを通過させる。
 この場合に、空気は、蒸発器24を流れる低圧冷媒によって吸熱され、冷風CAとなる。蒸発器24を通過した冷風CAは、冷風側通風路18を流通して、冷風排気用開口42から排気用空間57Aに流入する。そして、冷風CAは、第2送風機31により排気用空間57Aから吸い込まれ、排気口16から空調対象空間の外部へ送風される。
 尚、この暖房モードにおいては、温風排気用開口37は、排気用スライドドア47によって閉塞されている為、温風側通風路17側の空気が、第2送風機31の作動によって排気用空間57Aに吸い込まれることはない。つまり、この場合、第2送風機31により、温風用通気口12→凝縮器22→温風側通風路17→温風排気用開口37という空気の流れが生じることはない。
 従って、空調装置1の暖房モードにおいて、冷風CAは、第2送風機31により送風される空気を、蒸発器24における低圧冷媒で吸熱して生成される。即ち、冷凍サイクル装置20の蒸発器24における冷媒の吸熱量は、第2送風機31による送風量の影響を大きく受けることになる。換言すると、空調装置1は、暖房モードにおいて、第2送風機31の送風量を調整することで、蒸発器24における冷媒の吸熱量を調整することができる。
 このように、空調装置1は、凝縮器22にて加熱された温風WAを、第1送風機30により供給口14から空調対象空間に供給すると共に、蒸発器24で冷却された冷風CAを、第2送風機31により排気口16から送風することができる。即ち、空調装置1は、空調対象空間であるシートに温風WAを供給する暖房モードを実現することができる。
 そして、空調装置1によれば、暖房モードにおいて、第1送風機30の送風量を調整することで、凝縮器22における冷媒の放熱量を調整することができ、第2送風機31の送風量を調整することで、蒸発器24における冷媒の吸熱量を調整することができる。
 これにより、空調装置1は、暖房モードに際して、凝縮器22における冷媒の放熱量と、蒸発器24における冷媒の吸熱量を適切に調整することができ、冷凍サイクル装置20をバランスさせやすく、安定して作動させることができる。
 尚、暖房モードにおける第1送風機30は、空調対象空間に空調風を供給する為の供給用送風機であると同時に、温風WAを送風する為の温風用送風機として機能する。即ち、第1送風機30は、凝縮器22及び蒸発器24の少なくとも一方として、凝縮器22を介して空気を吸い込んでいる。
 そして、この場合における第2送風機31は、空調対象空間の外部へ送風する為の排気用送風機であると同時に、冷風CAを送風する為の冷風用送風機として機能している。つまり、第2送風機31は、凝縮器22及び蒸発器24の少なくとも他方として、蒸発器24を介して空気を吸い込んでいる。
 続いて、エアミックスモードにおける空調装置1の作動について、図11~図13を参照しつつ説明する。エアミックスモードは、空調対象空間に対して、温風WAと冷風CAを混合した混合風MAを供給する運転モードである。
 エアミックスモードでは、制御部60は、供給用スライドドア46の位置を制御して、温風供給用開口36の開口面積と冷風供給用開口41の開口面積を確保した状態にする。同時に、制御部60は、排気用スライドドア47の位置を制御して、温風排気用開口37の開口面積と冷風排気用開口42の開口面積を確保した状態にする。
 図12に示すように、この状態で第1送風機30を作動させると、第1送風機30は、供給用空間56Aから空気を吸い込み、供給口14を介して、空調対象空間であるシートに供給する。
 エアミックスモードでは、温風供給用開口36及び冷風供給用開口41の何れについても、開口面積が確保されている。従って、図12に示すように、第1送風機30は、温風用通気口12から空気を吸い込み、凝縮器22の熱交換部22Aを通過させると同時に、冷風用通気口13から空気を吸い込み、蒸発器24の熱交換部24Aを通過させる。
 上述したように、凝縮器22を通過する空気は、凝縮器22の内部を流れる高圧冷媒の熱によって加熱されて、温風WAとなる。凝縮器22を通過した温風WAは、温風側通風路17を流通して、温風供給用開口36から供給用空間56Aに流入する。
 一方、蒸発器24を通過する空気は、蒸発器24を流れる低圧冷媒により吸熱されて、冷風CAとなる。冷風CAは、蒸発器24から冷風側通風路18へ流出して、冷風供給用開口41から供給用空間56Aに流入する。
 即ち、エアミックスモードでは、供給用空間56Aに対して、温風WAと冷風CAが流入して混合される。そして、供給用空間56Aの内部の空気は、第1送風機30により吸い込まれ、混合風MAとして、供給口14から空調対象空間へ供給される。
 上述したように、供給用スライドドア46は、温風供給用開口36の開口面積及び、冷風供給用開口41の開口面積を調整することができる。つまり、供給用スライドドア46は、供給用空間56Aに流入する温風WA及び冷風CAの風量割合を調整して、混合風MAを供給口14から供給可能な状態にすることができる。
 即ち、空調装置1は、エアミックスモードにおいて、供給用スライドドア46の位置を調整することで、空調対象空間に供給される空調風(即ち、混合風MA)の温度を適切に調整することができる。
 そして、エアミックスモードにおいて、第2送風機31を作動させると、第2送風機31は、上述した冷房モード等と同様に、排気用空間57Aから空気を吸い込み、排気口16を介して、空調対象空間の外部に送風する。
 図13に示すように、エアミックスモードにおいて、温風排気用開口37及び冷風排気用開口42の何れについても、開口面積が確保されている。従って、第2送風機31は、温風用通気口12から空気を吸い込み、凝縮器22の熱交換部22Aを通過させると同時に、冷風用通気口13から空気を吸い込み、蒸発器24の熱交換部24Aを通過させる。
 そして、凝縮器22を通過した温風WAは、温風側通風路17を流通して、温風排気用開口37から排気用空間57Aに流入する。同様に、蒸発器24を通過した冷風CAは、冷風側通風路18を流通して、冷風排気用開口42から排気用空間57Aに流入する。
 従って、エアミックスモードでは、排気用空間57Aに対しても、温風WAと冷風CAが流入して混合される。そして、排気用空間57Aの内部の空気は、第2送風機31によって吸い込まれ、混合風MAとして、排気口16から空調対象空間の外部へ送風される。
 上述したように、排気用スライドドア47は、温風排気用開口37の開口面積及び、冷風排気用開口42の開口面積を調整することができる。つまり、排気用スライドドア47は、排気用空間57Aに流入する温風WA及び冷風CAの風量割合を調整して、混合風MAを排気口16から送風可能な状態にすることができる。
 ここで、空調装置1において、制御部60は、空調用センサ61の圧力センサ62等で検出される空調負荷の高低に応じて、圧縮機21の作動を制御するように構成されている。従来の空調装置では、このような空調負荷が低い場合には、圧縮機21を構成する電動モータの作動と作動停止を周期的に繰り返すように制御している。
 冷凍サイクル装置20においては、圧縮機21の作動によって冷媒が循環し、冷媒には、冷凍機油が含まれている。この為、低負荷時に、圧縮機21の作動と作動停止を周期的に繰り返すような制御を行った場合、冷媒の循環に伴って圧縮機21に戻る冷凍機油が不十分となることが想定される。
 この点、空調装置1は、空調負荷が低負荷である場合に、図11~図13に示すようなエアミックスモードを行う。エアミックスモードで空調装置1を運転させることで、圧縮機21の電動モータの最低回転数を予め定められた基準以上に保つことができる。
 つまり、空調装置1は、空調負荷が低負荷である場合に、エアミックスモードにすることで、冷凍サイクル装置20における冷媒の循環量を予め定められた基準以上に保つことができる。これにより、空調装置1は、低負荷の場合であっても、圧縮機21に対する冷凍機油の戻り量(即ち、オイル戻り)を確保することができる。
 又、この場合、空調装置1は、エアミックスモードにすることで、電動モータの最低回転数を予め定められた基準以上に保ちつつ、空調対象空間を空調する。つまり、空調装置1は、圧縮機21の電動モータの作動と作動停止を周期的に繰り返すことはなく、圧縮機21のON-OFF制御に起因する振動を低減させることができる。
 以上説明したように、第1実施形態に係る空調装置1は、図1~図3に示すように、蒸気圧縮式の冷凍サイクル装置20と、第1送風機30と、第2送風機31と、温風用切替部35と、冷風用切替部40とを筐体10の内部に収容して構成されている。
 図4~図6に示すように、空調装置1は、温風用切替部35によって、凝縮器22で加熱された温風WAを空調対象空間の外部に送風すると共に、冷風用切替部40によって、蒸発器24にて冷却された冷風CAを空調対象空間に供給することができる。即ち、空調装置1は、冷凍サイクル装置20等の構成機器を、筐体10の内部にコンパクトに収容した構成で、空調対象空間を冷房する冷房モードを実現することができる。
 又、空調装置1は、図8~図10に示すように、温風用切替部35によって、凝縮器22で加熱された温風WAを空調対象空間に供給すると共に、冷風用切替部40によって、蒸発器24にて冷却された冷風を空調対象空間の外部へ送風することができる。つまり、空調装置1は、冷凍サイクル装置20の構成機器を、筐体10の内部にコンパクトに収容した構成で、空調対象空間を暖房する暖房モードを実現することができる。
 そして、空調装置1によれば、第1送風機30、第2送風機31の送風能力を個別に調整することができるので、冷凍サイクル装置20の凝縮器22における冷媒の放熱量及び蒸発器24における冷媒の吸熱量を、それぞれ適切に調整することができる。この結果、空調装置1は、冷凍サイクル装置20をバランスさせやすく、安定して作動させることができる。
 図4~図13に示すように、空調装置1における筐体10の内部において、第1送風機30及び第2送風機31は、送風空気の流れに関して、熱交換器(即ち、凝縮器22又は蒸発器24)の下流側に配置されている。この為、空調装置1によれば、筐体10の内部における第1送風機30、第2送風機31の配置に関して、設計自由度を高めることができ、空調装置1の大型化(即ち、筐体10の大型化)を抑制することができる。
 そして、第1実施形態に係る空調装置1において、温風用切替部35は、図6、図9等に示すように、温風WAの流れに関して、凝縮器22よりも下流側で、第1送風機30及び第2送風機31の上流側に配置されている。又、冷風用切替部40は、図5、図10等に示すように、冷風CAの流れに関して、蒸発器24よりも下流側で、第1送風機30及び第2送風機31の上流側に配置されている。
 これにより、空調装置1は、凝縮器22、蒸発器24、第1送風機30、第2送風機31、温風用切替部35、冷風用切替部40といった構成機器を、筐体10の内部に対してコンパクトに収容することができる。
 又、図2~図6等に示すように、空調装置1において、凝縮器22及び蒸発器24は、筐体10の内部において、左右方向に間隔をあけて配置されている。そして、温風用切替部35は、凝縮器22と蒸発器24の間において、凝縮器22側の右側に配置されており、冷風用切替部40は、凝縮器22と蒸発器24の間において、蒸発器24側の左側に配置されている。
 この結果、空調装置1によれば、温風用切替部35による温風WAの流れの切替および冷風用切替部40による冷風CAの流れの切替を、確実に実現すると共に、各構成機器を筐体10の内部にコンパクトに収容することができる。
 図4~図6等に示すように、凝縮器22は、その熱交換部22Aの長手方向が前後方向になるように配置されている。そして、温風用切替部35は、温風供給用開口36と、温風排気用開口37とを有しており、温風供給用開口36及び温風排気用開口37は、温風側通風路17において、前後方向に並んで配置されている。
 これにより、空調装置1によれば、凝縮器22の熱交換部22Aを通過した温風WAの流れに関して、温風供給用開口36及び温風排気用開口37を通過する際の通風抵抗を低減しつつ、それぞれを通過可能な温風WAの風量を確保することができる。
 そして、蒸発器24は、その熱交換部24Aの長手方向が前後方向になるように配置されている。又、冷風用切替部40は、冷風供給用開口41と、冷風排気用開口42とを有しており、冷風供給用開口41及び冷風排気用開口42は、冷風側通風路18において、前後方向に並んで配置されている。
 これにより、空調装置1によれば、蒸発器24の熱交換部24Aを通過した冷風CAの流れに関して、冷風供給用開口41及び冷風排気用開口42を通過する際の通風抵抗を低減しつつ、それぞれを通過可能な冷風CAの風量を確保することができる。
 又、第1実施形態に係る空調装置1は、駆動モータ50の動力によってスライド移動可能に取り付けられた供給用スライドドア46及び排気用スライドドア47を有している。供給用スライドドア46は、供給口14から空調対象空間に供給される空気に関して、温風WAと冷風CAの風量割合を調整する。そして、排気用スライドドア47は、排気口16から空調対象空間の外部へ送風される空気に関して、温風WAと冷風CAの風量割合を調整する。
 そして、図11~図13に示すように、空調装置1は、温風供給用開口36における開口面積と冷風供給用開口41における開口面積を確保した位置に、供給用スライドドア46を移動させることができる。これにより、空調装置1は、温風WA及び冷風CAを混合した混合風MAを、供給口14から空調対象空間に供給することができる。
 又、空調装置1は、温風排気用開口37における開口面積と冷風排気用開口42における開口面積を確保した位置に、排気用スライドドア47を移動させることで、空調対象空間の外部に対して、排気口16から混合風MAを送風することができる。
 空調装置1は、空調負荷が低い場合に、上述した混合風MAを供給するエアミックスモードとすることで、圧縮機21の最低回転数を予め定められた基準以上に保つことができる。
 これにより、空調装置1の冷凍サイクル装置20では、空調負荷が低い場合でも、予め定められた基準以上の冷媒が循環することになる為、圧縮機21に対するオイル戻りを確保することができる。
 又、空調装置1によれば、空調負荷が低い場合に、図11~図13に示すようなエアミックスモードにすることで、空調負荷に応じた冷媒吐出能力となるように、圧縮機21の運転を継続させることができる。つまり、空調装置1は、圧縮機21の作動と作動停止を周期的に繰り返すことはない為、これに起因する振動の発生を抑制することができる。
 そして、空調装置1において、供給用スライドドア46及び排気用スライドドア47は、駆動モータ50の動力を、供給用シャフト48及び排気用シャフト49で伝達して移動するように構成されている。即ち、排気用シャフト49を介することで、排気用スライドドア47の移動は、供給用スライドドア46の移動に連動する。
 この為、排気用スライドドア47が冷風排気用開口42の開口面積を増大させるように移動する場合には、供給用スライドドア46は、これに連動して、温風供給用開口36の開口面積を増大させるように移動する。
 この結果、空調装置1によれば、エアミックスモードにおいて、排気口16から送風される混合風MAにおける冷風CAの風量割合を増大させることに連動して、供給口14から供給される混合風MAにおける温風WAの風量割合を増大させることができる。
 又、排気用スライドドア47が温風排気用開口37の開口面積を増大させるように移動する場合には、供給用スライドドア46は、これに連動して、冷風供給用開口41の開口面積を増大させるように移動する。
 これにより、空調装置1によれば、エアミックスモードにおいて、排気口16から送風される混合風MAにおける温風WAの風量割合を増大させることに連動して、供給口14から供給される混合風MAにおける冷風CAの風量割合を増大させることができる。
 また、第1実施形態に係る空調装置1では、第1送風機30を、凝縮器22の冷媒流れ出口側よりも入口側の近くに配置している。これによれば、凝縮器22のうち相対的に高温となる部分において、加熱空気を熱交換させることができる。このため、凝縮器22において、高圧冷媒と加熱空気とを効率的に熱交換させることができる。したがって、冷凍サイクル装置20の熱交換器である凝縮器22における熱交換性能を向上させることができる。
 より詳細には、第1送風機30を凝縮器22の冷媒流れ出口側よりも入口側の近くに配置することにより、暖房モードでは、凝縮器22のうち相対的に高温となる部分において加熱空気が加熱される。これにより、供給口14から供給される温風WAの吹出温度を効率的に上昇させることができる。
 さらに、空調装置1によれば、凝縮器22の熱交換部22Aのうち一部分に集中して空気が流れるため、凝縮器22の有効熱交換面積が小さくなる。これにより、冷凍サイクル装置20の高圧圧力が上昇するため、供給口14から供給される温風WAの吹出温度を上昇させることができる。
 一方、第1送風機30を凝縮器22の冷媒流れ出口側よりも入口側の近くに配置することにより、冷房モードでは、凝縮器22のうち空気との温度差が相対的に大きい部分において加熱空気が加熱される。このため、凝縮器22における熱交換効率が向上するので、冷凍サイクル装置20の高圧圧力を低下させることができる。これにより、冷凍サイクル装置20の成績係数(COP)を向上させることができる。
 (第2実施形態)
 次に、本開示の第2実施形態について図16に基づいて説明する。本第2実施形態は、上記第1実施形態と比較して、第2送風機31の配置が異なる。
 図16に示すように、第2送風機31は、蒸発器24の冷媒流れ出口側および入口側の双方よりも中央部の近くに配置されている。つまり、第2送風機31は、蒸発器24の冷媒流れ出口側からの距離と、冷媒流れ入口側からの距離とが同等となる部位に配置されている。換言すると、第2送風機31は、蒸発器24の熱交換部24Aのうち冷媒流れ中央部にて冷却された冷却空気を送風するように配置されている。
 本実施形態では、図16に示すように、上方平面視において、空調装置1の左右方向から見たときに、第2送風機31と、蒸発器24の熱交換部24Aのうち冷媒流れ中央部とが重合配置されている。すなわち、上方平面視において、空調装置1の左右方向から見たときに、第2送風機31と、蒸発器24の熱交換部24Aのうち冷媒中央部とが重なるように配置されている。
 その他の空調装置1の構成および作動は、第1実施形態と同様である。従って、本実施形態の空調装置1においても、第1実施形態と同様の効果を得ることができる。
 さらに、本実施形態では、第2送風機31を、蒸発器24の冷媒流れ出口側および入口側の双方よりも中央部の近くに配置している。これによれば、蒸発器24の熱交換部24Aの全面に空気が流れるため、蒸発器24の有効熱交換面積が大きくなる。これにより、蒸発器24における熱交換効率が向上するので、冷凍サイクル装置20の成績係数(COP)を向上させることができる。
 (第3実施形態)
 次に、本開示の第3実施形態について図17に基づいて説明する。本第3実施形態は、上記第1実施形態と比較して、第1送風機30および第2送風機31の配置が異なる。
 図17に示すように、本実施形態の空調装置1では、上方平面視において、凝縮器22と蒸発器24との間の距離が、第1送風機30の直径よりも短い。同様に、上方平面視において、凝縮器22と蒸発器24との間の距離が、第2送風機31の直径よりも短い。
 このため、上方平面視において、第1送風機30および第2送風機31は、凝縮器22と蒸発器24との間に配置されていない。また、上方平面視において、空調装置1の左右方向から見たときに、第1送風機30と凝縮器22とが重合しないように配置されている。同様に、上方平面視において、空調装置1の左右方向から見たときに、第2送風機31と蒸発器24とが重合しないように配置されている。
 また、上方平面視において、第1送風機30は、空調装置1の前後方向から見たときに、凝縮器22および蒸発器24のいずれとも重合しないように配置されている。同様に、第2送風機31は、空調装置1の前後方向から見たときに、凝縮器22および蒸発器24のいずれとも重合しないように配置されている。また、第1送風機30は、空調装置1の前後方向から見たときに、第2送風機31と重なるように配置されている。
 具体的には、第1送風機30は、上方平面視において、凝縮器22に対して左方側かつ後方側に配置されている。すなわち、第1送風機30は、上方平面視において、凝縮器22に対して蒸発器24側、かつ、凝縮器22の冷媒流れ出口側に配置されている。
 また、第2送風機31は、上方平面視において、蒸発器24に対して右方側かつ前方側に配置されている。すなわち、第2送風機31は、上方平面視において、蒸発器24に対して凝縮器22側、かつ、蒸発器24の冷媒流れ入口側に配置されている。
 本実施形態では、空調装置1は、凝縮器22により加熱された温風WAを第1送風機30に導くとともに、蒸発器24により冷却された冷風CAを第2送風機31に導く壁部70を有している。壁部70は、上方平面視において、凝縮器22の冷媒流れ出口側の端部と、蒸発器24の冷媒流れ出口側の端部とを接続するように配置されている。
 その他の空調装置1の構成および作動は、第1実施形態と同様である。従って、本実施形態の空調装置1においても、第1実施形態と同様の効果を得ることができる。
 (第4実施形態)
 次に、本開示の第4実施形態について図18に基づいて説明する。本第4実施形態は、上記第1実施形態と比較して、第1送風機30および第2送風機31の配置が異なる。
 図18に示すように、本実施形態の空調装置1では、上方平面視において、凝縮器22と蒸発器24との間の距離が、第1送風機30の直径よりも短い。同様に、上方平面視において、凝縮器22と蒸発器24との間の距離が、第2送風機31の直径よりも短い。このため、上方平面視において、第1送風機30および第2送風機31は、凝縮器22と蒸発器24との間に配置されていない。
 具体的には、上方平面視において、第1送風機30は、凝縮器22の右方側に配置されている。すなわち、上方平面視において、第1送風機30は、凝縮器22に対して、蒸発器24と反対側に配置されている。
 また、上方平面視において、第2送風機31は、蒸発器24の左方側に配置されている。すなわち、上方平面視において、第2送風機31は、蒸発器24に対して、凝縮器22と反対側に配置されている。
 さらに、第2送風機31は、蒸発器24の冷媒流れ出口側および入口側の双方よりも中央部の近くに配置されている。換言すると、第2送風機31は、蒸発器24の熱交換部24Aのうち冷媒流れ中央部にて冷却された冷却空気を送風するように配置されている。本実施形態では、上方平面視において、空調装置1の左右方向から見たときに、第2送風機31と、蒸発器24の熱交換部24Aのうち冷媒流れ中央部とが重合配置されている。
 その他の空調装置1の構成および作動は、第1実施形態と同様である。従って、本実施形態の空調装置1においても、第1実施形態と同様の効果を得ることができる。
 さらに、本実施形態では、第2送風機31を、蒸発器24の冷媒流れ出口側および入口側の双方よりも中央部の近くに配置している。これによれば、蒸発器24の熱交換部24Aの全面に空気が流れるため、蒸発器24の有効熱交換面積が大きくなる。これにより、蒸発器24における熱交換効率が向上するので、冷凍サイクル装置20の成績係数(COP)を向上させることができる。
 (第5実施形態)
 次に、本開示の第5実施形態について図19に基づいて説明する。本第5実施形態は、上記第1実施形態と比較して、第1送風機30および第2送風機31の配置が異なる。
 図19に示すように、本実施形態の空調装置1では、第1送風機30は、凝縮器22の下方側に配置されている。そして、空調装置1の上下方向から見たときに、第1送風機30と、凝縮器22の熱交換部22Aのうち冷媒流れ上流側の部位とが重合配置されている。すなわち、空調装置1の上下方向から見たときに、第1送風機30と、凝縮器22の熱交換部22Aのうち冷媒流れ上流側の部位とが重なるように配置されている。
 具体的には、空調装置1の上下方向から見たときに、第1送風機30と、凝縮器22の熱交換部22Aのうち冷媒流れ最上流側の部位とが重合配置されている。また、空調装置1の上下方向から見たときに、第1送風機30の全体と、凝縮器22の熱交換部22Aのうち冷媒流れ上流側の部位とが重合配置されている。
 また、本実施形態の空調装置1では、第2送風機31は、蒸発器24の下方側に配置されている。そして、第2送風機31は、蒸発器24の冷媒流れ出口側および入口側の双方よりも中央部の近くに配置されている。換言すると、第2送風機31は、蒸発器24の熱交換部24Aのうち冷媒流れ中央部にて冷却された冷却空気を送風するように配置されている。具体的には、空調装置1の上下方向から見たときに、第2送風機31と、蒸発器24の熱交換部24Aのうち冷媒流れ中央部とが重合配置されている。
 その他の空調装置1の構成および作動は、第1実施形態と同様である。従って、本実施形態の空調装置1においても、第1実施形態と同様の効果を得ることができる。
 さらに、本実施形態では、第2送風機31を、蒸発器24の冷媒流れ出口側および入口側の双方よりも中央部の近くに配置している。これによれば、蒸発器24の熱交換部24Aの全面に空気が流れるため、蒸発器24の有効熱交換面積が大きくなる。これにより、蒸発器24における熱交換効率が向上するので、冷凍サイクル装置20の成績係数(COP)を向上させることができる。
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
 (1)上述した実施形態では、空調装置1を、シートを空調対象空間とするシート空調装置に適用していたが、この態様に限定されるものではない。上述した空調装置1における構成機器として、冷凍サイクル装置20、第1送風機30、第2送風機31等を筐体10の内部に収容していれば、他の用途に利用するように構成することも可能である。
 (2)又、上述した実施形態においては、空調装置1の筐体10を、シートの座面部と車室床面の間に配置可能な直方体状に構成していたが、この態様に限定されるものではない。筐体10の外観形状等については、状況に応じて適宜変更することが可能である。
 (3)上述した実施形態において、第1送風機30、第2送風機31の送風能力は、制御部60からの制御信号により、各電動モータの回転数を変更することで調整していたが、この態様に限定されるものではない。第1送風機30と第2送風機31として、異なる性能を有する送風機を採用することで、送風能力を調整することも可能である。
 (4)そして、上述した実施形態において、冷凍サイクル装置20は、アキュムレータ25を有する構成であったが、この態様に限定されるものではない。冷凍サイクル装置20は、少なくとも、圧縮機21、凝縮器22、減圧部23、蒸発器24を有する冷凍サイクルを構成していればよい。
 (5)上述した実施形態では、第1送風機30および第2送風機31として、吸込式の送風機を採用した例について説明したが、第1送風機30および第2送風機31の構成はこれに限定されない。例えば、第1送風機30として、羽根車の回転により第1送風機30から凝縮器22に向かう空気流を生成する、いわゆる押込式の送風機を採用してもよい。同様に、第2送風機31として、羽根車の回転により第2送風機31から蒸発器24に向かう空気流を生成する、いわゆる押込式の送風機を採用してもよい。
 (6)上述した実施形態においては、空調装置1を、暖房運転および冷房運転の双方を実行可能に構成していたが、この態様に限定されるものではない。例えば、空調装置1を、暖房運転専用の暖房装置として構成してもよいし、冷房運転専用の冷房装置として構成してもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (5)

  1.  高圧冷媒を凝縮させる凝縮器(22)および低圧冷媒を蒸発させる蒸発器(24)を有する冷凍サイクル装置(20)と、
     前記凝縮器にて加熱された加熱空気を送風する第1送風機(30)と、
     前記蒸発器にて冷却された冷却空気を送風する第2送風機(31)と、
     前記冷凍サイクル装置、前記第1送風機および前記第2送風機を収容する筐体(10)と、を備え、
     前記第1送風機は、前記凝縮器の冷媒流れ出口側よりも入口側の近くに配置されている空調装置。
  2.  前記凝縮器は、冷媒が流入する冷媒入口(226)と、前記冷媒が流出する冷媒出口(227)とを有しているとともに、前記冷媒が前記冷媒入口から前記冷媒出口に向かって一方向に流れるように構成されており、
     前記第1送風機は、前記冷媒出口よりも前記冷媒入口の近くに配置されている請求項1に記載の空調装置。
  3.  前記凝縮器は、冷媒が流通する複数のチューブ(221)を有しているとともに、前記チューブの長手方向が長い矩形状に形成されており、と、
     各前記チューブを流通する前記冷媒の流れ方向は、いずれも同一であり、
     前記冷媒入口は、前記チューブの長手方向における一端側に配置されており、
     前記冷媒出口は、前記チューブの長手方向における他端側に配置されている請求項2に記載の空調装置。
  4.  前記第1送風機は、前記加熱空気を空調対象空間へ送風し、
     前記第2送風機は、前記冷却空気を前記空調対象空間の外部へ送風する請求項1ないし3のいずれか1つに記載の空調装置。
  5.  前記第1送風機は、前記加熱空気を空調対象空間の外部へ送風し、
     前記第2送風機は、前記冷却空気を前記空調対象空間へ送風する請求項1ないし3のいずれか1つに記載の空調装置。
PCT/JP2019/015763 2018-05-07 2019-04-11 空調装置 WO2019216106A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-089387 2018-05-07
JP2018089387A JP7059784B2 (ja) 2018-05-07 2018-05-07 空調装置

Publications (1)

Publication Number Publication Date
WO2019216106A1 true WO2019216106A1 (ja) 2019-11-14

Family

ID=68466965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015763 WO2019216106A1 (ja) 2018-05-07 2019-04-11 空調装置

Country Status (2)

Country Link
JP (1) JP7059784B2 (ja)
WO (1) WO2019216106A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112539466A (zh) * 2020-09-28 2021-03-23 Tcl空调器(中山)有限公司 导风机构和空调室内机
CN113847655A (zh) * 2021-09-23 2021-12-28 珠海格力电器股份有限公司 一种可移动新风空调及控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093068A (ja) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd 熱交換装置
JP2009257740A (ja) * 2008-03-25 2009-11-05 Daikin Ind Ltd 冷凍装置
JP2016137846A (ja) * 2015-01-28 2016-08-04 株式会社デンソー シート及びシート送風装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093068A (ja) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd 熱交換装置
JP2009257740A (ja) * 2008-03-25 2009-11-05 Daikin Ind Ltd 冷凍装置
JP2016137846A (ja) * 2015-01-28 2016-08-04 株式会社デンソー シート及びシート送風装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112539466A (zh) * 2020-09-28 2021-03-23 Tcl空调器(中山)有限公司 导风机构和空调室内机
CN113847655A (zh) * 2021-09-23 2021-12-28 珠海格力电器股份有限公司 一种可移动新风空调及控制方法
CN113847655B (zh) * 2021-09-23 2022-07-15 珠海格力电器股份有限公司 一种可移动新风空调及控制方法

Also Published As

Publication number Publication date
JP7059784B2 (ja) 2022-04-26
JP2019196846A (ja) 2019-11-14

Similar Documents

Publication Publication Date Title
US20210039476A1 (en) Vehicle cabin air conditioning system
US11338642B2 (en) Vehicle cabin air conditioning system
JP6528844B2 (ja) 冷凍システム、および車載冷凍システム
CN109328288B (zh) 制冷循环装置
JP6838518B2 (ja) 冷凍サイクル装置
JP2019006373A (ja) シート空調装置
JP2005161970A (ja) 車両用空調装置
WO2019216106A1 (ja) 空調装置
JP6760226B2 (ja) 複合型熱交換器
JP6922856B2 (ja) 冷凍サイクル装置
WO2019111637A1 (ja) 冷凍サイクル装置
JP3969099B2 (ja) 車両用空調装置
JP7196658B2 (ja) 空調装置
WO2019193947A1 (ja) 空調装置
JP7159856B2 (ja) 空調装置
WO2019193946A1 (ja) 空調装置
WO2019193948A1 (ja) 空調装置
EP3575114A1 (en) Vehicle air conditioner
WO2023162750A1 (ja) 空調システム
JP2014055735A (ja) 冷媒放熱器
JP2022149690A (ja) 冷凍サイクル装置
WO2018235551A1 (ja) シート空調装置
JP2003042575A (ja) 冷凍サイクル装置および車両用空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19799251

Country of ref document: EP

Kind code of ref document: A1