WO2019215842A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2019215842A1
WO2019215842A1 PCT/JP2018/017926 JP2018017926W WO2019215842A1 WO 2019215842 A1 WO2019215842 A1 WO 2019215842A1 JP 2018017926 W JP2018017926 W JP 2018017926W WO 2019215842 A1 WO2019215842 A1 WO 2019215842A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
command value
current
value
converter
Prior art date
Application number
PCT/JP2018/017926
Other languages
English (en)
French (fr)
Inventor
慧 関口
卓郎 新井
大地 鈴木
Original Assignee
株式会社東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社東芝
Priority to PCT/JP2018/017926 priority Critical patent/WO2019215842A1/ja
Priority to JP2018546562A priority patent/JP6526924B1/ja
Publication of WO2019215842A1 publication Critical patent/WO2019215842A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4833Capacitor voltage balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • Embodiments of the present invention relate to a power conversion device.
  • the power converter When connecting power systems of alternating current systems having different frequencies, for example, a technique of connecting power systems using a power converter such as a modular multilevel converter (Modular (Multilevel Converter) is known.
  • the power converter is provided at a connection point between a certain AC system and a DC system and at a connection point between the DC system and another AC system to be connected.
  • the power converter converts AC power of the AC system into DC power and supplies (accommodates) the DC power to the DC system, or converts DC power of the DC system into AC power and supplies it to the AC system.
  • the power converter can accommodate the power of the power system without being restricted by the AC frequency or the phase.
  • a configuration in which a plurality of power converters are installed at a relatively close position such as the same point or in the same conversion premises, and their DC systems are connected to each other may be called a BTB (Back-To-Back) system.
  • the BTB system can be regarded as a configuration in which the transmission distance by the DC system of the HVDC (High-Voltage Direct-Current) system, which is a configuration in which the DC systems of a plurality of power converters installed at different points are connected, is reduced. it can.
  • the different points are, for example, between cities or between a land and an offshore power plant.
  • the BTB system is likely to include a ripple component in the direct current due to the switching control of the power converter.
  • DC current contains a lot of ripple current and the active power on the DC system side pulsates according to this ripple, trying to match the active power on the AC system side with the active power on the DC system side in real time
  • the active power on the AC system side may also pulsate.
  • a large harmonic filter may be required to remove this harmonic component. is there. If a large harmonic filter is installed, it is assumed that the installation area of the power converter increases and the cost increases.
  • the problem to be solved by the present invention is to provide a power conversion device that can realize suppression of harmonic voltage or current and continued operation in the event of an accident.
  • the power conversion device of the embodiment has a power converter and a control unit.
  • the power converter is connected between the AC system and the DC system, includes an energy storage unit, and converts DC power and AC power to each other.
  • the control unit acquires a DC current command value and a DC current detection value of the DC system, and when the AC system or the DC system is not in a predetermined state, a feedforward calculation based on the acquired DC current detection value
  • the AC active power command value is calculated by performing a feedforward calculation based on the DC current command value.
  • FIG. 1 It is a figure which shows an example of the power conversion system linked
  • An example of the configuration of the power converter 20 according to the first embodiment will be described. It is a figure which shows an example of a structure of the cell CL which concerns on 1st Embodiment. It is a figure which shows the other example of a structure of the cell CL which concerns on 1st Embodiment. It is a figure which shows an example of a structure of the converter control apparatus 10 which concerns on 1st Embodiment. It is a figure which shows an example of the change of the alternating current active power of the alternating current system which performed control based on direct current command value Idc * or direct current detection value Idc.
  • FIG. It is a figure which shows an example of the control result by the conventional control and the converter control apparatus 10.
  • FIG. It is a flowchart which shows an example of a process of the converter control apparatus 10 which concerns on 1st Embodiment. It is a figure which shows an example of a structure of the converter control apparatus 11 which concerns on 2nd Embodiment. It is a figure which shows an example of a structure of the phase capacitor voltage balance control part.
  • FIG. 1 is a diagram illustrating an example of a power conversion system interconnected by two power conversion devices 1a and 1b according to the first embodiment.
  • the power conversion system shown in FIG. 1 includes a first AC system, a second AC system, and a DC system.
  • the first AC system and the DC system are connected via the power converter 1a
  • the DC system and the second AC system are connected via the power converter 1b.
  • the power conversion device 1a and the power conversion device 1b are not distinguished from each other, they are collectively referred to as the power conversion device 1.
  • the power conversion device 1 includes a converter control device 10 and a power converter 20.
  • Converter control device 10 controls the operation of power converter 20.
  • the power converter 20 operates based on the control of the converter control device 10, and converts AC power of the AC system into DC power and supplies it to the DC system, or converts DC power of the DC system into AC power. To supply to the AC system.
  • the power converter 20 is, for example, a modular multilevel converter.
  • the power converter 20 may be realized by a circuit that combines a three-level converter and a modular multi-level converter, in addition to a configuration realized by a modular multi-level converter.
  • Power supply (interchange) between each power system of the power conversion system is controlled by the power conversion system control device SYS.
  • the power conversion system control device SYS supplies a command signal to each power conversion device 1.
  • the power conversion device 1 operates based on a command signal acquired from the power conversion system control device SYS.
  • the command signal includes, for example, a capacitor voltage command value Vc *, a DC voltage command value Vdc *, and a DC current command value Idc *.
  • Capacitor voltage command value Vc * is a value indicating the voltage of a capacitor (not shown) included in power converter 20.
  • the DC voltage command value Vdc * is a value indicating the DC voltage of the DC system.
  • the DC current command value Idc * is a value indicating a DC current of the DC system.
  • the converter control device 10 controls the power converter 20 based on the command signal acquired from the power conversion system control device SYS and the detection signal acquired from the power converter 20.
  • the detection signal is a signal including detection values obtained by detecting various values of the internal circuit of the power converter 20. Details of the internal circuit of the power converter 20 and the detection signal will be described later.
  • converter control device 10 performs power conversion so that the voltage of the capacitor provided in power converter 20 matches capacitor voltage command value Vc * based on the detection signal and capacitor voltage command value Vc *.
  • the device 20 is controlled.
  • Converter control device 10 controls power converter 20 based on the detection signal and DC voltage command value Vdc * so that the DC voltage of the DC system matches DC voltage command value Vdc *.
  • the converter control device 10 determines that the DC current flowing from the power converter 20 to the DC system (or the DC current flowing from the DC system to the power converter 20 is based on the detection signal and the DC current command value Idc *. ), The power converter 20 is controlled to coincide with the direct current command value Idc *.
  • the direct current command value Idc * is divided into a direct current active power instruction value (hereinafter referred to as direct current active power instruction value Pdc *) and a direct current system direct voltage value (hereinafter referred to as direct current voltage command value Vdc *). This is a value based on the DC active power command value Pdc * divided by the DC voltage command value Vdc *.
  • the power conversion system control device SYS controls the power conversion device 1 by the command signal, and puts the power conversion system into an appropriate state.
  • the power conversion system control device SYS controls the power conversion device 1 using command signals related to the DC system (for example, the DC voltage command value Vdc * and the DC current command value Idc *).
  • the power conversion system control device SYS may be configured to control the power conversion device 1 by a command signal (for example, an AC voltage command value or an AC current command value) related to the AC system.
  • a command signal for example, an AC voltage command value or an AC current command value
  • the structure which controls the power converter device 1 by both the command signal regarding a DC system, and the command signal regarding an AC system may be sufficient as the power conversion system control apparatus SYS.
  • the power conversion system control device SYS controls the power conversion device 1 with a command signal related to a DC system (for example, a DC voltage command value Vdc * and a DC current command value Idc *).
  • a command signal related to a DC system for example, a DC voltage command value Vdc * and a DC current command value Idc *.
  • BTB Back- To-Back
  • the relatively close position is, for example, several [m], several tens [m], or several hundred [m].
  • the BTB system can be regarded as a configuration in which the transmission distance by the DC system of the HVDC (High-Voltage Direct-Current) system, which is a configuration in which the DC systems of a plurality of power converters installed at different points are connected, is reduced. it can.
  • the different points are, for example, between cities or between a land and an offshore power plant.
  • FIG. 2 illustrates an example of the configuration of the power converter 20 according to the first embodiment.
  • the power converter 20 includes a plurality of legs LG between a positive electrode (positive electrode P shown) in the DC system and a negative electrode (negative electrode N shown) in the DC system.
  • the number of legs LG corresponds to, for example, the number of phases of AC power supplied by the AC system.
  • the AC system supplies three-phase, three-wire AC power of a first phase (R phase shown), a second phase (S phase shown), and a third phase (T phase shown).
  • the power converter 20 includes a leg LGr corresponding to the R phase, a leg LGs corresponding to the S phase, and a leg LGt corresponding to the T phase.
  • leg LG when the leg LGr, the leg LGs, and the leg LGt are not distinguished from each other, they are collectively referred to as “leg LG”.
  • a certain phase among the three phases of AC power supplied by the AC system is connected to the leg LG via a transformer (transformer TR shown in the figure).
  • the R phase is connected to the leg LGr
  • the S phase is connected to the leg LGs
  • the T phase is connected to the leg LGt.
  • the connection point between the leg LGr and the R phase will be described as a connection point CPr
  • the connection point between the leg LGs and the S phase will be described as a connection point CPs
  • the connection between the leg LGt and the T phase will be described.
  • the point is described as a connection point CPt.
  • the part having the same potential as the positive electrode P of the DC voltage output from the power converter 20 is also referred to as the positive electrode P of the leg LG, and the part having the same potential as the negative electrode N of the DC voltage is Also described as the negative electrode N of the leg LG.
  • the area from the positive electrode P of the leg LG to the connection point of each phase is also referred to as an upper arm.
  • the distance from the connection point of each phase to the negative electrode N of the leg LG is also referred to as a lower arm.
  • Each leg LG has the same configuration as each other.
  • “r” is added to the end of the code for the configuration related to the leg LGr
  • “s” is added to the end of the code for the configuration related to the leg LGs
  • the configuration related to the leg LGt is set to
  • “T” is added to the end of the code.
  • the leg LGr includes n cells CL (cells CL1-1r to CL1-nr and cells CL2-1r to CL2-nr shown) and a plurality of reactors RT (shown) on the upper arm and the lower arm, respectively.
  • n is a natural number. From the positive electrode P to the connection point CPr, cells CL1-1r to CL1-nr and a reactor RT1r are connected in series to the upper arm of the leg LGr in the order described. Further, the reactor RT2r and the cells CL2-1r to CL2-nr are connected in series to the lower arm of the leg LGr from the connection point CPr to the negative electrode N in the order described.
  • Reactor RT and transformer TR may be replaced with a transformer having a special winding structure having a leakage reactance sufficient to replace the function of the reactor.
  • current sensors AM (current sensor AMr-1, current sensor AMs-1, current sensor AMt-1 shown in the figure) for detecting the current flowing through the upper arm of each leg LG
  • Current sensors AM (current sensor AMr-2, current sensor AMs-2, current sensor AMt-2 shown in the figure) for detecting the current flowing through the lower arm of each leg LG
  • Current sensor AMr-1 detects a current flowing from leg LGr to positive electrode P (hereinafter, R-phase upper arm current).
  • Current sensor AMs-1 detects a current (hereinafter referred to as an S-phase upper arm current) flowing from leg LGs to positive electrode P.
  • Current sensor AMt-1 detects a current (hereinafter referred to as a T-phase upper arm current) flowing from leg LGt to positive electrode P.
  • Current sensor AMr-2 detects a current flowing from negative electrode N to leg LGr (hereinafter, R-phase lower arm current).
  • Current sensor AMs-2 detects a current (hereinafter, S-phase lower arm current) flowing from negative electrode N to leg LGs.
  • Current sensor AMt-2 detects a current (hereinafter referred to as a T-phase lower arm current) flowing from negative electrode N to leg LGt.
  • FIG. 3 is a diagram illustrating an example of the configuration of the cell CL according to the first embodiment.
  • the cell CL is, for example, a half bridge circuit.
  • the cell CL includes, for example, a plurality of switching elements Q (switching elements Q1 to Q2 shown), a number of diodes D (diodes D1 to D2 shown) corresponding to the switching elements Q, and capacitors C1.
  • the switching element Q is, for example, an insulated gate bipolar transistor (hereinafter referred to as IGBT).
  • IGBT insulated gate bipolar transistor
  • the switching element Q is not limited to the IGBT.
  • the switching element Q may be any element as long as it is a self-extinguishing switching element capable of realizing a converter or an inverter. In the present embodiment, a case where the switching element Q is an IGBT will be described.
  • the switching element Q1 and the switching element Q2 are connected in series with each other.
  • Switching element Q1, switching element Q2, and capacitor C1 are connected in parallel to each other.
  • Each switching element Q and the diode D are connected in parallel to each other.
  • Switching element Q1 and diode D1 are connected in parallel to each other, and switching element Q2 and diode D2 are connected in parallel to each other.
  • the positive terminal of the cell CL is connected to the connection point between the switching element Q1 and the switching element Q2, and the negative terminal of the cell CL is connected to the emitter terminal of the switching element Q2.
  • FIG. 4 is a diagram illustrating another example of the configuration of the cell CL according to the first embodiment.
  • the cell CL is, for example, a full bridge circuit in which a capacitor C is connected in parallel to two sets of circuits in which a parallel circuit of a switching element Q and a diode D is connected in series.
  • the cell CL includes, for example, a plurality of switching elements Q (switching elements Q3 to Q6 shown), a number of diodes D (diodes D3 to D6 shown) corresponding to the switching elements Q, and capacitors C2.
  • the switching element Q3 and the switching element Q4 are connected in series with each other, and the switching element Q5 and the switching element Q6 are connected in series with each other.
  • Switching element Q3, switching element Q4, switching element Q5, switching element Q6, and capacitor C2 are connected in parallel to each other.
  • Each switching element Q and the diode D are connected in parallel to each other.
  • switching element Q3 and diode D3 are connected in parallel to each other.
  • Switching element Q4 and diode D4 are connected in parallel to each other.
  • Switching element Q5 and diode D5 are connected in parallel to each other.
  • Switching element Q6 and switching element Q6 are connected in parallel to each other.
  • the positive terminal of the cell CL is connected to the connection point between the switching element Q3 and the switching element Q4, and the negative terminal of the cell CL is connected to the connection point between the switching element Q5 and the switching element Q6.
  • the cell CL may be either the cell CL of the half bridge circuit shown in FIG. 3 or the cell CL of the full bridge circuit shown in FIG. In the following description, the case where the cell CL is the half bridge circuit shown in FIG. 3 will be described.
  • Each switching element Q includes a switching terminal (not shown) for switching the switching element Q on and off, and the switching terminal is connected to the converter control device 10 and receives a control signal.
  • the capacitor C1 included in the cell CL is charged or discharged.
  • the power converter 20 supplies a value based on the voltage of the capacitor C1 (hereinafter referred to as a capacitor voltage detection value Vc) to the converter control device 10 as a detection signal.
  • the capacitor voltage detection value Vc is an average value of the voltage of the capacitor C1 provided in the power converter 20.
  • Capacitor voltage command value Vc * that indicates the voltage of capacitor C1 is a value that indicates an average value of the voltage of capacitor C1 of each cell CL provided in power converter 20.
  • the detection signal supplied from the power converter 20 to the converter control device 10 includes information indicating the capacitor voltage detection value Vc.
  • the converter control device 10 When converting the AC power of the AC system into the DC power of the DC system, the converter control device 10 converts the AC active power flowing from the AC system side into the power converter 20 and the power converter 20 to the DC system. Each switching element Q is switched on and off so that the flowing DC active power matches. Further, when converting the DC power of the DC system to AC power of the AC system, the converter control device 10 converts the DC active power flowing from the DC system into the power converter 20 and the power converter 20 to the AC system. Each switching element Q is switched on and off so that the AC active power flowing out from the power source coincides.
  • the converter control apparatus 10 controls the power converter 20, whereby the voltage of the capacitor C1 of each cell CL of the power converter 20 is maintained constant, and a stable operation of the power conversion system is realized. In the following description, the voltage of the capacitor C1 is also referred to as “capacitor voltage”.
  • the converter control apparatus 10 causes the power loss accompanying power conversion inside the power converter 20, either the AC system or the DC system is used as a control reference point, and feedback of the capacitor voltage is performed. Take control.
  • feedback control of the capacitor voltage is performed by controlling the AC active power of the AC system with reference to the DC active power of the DC system will be described.
  • the converter control device 10 includes the power converter 20 so that there is no difference in the active power between the AC system and the DC system (that is, the AC active power of the AC system matches the DC active power of the DC system). Feedforward control of AC active power. Furthermore, the converter control device 10 steps down (discharges) the capacitor voltage equal to or higher than the specified voltage in order to maintain the capacitor voltage at the specified voltage in the normal time or during an abnormality such as a system fault in addition to the feedforward control. Thus, feedback control is performed to adjust and control the AC active power of the AC system so as to boost (charge) the capacitor voltage below the specified voltage.
  • the converter control device 10 charges the capacitor by adjusting the AC active power of the power converter 20 by an amount corresponding to the power loss (that is, feedback control) in addition to the feedforward control, and each capacitor voltage. To maintain.
  • FIG. 5 is a diagram illustrating an example of the configuration of the converter control device 10 according to the first embodiment.
  • the converter control device 10 includes a first calculation unit 102, a switching unit 104, a second calculation unit 106, a third calculation unit 108, a PI control unit 110, a fourth calculation unit 112, and a conversion unit 114.
  • the PWM control unit 116, the fifth calculation unit 118, the sixth calculation unit 120, and the comparison unit 122 are provided as functional units.
  • the converter control device 10 implements each functional unit when a hardware processor such as a CPU (Central Processing Unit) executes a program (software), for example.
  • a hardware processor such as a CPU (Central Processing Unit) executes a program (software), for example.
  • circuits such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), and GPU (Graphics Processing Unit). Part (including circuit)), or may be realized by cooperation of software and hardware.
  • LSI Large Scale Integration
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • GPU Graphics Processing Unit
  • the first calculation unit 102 includes information indicating the current value of the R-phase upper arm current detected by the current sensor AMr-1 (hereinafter, R-phase upper arm current detection value Ir) and the current sensor AMs-1 Information indicating the current value of the S-phase upper arm current (hereinafter referred to as S-phase upper arm current detection value Is) and the current value of the T-phase upper arm current detected by current sensor AMt-1 (hereinafter referred to as T-phase upper arm current)
  • the value of the direct current flowing through the direct current system (hereinafter referred to as the direct current detection value Idc) is calculated based on the information indicating the current value).
  • the switching unit 104 switches the feedforward control source information supplied to the second calculation unit 106 to the DC current detection value Idc or the DC current command value Idc * based on the comparison result of the comparison unit 122. Specifically, when the comparison result of the comparison unit 122 indicates that no disturbance has occurred in the DC system, the switching unit 104 supplies the DC current command value Idc * to the second calculation unit 106, and the comparison result is When the disturbance is generated in the DC system, the DC current detection value Idc is supplied to the second calculation unit 106.
  • the state in which the disturbance is occurring is an example of “when it is not a predetermined state”, and is a state in which the difference between the DC current command value Idc * and the DC current detection value Idc becomes large due to a system fault or the like.
  • the state in which the disturbance occurs is a situation in which the power conversion apparatus 1 that exists in the opposite side of the DC system in the BTB system stops suddenly and no DC power is supplied (that is, a situation in which the DC current stops flowing), etc. Corresponds.
  • the second calculation unit 106 determines the DC system based on the DC current detection value Idc or DC current command value Idc * acquired from the switching unit 104 and the DC voltage command value Vdc * acquired from the power conversion system control device SYS.
  • DC active power FF amount Pdcff is calculated.
  • the DC active power FF amount Pdcff is a value indicating a feedforward amount for instructing AC power of the AC system based on a change in DC power of the DC system.
  • the DC active power FF amount Pdcff is a value obtained by multiplying the DC current command value Idc * by the DC voltage command value Vdc * when no disturbance occurs, and when the disturbance occurs, the DC current command value Idc * is added to the DC voltage detected value Idc. It is a value obtained by multiplying the command value Vdc *.
  • FIG. 6 is a diagram illustrating an example of a change in AC active power of an AC system that is controlled based on the DC current command value Idc * or the DC current detection value Idc.
  • the waveform W ⁇ b> 111 is a waveform showing the time change of the DC active power of the DC system.
  • a waveform W112 is a waveform showing a time change of the AC active power of the AC system controlled based on the DC current detection value Idc.
  • Waveform W113 is a waveform showing the time change of AC active power of AC active power controlled based on DC current command value Idc *.
  • the waveform W111 As shown by the waveform W111, a harmonic component accompanying switching of the power conversion device 1 is superimposed on the DC current detection value Idc.
  • the direct current command value Idc * (not shown) is a value output from the power conversion system control device SYS, harmonic components associated with switching of the switching element Q are not superimposed. Therefore, the AC active power controlled based on the DC current detection value Idc (for example, the waveform W112) and the AC active power controlled based on the DC current command value Idc * (for example, the waveform W113) are the latter. It is possible to suppress the harmonics from affecting the AC system.
  • the second calculation unit 106 can prevent the harmonic from affecting the AC system by using the DC current command value Idc * for calculating the DC active power FF amount Pdcff when no disturbance occurs. it can. Further, the second calculation unit 106 calculates the DC active power FF amount Pdcff when a disturbance occurs (that is, when the difference between the DC current command value Idc * and the DC current detection value Idc becomes large). By using the DC current detection value Idc, it is possible to suppress the difference between the AC active power of the AC system and the DC active power of the DC system from increasing and the capacitor voltage from fluctuating.
  • the third calculation unit 108 calculates the difference between the capacitor voltage command value Vc * and the capacitor voltage detection value Vc, and acquires the difference between the capacitor voltages. Specifically, the third calculation unit 108 acquires a value obtained by subtracting the capacitor voltage detection value Vc from the capacitor voltage command value Vc * as a difference in capacitor voltage. This difference in capacitor voltage is caused by power loss or disturbance.
  • the PI control unit 110 acquires the operation amount ⁇ Pac of the AC active power when performing the PI (Proportional-Integral) control of the capacitor C1 based on the difference between the capacitor voltages acquired by the third calculation unit 108.
  • the fourth calculation unit 112 is a value indicating the active power of the AC system based on the operation amount ⁇ Pac acquired by the PI control unit 110 and the DC active power FF amount Pdcff calculated by the second calculation unit 106 ( Hereinafter, the AC active power command value Pac *) is calculated. Specifically, the fourth calculation unit 112 calculates a value obtained by adding the operation amount ⁇ Pac and the DC active power FF amount Pdcff as the AC active power command value Pac *. By changing the AC active power of the AC system according to this AC active power command value Pac *, the converter control device 10 compensates for the decrease in the capacitor voltage corresponding to the power loss, or the capacitor that is raised or lowered from the specified voltage. The power converter 20 can be controlled so as to reduce the change in voltage.
  • the capacitor voltage varies according to the variation of the DC power of the DC system, and then the AC power of the AC system is Then, it fluctuates (responds) so as to compensate for the decrease in the capacitor voltage due to this variation, or to reduce the increase in the capacitor voltage.
  • converter control device 10 calculates AC active power command value Pac * in response to the fluctuation of the capacitor voltage, and changes the AC active power of the AC system. Therefore, the AC active power of the AC system responds when the DC power of the DC system fluctuates because the capacitor voltage fluctuates and the converter controller 10 controls the power converter 20.
  • the fourth calculation unit 112 of the present embodiment includes the DC active power FF amount Pdcff in the AC active power command value Pac *, the fourth calculation unit 112 does not wait for the AC active power of the AC system to respond due to the fluctuation of the capacitor voltage, and thus By changing the AC active power command value Pac * in accordance with the active power, the decrease in the capacitor voltage can be compensated or the increase in the capacitor voltage can be reduced.
  • the conversion unit 114 variable-converts the AC active power command value Pac * calculated by the fourth calculation unit 112 into the AC active current command value Iac *.
  • the AC active current is an AC current component that contributes to active power transmission.
  • the conversion unit 114 calculates a value obtained by dividing the AC active power command value Pac * by the amplitude (maximum value) of the AC voltage as an AC active current command value Iac *.
  • the AC voltage of the AC system may be a command value of the power conversion system control device SYS or a detected value.
  • the conversion part 114 may give an active power value (unit: W) as a command value for the power converter 20.
  • the AC active power value can be converted by multiplying the AC active current value by the peak value of the AC voltage of the AC system.
  • the PWM control unit 116 Based on the AC effective current command value Iac * and the like converted by the conversion unit 114, the PWM control unit 116 makes the AC active current detection value Iac approach the AC effective current command value Iac * and detects the DC current detection value.
  • a PWM control signal is generated as a control signal by a general feedback current control system and a triangular wave comparison method so that Idc approaches DC current command value Idc *.
  • the power converter 20 turns on and off the switching element Q based on the control signal generated by the PWM control unit 116. As a result, the effective power flowing into the power converter 20 from the AC system or flowing out from the power converter 20 into the AC system is effectively discharged from the power converter 20 into the DC system, or flows into the power converter 20 from the DC system.
  • the power converter 1 can be operated in a stable manner so that the power converter 1 can operate stably.
  • the converter control device 10 includes various other control systems such as reactive power control and control for suppressing variation in capacitor voltage of each cell CL, but is not directly related to AC active power and DC active power. The portion is not shown and is omitted.
  • the fifth calculation unit and 118 add the switching threshold TH to the direct current command value Idc * to calculate the switching upper limit threshold THU.
  • the sixth calculator 120 subtracts the switching threshold TH from the DC current command value Idc * to calculate the switching lower limit threshold THD.
  • the comparison unit 122 compares the DC current detection value Idc, the switching upper limit threshold THU, and the switching lower limit threshold THD.
  • the comparison unit 122 includes three terminals, a terminal ta, a terminal tb, and a terminal tc.
  • the switching upper limit threshold THU is input to the terminal ta
  • the DC current detection value Idc is input to the terminal tb.
  • Is input, and the switching lower limit threshold value THD is input to the terminal tc.
  • the comparison part 122 may output the comparison result based on the DC active power of the DC system, may output the comparison result based on the DC voltage of the DC active power, and may be based on the AC current of the AC system.
  • the comparison result may be output, the comparison result may be output based on the AC active power of the AC system, or the comparison result may be output based on the AC voltage of the AC system.
  • the switching unit 104 causes the second calculation unit 106 to detect the DC current when the comparison result of the comparison unit 122 indicates that the DC current detection value Idc is within the range of the DC current command value Idc * ⁇ switching threshold value TH.
  • the DC current detection value Idc is supplied to the second calculation unit 106.
  • the switching threshold TH is set to a value smaller than the rated DC current value of the DC system and larger than the fluctuation range of the DC current during normal operation of the DC system. As a result, the switching unit 104 can prevent unnecessary switching from occurring during normal times when it is desired to reduce harmonic components.
  • the switching threshold TH is set, for example, to about 5 to 10% of the rated DC current value of the DC system.
  • the switching unit 104 is configured to switch the information (DC current command value Idc * or DC current detection value Idc) supplied to the second calculation unit 106 based on the comparison result of the comparison unit 122. It may be configured to switch based on a system fault detection signal received from an external protection device (not shown) or the like. In this case, the protection device outputs a system fault detection signal to the converter control device 10 when the detected DC power of the DC system or the detected AC power of the AC system is equal to or lower than a preset threshold value. When the switching unit 104 of the converter control device 10 receives the signal, the switching unit 104 switches the information supplied to the second calculation unit 106 from the DC current command value Idc * to the DC current detection value Idc.
  • the switching unit 104 may be configured to switch information to be supplied to the second calculation unit 106 based on a logical sum obtained by combining the plurality of switching methods. In this case, the switching unit 104 changes the information supplied to the second calculation unit 106 from the DC current command value Idc * to the DC current when any one of the conditions indicating that a disturbance has occurred. The detection value is switched to Idc.
  • the series of calculations performed by the second calculation unit 106 and the fourth calculation unit 112 is an example of a “feedforward calculation” in AC active power control.
  • the series of calculations by the third calculation unit 108 and the PI control unit 110 is an example of “feedback calculation”.
  • FIG. 7 is a diagram illustrating an example of a conventional control and a control result by the converter control device 10. Specifically, the graph shown on the left side of FIG. 7 shows an example of the control result by the conventional control, and the graph shown on the right side of FIG. 7 shows an example of the control result by the power converter 1.
  • the conventional control is control of the power converter 20 by a control device that does not include the switching unit 104 and the comparison unit 122 in the converter control device 10.
  • switching between the DC current detection value Idc and the DC current command value Idc * is not performed, and the second calculation unit 106 always uses the DC active power FF based on the DC current command value Idc *.
  • the amount Pdcff is calculated.
  • the waveform W11 and the waveform W21 indicate changes in the AC active power of the AC system
  • the waveforms W12 and W22 indicate changes in the DC active power of the DC system
  • the waveform W13 and the waveform W23 indicate changes in the direct current command value Idc *
  • the waveform W14 and the waveform W24 indicate changes in the direct current detection value Idc
  • the waveform W15 and the waveform W25 indicate direct current.
  • a change in the effective power FF amount Pdcff is shown
  • a waveform W16 and a waveform W26 show a change in the capacitor voltage detection value Vc
  • a waveform W27 shows a change in the output of the comparison unit 122.
  • the AC active power of the AC system, the DC active power of the DC system, and the DC current detection value Idc are used when power is exchanged (transmitted) from the AC system side to the DC system side.
  • a positive value is taken and power is exchanged (transmitted) from the DC system side to the AC system side, it becomes a negative value.
  • a disturbance occurs at time TM1, and DC power is not supplied.
  • the DC active power of the DC system decreases to approximately 0 [pu] at time TM1.
  • the DC current detection value Idc decreases to approximately 0 [pu] at the time TM1. Therefore, as shown by waveform W13, waveform W14, waveform W23, and waveform W24, at time TM1, the difference between DC current detection value Idc and DC current command value Idc * increases.
  • the second calculation unit 106 since the second calculation unit 106 always calculates the DC active power FF amount Pdcff based on the DC current command value Idc *, as indicated by the waveform W15, the DC active power FF The quantity Pdcff maintains a constant value, and the AC system continues to pass power to the DC system.
  • the AC system cannot exchange power to the DC system via the power converter 20 at time TM1, but the DC active power FF amount Pdcff is maintained at a constant value, so that the waveform W11 shows, as shown in FIG.
  • the AC active power of the AC system gradually decreases from time TM1. This is because each capacitor C1 accumulates (charges) the electric power that can no longer be accommodated from the AC system to the DC system, and at the same time, the manipulated variable ⁇ Pac gradually increases so as to decrease it. Therefore, as indicated by waveform W16, the capacitor voltage gradually increases from time TM1. Further, as indicated by waveform W16, the capacitor voltage reaches the overvoltage protection voltage at time TM2, so that charging is stopped and becomes a constant value.
  • the AC active power decreases to almost 0 [pu] at time TM2, as shown by the waveform W11. To do.
  • the area surrounded by the waveform W11 and the waveform W12 corresponds to the amount of energy (energy) that is surplus due to the inability to pass power from the power converter 20 to the DC system. Accumulated in the capacitor C1 of each cell CL.
  • each capacitor C1 does not need to store (charge) the electric power that the AC system can no longer accommodate in the DC system, and therefore, as shown by the waveform W26, between the times TM1 and TM2. , The capacitor voltage detection value Vc hardly increases.
  • the power converter device 1 since the capacitor voltage hardly rises due to the occurrence of the disturbance, when the disturbance is resolved and the operation of the power converter 20 can be resumed, the capacitor C ⁇ b> 1 is discharged. Without restarting, you can resume operation immediately. Therefore, the power converter device 1 can improve the operation continuity of the power conversion system.
  • FIG. 8 is a flowchart illustrating an example of processing of the converter control device 10 according to the first embodiment.
  • the first calculation unit 102 of the converter control device 10 detects the R-phase upper arm current detection value Ir, the S-phase upper arm current detection value Is, and the T-phase upper arm current detection value It detected by each current sensor AM.
  • the DC current detection value Idc is calculated based on (Step S102).
  • converter control device 10 acquires DC current command value Idc * from power conversion system control device SYS (step S104).
  • the comparison unit 122 compares the DC current detection value Idc with the DC current command value Idc * + switching threshold value TH (step S106).
  • the comparison result of the comparison unit 122 is that the DC current detection value Idc is greater than the DC current command value Idc * + switching threshold value TH (that is, the DC current detection value Idc is equal to the DC current command value Idc * ⁇ switching threshold value TH).
  • the switching unit 104 switches the information supplied to the second calculation unit 106 to the DC current detection value Idc, and the second calculation unit 106 is based on the DC current detection value Idc.
  • the DC active power FF amount Pdcff is calculated (step S108).
  • Converter control device 10 advances the process to step S114 after step S108.
  • the comparison unit 122 determines that the DC current detection value Idc and the DC current command value Idc * ⁇ switching threshold value TH are Are compared (step S110).
  • the converter control device 10 indicates that the comparison result of the comparison unit 122 is such that the DC current detection value Idc is smaller than the DC current command value Idc * ⁇ switching threshold value TH (that is, the DC current detection value Idc is equal to the DC current command value). If the value indicates that the value deviates from the range of the value Idc * ⁇ switching threshold value TH, the process proceeds to step S108.
  • the switching unit 104 switches the information supplied to the second calculation unit 106 to the DC current command value Idc *, and the second The calculating unit 106 calculates the DC active power FF amount Pdcff based on the DC current command value Idc * (step S112).
  • the fourth calculator 112 determines the AC active power command value Pac * based on the DC active power FF amount Pdcff calculated by the second calculator 106 and the operation amount ⁇ Pac acquired by the PI controller 110. Is calculated (step S114). Next, the conversion unit 114 performs variable conversion of the AC active power command value Pac * calculated by the fourth calculation unit 112 into the AC active current command value Iac * (step S116).
  • the PWM control unit 116 makes the AC effective current detection value Iac approach the AC effective current command value Iac * based on the AC effective current command value Iac * and the like converted by the conversion unit 114 (and A PWM control signal is generated as a control signal so that the DC current detection value Idc approaches the DC current command value Idc * (step S118).
  • the power conversion device 1 includes the control unit (the converter control device 10 in this example) and the power converter 20.
  • the power converter 20 is connected to an AC system and a DC system, has an energy storage unit (a capacitor C1 in this example), and converts DC power and AC power to each other.
  • the converter control device 10 acquires the DC voltage command value Vdc * of the DC system and the DC current detection value Idc, and based on the acquired DC current detection value Idc when the AC system or the DC system is not in a predetermined state.
  • An AC active power command value Pac * to be given to the power converter 20 is calculated by performing a feedforward calculation.
  • the power conversion device 1 When the AC system or the DC system is in a predetermined state, the feedforward based on the acquired DC current command value Idc * An AC active power command value Pac * is calculated by performing calculation.
  • the power conversion device 1 according to the present embodiment suppresses the influence of the harmonics on the AC system at normal time, and when the disturbance is resolved at the time of abnormality and the operation of the power conversion system is resumed, You can resume driving.
  • the converter control device 10 of the present embodiment saves space and is low in cost because the AC filter for removing harmonics is unnecessary or small, and the AC active power on the AC system side can be supplied to the DC system side even in the event of an abnormality. It is possible to operate with high operation continuation performance matched to the direct current active power.
  • the power converter device 2 of 2nd Embodiment is demonstrated.
  • the switching unit 104 is switched based on the comparison result between the DC current detection value Idc and the DC current command value Idc * has been described.
  • the switching unit 104 is further based on the comparison result between the DC current detection value Idc, the DC current command value Idc *, and the value based on the zero-phase circulating current command value.
  • symbol is attached
  • the power conversion device 2 according to the second embodiment includes a converter control device 11 instead of (or in addition to) the converter control device 10 in the configuration of the power conversion device 1.
  • FIG. 9 is a diagram illustrating an example of the configuration of the converter control device 11 according to the second embodiment.
  • Converter control device 11 further includes a phase capacitor voltage balance control unit 123, a seventh calculation unit comparison unit 124, and an eighth calculation unit 126 in addition to the configuration provided in converter control device 10.
  • the phase capacitor voltage balance control unit 123 includes a command value for current circulating in the R-phase leg (hereinafter referred to as R-phase circulating current command value Izr *) and a command value for current circulating in the S-phase leg (hereinafter referred to as “phase-circulating current command value”).
  • R-phase circulating current command value Izr * a command value for current circulating in the S-phase leg
  • phase-circulating current command value for current circulating in the S-phase leg
  • S-phase circulating current command value Izs * S-phase circulating current command value Izs *
  • T-phase circulating current command value Izt * command value of current circulating in the T-phase leg
  • the phase capacitor voltage balance controller 123 includes a first calculator 123a, a second calculator 123b, a third calculator 123c, a first PI controller 123d, a second PI controller 123e, and a third PI controller 123f. Is provided as a functional part thereof.
  • the phase capacitor voltage balance control unit 123 includes the capacitor voltage arithmetic average value of the capacitor C1 of the R-phase leg LGr (hereinafter referred to as the R-phase capacitor voltage value Vcr) included in the power converter 20 and all the capacitors C1 of the S-phase leg LGs.
  • Capacitor voltage arithmetic average value hereinafter referred to as S phase capacitor voltage value Vcs
  • T phase capacitor voltage value Vct capacitor voltage arithmetic average value of all capacitors C1 of T phase leg LGt
  • R phase circulating current command value Izr *, S phase circulating current command value Izs *, and T phase circulating current command value Izt * which are command values for maintaining the capacitor voltage of LG.
  • the R-phase circulating current command value Izr *, the S-phase circulating current command value Izs *, and the T-phase circulating current command value Izt * are values obtained by equally dividing the DC current command value Idc * for each phase (Idc * / 3) is not included.
  • the first calculation unit 123a calculates the difference between the R phase capacitor voltage value Vcr and the capacitor voltage command value Vc *.
  • the first PI controller 123d eliminates the difference between the R-phase capacitor voltage value Vcr calculated by the first calculator 123a and the capacitor voltage command value Vc *, or sets the R-phase circulating current command value Izr as an operation amount that reduces the difference. * Is output.
  • the second calculation unit 123b calculates the difference between the S-phase capacitor voltage value Vcs and the capacitor voltage command value Vc *.
  • the second PI control unit 123e eliminates the difference between the S-phase capacitor voltage value Vcs calculated by the second calculation unit 123b and the capacitor voltage command value Vc *, or the S-phase circulating current command value Izs as an operation amount that reduces the difference. * Is output.
  • the third calculation unit 123c calculates a difference between the T-phase capacitor voltage value Vct and the capacitor voltage command value Vc *.
  • the third PI controller 123f eliminates the difference between the T-phase capacitor voltage value Vct calculated by the third calculator 123c and the capacitor voltage command value Vc *, or the T-phase circulating current command value Izt as an operation amount that reduces the difference. * Is output.
  • the seventh calculator comparison unit 124 adds the R-phase circulating current command value Izr *, the S-phase circulating current command value Izs *, and the T-phase circulating current command value Izt * for maintaining the capacitor voltage.
  • the value is calculated as a zero-phase circulating current command value Iz0 *.
  • the zero-phase circulating current command value Iz0 * is “0”, it indicates that there is no circulating current for accommodating power from the power converter 20 to the DC system, but the zero-phase circulating current command value Iz0 *.
  • Is a positive value it indicates that power is to be exchanged from the power converter 20 to the DC system.
  • the zero-phase circulating current command value Iz0 * is a negative value, power is supplied from the DC system to the power converter 20. Shows flexibility.
  • the zero-phase circulating current command value Iz0 * is “0”, and the R-phase circulating current command value Izr *, the S-phase circulating current command value Izs *, and the T-phase circulating current command value Izt * If at least one of them is not “0”, it means that power is interchanged between the legs LG inside the power converter.
  • the AC active power is adjusted and controlled by the manipulated variable ⁇ Pac, and feedback is performed so that the capacitor voltage detection value Vc matches the capacitor voltage command value Vc *.
  • the control system is configured to cope with the case where the AC system voltage is insufficient at the time of an AC system fault and it is difficult to make the capacitor voltage detection value Vc coincide with the capacitor voltage command value Vc * only by the AC active power adjustment control.
  • the eighth calculation unit 126 calculates a value obtained by adding the zero-phase circulating current command value Iz0 * calculated by the seventh calculation unit comparison unit 124 and the DC current command value Idc *.
  • the switching unit 104 uses the DC current detection value Idc or the value calculated by the eighth calculation unit 126 (that is, the value calculated by the eighth calculation unit 126) as the original information of the feedforward control supplied to the second calculation unit 106. , DC current command value Idc * + zero-phase circulating current command value Iz0 *).
  • the value calculated by the eighth calculation unit 126 is input to the terminal tb of the comparison unit 122 of the present embodiment.
  • the series of calculations performed by the second calculation unit 106 and the fourth calculation unit 112 is an example of “feed forward calculation”.
  • the switching unit 104 indicates that the comparison result of the comparison unit 122 indicates that the DC current detection value Idc is within the range of (DC current command value Idc * + zero-phase circulating current command value Iz0 *) ⁇ switching threshold value TH.
  • the comparison result of the comparison unit 122 indicates that the direct current detection value Idc has deviated from the range. In the case shown, the DC current detection value Idc is supplied to the second calculator 106.
  • the second calculation unit 106 calculates the DC active power FF amount Pdcff based on the DC current command value Idc * + zero-phase circulating current command value Iz0 *, and the disturbance occurs. If there is, the DC active power FF amount Pdcff is calculated based on the DC current detection value Idc.
  • the phase capacitor voltage balance control unit 123 overcharges the capacitor C1 of each cell CL inside each leg LG of the power converter 20.
  • Converter controller 10 outputs an R-phase circulating current command value, an S-phase circulating current command value, and a T-phase circulating current command value.
  • the R-phase circulating current command value, the S-phase circulating current command value, and the T-phase circulating current command value are input to the PWM control unit (not shown).
  • the power converter 20 follows the command value. Circulation current of each phase flows.
  • Zero-phase circulating current command value Iz0 * corresponds to a current amount for compensating for a mismatch between the DC active power of the DC system and DC active power command value Pdc *.
  • the second calculation unit 106 calculates the DC active power FF amount Pdcff based on the DC current command value Idc * + zero-phase circulating current command value Iz0 * that is close to the actual DC current of the DC system.
  • the difference between the AC active power and the DC active power of the DC system can be suppressed, and the change in the capacitor voltage can be reduced. Thereby, the power converter 20 can improve driving
  • the capacitor voltage matches the capacitor voltage command value Vc *, the zero-phase circulating current command value Iz0 * is “0”, which is the same as the configuration of the first embodiment.

Abstract

高調波電圧または電流の抑制と、事故時の運転継続を実現することができる電力変換装置を提供する。電力変換器(20)は、交流系統と直流系統とに接続され、内部にエネルギー蓄積部を有し、直流電力と交流電力とを相互に変換する。制御部(10)は、前記直流系統の直流電流指令値(Idc*)と、直流電流検出値(Idc)とを取得し、前記交流系統、又は前記直流系統に事故等の異常が生じていない場合、前記取得した直流電流指令値(Idc*)に基づくフィードフォワード演算を行って、前記電力変換器(20)に与える交流有効電力指令値(Pac*)を算出し、前記交流系統、又は前記直流系統に事故等の異常が生じている場合、前記取得した直流電流検出値(Idc)に基づくフィードフォワード演算を行って、前記交流系統と前記電力変換器との間で融通する有効電力を指示する前記交流有効電力指令値(Pac*)を算出する。

Description

電力変換装置
 本発明の実施形態は、電力変換装置に関する。
 近年、異なる電力系統同士を接続する広域連系が進められている。周波数が互いに異なる交流系統の電力系統同士を接続する場合、例えば、モジュラー・マルチレベル変換器(Modular Multilevel Converter)などの電力変換器を用いて電力系統同士を接続する技術が知られている。この場合、電力変換器は、ある交流系統と直流系統との連系点、及び当該直流系統と接続対象の他の交流系統との連系点に設けられる。電力変換器は、交流系統の交流電力を直流電力に変換して直流系統に供給(融通)し、或いは直流系統の直流電力を交流電力に変換して交流系統に供給する。これにより、電力変換器は、電力系統の電力を交流周波数や位相に制約されずに、融通することが可能である。
 同一地点、或いは同一変換所構内などの比較的近い位置に複数の電力変換器を設置し、それらの直流系統側を互いに接続した構成は、BTB(Back-To-Back)システムと呼ばれる場合がある。BTBシステムは、互いに異なる地点に設置された複数の電力変換器の直流系統側を接続した構成であるHVDC(High-Voltage Direct-Current)システムの直流系統による送電距離を小さくした構成と捉えることもできる。異なる地点間とは、例えば、各都市間、又は陸上と洋上の発電所の間等である。
 BTBシステムは、HVDCシステムと比較して、電力変換器のスイッチング制御に起因して、直流電流にリプル成分が含まれやすい。直流電流にリプル電流が多く含まれ、このリプルに応じて直流系統側の有効電力が脈動している状態において、交流系統側の有効電力を直流系統側の有効電力にリアルタイムに一致させようとすると、交流系統側の有効電力も脈動してしまう場合がある。
 その脈動による高調波成分と、その成分が重畳する交流電圧の歪みが、規定の値よりも大きくなる場合、この高調波成分を除去するためには、大型の高調波フィルタが必要となる場合がある。大型の高調波フィルタを設置すると、電力変換装置の設置面積の増大、高コスト化につながることが想定される。
特開2017-216809号公報
 本発明が解決しようとする課題は、高調波電圧、又は電流の抑制と事故時の運転継続を実現することができることができる電力変換装置を提供することである。
 実施形態の電力変換装置は、電力変換器と、制御部と、を持つ。電力変換器は、交流系統と直流系統との間に接続され、エネルギー蓄積部を含み、直流電力と交流電力とを相互に変換する。制御部は、前記直流系統の直流電流指令値と、直流電流検出値とを取得し、前記交流系統、又は前記直流系統が所定の状態でない場合、前記取得した直流電流検出値に基づくフィードフォワード演算を行って、前記交流系統と前記電力変換器との間で融通する有効電力を指示する交流有効電力指令値を算出し、前記交流系統、又は前記直流系統が所定の状態である場合、前記取得した直流電流指令値に基づくフィードフォワード演算を行って、前記交流有効電力指令値を算出する。
第1の実施形態に係る二つの電力変換装置1a、1bによって連系された電力変換システムの一例を示す図である。 第1の実施形態に係る電力変換器20の構成の一例について説明する。 第1の実施形態に係るセルCLの構成の一例を示す図である。 第1の実施形態に係るセルCLの構成の他の例を示す図である。 第1の実施形態に係る変換器制御装置10の構成の一例を示す図である。 直流電流指令値Idc*、又は直流電流検出値Idcに基づく制御を行った交流系統の交流有効電力の変化の一例を示す図である。 従来の制御と変換器制御装置10による制御結果の一例を示す図である。 第1実施形態に係る変換器制御装置10の処理の一例を示すフローチャートである。 第2の実施形態に係る変換器制御装置11の構成の一例を示す図である。 相コンデンサ電圧バランス制御部123の構成の一例を示す図である。
 以下、実施形態の電力変換装置を、図面を参照して説明する。
(第1の実施形態)
[電力変換システムについて]
 図1は、第1の実施形態に係る二つの電力変換装置1a、1bによって連系された電力変換システムの一例を示す図である。図1に示される電力変換システムには、第1交流系統と、第2交流系統と、直流系統とが含まれる。電力変換システムでは、第1交流系統と、直流系統とが、電力変換装置1aを介して接続され、直流系統と、第2交流系統とが、電力変換装置1bを介して接続される。以降の説明において、電力変換装置1aと、電力変換装置1bとを互いに区別しない場合には、総称して電力変換装置1と記載する。
 電力変換装置1は、変換器制御装置10と、電力変換器20とを備える。変換器制御装置10は、電力変換器20の動作を制御する。電力変換器20は、変換器制御装置10の制御に基づいて動作し、交流系統の交流電力を直流電力に変換して直流系統に供給し、或いは、直流系統の直流電力を交流電力に変換して交流系統に供給する。電力変換器20は、例えば、モジュラー・マルチレベル変換器(Modular Multilevel Converter)である。なお、電力変換器20は、モジュラー・マルチレベル変換器によって実現される構成の他、3レベル変換器と、モジュラー・マルチレベル変換器とを組み合わせた回路等によって実現されてもよい。
 電力変換システムの各電力系統間の電力の供給(融通)は、電力変換システム制御装置SYSによって制御される。電力変換システム制御装置SYSは、各電力変換装置1に対して指令信号を供給する。電力変換装置1は、電力変換システム制御装置SYSから取得した指令信号に基づいて動作する。指令信号には、例えば、コンデンサ電圧指令値Vc*と、直流電圧指令値Vdc*と、直流電流指令値Idc*とが含まれる。コンデンサ電圧指令値Vc*は、電力変換器20が備えるコンデンサ(不図示)の電圧を指示する値である。直流電圧指令値Vdc*は、直流系統の直流電圧を指示する値である。直流電流指令値Idc*は、直流系統の直流電流を指示する値である。
 変換器制御装置10は、電力変換システム制御装置SYSから取得した指令信号と、電力変換器20から取得した検出信号とに基づいて、電力変換器20を制御する。検出信号とは、電力変換器20の内部回路の各種値を検出した検出値を含む信号である。電力変換器20の内部回路、及び検出信号の詳細については後述する。
 具体的には、変換器制御装置10は、検出信号と、コンデンサ電圧指令値Vc*とに基づいて、電力変換器20が備えるコンデンサの電圧をコンデンサ電圧指令値Vc*に一致させるように電力変換器20を制御する。変換器制御装置10は、検出信号と、直流電圧指令値Vdc*に基づいて、直流系統の直流電圧が直流電圧指令値Vdc*に一致するように電力変換器20を制御する。
 また、変換器制御装置10は、検出信号と、直流電流指令値Idc*に基づいて、電力変換器20から直流系統に流れる直流電流が(、或いは直流系統から電力変換器20に流れる直流電流が)、直流電流指令値Idc*に一致するように電力変換器20を制御する。直流電流指令値Idc*は、直流系統の有効電力の指示値(以下、直流有効電力指示値Pdc*)と、直流系統の直流電圧を指示する値(以下、直流電圧指令値Vdc*)とに基づく値であり、直流有効電力指示値Pdc*を直流電圧指令値Vdc*によって除した値である。
 これにより、電力変換システム制御装置SYSは、指令信号によって電力変換装置1を制御し、電力変換システムを適切な状態にする。
 なお、上述では、電力変換システム制御装置SYSが直流系統に関する指令信号(例えば、直流電圧指令値Vdc*、及び直流電流指令値Idc*)によって電力変換装置1を制御する場合について説明したが、これに限られない。電力変換システム制御装置SYSは、交流系統に関する指令信号(例えば、交流電圧指令値や交流電流指令値)によって電力変換装置1を制御する構成であってもよい。また、電力変換システム制御装置SYSは、直流系統に関する指令信号と、交流系統に関する指令信号との両方によって電力変換装置1を制御する構成であってもよい。以降の説明では、電力変換システム制御装置SYSが直流系統に関する指令信号(例えば、直流電圧指令値Vdc*、及び直流電流指令値Idc*)によって電力変換装置1を制御する場合について説明する。
[BTBシステムについて]
 ここで、電力変換装置1aと、電力変換装置1bとが、同一地点、或いは同一変換所構内などの比較的近い位置に設置し、それらの直流系統側を互いに接続した構成は、BTB(Back-To-Back)システムと呼ばれる。比較的近い位置とは、例えば、数[m]、数十[m]、或いは数百[m]である。BTBシステムは、互いに異なる地点に設置された複数の電力変換器の直流系統側を接続した構成であるHVDC(High-Voltage Direct-Current)システムの直流系統による送電距離を小さくした構成と捉えることもできる。異なる地点間とは、例えば、各都市間、又は陸上と洋上の発電所の間等である。
[電力変換器20について]
 図2は、第1の実施形態に係る電力変換器20の構成の一例について説明する。電力変換器20は、直流系統の正極(図示する正極P)と、直流系統の負極(図示する負極N)との間に複数のレグLGを備える。レグLGの数は、例えば、交流系統が供給する交流電力の相数に対応する。本実施形態では、交流系統は、第1相(図示するR相)、第2相(図示するS相)及び第3相(図示するT相)の三相三線式の交流電力を供給する。このため、電力変換器20は、R相に対応するレグLGrと、S相に対応するレグLGsと、T相に対応するレグLGtとを備える。以降の説明において、レグLGrと、レグLGsと、レグLGtとを互いに区別しない場合には、総称して「レグLG」と記載する。
 レグLGには、トランス(図示するトランスTR)を介して、交流系統が供給する交流電力の三相のうち、ある相が接続される。具体的には、レグLGrには、R相が接続され、レグLGsには、S相が接続され、レグLGtには、T相が接続される。以降の説明において、レグLGrと、R相との接続点を接続点CPrと記載し、レグLGsと、S相との接続点を接続点CPsと記載し、レグLGtと、T相との接続点を接続点CPtと記載する。
 また、以降の説明において、電力変換器20が出力する直流電圧の正極Pと同電位となる部位を、レグLGの正極Pとも記載し、当該直流電圧の負極Nと同電位となる部位を、レグLGの負極Nとも記載する。また、レグLGの正極Pから各相の接続点までの間を上アームとも記載する。また、各相の接続点からレグLGの負極Nまでの間を下アームとも記載する。
 各レグLGは、互いに同様の構成を備える。以降の説明において、レグLGrに係る構成には、符号の末尾に「r」を付し、レグLGsに係る構成には、符号の末尾に「s」を付し、レグLGtに係る構成には、符号の末尾に「t」を付す。また、いずれのレグLGに係る構成であるかを互いに区別しない場合には、「r」、「s」、又は「t」を省略して示す。以下、各レグLGを代表してレグLGrについて説明する。
 レグLGrは、上アームと、下アームとに、それぞれn個のセルCL(図示するセルCL1-1r~CL1-nr、及びセルCL2-1r~CL2-nr)と、複数のリアクトルRT(図示するリアクトルRT1r~RT2r)とを備える。nは、自然数である。レグLGrの上アームには、正極Pから接続点CPrに向けて、セルCL1-1r~CL1-nrと、リアクトルRT1rとが記載の順に直列接続される。また、レグLGrの下アームには、接続点CPrから負極Nに向けて、リアクトルRT2rと、セルCL2-1r~CL2-nrとが記載の順に直列に接続される。なお、リアクトルRTとトランスTRとは、リアクトルの機能を代替するだけの漏れリアクタンスを有する特殊な巻線構造のトランスに置き換えてもよい。
 各レグLGの上アームの正極P端には、各レグLGの上アームを流れる電流を検出する電流センサAM(図示する電流センサAMr-1、電流センサAMs-1、電流センサAMt-1)と、各レグLGの下アームを流れる電流を検出する電流センサAM(図示する電流センサAMr-2、電流センサAMs-2、電流センサAMt-2)が備えられる。電流センサAMr-1は、レグLGrから正極Pに流れる電流(以下、R相上アーム電流)を検出する。電流センサAMs-1は、レグLGsから正極Pに流れる電流(以下、S相上アーム電流)を検出する。電流センサAMt-1は、レグLGtから正極Pに流れる電流(以下、T相上アーム電流)を検出する。電流センサAMr-2は、負極NからレグLGrに流れる電流(以下、R相下アーム電流)を検出する。電流センサAMs-2は、負極NからレグLGsに流れる電流(以下、S相下アーム電流)を検出する。電流センサAMt-2は、負極NからレグLGtに流れる電流(以下、T相下アーム電流)を検出する。
[セルCLについて]
 図3は、第1の実施形態に係るセルCLの構成の一例を示す図である。セルCLとは、例えば、ハーフブリッジ回路である。図3に示される通り、セルCLは、例えば、複数のスイッチング素子Q(図示するスイッチング素子Q1~Q2)と、スイッチング素子Qに応じた数のダイオードD(図示するダイオードD1~D2)と、コンデンサC1とを備える。スイッチング素子Qは、例えば、絶縁ゲートバイポーラトランジスタ(以下、IGBT:Insulated Gate Bipolar Transistor)である。ただし、スイッチング素子Qは、IGBTに限定されない。スイッチング素子Qは、コンバータ又はインバータを実現可能な自己消弧型スイッチング素子であれば、いかなる素子でもよい。本実施形態では、スイッチング素子QがIGBTである場合について説明する。
 スイッチング素子Q1と、スイッチング素子Q2とは、互いに直列に接続される。スイッチング素子Q1、及びスイッチング素子Q2と、コンデンサC1とは、互いに並列に接続される。各スイッチング素子Qと、ダイオードDとは、互いに並列に接続される。スイッチング素子Q1と、ダイオードD1とは、互いに並列に接続され、スイッチング素子Q2と、ダイオードD2とは、互いに並列に接続される。
 図3に示されるセルCLは、レグLGの正極P側に接続される正極端子と、負極N側に接続される負極端子とを備える。セルCLの正極端子は、スイッチング素子Q1と、スイッチング素子Q2との接続点に接続され、セルCLの負極端子は、スイッチング素子Q2のエミッタ端子に接続される。
 なお、上述では、図3を用いてセルCLがハーフブリッジ回路である場合について説明したが、これに限られない。図4は、第1の実施形態に係るセルCLの構成の他の例を示す図である。図4に示す一例では、セルCLとは、例えば、スイッチング素子Qと、ダイオードDの並列回路を直列に接続した2組の回路に対し、コンデンサCを互いに並列に接続したフルブリッジ回路である。図4に示される通り、セルCLは、例えば、複数のスイッチング素子Q(図示するスイッチング素子Q3~Q6)と、スイッチング素子Qに応じた数のダイオードD(図示するダイオードD3~D6)と、コンデンサC2とを備える。
 スイッチング素子Q3と、スイッチング素子Q4とは、互いに直列に接続され、スイッチング素子Q5と、スイッチング素子Q6とは、互いに直列に接続される。スイッチング素子Q3、及びスイッチング素子Q4と、スイッチング素子Q5、及びスイッチング素子Q6と、コンデンサC2とは、互いに並列に接続される。各スイッチング素子Qと、ダイオードDとは、互いに並列に接続される。具体的には、スイッチング素子Q3と、ダイオードD3とは、互いに並列に接続される。スイッチング素子Q4と、ダイオードD4とは、互いに並列に接続される。スイッチング素子Q5と、ダイオードD5とは、互いに並列に接続される。スイッチング素子Q6と、スイッチング素子Q6とは、互いに並列に接続される。
 図4に示されるセルCLは、レグLGの正極P側に接続される正極端子と、負極N側に接続される負極端子とを備える。セルCLの正極端子は、スイッチング素子Q3と、スイッチング素子Q4との接続点に接続され、セルCLの負極端子は、スイッチング素子Q5と、スイッチング素子Q6との接続点に接続される。
 本実施形態の電力変換器20において、セルCLは、図3に示すハーフブリッジ回路のセルCLと、図4示すフルブリッジ回路のセルCLとのいずれを用いてもよい。以降の説明では、セルCLが図3に示すハーフブリッジ回路である場合について説明する。
 各スイッチング素子Qには、スイッチング素子Qのオン、オフを切り替える切替端子(不図示)を備え、切替端子は、変換器制御装置10と接続され、制御信号が入力される。制御信号に基づいて各スイッチング素子Qがオン、又はオフに切り替えられることにより、セルCLが備えるコンデンサC1は、充電又は放電される。電力変換器20は、検出信号として、コンデンサC1の電圧に基づく値(以下、コンデンサ電圧検出値Vc)を変換器制御装置10に供給する。本実施形態の一例において、コンデンサ電圧検出値Vcは、電力変換器20が備えるコンデンサC1の電圧の平均値である。また、コンデンサC1の電圧を指示するコンデンサ電圧指令値Vc*は、電力変換器20が備える各セルCLのコンデンサC1の電圧の平均値を指示する値である。電力変換器20から変換器制御装置10に供給される検出信号には、コンデンサ電圧検出値Vcを示す情報が含まれる。
 変換器制御装置10は、交流系統の交流電力を、直流系統の直流電力に変換する場合には、交流系統側から電力変換器20に流入する交流有効電力と、電力変換器20から直流系統に流出する直流有効電力とが一致するように各スイッチング素子Qのオン、オフを切り替える。また、変換器制御装置10は、直流系統の直流電力を、交流系統の交流電力に変換する場合には、直流系統から電力変換器20に流入する直流有効電力と、電力変換器20から交流系統に流出する交流有効電力とが一致するように各スイッチング素子Qのオン、オフを切り替える。このように変換器制御装置10が電力変換器20を制御することにより、電力変換器20の各セルCLのコンデンサC1の電圧が一定に維持され、電力変換システムの安定した動作を実現する。以降の説明において、コンデンサC1の電圧を「コンデンサ電圧」とも記載する。
 また、変換器制御装置10は、電力変換器20の内部で電力変換に伴う電力損失が生じるため、交流系統と、直流系統とのうち、いずれか一方を制御の基準点とし、コンデンサ電圧のフィードバック制御を行う。本実施形態では、直流系統の直流有効電力を基準とし、交流系統の交流有効電力を制御することにより、コンデンサ電圧のフィードバック制御を行う場合について説明する。
 変換器制御装置10は、交流系統と直流系統との有効電力に差が生じないように(つまり、交流系統の交流有効電力が直流系統の直流有効電力に一致するように)、電力変換器20の交流有効電力をフィードフォワード制御する。さらに、変換器制御装置10は、フィードフォワード制御に加えて、通常時や系統事故等の異常時において、コンデンサ電圧を規定電圧に維持するため、規定電圧以上のコンデンサ電圧を降圧する(放電する)ように、或いは規定電圧以下のコンデンサ電圧を昇圧する(充電する)ように、交流系統の交流有効電力を調整制御するフィードバック制御を行う。例えば、通常時においてフィードフォワード制御の作用で交流有効電力と直流有効電力を一致させても、電力変換器20の内部において電力損失が発生し、各コンデンサ電圧は、徐々に低下する。そこで、変換器制御装置10は、フィードフォワード制御に加え、電力変換器20の交流有効電力をさらに電力損失に相当するだけ調整する(つまり、フィードバック制御する)ことでコンデンサを充電し、各コンデンサ電圧を維持する。
[変換器制御装置10について]
 図5は、第1の実施形態に係る変換器制御装置10の構成の一例を示す図である。変換器制御装置10は、第1算出部102と、切替部104と、第2算出部106と、第3算出部108と、PI制御部110と、第4算出部112と、変換部114と、PWM制御部116と、第5算出部と118と、第6算出部120と、比較部122とをその機能部として備える。変換器制御装置10は、例えば、CPU(Central Processing Unit)等のハードウェアプロセッサがプログラム(ソフトウェア)を実行することにより、各機能部を実現する。また、これらの構成要素のうち一部又は全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)等のハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。
 第1算出部102は、電流センサAMr-1によって検出されたR相上アーム電流の電流値(以下、R相上アーム電流検出値Ir)を示す情報と、電流センサAMs-1によって検出されたS相上アーム電流の電流値(以下、S相上アーム電流検出値Is)を示す情報と、電流センサAMt-1によって検出されたT相上アーム電流の電流値(以下、T相上アーム電流の電流値)を示す情報とに基づいて、直流系統を流れる直流電流の値(以下、直流電流検出値Idc)を算出する。
 切替部104は、比較部122の比較結果に基づいて、第2算出部106に供給するフィードフォワード制御の元情報を、直流電流検出値Idc、又は直流電流指令値Idc*に切り替える。具体的には、切替部104は、比較部122の比較結果が直流系統に外乱が生じていないことを示す場合、直流電流指令値Idc*を第2算出部106に供給し、当該比較結果が直流系統に外乱が生じていることを示す場合、直流電流検出値Idcを第2算出部106に供給する。
 外乱が生じている状態とは、「所定の状態でない場合」の一例であり、系統事故などで直流電流指令値Idc*と直流電流検出値Idcの差が大きくなる状態である。具体的には、外乱が生じている状態とは、BTBシステムにおける直流系統の対向に存在する電力変換装置1が急停止し、直流電力が供給されない状況(つまり、直流電流が流れなくなる状況)などが相当する。
 第2算出部106は、切替部104から取得する直流電流検出値Idc、又は直流電流指令値Idc*と、電力変換システム制御装置SYSから取得する直流電圧指令値Vdc*とに基づいて、直流系統の直流有効電力FF量Pdcffを算出する。直流有効電力FF量Pdcffとは、直流系統の直流電力の変化に基づき、交流系統の交流電力を指示するためのフィードフォワード量を示す値である。直流有効電力FF量Pdcffは、外乱が生じていない場合、直流電流指令値Idc*に直流電圧指令値Vdc*を乗じた値であり、外乱が生じている場合、直流電流検出値Idcに直流電圧指令値Vdc*を乗じた値である。
 図6は、直流電流指令値Idc*、又は直流電流検出値Idcに基づく制御を行った交流系統の交流有効電力の変化の一例を示す図である。図6に示される各波形Wのうち、波形W111は、直流系統の直流有効電力の時間変化を示す波形である。また、波形W112は、直流電流検出値Idcに基づいて制御された交流系統の交流有効電力の時間変化を示す波形である。また、波形W113は、直流電流指令値Idc*に基づいて制御された交流有効電力の交流有効電力の時間変化を示す波形である。
 波形W111が示す通り、直流電流検出値Idcには、電力変換装置1のスイッチングに伴う高調波成分が重畳する。これに対し、直流電流指令値Idc*(不図示)は、電力変換システム制御装置SYSから出力された値であるため、スイッチング素子Qのスイッチングに伴う高調波成分が重畳しない。したがって、直流電流検出値Idcに基づいて制御された交流有効電力(例えば、波形W112)と、直流電流指令値Idc*に基づいて制御された交流有効電力(例えば、波形W113)とでは、後者の方が高調波が交流系統に影響するのを抑制することができる。
 したがって、第2算出部106は、外乱が生じていない場合、直流有効電力FF量Pdcffの算出に直流電流指令値Idc*を用いることにより、高調波が交流系統に影響するのを防止することができる。また、第2算出部106は、外乱が生じている場合(つまり、直流電流指令値Idc*と、直流電流検出値Idcとの差が大きくなる場合)に、直流有効電力FF量Pdcffの算出に直流電流検出値Idcを用いることにより、交流系統の交流有効電力と、直流系統の直流有効電力との差が拡大し、コンデンサ電圧が変動するのを抑制することができる。
 第3算出部108は、コンデンサ電圧指令値Vc*と、コンデンサ電圧検出値Vcとの差を算出し、コンデンサ電圧の差分を取得する。具体的には、第3算出部108は、コンデンサ電圧指令値Vc*からコンデンサ電圧検出値Vcを差し引いた値を、コンデンサ電圧の差分として取得する。このコンデンサ電圧の差分は、電力損失や外乱によって発生する。
 PI制御部110は、第3算出部108によって取得されたコンデンサ電圧の差分に基づいて、コンデンサC1をPI(Proportional-Integral)制御する際の交流有効電力の操作量ΔPacを取得する。
 第4算出部112は、PI制御部110によって取得された操作量ΔPacと、第2算出部106によって算出された直流有効電力FF量Pdcffとに基づいて、交流系統の有効電力を指示する値(以下、交流有効電力指令値Pac*)を算出する。具体的には、第4算出部112は、操作量ΔPacと、直流有効電力FF量Pdcffとを足し合わせた値を、交流有効電力指令値Pac*として算出する。この交流有効電力指令値Pac*によって交流系統の交流有効電力を変化させることにより、変換器制御装置10は、電力損失に相当するコンデンサ電圧の低下分を補うように、又は規定電圧より上下したコンデンサ電圧の変化分を削減するように電力変換器20を制御することができる。
 ここで、交流有効電力指令値Pac*に直流有効電力FF量Pdcffが含まれない場合、まず、コンデンサ電圧は、直流系統の直流電力の変動に応じて変動し、その後、交流系統の交流電力は、この変動に伴うコンデンサ電圧の低下分を補うように、又はコンデンサ電圧の上昇分を削減するように変動(応答)する。この場合、変換器制御装置10は、コンデンサ電圧の変動に応答して交流有効電力指令値Pac*を算出し、交流系統の交流有効電力を変化させる。したがって、直流系統の直流電力が変動した際に交流系統の交流有効電力が応答するのは、コンデンサ電圧が変動し、変換器制御装置10によって電力変換器20の制御が行われた後になるため、外乱が生じた際にコンデンサ電圧の変動が大きく、コンデンサ電圧を一定に保つことができず、電力変換システムの運転継続性が損なわれる恐れがある。本実施形態の第4算出部112は、交流有効電力指令値Pac*に直流有効電力FF量Pdcffを含めるため、コンデンサ電圧の変動によって交流系統の交流有効電力が応答するのを待たずに、直流有効電力に合わせて交流有効電力指令値Pac*を変化させることによってコンデンサ電圧の低下分を補う、又はコンデンサ電圧の上昇分を削減することができる。
 変換部114は、第4算出部112によって算出された交流有効電力指令値Pac*を、交流有効電流指令値Iac*に変数変換する。交流有効電流は、有効電力伝送に寄与する交流電流成分である。変換部114は、交流有効電力指令値Pac*を交流電圧の振幅(最大値)によって除した値を、交流有効電流指令値Iac*として算出する。交流系統の交流電圧は、電力変換システム制御装置SYSの指令値であってもよく、検出値であってもよい。
 なお、変換部114は、交流有効電力指令値Pac*を変換し、交流有効電流指令値Iac*を算出する場合について説明したが、これに限られない。変換部114は、電力変換器20に対する指令値として有効電力値(単位:W)を与えてもよい。交流有効電力値は、交流有効電流値に交流系統の交流電圧のピーク値を乗じることによって変換可能である。
 PWM制御部116は、変換部114によって変換された、交流有効電流指令値Iac*などに基づいて、交流有効電流検出値Iacが交流有効電流指令値Iac*に近づくように、且つ直流電流検出値Idcが直流電流指令値Idc*に近づくように、一般的なフィードバック電流制御系と三角波比較などの手法によってPWM制御信号を制御信号として生成する。電力変換器20は、PWM制御部116によって生成された制御信号に基づいてスイッチング素子Qをオン、オフ動作させる。これにより、交流系統から電力変換器20に流入、或いは電力変換器20から交流系統に流出する有効電力を、電力変換器20から直流系統に流出、或いは直流系統から電力変換器20に流入する有効電力とほぼ一致させ、電力変換装置1の安定した動作を実現する。なお、変換器制御装置10には、無効電力制御や、各セルCLのコンデンサ電圧のばらつきを抑制する制御など様々な制御系が他に含まれるが、交流有効電力と直流有効電力に直接関連しない部分については図示せず省略している。
 第5算出部と118は、直流電流指令値Idc*に切替閾値THを加算し、切替上限閾値THUを算出する。第6算出部120は直流電流指令値Idc*から切替閾値THを差し引き、切替下限閾値THDを算出する。
 比較部122は、直流電流検出値Idcと、切替上限閾値THUと、切替下限閾値THDとを比較する。図5に示す通り、比較部122は、端子ta、端子tb、及び端子tcの3つの端子を備え、端子taには、切替上限閾値THUが入力され、端子tbには、直流電流検出値Idcが入力され、端子tcには、切替下限閾値THDが入力される。比較部122は、端子tcの値<端子tbの値<端子taの値のときには「0」(=外乱が生じていないことを示す比較結果)を、それ以外のときには「1」(=外乱が生じていることを示す比較結果)を出力する。
 なお、比較部122は、直流系統の直流電流を比較し、比較結果を出力する場合について説明したが、これに限られない。比較部122は、例えば、直流系統の直流有効電力に基づいて比較結果を出力してもよく、直流有効電力の直流電圧に基づいて比較結果を出力してもよく、交流系統の交流電流に基づいて比較結果を出力してもよく、交流系統の交流有効電力に基づいて比較結果を出力してもよく、交流系統の交流電圧に基づいて比較結果を出力してもよい。
 これにより、切替部104は、比較部122の比較結果が、直流電流検出値Idcが、直流電流指令値Idc*±切替閾値THの範囲内であることを示す場合、第2算出部106に直流電流指令値Idc*を供給し、比較部122の比較結果が、当該範囲から直流電流検出値Idcが逸脱したことを示す場合、第2算出部106に直流電流検出値Idcを供給する。切替閾値THは、直流系統の定格直流電流値よりも小さく、直流系統の通常運転時の直流電流の変動幅よりも大きな値に設定される。これにより、切替部104は、高調波成分を低減したい通常時に不要な切替が発生しないようにすることができる。切替閾値THは、例えば、直流系統の定格直流電流値の5~10%程度に設定される。
 なお、上述では、切替部104は、第2算出部106に供給する情報(直流電流指令値Idc*、又は直流電流検出値Idc)を比較部122の比較結果に基づいて切り替える構成に代えて、外部の保護装置(不図示)等から受信した系統事故検知信号に基づいて切り替える構成であってもよい。この場合、保護装置は、検出された直流系統の直流電力、又は検出された交流系統の交流電力が、予め設定された閾値以下になった場合、系統事故検知信号を変換器制御装置10に出力し、変換器制御装置10の切替部104は、その信号を受信した場合、第2算出部106に供給する情報を、直流電流指令値Idc*から直流電流検出値Idcに切り替える。また、切替部104は、これら複数の切替方法を組み合わせた論理和に基づいて、第2算出部106に供給する情報を切り替える構成であってもよい。この場合、切替部104は、外乱が発生したことを示す条件のうち、いずれか1つの条件が該当した場合に、第2算出部106に供給する情報を、直流電流指令値Idc*から直流電流検出値Idcに切り替える。
 第2算出部106、及び第4算出部112による一連の演算は、交流有効電力制御における「フィードフォワード演算」の一例である。また、第3算出部108、及びPI制御部110による一連の演算は、「フィードバック演算」の一例である。
[従来の制御と変換器制御装置10による制御の比較]
 図7は、従来の制御と変換器制御装置10による制御結果の一例を示す図である。具体的には、図7の左側に示すグラフが従来の制御による制御結果の一例を示し、図7の右側に示すグラフが電力変換装置1による制御結果の一例を示すである。
 ここで、従来の制御とは、変換器制御装置10のうち、切替部104、及び比較部122を備えない制御装置による電力変換器20の制御である。この場合、従来の制御では、直流電流検出値Idcと、直流電流指令値Idc*との切替を行わず、第2算出部106は、常に直流電流指令値Idc*に基づいて、直流有効電力FF量Pdcffを算出する。
 図7に示される各波形Wのうち、波形W11と、波形W21とは、交流系統の交流有効電力の変化を示し、波形W12と、波形W22とは、直流系統の直流有効電力の変化を示し、波形W13と、波形W23とは、直流電流指令値Idc*の変化を示し、波形W14と、波形W24とは、直流電流検出値Idcの変化を示し、波形W15と、波形W25とは、直流有効電力FF量Pdcffの変化を示し、波形W16と、波形W26とは、コンデンサ電圧検出値Vcの変化を示し、波形W27は、比較部122の出力の変化を示す。
 また、図7に示される一例において、交流系統の交流有効電力と直流系統の直流有効電力と、直流電流検出値Idcとは、交流系統側から直流系統側に電力を融通(送電)する場合に正の値をとり、直流系統側から交流系統側に電力を融通(送電)する場合は負の値になる。
 図7に示される一例において、時刻TM1において、外乱が生じ、直流電力が供給されない状況となる。波形W12、及び波形W22が示す通り、直流系統の直流有効電力は、時刻TM1において、ほぼ0[pu]に減少する。また、波形W14、及び波形W24が示す通り、直流電流検出値Idcは、時刻TM1において、ほぼ0[pu]に減少する。したがって、波形W13、及び波形W14と、波形W23、及び波形W24とが示す通り、時刻TM1において、直流電流検出値Idcと、直流電流指令値Idc*との差が大きくなる。
 従来の制御では、上述したように、第2算出部106は、常に直流電流指令値Idc*に基づいて、直流有効電力FF量Pdcffを算出するため、波形W15が示すように、直流有効電力FF量Pdcffは、一定の値を維持し、交流系統は、直流系統に電力を融通し続ける。
 交流系統は、時刻TM1において、電力変換器20を介して直流系統に電力を融通することができなくなるが、直流有効電力FF量Pdcffが一定の値に維持されるため、波形W11が示す通り、交流系統の交流有効電力は、時刻TM1から徐々に減少する。これは、各コンデンサC1が、交流系統から直流系統に融通できなくなった電力を蓄積(充電)し、同時に、それを減少させるように操作量ΔPacが徐々に増加していくためである。したがって、波形W16が示す通り、コンデンサ電圧は、時刻TM1から徐々に上昇する。また、波形W16が示す通り、コンデンサ電圧は、時刻TM2において過電圧保護電圧に達するため、充電を停止し、一定の値になる。これに伴い、運転が停止し、交流系統が直流系統に融通できなくなった電力をいずれの構成も消費しないため、交流有効電力は、波形W11が示す通り、時刻TM2においてほぼ0[pu]に減少する。
 なお、波形W11と、波形W12とに囲まれた面積は、電力変換器20から直流系統へ電力を融通することができなくなることに伴い余剰する電力量(エネルギー)に相当し、この電力量が各セルCLのコンデンサC1に蓄積される。
 このように、従来の制御では、外乱が生じることに伴い、コンデンサ電圧が過電圧保護電圧に達しているため、外乱が解消され、電力変換器20の運転再開が可能になった際には、長時間かけてコンデンサC1から電力を放電し、コンデンサ電圧を下げないと運転を再開することができない。
 これに対し、電力変換装置1の制御では、時刻TM1において直流電流指令値Idc*と、直流電流検出値Idcとの差が大きくなるため、波形W27が示す通り、比較部122は、時刻TM2において、切替部104に「1」(=外乱が生じていることを示す比較結果)を出力する。これに伴い、切替部104は、第2算出部106に供給する情報を、直流電流指令値Idc*から直流電流検出値Idcに切り替える。したがって、波形W25が示す直流有効電力FF量Pdcffは、時刻TM2においてほぼ0[pu]に減少する。
 交流系統は、時刻TM2において、直流有効電力FF量Pdcffがほぼ0[pu]に減少することに伴い、波形W22が示す通り、交流系統の交流有効電力は、時刻TM2においてアンダーシュートし、ほぼ0[pu]に減少する。これにより、従来の制御と異なって、各コンデンサC1が、交流系統が直流系統に融通できなくなった電力を蓄積(充電)する必要がないため、波形W26が示す通り、時刻TM1から時刻TM2の間において、コンデンサ電圧検出値Vcがほとんど上昇しない。
 このように、電力変換装置1は、外乱が生じることに伴い、コンデンサ電圧がほとんど上昇しないため、外乱が解消され、電力変換器20の運転再開が可能になった際には、コンデンサC1の放電を行うことなく、すぐに運転を再開することができる。したがって、電力変換装置1は、電力変換システムの運転継続性を高めることができる。
[処理フロー]
 図8は、第1実施形態に係る変換器制御装置10の処理の一例を示すフローチャートである。まず、変換器制御装置10の第1算出部102は、各電流センサAMによって検出されたR相上アーム電流検出値Ir、S相上アーム電流検出値Is、及びT相上アーム電流検出値Itに基づいて、直流電流検出値Idcを算出する(ステップS102)。次に、変換器制御装置10は、電力変換システム制御装置SYSから直流電流指令値Idc*を取得する(ステップS104)。
 次に、比較部122は、直流電流検出値Idcと、直流電流指令値Idc*+切替閾値THとを比較する(ステップS106)。比較部122の比較結果が、直流電流検出値Idcが、直流電流指令値Idc*+切替閾値THより大きい値である(つまり、直流電流検出値Idcが、直流電流指令値Idc*±切替閾値THの範囲を逸脱している)ことを示す場合、切替部104は、第2算出部106に供給する情報を直流電流検出値Idcに切り換え、第2算出部106は、直流電流検出値Idcに基づいて、直流有効電力FF量Pdcffを算出する(ステップS108)。変換器制御装置10は、ステップS108の後、処理をステップS114に進める。
 次に、比較部122は、直流電流検出値Idcが、直流電流指令値Idc*+切替閾値THより小さい値である場合、直流電流検出値Idcと、直流電流指令値Idc*-切替閾値THとを比較する(ステップS110)。変換器制御装置10は、比較部122の比較結果が、直流電流検出値Idcが、直流電流指令値Idc*-切替閾値THより小さい値である(つまり、直流電流検出値Idcが、直流電流指令値Idc*±切替閾値THの範囲を逸脱している)ことを示す場合、処理をステップS108に進める。
 直流電流検出値Idcが、直流電流指令値Idc*±切替閾値THの範囲内である場合、切替部104は、第2算出部106に供給する情報を直流電流指令値Idc*に切り換え、第2算出部106は、直流電流指令値Idc*に基づいて、直流有効電力FF量Pdcffを算出する(ステップS112)。
 次に、第4算出部112は、第2算出部106によって算出された直流有効電力FF量Pdcffと、PI制御部110によって取得された操作量ΔPacとに基づいて、交流有効電力指令値Pac*を算出する(ステップS114)。次に、変換部114は、第4算出部112によって算出された交流有効電力指令値Pac*を、交流有効電流指令値Iac*に変数変換する(ステップS116)。次に、PWM制御部116は、変換部114によって変換された、交流有効電流指令値Iac*等に基づいて、交流有効電流検出値Iacが交流有効電流指令値Iac*に近づくように(且つ、直流電流検出値Idcが直流電流指令値Idc*に近づくように、)PWM制御信号を制御信号として生成する(ステップS118)。
[第1実施形態のまとめ]
 以上説明したように、本実施形態の電力変換装置1は、制御部(この一例では、変換器制御装置10)と、電力変換器20とを持つ。電力変換器20は、交流系統と直流系統とに接続され、内部にエネルギー蓄積部(この一例では、コンデンサC1)を有し、直流電力と交流電力とを相互に変換する。変換器制御装置10は、直流系統の直流電圧指令値Vdc*と、直流電流検出値Idcとを取得し、交流系統、又は直流系統が所定の状態でない場合、取得した直流電流検出値Idcに基づくフィードフォワード演算を行って、電力変換器20に与える交流有効電力指令値Pac*を算出し、交流系統、又は直流系統が所定の状態である場合、取得した直流電流指令値Idc*に基づくフィードフォワード演算を行って、交流有効電力指令値Pac*を算出する。これにより、本実施形態の電力変換装置1は、通常時に高調波が交流系統に影響するのを抑止しつつ、異常時に外乱が解消され、電力変換システムの運転が再開される際には、すぐに運転を再開することができる。これにより、本実施形態の変換器制御装置10は、高調波を除去する交流フィルタが不要もしくは小型なために省スペース、及び低コストで、異常時にも交流系統側の交流有効電力を直流系統側の直流有効電力に一致させた運転継続性能の高い運転が可能である。
(第2の実施形態)
 以下、第2の実施形態の電力変換装置2について説明する。第1の実施形態の電力変換装置1では、直流電流検出値Idcと、直流電流指令値Idc*との比較結果に基づいて、切替部104を切り替える場合について説明した。第2の実施形態の電力変換装置2では、直流電流検出値Idcと、直流電流指令値Idc*、及び零相循環電流指令値とに基づく値との比較結果に更に基づいて、切替部104を切り替える場合について説明する。なお、上述した実施形態と同様の構成については、同一の符号を付して説明を省略する。
[電力変換装置1aについて]
 第2の実施形態に係る電力変換装置2は、電力変換装置1が備える構成のうち、変換器制御装置10に代えて(、或いは加えて)、変換器制御装置11を備える。図9は、第2の実施形態に係る変換器制御装置11の構成の一例を示す図である。変換器制御装置11は、変換器制御装置10が備える構成に加えて、相コンデンサ電圧バランス制御部123と、第7算出部比較部124と、第8算出部126とを更に備える。
 本実施形態において、相コンデンサ電圧バランス制御部123は、R相レグに循環する電流の指令値(以下、R相循環電流指令値Izr*)と、S相レグに循環する電流の指令値(以下、S相循環電流指令値Izs*)と、T相レグに循環する電流の指令値(以下、T相循環電流指令値Izt*)とを算出する。図10は、相コンデンサ電圧バランス制御部123の構成の一例を示す図である。相コンデンサ電圧バランス制御部123は、第1算出部123aと、第2算出部123bと、第3算出部123cと、第1PI制御部123dと、第2PI制御部123eと、第3PI制御部123fとをその機能部として備える。
 相コンデンサ電圧バランス制御部123は、例えば、電力変換器20が備えるR相レグLGrのコンデンサC1のコンデンサ電圧算術平均値(以下、R相コンデンサ電圧値Vcr)と、S相レグLGsの全コンデンサC1のコンデンサ電圧算術平均値(以下、S相コンデンサ電圧値Vcs)と、T相レグLGtの全コンデンサC1のコンデンサ電圧算術平均値(以下、T相コンデンサ電圧値Vct)とをそれぞれ取得し、各レグLGのコンデンサ電圧を維持するための指令値である、R相循環電流指令値Izr*と、S相循環電流指令値Izs*と、T相循環電流指令値Izt*とを算出する。なお、R相循環電流指令値Izr*、S相循環電流指令値Izs*、及びT相循環電流指令値Izt*には、直流電流指令値Idc*を相ごとに等分した値(Idc*/3)は含まれない。
 具体的には、相コンデンサ電圧バランス制御部123において、第1算出部123aは、R相コンデンサ電圧値Vcrとコンデンサ電圧指令値Vc*との差を算出する。第1PI制御部123dは、第1算出部123aによって算出されたR相コンデンサ電圧値Vcrとコンデンサ電圧指令値Vc*との差を無くす、或いは差を小さくする操作量としてR相循環電流指令値Izr*を出力する。
 また、第2算出部123bは、S相コンデンサ電圧値Vcsとコンデンサ電圧指令値Vc*との差を算出する。第2PI制御部123eは、第2算出部123bによって算出されたS相コンデンサ電圧値Vcsとコンデンサ電圧指令値Vc*との差を無くす、或いは差を小さくする操作量としてS相循環電流指令値Izs*を出力する。
 また、第3算出部123cは、T相コンデンサ電圧値Vctとコンデンサ電圧指令値Vc*との差を算出する。第3PI制御部123fは、第3算出部123cによって算出されたT相コンデンサ電圧値Vctとコンデンサ電圧指令値Vc*との差を無くす、或いは差を小さくする操作量としてT相循環電流指令値Izt*を出力する。
 第7算出部比較部124は、コンデンサ電圧を維持するための、R相循環電流指令値Izr*と、S相循環電流指令値Izs*と、T相循環電流指令値Izt*とを足し合わせた値を、零相循環電流指令値Iz0*として算出する。ここで、零相循環電流指令値Iz0*が「0」である場合、電力変換器20から直流系統に電力を融通するための循環電流がないことを示すが、零相循環電流指令値Iz0*が正の値である場合、電力変換器20から直流系統に電力を融通することを示し、零相循環電流指令値Iz0*が負の値である場合、直流系統から電力変換器20に電力を融通することを示す。
 なお、零相循環電流指令値Iz0*が「0」である場合であって、R相循環電流指令値Izr*と、S相循環電流指令値Izs*と、T相循環電流指令値Izt*とのうち、少なくともいずれかが「0」ではない場合は、電力変換器内部のレグLG間で電力を融通することを意味する。
 ここでは、コンデンサ電圧検出値Vcがコンデンサ電圧指令値Vc*に一致しない場合、操作量ΔPacによって交流有効電力を調整制御し、コンデンサ電圧検出値Vcをコンデンサ電圧指令値Vc*に一致させるようにフィードバック制御が機能するが、さらに追加で零相循環電流Iz0によって直流電力も操作することで、コンデンサ電圧検出値Vcをコンデンサ電圧指令値Vc*に一致させる時間を短縮する効果を得るために、或いは、交流系統事故時に交流系統電圧が不足して、交流有効電力の調整制御のみではコンデンサ電圧検出値Vcをコンデンサ電圧指令値Vc*に一致させることが困難な場合に対応するために、制御系を構成したことを前提とする。
 第8算出部126は、第7算出部比較部124によって算出された零相循環電流指令値Iz0*と、直流電流指令値Idc*とを足し合わせた値を算出する。
 切替部104は、比較部122の比較結果に基づいて、第2算出部106に供給するフィードフォワード制御の元情報を、直流電流検出値Idc、又は第8算出部126によって算出された値(つまり、直流電流指令値Idc*+零相循環電流指令値Iz0*)に切り替える。また、本実施形態の比較部122の端子tbには、第8算出部126によって算出された値が入力される。
 第2算出部106、及び第4算出部112による一連の演算は、「フィードフォワード演算」の一例である。
 比較部122は、第8算出部126によって算出された値と、切替上限閾値THUと、切替下限閾値THDとに基づいて、切替部104を切り替えるか否かを判定する。上述したように、比較部122は、端子tcの値<端子tbの値<端子taの値のときには「0」(=外乱が生じていないことを示す比較結果)を、それ以外のときには「1」(=外乱が生じていることを示す比較結果)を出力する。
 これにより、切替部104は、比較部122の比較結果が、直流電流検出値Idcが、(直流電流指令値Idc*+零相循環電流指令値Iz0*)±切替閾値THの範囲内であることを示す場合、第2算出部106に直流電流指令値Idc*+零相循環電流指令値Iz0*を供給し、比較部122の比較結果が、当該範囲から直流電流検出値Idcが逸脱したことを示す場合、第2算出部106に直流電流検出値Idcを供給する。
 したがって、第2算出部106は、外乱が生じていない場合には、直流電流指令値Idc*+零相循環電流指令値Iz0*に基づいて直流有効電力FF量Pdcffを算出し、外乱が生じている場合には、直流電流検出値Idcに基づいて直流有効電力FF量Pdcffを算出する。
 ここで、各レグLGのコンデンサ電圧がコンデンサ電圧指令値Vc*と異なっている場合、相コンデンサ電圧バランス制御部123は、電力変換器20の各レグLG内部の各セルCLのコンデンサC1が過充電されること、又は充電不足になることを抑制するために、変換器制御装置10は、R相循環電流指令値、S相循環電流指令値、及びT相循環電流指令値を出力する。このR相循環電流指令値、S相循環電流指令値、及びT相循環電流指令値はPWM制御部に入力され(不図示)、電流制御の結果、電力変換器20には指令値にしたがった各相の循環電流が流れる。R相循環電流指令値、S相循環電流指令値、及びT相循環電流指令値の合計(零相循環電流指令値Iz0*に相当する電流)が「0」でない場合、直流系統の直流有効電力と、直流有効電力指示値Pdc*とが一致しなくなる。零相循環電流指令値Iz0*は、直流系統の直流有効電力と、直流有効電力指示値Pdc*との不一致を補うための電流量に相当する。
 この場合、第2算出部106は、実際の直流系統の直流電流に近い直流電流指令値Idc*+零相循環電流指令値Iz0*に基づいて直流有効電力FF量Pdcffを算出し、交流系統の交流有効電力と、直流系統の直流有効電力との差を抑制し、コンデンサ電圧の変化を小さくすることができる。これにより、電力変換器20は、運転継続性を高めることができる。なお、コンデンサ電圧がコンデンサ電圧指令値Vc*と一致している場合、零相循環電流指令値Iz0*は、「0」となるため、第1実施形態の構成と同様となる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1、1a、1b、2…電力変換装置、10、11…変換器制御装置、20…電力変換器、102…第1算出部、104…切替部、106…第2算出部、108…第3算出部、110…制御部、112…第4算出部、114…変換部、116…制御部、120…第6算出部、122…比較部、124…第7算出部、126…第8算出部、AM、AMr-1、AMs-1、AMt-1、AMr-2、AMs-2、AMt-2…電流センサ、C、C1、C2…コンデンサ、CL、CL1-1r、CL1-nr、CL2-1r、CL2-nr…セル、CPr、CPs、CPt…接続点、D、D1、D2、D3、D4、D5、D6…ダイオード、LG、LGr、LGs、LGt…レグ、Q、Q1、Q2、Q3、Q4、Q5、Q6…スイッチング素子、RT、RT1r、RT2r…リアクトル、SYS…電力変換システム制御装置、TR…トランス、Pdcff…直流有効電力FF量、Idc…直流電流検出値、Idc*…直流電流指令値、Ir…R相上アーム電流検出値、Is…S相上アーム電流検出値、It…T相上アーム電流検出値、Iz0*…零相循環電流指令値、Izr*…相循環電流指令値、Izs*…相循環電流指令値、Izt*…相循環電流指令値、Pac*…交流有効電力指令値、TH…切替閾値、Vc…コンデンサ電圧検出値、Vc*…コンデンサ電圧指令値、Vdc*…直流電圧指令値、Vdc…直流電圧値、ΔPac…操作量

Claims (8)

  1.  交流系統と直流系統との間に接続され、エネルギー蓄積部を含み、直流電力と交流電力とを相互に変換する電力変換器と、
     前記直流系統の直流電流指令値と、直流電流検出値とを取得して前記電力変換器を制御する制御部であって、
     前記交流系統、又は前記直流系統が所定の状態でない場合、前記取得した直流電流検出値に基づくフィードフォワード演算を行って、前記交流系統と前記電力変換器との間で融通する有効電力を指示する交流有効電力指令値を算出し、
     前記交流系統、又は前記直流系統が所定の状態である場合、前記取得した直流電流指令値に基づくフィードフォワード演算を行って、前記交流有効電力指令値を算出する制御部と、
     を備える電力変換装置。
  2.  前記制御部は、前記エネルギー蓄積部の電圧指令値と、前記エネルギー蓄積部の電圧検出値との差に基づいてフィードバック演算を行い、前記フィードバック演算の演算結果を、前記フィードフォワード演算の演算結果に加算し、前記交流有効電力指令値として算出する、
     請求項1に記載の電力変換装置。
  3.  前記制御部は、前記直流電流指令値、及び直流電圧指令値に基づく直流電力指令値と、前記直流電流検出値、及び直流電圧指令値に基づく直流電力検出値との差の絶対値が、所定の閾値より大きい場合に、前記所定の状態でないとみなす、
     請求項1又は2に記載の電力変換装置。
  4.  前記所定の閾値によって示される前記直流系統の電力は、前記直流系統の定格電力よりも小さく、且つ前記直流系統の通常時の直流電力検出値の変動幅よりも大きい、
     請求項3に記載の電力変換装置。
  5.  前記制御部は、前記交流系統が所定の状態でない場合、前記電力変換器の循環電流指令値に更に基づいて前記フィードフォワード演算を行い、前記交流有効電力指令値を算出する、
     請求項1から4のいずれか一項に記載の電力変換装置。
  6.  前記電力変換器は、ハーフブリッジセル、又はフルブリッジセルを備えたモジュラー・マルチレベル・コンバータである、
     請求項1から5のいずれか一項に記載の電力変換装置。
  7.  前記制御部は、前記交流系統が所定の状態でない場合、前記電力変換器の循環電流指令値と前記直流電流指令値との和に更に基づいて前記フィードフォワード演算を行い、前記交流有効電力指令値を算出する、
     請求項1から6のいずれか一項に記載の電力変換装置。
  8.  複数の前記電力変換器を備え、
     前記直流系統の両端に接続される前記電力変換器は、直流端子を互いに直接接続する、
     請求項1から7のいずれか一項に記載の電力変換装置。
PCT/JP2018/017926 2018-05-09 2018-05-09 電力変換装置 WO2019215842A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/017926 WO2019215842A1 (ja) 2018-05-09 2018-05-09 電力変換装置
JP2018546562A JP6526924B1 (ja) 2018-05-09 2018-05-09 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017926 WO2019215842A1 (ja) 2018-05-09 2018-05-09 電力変換装置

Publications (1)

Publication Number Publication Date
WO2019215842A1 true WO2019215842A1 (ja) 2019-11-14

Family

ID=66730755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017926 WO2019215842A1 (ja) 2018-05-09 2018-05-09 電力変換装置

Country Status (2)

Country Link
JP (1) JP6526924B1 (ja)
WO (1) WO2019215842A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6752401B1 (ja) * 2020-03-11 2020-09-09 三菱電機株式会社 電力変換装置
JP6771707B1 (ja) * 2020-03-11 2020-10-21 三菱電機株式会社 電力変換装置
JP6926355B1 (ja) * 2020-09-29 2021-08-25 三菱電機株式会社 電力変換装置
US20210364556A1 (en) * 2020-05-19 2021-11-25 Hitachi, Ltd. Electrical grid control device and power generation system
JP2022056359A (ja) * 2020-09-29 2022-04-08 三菱電機株式会社 電力変換装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210057488A (ko) * 2019-11-12 2021-05-21 한국전기연구원 모듈러 멀티레벨 컨버터의 서브모듈 전류 및 전압 제어방법 및 이를 수행하는 제어모듈

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013121223A (ja) * 2011-12-07 2013-06-17 Hitachi Ltd 電力変換装置
JP2017143627A (ja) * 2016-02-09 2017-08-17 株式会社東芝 電力変換器の制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013121223A (ja) * 2011-12-07 2013-06-17 Hitachi Ltd 電力変換装置
JP2017143627A (ja) * 2016-02-09 2017-08-17 株式会社東芝 電力変換器の制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6752401B1 (ja) * 2020-03-11 2020-09-09 三菱電機株式会社 電力変換装置
JP6771707B1 (ja) * 2020-03-11 2020-10-21 三菱電機株式会社 電力変換装置
WO2021181583A1 (ja) * 2020-03-11 2021-09-16 三菱電機株式会社 電力変換装置
US20210364556A1 (en) * 2020-05-19 2021-11-25 Hitachi, Ltd. Electrical grid control device and power generation system
JP6926355B1 (ja) * 2020-09-29 2021-08-25 三菱電機株式会社 電力変換装置
WO2022070268A1 (ja) * 2020-09-29 2022-04-07 三菱電機株式会社 電力変換装置
JP2022056359A (ja) * 2020-09-29 2022-04-08 三菱電機株式会社 電力変換装置
JP7134312B2 (ja) 2020-09-29 2022-09-09 三菱電機株式会社 電力変換装置

Also Published As

Publication number Publication date
JPWO2019215842A1 (ja) 2020-05-28
JP6526924B1 (ja) 2019-06-05

Similar Documents

Publication Publication Date Title
WO2019215842A1 (ja) 電力変換装置
JP6207730B2 (ja) 直流送電電力変換装置および直流送電電力変換方法
US9166500B2 (en) Power decoupling controller and method for power conversion system
US7872887B2 (en) DC-AC inverter powering a single phase commercial power system
CA3027151C (en) A regulated dc output power supply system
JP6180641B2 (ja) 電力変換装置
JP6087531B2 (ja) 電力変換装置
JP6253858B1 (ja) 電力変換装置および電力システム
WO2006136801A2 (en) Improvements in electrical power converters
JP2018129963A (ja) 電力変換器の制御装置
JP2008099464A (ja) 電力変換装置
JP4872090B2 (ja) 電圧調整装置
Lin et al. Implementation of a shunt-series compensator for nonlinear and voltage sensitive load
JP7371545B2 (ja) 電力変換装置およびその制御方法
JPH0685622B2 (ja) 高調波補償装置
Omomo et al. T-type NPC inverter with active power decoupling capability using discontinuous current mode
WO2023214462A1 (ja) 電力変換装置
Chen et al. Design of control system for solid state variable capacitor with minimum DC capacitor
JP2023067539A (ja) 電力変換装置
JP2022165495A (ja) 電力変換装置
Teixeira et al. Interleaved multicell semi-bridge rectifiers for cascaded h-bridge multilevel converters
Roth et al. Solid-State High Frequency Power Converters

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018546562

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918129

Country of ref document: EP

Kind code of ref document: A1