WO2019215836A1 - 電流測定及び漏電検出装置、電力制御装置 - Google Patents

電流測定及び漏電検出装置、電力制御装置 Download PDF

Info

Publication number
WO2019215836A1
WO2019215836A1 PCT/JP2018/017909 JP2018017909W WO2019215836A1 WO 2019215836 A1 WO2019215836 A1 WO 2019215836A1 JP 2018017909 W JP2018017909 W JP 2018017909W WO 2019215836 A1 WO2019215836 A1 WO 2019215836A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
load
leakage
power supply
current detector
Prior art date
Application number
PCT/JP2018/017909
Other languages
English (en)
French (fr)
Inventor
則和 万木
Original Assignee
理化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理化工業株式会社 filed Critical 理化工業株式会社
Priority to PCT/JP2018/017909 priority Critical patent/WO2019215836A1/ja
Priority to JP2020517670A priority patent/JPWO2019215836A1/ja
Publication of WO2019215836A1 publication Critical patent/WO2019215836A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Definitions

  • This invention relates to current measurement and leakage detection.
  • a current flowing through the load is measured using a current detector such as a CT.
  • a current detector such as a CT.
  • an insulation failure may occur, and a leakage may occur.
  • ZCT zero-phase current transformer
  • Patent Document 1 discloses a technique for measuring a current flowing through a plurality of loads by using a single current detector. However, leakage detection and current measurement could not be performed simultaneously.
  • Patent Document 2 discloses a leakage detection device aimed at miniaturization. When it is attempted to simultaneously detect leakage and measure the current flowing through the load, it is necessary to prepare a current detector such as CT in addition to such a device. Such a problem becomes particularly noticeable when there are a plurality of loads.
  • the present invention aims to provide a leakage and current detection device that can simultaneously reduce the size, cost, and installation location of circuits and devices while simultaneously measuring the current flowing through the load and detecting the leakage. Yes.
  • An outward current detector for measuring the current flowing from the power source to the load;
  • a return side current detector for measuring a current flowing from the load to the power source;
  • a current measurement unit that measures a current measurement result by the forward path current detector and a current value flowing through the load based on a current measurement result by the return path current detector;
  • a leakage detection unit that detects a leakage based on a difference value between a current measurement result by the forward path current detector and a current measurement result by the return path current detector;
  • a current and leakage detection device comprising:
  • the load is plural, Comprising the current and leakage detection device according to Configuration 1, A control unit that generates a control signal for operating the power supply for each load on or off; When the control unit outputs the control signal configured to turn on the power supply to only one of the loads, The current measuring unit measures the current value flowing through the load, The leakage detection unit detects a leakage related to the load based on a difference between a current measurement result by the forward path current detector and a current measurement result by the return path current detector. Power control device.
  • the load is plural, Comprising the current and leakage detection device according to Configuration 1,
  • a control unit that generates a control signal for operating the power supply for each load on or off; While the control unit maintains the operation output value set for each load, the power supply to only one of the loads is ON while maintaining the ratio of the time when the power supply is ON and the time when the power supply is OFF in a certain period.
  • the current measuring unit measures the current value flowing through the load
  • the leakage detection unit detects a leakage related to the load based on a difference between a current measurement result by the forward path current detector and a current measurement result by the return path current detector. Power control device.
  • the current and leakage detection device of the present invention it is possible to reduce the size and cost of the circuit and device, the restriction on the installation location, etc. while simultaneously performing the current measurement and leakage detection.
  • FIG. 1 It is a schematic block diagram which shows the electric current and leakage detection apparatus and power control apparatus of Embodiment 1. It is an example of a control signal configured such that the control signals in all loads have a duty ratio of 20% and the power supply to only one load is turned on by shifting the phase by 1/4 period. . It is a flowchart which shows the outline
  • FIG. 1 is a schematic configuration diagram showing a part related to the present invention of a temperature controller according to an embodiment of the present invention.
  • the control method is time proportional control, and there are four loads will be described as an example.
  • the current and leakage detection device 100 is a device capable of simultaneously measuring the load current and detecting leakage, and includes the forward current detector 110, the return current detector 120, the current measurement unit 130, and the leakage detection unit 140. Prepare.
  • the power control apparatus 100 ′ includes a control unit 150 in addition to the current and leakage detection apparatus 100.
  • outward side refers to the current path from the power source to loads 1 to 4 in FIG.
  • the “return path side” indicates a current path from the loads 1 to 4 to the power source in FIG.
  • the current value measured by the forward path current detector 110 is also referred to as the forward path current value
  • the current value measured by the backward path current detector 120 is also referred to as the backward path current value.
  • the current measuring unit 130 measures the current flowing through each of the loads 1 to 4 as described later based on the current value measured by the forward path current detector 110 or the backward path current detector 120 configured by CT or the like. Or calculate.
  • Leakage detection unit 140 detects a leakage for each of loads 1 to 4 based on the current value measured by current measurement unit 130.
  • the control unit 150 generates a control signal for operating ON / OFF the power supply to the loads 1 to 4 and outputs the control signal to the operation unit.
  • the leakage detector 140 detects a leakage based on the value of the current flowing through each load obtained by the current measurement unit 130.
  • the leakage detection method according to the first embodiment calculates the absolute value of the difference between the forward path current value and the return path current value obtained by the current measurement unit 130, and the value is equal to or greater than a preset leakage threshold. If it is, it is configured to determine that a leakage has occurred. If the current detection sensitivity differs depending on the individual difference between the forward current detector 110 and the backward current detector 120, an accurate leakage current cannot be obtained from the difference between the forward current value and the backward current value. There is a possibility of false detection.
  • the same current flows in the forward path and the backward path in a normal circuit without leakage in advance, and the current detection sensitivity of each of the forward current detector 110 and the backward current detector 120 is set.
  • the forward current value and the backward current value may be corrected based on the current detection sensitivity.
  • the leakage detection unit 140 may be configured to output a warning signal to an external device or the like.
  • the current measurement unit 130 measures or calculates the current value flowing through each load based on the current value measured by the forward path current detector 110 or the return path current detector 120.
  • the control unit 150 performs a process of outputting a control signal to the operation unit such that the power supply of only one certain load is turned on and the power supply of all remaining loads is turned off. The case where it carries out with respect to all the load is demonstrated.
  • the PWM signal time proportional output
  • the variable range of duty ratio narrowed down to 5 to 25% by shifting the phase of the control signal for turning ON / OFF the power supply to loads 1 to 4 by 1/4 period It is said.
  • FIG. 2 shows a PWM waveform when control signals in all loads have a duty ratio of 20%. Then, a signal indicating that the control unit 150 has generated a control signal for current measurement is output to the current measurement unit 130. Further, the current measuring unit 130 is synchronized with the signal from the control unit 150 at the timing when only the power supply of the measurement target load among the loads is ON, and the forward path current detector 110 and the return path current detector. The current value detected at 120 is detected as the current value flowing through the load to be measured.
  • timing for turning on the power supply of only one certain load may be set to forcibly turn on only one load at a specific timing, as in Patent Document 1.
  • step S310 the control unit 150 outputs a control signal from the operation units 1 to 4 so that only the load 1 is turned ON at timing A, and a signal indicating that the control signal is generated is a current.
  • the data is output to the measurement unit 130, and the process proceeds to step S320.
  • step S320 the current measuring unit 130 responds to the signal from the control unit 150, and the current value based on the control signal output in step S310 by the forward path current detector 110 and the return path current detector 120. Measurement is performed, a current value (for example, effective value) for a period corresponding to each load is recorded in a memory or the like (not shown) as a current value flowing through the load, and the process proceeds to step S330.
  • a current value for example, effective value
  • step S330 the leakage detection unit 140 detects each load current value based on the value measured by the forward path current detector 110 and the value measured by the return path current detector 120 detected in step S320. The difference value with the current value of the load is calculated. If the absolute value of the difference value is greater than or equal to a preset leakage threshold value, it is determined that leakage has occurred in the current path, and the process proceeds to step S340 (step S330: Yes ⁇ step S340). . Moreover, when the absolute value of this difference value is less than the leak threshold value set in advance, the process ends as no problem (step S330: No ⁇ End).
  • step S340 the leakage detection unit 140 transmits information on the load determined to have leakage to an external device (not shown) such as a display, and the process ends. Thereafter, the same processing is performed for the loads 2 to 4 at the timings B, C, and D in FIG.
  • the current value flowing through the load is detected based on the respective current measurement results using the two CTs, and the leakage detection is performed based on the detection results. Is configured to do. Therefore, current measurement and leakage detection can be performed at the same time, and the size and cost of circuits and devices, restrictions on installation locations, and the like can be reduced.
  • the control unit 150 when the control unit 150 outputs a control signal configured to turn on the power supply to only one of the loads, the current measurement unit 130. And the leakage detection part 140 is comprised so that the electric current of each load may be detected. For this reason, it is possible to detect leakage current and detect the current value flowing through each load by using two CTs regardless of the number of loads.
  • the power control apparatus 100 ′ in the second embodiment has an operation output in which the control unit 150 sets the ratio of the time during which power supply is ON and the time during which the power supply is OFF in a certain cycle for each load. It is the same as that of the power control apparatus 100 in the first embodiment except that the control signal is configured to output the control signal configured to turn on the power supply to only one of the loads while keeping the value. is there.
  • the power control apparatus 100 ′ of the second embodiment performs so-called continuous proportional control in which the power supply is turned on / off based on the operation output value (0 to 100%) set for each load for each short control cycle.
  • the control unit 150 performs control as in the range of “normal continuous proportional control” in FIG. 4 in order to keep the ratio of the time when the power supply is ON and the time when it is OFF to the operation output value set for each load. Output a signal.
  • the control unit 150 sets the output difference integrated value ⁇ MV for each output cycle to an operation output value set in advance for each load (for ease of explanation, in the case of FIG. 30%), and when the value of ⁇ MV exceeds a preset threshold value L (100% in the case of FIG. 4), a control signal for turning on the output for a preset period is provided. It is configured to output and subtract a preset value (100% in the case of FIG. 4) from ⁇ MV.
  • the load is turned on to detect electric leakage and the current is measured (load 1 as an example, FIG. 4A), and is operated to ⁇ MV at a predetermined timing (A in FIG. 4).
  • the preset value is subtracted from ⁇ MV even if the preset threshold value L is not exceeded.
  • the power supply is turned off regardless of the threshold L after adding the operation output value to ⁇ MV at a predetermined timing (A in FIG. 4). It is comprised so that.
  • FIG. 4A it can be seen that the output of the load control signal for turning on the power supply with the power supply turned on is turned on, and the output of the load control signal for turning off the power supply is turned off.
  • a control signal for turning on the power supply of only one load is generated while switching the load to be measured at a certain period (timing for current measurement). It is configured. Whether the control unit 150 performs time proportional control or so-called continuous proportional control may be set in advance, or may be configured to be switchable by a switch or the like. Good.
  • the control unit 150 in the power control apparatus 100 ′ of the second embodiment maintains the ratio of the time when the power supply is ON and the time when the power supply is OFF in a certain period as described above while maintaining the operation output value set for each load.
  • the current measurement unit 130 and the leakage detection unit 140 are configured to detect the current and leakage of each load. Has been. Therefore, regardless of the control method, it is possible to simultaneously detect the current and leakage of each load at an arbitrary timing while maintaining the controllability (operation output value) of each load.
  • the forward path current detector 110 or the return path current detector 120 is CT has been described, but it may be configured by a shunt resistor or the like.
  • the operating device is provided only on the forward path of the path connected to each load. However, the operating device is provided on both the forward path and the return path so that the load causing the leakage can be identified. You may make it comprise.
  • the determination of the leakage is made based on the comparison between the difference value between the forward-side current value and the backward-side current value and a preset threshold value, but the present invention is not limited to this. Any determination method using both the side current value and the return path current value may be used.
  • a waveform input from a current detector such as a CT or a shunt resistor to the current measurement unit may be converted into an absolute value and used for the calculation.
  • each configuration in each of the above embodiments may be configured in hardware by a dedicated circuit or the like, or may be realized in software on a general-purpose circuit such as a microcomputer. Good.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

電流及び漏電検出装置100は往路側電流検出器110及び復路側電流検出器120により負荷に流れる電流を測定し、電流測定を行いつつ漏電検出を行う。また、電力制御装置100'は、制御部150が、負荷のいずれか1つのみへの電力供給がONとなるように構成された制御信号を出力するように構成されている。また、制御部150が、一定周期における電力供給がONである時間とOFFである時間の比率を負荷毎に設定された操作出力値に保ちながら、負荷のいずれか1つのみへの電力供給がONとなるように構成された制御信号を出力するように構成されている。

Description

電流測定及び漏電検出装置、電力制御装置
 この発明は、電流測定及び漏電検出に関するものである。
 電力制御装置においては、ヒータ等の負荷の断線や劣化といった異常を検出するために、CTなどの電流検出器を使用して負荷に流れる電流測定が行われていた。また、ヒータ等の負荷を長期間に渡り使用すると、絶縁不良などを起こし、漏電が発生することがある。このような異常を検知するために、零相変流器(ZCT)を設置し、電流の不平衡が検出された場合は、漏電が発生していると判断していた。
 しかし、負荷に流れる電流測定を行いながら、漏電の検出も同時に行う場合、回路や装置のサイズ、コスト及び設置箇所の制限の観点から課題があった。
 特許文献1には1つの電流検出器により複数の負荷に流れる電流測定を行う技術が開示されている。しかし、漏電検出と電流測定を同時に実施することはできなかった。
 特許文献2には小型化を目的とした漏電検出装置が開示されている。漏電検出及び負荷に流れる電流測定を同時に実施しようとした場合、このような装置に加えて、更にCTなどの電流検出器を用意する必要がある。このような課題は、負荷が複数となった場合には特に顕著となる。
国際公開2017/109954号公報 特開2017-60250号公報
 本発明は上記の課題に鑑み、負荷に流れる電流測定及び漏電検出を同時に実施しつつ、回路や装置のサイズ、コスト及び設置箇所の制限等を低減可能な漏電及び電流検出装置の提供を目的としている。
 (構成1)
 電源から負荷に流れる電流を測定する往路側電流検出器と、
 前記負荷から前記電源に流れる電流を測定する復路側電流検出器と、
 前記往路側電流検出器による電流測定結果および、前記復路側電流検出器による電流測定結果に基づき前記負荷に流れる電流値を測定する電流測定部と、
 前記往路側電流検出器による電流測定結果と、前記復路側電流検出器による電流測定結果との差分値に基づき漏電を検知する、漏電検出部と、
 を備える電流および漏電検出装置。
 (構成2)
 前記負荷が複数であり、
 構成1に記載の電流および漏電検出装置を備え、
 前記負荷毎の電力供給をON又はOFFに操作する制御信号を生成する制御部を備え、
 前記制御部が、前記負荷のいずれか1つのみへの電力供給がONとなるように構成された前記制御信号を出力する場合に、
  前記電流測定部が当該負荷に流れる電流値を測定し、
  前記漏電検出部が前記往路側電流検出器による電流測定結果と、前記復路側電流検出器による電流測定結果との差分に基づき当該負荷に関する漏電を検知する、
 電力制御装置。
 (構成3)
 前記負荷が複数であり、
 構成1に記載の電流および漏電検出装置を備え、
 前記負荷毎の電力供給をON又はOFFに操作する制御信号を生成する制御部を備え、
 前記制御部が、一定周期における電力供給がONである時間とOFFである時間の比率を負荷毎に設定された操作出力値に保ちながら、前記負荷のいずれか1つのみへの電力供給がONとなるように構成された前記制御信号を出力する場合に、
  前記電流測定部が当該負荷に流れる電流値を測定し、
  前記漏電検出部が前記往路側電流検出器による電流測定結果と、前記復路側電流検出器による電流測定結果との差分に基づき当該負荷に関する漏電を検知する、
 電力制御装置。
 本発明の電流及び漏電検出装置によれば、電流測定及び漏電検出を同時に実施しつつ、回路や装置のサイズ、コスト及び設置箇所の制限等を低減可能である。
実施形態1の電流及び漏電検出装置及び電力制御装置を示す概略構成図である。 すべての負荷における制御信号がデューティー比20%であり、1/4周期ずつ位相をずらすことにより、1つの負荷への電力供給のみがONとなるように構成された、制御信号の1例である。 実施形態1の電力制御装置100’の概要動作を示すフロー図である。 連続比例制御において、ある1つの負荷のみの電力供給をONとした場合に、電力供給がONである時間とOFFである時間の比率を保つように構成された制御信号の1例である。
 以下、この発明を実施するための形態について、添付の図面にしたがって説明する。
<実施形態1>
 図1はこの発明の実施形態による温度調節計の本発明に関する部分を示す概略構成図である。実施形態1においては、電源が交流であり、制御方式を時間比例制御とし、負荷が4つである場合を例として説明する。
 電流及び漏電検出装置100は、負荷の電流測定と漏電検出を同時に行うことが可能な装置であり、往路側電流検出器110及び復路側電流検出器120、電流測定部130、漏電検出部140を備える。また、電力制御装置100’は、電流及び漏電検出装置100に加え、制御部150を備える。
 前述の通り、「往路側」とは図1における電源から負荷1~4までの電流経路を指す。また、「復路側」とは図1における負荷1~4から電源までの電流経路を指す。以後、往路側電流検出器110にて測定された電流値を往路側電流値、復路側電流検出器120にて測定された電流値を復路側電流値とも称する。
 電流測定部130は、CT等で構成される往路側電流検出器110または復路側電流検出器120にて測定された電流値に基づき、後述のように負荷1~4のそれぞれに流れる電流を測定または算出する。
 漏電検出部140は、電流測定部130において測定された電流値に基づき、負荷1~4のそれぞれについて漏電を検出する。
 制御部150は、負荷1~4への電力供給をON/OFFに操作する制御信号を生成し、操作部へと出力する。
<漏電検出方法>
 漏電検出部140は、電流測定部130にて得られた各負荷に流れる電流値に基づき、漏電を検出する。
 実施形態1における漏電検出方法は、電流測定部130にて得られた往路側電流値と復路側電流値との差分の絶対値を計算し、その値が事前に設定された漏電閾値以上の値であった場合、漏電が発生しているものと判断するように構成されている。
 なお、往路側電流検出器110及び復路側電流検出器120の個体差により電流検出感度が異なると、往路側電流値と復路側電流値との差分からは正確な漏電電流が求められず、漏電の誤検知が発生する可能性がある。そのような場合に対応するため、あらかじめ漏電のない正常な回路で、往路側と復路側の経路に同じ電流を流し、往路側電流検出器110及び復路側電流検出器120それぞれの電流検出感度を計測しておき、電流測定部130にて電流値算出を行う際、当該電流検出感度に基づいて往路側電流値及び復路側電流値の補正を行ってもよい。
 なお、漏電が発生しているものと判断された場合、漏電検出部140は、警報用の信号を外部機器等へと出力するように構成されていてもよい。
<各負荷の電流計測方法>
 電流測定部130は、各負荷に流れる電流値を、往路側電流検出器110または復路側電流検出器120にて測定された電流値に基づき、負荷1~4に流れる電流を測定または算出する。
 実施形態1においては、制御部150は、ある1つの負荷のみの電力供給がONとなり、残りの全ての負荷の電力供給がOFFとなるような制御信号を操作部に対して出力する処理を、全ての負荷に対して行う場合について説明する。ここでは、負荷1~4への電力供給をON/OFFに操作する制御信号を1/4周期ずつ位相をずらし、デューティー比の可変範囲を5~25%に絞ったPWM波形(時間比例出力)としている。一例として、すべての負荷における制御信号がデューティー比20%の場合のPWM波形を図2に示す。
 そして、制御部150が電流測定のための制御信号を生成したことを示す信号を電流測定部130へと出力する。さらに、電流測定部130は、制御部150からの上記信号に合わせて、各負荷のうち測定対象負荷の電力供給のみがONとなっているタイミングで往路側電流検出器110及び復路側電流検出器120にて検出された電流値を、測定対象負荷に流れる電流値として検出する。
 なお、ある1つの負荷のみの電力供給をONとするタイミングについては、特許文献1のように、特定のタイミングで強制的に1つの負荷だけをONするように設定されていてもよい。
<動作>
 次に、図3のフローチャートを参照しつつ、実施形態1の電力制御装置100’の動作について説明する。
 図3の動作は、図2のA、B、C、Dのタイミングで漏電を検出する場合の動作を記載している。まず、ステップS310において、制御部150がAのタイミングで、負荷1のみがONとなるような制御信号を操作部1から4に出力し、また、制御信号が生成されたことを示す信号を電流測定部130に出力し、ステップS320へ移行する。
 ステップS320において、電流測定部130は、制御部150からの上記信号に呼応し、往路側電流検出器110及び復路側電流検出器120にて、ステップS310にて出力された制御信号に基づき電流値測定を行い、各負荷に対応した期間の電流値(例えば実効値)を、当該負荷に流れる電流値としてメモリ等(不図示)に記録し、ステップS330へ移行する。
 ステップS330において、漏電検出部140はステップS320にて検出した、往路側電流検出器110にて計測した値に基づく各負荷の電流値と、復路側電流検出器120にて計測した値に基づく各負荷の電流値との差分値を算出する。そして、その差分値の絶対値が事前に設定された漏電閾値以上であった場合は、電流経路において漏電が発生していると判断し、ステップS340へ移行する(ステップS330:Yes→ステップS340)。また、この差分値の絶対値が事前に設定された漏電閾値未満だった場合は、問題なしとして処理を終了する(ステップS330:No→エンド)。
 ステップS340において、漏電検出部140は漏電が発生していると判断された負荷の情報を表示器等の外部機器(不図示)等へと送信し、処理を終了する。その後、負荷2から4についても、同様の処理を図2におけるB、C、Dのタイミングで実施する。
<作用効果>
 以上のように、実施形態1における電流及び漏電検出装置100によると、2つのCTを用いて、それぞれの電流測定結果に基づき負荷に流れる電流値を検出し、その検出結果に基づき漏電検出を実施するように構成されている。そのため、電流測定と漏電検出を同時に実施可能であり、回路や装置のサイズ、コスト及び設置箇所の制限等を低減可能となる。
 そして、実施形態1における電力制御装置100’によると、制御部150が負荷のいずれか1つのみへの電力供給がONとなるように構成された制御信号を出力する場合に、電流測定部130及び漏電検出部140が各負荷の電流を検出するように構成されている。そのため、負荷がいくつであっても2つのCTを用いることで漏電検出と各負荷に流れる電流値の検出が可能となる。
<実施形態2>
 実施形態2における電力制御装置100’は、実施形態1の場合と比較し、制御部150が一定周期における電力供給がONである時間とOFFである時間の比率を負荷毎に設定された操作出力値に保ちながら、負荷のいずれか1つのみへの電力供給がONとなるように構成された制御信号を出力するように構成されている点以外は実施形態1における電力制御装置100と同様である。
<連続比例制御の場合>
 実施形態2の電力制御装置100’が、短い制御周期毎に、各負荷に設定された操作出力値(0~100%)に基づき電力供給のON/OFFを制御する、いわゆる連続比例制御を行う場合は、ON/OFFの切り替え周期が交流電源波形の1周期から2周期程度と短いため、実施形態1のような方法では所定の操作出力値を満足できなくなってしまう。そのため、制御部150は電力供給がONである時間とOFFである時間の比率を負荷毎に設定された操作出力値に保つため、図4における「通常の連続比例制御」の範囲のように制御信号を出力する。
 なお、連続比例制御を行う場合、制御部150は、出力周期ごとに、出力差積算値ΔMVに、負荷毎に事前に設定された操作出力値(説明しやすさのため、図4の場合は30%)を加算してゆき、ΔMVの値が事前に設定された閾値L(図4の場合は100%)を超えた場合に事前に設定された周期分だけ出力をONとする制御信号を出力し、ΔMVから事前に設定された値(図4の場合は100%)を減算するように構成されている。
 また、実施形態2において、漏電を検出するために電力供給をONとして電流測定を行う負荷(一例として負荷1、図4上)においては、所定のタイミング(図4のA)で、ΔMVに操作出力値を加算した後、事前に設定された閾値Lを超えない状態であっても、ΔMVから事前に設定された値を減算する。また、当該負荷以外(一例として、負荷2、図4下)は、所定のタイミング(図4のA)で、ΔMVに操作出力値を加算した上で、閾値Lにかかわらず、電力供給をOFFとするように構成されている。図4のAの箇所において、電力供給をONとして電流測定を行う負荷の制御信号の出力がONとなり、電力供給をOFFとする負荷の制御信号の出力がOFFとなっていることがわかる。
 なお、実施形態2においては、一定の周期(電流測定を希望するタイミング)ごとに、電流測定対象の負荷を切り替えつつ、ある1つの負荷のみの電力供給をONとする制御信号が生成されるように構成されている。また、制御部150が時間比例制御を行うか、いわゆる連続比例制御を行うかについては、事前に設定されるように構成されていてもよいし、スイッチ等にて切り替え可能に構成されていてもよい。
<作用効果>
 実施形態2の電力制御装置100’における制御部150は、上記のごとく一定周期における電力供給がONである時間とOFFである時間の比率を、負荷毎に設定された操作出力値に保ちながら、負荷のいずれか1つのみへの電力供給がONとなるように構成された制御信号を出力する場合に、電流測定部130及び漏電検出部140が各負荷の電流及び漏電を検出するように構成されている。そのため、制御方式に関わらず、各負荷の制御性(操作出力値)を保ちつつ、任意のタイミングで各負荷の電流及び漏電検出を同時に実施することが可能となる。
<その他の構成>
 実施形態1及び2においては往路側電流検出器110または復路側電流検出器120がCTである場合について説明したが、シャント抵抗等により構成されていてもよい。また、実施形態1及び2においては各負荷へ接続される経路の往路のみに操作器を設けていたが、往路及び復路の両方に操作器を設け、漏電が発生している負荷を特定できるように構成させていても良い。
 漏電検出部140においては、往路側電流値と復路側電流値との差分値と事前に設定された閾値との比較に基づき漏電の判定を行っていたが、これに限られるものではなく、往路側電流値と復路側電流値の両者を用いた判定手法であればよい。
 また、CTやシャント抵抗などの電流検出器から電流測定部に入力された波形を、絶対値変換するなどしてから演算に使用してもよい。
 なお、上記各実施形態における各構成は、それぞれ専用回路等でハード的に構成されるものであってもよいし、マイコン等の汎用的な回路上でソフトウェア的に実現されるものであってもよい。
 以上、実施形態を参照して本発明を説明したが、本発明は上述した実施形態に限定されるものではない。本発明の構成及び動作については、本発明の趣旨を逸脱しない範囲において、当業者が理解しうる様々な変更を行うことができる。
100…電流及び漏電検出装置
100’…電力制御装置
110…往路側電流検出器
120…復路側電流検出器
130…電流測定部
140…漏電検出部
150…制御部

Claims (3)

  1.  電源から負荷に流れる電流を測定する往路側電流検出器と、
     前記負荷から前記電源に流れる電流を測定する復路側電流検出器と、
     前記往路側電流検出器による電流測定結果および、前記復路側電流検出器による電流測定結果に基づき前記負荷に流れる電流値を測定する電流測定部と、
     前記往路側電流検出器による電流測定結果と、前記復路側電流検出器による電流測定結果との差分値に基づき漏電を検知する、漏電検出部と、
     を備える電流および漏電検出装置。
  2.  前記負荷が複数であり、
     請求項1に記載の電流および漏電検出装置を備え、
     前記負荷毎の電力供給をON又はOFFに操作する制御信号を生成する制御部を備え、
     前記制御部が、前記負荷のいずれか1つのみへの電力供給がONとなるように構成された前記制御信号を出力する場合に、
      前記電流測定部が当該負荷に流れる電流値を測定し、
      前記漏電検出部が前記往路側電流検出器による電流測定結果と、前記復路側電流検出器による電流測定結果との差分に基づき当該負荷に関する漏電を検知する、
     電力制御装置。
  3.  前記負荷が複数であり、
     請求項1に記載の電流および漏電検出装置を備え、
     前記負荷毎の電力供給をON又はOFFに操作する制御信号を生成する制御部を備え、
     前記制御部が、一定周期における電力供給がONである時間とOFFである時間の比率を負荷毎に設定された操作出力値に保ちながら、前記負荷のいずれか1つのみへの電力供給がONとなるように構成された前記制御信号を出力する場合に、
      前記電流測定部が当該負荷に流れる電流値を測定し、
      前記漏電検出部が前記往路側電流検出器による電流測定結果と、前記復路側電流検出器による電流測定結果との差分に基づき当該負荷に関する漏電を検知する、
     電力制御装置。
PCT/JP2018/017909 2018-05-09 2018-05-09 電流測定及び漏電検出装置、電力制御装置 WO2019215836A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/017909 WO2019215836A1 (ja) 2018-05-09 2018-05-09 電流測定及び漏電検出装置、電力制御装置
JP2020517670A JPWO2019215836A1 (ja) 2018-05-09 2018-05-09 電流測定及び漏電検出装置、電力制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017909 WO2019215836A1 (ja) 2018-05-09 2018-05-09 電流測定及び漏電検出装置、電力制御装置

Publications (1)

Publication Number Publication Date
WO2019215836A1 true WO2019215836A1 (ja) 2019-11-14

Family

ID=68467943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017909 WO2019215836A1 (ja) 2018-05-09 2018-05-09 電流測定及び漏電検出装置、電力制御装置

Country Status (2)

Country Link
JP (1) JPWO2019215836A1 (ja)
WO (1) WO2019215836A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720577U (ja) * 1993-09-20 1995-04-11 株式会社ムサシ電機計器製作所 漏洩電流測定装置
JP2001183405A (ja) * 1999-12-24 2001-07-06 Hokuto Denshi Kogyo Kk 電気機器の診断装置
JP2002098729A (ja) * 2000-09-27 2002-04-05 Hidemichi Yoshida 漏洩電流探査装置
JP2005003500A (ja) * 2003-06-11 2005-01-06 Toyota Motor Corp ヒータ制御装置
JP2005276798A (ja) * 2003-10-24 2005-10-06 Raintekku:Kk 電流測定及び漏電点検可能な差込プラグ
JP2014100808A (ja) * 2012-11-16 2014-06-05 Japan Steel Works Ltd:The ヒータの断線・劣化判定方法および射出成形機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720577U (ja) * 1993-09-20 1995-04-11 株式会社ムサシ電機計器製作所 漏洩電流測定装置
JP2001183405A (ja) * 1999-12-24 2001-07-06 Hokuto Denshi Kogyo Kk 電気機器の診断装置
JP2002098729A (ja) * 2000-09-27 2002-04-05 Hidemichi Yoshida 漏洩電流探査装置
JP2005003500A (ja) * 2003-06-11 2005-01-06 Toyota Motor Corp ヒータ制御装置
JP2005276798A (ja) * 2003-10-24 2005-10-06 Raintekku:Kk 電流測定及び漏電点検可能な差込プラグ
JP2014100808A (ja) * 2012-11-16 2014-06-05 Japan Steel Works Ltd:The ヒータの断線・劣化判定方法および射出成形機

Also Published As

Publication number Publication date
JPWO2019215836A1 (ja) 2021-01-07

Similar Documents

Publication Publication Date Title
JP4805396B2 (ja) モータ駆動装置
US7898264B2 (en) Motor insulation deterioration detection device
US10148203B2 (en) Motor driving apparatus including DC link voltage detection unit
JP2011128041A (ja) 変流器あるいは変圧器のための特性監視装置
WO2010137327A1 (ja) Pwm負荷機器の駆動電流検出装置、駆動電流検出方法、故障検知装置及び故障検知方法
WO2019215836A1 (ja) 電流測定及び漏電検出装置、電力制御装置
JP2007192615A (ja) 電圧センサの異常検出方法、異常検出装置および電圧センサ
KR20160141573A (ko) 리던던시 적용 시스템의 릴레이 고장 감지 장치
KR20150118730A (ko) 인버터 고장검출회로
US20120182655A1 (en) Methods and Systems Involving Monitoring Circuit Connectivity
KR102071884B1 (ko) 부하 제어장치, 부하 제어장치의 전류 계측방법
JP6135923B2 (ja) 発電システム
JP4835417B2 (ja) 電力制御方法および電力制御装置
JP2005045969A (ja) 三相電源の保護制御装置の断線検出装置
CN101401003B (zh) 利用差分电压计来测量第一电压和第二电压的设备和方法
JP6121278B2 (ja) 切替制御回路および測定装置
JP6150691B2 (ja) 切替制御回路および測定装置
JP2016097501A (ja) ヒータの配線用の電線に特徴を有する射出成形機
JP3829529B2 (ja) ピークカットコントローラー
KR102009578B1 (ko) 전기히터 제어용 하나 이상의 부하에 대한 측정 검출 방법
JP2006271159A (ja) 電動機巻線の絶縁破壊検出装置
JP2015192514A (ja) 電圧平衡継電器
CN112834802A (zh) 多设备电流测量串扰补偿
JP2020095603A (ja) 制御装置
JP2006317166A (ja) 電子式電力量計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918072

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020517670

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918072

Country of ref document: EP

Kind code of ref document: A1