WO2019214651A1 - 作为选择性HER2抑制剂的吡咯并[2,1-f][1,2,4]三嗪类衍生物及其应用 - Google Patents

作为选择性HER2抑制剂的吡咯并[2,1-f][1,2,4]三嗪类衍生物及其应用 Download PDF

Info

Publication number
WO2019214651A1
WO2019214651A1 PCT/CN2019/086032 CN2019086032W WO2019214651A1 WO 2019214651 A1 WO2019214651 A1 WO 2019214651A1 CN 2019086032 W CN2019086032 W CN 2019086032W WO 2019214651 A1 WO2019214651 A1 WO 2019214651A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
alkyl
isomer
compound
pharmaceutically acceptable
Prior art date
Application number
PCT/CN2019/086032
Other languages
English (en)
French (fr)
Inventor
陈新海
姜奋
陈鑫德
张丽
陈兆国
于衍新
周凯
胡伯羽
谢程
陈曙辉
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Priority to EP19799711.7A priority Critical patent/EP3792263B1/en
Priority to US17/053,076 priority patent/US20210323979A1/en
Priority to JP2020563446A priority patent/JP7276719B2/ja
Priority to CN201980031008.5A priority patent/CN112105618B/zh
Publication of WO2019214651A1 publication Critical patent/WO2019214651A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/14Drugs for genital or sexual disorders; Contraceptives for lactation disorders, e.g. galactorrhoea
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a class of pyrrolo[2,1-f][1,2,4]triazine derivatives as selective HER2 inhibitors, and to the use in the preparation of a medicament as a HER2 inhibitor. Specifically, it relates to a compound of the formula (I), an isomer thereof or a pharmaceutically acceptable salt thereof.
  • HER Human epidermal growth factor receptor
  • EGFR Human epidermal growth factor receptor
  • HER2 is overexpressed in a variety of cancers, and HER2 overexpression predicts that tumors are more aggressive and more prone to early recurrence and metastasis.
  • Herceptin humanized anti-HER2 monoclonal antibody
  • HER2 has become a therapeutic target for breast cancer, gastric cancer and esophageal cancer.
  • HER2 small molecule kinase inhibitors which are currently on the market and under investigation, usually also inhibit HER1.
  • the present invention provides a compound of the formula (I), an isomer thereof or a pharmaceutically acceptable salt thereof,
  • n 0, 1 or 2;
  • n 0, 1 or 2;
  • T 1 is selected from N and CH;
  • D 1 is selected from the group consisting of O, N(R 6 ) and C(R 7 )(R 8 );
  • R 1 is independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 , C 1-6 alkyl, and C 1-6 alkoxy, wherein said C 1-6 alkyl and C 1- 6 alkoxy optionally substituted by 1, 2 or 3 R a ;
  • R 2 is independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 and C 1-6 alkyl, wherein said C 1-6 alkyl group is optionally substituted by 1, 2 or 3 R b ;
  • R 1 and R 2 are bonded to each other to form -(CH 2 ) p -, wherein m and n are both 1;
  • R 3 and R 4 are each independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 and C 1-6 alkyl, wherein the C 1-6 alkyl group is optionally 1, 2 or 3 R c substitution;
  • R 3 and R 4 are bonded to each other to form -(CH 2 ) q -;
  • p 1 or 2;
  • q 1 or 2;
  • R 51 , R 52 , R 53 and R 54 are each independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 , C 1-6 alkyl and C 1-3 alkoxy, wherein
  • C 1-6 alkyl and C 1-3 alkoxy are optionally substituted by 1, 2 or 3 R d ;
  • R 7 is selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 and C 1-6 alkyl, wherein the NH 2 and C 1-6 alkyl are optionally substituted by 1, 2 or 3 R f ;
  • R 8 is selected from the group consisting of H, F, Cl, Br, I, and C 1-6 alkyl, wherein the C 1-6 alkyl group is optionally substituted with 1, 2 or 3 R g ;
  • R 9 and R 10 are each independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 , C 1-6 alkyl, and C 1-3 alkoxy, wherein said C 1-6 alkyl group C 1-3 alkoxy is optionally substituted by 1, 2 or 3 R h ;
  • R a , R b and R c are each independently selected from the group consisting of F, Cl, Br, I, OH and NH 2 ;
  • R d are each independently selected from the group consisting of F, Cl, Br, I, OH, NH 2 and C 1-3 alkyl, wherein said C 1-3 alkyl group is optionally substituted by 1, 2 or 3 R;
  • R e , R f , R g and R h are each independently selected from the group consisting of F, Cl, Br, I, OH, NH 2 , C 1-3 alkyl and C 1-3 alkoxy, wherein said C 1- The 3- alkyl and C 1-3 alkoxy groups are optionally substituted by 1, 2 or 3 R;
  • R is independently selected from the group consisting of F, Cl, Br, I, OH, NH 2 , CH 3 , Et, and -OCH 3 .
  • R d is independently selected from the group consisting of F, Cl, Br, I, OH, NH 2 , and other variables are as defined herein. .
  • R e , R f , R g and R h are each independently selected from the group consisting of F, Cl, Br, I, OH, NH 2 , CH 3 , Et, And -OCH 3 , other variables are as defined by the present invention.
  • R 1 above is independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 , C 1-3 alkyl, and C 1-3 alkoxy, wherein said C 1
  • the -3 alkyl and C 1-3 alkoxy groups are optionally substituted by 1, 2 or 3 R a and the other variables are as defined in the present invention. .
  • R 1 above is independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 , CH 3 , Et, and -OCH 3 , and other variables are as defined herein.
  • R 2 are independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 and C 1-3 alkyl, wherein the C 1-3 alkyl group is optionally 1 , 2 or 3 R b substitutions, other variables as defined by the present invention. .
  • R 2 are independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 , CH 3 and Et, and other variables are as defined herein.
  • R 3 and R 4 are each independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 and C 1-3 alkyl, wherein the C 1-3 alkyl is The choice is substituted by 1, 2 or 3 R c , and other variables are as defined by the present invention.
  • R 3 and R 4 are each independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 , CH 3 and Et, and other variables are as defined herein.
  • R 51 , R 52 , R 53 and R 54 are each independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 and C 1-3 alkyl, wherein said C The 1-3 alkyl group is optionally substituted by 1, 2 or 3 R d , and other variables are as defined in the present invention.
  • R 51 , R 52 , R 53 and R 54 are each independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 , CH 3 , Et and CF 3 , and other variables such as The invention is defined.
  • R 7 is selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 and C 1-3 alkyl, wherein the NH 2 and C 1-3 alkyl are optionally 1 , 2 or 3 R f substitutions, other variables as defined by the present invention.
  • R 7 is selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 , CH 3 , Et, Other variables are as defined by the present invention.
  • R 8 is selected from the group consisting of H, F, Cl, Br, I and C 1-3 alkyl, wherein the C 1-3 alkyl group is optionally substituted by 1, 2 or 3 R g
  • Other variables are as defined by the present invention.
  • R 8 is selected from the group consisting of H, F, Cl, Br, I, CH 3 , Et, and Other variables are as defined by the present invention.
  • R 9 and R 10 are each independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 and C 1-3 alkyl, wherein the C 1-3 alkyl is The choice is substituted by 1, 2 or 3 Rg , and other variables are as defined by the present invention.
  • R 9 and R 10 above are each independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 , CH 3 and Et, and other variables are as defined herein.
  • the structural unit Selected from Other variables are as defined by the present invention.
  • the structural unit Selected from Other variables are as defined by the present invention.
  • the structural unit Selected from Other variables are as defined by the present invention.
  • the structural unit Selected from Other variables are as defined by the present invention.
  • the structural unit Selected from Other variables are as defined by the present invention.
  • the above compound, an isomer thereof, or a pharmaceutically acceptable salt thereof is selected from the group consisting of
  • the above compound, an isomer thereof, or a pharmaceutically acceptable salt thereof is selected from the group consisting of
  • R 1 , R 51 , R 52 , R 53 , R 54 , R 6 , R 7 , R 8 , R 9 and R 10 are as defined in the present invention.
  • the above compound, an isomer thereof, or a pharmaceutically acceptable salt thereof is selected from the group consisting of
  • R 1 , R 51 , R 52 , R 53 , R 54 , R 6 , R 7 , R 8 , R 9 and R 10 are as defined in the present invention.
  • the invention also provides a compound of formula (I), an isomer thereof, or a pharmaceutically acceptable salt thereof,
  • n 0, 1 or 2;
  • n 0, 1 or 2;
  • T 1 is selected from N and CH;
  • D 1 is selected from the group consisting of O, N(R 6 ) and C(R 7 )(R 8 );
  • R 1 is independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 and C 1-6 alkyl, wherein said C 1-6 alkyl group is optionally substituted by 1, 2 or 3 R a ;
  • R 2 is independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 and C 1-6 alkyl, wherein said C 1-6 alkyl group is optionally substituted by 1, 2 or 3 R b ;
  • R 1 and R 2 are bonded to each other to form -(CH 2 ) p -, wherein m and n are both 1;
  • R 3 and R 4 are each independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 and C 1-6 alkyl, wherein the C 1-6 alkyl group is optionally 1, 2 or 3 R c substitution;
  • R 3 and R 4 are bonded to each other to form -(CH 2 ) q -;
  • p 1 or 2;
  • q 1 or 2;
  • R 51 , R 52 , R 53 and R 54 are each independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 , C 1-6 alkyl and C 1-3 alkoxy, wherein said C 1-6 alkyl and C 1-3 alkoxy are optionally substituted by 1, 2 or 3 R d ;
  • R 7 is selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 and C 1-6 alkyl, wherein the NH 2 and C 1-6 alkyl are optionally substituted by 1, 2 or 3 R f ;
  • R 8 is selected from the group consisting of H, F, Cl, Br, I, and C 1-6 alkyl, wherein the C 1-6 alkyl group is optionally substituted with 1, 2 or 3 R g ;
  • R 9 and R 10 are each independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 , C 1-6 alkyl, and C 1-3 alkoxy, wherein said C 1-6 alkyl group C 1-3 alkoxy is optionally substituted by 1, 2 or 3 R h ;
  • R a , R b and R c are each independently selected from the group consisting of F, Cl, Br, I, OH and NH 2 ;
  • R d are each independently selected from the group consisting of F, Cl, Br, I, OH, NH 2 and C 1-3 alkyl, wherein said C 1-3 alkyl group is optionally substituted by 1, 2 or 3 R;
  • R e , R f , R g and R h are each independently selected from the group consisting of F, Cl, Br, I, OH, NH 2 and C 1-3 alkyl, wherein the C 1-3 alkyl group is optionally 2 or 3 R substitutions;
  • R is independently selected from the group consisting of F, Cl, Br, I, OH, and NH 2 .
  • R d is independently selected from the group consisting of F, Cl, Br, I, OH, NH 2 , and other variables are as defined herein.
  • R e , R f , R g and R h are each independently selected from the group consisting of F, Cl, Br, I, OH, NH 2 , and other variables are as defined herein.
  • R 1 are each independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 and C 1-3 alkyl, wherein the C 1-3 alkyl group is optionally 1 , 2 or 3 R a substitutions, other variables as defined by the present invention.
  • R 1 above is independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 , CH 3 and Et, and other variables are as defined herein.
  • R 2 are independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 and C 1-3 alkyl, wherein the C 1-3 alkyl group is optionally 1 , 2 or 3 R b substitutions, other variables as defined by the present invention.
  • R 2 are independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 , CH 3 and Et, and other variables are as defined herein.
  • R 3 and R 4 are each independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 and C 1-3 alkyl, wherein the C 1-3 alkyl is The choice is substituted by 1, 2 or 3 R c , and other variables are as defined by the present invention.
  • R 3 and R 4 are each independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 , CH 3 and Et, and other variables are as defined herein.
  • R 51 , R 52 , R 53 and R 54 are each independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 and C 1 -3 alkyl, wherein said C The 1-3 alkyl group is optionally substituted by 1, 2 or 3 R d , and other variables are as defined in the present invention.
  • R 51 , R 52 , R 53 and R 54 are each independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 , CH 3 and Et, and other variables are as described in the present invention. definition.
  • R 7 is selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 and C 1-3 alkyl, wherein the NH 2 and C 1-3 alkyl are optionally 1 , 2 or 3 R f substitutions, other variables as defined by the present invention.
  • R 7 is selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 , CH 3 and Et, and other variables are as defined herein.
  • R 8 is selected from the group consisting of H, F, Cl, Br, I and C 1-3 alkyl, wherein the C 1-3 alkyl group is optionally substituted by 1, 2 or 3 R g
  • Other variables are as defined by the present invention.
  • R 8 above is selected from the group consisting of H, F, Cl, Br, I, CH 3 and Et, and other variables are as defined herein.
  • R 9 and R 10 are each independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 and C 1-3 alkyl, wherein the C 1-3 alkyl is The choice is substituted by 1, 2 or 3 Rg , and other variables are as defined by the present invention.
  • R 9 and R 10 above are each independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 , CH 3 and Et, and other variables are as defined herein.
  • the structural unit Selected from Other variables are as defined by the present invention.
  • the structural unit Selected from Other variables are as defined by the present invention.
  • the structural unit Selected from Other variables are as defined by the present invention.
  • the structural unit Selected from Other variables are as defined by the present invention.
  • the structural unit Selected from Other variables are as defined by the present invention.
  • the above compound, an isomer thereof, or a pharmaceutically acceptable salt thereof is selected from the group consisting of
  • R 51 , R 52 , R 53 , R 54 , R 9 and R 10 are as defined in the present invention.
  • the above compound, an isomer thereof, or a pharmaceutically acceptable salt thereof is selected from the group consisting of
  • R 51 , R 52 , R 53 , R 54 , R 6 , R 7 , R 8 , R 9 and R 10 are as defined in the present invention.
  • the present invention also provides a compound of the formula, an isomer thereof or a pharmaceutically acceptable salt thereof, selected from the group consisting of
  • the above compound, an isomer thereof, or a pharmaceutically acceptable salt thereof is selected from the group consisting of
  • the present invention also provides the use of the above compound or a pharmaceutically acceptable salt thereof for the preparation of a medicament for treating a HER2-related disease.
  • the above medicament is a medicament for treating breast cancer, gastric cancer, colorectal cancer, esophageal cancer, lung cancer.
  • the compound of the present invention is capable of selectively inhibiting HER2, has an obvious inhibitory activity against proliferation of NCI-N87 cells and BT-474 cells, and has an excellent effect of inhibiting tumor growth.
  • pharmaceutically acceptable as used herein is intended to mean that those compounds, materials, compositions and/or dosage forms are within the scope of sound medical judgment and are suitable for use in contact with human and animal tissues. Without excessive toxicity, irritation, allergic reactions or other problems or complications, commensurate with a reasonable benefit/risk ratio.
  • pharmaceutically acceptable salt refers to a salt of a compound of the invention prepared from a compound having a particular substituent found in the present invention and a relatively non-toxic acid or base.
  • a base addition salt can be obtained by contacting a neutral amount of such a compound with a sufficient amount of a base in a neat solution or a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amine or magnesium salts or similar salts.
  • an acid addition salt can be obtained by contacting a neutral form of such a compound with a sufficient amount of an acid in a neat solution or a suitable inert solvent.
  • pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, hydrogencarbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, Hydrogen sulfate, hydroiodic acid, phosphorous acid, etc.; and an organic acid salt, such as acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric acid, lactic acid, mandelic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, citric acid, tartaric acid, and me
  • the pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound containing an acid group or a base by conventional chemical methods.
  • such salts are prepared by reacting these compounds in water or an organic solvent or a mixture of the two via a free acid or base form with a stoichiometric amount of a suitable base or acid.
  • the compounds of the invention may exist in specific geometric or stereoisomeric forms. All such compounds are contemplated by the present invention, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereoisomers , (D)-isomer, (L)-isomer, and racemic mixtures thereof and other mixtures, such as enantiomerically or diastereomeric enriched mixtures, all of which belong to the present Within the scope of the invention. Additional asymmetric carbon atoms may be present in the substituents such as alkyl groups. All such isomers, as well as mixtures thereof, are included within the scope of the invention.
  • enantiomer or “optical isomer” refer to stereoisomers that are mirror images of one another.
  • cis-trans isomer or “geometric isomer” is caused by the inability to freely rotate a single bond due to a double bond or a ring-forming carbon atom.
  • diastereomer refers to a stereoisomer in which the molecule has two or more chiral centers and the molecules are in a non-mirrored relationship.
  • wedge-shaped dashed keys Represents the absolute configuration of a solid center with straight solid keys
  • straight dashed keys Indicates the relative configuration of the stereocenter, using wavy lines Indicates a wedge solid key Or wedge-shaped dotted key Or with wavy lines Represents a straight solid key And straight dashed keys
  • a double bond structure exists in a compound, such as a carbon-carbon double bond, a carbon-nitrogen double bond, and a nitrogen-nitrogen double bond, and each atom on the double bond is bonded to two different substituents (including a nitrogen atom) Of the double bonds, a pair of lone pairs of electrons on the nitrogen atom are considered as a substituent to which they are attached), if a wavy line is used between the atom on the double bond and the substituent in the compound
  • the linkage means the (Z) isomer, the (E) isomer or a mixture of the two isomers of the compound.
  • the following formula (A) indicates that the compound exists as a single isomer of the formula (A-1) or the formula (A-2) or two isomers of the formula (A-1) and the formula (A-2) The mixture is present;
  • the following formula (B) indicates that the compound exists as a single isomer of formula (B-1) or formula (B-2) or two of formula (B-1) and formula (B-2) A mixture of isomers is present.
  • the following formula (C) indicates that the compound exists as a single isomer of the formula (C-1) or the formula (C-2) or two isomers of the formula (C-1) and the formula (C-2) The mixture is present.
  • tautomer or “tautomeric form” mean that the different functional isomers are in dynamic equilibrium at room temperature and can be rapidly converted into each other. If tautomers are possible (as in solution), the chemical equilibrium of the tautomers can be achieved.
  • proton tautomers also known as prototropic tautomers
  • prototropic tautomers include interconversions by proton transfer, such as keto-enol isomerization and imine-enes. Amine isomerization.
  • the valence tautomer includes the mutual transformation of some of the bonding electrons.
  • keto-enol tautomerization is the interconversion between two tautomers of pentane-2,4-dione and 4-hydroxypent-3-en-2-one.
  • the terms "enriched in one isomer”, “isomer enriched”, “enriched in one enantiomer” or “enantiomeric enriched” refer to one of the isomers or pairs
  • the content of the oligo is less than 100%, and the content of the isomer or enantiomer is 60% or more, or 70% or more, or 80% or more, or 90% or more, or 95% or more, or 96% or more, or 97% or more, 98% or more, 99% or more, 99.5% or more, 99.6% or more, 99.7% or more, 99.8% or more, or greater than or equal to 99.9%.
  • the term “isomer excess” or “enantiomeric excess” refers to the difference between the two isomers or the relative percentages of the two enantiomers. For example, if one of the isomers or enantiomers is present in an amount of 90% and the other isomer or enantiomer is present in an amount of 10%, the isomer or enantiomeric excess (ee value) is 80%. .
  • optically active (R)- and (S)-isomers as well as the D and L isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If an enantiomer of a compound of the invention is desired, it can be prepared by asymmetric synthesis or by derivatization with a chiral auxiliary wherein the resulting mixture of diastereomers is separated and the auxiliary group cleaved to provide pure The desired enantiomer.
  • a diastereomeric salt is formed with a suitable optically active acid or base, followed by conventional methods well known in the art.
  • the diastereomers are resolved and the pure enantiomer is recovered.
  • the separation of enantiomers and diastereomers is generally accomplished by the use of chromatography using a chiral stationary phase, optionally in combination with chemical derivatization (eg, formation of an amino group from an amine). Formate).
  • the compounds of the present invention may contain unnatural proportions of atomic isotopes on one or more of the atoms that make up the compound.
  • radiolabeled compounds can be used, such as tritium (3 H), iodine -125 (125 I) or C-14 (14 C).
  • hydrogen can be replaced by heavy hydrogen to form a deuterated drug.
  • the bond composed of barium and carbon is stronger than the bond composed of common hydrogen and carbon.
  • deuterated drugs have reduced side effects and increased drug stability. Enhance the efficacy and prolong the biological half-life of the drug. Alterations of all isotopic compositions of the compounds of the invention, whether radioactive or not, are included within the scope of the invention.
  • substituted means that any one or more hydrogen atoms on a particular atom are replaced by a substituent, and may include variants of heavy hydrogen and hydrogen, as long as the valence of the particular atom is normal and the substituted compound is stable. of.
  • Oxygen substitution does not occur on the aromatic group.
  • optionally substituted means that it may or may not be substituted, and unless otherwise specified, the kind and number of substituents may be arbitrary on the basis of chemically achievable.
  • any variable eg, R
  • its definition in each case is independent.
  • the group may optionally be substituted with at most two R, and each case has an independent option.
  • combinations of substituents and/or variants thereof are permissible only if such combinations result in stable compounds.
  • linking group When the number of one linking group is 0, such as -(CRR) 0 -, it indicates that the linking group is a single bond.
  • one of the variables When one of the variables is selected from a single bond, it means that the two groups to which it is attached are directly linked. For example, when L represents a single bond in A-L-Z, the structure is actually A-Z.
  • substituents When the listed substituents are not indicated by which atom is attached to the substituted group, such a substituent may be bonded through any atom thereof, for example, a pyridyl group as a substituent may be passed through any one of the pyridine rings. A carbon atom is attached to the substituted group.
  • the medium linking group L is -MW-, and at this time, -MW- can be connected in the same direction as the reading order from left to right to form ring A and ring B. It is also possible to connect the ring A and the ring B in a direction opposite to the reading order from left to right. Combinations of the linking groups, substituents and/or variants thereof are permissible only if such combinations result in stable compounds.
  • alkyl is used to mean a straight or branched saturated hydrocarbon group, and in some embodiments, the alkyl group is a C 1-12 alkyl group; in other embodiments The alkyl group is a C 1-6 alkyl group; in other embodiments, the alkyl group is a C 1-3 alkyl group. It may be monovalent (such as methyl), divalent (such as methylene) or multivalent (such as methine).
  • alkyl groups include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), butyl (including n-butyl, isobutyl, s-butyl) And t-butyl), pentyl (including n-pentyl, isopentyl and neopentyl), hexyl and the like.
  • alkenyl is used to indicate a straight or branched hydrocarbon group containing one or more carbon-carbon double bonds, and the carbon-carbon double bond may be located at any position of the group.
  • the alkenyl group is a C 2-8 alkenyl group; in other embodiments, the alkenyl group is a C 2-6 alkenyl group; in other embodiments, the alkenyl group is C 2-4 alkenyl. It can be monovalent, divalent or multivalent.
  • alkenyl groups include, but are not limited to, ethenyl, propenyl, butenyl, pentenyl, hexenyl, butadienyl, pentadienyl, hexadienyl and the like.
  • alkoxy refers to those alkyl groups attached to the remainder of the molecule through an oxygen atom.
  • the C 1-6 alkoxy group includes a C 1 , C 2 , C 3 , C 4 , C 5 and C 6 alkoxy groups.
  • the alkoxy group is a C 1-3 alkoxy group. Examples of alkoxy groups include, but are not limited to, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, n-pentyloxy, and S- Pentyloxy.
  • alkoxy groups include, but are not limited to, -OCH 3 , -OCH 2 CH 3 , -OCH 2 CH 2 CH 3 , -OCH 2 (CH 3 ) 2 , -CH 2 -CH 2 -O-CH 33 , and the like.
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments set forth below, combinations thereof with other chemical synthetic methods, and those well known to those skilled in the art. Equivalent alternatives, preferred embodiments include, but are not limited to, embodiments of the invention.
  • Pd(dppf)Cl 2 represents [1,1'-bis(diphenylphosphino)ferrocene]palladium dichloride
  • DIBAL-H represents diisobutylaluminum hydride
  • DIPEA stands for N-diisopropylethylamine
  • Et stands for ethyl
  • DMF-DMA stands for N,N-dimethylformamide dimethyl acetal
  • NMP stands for N-methylpyrrolidone
  • DMF stands for N,N- dimethylformamide.
  • the reaction mixture was cooled to room temperature, diluted with water (100 mL), ethyl acetate (50 mL*2).
  • the concentrate was beaten with petroleum ether and ethyl acetate mixed solvent (10 mL: 10 mL), filtered, and filtered on a cake column (12 g silica gel column, mobile phase polarity 0-60% ethyl acetate / petroleum ether, flow rate 30 mL / Min), the eluent was concentrated, and then further purified with a mixture of petroleum ether and ethyl acetate (10 mL: 10 mL), filtered and concentrated to afford Intermediate 3-1.
  • reaction solution was cooled to 0 ° C, quenched with sodium sulfate decahydrate (0.5 g), filtered, filtered, washed with ethyl acetate, and the filtrate was concentrated under reduced pressure, column chromatography (12 g silica gel column, mobile phase polarity 0-85 % ethyl acetate / petroleum ether, flow rate 35 mL / min) afforded intermediate 3-2.
  • Example 6 The preparation of Example 6 was carried out in accordance with the synthesis method of Example 2.
  • Example 7 The preparation of Example 7 was carried out in accordance with the synthesis method of Example 1.
  • Example 8 The preparation of Example 8 was carried out in accordance with the synthesis method of Example 1.
  • Example 9 The preparation of Example 9 was carried out in accordance with the synthesis method of Example 1.
  • Example 1 (0.05 g, 109.77 ⁇ mol, 1.00 eq) and sodium hydrogencarbonate (28 mg, 329.30 ⁇ mol, 13 ⁇ L, 3.00 eq) were dissolved in tetrahydrofuran (0.5 mL) and water (0.5 mL) and added dropwise at 0 °C A solution of acryloyl chloride (5 mg, 54.88 ⁇ mol, 5 ⁇ L, 0.50 eq) in tetrahydrofuran (0.5 mL). The reaction solution was reacted at 0 ° C for 1.5 hours. LCMS detected complete reaction. It was diluted with water (50 mL) and then extracted with ethyl acetate (30 mL*3).
  • Example 12 The preparation of Example 12 was carried out in accordance with the synthesis method of Example 2.
  • Example 13 The preparation of Example 13 was carried out in accordance with the synthesis method of Example 2.
  • Example 14 The preparation of Example 14 was carried out in accordance with the synthesis method of Example 2.
  • Example 15 The preparation of Example 15 was carried out in accordance with the synthesis method of Example 2.
  • Example 16 The preparation of Example 16 was carried out in accordance with the synthesis method of Example 2.
  • Example 17 The preparation of Example 17 was carried out in accordance with the synthesis method of Example 2.
  • the compound 9-3 (120 mg, 374.50 ⁇ mol, 1.00 eq) was dissolved in anhydrous tetrahydrofuran (5 mL), and sodium hydrogen (45 mg, 1.12 mmol, 60% purity, 3.00 eq) was added portionwise at 0 ° C. After stirring at 0 ° C for 0.5 hour, methyl iodide (64 mg, 449.40 ⁇ mol, 28 ⁇ L, 1.20 eq) was added at 0 ° C, and the reaction mixture was stirred at 25 ° C under nitrogen atmosphere for 16 hours. The reaction was complete by TLC. The reaction mixture was quenched with EtOAc EtOAc (EtOAc)EtOAc.
  • the compound 12-2 (120 mg, 329.28 ⁇ mol, 1.00 eq) was dissolved in anhydrous methanol (5 mL), and then added to palladium hydroxide/carbon (50 mg, 20% purity) under nitrogen atmosphere, the reaction mixture was at 25 ° C, The hydrogenation reaction was carried out at 15 psi for 16 hours. The reaction was complete by TLC. The reaction solution was filtered with celite, and the filter cake was washed with methanol.
  • Triethylamine (1.60 g, 15.81 mmol, 2.20 mL, 1.1 eq) was added to a solution of compound 14-5 (3.1 g, 14.38 mmol, 1 eq, EtOAc) Then, manganese dioxide (11.25 g, 129.39 mmol, 9 eq) was added and the reaction was continued at 80 ° C for 4 hours. After the reaction was completed by LCMS, the reaction mixture was filtered over EtOAc EtOAc (EtOAc)EtOAc. The aqueous sodium sulfate was dried, filtered, and the filtrate was evaporated to dryness.
  • the purpose of this test was to examine the in vitro inhibitory activity of the compounds against HER1 (ErbB1), HER2 (ErbB2), and HER4 (ErbB4).
  • the enzymes used in this experiment were human ErbB1, ErbB2 and ErbB4, and the Eurofins Pharma Discovery Service provided an activity assay.
  • the results of the test compound against HER1, HER2, and HER4 were shown in Table 1.
  • test compound buffer 5 ⁇ L
  • peptide substrate poly(Glu, Tyr) 4:1) (2.5 ⁇ L)
  • ErbB 4-20 ng, 2.5 ⁇ L
  • MnCl 2 50 mM, 1.25 ⁇ L
  • dH 2 O 3.75 ⁇ L
  • [ ⁇ - 33 P]ATP 10 ⁇ L
  • the reaction was stopped by adding 3% phosphoric acid, 10 ⁇ L of the sample was transferred to Filtermate A, washed with a 75 mM phosphoric acid filter for 3 times, washed once with methanol, and the filter was transferred to a sealed plastic pocket, and a scintillation liquid mixture (4 mL) was added to the scintillation luminescence.
  • the counter measures the intensity of the emitted photons, and compares the photon intensity of the enzyme sample with the photon intensity of the internal control sample. The intensity of the photon reflects the strength of the tyrosine kinase activity.
  • Luciferase in the Cell-Titer-Glo reagent uses fluorescein, oxygen and ATP as reaction substrates to produce oxidized fluorescein and release energy in the form of light. Since ATP is required for the luciferase reaction, the total amount of light produced by the reaction is proportional to the total amount of ATP in the cell viability.
  • NCI-N87 cell line ATCC-CRL-5822
  • BT-474 cell line ATCC-HTB-20
  • Cell culture medium (RPMI 1640 medium (Invitrogen #22400-105; 10% serum Invitrogen #10090148; L-glutamine 1 ⁇ , Gibco #25030-081; double-resistant Hyclone #SV30010)
  • Multi-purpose microplate reader (Envision Reader)
  • the compound concentration was 10 mM, and the compound was diluted with DMSO to have an initial concentration of 4 mM. Compounds were added to the plate at 9 ⁇ L per well.
  • the cells were centrifuged at 1000 rpm for 1 min, and the cell plates were placed in a 37 ° C, 5% CO 2 incubator for 3 days.
  • test results are shown in Table 2
  • Table 2 Screening test results of in vitro cell proliferation inhibitory activity of the compound of the present invention
  • the compounds of the present invention have significant proliferation inhibitory activity against NCI-N87 cells and BT-474 cells.
  • the test compound was dissolved in 10% DMSO/45% PEG400/45% water, vortexed and sonicated to prepare a clear solution of the corresponding concentration, and the microporous membrane was filtered and used.
  • 18 to 20 grams of Balb/c female mice were selected and administered as a candidate compound solution at a dose of 1 or 2 mg/kg.
  • the test compound was dissolved in 10% NMP/10% polyethylene glycol-15-hydroxystearate/80% water, vortexed and sonicated to prepare a clear solution of the corresponding concentration, and the microporous membrane was filtered and used.
  • 18 to 20 grams of Balb/c female mice were selected and the candidate compound solution was administered orally at a dose of 2 or 10 mg/kg.
  • Whole blood was collected at a certain time point, plasma was prepared, the drug concentration was analyzed by LC-MS/MS method, and pharmacokinetic parameters were calculated using Phoenix WinNonlin software (Pharsight, USA).
  • Cmax maximum drug concentration
  • T 1/2 half-life
  • V dss apparent volume of distribution
  • Cl drug clearance
  • AUC 0-last & AUC 0-inf area under the time curve
  • F bioavailability.
  • test compound has better pharmacokinetic properties in mice.
  • test compound was dissolved in 10% NMP/10% polyethylene glycol-15-hydroxystearate/80% water, vortexed and sonicated to prepare a clear solution of 2.5 mg/mL, and the microporous membrane was filtered and used.
  • Three male SD rats were intravenously administered with a candidate compound solution at a dose of 5 mg/kg.
  • the test compound was dissolved in 10% polyethylene glycol-15-hydroxystearate/90% (50 mM citrate buffer, pH 3.0), adjusted to a pH of about 3.5, vortexed and sonicated to prepare 5 mg. /ml of clear solution, filtered through a microporous membrane for later use.
  • Three male SD rats were orally administered a candidate compound solution at a dose of 50 mg/kg.
  • Whole blood was collected at a certain time point, plasma was prepared, and the drug concentration was analyzed by LC-MS/MS method, and the pharmacokinetic parameters were calculated using Phoenix WinNonlin software (Pharsight, USA).
  • PK parameters IV (5mg/kg) PO (50mg/kg) C max (nM) -- 3633 T max (h) -- 3.33 T 1/2 (h) 3.34 3.90 V dss (L/kg) 5.86 -- Cl (mL/min/kg) 25.4 -- AUC 0-last (nM.h) 6909 34251 AUC 0-inf (nM.h) 6951 34925 F (%) -- 49.6
  • test compound has better pharmacokinetic properties in rats, and the oral bioavailability is 49.6%.
  • Example 4 The purpose of this study was to evaluate the effect of Example 4 on the activity of five isoenzymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) of human liver microsomal cytochrome P450 (CYP) using an in vitro test system.
  • the specific probe substrate of CYP450 isoenzyme was incubated with human liver microsomes and different concentrations of Example 4, respectively, and reduced nicotinamide adenine dinucleotide phosphate (NADPH) was added to initiate the reaction. Samples were processed and liquid chromatography tandem mass spectrometry (LC/MS/MS) was used to detect metabolites produced by specific substrates.
  • LC/MS/MS liquid chromatography tandem mass spectrometry
  • Example 4 has no or weak inhibitory effect on five isoenzymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) of human liver microsomal cytochrome P450 (CYP).
  • OBJECTIVE To evaluate the efficacy of test compounds in human gastric cancer NCI-N87 cells subcutaneous xenografts in a BALB/c nude mouse model.
  • mice female BALB/c nude mice, 6-8 weeks old, weighing 18-22 g; supplier: Shanghai Xipuer-Beikai Experimental Animal Co., Ltd. Experimental methods and procedures:
  • Human gastric cancer NCI-N87 cells were cultured in vitro in a single layer, cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum, 100 U/mL penicillin, 100 ⁇ g/mL streptomycin and 2 mM glutamine, 37 ° C 5% CO 2 to cultivate. Passage was routinely digested with trypsin-EDTA twice a week. When the cell saturation is 80%-90%, the cells are collected, counted, and inoculated.
  • test compound was formulated into a 10 mg/mL solution, and the solvent was 10% NMP + 10% ethylene glycol stearate + 80% water.
  • the experimental indicator is to investigate whether tumor growth is inhibited, delayed or cured.
  • Tumor diameters were measured twice a week using vernier calipers.
  • TGI (%) [1- (mean tumor volume at the end of administration of a treatment group - mean tumor volume at the start of administration of the treatment group) / (mean tumor volume at the end of treatment of the solvent control group - The average tumor volume at the start of treatment in the solvent control group) was ⁇ 100%.
  • T/C% TRTV/CRTV group started treatment (TRTV: treatment group RTV; CRTV: vehicle control group RTV).
  • Statistical analysis included mean and standard error (SEM) of tumor volume at each time point for each group.
  • the treatment group showed the best therapeutic effect on the 21st day after the administration at the end of the trial, and therefore statistical analysis was performed based on this data to evaluate the difference between the groups.
  • T-test was used for comparison between the two groups, and one-way ANOVA was used for comparison between three groups or groups. If there was a significant difference in F values, the Games-Howell method was used for the test. If there is no significant difference in F values, the Dunnet (2-sided) method is used for analysis. All data analysis was performed with SPSS 17.0. A significant difference was considered at p ⁇ 0.05.
  • the body weight of the mice in the treatment group decreased slightly, and gradually recovered in the later stage, and there was no other morbidity or death.
  • Example 4 of the present invention Compared with the vehicle group, Example 4 of the present invention exhibited an excellent effect of inhibiting tumor growth with a TGI of 112.13%. Therefore, the compound of the present invention has an excellent effect of inhibiting tumor growth.
  • the c.p value is based on the tumor volume.
  • Example 4 After administration of Example 4, a high drug concentration can be achieved in tumor tissues; Example 4 also has a higher distribution in brain tissue.
  • OBJECTIVE To study the in vivo efficacy of test compounds in human breast cancer BT-474 cells BALB/c nude mice subcutaneous xenograft model. Animals: Female BALB/c nude mice, 6-8 weeks old, weight 18 -22 grams; supplier: Beijing Weitong Lihua Experimental Animal Technology Co., Ltd.
  • Human breast cancer BT474 cells were cultured in vitro in a single layer cultured in an ATCC Hybri-Care Medium with 1.5 g/L sodium bicarbonate, 10% fetal bovine serum, 100 U/mL penicillin and 100 ⁇ g/mL streptomycin, 37 ° C 5% CO 2 incubator culture. Passage was routinely digested with trypsin-EDTA twice a week. When the cell saturation is 80%-90%, when the number reaches the requirement, the cells are collected, counted, and inoculated.
  • 0.2 mL (1 ⁇ 10 7 ) of BT474 cells were subcutaneously inoculated into the right back of each mouse, and group administration was started when the average tumor volume reached about 168 mm 3 . (Estrogen tablets were inoculated three days before cell inoculation).
  • Example 4 In this experiment, we evaluated the in vivo efficacy of Example 4 and Example 32 in a human breast cancer BT-474 cell BALB/c nude mouse subcutaneous xenograft tumor model. The results are shown in Table 8. The tumor volume of the vehicle-bearing mice in the vehicle control group reached 1207 mm 3 20 days after the start of administration.
  • Example 4 and Example 32 of the present case exhibited an excellent tumor growth inhibiting effect compared with the vehicle group, and the TGI was 112.93% and 106.44%, respectively. Therefore, the compound of the present invention has an excellent antitumor effect.
  • the c.p value is calculated according to RTV.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Gynecology & Obstetrics (AREA)
  • Pregnancy & Childbirth (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Endocrinology (AREA)
  • Reproductive Health (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

本发明涉及一类作为选择性HER2抑制剂的吡咯并[2,1-f][1,2,4]三嗪类衍生物,以及在制备作为HER2抑制剂的药物中的应用。具体涉及式(Ⅰ)所示化合物、其异构体或其药学上可接受的盐。

Description

作为选择性HER2抑制剂的吡咯并[2,1-f][1,2,4]三嗪类衍生物及其应用
本申请主张如下优先权:
CN201810434197.8,申请日:2018年05月08日。
技术领域
本发明涉及一类作为选择性HER2抑制剂的吡咯并[2,1-f][1,2,4]三嗪类衍生物,以及在制备作为HER2抑制剂的药物中的应用。具体涉及式(Ⅰ)所示化合物、其异构体或其药学上可接受的盐。
背景技术
人类表皮生长因子受体(HER,EGFR)是蛋白酪氨酸激酶家族的一员,广泛分布于人体各组织细胞膜上,可以调节细胞的增殖,生长,转移和凋亡。其结构由三部分组成:胞外的配体结合区、跨膜区以及胞内的酪氨酸激酶区。根据受体的结构差异,可以将HER区分为四种亚型,分别为HER1(EGFR,ErbB-1)、HER2(ErbB-2)、HER3(ErbB-3)及HER4(ErbB-4)。研究证明HER2在多种癌症中过量表达,HER2过表达预示肿瘤具有更强的侵袭性,更易早期复发转移。1998年,赫赛汀(人源化抗HER2单克隆抗体)在美国被批准用于乳腺癌。目前,HER2已经成为乳腺癌、胃癌、食管癌的治疗靶点。目前已经上市及在研的HER2小分子激酶抑制剂通常同时对HER1也有抑制作用,研究已经证明,抑制HER1会产生靶点相关的一些毒副作用,比如:皮疹、腹泻。因此,降低化合物对HER1的抑制活性,提高化合物对HER2的选择性,可有效缓解上述毒副现作用。目前尚无选择性HER2酪氨酸激酶抑制剂被批准上市,目前有一个化合物tucatinib,处于II临床研究(WO2007/059257A2)。
Figure PCTCN2019086032-appb-000001
因此,有必要进一步开发选择性HER2酪氨酸激酶抑制剂。
发明内容
本发明提供了式(Ⅰ)化合物、其异构体或其药学上可接受的盐,
Figure PCTCN2019086032-appb-000002
其中,
m为0、1或2;
n为0、1或2;
T 1选自N和CH;
D 1选自O、N(R 6)和C(R 7)(R 8);
R 1分别独立地选自H、F、Cl、Br、I、OH、NH 2、C 1-6烷基和C 1-6烷氧基,其中所述C 1-6烷基和C 1-6烷氧基任选被1、2或3个R a取代;
R 2分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1-6烷基,其中所述C 1-6烷基任选被1、2或3个R b取代;
或者,R 1与R 2相互连接形成-(CH 2) p-,此时m和n均为1;
R 3和R 4分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1-6烷基,其中所述C 1-6烷基任选被1、2或3个R c取代;
或者,R 3与R 4相互连接形成-(CH 2) q-;
p为1或2;
q为1或2;
R 51、R 52、R 53和R 54分别独立地选自H、F、Cl、Br、I、OH、NH 2、C 1-6烷基和C 1-3烷氧基,其中所述
C 1-6烷基和C 1-3烷氧基任选被1、2或3个R d取代;
R 6选自H、F、Cl、Br、I、OH、NH 2、C 1-6烷基和-C(=O)-C 2-6烯基,其中所述C 1-6烷基和-C(=O)-C 2-6烯基任选被1、2或3个R e取代;
R 7选自H、F、Cl、Br、I、OH、NH 2和C 1-6烷基,其中所述NH 2和C 1-6烷基任选被1、2或3个R f取代;
R 8选自H、F、Cl、Br、I和C 1-6烷基,其中所述C 1-6烷基任选被1、2或3个R g取代;
R 9和R 10分别独立地选自H、F、Cl、Br、I、OH、NH 2、C 1-6烷基和C 1-3烷氧基,其中所述C 1-6烷基和C 1-3烷氧基任选被1、2或3个R h取代;
R a、R b和R c分别独立地选自F、Cl、Br、I、OH和NH 2
R d分别独立地选自F、Cl、Br、I、OH、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R取代;
R e、R f、R g和R h分别独立地选自F、Cl、Br、I、OH、NH 2、C 1-3烷基和C 1-3烷氧基,其中所述C 1-3烷基和C 1-3烷氧基任选被1、2或3个R取代;
R分别独立地选自F、Cl、Br、I、OH、NH 2、CH 3、Et和-OCH 3
本发明的一些方案中,上述R d分别独立地选自F、Cl、Br、I、OH、NH 2,其他变量如本发明所定义。。
本发明的一些方案中,上述R e、R f、R g和R h分别独立地选自F、Cl、Br、I、OH、NH 2、CH 3、Et、
Figure PCTCN2019086032-appb-000003
和-OCH 3,其他变量如本发明所定义。
本发明的一些方案中,上述R 1分别独立地选自H、F、Cl、Br、I、OH、NH 2、C 1-3烷基和C 1-3烷氧基,其中所述C 1-3烷基和C 1-3烷氧基任选被1、2或3个R a取代,其他变量如本发明所定义。。
本发明的一些方案中,上述R 1分别独立地选自H、F、Cl、Br、I、OH、NH 2、CH 3、Et和-OCH 3,其他变量如本发明所定义。
本发明的一些方案中,上述R 2分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R b取代,其他变量如本发明所定义。。
本发明的一些方案中,上述R 2分别独立地选自H、F、Cl、Br、I、OH、NH 2、CH 3和Et,其他变量如本发明所定义。
本发明的一些方案中,上述R 3和R 4分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R c取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 3和R 4分别独立地选自H、F、Cl、Br、I、OH、NH 2、CH 3和Et,其他变量如本发明所定义。
本发明的一些方案中,上述R 51、R 52、R 53和R 54分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R d取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 51、R 52、R 53和R 54分别独立地选自H、F、Cl、Br、I、OH、NH 2、CH 3、Et和CF 3,其他变量如本发明所定义。
本发明的一些方案中,上述R 6选自H、F、Cl、Br、I、OH、NH 2、C 1-3烷基和-C(=O)-C 2-4烯基,其中所述C 1-3烷基和-C(=O)-C 2-4烯基任选被1、2或3个R e取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 6选自H、F、Cl、Br、I、OH、NH 2、CH 3、Et和-C(=O)-CH=CH 2,其他变量如本发明所定义。
本发明的一些方案中,上述R 7选自H、F、Cl、Br、I、OH、NH 2和C 1-3烷基,其中所述NH 2和C 1-3烷基任选被1、2或3个R f取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 7选自H、F、Cl、Br、I、OH、NH 2、CH 3、Et、
Figure PCTCN2019086032-appb-000004
其他变量如本发明所定义。
本发明的一些方案中,上述R 8选自H、F、Cl、Br、I和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R g取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 8选自H、F、Cl、Br、I、CH 3、Et和
Figure PCTCN2019086032-appb-000005
其他变量如本发明所定义。
本发明的一些方案中,上述R 9和R 10分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R g取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 9和R 10分别独立地选自H、F、Cl、Br、I、OH、NH 2、CH 3和Et,其他变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure PCTCN2019086032-appb-000006
选自
Figure PCTCN2019086032-appb-000007
其他变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure PCTCN2019086032-appb-000008
选自
Figure PCTCN2019086032-appb-000009
Figure PCTCN2019086032-appb-000010
其他变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure PCTCN2019086032-appb-000011
选自
Figure PCTCN2019086032-appb-000012
Figure PCTCN2019086032-appb-000013
Figure PCTCN2019086032-appb-000014
其他变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure PCTCN2019086032-appb-000015
选自
Figure PCTCN2019086032-appb-000016
Figure PCTCN2019086032-appb-000017
Figure PCTCN2019086032-appb-000018
其他变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure PCTCN2019086032-appb-000019
选自
Figure PCTCN2019086032-appb-000020
Figure PCTCN2019086032-appb-000021
Figure PCTCN2019086032-appb-000022
其他变量如本发明所定义。
本发明还有一些方案是由上述各变量任意组合而来。
本发明的一些方案中,上述化合物、其异构体或其药学上可接受的盐,选自
Figure PCTCN2019086032-appb-000023
Figure PCTCN2019086032-appb-000024
其中,
m、n、p、q、D 1、R 1、R 51、R 52、R 53、R 54、R 9和R 10如本发明所定义。
本发明的一些方案中,上述化合物、其异构体或其药学上可接受的盐,选自
Figure PCTCN2019086032-appb-000025
其中,
m、n、p、q、R 1、R 51、R 52、R 53、R 54、R 6、R 7、R 8、R 9和R 10如本发明所定义。 本发明的一些方案中,上述化合物、其异构体或其药学上可接受的盐,选自
Figure PCTCN2019086032-appb-000026
其中,
R 1、R 51、R 52、R 53、R 54、R 6、R 7、R 8、R 9和R 10如本发明所定义。
本发明还提供了式(Ⅰ)化合物、其异构体或其药学上可接受的盐,
Figure PCTCN2019086032-appb-000027
其中,
m为0、1或2;
n为0、1或2;
T 1选自N和CH;
D 1选自O、N(R 6)和C(R 7)(R 8);
R 1分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1-6烷基,其中所述C 1-6烷基任选被1、2或3个R a取代;
R 2分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1-6烷基,其中所述C 1-6烷基任选被1、2或3个R b取代;
或者,R 1与R 2相互连接形成-(CH 2) p-,此时m和n均为1;
R 3和R 4分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1-6烷基,其中所述C 1-6烷基任选被1、2或3个R c取代;
或者,R 3与R 4相互连接形成-(CH 2) q-;
p为1或2;
q为1或2;
R 51、R 52、R 53和R 54分别独立地选自H、F、Cl、Br、I、OH、NH 2、C 1-6烷基和C 1-3烷氧基,其中所述C 1-6烷基和C 1-3烷氧基任选被1、2或3个R d取代;
R 6选自H、F、Cl、Br、I、OH、NH 2、C 1-6烷基和-C(=O)-C 2-6烯基,其中所述C 1-6烷基和-C(=O)-C 2-6烯基任选被1、2或3个R e取代;
R 7选自H、F、Cl、Br、I、OH、NH 2和C 1-6烷基,其中所述NH 2和C 1-6烷基任选被1、2或3个R f取代;
R 8选自H、F、Cl、Br、I和C 1-6烷基,其中所述C 1-6烷基任选被1、2或3个R g取代;
R 9和R 10分别独立地选自H、F、Cl、Br、I、OH、NH 2、C 1-6烷基和C 1-3烷氧基,其中所述C 1-6烷基和C 1-3烷氧基任选被1、2或3个R h取代;
R a、R b和R c分别独立地选自F、Cl、Br、I、OH和NH 2
R d分别独立地选自F、Cl、Br、I、OH、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R取代;
R e、R f、R g和R h分别独立地选自F、Cl、Br、I、OH、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R取代;
R分别独立地选自F、Cl、Br、I、OH和NH 2
本发明的一些方案中,上述R d分别独立地选自F、Cl、Br、I、OH、NH 2,其他变量如本发明所定义。
本发明的一些方案中,上述R e、R f、R g和R h分别独立地选自F、Cl、Br、I、OH、NH 2,其他变量如本发明所定义。
本发明的一些方案中,上述R 1分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R a取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 1分别独立地选自H、F、Cl、Br、I、OH、NH 2、CH 3和Et,其他变量如本发明所定义。
本发明的一些方案中,上述R 2分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R b取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 2分别独立地选自H、F、Cl、Br、I、OH、NH 2、CH 3和Et,其他变量如本发明所定义。
本发明的一些方案中,上述R 3和R 4分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R c取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 3和R 4分别独立地选自H、F、Cl、Br、I、OH、NH 2、CH 3和Et,其他变量如本发明所定义。
本发明的一些方案中,上述R 51、R 52、R 53和R 54分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1- 3烷基,其中所述C 1-3烷基任选被1、2或3个R d取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 51、R 52、R 53和R 54分别独立地选自H、F、Cl、Br、I、OH、NH 2、CH 3和Et,其他变量如本发明所定义。
本发明的一些方案中,上述R 6选自H、F、Cl、Br、I、OH、NH 2、C 1-3烷基和-C(=O)-C 2-4烯基,其中所述C 1-3烷基和-C(=O)-C 2-4烯基任选被1、2或3个R e取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 6选自H、F、Cl、Br、I、OH、NH 2、CH 3、Et和-C(=O)-CH=CH 2,其他变量如本发明所定义。
本发明的一些方案中,上述R 7选自H、F、Cl、Br、I、OH、NH 2和C 1-3烷基,其中所述NH 2和C 1-3烷基任选被1、2或3个R f取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 7选自H、F、Cl、Br、I、OH、NH 2、CH 3和Et,其他变量如本发明所定义。
本发明的一些方案中,上述R 8选自H、F、Cl、Br、I和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R g取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 8选自H、F、Cl、Br、I、CH 3和Et,其他变量如本发明所定义。
本发明的一些方案中,上述R 9和R 10分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R g取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 9和R 10分别独立地选自H、F、Cl、Br、I、OH、NH 2、CH 3和Et,其他变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure PCTCN2019086032-appb-000028
选自
Figure PCTCN2019086032-appb-000029
Figure PCTCN2019086032-appb-000030
其他变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure PCTCN2019086032-appb-000031
选自
Figure PCTCN2019086032-appb-000032
Figure PCTCN2019086032-appb-000033
其他变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure PCTCN2019086032-appb-000034
选自
Figure PCTCN2019086032-appb-000035
Figure PCTCN2019086032-appb-000036
其他变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure PCTCN2019086032-appb-000037
选自
Figure PCTCN2019086032-appb-000038
Figure PCTCN2019086032-appb-000039
Figure PCTCN2019086032-appb-000040
其他变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure PCTCN2019086032-appb-000041
选自
Figure PCTCN2019086032-appb-000042
Figure PCTCN2019086032-appb-000043
Figure PCTCN2019086032-appb-000044
其他变量如本发明所定义。
本发明的一些方案中,上述化合物、其异构体或其药学上可接受的盐,选自
Figure PCTCN2019086032-appb-000045
其中,
m、n、p、q、D 1、R 51、R 52、R 53、R 54、R 9和R 10如本发明所定义。
本发明的一些方案中,上述化合物、其异构体或其药学上可接受的盐,选自
Figure PCTCN2019086032-appb-000046
Figure PCTCN2019086032-appb-000047
其中,
m、n、p、q、R 51、R 52、R 53、R 54、R 6、R 7、R 8、R 9和R 10如本发明所定义。
本发明还提供了下式化合物、其异构体或其药学上可接受的盐,选自
Figure PCTCN2019086032-appb-000048
Figure PCTCN2019086032-appb-000049
本发明的一些方案中,上述化合物、其异构体或其药学上可接受的盐,选自
Figure PCTCN2019086032-appb-000050
本发明还提供了上述化合物或其药学上可接受的盐在制备治疗HER2相关疾病的药物中的应用。
本发明的一些方案中,上述药物是用于治疗乳腺癌、胃癌、结直肠癌、食管癌、肺癌的药物。
技术效果
作为新型的HER2抑制剂,本发明化合物能够选择性抑制HER2,对NCI-N87细胞和BT-474细胞增殖抑制活性明显;并且具有优异的抑制肿瘤生长的效果。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物的中性形式接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机胺或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物的中性形式接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。
除非另有说明,术语“顺反异构体”或者“几何异构体”系由因双键或者成环碳原子单键不能自由旋 转而引起。
除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。
除非另有说明,“(D)”或者“(+)”表示右旋,“(L)”或者“(-)”表示左旋,“(DL)”或者“(±)”表示外消旋。
除非另有说明,用楔形实线键
Figure PCTCN2019086032-appb-000051
和楔形虚线键
Figure PCTCN2019086032-appb-000052
表示一个立体中心的绝对构型,用直形实线键
Figure PCTCN2019086032-appb-000053
和直形虚线键
Figure PCTCN2019086032-appb-000054
表示立体中心的相对构型,用波浪线
Figure PCTCN2019086032-appb-000055
表示楔形实线键
Figure PCTCN2019086032-appb-000056
或楔形虚线键
Figure PCTCN2019086032-appb-000057
或用波浪线
Figure PCTCN2019086032-appb-000058
表示直形实线键
Figure PCTCN2019086032-appb-000059
和直形虚线键
Figure PCTCN2019086032-appb-000060
除非另有说明,当化合物中存在双键结构,如碳碳双键、碳氮双键和氮氮双键,且双键上的各个原子均连接有两个不同的取代基时(包含氮原子的双键中,氮原子上的一对孤对电子视为其连接的一个取代基),如果该化合物中双键上的原子与其取代基之间用波浪线
Figure PCTCN2019086032-appb-000061
连接,则表示该化合物的(Z)型异构体、(E)型异构体或两种异构体的混合物。例如下式(A)表示该化合物以式(A-1)或式(A-2)的单一异构体形式存在或以式(A-1)和式(A-2)两种异构体的混合物形式存在;下式(B)表示该化合物以式(B-1)或式(B-2)的单一异构体形式存在或以式(B-1)和式(B-2)两种异构体的混合物形式存在。下式(C)表示该化合物以式(C-1)或式(C-2)的单一异构体形式存在或以式(C-1)和式(C-2)两种异构体的混合物形式存在。
Figure PCTCN2019086032-appb-000062
本发明的化合物可以存在特定的。除非另有说明,术语“互变异构体”或“互变异构体形式”是指在室温下,不同官能团异构体处于动态平衡,并能很快的相互转化。若互变异构体是可能的(如在溶液中),则可以达到互变异构体的化学平衡。例如,质子互变异构体(proton tautomer)(也称质子转移互变异构体(prototropic tautomer))包括通过质子迁移来进行的互相转化,如酮-烯醇异构化和亚胺-烯胺异构化。价键异 构体(valence tautomer)包括一些成键电子的重组来进行的相互转化。其中酮-烯醇互变异构化的具体实例是戊烷-2,4-二酮与4-羟基戊-3-烯-2-酮两个互变异构体之间的互变。
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR) 0-,表示该连接基团为单键。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。
当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时,这种取代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。
当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure PCTCN2019086032-appb-000063
中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成
Figure PCTCN2019086032-appb-000064
也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成
Figure PCTCN2019086032-appb-000065
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
除非另有规定,术语“烷基”用于表示直链或支链的饱和的碳氢基团,在一些实施方案中,所述烷基为C 1-12烷基;在另一些实施方案中,所述烷基为C 1-6烷基;在另一些实施方案中,所述烷基为C 1-3烷基。其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。烷基的实例包括但不限于甲基(Me),乙基(Et),丙基(包括n-丙基和异丙基),丁基(包括n-丁基,异丁基,s-丁基和t-丁基),戊基(包括n-戊基,异戊基和新戊基)、己基等。
除非另有规定,“烯基”用于表示直链或支链的包含一个或多个碳-碳双键的碳氢基团,碳-碳双键可以位于该基团的任何位置上。在一些实施方案中,所述烯基为C 2-8烯基;在另一些实施方案中,所述烯基为C 2-6烯基;在另一些实施方案中,所述烯基为C 2-4烯基。其可以是一价、二价或者多价。烯基的实例包括但不限于乙烯基,丙烯基,丁烯基,戊烯基,己烯基,丁间二烯基,戊间二烯基,己间二烯基等。
除非另有规定,术语“烷氧基”是指通过一个氧原子连接到分子的其余部分的那些烷基基团。除非另有规定,C 1-6烷氧基包括C 1、C 2、C 3、C 4、C 5和C 6的烷氧基。在一些实施方案中,所述烷氧基为C 1-3烷氧基。烷氧基的实例包括但不限于:甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、仲丁氧基、叔丁氧基、正戊氧基和S-戊氧基。烷氧基的实例包括但不限于-OCH 3、-OCH 2CH 3、-OCH 2CH 2CH 3、-OCH 2(CH 3) 2、-CH 2-CH 2-O-CH 33等。
除非另有规定,术语“-C(=O)-C 2-6烯基”是指通过-C(=O)-连接到C 2-6烯基基团。除非另有规定,-C(=O)-C 2-6烯基包含-C(=O)-C 2烯基、-C(=O)-C 3烯基、-C(=O)-C 4烯基、-C(=O)-C 5烯基和-C(=O)-C 4烯基。-C(=O)-C 2-6烯基的实例包括但不限于-C(=O)-CH=CH 2、-C(=O)-CH=CHCH 3、-C(=O)-CH 2CH=CH 2、-C(=O)- (CH 2) 2CH=CH 2、-C(=O)-(CH 2) 3CH=CH 2、-C(=O)-(CH 2) 4CH=CH 2、-C(=O)-CH 2CH=C(CH 3) 2、-C(=O)-CH=C(CH 3) 2等。
除非另有规定,术语“-C(=O)-C 2-4烯基”是指通过-C(=O)-连接到C 2-4烯基基团。除非另有规定,-C(=O)-C 2-4烯基包含-C(=O)-C 2烯基、-C(=O)-C 3烯基和-C(=O)-C 4烯基。-C(=O)-C 2-4烯基的实例包括但不限于-C(=O)-CH=CH 2、-C(=O)-CH=CHCH 3、-C(=O)-CH 2CH=CH 2、-C(=O)-CH=CHCH 2CH 3、-C(=O)-CH 2CH=CHCH 3、-C(=O)-(CH 2) 2CH=CH 2、-C(=O)-CH=C(CH 3) 2等。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明所使用的溶剂可经市售获得。本发明采用下述缩略词:Pd(dppf)Cl 2代表[1,1'-双(二苯基膦基)二茂铁]二氯化钯;DIBAL-H代表二异丁基氢化铝;DIPEA代表N-二异丙基乙基胺;Et代表乙基;DMF-DMA代表N,N-二甲基甲酰胺二甲基缩醛;NMP代表N-甲基吡咯烷酮;DMF代表N,N-二甲基甲酰胺。
化合物依据本领域常规命名原则或者使用
Figure PCTCN2019086032-appb-000066
软件命名,市售化合物采用供应商目录名称。
具体实施方式
下面经过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
中间体1
Figure PCTCN2019086032-appb-000067
第一步
将化合物1-1(100.00g,653.02mmol,1.50eq)和化合物1-2(56.00g,435.59mmol,1.00eq)溶于氯苯(400mL)中,加入吡啶(6.89g,87.07mmol,7.00mL,0.20eq),氮气保护,反应液在135℃下搅拌72小时。TLC(石油醚:乙酸乙酯=1:1)检测反应完全。反应液降温至室温后,有固体析出,过滤,滤饼用乙酸乙酯洗涤(50mL*5),固体减压浓缩蒸干后得到化合物1-3。 1H NMR(400MHz,DMSO-d 6)δ8.39(d,J=2.8Hz,1H),8.23(dd,J=2.4,8.4Hz,1H),8.02(d,J=7.2Hz,1H),8.00-7.89(m,2H),7.52(d,J=8.8Hz,1H),6.67(dd,J=2.0,6.8Hz,1H),6.16(s,1H),2.28(s,3H)。
第二步
将化合物1-3(70.00g,285.44mmol,1.00eq)溶解于异丙醇(400mL),加入DMF-DMA(68.03g,570.88 mmol,76.00mL,2.00eq),在90℃下反应4小时后降温至50℃,加入盐酸羟胺(29.75g,428.16mmol,1.50eq),反应液在50℃反应16小时。LCMS检测反应,反应完全,且有固体析出。将反应液过滤,滤饼用水(100mL*3)洗涤,浓缩蒸干得化合物1-4。 1H NMR(400MHz,DMSO-d 6)δ10.07(s,1H),9.36(d,J=9.6Hz,1H),8.33(d,J=2.8Hz,1H),8.16(dd,J=2.8,8.8Hz,1H),8.10(d,J=5.6Hz,1H),7.83(d,J=10.0Hz,1H),7.31(d,J=9.2Hz,1H),6.61(d,J=2.0Hz,1H),6.55(dd,J=2.4,5.6Hz,1H),2.28(s,3H)。MS:m/z289.1[M+H] +
第三步
将化合物1-4(40.00g,138.76mmol,1.00eq)溶解于四氢呋喃(120mL)中,将反应液升至50℃后缓慢滴入用四氢呋喃(60mL)稀释的三氟乙酸酐(32.06g,152.64mmol,21.23mL,1.10eq),滴加完毕后LCMS和TLC(二氯甲烷:甲醇=30:1)检测反应,反应完全。将反应液浓缩除去大部分溶剂后缓慢倒入冰冷的1M氢氧化钠水溶液(1000mL)中,固体析出,过滤,滤饼用水(100mL*2)和乙酸乙酯(100mL*2)洗涤,浓缩得化合物1-5。 1H NMR(400MHz,DMSO-d 6)δ9.02(d,J=7.6Hz,1H),8.47(s,1H),8.33(s,1H),8.16-8.11(m,1H),7.37-7.25(m,2H),7.11(dd,J=2.0,7.6Hz,1H),2.36(s,3H)。MS:m/z 270.9[M+H] +
第四步
将化合物1-5(33.00g,122.11mmol,1.00eq)溶解于四氢呋喃(120mL)和甲醇(300mL)的混合溶液中,加入湿Pd/C(5.00g,10%纯度),用氢气置换并在25℃,20psi下氢化反应16小时。LCMS检测反应,反应完全。将反应液直接过滤(硅藻土助滤),滤液浓缩得中间体1。 1H NMR(400MHz,DMSO-d 6)δ8.87(d,J=7.6Hz,1H),8.34(s,1H),6.95(dd,J=2.8,7.6Hz,1H),6.82(d,J=8.4Hz,1H),6.62(d,J=2.4Hz,1H),6.54(d,J=2.4Hz,1H),6.49(dd,J=2.4,8.4Hz,1H),5.12(s,2H),1.99(s,3H)。MS:m/z 241.0[M+H] +
中间体2
Figure PCTCN2019086032-appb-000068
第一步
于0℃下分批将钠氢(1.27g,31.86mmol,60%纯度,1.30eq)加入N,N-二甲基甲酰胺(90mL)和四氢呋喃(450mL)的混合溶剂中,将化合物2-1(5.00g,24.51mmol,1.00eq)于0℃下分批加入并于15℃下搅拌1小时,然后0℃下分批加入化合物2-2(5.86g,29.41mmol,1.20eq),15℃下搅拌16小时。TLC(石油醚:乙酸乙酯=5:1)和LCMS检测反应完全。将反应液冷却到0℃,用饱和氯化铵水溶液(50mL)淬灭,然后用水(1L)稀释,乙酸乙酯萃取(200mL*2),有机相用饱和食盐水洗涤(200mL*2),无水 硫酸钠干燥,过滤,滤液减压浓缩得到化合物2-3。 1H NMR(400MHz,DMSO-d 6)δ7.06(d,J=3.2Hz,1H),6.30(s,2H),6.18(d,J=3.2Hz,1H),3.79(s,3H)。
第二步
将化合物2-3(42g,191.75mmol,1.00eq)溶解于异丙醇(420mL)中,然后加入醋酸甲脒(39.93g,383.50mmol,2.00eq),于80℃下反应16小时。TLC(石油醚:乙酸乙酯=1:1)检测反应基本完全。将反应液冷却到室温,用水(420mL)稀释,过滤,滤饼用水洗,石油醚洗,减压浓缩蒸干得到化合物2-4。 1H NMR(400MHz,DMSO-d 6)δ11.68(br s,1H),7.83(s,1H),7.60(d,J=3.2Hz,1H),6.65(d,J=3.2Hz,1H)。
第三步
将化合物2-4(25.00g,116.81mmol,1.00eq)溶解于1,4-二氧六环(500mL)中,加入氧氯化磷(179.11g,1.17mol,108.55mL,10.00eq),升温到110℃反应4小时。TLC(石油醚:乙酸乙酯=1:1)和LCMS检测反应完全。将反应液冷却到室温,减压浓缩除去大部分溶剂,剩余物倒入冰冷的饱和碳酸氢钠水溶液中(500mL),乙酸乙酯萃取(200mL*2),有机相依次用饱和碳酸氢钠水溶液(200mL)和饱和食盐水(200mL*2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物2-5。 1H NMR(400MHz,CHCl 3-d)δ8.19(s,1H),7.82(d,J=2.8Hz,1H),7.03(d,J=2.8Hz,1H)。
第四步
将化合物2-5(13.00g,55.92mmol,1.00eq)和中间体1(8.06g,33.55mmol,0.60eq)溶解于异丙醇(100mL)中,80℃反应12小时。TLC(石油醚:乙酸乙酯=1:1)和LCMS检测反应完全。将反应液冷却到室温,过滤,滤饼用少量乙酸乙酯洗涤,石油醚洗涤,减压浓缩干燥得到中间体2。 1H NMR(400MHz,DMSO-d 6)δ9.00(d,J=7.6Hz,1H),8.52(s,1H),8.06(s,1H),7.89(d,J=2.8Hz,1H),7.81-7.70(m,2H),7.25(d,J=9.6Hz,1H),7.10(dd,J=2.8,7.6Hz,1H),6.96(d,J=2.8Hz,1H),6.86(d,J=2.8Hz,1H),2.19(s,3H)
中间体3
Figure PCTCN2019086032-appb-000069
第一步
将中间体2(1.00g,2.29mmol,1.00eq)溶于N,N-二甲基甲酰胺(10mL)和甲醇(20mL)的混合溶剂中,然后氮气保护下加入Pd(dppf)Cl 2(335mg,458.44μmol,0.20eq)和三乙胺(696,6.88mmol,957uL,3.00eq),反应液在80℃、50psi压力的一氧化碳氛围下插羰反应48小时。TLC(石油醚:乙酸乙酯=1:1)和LCMS检测反应完全。反应液冷却到室温,用水(100mL)稀释,乙酸乙酯萃取(50mL*2),有机相用饱和食盐水(40mL*2)洗涤,无水硫酸钠干燥后,过滤浓缩。浓缩物用石油醚和乙酸乙酯混合溶剂(10 mL:10mL)打浆,过滤,滤饼柱层析(12g硅胶柱,流动相极性0~60%的乙酸乙酯/石油醚,流速30mL/min),洗脱剂浓缩,再次用石油醚和乙酸乙酯混合溶剂(10mL:10mL)打浆,过滤,浓缩得到中间体3-1。 1H NMR(400MHz,DMSO-d 6)δ12.03(s,1H),8.93(d,J=7.6Hz,1H),8.39(s,1H),8.27(s,1H),7.90-7.81(m,3H),7.30-7.22(m,2H),7.03(d,J=5.6Hz,1H),6.85-6.79(m,1H),3.96(s,3H),2.21(s,3H)
第二步
将化合物3-1(200.0mg,481.46μmol,1.00eq)溶解于二氯甲烷中(4mL),氮气保护,于零下78℃下加入DIBAL-H(1M,963μL,2.00eq),自然升温到0℃反应2小时,然后在氮气保护下25℃反应16小时。TLC(石油醚:乙酸乙酯=1:1)检测反应,反应转化不完全,接近一半转化为产物。将反应液冷却到0℃,用十水合硫酸钠(0.5g)淬灭,过滤,滤饼用乙酸乙酯洗涤,滤液减压浓缩,柱层析(12g硅胶柱,流动相极性0~85%的乙酸乙酯/石油醚,流速35mL/min)得到中间体3-2。 1H NMR(400MHz,DMSO-d 6)δ11.04(s,1H),8.93(d,J=7.6Hz,1H),8.38(s,1H),8.02(s,1H),7.85-7.76(m,2H),7.69(d,J=2.4Hz,1H),7.23(d,J=8.4Hz,1H),7.02(dd,J=2.4,7.6Hz,1H),6.95(br s,1H),6.80(d,J=2.4Hz,1H),6.67(d,J=2.4Hz,1H),4.90(d,J=2.8Hz,2H),2.22(s,3H)。MS:m/z 388.1[M+H] +
第三步
将化合物3-2(250mg,645.34μmol,1.00eq)溶解于二氯甲烷(10mL)中,然后在0℃下逐滴加入氯化亚砜(86.19g,452.08mmol,1.10eq)并于20℃下搅拌0.5小时,然后在0℃下加入三乙胺(588mg,5.81mmol,808μL,9.00eq),反应液在20℃下搅拌16小时。LCMS检测反应完全。将反应液直接减压浓缩蒸干得到化合物中间体3。MS:m/z[M+H] +
中间体4
Figure PCTCN2019086032-appb-000070
将化合物3-2(500mg,1.29mmol,1.00eq)溶于二氯甲烷(10mL)中,在0℃下加二氯亚砜(492.0mg,4.14mmol,300.00μL,3.20eq),反应液0℃下搅拌2小时。反应完全后将反应液直接浓缩干得中间体4。
中间体5
Figure PCTCN2019086032-appb-000071
第一步
在0℃下,将钠氢(6.74g,168.40mmol,60%纯度,1.53eq)加入无水DMF(170mL)中,然后向其中分批加入化合物5-A(16.84g,109.94mmol,1.00eq),在20℃下反应1小时。后在0℃下将2,4-二硝基苯基羟胺(26.27g,131.92mmol,1.20eq)缓慢加入到上述反应液中,并在20℃下搅拌22小时。LCMS监测反应完全,在0℃下加入饱和氯化铵水溶液(50mL)淬灭反应,过滤,滤液减压浓缩除去DMF,加水(200mL)稀释,用乙酸乙酯(300mL*3)萃取,合并的有机相用水(100mL)和饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩蒸干后得到化合物5-B粗品。MS:m/z 168.8[M+H] +
第二步
向化合物5-B(18g,107.02mmol,1.00eq)的异丙醇(100mL)溶液中加入醋酸甲脒(18.94g,181.93mmol,1.7eq),在90℃下反应20小时。LCMS监测反应完全后,降至室温,减压浓缩蒸干得粗品,经柱层析(
Figure PCTCN2019086032-appb-000072
180g
Figure PCTCN2019086032-appb-000073
快速硅胶柱,流动相0~100%乙酸乙酯/石油醚,流速85mL/min)纯化得化合物5-C。 1H NMR(DMSO-d 6)δ11.35(s,1H),7.69(d,J=4.0Hz,1H),7.42(d,J=2.4Hz,1H),6.34(d,J=2.5Hz,1H),2.41(s,3H)。MS:m/z 149.8[M+H] +
第三步
将化合物5-C(6.00g,40.23mmol,1.00eq)加入无水甲苯中(60mL),于室温下依次缓慢加入氧氯化磷(8.02g,52.30mmol,4.86mL,1.30eq)和N,N-二异丙基乙胺(4.16g,32.18mmol,5.61mL,0.80eq),氮气保护下升温到110℃搅拌16小时。LCMS和TLC检测反应完全。将反应液冷却到室温,倒入冰冷的饱和碳酸氢钠水溶液中(100mL),乙酸乙酯萃取(50mL*2),有机相用饱和碳酸氢钠水溶液洗涤(50mL),饱和食盐水洗涤(50mL*2),无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物5-D。MS:m/z 167.8[M+H] +
第四步
将化合物5-D(8.00g,47.73mmol,1.00eq)溶于无水四氢呋喃(65mL)中,在0℃下加入甲硫醇钠水溶液(26.77g,76.37mmol,24.33mL,20%纯度,1.60eq),然后在25℃下搅拌1小时。LCMS检测反应完全。将反应液用水稀释(200mL),乙酸乙酯萃取(100mL*2),有机相用饱和食盐水洗涤(50mL*2),无水硫酸钠干燥,过滤,滤液直接减压浓缩干得粗品,粗品经柱层析分离(
Figure PCTCN2019086032-appb-000074
40g
Figure PCTCN2019086032-appb-000075
快速硅胶柱,流动相0~6.8%乙酸乙酯/石油醚,流速40mL/min)得到化合物5-E。 1H NMR(400MHz,CDCl 3-d)δ7.95(s,1H),7.46(d,J=2.4Hz,1H),6.48(d,J=2.4Hz,1H),2.56(s,3H),2.52(s,3H)。
第五步
将化合物5-E(2.00g,11.16mmol,1.00eq),N-溴代丁二酰亚胺(2.18g,12.27mmol,1.10eq)和偶氮二异丁腈(183mg,1.12mmol,0.10eq)一起加入干燥洁净的100mL反应瓶中,氮气置换三次,然后快速加入四氯化碳(40mL),不经预搅拌,直接放入100℃油浴中氮气保护搅拌1.5小时。LCMS检测反应完全。将反应液冷却到室温,过滤,滤液直接减压浓缩干得到化合物5-F。
第六步
将化合物5-F(4.50g,17.43mmol,1.00eq)溶于1,2-二氯乙烷(45mL)中,在0℃下加入化合物5-G(3.67g,18.30mmol,1.05eq),然后在25℃下搅拌1小时。LCMS检测反应完全。将反应液过滤,滤液直接减压浓缩干得粗品,粗品经柱层析分离(
Figure PCTCN2019086032-appb-000076
40g
Figure PCTCN2019086032-appb-000077
快速硅胶柱,流动相0~100%乙酸乙酯/石油醚,流速40mL/min)得到中间体5。 1H NMR(400MHz,CDCl 3-d)δ8.02(s,1H),7.52(d,J=2.8Hz,1H),6.66(d,J=2.4Hz,1H),4.34(br s,1H),3.76(s,2H),3.42(br s,1H),2.83(br d,J=11.6Hz,2H),2.56(s,3H),2.11(br t,J=10.8Hz,2H),1.85(br d,J=11.6Hz,2H),1.37(s,9H),1.36-1.29(m,2H)。
中间体6
Figure PCTCN2019086032-appb-000078
第一步
将化合物6-A(25.00g,124.85mmol,1.00eq)和DMF-DMA(22.43g,188.19mmol,1.51eq)溶解于乙醇(300mL)中,加入三氟乙酸(1.54g,13.51mmol,0.11eq),然后在50℃下搅拌16小时。LCMS检测反应完全。反应液减压蒸干得到化合物6-B。MS:m/z 255.7[M+H] +
第二步
将化合物6-B(31.80g,124.55mmol,1.00eq)和盐酸羟胺(10.40g,149.66mmol,1.2eq)溶解于异丙醇(100ml)和四氢呋喃(25ml)的混合溶剂中,然后在50℃下搅拌8小时。LCMS检测反应完全。反应液直接旋干,所得固体用四氢呋喃(300ml)和乙酸乙酯(100ml)的混合溶剂打浆。抽滤,所得滤液减压浓缩得到化合物6-C。MS:m/z 244.1[M+H] +
第三步
将化合物6-C(31.00g,127.44mmol,1.00eq)溶解于四氢呋喃(500ml)中,0℃缓慢滴加三氟乙酸酐(29.44g,140.18mmol,19.50mL,1.1eq),然后在25℃下搅拌反应16小时。反应液真空浓缩至100ml,将浓缩液倒入1.5L 1M/L的冰NaOH溶液中搅拌2h。所得混合物用乙酸乙酯(800ml*3)萃取,合并有机层并用饱和食盐水(1000ml)洗,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物6-D粗品。MS:m/z 225.8[M+H] +
第四步
将化合物6-D(15.00g,66.59mmol,1.00eq)溶于四氢呋喃(100mL)和甲醇(200mL)的混合溶剂中,在氮气保护下加入Pd/C(1.00g,10%purity)。然后将反应混合物用氢气置换3次后在25℃下搅拌16小时(15psi)。TLC 检测反应完全。将反应液过滤(硅藻土助滤),滤液浓缩后柱层析分离(
Figure PCTCN2019086032-appb-000079
80g
Figure PCTCN2019086032-appb-000080
快速硅胶柱,流动相0~10%甲醇/二氯甲烷,流速60mL/min)得中间体6。 1H NMR(400MHz,DMSO-d 6)δ10.86(brs,1H),8.71(d,J=7.2Hz,1H),8.24(s,1H),6.90(d,J=2.4Hz,1H),6.74(dd,J=2.4,7.2Hz,1H)。
中间体7
Figure PCTCN2019086032-appb-000081
第一步
将化合物7-A(4.36g,25.16mmol,1.00eq)和中间体6(3.40g,25.16mmol,1.00eq)溶于N,N-二甲基甲酰胺(40mL)中,加入碳酸钾(10.43g,75.49mmol,3.00eq)。反应液在100℃下搅拌2小时。TLC(石油醚:乙酸乙酯=1:1)检测反应完全。将反应液用水(500mL)稀释,然后用乙酸乙酯(100mL*3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥后浓缩得到的粗品柱层析分离(
Figure PCTCN2019086032-appb-000082
80g
Figure PCTCN2019086032-appb-000083
快速硅胶柱,流动相0~40%乙酸乙酯/石油醚,流速60mL/min)得化合物7-B。MS:m/z 289.1[M+H] +
第二步
将化合物7-B(0.84g,2.91mmol,1.00eq)溶解于甲醇(10mL)和水(5mL)中,加入铁粉(813.7mg,14.57mmol,5.00eq)和氯化铵(779.5mg,14.57mmol,5.00eq)。反应液在65℃下搅拌10小时。LCMS检测反应完全,将反应液过滤后浓缩除去甲醇。所得混合物用饱和碳酸氢钠(100mL)调至中性,然后用乙酸乙酯(100mL*3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥后浓缩得中间体7。MS:m/z 259.1[M+H] +
中间体8
Figure PCTCN2019086032-appb-000084
第一步
将化合物8-A(1.00g,7.40mmol,1.00eq)和中间体6(1.43g,7.40mmol,1.00eq)溶于N,N-二甲基甲酰胺(10mL)中,加入碳酸钾(3.07g,22.20mmol,3.00eq)。反应液在25℃下搅拌3小时。TLC检测反应完全。反应液用水(200mL)稀释,然后用乙酸乙酯(100mL*3)萃取。合并有机相并用饱和食盐水(50mL)洗 涤,无水硫酸钠干燥后浓缩得到的黄色油状物进一步柱层析(
Figure PCTCN2019086032-appb-000085
24g
Figure PCTCN2019086032-appb-000086
快速硅胶柱,流动相0~50%乙酸乙酯/石油醚,流速20mL/min)分离纯化得化合物8-B。 1H NMR(400MHz,DMSO-d 6)δ9.08(d,J=7.6Hz,1H),8.51(s,1H),8.22(dd,J=8.4,9.2Hz,1H),7.57(d,J=2.0Hz,1H),7.34(dd,J=2.0,9.4Hz,1H),7.22(dd,J=2.4,7.6Hz,1H)。
第二步
将化合物8-B(0.35g,1.13mmol,1.00eq)溶于乙醇(10mL)和水(5mL)的混合溶剂中,加入铁粉(316.63mg,5.67mmol,5.00eq)和氯化铵(303.28mg,5.67mmol,5.00eq)。反应液在75℃下搅拌3小时。LCMS检测反应完全。将反应液过滤(硅藻土助滤),滤液浓缩除去乙醇后用水(100mL)稀释,然后用乙酸乙酯(100mL*3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥后浓缩得到中间体8。MS:m/z 278.8[M+H] +
实施例1
Figure PCTCN2019086032-appb-000087
第一步
将中间体3(400mg,848.22μmol,1.00eq),化合物4-1(79mg,424.11μmol,35μL,0.50eq)和DIPEA(55mg,424.11μmol,74μL,0.50eq)加入乙腈(4mL)中,并于70℃下搅拌2小时。LCMS和TLC(石油醚:乙酸乙酯=1:1)检测反应完全。将反应液冷却到室温,用水(50mL)稀释,乙酸乙酯萃取(20mL*3),合并有机相,用饱和食盐水洗(20mL*2),无水硫酸钠干燥,滤液减压浓缩,经制备薄层色谱(石油醚:乙酸乙酯=1:1)分离得到4-2。MS:m/z 556.1[M+H] +
第二步
将4-2(35mg,62.99μmol,1.00eq)溶于二氯甲烷(5mL)中,然后加入三氟乙酸(1.54g,13.51mmol,1mL,214.41eq),反应液于20℃下搅拌4小时。LCMS检测反应完全。将反应液直接减压浓缩蒸干得粗品,粗品用甲醇(3mL)稀释,经制备级HPLC(甲酸条件)分离得到实施例1。 1H NMR(400MHz,DMSO-d 6)δ11.95(s,1H),8.95(d,J=7.2Hz,1H),8.39(s,1H),8.25(br s,1H),7.98(s,1H),7.79(s,2H),7.68(s,1H),7.24(d,J=9.2Hz,1H),7.04(d,J=6.8Hz,1H),6.80(s,1H),6.69(s,1H),3.83(s,2H),2.89(s,4H),2.69-2.56(m, 4H),2.24-2.16(m,3H)。MS:m/z 456.2[M+H] +
实施例2
Figure PCTCN2019086032-appb-000088
将中间体3(0.20g,169.64μmol,1.00eq)和甲基哌嗪(20mg,199.68μmol,22μL,1.18eq)溶于乙腈(5mL)中,加入DIPEA(66mg,508.93μmol,89μL,3.00eq)。反应液在70℃下搅拌1.5小时。LCMS检测反应完全。反应液浓缩后,用制备级HPLC(甲酸条件)分离纯化,得到实施例2。 1H NMR(400MHz,MeOH-d 4)δ8.76(d,J=7.5Hz,1H),8.30(s,2H),7.88(s,1H),7.82(d,J=2.3Hz,1H),7.68(dd,J=2.6,8.7Hz,1H),7.57(d,J=2.5Hz,1H),7.22(d,J=8.8Hz,1H),7.10(dd,J=2.5,7.5Hz,1H),6.82(d,J=2.3Hz,1H),6.69(d,J=2.8Hz,1H),3.96(s,2H),2.91(s,8H),2.57(s,3H),2.27(s,3H)。MS:m/z 470.1[M+H]。
实施例3
Figure PCTCN2019086032-appb-000089
将中间体3(300mg,636.16μmol,1.00eq),吗啉(28mg,318.08μmol,28μL,0.50eq)和DIPEA(41mg,318.08μmol,55μL,0.50eq)加入乙腈(2mL)中,并于70℃下搅拌2小时。LCMS检测反应完全。将反应液冷却到室温,过滤,滤液经制备级HPLC(甲酸条件)分离得到实施例3。 1H NMR(400MHz,DMSO-d 6)δ11.91(s,1H),8.93(d,J=7.6Hz,1H),8.37(s,1H),7.96(s,1H),7.79-7.76(m,2H),7.67(d,J=2.4Hz,1H),7.23(d,J=8.4Hz,1H),7.02(dd,J=2.4,7.6Hz,1H),6.79(d,J=2.4Hz,1H),6.67(d,J=2.4Hz,1H),3.84(s,2H),3.67(br s,4H),2.60(br s,4H),2.19(s,3H)。MS:m/z 457.1[M+H] +
实施例4
Figure PCTCN2019086032-appb-000090
第一步
将中间体3(0.35g,148.44μmol,1.00eq)和5-1(15mg,74.22μmol,0.50eq)溶于乙腈(1mL)中,加入DIPEA(100mg,742.2μmol,130μL,5.00eq)。反应液在70℃下搅拌1.5小时。LCMS检测反应完全。反应液浓缩后,用制备薄层色谱分离得到化合物5-2。MS:m/z 570.2[M+H] +
第二步
将化合物5-2(18mg,31.60μmol,1.00eq),溶解于二氯甲烷(1mL)中,加入三氟乙酸(154mg,1.35mmol,0.1mL,42.74eq),反应液在15℃下反应3小时。LCMS检测反应完全。将反应液浓缩,用制备HPLC分离(甲酸条件)得到实施例4。 1H NMR(400MHz,CDCl 3-d)δ11.41(s,1H),8.40(d,J=7.6Hz,1H),8.07(brs,2H),7.87(s,1H),7.67(d,J=1.6Hz,1H),7.42-7.35(m,2H),6.99-6.93(m,1H),6.85-6.77(m,2H),6.42(d,J=2.4Hz,1H),3.69(s,2H),3.04-3.01(m,3H),2.19-2.04(m,5H),1.99-1.88(m,2H),1.63-1.60(m,2H)。MS:m/z 470.1[M+H] +
实施例5
Figure PCTCN2019086032-appb-000091
第一步
将中间体3(0.35g,742.19μmol,1.00eq)和6-1(75mg,371.10μmol,73μL,0.50eq)溶于乙腈(1mL)中加 入DIPEA(480mg,3711.0μmol,650μL,5.00eq)。反应液在70℃下搅拌1.5小时。LCMS检测反应完全。将反应液浓缩后,用制备薄层色谱分离得到化合物6-2。MS:m/z 570.2[M+H] +
第二步
将化合物6-2(0.03g,52.66μmol,1.00eq),溶解于二氯甲烷(1mL)中,加入三氟乙酸(60mg,526.6μmol,39μL,10.00eq),反应液在15℃下反应3小时。LCMS检测反应完全。将反应液浓缩,用制备HPLC(甲酸条件)分离,得到实施例5。 1H NMR(400MHz,CDCl 3-d)δ11.24(s,1H),8.42(d,J=7.6Hz,2H),8.14(s,1H),7.89(s,1H),7.60(s,1H),7.51-7.38(m,2H),7.02(d,J=8.4Hz,1H),6.87-6.74(m,2H),6.47(s,1H),3.90(s,4H),3.18(s,3H),3.05-2.92(m,3H),2.16(s,3H),2.07-1.96(m,2H)。MS:m/z 470.2[M+H] +
实施例6
Figure PCTCN2019086032-appb-000092
实施例6的制备参照实施例2的合成方法。 1H NMR(400MHz,DMSO-d 6)δ12.61(s,1H),8.94(d,J=7.6Hz,1H),8.39(s,1H),7.93(s,1H),7.69-7.52(m,3H),7.22(d,J=8.4Hz,1H),7.03(dd,J=2.4,7.6Hz,1H),6.79(d,J=2.4Hz,1H),6.68(s,1H),4.50(s,1H),3.97-3.65(m,2H),3.26(s,4H),2.17(s,3H),1.97(s,4H),1.75(s,1H)。MS:m/z 497.1[M+H] +
实施例7
Figure PCTCN2019086032-appb-000093
实施例7的制备参照实施例1的合成方法。 1H NMR(400MHz,DMSO-d 6)δ=10.74(s,1H),8.97(d,J=7.6 Hz,1H),7.92(s,1H),7.86-7.85(m,1H),7.79(s,2H),7.72(s,1H),7.67(d,J=2.4Hz,1H),7.61(d,J=7.6Hz,1H),7.27(d,J=8.4Hz,1H),7.06(dd,J=2.8,7.6Hz,1H),6.75(d,J=2.4Hz,1H),6.64(d,J=2.4Hz,1H),3.91(s,2H),3.27(s,1H),3.02(d,J=8.8Hz,2H),2.33(s,1H),2.29(s,2H),2.21(s,3H),1.66(s,2H),1.49(d,J=8.0Hz,2H)。MS:m/z 496.1[M+H] +
实施例8
Figure PCTCN2019086032-appb-000094
实施例8的制备参照实施例1的合成方法。 1H NMR(400MHz,DMSO-d 6)δ=8.95(d,J=7.6Hz,1H),8.39(s,1H),7.96(m,J=14.4Hz,4H),7.68(m,3H),7.22(d,J=8.4Hz,1H),7.05(dd,J=2.4,7.6Hz,1H),6.80(s,1H),6.69(s,1H),4.11(s,2H),3.61-3.45(m,1H),3.48(m,3H),2.19(s,3H),2.09-1.95(m,2H),1.70(m,J=7.2Hz,4H)。MS:m/z 496.2[M+H] +
实施例9
Figure PCTCN2019086032-appb-000095
实施例9的制备参照实施例1的合成方法。 1H NMR(400MHz,DMSO-d 6)δ=11.83(s,1H),8.95(d,J=7.6Hz,1H),8.39(s,1H),7.98(s,1H),7.82-7.63(m,3H),7.23(d,J=9.2Hz,1H),7.04(dd,J=2.8,7.5Hz,1H),6.79(d,J=2.4Hz,1H),6.67(d,J=2.4Hz,1H),3.87(s,2H),2.86(s,2H),2.52-2.51(m,2H),2.20(s,3H),1.86-1.62(m,4H),1.27(s,3H)。MS:m/z 484.2[M+H] +
实施例10
Figure PCTCN2019086032-appb-000096
将实施例1(0.05g,109.77μmol,1.00eq)和碳酸氢钠(28mg,329.30μmol,13μL,3.00eq)溶解于四氢呋喃(0.5mL)和水(0.5mL)中,在0℃下滴加丙烯酰氯(5mg,54.88μmol,5μL,0.50eq)的四氢呋喃(0.5mL)溶液。反应液在0℃下反应1.5小时。LCMS检测反应完全。用水(50mL)稀释然后用乙酸乙酯(30mL*3)萃取。合并有机相用饱和食盐水(50mL)洗涤,用无水硫酸钠干燥后浓缩得实施例10。 1H NMR(400MHz,DMSO-d 6)δ=11.75(s,1H),8.94(d,J=7.6Hz,1H),8.38(s,1H),8.23(s,1H),7.99(s,1H),7.79(s,1H),7.76(·d,J=8.8Hz,1H),7.69(d,J=2.4Hz,1H),7.23(d,J=8.4Hz,1H),7.03(dd,J=2.4,7.5Hz,1H),6.86-6.74(m,2H),6.68(d,J=2.0Hz,1H),6.12(dd,J=2.0,16.8Hz,1H),5.69(dd,J=2.0,10.4Hz,1H),3.88(s,2H),3.79-3.63(m,4H),2.75-2.54(m,4H),2.20(s,3H)。MS:m/z 510.1[M+H] +
实施例11
Figure PCTCN2019086032-appb-000097
第一步
将化合物7-1(0.24g,1.19mmol,1.00eq)溶于甲醇(2mL)中,降温至-60℃后加入硼氢化钠(50mg,1.31mmol,1.10eq)。反应液升温至15℃后搅拌3小时。TLC检测反应完全。反应液浓缩后,用水(50mL)稀释然后用乙酸乙酯(50mL*3)萃取。合并有机相用饱和食盐水(50mL)洗涤,用无水硫酸钠干燥后浓缩 得化合物7-2。
第二步
将化合物7-2(0.30g,1.48mmol,1.00eq)溶于乙酸乙酯(5mL)中,加入氢氧化钯碳(0.30g,20%purity),二碳酸二叔丁酯(419mg,1.92mmol,441μL,1.30eq)。在氢气环境下(15psi)15℃搅拌16小时。TLC检测反应完全。反应液过滤(硅藻土助滤),滤液浓缩得到化合物7-3。 1H NMR(400MHz,CHCl 3-d)δ=4.03(q,J=6.0Hz,1H),3.61-3.41(m,4H),2.58-2.35(m,2H),1.90(d,J=7.2Hz,1H),1.54(d,J=6.4Hz,1H),1.41(s,9H),1.31-1.24(m,1H)。
第三步
将化合物7-3(0.10g,468.88μmol,1.00eq)溶于盐酸乙酸乙酯(5mL)中,在15℃搅拌16小时。TLC检测反应完全。将反应液浓缩,得到化合物7-4。
第四步
将中间体3(0.15g,318.08μmol,1.00eq)溶于乙腈(5mL)中,加入化合物7-4(54mg,477.12μmol,1.50eq)和DIPEA(206mg,1.59mmol,278μL,5.00eq),反应液在70℃下搅拌0.5小时。LCMS检测反应完全,将反应液浓缩,用制备HPLC(甲酸条件)分离纯化得到实施例11。 1H NMR(400MHz,DMSO-d 6)δ=12.28-12.08(m,1H),8.94(d,J=7.6Hz,1H),8.38(s,1H),7.98(s,1H),7.89(d,J=2.4Hz,1H),7.82-7.76(m,1H),7.66(d,J=2.4Hz,1H),7.22(d,J=8.4Hz,1H),7.02(dd,J=2.8,7.6Hz,1H),6.81-6.69(m,2H),5.30(s,1H),3.94-3.87(m,3H),3.07(d,J=9.2Hz,2H),2.85(d,J=10.4Hz,2H),2.36-2.33(m,1H),2.36-2.33(m,1H),2.18(s,3H),1.57(d,J=9.6Hz,1H),1.35-1.27(m,1H)。MS:m/z 483.1[M+H] +
实施例12
Figure PCTCN2019086032-appb-000098
实施例12的制备参照实施例2的合成方法。 1H NMR(400MHz,MeOH-d 4)δ=8.76(d,J=7.6Hz,1H),8.31(s,1H),7.84-7.74(m,2H),7.64(d,J=8.8Hz,1H),7.50(d,J=2.4Hz,1H),7.20(d,J=8.8Hz,1H),7.10(dd,J=2.4,7.6Hz,1H),6.82(d,J=2.4Hz,1H),6.66(d,J=2.4Hz,1H),4.94-4.91(m,2H),4.57(quin,J=5.6Hz,1H),4.15(s,2H),3.98-3.78(m,2H),2.26(s,3H)。MS:m/z 443.0[M+H] +
实施例13
Figure PCTCN2019086032-appb-000099
实施例13的制备参照实施例2的合成方法。 1H NMR(400MHz,MeOH-d 4)δ=8.76(d,J=7.6Hz,1H),8.30(s,1H),7.93(s,1H),7.90-7.80(m,2H),7.51(d,J=2.8Hz,1H),7.18(d,J=8.4Hz,1H),7.09(dd,J=2.4,7.6Hz,1H),6.81(d,J=2.4Hz,1H),6.65(d,J=2.4Hz,1H),4.92-4.91(m,2H),4.03-3.97(m,2H),3.43(d,J=7.2Hz,2H),2.26(s,3H),1.48(s,3H)。MS:m/z 457.1[M+H] +
实施例14
Figure PCTCN2019086032-appb-000100
实施例14的制备参照实施例2的合成方法。 1H NMR(400MHz,DMSO-d 6)δ=12.80(s,1H),8.93(d,J=7.2Hz,1H),8.38(s,1H),8.00-7.82(m,3H),7.65(d,J=2.4Hz,1H),7.18(d,J=8.4Hz,1H),7.02(dd,J=2.4,7.6Hz,1H),6.78(d,J=2.4Hz,1H),6.65(d,J=2.4Hz,1H),4.38(s,1H),3.95-3.84(m,2H),2.97(d,J=6.4Hz,1H),2.82-2.63(m,2H),2.26-2.11(m,4H),1.84-1.64(m,1H)。MS:m/z 457.1[M+H] +
实施例15
Figure PCTCN2019086032-appb-000101
Figure PCTCN2019086032-appb-000102
实施例15的制备参照实施例2的合成方法。 1H NMR(400MHz,DMSO-d 6)δ=8.94(d,J=7.6Hz,1H),8.39(s,1H),7.94(s,1H),7.66(d,J=2.4Hz,3H),7.24(d,J=8.4Hz,1H),7.04(dd,J=2.4,7.6Hz,1H),6.79(d,J=2.4Hz,1H),6.67(d,J=2.4Hz,1H),4.35(s,1H),3.84(s,2H),2.18(s,3H),1.58(s,4H),1.12(s,3H)。MS:m/z485.1[M+H] +
实施例16
Figure PCTCN2019086032-appb-000103
实施例16的制备参照实施例2的合成方法。 1H NMR(400MHz,DMSO-d 6)δ=8.95(d,J=7.6Hz,1H),8.39(s,1H),8.14(s,1H),7.93(s,1H),7.66(s,3H),7.24(d,J=8.4Hz,1H),7.04(dd,J=2.4,7.6Hz,1H),6.82(s,1H),6.67(s,1H),4.80(s,1H),3.91(s,1H),3.75-3.49(m,1H),3.64(d,J=11.6Hz,1H),3.13-2.86(m,2H),2.19(s,3H),1.94-1.73(m,2H),1.52(s,2H)。MS:m/z 471.1[M+H] +
实施例17
Figure PCTCN2019086032-appb-000104
实施例17的制备参照实施例2的合成方法。 1H NMR(400MHz,DMSO-d 6)δ=8.94(d,J=7.6Hz,1H),8.38(s,1H),8.04-7.80(m,3H),7.64(d,J=2.4Hz,1H),7.18(d,J=8.8Hz,1H),7.02(dd,J=2.4,7.6Hz,1H),6.77(d,J=2.4Hz,1H),6.65(d,J=2.4Hz,1H),4.82(s,1H),3.91(s,2H),3.08(s,1H),2.86(s,1H),2.17(s,3H),2.02 -1.76(m,2H),1.29(s,3H)。MS:m/z 471.2[M+H] +
实施例18
Figure PCTCN2019086032-appb-000105
第一步
将中间体3(1.00g,2.12mmol,1.00eq)和化合物8-1溶于乙腈(10mL)中,加入DIPEA(1.37g,10.60mmol,1.85mL,5.00eq)。反应液在70℃下搅拌2小时。LCMS检测反应结束后,将反应液浓缩后倒入水(50mL)中,然后用乙酸乙酯(50mL*3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥后浓缩得到化合物8-2。MS:m/z 487.4[M+H 2O+H] +
第二步
将化合物8-2(0.15g,263.77umol,1.00eq)和化合物8-3(160.32mg,2.13mmol,185.55uL,10.00eq)溶于乙醇(5mL)中,在25℃下搅拌0.5小时后,加入硼氢化钠(80.75mg,2.13mmol,10.00eq)。反应液在25℃下继续搅拌16小时。LCMS检测反应完全,将反应液用水(50mL)淬灭,然后用乙酸乙酯(50mL*3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,浓缩得到的粗品用制备HPLC(甲酸条件)分离纯化得实施例18。 1H NMR(400MHz,DMSO-d 6)δ12.06(s,1H),8.93(d,J=7.6Hz,1H),8.38(s,1H),8.27(s,1H),7.96(s,1H),7.80-7.72(m,2H),7.66(d,J=2.4Hz,1H),7.22(d,J=9.2Hz,1H),7.02(dd,J=2.8,7.6Hz,1H),6.80(d,J=2.4Hz,1H),6.65(d,J=2.8Hz,1H),3.80(s,1H),3.42(t,J=5.6Hz,3H),3.23(s,3H),3.06(d,J=9.6Hz,2H),2.81-2.72(m,3H),2.24-2.08(m,5H),1.93(d,J=11.6Hz,2H),1.56-1.38(m,2H)。MS:m/z 528.4[M+H] +
实施例19
Figure PCTCN2019086032-appb-000106
Figure PCTCN2019086032-appb-000107
将化合物8-2(70mg,149umol,1eq),乙胺水溶液(10.1mg,224umol,14.7uL,1.5eq)溶于1,2-二氯乙烷(10mL),然后加入醋酸硼氢化钠(63.3mg,298umol,2eq)和醋酸(17.9mg,298umol,17.1uL,2eq),使混合溶液20℃反应2小时。待反应完全后,向反应液中加入水(5ml),然后减压浓缩,粗品经制备HPLC(中性条件)纯化得实施例19。 1H NMR(400MHz,DMSO-d 6)δ8.94(d,J=7.6Hz,1H),8.39(s,1H),7.96(s,1H),7.78-7.73(m,2H),7.67(d,J=2.4Hz,1H),7.24(d,J=8.4Hz,1H),7.03(dd,J=2.4,7.6Hz,1H),6.81(d,J=2.4Hz,1H),6.66(d,J=2.4Hz,1H),3.80(s,2H),3.65(t,J=6.8Hz,1H),3.02(br s,2H),2.20(s,3H),1.86(br d,J=12.0Hz,2H),1.76(td,J=6.8,14.4Hz,1H),1.64-1.56(m,1H),1.55-1.41(m,2H),1.36(br s,2H),0.98(t,J=7.2Hz,3H)。MS:m/z 498.2[M+H] +
实施例20
Figure PCTCN2019086032-appb-000108
第一步
将化合物9-1(50mg,217.10μmol,1.00eq)溶于无水四氢呋喃(1mL)中,加入苯甲醛(28mg,260.53μmol,26μL,1.20eq)和无水硫酸镁(78mg,651.31μmol,3.00eq),反应液在氮气保护、25℃下搅拌16小时。将反应液直接过滤,滤液减压浓缩得到化合物9-2粗品。
第二步
将化合物9-2(50mg,157.03μmol,1.00eq)溶于无水甲醇(5mL)中,加入硼氢化钠(18mg,471.09μmol,3.00eq),反应液在25℃下搅拌16小时。TLC检测反应完全。同样的反应投两锅,合并后处理。将反应液用水(20mL)稀释,乙酸乙酯萃取(20mL*2),饱和食盐水洗涤有机相(20mL),无水硫酸钠干燥, 过滤,滤液减压浓缩得粗品,粗品经柱层析分离(
Figure PCTCN2019086032-appb-000109
4g
Figure PCTCN2019086032-appb-000110
快速硅胶柱,流动相0~10%MeOH/DCM,流速18mL/min)得到化合物9-3。 1H NMR(400MHz,CDCl 3-d)δ7.35-7.27(m,5H),3.67(s,2H),3.59-3.56(m,2H),3.48(s,2H),3.39-3.33(m,2H),1.67-1.61(m,2H),1.59-1.54(m,2H),1.46(s,8H)。
第三步
将化合物9-3(120mg,374.50μmol,1.00eq)溶于无水四氢呋喃(5mL)中,于0℃下分批加入钠氢(45mg,1.12mmol,60%纯度,3.00eq),反应液在0℃下搅拌0.5小时,然后在0℃下加入碘甲烷(64mg,449.40μmol,28μL,1.20eq),反应液在25℃、氮气保护下搅拌16小时。TLC检测反应完全。将反应液在0℃下用饱和氯化铵水溶液(1mL)淬灭,用水(20mL)稀释,乙酸乙酯萃取(20mL*2),饱和食盐水洗涤有机相(20mL*2),无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物9-4。 1H NMR(400MHz,CDCl 3-d)δ7.29-7.40(m,4H),7.21-7.25(m,1H),3.66(s,4H),3.39-3.36(m,5H),3.30(br s,2H),1.67-1.61(m,2H),1.46(s,9H),1.26(br s,2H)。
第四步
将化合物9-4(140mg,418.60μmol,1.00eq)溶于二氯甲烷(5mL)中,加入三氟乙酸(770.00mg,6.75mmol,0.5mL,16.13eq),反应液在25℃下搅拌16小时。TLC检测反应完全。将反应液直接减压浓缩得到化合物9-5粗品。
第五步
将中间体4(140mg,316.53μmol,1.00eq,HCl),化合物9-5(223mg,949.58μmol,3.00eq)加入乙腈(5mL)中,然后在0℃下加入N,N-二异丙基乙胺(205mg,1.58mmol,276μL,5.00eq),反应液在25℃下搅拌1小时。LCMS检测反应完全。将反应液直接减压浓缩干得粗品,粗品经柱层析分离(
Figure PCTCN2019086032-appb-000111
4g
Figure PCTCN2019086032-appb-000112
快速硅胶柱,流动相0~10%MeOH/DCM,流速18mL/min)得到化合物9-6。MS:m/z 604.1[M+H] +
第六步
将化合物9-6(50mg,82.82μmol,1.00eq)溶于甲醇(10mL)中,于氮气保护下加入湿的氢氧化钯/碳(50mg,20%纯度),反应液在25℃、15psi氢气压力下反应16小时。LCMS检测反应完全。将反应液经硅藻土助滤,滤饼用甲醇淋洗,滤液减压浓缩得粗品。粗品经制备HPLC(甲酸条件)分离得到实施例20。 1H NMR(400MHz,DMSO-d 6)δ11.91(br s,1H),8.94(d,J=7.2Hz,1H),8.38(s,1H),7.97(m,1H),7.77-7.68(m,2H),7.69-7.67(m,1H),7.23(d,J=8.4Hz,1H),7.04(dd,J=2.4,7.6Hz,1H),6.78(d,J=2.4Hz,1H),6.67(d,J=2.4Hz,1H),3.86(s,2H),3.51-3.50(m,3H),3.32(s,2H),2.77(br s,2H),2.57-2.52(m,2H),2.20(s,3H),1.82-1.76(m,2H),1.76-1.69(m,2H)。MS:m/z 514.1[M+Na] +
实施例21&实施例22
Figure PCTCN2019086032-appb-000113
第一步
将中间体4(250mg,565.23μmol,1.00eq,HCl),化合物10-1(123mg,565.23μmol,1.00eq)加入乙腈(5mL)中,然后在0℃下加入N,N-二异丙基乙胺(219mg,1.70mmol,295μL,3.00eq),反应液在25℃下搅拌1小时。LCMS检测反应完全。将反应液直接减压浓缩干得粗品,粗品经柱层析(
Figure PCTCN2019086032-appb-000114
4g
Figure PCTCN2019086032-appb-000115
快速硅胶柱,流动相0~10%MeOH/DCM,流速18mL/min)分离得到化合物10-2。MS:m/z 610.1[M+Na] +
第二步
将化合物10-2(220.00mg,374.37μmol,1eq)溶于二氯甲烷(10mL)中,加入三氟乙酸(1.54g,13.51mmol,1mL,36.08eq),反应液在25℃下搅拌1小时。LCMS检测反应完全。浓缩反应液除去二氯甲烷,用饱和碳酸氢钠水溶液(20mL)稀释,然后用乙酸乙酯(20mL*2)萃取,有机相用饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液浓缩得粗品(130mg)。粗品用SFC手性分离得到实施例21(SFC:t R=1.379min,SFC检测条件:色谱柱:Chiralpak AD-3 50x 4.6mm 3um;流动相:A相:二氧化碳,B相:乙醇(含0.05%乙醇胺);梯度:保持40%;流速:4ml每分钟;柱温:35℃)和实施例22(SFC:t R=2.614min,检测条件同实施例21)。实施例21: 1H NMR(400MHz,DMSO-d 6)δ11.59(s,1H),8.94(d,J=7.6Hz,1H),8.39(s,1H),7.98(s,1H),7.76-7.72(m,2H),7.69(d,J=2.4Hz,1H),7.23(d,J=9.6Hz,1H),7.03(dd,J=2.4,7.6Hz,1H),6.81(d,J=2.4Hz,1H),6.68(d,J=2.4Hz,1H),4.41-4.26(m,1H),3.88(s,2H),3.13(br s,1H),2.91(br s,2H),2.35(br s,2H),2.19(s,3H),1.92(br s,1H),1.45-1.43(m,1H)。MS:m/z 488.1[M+H] +。实施例22: 1H NMR(400MHz,DMSO-d 6)δ11.60(s,1H),8.94(d,J=7.6Hz,1H),8.39(s,1H),7.98(s,1H),7.80-7.71(m,2H),7.69(d,J=2.8Hz,1H),7.23(d,J=9.2Hz,1H),7.03(dd,J=2.8,7.6Hz,1H),6.81(d,J=2.4Hz,1H),6.68(d,J=2.4Hz,1H),4.43-4.23(m,1H),3.87(s,2H),3.13(br s,1H),2.89(br s,2H),2.36(br s,1H),2.45-2.30(m,1H),2.19(s,3H),1.98-1.86(m,1H),1.45-1.42(m,1H)。MS:m/z 488.2[M+H] +
实施例23&实施例24
Figure PCTCN2019086032-appb-000116
第一步
将中间体4(250mg,565.23μmol,1.00eq,HCl),化合物11-1(123mg,565.23μmol,1.00eq)加入乙腈(5mL)中,然后在0℃下加入N,N-二异丙基乙胺(219mg,1.70mmol,295μL,3.00eq),反应液在25℃下搅拌1小时。LCMS检测反应完全。将反应液直接减压浓缩干得粗品,粗品用混合溶剂(石油醚:乙酸乙酯=1:1,10mL)打浆得到化合物11-2。MS:m/z 610.1[M+Na] +
第二步
将化合物11-2(450mg,765.77μmol,1.00eq)溶于二氯甲烷(10mL)中,加入三氟乙酸(1.54g,13.51mmol,1mL,17.64eq),反应液在25℃下搅拌16小时。LCMS检测反应完全。浓缩反应液除去二氯甲烷,用饱和碳酸氢钠水溶液(20mL)稀释,然后用乙酸乙酯(10mL*2)萃取,有机相用饱和食盐水(10mL)洗涤,用无水硫酸钠干燥,过滤,滤液浓缩得粗品(220mg)。粗品用SFC分离得到实施例23(SFC:t R=1.409min,SFC检测条件:色谱柱:Chiralpak AD-3 50x 4.6mm 3um;流动相:A相:二氧化碳,B相:异丙醇(含0.05%乙醇胺);梯度:保持40%;流速:4ml每分钟;柱温:35℃)和实施例24(SFC:t R=1.888min,检测条件同实施例23)。实施例23: 1H NMR(400MHz,DMSO-d 6)δ11.65(s,1H),8.93(d,J=7.2Hz,1H),8.38(s,1H),7.96(s,1H),7.80-7.71(m,2H),7.67(d,J=2.4Hz,1H),7.20(d,J=8.4Hz,1H),7.10-6.94(m,1H),6.86-6.73(m,1H),6.72-6.60(m,1H),4.76-4.54(m,1H),3.92-3.71(m,2H),3.05(br d,J=11.2Hz,1H),2.92-2.61(m,2H),2.40-2.22(m,2H),2.18(s,3H),1.70(br s,2H)。MS:m/z 488.1[M+H] +。实施例24: 1H NMR(400MHz,DMSO-d 6)δ11.64(s,1H),8.94(d,J=7.6Hz,1H),8.39(s,1H),7.96(s,1H),7.80-7.72(m,2H),7.68(d,J=2.4Hz,1H),7.20(d,J=8.8Hz,1H),7.03(dd,J=2.4,7.6Hz,1H),6.79(d,J=2.4Hz,1H),6.67(d,J=2.4Hz,1H),4.74-4.59(m,1H),3.90-3.74(m,2H),3.06(br d,J=10.8Hz,1H),2.95-2.69(m,2H),2.39-2.24(m,2H),2.18(s,3H),1.71(br s,2H)。MS:m/z 488.2[M+H] +
实施例25&实施例26
Figure PCTCN2019086032-appb-000117
第一步
将化合物12-1(100mg,285.38μmol,1.00eq)溶于四氢呋喃(1mL)中,于0℃下分批加入钠氢(34mg,856.14μmol,60%纯度,3.00eq),然后于0℃下缓慢加入碘甲烷(61mg,428.07μmol,27μL,1.50eq)的四氢呋喃(0.1mL)溶液,反应液在25℃下氮气保护搅拌1小时。TLC检测反应完全。将反应液在0℃下用饱和氯化铵水溶液淬灭(1mL),水(20mL)稀释,乙酸乙酯(20mL)萃取,饱和食盐水洗(20mL),用无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物12-2。 1H NMR(400MHz,CDCl 3-d)δ7.22-7.13(m,5H),4.97(br s,2H),4.41(br s,1H),4.14-3.88(m,1H),3.66-3.37(m,1H),3.25-3.22(m,3H),2.88(br d,J=7.6Hz,1H),2.58(br s,2H),1.51(br s,2H),1.30-1.28(m,9H)。
第二步
将化合物12-2(120mg,329.28μmol,1.00eq)溶于无水甲醇(5mL)中,于氮气保护下加入湿的氢氧化钯/碳(50mg,20%纯度),反应液在25℃、15psi下氢化反应16小时。TLC检测反应完全。将反应液用硅藻土助滤,甲醇洗滤饼,滤液减压浓缩得到化合物12-3。 1H NMR(400MHz,CDCl 3-d)δ4.45(br s,1H),3.21(s,3H),3.08(br d,J=3.6Hz,2H),2.91-2.82(m,2H),2.55-2.40(m,2H),2.06-1.91(m,1H),1.31(s,9H)。
第三步
将中间体4(80mg,180.87μmol,1.00eq,HCl),化合物12-3(62mg,271.31μmol,1.50eq)加入乙腈(5 mL)中,然后在0℃下加入N,N-二异丙基乙胺(70mg,542.61μmol,94μL,3.00eq),反应液在25℃下搅拌1小时。LCMS检测反应完全。将反应液直接减压浓缩干得粗品。粗品经制备HPLC(甲酸条件)分离得到化合物12-4。MS:m/z 622.2[M+Na] +
第四步
将化合物12-4(60mg,100.05μmol,1.00eq)溶于二氯甲烷(5mL)中,加入三氟乙酸(1.54g,13.51mmol,1mL,134.99eq),反应液在25℃下搅拌1小时。LCMS检测反应完全。浓缩反应液除去二氯甲烷,用饱和碳酸氢钠水溶液(20mL)稀释,然后用乙酸乙酯(20mL*2)萃取,有机相用饱和食盐水(20mL)洗涤,用无水硫酸钠干燥,过滤,滤液浓缩得粗品(30mg)。粗品用SFC分离得到实施例25(SFC:t R=7.745min,SFC检测条件:色谱柱:Chiralpak IG-3 100×4.6mm,3um;流动相:A相:二氧化碳,B相:乙醇(含0.05%乙醇胺);梯度:保持40%;流速:3.2ml每分钟;柱温:35℃)和实施例26(SFC:t R=9.120min,检测条件同实施例25)。实施例25: 1H NMR(400MHz,DMSO-d 6)δ11.69(br s,1H),8.94(d,J=7.6Hz,1H),8.38(s,1H),7.98(s,1H),7.81(br d,J=8.8Hz,1H),7.74(d,J=2.4Hz,1H),7.68(d,J=2.4Hz,1H),7.24(d,J=8.8Hz,1H),7.04(dd,J=2.4,7.6Hz,1H),6.80(d,J=2.4Hz,1H),6.68(d,J=2.8Hz,1H),3.97-3.92(m,1H),3.79-3.74(m,1H),3.29(s,3H),3.14(br s,1H),2.95-2.93(m,1H),2.80(br s,1H),2.20(s,3H),2.10-2.04(m,1H),1.94-1.84(m,1H),1.48-1.36(m,1H)。MS:m/z 500.1[M+H] +。实施例26: 1H NMR(400MHz,DMSO-d 6)δ11.70(br s,1H),8.94(d,J=7.6Hz,1H),8.38(s,1H),7.98(s,1H),7.79-7.83(m,1H),7.74(s,1H),7.68(d,J=2.4Hz,1H),7.24(d,J=8.8Hz,1H),7.04(dd,J=2.4,7.6Hz,1H),6.80(d,J 2.4Hz,1H),6.67(d,J=2.4Hz,1H),3.94(br d,J=13.2Hz,1H),3.76(br d,J=13.6Hz,1H),3.28(s,3H),3.16(br d,J=10.4Hz,1H),2.90(brs,1H),2.79(br s,1H),2.20(s,3H),2.08(br s,1H),1.88-1.94(m,1H),1.43(br d,J=9.6Hz,1H)。MS:m/z 500.1[M+H] +
实施例27&实施例28
Figure PCTCN2019086032-appb-000118
Figure PCTCN2019086032-appb-000119
第一步
将化合物13-1(0.30g,1.42mmol,1.00eq)溶于四氢呋喃(3mL)中,在0℃下加入9-硼双环(3,3,1)-壬烷(0.5M,12mL,4.23eq)。反应液在25℃下搅拌1小时。待TLC检测原料消失后,在0℃缓慢加入水(1mL)淬灭反应液,然后加入中间体2(0.10g,229.22μmol,1.61eq),磷酸钾(2.11g,9.94mmol,7eq),1,1-二(叔丁基磷)二茂铁氯化钯(185.07mg,283.96μmol,0.20eq)和N,N-二甲基甲酰胺(3mL)。将所有反应混合物用氮气置换三次后,加热到100℃后反应15小时。LCMS和TLC检测反应结束后,将反应液倒入水(50mL)中,然后用乙酸乙酯(50mL*3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥后浓缩得到的棕色油状物进一步用柱层析(
Figure PCTCN2019086032-appb-000120
4g
Figure PCTCN2019086032-appb-000121
快速硅胶柱,流动相0~100%乙酸乙酯/石油醚,流速18mL/min)分离纯化得化合物13-2(150.0mg,粗品,棕色油状物)。MS:m/z 569.1[M+H] +
第二步
将化合物13-2(0.15g,263.77μmol,1.00eq)溶于二氯甲烷(3mL)中,加入三氟乙酸(1.54g,13.51mmol,1.0mL,51.20eq)。反应液在25℃下搅拌1小时。LCMS检测反应完全,将反应液用饱和碳酸氢钠(50mL)淬灭,然后用乙酸乙酯(50mL*3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥后浓缩得到的粗品用SFC分离得实施例27(SFC:t R=1.293min,SFC检测条件:色谱柱:Chiralpak AD-3 50x4.6mm 3um;流动相:A相:二氧化碳,B相:乙醇(含0.05%乙醇胺);梯度:保持40%;流速:4ml每分钟;柱温:35℃)和实施例28(SFC:t R=2.314min,检测条件同实施例27)。实施例27: 1H NMR(400MHz,METHANOL-d 4)δ8.76(d,J=6.8Hz,1H),8.31(s,1H),7.81(s,1H),7.73-7.54(m,3H),7.19(d,J=8.8Hz,1H),7.11(dd,J=2.4,7.2Hz,1H),6.84(d,J=3.2Hz,1H),6.62(s,1H),3.15(s,1H),3.09(d,J=7.2Hz,2H),2.25(s,3H),2.05(d,J=6.4Hz,2H),1.77-1.71(m,4H),1.64-1.55(m,3H)。实施例28: 1H NMR(400MHz,METHANOL-d 4)δ8.63(d,J=7.6Hz,1H),8.18(s,1H),7.68(s,1H),7.54(br s,1H),7.46(br d,J=2.4Hz,2H),7.07(d,J=8.4Hz,1H),6.98(dd,J=2.4,7.6Hz,1H),6.74(d,J=2.4Hz,1H),6.47(d,J=2.8Hz,1H),2.86(d,J=7.2Hz,2H),2.57(s,1H),2.13(s,3H),1.85-1.69(m,4H),1.52(s,1H),1.11-1.00(m,4H)。MS:m/z 469.1[M+H] +
实施例29
Figure PCTCN2019086032-appb-000122
第一步
将化合物14-1(10g,41.11mmol,1eq)的DMF-DMA(30mL)溶液在100℃下搅拌1.5小时。LCMS监测反应完全后将反应液减压浓缩蒸干得粗品,经柱层析(
Figure PCTCN2019086032-appb-000123
40g
Figure PCTCN2019086032-appb-000124
快速硅胶柱,流动相0~60%乙酸乙酯/石油醚,流速35mL/min)纯化得化合物14-2。 1H NMR(400MHz,CDCl 3-d)δ7.23-7.18(m,1H),3.64(s,3H),3.63(s,3H),2.89(s,1H),2.82(s,1H),1.38(s,9H)。MS:m/z 298.9[M+H] +
第二步
向化合物14-2(9.96g,33.39mmol,1eq)的无水四氢呋喃(100mL)溶液中加入干钯碳(3g,33.39mmol,10%纯度,1eq),氢气氛围下置换3次后在20℃下反应18小时。TLC监测反应完全后,将反应液经硅藻土过滤,滤液减压浓缩蒸干得粗品,经柱层析(
Figure PCTCN2019086032-appb-000125
40g
Figure PCTCN2019086032-appb-000126
快速硅胶柱,流动相0~50%乙酸乙酯/石油醚,流速40mL/min)纯化得化合物14-3。 1H NMR(400MHz,DMSO-d 6)δ4.14(br d,J=7.0Hz,1H),4.00-3.88(m,2H),3.33(s,3H),3.29-3.11(m,2H),2.83-2.62(m,1H),1.42(br s,9H),0.90(br d,J=7.0Hz,4H).
第三步
在-78℃下,向化合物14-3(4.30g,16.71mmol,1eq)的1,2-二氯乙烷(50mL)溶液中缓慢滴加二乙胺基 三氟化硫(24.25g,150.42mmol,19.87mL,9eq),缓慢升温至20℃下反应48小时。当TLC监测反应完全后,加入饱和碳酸氢钠溶液(100mL)淬灭反应,用1,2-二氯乙烷(40mL*3)萃取,合并的有机相用饱和食盐水(50mL)洗涤,经无水硫酸钠干燥,过滤,滤液减压浓缩得粗品,经柱层析(
Figure PCTCN2019086032-appb-000127
40g
Figure PCTCN2019086032-appb-000128
快速硅胶柱,流动相0~10%乙酸乙酯/石油醚,流速40mL/min)纯化得化合物14-4。
第四步
将化合物14-4(3.92g,14.04mmol,1eq)的盐酸/乙酸乙酯(40mL)溶液在20℃搅拌反应18小时。LCMS监测反应完全后,将反应液减压浓缩蒸干得化合物14-5。MS:m/z 215.8[M+H] +
第五步
向化合物14-5(3.1g,14.38mmol,1eq,HCl)的无水四氢呋喃(100mL)溶液中加入三乙胺(1.60g,15.81mmol,2.20mL,1.1eq),在20℃下反应0.5小时,然后加入二氧化锰(11.25g,129.39mmol,9eq)并在80℃下继续反应4小时。LCMS监测反应完全后,将反应液用硅藻土过滤,滤液中加入水(40mL)稀释,用乙酸乙酯(50mL*3)萃取,合并的有机相用饱和食盐水(80mL)洗涤,经无水硫酸钠干燥,过滤,滤液减压浓缩蒸干后得到化合物14-6。 1H NMR(400MHz,CDCl 3-d)δ8.71(br s,1H),6.58(t,J=3.6Hz,1H),3.82-3.76(m,3H),2.18(s,3H)。MS:m/z 158.0[M+H] +
第六步
在0℃下,将钠氢(330.91mg,8.27mmol,60%纯度,1.3eq)加入无水DMF(10mL)中,然后向其中分批加入化合物14-6(1.00g,6.36mmol,1eq),在20℃下反应1小时。最后在0℃下将2,4-二硝基苯基羟胺(1.52g,7.64mmol,1.2eq)缓慢加入到上述反应液中,并在20℃下搅拌20小时。LCMS监测反应完全,0℃下加入饱和氯化铵水溶液(10mL)淬灭反应,过滤,滤液加水(15mL)和乙酸乙酯(25mL*2)稀释,过滤,滤液用乙酸乙酯(20mL*2)萃取,合并的有机相用水(20mL)和饱和食盐水(20mL)洗涤,经无水硫酸钠干燥,过滤,滤液减压浓缩蒸干后得到化合物14-7。 1H NMR(400MHz,DMSO-d 6)δ6.99(br s,1H),3.77(s,3H),2.12(s,3H)。MS:m/z 172.0[M+H] +
第七步
向化合物14-7(1.15g,6.68mmol,1eq)的异丙醇(10mL)溶液中加入醋酸甲脒(1.39g,13.36mmol,2eq),在90℃下反应14小时。LCMS监测反应完全后,降至室温,缓慢加水,有固体析出,过滤,滤渣用石油醚洗涤后经减压浓缩干燥得化合物14-8。 1H NMR(400MHz,DMSO-d 6)δ11.63(br s,1H),7.80(s,1H),7.60(d,J=3.2Hz,1H),2.32(s,3H)。MS:m/z 167.9[M+H] +
第八步
向化合物14-8(0.72g,4.31mmol,1eq)的无水甲苯(10mL)溶液中依次加入N,N-二异丙基乙胺
(445.39mg,3.45mmol,600.25μL,0.8eq)和三氯氧磷(1.14g,7.43mmol,690.91μL,1.73eq),在115℃下反应17小时。LCMS监测反应完全后,减压浓缩除去大部分三氯氧磷,然后加入冰冷的碳酸氢钠溶液 (6mL),加水(6mL)稀释,并用乙酸乙酯(15mL*2)萃取,合并的有机相用饱和食盐水(20mL)洗涤,经无水硫酸钠干燥,过滤,滤液减压浓缩得化合物14-9。MS:m/z 185.9[M+H] +
第九步
在0℃下,向化合物14-9(0.8g,4.31mmol,1eq)的无水四氢呋喃(20mL)溶液中加入甲硫醇钠(778.50mg,4.74mmol,1.1eq),在0~20℃反应15小时。LCMS监测反应完全后,加水(20mL)稀释,用乙酸乙酯(20mL*4)萃取,合并的有机相用饱和食盐水(30mL)洗涤,经无水硫酸钠干燥,过滤,滤液减压浓缩得粗品,经柱层析(
Figure PCTCN2019086032-appb-000129
12g
Figure PCTCN2019086032-appb-000130
快速硅胶柱,流动相0~30%乙酸乙酯/石油醚,流速30mL/min)纯化得化合物14-10。 1H NMR(400MHz,CDCl 3-d)δ8.04(s,1H),7.38(d,J=3.2Hz,1H),2.56(s,3H),2.41(s,3H)。MS:m/z 197.8[M+H] +
第十步
在N 2保护下,向化合物14-10(0.15g,760.52μmol,1eq)的四氯化碳(3mL)溶液中加入偶氮二异丁腈(12.49mg,76.05μmol,0.1eq)和N-溴代丁二酰亚胺(148.89mg,836.58μmol,1.1eq),在100℃反应1小时。当LCMS监测反应完全后,将反应液减压浓缩蒸干得化合物14-11。 1H NMR(400MHz,CDCl 3-d)δ8.17(s,1H),7.40(d,J=3.0Hz,1H),4.84(s,2H),2.64(s,3H)。MS:m/z 278.8[M+H] +
第十一步
向化合物14-12(121.85mg,608.41μmol,1.2eq)的乙腈(5mL)溶液中加入N,N-二异丙基乙胺(78.63mg,608.41μmol,105.97μL,1.2eq),后缓慢加入化合物14-11(0.14g,507.01μmol,1.0eq)。反应液在20℃下搅拌1小时。LCMS检测反应完全后,将反应液减压浓缩除去溶剂后得到化合物14-13。MS:m/z 396.0[M+H] +
第十二步
N 2保护下,将化合物14-13(0.21g,530.98μmol,1eq),中间体1(153.09mg,637.18μmol,1.2eq)和氯化汞(0.32g,1.18mmol,58.82μL,2.22eq)的无水甲苯(6mL)溶液在120℃下反应18小时。LCMS检测反应完全后,将反应液减压浓缩蒸干得化合物14-14。MS:m/z 588.1[M+H] +
第十三步
将化合物14-14(0.32g,544.54μmol,1eq)的盐酸/乙酸乙酯(10mL)溶液在20℃下反应2小时。LCMS检测反应完全后,将反应液减压浓缩蒸干得粗品,经制备HPLC制备(甲酸条件)得实施例29。 1H NMR(400MHz,DMSO-d 6)δ11.77(br s,1H),8.95(d,J=7.6Hz,1H),8.39(s,2H),8.09(s,1H),7.89(d,J=3.0Hz,1H),7.79-7.68(m,2H),7.23(d,J=9.6Hz,1H),7.04(dd,J=2.4,7.4Hz,1H),6.81(d,J=2.4Hz,1H),3.78(s,2H),3.11(br d,J=11.0Hz,2H),3.01(br s,1H),2.24(br s,2H),2.21(s,3H),1.93(br d,J=11.0Hz,2H),1.57(br d,J=11.0Hz,2H)。MS:m/z 488.1[M+H] +
实施例30
Figure PCTCN2019086032-appb-000131
第一步
将化合物15-1(0.08g,382.60μmol,52.63μL,1.00eq)和中间体6(51.70mg,382.60μmol,1.00eq)溶于N,N-二甲基甲酰胺(4mL)中,加入碳酸钾(158.63mg,1.15mmol,3.00eq)。反应液在25℃下搅拌反应2小时。TLC(石油醚:乙酸乙酯=2:1)检测反应完全,将反应液倒入水(100mL)中,然后用乙酸乙酯(50mL*3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥后浓缩得到的粗品用柱层析纯化(
Figure PCTCN2019086032-appb-000132
4g
Figure PCTCN2019086032-appb-000133
快速硅胶柱,流动相0~30%乙酸乙酯/石油醚,流速18mL/min)得化合物15-2粗品。
第二步
将化合物15-2(0.1g,308.44umol,1.00eq)溶于乙醇(3mL)和水(3mL)中,加入铁粉(86.12mg,1.54mmol,5.00eq)和氯化铵(82.49mg,1.54mmol,5.00eq)。反应液在50℃下反应1小时。LCMS检测反应完全,将反应液过滤,滤液浓缩后倒入水(50mL)中,然后用乙酸乙酯(50mL*3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥后浓缩得化合物15-3。MS:m/z 295.1[M+H] +
第三步
将化合物15-3(15.59mg,52.98μmol,1.00eq),中间体5(0.02g,52.98μmol,1eq)溶解于甲苯(2mL)中,加入氯化汞(25mg,92.08μmol,4.60μL,1.74eq)。反应液在120℃下搅拌16小时。LCMS检测反应完全,将反应液过滤,滤液浓缩后用制备HPLC(甲酸条件)分离纯化得实施例30。 1H NMR(400MHz,DMSO-d 6)δ12.34(br s,1H),8.99(d,J=7.6Hz,1H),8.45(s,1H),8.38(d,J=2.4Hz,1H),8.35(s,1H),8.14-8.07(m,1H),8.04(s,1H),7.73(d,J=2.8Hz,1H),7.52(d,J=8.8Hz,1H),7.15(d,J=2.8Hz,1H),7.08(dd,J=2.4,7.6Hz, 1H),6.70(d,J=2.4Hz,1H),3.84(s,3H),3.17(s,2H),3.10(d,J=10.8Hz,2H),2.94(br s,1H),2.20(br s,2H),1.88(br d,J=12.0Hz,2H),1.47(br d,J=10.4Hz,2H)。MS:m/z 524.1[M+H] +
实施例31
Figure PCTCN2019086032-appb-000134
第一步
将中间体7(0.62g,2.40mmol,1.00eq)和叔丁醇钾(808.2mg,7.20mmol,3.00eq)溶解于N,N-二甲基甲酰胺(8mL)中,加入中间体5(1.09g,2.88mmol,1.20eq)。反应液在25℃下搅拌1小时。LCMS和TLC(石油醚:乙酸乙酯=0:1)检测反应完全,将反应液用水(200mL)稀释,然后用乙酸乙酯(100mL*3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥后浓缩得到的粗品用柱层析纯化(
Figure PCTCN2019086032-appb-000135
40g
Figure PCTCN2019086032-appb-000136
快速硅胶柱,流动相0~70%乙酸乙酯/石油醚,流速40mL/min)得化合物16-1。MS:m/z 588.3[M+H] +
第二步
将化合物16-1(0.40g,680.68μmol,1.00eq)加入氯化氢/乙酸乙酯(4M,20.00mL,117.53eq)中,在25℃下搅拌10小时。LCMS检测反应完全,将反应液浓缩,然后用制备HPLC(甲酸条件)分离纯化得实施例31。 1H NMR(400MHz,DMSO-d 6)δ11.95(s,1H),8.97(d,J=7.2Hz,1H),8.42(s,1H),8.37(s,1H),8.09(t,J=8.8Hz,1H),7.95(s,1H),7.70(d,J=2.4Hz,1H),7.12-7.06(m,2H),6.97(d,J=2.8Hz,1H),6.69(d,J=2.4Hz,1H),3.81(s,2H),3.08-2.91(m,3H),2.19-2.13(m,5H),1.86(d,J=11.6Hz,2H),1.58-1.37(m,3H)。MS:m/z488.1[M+H] +
实施例32
Figure PCTCN2019086032-appb-000137
Figure PCTCN2019086032-appb-000138
第一步
将中间体8(258.37mg,927.14μmol,1.00eq)溶解于N,N-二甲基甲酰胺(10mL)中,缓慢加入钠氢(185.41mg,4.64mmol,60%纯度5.00eq),将混合物在25℃下搅拌1小时后,加入中间体5(0.35g,927.14umol,1.00eq)。反应液继续在25℃下搅拌15小时。LCMS检测反应完全,将反应液用水(200mL)稀释,然后用乙酸乙酯(50mL*3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥后浓缩得化合物17-1粗品。MS:m/z 608.1[M+H] +
第二步
将化合物17-1(0.7g,1.15mmol,1.00eq)溶于二氯甲烷(10mL)中,加入三氟乙酸(3.08g,27.01mmol,2mL,23.46eq),反应液在25℃下搅拌12小时。LCMS检测反应完全,将反应液浓缩,用柱层析纯化
Figure PCTCN2019086032-appb-000139
40g
Figure PCTCN2019086032-appb-000140
快速硅胶柱,流动相0~10%甲醇/二氯甲烷,流速30mL/min)得实施例32。 1H NMR(400MHz,DMSO-d 6)δ12.38(s,1H),9.01(d,J=8.4Hz,1H),8.45(s,1H),8.19(t,J=8.8Hz,1H),7.97(s,1H),7.73(d,J=2.4Hz,1H),7.34(dd,J=1.6,9.2Hz,1H),7.18-7.10(m,2H),6.71(d,J=2.8Hz,1H),3.82(s,2H),3.00(d,J=12.0Hz,2H),2.86(s,1H),2.22-2.14(m,2H),1.81(d,J=11.6Hz,2H),1.42-1.32(m,2H)。MS:m/z 508.0[M+H] +
生物活性检测:体外评价
实验例1 酶活性评价
本试验目的是检测化合物对HER1(ErbB1),HER2(ErbB2),HER4(ErbB4)的体外抑制活性。本试验采用的酶为人源ErbB1,ErbB2和ErbB4,Eurofins Pharma Discovery Service提供活性检测方法,测试化合物对HER1,HER2,HER4抑制活性结果如表1所示。
实验步骤和方法(96孔板):
加入5倍稀释的测试化合物缓冲液(5μL),多肽底物poly(Glu,Tyr)(4:1)(2.5μL),ErbB(4-20ng,2.5μL),MnCl 2(50mM,1.25μL),dH 2O(3.75μL),[γ- 33P]ATP(10μL),在30℃孵化10分钟。加入3%磷酸终止反应,取10μL标本转移至Filtermate A,用75mM磷酸清洗滤片清洗3次,用甲醇清洗1次,滤片转移到密封塑料口袋,加入闪烁液混合物(4mL),在闪烁发光计数仪检测发出的光子强度,将酶样本的光子强度与内控样品的光子强度进行比较,光子强度的高低反映了酪氨酸激酶活性的强弱。
表1:本发明化合物体外酶活性筛选试验结果
化合物 HER1IC 50(nM) HER2IC 50(nM) HER4IC 50(nM)
实施例1 >1000 24 >1000
实施例4 161 12 156
实施例5 >1000 16 >1000
实施例6 743 18 150
实施例7 >1000 10 >1000
实施例8 385 10 184
实施例9 325 11 201
实施例16 861 7 535
实施例18 509 4 >1000
实施例20 167 7 230
实施例21 909 4 >1000
实施例22 438 6 306
实施例23 61 2 41
实施例24 109 3 139
实施例25 207 2 369
实施例30 663 14 >1000
实施例31 667 3 >1000
实施例32 284 2 356
结论:体外激酶活性测试显示,本发明化合物能够选择性抑制HER2,对HER1及HER4抑制活性弱。
实验例2 细胞增殖抑制活性评价:
实验目的:检测待测化合物对细胞增殖抑制活性。
实验原理:Cell-Titer-Glo试剂中的荧光素酶利用荧光素、氧和ATP作为反应底物,产生氧化荧光素,并以光的形式释放能量。由于荧光素酶反应需要ATP,因而反应产生的光的总量和反应细胞活力的ATP数总量成正比。
实验材料:
细胞系:NCI-N87细胞系(ATCC-CRL-5822);BT-474细胞系(ATCC-HTB-20)
细胞培养基:(RPMI 1640培养基(Invitrogen#22400-105;10%血清Invitrogen#10090148;左旋谷酰胺1×,Gibco#25030-081;双抗Hyclone#SV30010)
Figure PCTCN2019086032-appb-000141
发光法细胞活力检测试剂盒(Promega#G7573)
384孔细胞培养板(Greiner#781090)
化合物板(LABCYTE#LP-0200)
CO 2培养箱(Thermo#371)
Vi-cell细胞计数仪(Beckman Coulter)
移液器(Eppendorf)
移液管(Greiner)
移液枪(Eppendorf)
多功能酶标仪(Envision Reader)
ECHO Liquid-handling workstation(Labcyte-ECHO555)
实验步骤和方法:
2.1第0天:
在384孔板中分别按每孔1000个细胞,25μL每孔的密度种板,边缘孔不种细胞补25μL磷酸盐缓冲溶液。
2.2第1天:
(1)化合物浓度为10mM,用DMSO稀释化合物使其初始浓度为4mM。在板上加入化合物,每孔9μL。
(2)用ECHO Liquid-handling workstation做化合物稀释并向细胞板每孔加入125nL化合物,第2列和23列细胞孔每孔加125nL DMSO,第1列和24列Media孔每孔加125nL DMSO。
(3)细胞板每孔补加25μL培养基,最终细胞板每孔为50μL,化合物浓度为10μM,3倍稀释,10个浓度,左右复孔,DMSO终浓度为0.25%。
2.3加好化合物后,1000rpm离心1min,将细胞板放置于37℃、5%CO 2培养箱中培养3天。
2.4第4天:
从培养箱中取出细胞板,在室温下平衡30分钟。向每孔加入25μL Cell-Titer-Glo试剂,振摇一分钟使它被充分混匀,1000rpm离心1分钟。10分钟后,在PerkinElmer Envision上读板,设置荧光读取时间0.2秒。试验结果:试验结果如表2
表2:本发明化合物体外细胞增殖抑制活性筛选试验结果
Figure PCTCN2019086032-appb-000142
Figure PCTCN2019086032-appb-000143
说明:ND代表未测试。
结论:本发明化合物对NCI-N87细胞和BT-474细胞具有显著的增殖抑制活性。
实验例3:小鼠药代动力学性质评价
实验方法
受试化合物溶于10%DMSO/45%PEG400/45%水中,涡旋并超声,制备得到相应浓度的澄清溶液,微孔滤膜过滤后备用。选取18至20克的Balb/c雌性小鼠,静脉注射给予候选化合物溶液,剂量为1或2mg/kg。受试化合物溶于10%NMP/10%聚乙二醇-15-羟基硬脂酸酯/80%水中,涡旋并超声,制备得到相应浓度的澄清溶液,微孔滤膜过滤后备用。选取18至20克的Balb/c雌性小鼠,口服给予候选化合物溶液,剂量为2或10mg/kg。收集一定时间点的全血,制备得到血浆,以LC-MS/MS方法分析药物浓度,并用Phoenix WinNonlin软件(美国Pharsight公司)计算药代动力学参数。
测试结果如表3所示:
表3 实施例4小鼠血浆中的药物代谢动力学(PK)参数
Figure PCTCN2019086032-appb-000144
说明:
a.Cmax,最大药物浓度;T 1/2,半衰期;V dss,表观分布容积;Cl,药物清除率;AUC 0-last&AUC 0-inf,时间曲线下面积;F,生物利用度。
b.“--”是指未测试或未获得数据。
实验结论:受试化合物具有较好的小鼠体内药代动力学性质。
实验例4:大鼠药代动力学性质评价
实验方法:
受试化合物溶于10%NMP/10%聚乙二醇-15-羟基硬脂酸酯/80%水中,涡旋并超声,制备得到2.5mg/mL的澄清溶液,微孔滤膜过滤后备用。3只雄性SD大鼠静脉注射给予候选化合物溶液,剂量为5mg/kg。受试化合物溶于10%聚乙二醇-15-羟基硬脂酸酯/90%(50mM柠檬酸盐缓冲液,PH3.0)中,调节PH至约3.5,涡旋并超声,制备得到5mg/ml的澄清溶液,微孔滤膜过滤后备用。3只雄性SD大鼠口服给予候选化合物溶液,剂量为50mg/kg。收集一定时间点的全血,制备得到血浆,以LC-MS/MS方法分析药物浓度,并用Phoenix WinNonlin软件(美国Pharsight公司)计算药代参数。
测试结果如表4所示:
表4 实施例4大鼠血浆中的药物代谢动力学(PK)参数
PK参数 IV(5mg/kg) PO(50mg/kg)
C max(nM) -- 3633
T max(h) -- 3.33
T 1/2(h) 3.34 3.90
V dss(L/kg) 5.86 --
Cl(mL/min/kg) 25.4 --
AUC 0-last(nM.h) 6909 34251
AUC 0-inf(nM.h) 6951 34925
F(%) -- 49.6
说明:“--”是指未测试或未获得数据。
实验结论:受试化合物具有较好的大鼠体内药代动力学性质,口服生物利用度为49.6%。
实验例5:化合物对人肝微粒体细胞色素P450同工酶(CYP1A2、CYP2C9、CYP2C19、CYP2D6和CYP3A4)活性的抑制作用
本项研究的目的是应用体外测试体系评价实施例4对人肝微粒体细胞色素P450(CYP)的5种同工酶(CYP1A2、CYP2C9、CYP2C19、CYP2D6和CYP3A4)活性的影响。CYP450同工酶的特异性探针底物分别与人肝微粒体以及不同浓度的实施例4共同孵育,加入还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)启动反应,在反应结束后,处理样品并采用液相色谱串联质谱联用(LC/MS/MS)法检测特异性底物产生的代谢产物。
测试结果如表5所示:
表5 实施例4对5个P450(CYP)同工酶亚型的抑制作用
Figure PCTCN2019086032-appb-000145
实验结论:实施例4对人肝微粒体细胞色素P450(CYP)的5种同工酶(CYP1A2、CYP2C9、CYP2C19、CYP2D6和CYP3A4)没有或呈弱抑制作用。
实验例6:人胃癌NCI-N87细胞皮下异种移植肿瘤BALB/c裸小鼠模型的体内药效学研究:
实验目的:研究待测化合物对人胃癌NCI-N87细胞皮下异种移植瘤在BALB/c裸小鼠模型体内药效进行评估
实验动物:雌性BALB/c裸小鼠,6-8周龄,体重18-22克;供应商:上海西普尔-必凯实验动物有限公司实验方法与步骤:
6.1细胞培养
人胃癌NCI-N87细胞体外单层培养,培养条件为RPMI-1640培养基中加10%胎牛血清,100U/mL青霉素,100μg/mL链霉素和2mM谷氨酰胺,37℃5%CO 2培养。一周两次用胰酶-EDTA进行常规消化处理传代。当细胞饱和度为80%-90%时,收取细胞,计数,接种。
6.2肿瘤细胞接种(肿瘤接种)
将0.2mL(10×106个)NCI-N87细胞皮下接种于每只裸小鼠的右后背(PBS:Matrigel=1:1)。肿瘤平均体积达到130mm 3时开始分组给药。
6.3受试物的配制:
受试化合物配制成10mg/mL溶液,溶媒为10%NMP+10%乙二醇硬脂酸酯+80%水
6.4肿瘤测量和实验指标
实验指标是考察肿瘤生长是否被抑制、延缓或治愈。每周两次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:V=0.5a×b 2,a和b分别表示肿瘤的长径和短径。
化合物的抑瘤疗效用TGI(%)或相对肿瘤增殖率T/C(%)评价。TGI(%),反映肿瘤生长抑制率。TGI(%)的计算:TGI(%)=【1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积)/(溶剂对照组治疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)】×100%。
相对肿瘤增殖率T/C(%):计算公式如下:T/C%=TRTV/CRTV组开始治疗时平(TRTV:治疗组RTV;CRTV:溶媒对照组RTV)。根据肿瘤测量的结果计算出相对肿瘤体积(relative tumor volume,RTV),计 算公式为RTV=V t/V 0,其中V 0是分组给药时(即d 0)测量所得平均肿瘤体积,V t为某一次测量时的平均肿瘤体积,TRTV与CRTV取同一天数据。
6.5统计分析
统计分析,包括每个组的每个时间点的肿瘤体积的平均值和标准误(SEM)。治疗组在试验结束时给药后第21天表现出最好的治疗效果,因此基于此数据进行统计学分析评估组间差异。两组间比较用T-test进行分析,三组或多组间比较用one-way ANOVA进行分析,如果F值有显著性差异,应用Games-Howell法进行检验。如果F值无显著性差异,应用Dunnet(2-sided)法进行分析。用SPSS 17.0进行所有数据分析。p<0.05认为有显著性差异。
6.6试验结果
在本实验中,我们评价了化合物对人胃癌NCI-N87细胞皮下异种移植瘤模型中的体内药效。开始给药后21天,溶剂对照组荷瘤鼠的瘤体积达到971mm 3。实施例4(T/C=2.92%,TGI=112.13%,p=0.012)与溶剂对照组相比具有显著的抑瘤作用,平均肿瘤大小为29mm 3。实施例4治疗组小鼠体重均有轻微下降,后期逐渐恢复,无其他发病或死亡现象。
6.7试验结论和讨论
与溶媒组相比,本案实施例4都展现了优异的抑制肿瘤生长的效果,TGI为112.13%。因此,本发明化合物具有优异的抑制肿瘤生长的效果。
表6.本发明化合物对人胃癌NCI-N87异种移植瘤模型的抑瘤药效评价
(基于给药后第21天肿瘤体积计算得出)
Figure PCTCN2019086032-appb-000146
注:
“--”不需计算
a.平均值±SEM。
b.肿瘤生长抑制由T/C和TGI(TGI(%)=[1-(T 21-T 0)/(V 21-V 0)]×100)计算。
c.p值根据肿瘤体积计。
6.8药效实验伴随血浆、肿瘤组织、脑组织内实施例4浓度分析
在第21天,最后一次给药0.5h,1h,2h后收集全血、肿瘤组织、脑组织,每个时间点2只小鼠。全血离心制备血浆,肿瘤组织和脑组织匀浆制备组织匀浆液,以LC-MS/MS方法分析血浆和组织匀浆液中的药物浓度。
结果如表7所示:
表7.第21天给药后血浆、组织中实施例4浓度
Figure PCTCN2019086032-appb-000147
实验结论:实施例4给药后,在肿瘤组织中可以达到很高的药物浓度;实施例4在脑组织中也有较高分布。
实验例7:人乳腺癌BT-474细胞BALB/c裸小鼠皮下异种移植肿瘤模型的体内药效学研究
实验目的:研究待测化合物在人乳腺癌BT-474细胞BALB/c裸小鼠皮下异种移植瘤模型中的体内药效实验动物:雌性BALB/c裸小鼠,6-8周龄,体重18-22克;供应商:北京维通利华实验动物技术有限公司
实验方法与步骤:
7.1细胞培养
人乳腺癌BT474细胞体外单层培养,培养条件为ATCC Hybri-Care Medium中加1.5g/L碳酸氢钠,10%胎牛血清,100U/mL青霉素和100μg/mL链霉素,37℃5%CO 2孵箱培养。一周两次用胰酶-EDTA进行常规消化处理传代。当细胞饱和度为80%-90%,数量到达要求时,收取细胞,计数,接种。
7.2肿瘤细胞接种及分组
将0.2mL(1×10 7个)BT474细胞(加基质胶,体积比为1:1)皮下接种于每只小鼠的右后背,肿瘤平均体积达到约168mm3时开始分组给药。(细胞接种前三天接种雌激素片)。
7.3受试物的配制、肿瘤测量和实验指标、统计分析同实验例6。
7.4试验结果
在本实验中,我们评价了实施例4和实施例32在人乳腺癌BT-474细胞BALB/c裸小鼠皮下异种移植肿瘤模型中的体内药效。结果如表8所示,开始给药后20天,溶媒对照组荷瘤鼠的瘤体积达到1207mm 3。实施例4(T/C=2.62%,TGI=112.93%,p<0.05)与溶剂对照组相比具有显著的抑瘤作用,平均肿瘤大小为33mm 3。实施例32(T/C=7.84%,TGI=106.44%,p<0.05)与溶剂对照组相比具有显著的抑瘤作用,平均肿瘤大小为101mm 3
7.5试验结论和讨论
与溶媒组相比,本案实施例4和实施例32都展现了优异的抑制肿瘤生长的效果,TGI分别为112.93%和106.44%。因此,本发明化合物具有优异的抗肿瘤效果。
表8.本发明化合物对人乳腺癌BT-474异种移植瘤模型的抑瘤药效评价
(基于给药后第20天肿瘤体积计算得出)
Figure PCTCN2019086032-appb-000148
说明:
“--”不需计算
a.平均值±SEM。
b.肿瘤生长抑制由T/C和TGI(TGI(%)=[1-(T 21-T 0)/(V 21-V 0)]×100)计算。
c.p值根据RTV计算。

Claims (31)

  1. 式(Ⅰ)化合物、其异构体或其药学上可接受的盐,
    Figure PCTCN2019086032-appb-100001
    其中,
    m为0、1或2;
    n为0、1或2;
    T 1选自N和CH;
    D 1选自O、N(R 6)和C(R 7)(R 8);
    R 1分别独立地选自H、F、Cl、Br、I、OH、NH 2、C 1-6烷基和C 1-6烷氧基,其中所述C 1-6烷基和C 1-6烷氧基任选被1、2或3个R a取代;
    R 2分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1-6烷基,其中所述C 1-6烷基任选被1、2或3个R b取代;
    或者,R 1与R 2相互连接形成-(CH 2) p-,此时m和n均为1;
    R 3和R 4分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1-6烷基,其中所述C 1-6烷基任选被1、2或3个R c取代;
    或者,R 3与R 4相互连接形成-(CH 2) q-;
    p为1或2;
    q为1或2;
    R 51、R 52、R 53和R 54分别独立地选自H、F、Cl、Br、I、OH、NH 2、C 1-6烷基和C 1-3烷氧基,其中所述C 1-6烷基和C 1-3烷氧基任选被1、2或3个R d取代;
    R 6选自H、F、Cl、Br、I、OH、NH 2、C 1-6烷基和-C(=O)-C 2-6烯基,其中所述C 1-6烷基和-C(=O)-C 2-6烯基任选被1、2或3个R e取代;
    R 7选自H、F、Cl、Br、I、OH、NH 2和C 1-6烷基,其中所述NH 2和C 1-6烷基任选被1、2或3个R f取代;
    R 8选自H、F、Cl、Br、I和C 1-6烷基,其中所述C 1-6烷基任选被1、2或3个R g取代;
    R 9和R 10分别独立地选自H、F、Cl、Br、I、OH、NH 2、C 1-6烷基和C 1-3烷氧基,其中所述C 1-6烷基和 C 1-3烷氧基任选被1、2或3个R h取代;
    R a、R b和R c分别独立地选自F、Cl、Br、I、OH和NH 2
    R d分别独立地选自F、Cl、Br、I、OH、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R取代;
    R e、R f、R g和R h分别独立地选自F、Cl、Br、I、OH、NH 2、C 1-3烷基和C 1-3烷氧基,其中所述C 1-3烷基和C 1-3烷氧基任选被1、2或3个R取代;
    R分别独立地选自F、Cl、Br、I、OH、NH 2、CH 3、Et和-OCH 3
  2. 根据权利要求1所示的化合物、其异构体或其药学上可接受的盐,其中,R d分别独立地选自F、Cl、Br、I、OH和NH 2
  3. 根据权利要求1所示的化合物、其异构体或其药学上可接受的盐,其中,R e、R f、R g和R h分别独立地选自F、Cl、Br、I、OH、NH 2、CH 3、Et、
    Figure PCTCN2019086032-appb-100002
    和-OCH 3
  4. 根据权利要求1所示的化合物、其异构体或其药学上可接受的盐,其中,R 1分别独立地选自H、F、Cl、Br、I、OH、NH 2、C 1-3烷基和C 1-3烷氧基,其中所述C 1-3烷基和C 1-3烷氧基任选被1、2或3个R a取代。
  5. 根据权利要求4所示的化合物、其异构体或其药学上可接受的盐,其中,R 1分别独立地选自H、F、Cl、Br、I、OH、NH 2、CH 3、Et和-OCH 3
  6. 根据权利要求1所示的化合物、其异构体或其药学上可接受的盐,其中,R 2分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R b取代。
  7. 根据权利要求6所示的化合物、其异构体或其药学上可接受的盐,其中,R 2分别独立地选自H、F、Cl、Br、I、OH、NH 2、CH 3和Et。
  8. 根据权利要求1所示的化合物、其异构体或其药学上可接受的盐,其中,R 3和R 4分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R c取代。
  9. 根据权利要求8所示的化合物、其异构体或其药学上可接受的盐,其中,R 3和R 4分别独立地选自H、F、Cl、Br、I、OH、NH 2、CH 3和Et。
  10. 根据权利要求1或2所示的化合物、其异构体或其药学上可接受的盐,其中,R 51、R 52、R 53和R 54分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R d取代。
  11. 根据权利要求10所示的化合物、其异构体或其药学上可接受的盐,其中,R 51、R 52、R 53和R 54分别独立地选自H、F、Cl、Br、I、OH、NH 2、CH 3、Et和CF 3
  12. 根据权利要求1或3所示的化合物、其异构体或其药学上可接受的盐,其中,R 6选自H、F、Cl、Br、I、OH、NH 2、C 1-3烷基和-C(=O)-C 2-4烯基,其中所述C 1-3烷基和-C(=O)-C 2-4烯基任选被1、2或3个R e取代。
  13. 根据权利要求12所示的化合物、其异构体或其药学上可接受的盐,其中,R 6选自H、F、Cl、Br、I、OH、NH 2、CH 3、Et和-C(=O)-CH=CH 2
  14. 根据权利要求1或3所示的化合物、其异构体或其药学上可接受的盐,其中,R 7选自H、F、Cl、Br、I、OH、NH 2和C 1-3烷基,其中所述NH 2和C 1-3烷基任选被1、2或3个R f取代。
  15. 根据权利要求14所示的化合物、其异构体或其药学上可接受的盐,其中,R 7选自H、F、Cl、Br、I、OH、NH 2、CH 3、Et、
    Figure PCTCN2019086032-appb-100003
  16. 根据权利要求1或3所示的化合物、其异构体或其药学上可接受的盐,其中,R 8选自H、F、Cl、Br、I和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R g取代。
  17. 根据权利要求16所示的化合物、其异构体或其药学上可接受的盐,其中,R 8选自H、F、Cl、Br、I、CH 3、Et和
    Figure PCTCN2019086032-appb-100004
  18. 根据权利要求1或3所示的化合物、其异构体或其药学上可接受的盐,其中,R 9和R 10分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R g取代。
  19. 根据权利要求18所示的化合物、其异构体或其药学上可接受的盐,其中,R 9和R 10分别独立地选自H、F、Cl、Br、I、OH、NH 2、CH 3和Et。
  20. 根据权利要求1所示的化合物、其异构体或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2019086032-appb-100005
    选自
    Figure PCTCN2019086032-appb-100006
  21. 根据权利要求20所示的化合物、其异构体或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2019086032-appb-100007
    选自
    Figure PCTCN2019086032-appb-100008
    Figure PCTCN2019086032-appb-100009
  22. 根据权利要求21所示的化合物、其异构体或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2019086032-appb-100010
    选自
    Figure PCTCN2019086032-appb-100011
  23. 根据权利要求22所示的化合物、其异构体或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2019086032-appb-100012
    选自
    Figure PCTCN2019086032-appb-100013
  24. 根据权利要求23所示的化合物、其异构体或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2019086032-appb-100014
    选自
    Figure PCTCN2019086032-appb-100015
    Figure PCTCN2019086032-appb-100016
  25. 根据权利要求1~19任意一项所示的化合物、其异构体或其药学上可接受的盐,选自
    Figure PCTCN2019086032-appb-100017
    其中,
    m、n、p、q和D 1如权利要求1所定义;
    R 1如权利要求1、4或5所定义;
    R 51、R 52、R 53和R 54如权利要求1、10或11所定义;
    R 9和R 10如权利要求1、18或19所定义。
  26. 根据权利要求25所示的化合物、其异构体或其药学上可接受的盐,选自
    Figure PCTCN2019086032-appb-100018
    其中,
    m、n、p和q如权利要求1所定义;
    R 1如权利要求1、4或5所定义;
    R 51、R 52、R 53和R 54如权利要求1、10或11所定义;
    R 6如权利要求1、12或13所定义;
    R 7如权利要求1、14或15所定义;
    R 8如权利要求1、16或17所定义;
    R 9和R 10如权利要求1、18或19所定义。
  27. 根据权利要求26所示的化合物、其异构体或其药学上可接受的盐,选自
    Figure PCTCN2019086032-appb-100019
    其中,
    R 1如权利要求1、4或5所定义;
    R 51、R 52、R 53和R 54如权利要求1、10或11所定义;
    R 6如权利要求1、12或13所定义;
    R 7如权利要求1、14或15所定义;
    R 8如权利要求1、16或17所定义;
    R 9和R 10如权利要求1、18或19所定义。
  28. 下式化合物、其异构体或其药学上可接受的盐,选自
    Figure PCTCN2019086032-appb-100020
    Figure PCTCN2019086032-appb-100021
  29. 根据权利要求28所示的化合物、其异构体或其药学上可接受的盐,选自
    Figure PCTCN2019086032-appb-100022
  30. 根据权利要求1~29任意一项所述化合物或其药学上可接受的盐在制备治疗HER2异常相关疾病的药物中的应用。
  31. 根据权利要求30所述的应用,其中,所述药物是用于治疗乳腺癌、胃癌、结直肠癌、食管癌、肺癌的药物。
PCT/CN2019/086032 2018-05-08 2019-05-08 作为选择性HER2抑制剂的吡咯并[2,1-f][1,2,4]三嗪类衍生物及其应用 WO2019214651A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19799711.7A EP3792263B1 (en) 2018-05-08 2019-05-08 Pyrrolo[2,1-f][1,2,4]triazine derivatives serving as selective her2 inhibitors and application thereof
US17/053,076 US20210323979A1 (en) 2018-05-08 2019-05-08 Pyrrolo[2,1-f][1,2,4]triazine derivatives serving as selective her2 inhibitors and application thereof
JP2020563446A JP7276719B2 (ja) 2018-05-08 2019-05-08 選択的HER2阻害剤としてのピロロ[2,1-f][1,2,4]トリアジン系誘導体及びその使用
CN201980031008.5A CN112105618B (zh) 2018-05-08 2019-05-08 作为选择性HER2抑制剂的吡咯并[2,1-f][1,2,4]三嗪类衍生物及其应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810434197 2018-05-08
CN201810434197.8 2018-05-08

Publications (1)

Publication Number Publication Date
WO2019214651A1 true WO2019214651A1 (zh) 2019-11-14

Family

ID=68466665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086032 WO2019214651A1 (zh) 2018-05-08 2019-05-08 作为选择性HER2抑制剂的吡咯并[2,1-f][1,2,4]三嗪类衍生物及其应用

Country Status (5)

Country Link
US (1) US20210323979A1 (zh)
EP (1) EP3792263B1 (zh)
JP (1) JP7276719B2 (zh)
CN (1) CN112105618B (zh)
WO (1) WO2019214651A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021088987A1 (zh) * 2019-11-08 2021-05-14 南京明德新药研发有限公司 作为选择性her2抑制剂的盐型、晶型及其应用
JP2022501338A (ja) * 2018-09-18 2022-01-06 スゾウ、ザンロン、ファーマ、リミテッドSuzhou Zanrong Pharma Limited 抗腫瘍剤としてのキナゾリン誘導体
CN114671867A (zh) * 2022-03-15 2022-06-28 上海法默生物科技有限公司 妥卡替尼中间体7-羟基-[1,2,4]三唑并[1,5-a]吡啶的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024044570A1 (en) * 2022-08-22 2024-02-29 Iambic Therapeutics, Inc. Compounds and methods for modulating her2
WO2024048809A1 (ko) * 2022-08-31 2024-03-07 보로노이 주식회사 N을 포함하는 헤테로아릴 유도체, 이를 포함하는 약학적 조성물, 및 이의 용도

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005065266A2 (en) * 2003-12-29 2005-07-21 Bristol-Myers Squibb Company Di-substituted pyrrolotriazine compounds
CN1922182A (zh) * 2003-12-29 2007-02-28 布里斯托尔-迈尔斯·斯奎布公司 作为激酶抑制剂的吡咯并三嗪化合物
WO2007059257A2 (en) 2005-11-15 2007-05-24 Array Biopharma Inc. N4-phenyl-quinaz0line-4 -amine derivatives and related compounds as erbb type i receptor tyrosine kinase inhibitors for the treatment of hyperproliferative diseases
CN101611041A (zh) * 2006-12-12 2009-12-23 武田药品工业株式会社 稠合杂环化合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005065266A2 (en) * 2003-12-29 2005-07-21 Bristol-Myers Squibb Company Di-substituted pyrrolotriazine compounds
CN1922182A (zh) * 2003-12-29 2007-02-28 布里斯托尔-迈尔斯·斯奎布公司 作为激酶抑制剂的吡咯并三嗪化合物
WO2007059257A2 (en) 2005-11-15 2007-05-24 Array Biopharma Inc. N4-phenyl-quinaz0line-4 -amine derivatives and related compounds as erbb type i receptor tyrosine kinase inhibitors for the treatment of hyperproliferative diseases
CN101356171A (zh) * 2005-11-15 2009-01-28 阿雷生物药品公司 作为erbbi型受体酪氨酸激酶抑制剂用于治疗增殖性疾病的n4-苯基-喹唑啉-4-胺衍生物和相关化合物
CN101611041A (zh) * 2006-12-12 2009-12-23 武田药品工业株式会社 稠合杂环化合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3792263A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022501338A (ja) * 2018-09-18 2022-01-06 スゾウ、ザンロン、ファーマ、リミテッドSuzhou Zanrong Pharma Limited 抗腫瘍剤としてのキナゾリン誘導体
WO2021088987A1 (zh) * 2019-11-08 2021-05-14 南京明德新药研发有限公司 作为选择性her2抑制剂的盐型、晶型及其应用
CN114671867A (zh) * 2022-03-15 2022-06-28 上海法默生物科技有限公司 妥卡替尼中间体7-羟基-[1,2,4]三唑并[1,5-a]吡啶的制备方法
CN114671867B (zh) * 2022-03-15 2023-09-19 上海法默生物科技有限公司 妥卡替尼中间体7-羟基-[1,2,4]三唑并[1,5-a]吡啶的制备方法

Also Published As

Publication number Publication date
CN112105618A (zh) 2020-12-18
EP3792263A4 (en) 2021-11-10
JP7276719B2 (ja) 2023-05-18
CN112105618B (zh) 2022-05-31
JP2021523165A (ja) 2021-09-02
EP3792263A1 (en) 2021-03-17
EP3792263B1 (en) 2023-03-01
US20210323979A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
WO2019214651A1 (zh) 作为选择性HER2抑制剂的吡咯并[2,1-f][1,2,4]三嗪类衍生物及其应用
TWI551595B (zh) 2,4-disubstituted benzene-1,5-diamine derivatives and their use, Its preparation of pharmaceutical compositions and pharmaceutical compositions
CN115335372B (zh) 八氢吡嗪并二氮杂萘啶二酮类化生物
WO2021203768A1 (zh) 嘧啶并二环类衍生物、其制备方法及其在医药上的应用
TWI810172B (zh) 嘧啶化合物及包括其的藥學組成物
TWI496783B (zh) Quinolylpyrrolopyrimidine condensed cyclic compounds or salts thereof
TWI321566B (en) Pyrido[2,3-d]pyrimidine derivatives, preparation thereof, therapeutic use thereof
JP2017149755A (ja) キナーゼ阻害活性を有するベンズヒドロール−ピラゾール誘導体及びその使用
WO2022068929A1 (zh) 嘧啶二酮类化合物及其用途
WO2020221236A1 (zh) Trk激酶抑制剂及其用途
TW201704227A (zh) 新穎雜芳基胺基-3-吡唑衍生物及其藥理學上可容許之鹽
CN111196814A (zh) 芳环连二噁烷并喹唑啉或喹啉类化合物、组合物及其应用
WO2020221209A1 (zh) 一种cd73抑制剂,其制备方法和应用
WO2020098716A1 (zh) 布鲁顿酪氨酸激酶的抑制剂
WO2019201296A1 (zh) 作为rho激酶抑制剂的吡唑类化合物
CN113087671B (zh) 一种氰基取代吡啶及氰基取代嘧啶类化合物、制备方法及其应用
WO2022007841A1 (zh) 一种egfr抑制剂、其制备方法和在药学上的应用
WO2022057836A1 (zh) 苯并脲环衍生物及其制备方法和应用
CN114621135A (zh) 一种lpa1小分子拮抗剂
JP5984837B2 (ja) ピロロキノリニル−ピロリジン−2,5−ジオン組成物ならびにそれを調製および使用する方法
WO2019174576A1 (zh) 咪唑并吡咯酮化合物及其应用
CN111718351B (zh) 含氧取代吡唑并嘧啶化合物和药物组合物及其应用
CN110862398B (zh) 脲取代的芳环连二噁烷并喹唑啉或喹啉类化合物、组合物及其应用
WO2023020209A1 (zh) 含2-芳杂环取代的脲类化合物、其制备方法和用途
WO2020147842A1 (zh) 吡啶并嘧啶类化合物在制备治疗鼻咽癌药物中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563446

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019799711

Country of ref document: EP

Effective date: 20201208