WO2019214590A1 - 显示基板及其制作方法、显示装置 - Google Patents

显示基板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2019214590A1
WO2019214590A1 PCT/CN2019/085755 CN2019085755W WO2019214590A1 WO 2019214590 A1 WO2019214590 A1 WO 2019214590A1 CN 2019085755 W CN2019085755 W CN 2019085755W WO 2019214590 A1 WO2019214590 A1 WO 2019214590A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
lead
layer
display
signal
Prior art date
Application number
PCT/CN2019/085755
Other languages
English (en)
French (fr)
Inventor
王维海
陈小川
杨盛际
卢鹏程
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/624,217 priority Critical patent/US11282913B2/en
Publication of WO2019214590A1 publication Critical patent/WO2019214590A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80517Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a display substrate, a method for fabricating the same, and a display device.
  • a micro display device based on technologies such as Virtual Reality (VR) or Augmented Reality (AR) needs to have high resolution, high brightness, and high contrast.
  • an organic light-emitting diode (OLED) display substrate having self-luminous performance is often used for screen display.
  • a display substrate has a display area and at least one binding area located at a periphery of the display area.
  • the display substrate includes: a plurality of first signal vias disposed in the at least one binding region configured to provide a bonded lead channel; and a plurality of first disposed in the display region configured to provide an electrode lead channel a second signal via; wherein each of the first signal vias has a larger aperture than any of the second signal vias.
  • the display substrate further includes a substrate substrate, and a display driving circuit, an insulating layer, and a pixel structure layer stacked on the substrate, wherein the pixel structure layer includes the display A plurality of light emitting devices in the region, the plurality of first signal vias and the plurality of second signal vias being disposed in the insulating layer.
  • the display substrate further includes: a binding lead disposed in each of the first signal vias and configured to be bound to an input end of the display driving circuit; and disposed in each of the second signal vias And an electrode lead configured to connect an output end of the display driving circuit and a light emitting device; wherein each of the binding leads has a wire diameter larger than a wire diameter of any one of the electrode leads.
  • the insulating layer includes at least two layers of insulator layers disposed in sequence away from the substrate.
  • the display substrate further includes a lead sublayer disposed between each adjacent two insulating sublayers, wherein each of the lead sublayers includes a plurality of first connecting leads located in the at least one bonding region, And a plurality of second connection leads located in the display area, and the plurality of first connection leads and the plurality of second connection leads are insulated from each other.
  • Each of the first signal vias includes a first signal sub-hole disposed in each layer of the insulator layer.
  • Each of the binding leads includes a bonding sub-lead located within each of the first signal sub-holes, and each of the two adjacent bonding sub-leads is electrically connected to a first one of the corresponding one of the corresponding sub-layers connection.
  • Each of the second signal vias includes a second signal sub-hole disposed in each of the insulating sub-layers.
  • Each of the electrode leads includes an electrode sub-lead within each second signal sub-hole, and each adjacent two of the electrode sub-leads are electrically connected by a second one of the corresponding lead sub-layers.
  • a binding sub-lead of each of the binding leads that is closest to the display driving circuit is coupled to an input of the display driving circuit.
  • An electrode sub-lead of each of the electrode leads closest to the display driving circuit is connected to an output end of the display driving circuit, and an electrode sub-lead of each of the electrode leads closest to the pixel structure layer is connected to a A light emitting device is described.
  • the orthographic projections of at least two of the first signal vias on each of the first signal vias at least partially coincide.
  • An orthographic projection of at least two of the second signal sub-holes in each of the second signal vias on the substrate substrate at least partially coincides.
  • each of the at least one of the lead sub-layers and each of the second connection leads comprises: a first waterproof vapor lead disposed in a layered manner away from the substrate a portion, an intermediate conductive lead portion, and a second waterproof vapor lead portion.
  • each of the at least one of the lead sub-layers and each of the second connection leads are opaque conductive leads.
  • the pixel structure layer further includes a pixel defining layer on a surface of the insulating layer that faces away from the display driving circuit.
  • the pixel defining layer has a plurality of pixel openings, and each of the pixel openings is provided with the light emitting device.
  • each of the light emitting devices includes an oppositely disposed anode and cathode, and a light emitting functional layer between the anode and the cathode, wherein the anode is located in the light emitting functional layer proximate to One side of the insulation.
  • the anode includes a stacked titanium layer, a copper aluminum alloy layer, and a titanium nitride layer.
  • the base substrate is a single crystal silicon wafer
  • the single crystal silicon material contained in the single crystal silicon wafer has a carrier mobility of 500 cm 2 /V ⁇ s to 1500 cm 2 /V. ⁇ s.
  • a method of fabricating a display substrate includes: forming a plurality of first signal vias configured to provide a bonding lead channel in at least one bonding region of the display substrate, and forming a configuration to provide an electrode lead channel in a display region of the display substrate a plurality of second signal vias, wherein each of the first signal vias has a larger aperture than any of the second signal vias. Forming a binding lead in each of the first signal vias, and forming an electrode lead in each of the second signal vias, wherein a diameter of each of the bonded leads is larger than a diameter of any of the electrode leads .
  • the forming at least one bonding region of the display substrate forms a plurality of first signal vias configured to provide a bonded lead channel, and forming a plurality of electrode lead channels in a display region of the display substrate
  • the second signal vias include: providing a substrate.
  • a display driving circuit is formed on the base substrate, the display driving circuit including a plurality of input terminals located in the at least one binding region, and a plurality of output terminals located in the display region.
  • An insulating layer is formed on a surface of the display driving circuit facing away from the base substrate.
  • the plurality of first signal vias are formed in a portion of the insulating layer covering the plurality of input ends, and the at least one first signal via corresponds to one input.
  • the plurality of second signal vias are formed in a portion of the insulating layer covering the plurality of output ends, and the at least one second signal via corresponds to an output terminal.
  • forming an insulating layer on a surface of the display driving circuit facing away from the substrate substrate further comprising: sequentially forming at least two layers of insulators on a surface of the display driving circuit facing away from the substrate substrate Floor.
  • the manufacturing method of the display substrate further includes: forming a lead sub-layer on the insulator layer formed in each of the two adjacent insulating sub-layers in the process of forming each adjacent two-layer insulator layer, wherein
  • the lead sublayer includes a plurality of first connection leads located in the at least one bonding region, and a plurality of second connection leads located in the display area, and the plurality of first connection leads and the plurality of The second connecting leads are insulated two by two.
  • Forming a first signal via further comprising: forming a first signal sub-hole in each of the insulating sub-layers, and forming the first signal via by each of the at least two insulating sub-layers.
  • Forming a binding lead in each of the first signal vias further comprising: forming a bonding sub-lead in each of the first signal sub-holes of the first signal via, wherein each adjacent two The bond sub-leads are connected by a first one of the corresponding lead sub-layers.
  • Forming a second signal via further comprising: forming a second signal sub-hole in each of the insulating sub-layers, and forming the second signal via by each of the at least two insulating sub-layers.
  • Forming electrode leads in each of the second signal vias further comprising: forming an electrode sub-lead in each of the second signal sub-holes of the second signal via, wherein each of the two adjacent electrodes The sub-leads are connected by a second one of the corresponding lead sub-layers.
  • the method of fabricating the display substrate further includes: forming a pixel structure layer on a surface of the insulating layer facing away from the display driving circuit, wherein the pixel structure layer includes a pixel in the display area A plurality of light emitting devices, and one light emitting device is connected to the at least one electrode lead.
  • each of the light emitting devices includes an oppositely disposed anode and cathode, and a light emitting functional layer between the anode and the cathode.
  • Forming a pixel structure layer on a surface of the insulating layer facing away from the display driving circuit comprising: forming a patterned plurality of anodes on a surface of the insulating layer facing away from the display driving circuit by using a dry etching process A plurality of anodes are located within the display area and each anode is coupled to at least one of the electrode leads.
  • a pixel defining layer is formed on a surface of the insulating layer not covered by the plurality of anodes, and a surface of the plurality of anodes facing away from the insulating layer.
  • a plurality of pixel openings are formed in the pixel defining layer, and an orthographic projection of each pixel opening on the substrate substrate is located within an orthographic projection of an anode on the substrate.
  • a light emitting functional layer in contact with the anode is formed in each of the pixel openings.
  • a cathode is formed on each of the luminescent functional layers facing away from the surface of the anode.
  • a display device in still another aspect, includes the above display substrate.
  • FIG. 1 is a schematic structural view of a display substrate in accordance with some embodiments of the present disclosure.
  • FIG. 2 is a cross-sectional view of the display substrate of FIG. 1 taken along line C-C';
  • FIG. 3 is a cross-sectional view of the other display substrate shown in FIG. 1 taken along line C-C';
  • FIG. 4 is a schematic structural view of a first connecting lead in a display substrate shown in FIG. 3;
  • FIG. 5 is a schematic structural view of an anode in a display substrate shown in FIG. 3;
  • FIG. 5 is a schematic structural view of an anode in a display substrate shown in FIG. 3;
  • FIG. 6 is a cross-sectional view taken along line C-C' of still another display substrate shown in FIG. 1;
  • FIG. 7A to 7G are schematic structural views showing the steps of a method for fabricating a display substrate shown in FIG. 6;
  • FIG. 8 is a block flow diagram of a method of fabricating a display substrate in accordance with some embodiments of the present disclosure.
  • the display driving circuit in the OLED display substrate is bound to the external circuit by wire bonding to effectively reduce the volume of the micro display device.
  • the configuration used is that the metal traces bound to the display driving circuit and the external circuit are relatively thin, which tends to cause the metal trace to fall off. Thereby, once the metal trace between the display driving circuit and the external circuit falls off, it is difficult for the micro display device to display normally.
  • some embodiments of the present disclosure provide a display substrate.
  • the display substrate having a display area AA, AA and a peripheral area located in at least a binding region (e.g., B 1 region in FIG. 1, B 2 region, B 3 or B 4 area of at least a region).
  • the display substrate includes: a plurality of first signal vias 50 disposed in the at least one bonding region configured to provide a bonded lead channel; and a portion disposed within the display area AA configured to provide an electrode lead channel A plurality of second signal vias 60; wherein each of the first signal vias 50 has a larger aperture than any of the second signal vias 60.
  • the apertures of the plurality of first signal vias 50 are the same or different, and the apertures of the plurality of second signal vias 60 are the same or different, which is not limited in some embodiments of the present disclosure.
  • the apertures of the plurality of first signal vias 50 are different, and the apertures of the plurality of second signal vias 60 are different, and the aperture of each of the first signal vias 50 is greater than that of any of the second signal vias 60.
  • the aperture means that the smallest aperture of the plurality of first signal vias 50 is greater than the largest aperture of the plurality of second signal vias 60.
  • each of the first signal vias 50 is graded (eg, each of the first signal vias 50 is a tapered hole), and the aperture of each of the second signal vias 60 is tapered (eg, each second signal passes)
  • the hole 60 is a tapered hole, and the aperture of each of the first signal vias 50 is larger than the aperture of any of the second signal vias 60, which means that the minimum aperture of each of the first signal vias 50 is greater than any second.
  • the minimum aperture of signal via 60, or the minimum aperture of each first signal via 50 is greater than the maximum aperture of any second signal via 60.
  • the display substrate further includes a substrate substrate 1, and a display driving circuit 2, an insulating layer 3, and a pixel structure layer 4 stacked on the substrate substrate 1, wherein
  • the pixel structure layer 4 includes a plurality of light emitting devices 42 located within the display area AA, and the plurality of first signal vias 50 and the plurality of second signal vias 60 are disposed in the insulating layer 3.
  • the display substrate is an OLED display substrate, and each of the light-emitting devices 42 in the pixel structure layer 4 is an OLED.
  • each of the light-emitting devices 42 in the pixel structure layer 4 is a QLED.
  • QLED Quantum Dot Light Emitting Diodes
  • the display driving circuit 2 generally includes a plurality of pixel circuits and a plurality of signal lines correspondingly connected to the plurality of pixel circuits, wherein an input end of one of the signal lines corresponds to an input end of the display driving circuit 2, and each The output end of the pixel circuit is connected to a light emitting device 42, and the output end of each pixel circuit corresponds to an output end of the display driving circuit 2.
  • the number of first signal vias 50 should be determined according to the type of signal that the display driver circuit 2 needs to transmit, and the number of second signal vias 60 should be determined according to the number of light-emitting devices 42 in the display substrate.
  • the display substrate further includes: binding leads 5 disposed in each of the first signal vias 50 and configured to be bound to an input end of the display driving circuit 2, and disposed in each of the second signal vias 60 And configured to connect an output end of the display driving circuit 2 and the electrode lead 6 of a light emitting device 42, wherein each of the binding leads 5 has a wire diameter larger than a wire diameter of any of the electrode leads 6.
  • the wire diameter of the binding lead 5 means a diameter perpendicular to the linear extension direction thereof
  • the wire diameter of the electrode lead 6 means a diameter perpendicular to the linear extension direction thereof.
  • each of the bond wires 5 is formed by filling a conductive material in the corresponding first signal via 50, each electrode lead 6 being formed by filling a conductive material in the corresponding second signal via 60.
  • the shape of each of the bond wires 5 matches the shape of the corresponding first signal via 50
  • the shape of each electrode lead 6 matches the shape of the corresponding second signal via 60.
  • the definition of "the diameter of each of the binding leads 5 is larger than the diameter of any of the electrode leads 6" may refer to the foregoing "the aperture of each of the first signal vias 50 is greater than any second. The relevant definition of the aperture of the signal via 60 is not described herein.
  • a plurality of first signal vias are formed in at least one bonding region of the display substrate during the process of manufacturing the display substrate, and the plurality of first signal vias 50 may be used to form a plurality of bonded leads. 5, that is, a plurality of binding leads 5 are fixed to the binding area of the display substrate to perform line bonding on the respective input ends of the display driving circuit 2.
  • some embodiments of the present disclosure set the aperture of each of the first signal vias 50 to be larger than the aperture of any of the second signal vias 60 such that the wire diameter of each of the bonding leads 5 is larger than the line of any of the electrode leads 6.
  • the diameter, that is, the wire diameter of each of the binding leads 5 can be effectively increased compared with the conventional electrode lead, thereby effectively improving the connection strength and the wear resistance of each of the bonding wires 5, thereby preventing the display substrate from being The binding lead between the display driving circuit 2 and the external circuit is detached.
  • the display substrate provided by some embodiments of the present disclosure is applied to a micro display device, particularly a micro mobile display device, the use reliability of the micro display device can be improved, and the micro display device can be normally displayed.
  • the insulating layer 3 includes at least two insulating sublayers disposed in a direction away from the substrate 1 (for example, the first insulating sublayer 31 and the second insulator shown in FIG. 3).
  • the display substrate further includes a lead sublayer disposed between each adjacent two insulating sublayers, wherein each of the lead sublayers includes a plurality of first connecting leads 71 located in at least one bonding region, and is located in the display area AA a plurality of second connection leads 72, and the plurality of first connection leads 71 and the plurality of second connection leads 72 are insulated from each other.
  • the plurality of first connection leads 71 are in one-to-one correspondence with the plurality of first signal vias 50
  • the plurality of second connection leads 72 are in one-to-one correspondence with the plurality of second signal vias 60.
  • each of the first signal vias 50 includes a first signal sub-hole disposed in each layer of the insulator layer; each binding lead 5 is included in each of the first a binding sub-lead within a signal sub-hole (for example, the first binding sub-lead 51 and the second binding sub-lead 52 shown in FIG. 3, or the first binding sub-lead 51, as shown in FIG.
  • the second bonding sub-lead 52 and the third bonding sub-lead 53) are electrically connected by each of the two adjacent bonding sub-leads 71 through one of the corresponding ones of the corresponding sub-layers.
  • the length and conductivity of the binding lead 5 can be equivalently increased by using the first connecting lead 71 between each adjacent two bonding sub-leads. That is, the length and the electrical conductivity of the first connecting lead 71 can be regarded as equivalent to the length and conductivity of the binding lead 5.
  • the length of the binding lead 5 is increased, the wire diameter of the binding lead 5 can be correspondingly reduced, thereby reducing the binding area.
  • the orthographic projection area on the base substrate 1 to achieve miniaturization of the bonding region in the display substrate.
  • Each of the second signal vias 60 includes a second signal sub-hole disposed in each of the insulating sub-layers; each of the electrode leads 6 includes an electrode sub-lead within each of the second signal sub-holes (eg, as shown in FIG. 3) First electrode sub-lead 61 and second electrode sub-lead 62, or first electrode sub-lead 61, second electrode sub-lead 62 and third electrode sub-lead 63) as shown in FIG. 6, and each adjacent two The electrode sub-leads are electrically connected by a second one of the corresponding lead sub-layers.
  • the length and conductivity of the electrode lead 6 can be equivalently increased by using the second connecting lead 72 between each adjacent two electrode sub-leads, that is, The length and conductivity of the second connecting lead 72 are equivalently regarded as the length and conductivity of the electrode lead 6.
  • each of the binding leads 5 is composed of a plurality of binding sub-leads
  • the binding sub-lead of each binding lead 5 closest to the display driving circuit 2 is connected to an input terminal of the display driving circuit 2.
  • an electrode sub-lead of each of the electrode leads 6 closest to the display driving circuit 2 is connected to an output terminal of the display driving circuit 2, and each electrode lead 6
  • the nearest electrode sub-lead of the intermediate-distance pixel structure layer 4 is connected to a light-emitting device 42.
  • the insulating layer 3 is composed of at least two insulating sub-layers, such that the thickness of the insulating layer 3 can be effectively increased by increasing the number of layers of the insulating sub-layer to correspondingly increase the formation in the insulating layer 3.
  • the holes of each of the first signal vias 50 are deep, thereby protecting the binding leads 5 in the first signal vias 50, and preventing the binding wires 5 from being broken or falling off under the action of external force or long-term wear. .
  • the insulating layer 3 includes two insulating sublayers, which are a first insulating sublayer 31 and a second insulating sublayer 32, respectively.
  • the display substrate further includes a lead sub-layer between the first insulating sub-layer 31 and the second insulating sub-layer 32.
  • the first insulator layer 31 is located between the display driver circuit 2 and the lead sub-layer
  • the second insulator sub-layer 32 is located between the lead sub-layer and the pixel structure layer 4.
  • the lead sublayer comprises a plurality of first binding region B is connected to the inner lead 71, and is located within the display area AA of the second plurality of connecting lead 72, and the plurality of connection wiring 71 and the first plurality
  • the second connection leads 72 are insulated two by two.
  • the plurality of first connection leads 71 and the plurality of second connection leads 72 are obtained by patterning a same layer of conductive film, wherein each adjacent two connection leads may pass through the second insulator layer 32. insulation.
  • Each of the first signal vias 50 includes two first signal sub-holes, one of which is opened in the first insulating sub-layer 31 and the other is opened in the second insulating sub-layer 32.
  • Each of the bonding leads 5 includes a first bonding sub-lead 51 located in a first signal sub-hole of the first insulating sub-layer 31 and a second binding sub-member located in a first signal sub-hole of the second insulating sub-layer 32.
  • Lead 52 The first binding sub-lead 51 and the second binding sub-lead 52 in each binding lead 5 are connected by a first connecting lead 71, and each of the first binding sub-leads 51 is away from the second binding sub-lead 52.
  • each end is connected to an input end of the display driving circuit 2, and each end of the second binding sub-lead 52 away from the first binding sub-lead 51 is connected to an external circuit.
  • the signals transmitted by the external circuit to each of the bonding leads 5 may be sequentially transmitted to the corresponding input terminals of the display driving circuit 2 through the second bonding sub-lead 52, the first connection wiring 71, and the first bonding sub-lead 51.
  • each of the second signal vias 60 includes two second signal sub-holes, one of which is opened in the first insulating sub-layer 31 and the other is opened in the second insulating sub-layer 32.
  • Each of the electrode leads 6 includes a first electrode sub-lead 61 located in a second signal sub-hole of the first insulating sub-layer 31 and a second electrode sub-lead 62 located in a second signal sub-hole of the second insulating sub-layer 32.
  • the first electrode sub-lead 61 and the second electrode sub-lead 62 of each of the electrode leads 6 are connected by a second connection lead 72, and each of the first electrode sub-leads 61 is away from the end of the second electrode sub-lead 62 and the display drive An output of the circuit 2 is connected, and an end of each of the second electrode sub-leads 62 away from the first electrode sub-lead 61 is connected to a light-emitting device 42.
  • the signals outputted from each of the output terminals of the display driving circuit 2 may be sequentially transmitted to the corresponding light emitting devices 42 through the first electrode sub-lead 61, the second connection lead 72, and the second electrode sub-lead 62 to drive the light-emitting device 42 to emit light.
  • the insulating layer 3 includes three insulating sub-layers, which are a first insulating sub-layer 31, a second insulating sub-layer 32, and a third insulating sub-layer 33, respectively.
  • the display substrate further includes a first lead sub-layer between the first insulating sub-layer 31 and the second insulating sub-layer 32, and a second lead sub-layer between the second insulating sub-layer 32 and the third insulating sub-layer 33.
  • the first insulator layer 31 is located between the display driving circuit 2 and the first lead sublayer
  • the second insulator layer 32 is between the first lead sublayer and the second lead sublayer
  • the third insulator layer 33 is located at the second lead sublayer Between the pixel structure layer 4.
  • the first lead sub-layer includes a plurality of first connection leads 711 located in the bonding area B 1 , and a plurality of second connection leads 721 located in the display area AA, and a plurality of the first lead sub-layers A connection lead 711 and a plurality of second connection leads 721 are insulated from each other.
  • the plurality of first connection leads 711 and the plurality of second connection leads 721 in the first lead sub-layer are obtained by patterning the same layer of conductive film, wherein each adjacent two connection leads may pass
  • the second insulator layer 32 is insulated.
  • the second lead sub-layer includes a plurality of first connection leads 712 located in the bonding area B 1 , and a plurality of second connection leads 722 located in the display area AA, and a plurality of the second lead sub-layers A connection lead 712 and a plurality of second connection leads 722 are insulated from each other.
  • the plurality of first connection leads 712 and the plurality of second connection leads 722 in the second lead sub-layer are obtained by patterning the same layer of conductive film, wherein each adjacent two connection leads may pass
  • the third insulator layer 32 is insulated.
  • Each of the first signal vias 50 includes three first signal sub-holes, one of which is opened in the first insulating sub-layer 31, one is opened in the second insulating sub-layer 32, and the other is opened in the third insulating sub-layer 33.
  • Each of the bonding leads 5 includes a first binding sub-lead 51 located in a first signal sub-hole of the first insulating sub-layer 31, and a second binding sub-hole located in a first signal sub-hole of the second insulating sub-layer 32.
  • Leads 52, and a third bond sub-lead 53 located in a first signal sub-hole in the third insulator layer 33.
  • each of the binding leads 5 the first binding sub-lead 51 and the second binding sub-lead 52 are connected by one of the first lead sub-layers, the second binding sub-lead 52 and the third binding The stator leads 53 are connected by one of the second lead sub-layers 712. Moreover, one end of each of the first binding sub-leads 51 away from the second binding sub-lead 52 is connected to an input end of the display driving circuit 2, and each of the third binding sub-leads 53 is away from the second binding sub-lead 52. One end is connected to an external circuit.
  • the signal transmitted by the external circuit to each of the bonding leads 5 may sequentially pass through the third binding sub-lead 53, the first connecting lead 712 in the second lead sub-layer, the second binding sub-lead 52, and the first lead sub-layer
  • the first connection lead 711 and the first binding sub-lead 51 are transferred to corresponding input terminals of the display driving circuit 2.
  • each of the second signal vias 60 includes three second signal sub-holes, one of which is opened in the first insulating sub-layer 31, one is opened in the second insulating sub-layer 32, and the other is opened in the third.
  • Each of the electrode leads 6 includes a first electrode sub-lead 61 located in a second signal sub-hole of the first insulating sub-layer 31, and a second electrode sub-lead 62 located in a second signal sub-hole of the second insulating sub-layer 32, And a third electrode sub-lead 63 located in a second signal sub-hole of the third insulator layer 33.
  • Device 42 is connected.
  • the signal outputted from each output terminal of the display driving circuit 2 may sequentially pass through the first electrode sub-lead 61, the second connection lead 721 in the first lead sub-layer, the second electrode sub-lead 62, and the second lead sub-layer
  • the two connection leads 722 and the third electrode sub-lead 63 are transmitted to the corresponding light-emitting device 42 to drive the light-emitting device 42 to emit light.
  • the orthographic projections of at least two of the first signal vias in each of the first signal vias on the substrate substrate 1 at least partially coincide. That is to say, in each of the first signal sub-holes of each of the first signal vias 50, the orthographic projections of the at least two first signal sub-holes on the substrate substrate 1 coincide or slightly coincide, or at least one The portion of the signal sub-hole that is orthographically projected on the base substrate 1 is located in the orthographic projection of any of the other first signal sub-holes in the same first signal via 50 on the base substrate 1.
  • the portion of the at least one first signal sub-hole that is orthographically projected on the substrate substrate 1 is located adjacent to the first one of the first signal sub-holes.
  • the orthographic projection on the base substrate 1 it is convenient to realize the electrical connection of the bonding sub-leads in the adjacent two first signal sub-holes.
  • the orthographic projections of at least two of the second signal sub-holes in each of the second signal vias on the substrate substrate 1 at least partially coincide. That is to say, in each second signal sub-hole of each second signal via 60, the orthographic projections of at least two second signal sub-holes on the substrate substrate 1 coincide or slightly coincide, or at least one The portion of the two signal sub-holes that are orthographically projected on the base substrate 1 is located in the orthographic projection of any other second signal sub-holes in the same second signal via 60 on the base substrate 1.
  • the portion of the at least one second signal sub-hole on the substrate substrate 1 is located adjacent to the adjacent one of the second signal sub-holes.
  • the orthographic projection on the base substrate 1 it is convenient to realize the electrical connection of the electrode sub-leads in the adjacent two second signal sub-holes.
  • the orthographic projections of the first signal sub-holes in each of the first signal vias on the substrate substrate 1 coincide, and the second signal sub-holes in each of the second signal vias 60 The orthographic projections on the base substrate 1 coincide.
  • the insulating layer 3 is composed of a plurality of insulating sub-layers
  • each of the first signal sub-holes and each of the second signal sub-holes can be formed in each insulating sub-layer using the same mask, which is advantageous for simplifying the fabrication of the display substrate. Process.
  • each of the insulating sub-layers included in the insulating layer 3 is formed using the same insulating light-transmitting material, such as an insulating material such as silicon oxide, silicon nitride or aluminum oxide ceramic.
  • each of the at least one layer of lead sub-layers and each of the second connection leads 72 comprise: sequentially stacked in a direction away from the substrate 1
  • the first waterproof steam lead portion 701, the intermediate conductive lead portion 702, and the second waterproof vapor lead portion 703 are provided.
  • a water vapor isolation space can be constructed for the intermediate conductive lead portion 702, thereby preventing the intermediate conductive lead portion 702 from being corroded by water vapor, thereby It is ensured that each of the first connection leads 71 and each of the second connection leads 72 has a long service life.
  • the first waterproof vapor lead portion 701 and the second waterproof vapor lead portion 703 are components of the corresponding connection lead, and the first waterproof vapor lead portion 701 and the second waterproof vapor lead portion 703 are provided with electrical conductivity.
  • each of the at least one layer of lead sub-layers and each of the second connection leads 72 are opaque conductive leads, such as made of a metallic conductive material.
  • the light emitted by each of the light-emitting devices 42 is irradiated to any of the first connection leads 71 or any of the second connection leads 72, the light is reflected by the first connection leads 71 or the second connection leads 72, thereby improving the display.
  • the light utilization efficiency of each of the light-emitting devices 42 in the substrate increases the brightness of the screen displayed on the display substrate.
  • the first waterproof vapor lead portion 701 and the second waterproof vapor lead portion 703 are formed using a titanium nitride (TiN) material, and the intermediate conductive lead portion 702 is formed using a copper-aluminum alloy material.
  • TiN titanium nitride
  • the pixel structure layer 4 further includes a pixel defining layer 41 on the surface of the insulating layer 3 facing away from the display driving circuit 2, the pixel defining layer 41 is generally located in the display area AA, and the pixel defining layer 41 There are a plurality of pixel openings, and a light emitting device 42 is disposed in each pixel opening.
  • the pixel defines a layer 41.
  • Each of the light-emitting devices 42 includes an anode 421 and a cathode 423 disposed opposite to each other, and a light-emitting function layer 422 between the anode 421 and the cathode 423, and the anode 421 is located on a side of the light-emitting function layer 422 close to the insulating layer 3.
  • Each electrode lead 6 is connected to a light emitting device 42 in the sense that each electrode lead 6 is connected to the anode 421 of a light emitting device 42.
  • the anode 421 of each of the light-emitting devices 42 is formed by dry etching, which is advantageous for forming the anode 421 having a smaller size, thereby forming the light-emitting device 42 having a smaller size, that is, miniaturization of the light-emitting device 42 is achieved.
  • the graininess of the screen displayed by the micro display device can be reduced by using the high resolution of the display substrate.
  • the anode 421 of each of the light emitting devices 42 includes at least one of a titanium (Ti) layer, a copper aluminum alloy (AlCu) layer, or a titanium nitride (TiN) layer.
  • the anode 421 of each of the light emitting devices 42 includes a titanium (Ti) layer 4211, a copper aluminum alloy (AlCu) layer 4212, and a titanium nitride (TiN) layer 4213 which are stacked.
  • the titanium (Ti) layer 4211 in each anode 421 is connected to the corresponding electrode lead 6, or the titanium nitride (TiN) layer 4213 in each anode 421 is connected to the corresponding electrode lead 6, either.
  • the base substrate 1 of the display substrate is a single crystal silicon wafer (that is, a single crystal silicon substrate), and the single crystal silicon material contained in the single crystal silicon wafer
  • the carrier mobility is 500 cm 2 /V ⁇ s to 1500 cm 2 /V ⁇ s, so that the display driving circuit 2 formed on the surface of the base substrate 1 has a relatively fast signal transmission speed.
  • the screen refresh frequency of the micro display device can be effectively improved, thereby ensuring that the displayed image of the micro display device provides a better visual experience for the user.
  • the method for manufacturing the display substrate includes S100 to S200.
  • the at least one display substrate binding region e.g. a region B in FIG. 1
  • the at least one display substrate binding region is formed configured to provide a plurality of signal channels of the first binding leads through hole 50 is formed in a display area configured to provide a substrate AA
  • S100 includes S110-S140.
  • a substrate substrate 1 is provided.
  • the material of the substrate substrate 1 can be selected according to actual needs, which is not limited in some embodiments of the present disclosure.
  • the base substrate 1 is formed using a single crystal silicon material having a material carrier mobility of 500 cm 2 /V ⁇ s to 1500 cm 2 /V ⁇ s.
  • a display driving circuit 2 is formed on the base substrate 1, and the display driving circuit 2 includes a plurality of input ends located in at least one binding area (for example, the area B1 in FIG. 1 ), and is located in the display area AA. Multiple outputs.
  • the display driving circuit 2 generally includes a plurality of pixel circuits and a plurality of signal lines connected to each of the pixel circuits, wherein an input end of one of the signal lines corresponds to an input end of the display driving circuit 2, and an output end of each of the pixel circuits is A light emitting device 42 is connected, and an output end of each pixel circuit corresponds to an output terminal of the display driving circuit 2.
  • an insulating layer 3 is formed on the surface of the display driving circuit 2 facing away from the base substrate 1.
  • S140 forming a plurality of first signal vias 50 in a portion of the insulating layer 3 covering the plurality of input ends, and at least one first signal via 50 corresponding to one input end; covering the plurality of outputs at the insulating layer 3 A plurality of second signal vias 60 are formed in the portion, and at least one second signal via 60 corresponds to one output.
  • the wire diameter of the binding lead 5 means a diameter perpendicular to the linear extension direction thereof
  • the wire diameter of the electrode lead 6 means a diameter perpendicular to the linear extension direction thereof.
  • the manufacturing method of the display substrate provided by some embodiments of the present disclosure is the same as that of the display substrate provided by some of the above embodiments, and details are not described herein.
  • the method of fabricating the display substrate further includes S300.
  • a pixel structure layer 4 is formed on the surface of the insulating layer 3 facing away from the display driving circuit 2, the pixel structure layer 4 includes a plurality of light emitting devices 42 located in the display area AA, and one light emitting device 42 is connected to at least one of the electrode leads 6.
  • each of the light emitting devices 42 includes an oppositely disposed anode 421 and cathode 423, and a light emitting functional layer 422 between the anode 421 and the cathode 423.
  • the above S300 includes S310 to S340.
  • the pixel defining layer 41 is generally formed on a surface of the insulating layer 3 located within the display area AA.
  • a cathode 423 is formed on a surface of each of the light-emitting function layers 422 facing away from the anode 421.
  • S130 further includes: sequentially forming at least two layers of insulator layers on a surface of the display driving circuit 2 facing away from the substrate 1 .
  • the manufacturing method of the display substrate further includes: forming a lead sub-layer on the insulator layer formed first in each adjacent two-layer insulator layer in the process of forming each adjacent two-layer insulator layer, wherein
  • the lead sub-layer includes a plurality of first connection leads 71 located in at least one binding region, and a plurality of second connection leads 72 located within the display area AA, and the plurality of first connection leads 71 and the plurality of The second connection leads 72 are insulated from each other.
  • Forming a first signal via 50 in S140 further comprising: forming a first signal sub-hole in each of the insulating sub-layers, and forming the first signal from each of the at least two insulating sub-layers Via 50.
  • the binding lead 5 is formed in each of the first signal vias 50 in the S200, and further includes: forming a binding sub-lead in each of the first signal sub-holes of the first signal via 50, wherein Each adjacent two bond sub-leads are connected by a first one of the corresponding lead sub-layers 71.
  • forming a second signal via 60 in S140 further comprising: forming a second signal sub-hole in each of the insulating sub-layers, wherein the second signal sub-holes in the at least two insulating sub-layers form the The second signal is via 60.
  • forming the electrode lead 6 in each of the second signal vias 60 in S200 further comprising: forming an electrode sub-lead in each of the second signal sub-holes of the second signal via 60, wherein each Adjacent two electrode sub-leads are connected by a second one of the corresponding lead sub-layers.
  • the number of the lead sub-layers in the substrate is one, and the manufacturing method of the OELD display substrate is as follows.
  • a base substrate 1 is provided.
  • a display driving circuit 2 is formed on the base substrate 1.
  • An insulating sublayer that is, a first insulating sublayer 31 is formed on the surface of the display driving circuit 2 facing away from the base substrate 1.
  • a plurality of first signal sub-holes are formed in a portion of the first insulator layer 31 located in the at least one bonding region, and a plurality of second signal sub-holes are formed in a portion of the first insulator layer 31 located within the display region AA.
  • a first bonding sub-lead 51 is formed in each of the first signal sub-holes in the first insulating sub-layer 31, and each of the first bonding sub-leads 51 is connected to an input terminal of the display driving circuit 2.
  • First electrode sub-leads 61 are formed in each of the second signal sub-holes of the first insulating sub-layer 31, and each of the first electrode sub-leads 61 is connected to an output terminal of the display driving circuit 2.
  • the lead sub-layer Forming a layer of lead sub-layers on a surface of the first insulator layer 31 facing away from the substrate 1 , the lead sub-layer comprising a plurality of first connecting leads 71 located in the at least one binding region, and located in the display area AA a plurality of second connection leads 72, the plurality of first connection leads 71 and the plurality of second connection leads 72 are insulated from each other, wherein each of the first connection leads 71 is connected to a first binding sub-lead 51
  • Each of the second connection leads 72 is connected to a first electrode sub-lead 61.
  • an insulator layer i.e., a second insulator layer 32, is formed on the surface of the lead sub-layer facing away from the base substrate 1.
  • a second insulator layer is formed on the surface of the lead sub-layer facing away from the base substrate 1.
  • a plurality of second signal sub-holes is formed in each of the first signal sub-holes in the second insulator layer 32, and each of the second bond sub-leads 52 is connected to a first connection lead 71.
  • a second electrode sub-lead 62 is formed in each of the second signal sub-holes of the second insulator layer 32, and each of the second electrode sub-leads 62 is connected to a second connection lead 72.
  • a pixel structure layer 4 is formed on a surface of the second insulator layer 32 facing away from the base substrate 1, and each of the light-emitting devices 42 in the pixel structure layer 4 is connected to one of the second insulator sub-layers 62.
  • the insulating layer 3 is composed of the first insulating sub-layer 31 and the second insulating sub-layer 32.
  • Each of the bonding leads 5 is electrically connected by a first bonding sub-lead 51 located in the first insulating sub-layer 31 and a second bonding sub-lead 52 located in the second insulating sub-layer 32.
  • Each of the electrode leads 6 is electrically connected by a first electrode sub-lead 61 located in the first insulating sub-layer 31 and a second electrode sub-lead 62 located in the second insulating sub-layer 32.
  • the display substrate is fabricated as follows.
  • a base substrate 1 is provided.
  • a display driving circuit 2 is formed on the base substrate 1.
  • An insulating sublayer that is, a first insulating sublayer 31 is formed on the surface of the display driving circuit 2 facing away from the base substrate 1.
  • a plurality of first signal sub-holes are formed in a portion of the first insulator layer 31 located in the at least one bonding region, and a plurality of second signal sub-holes are formed in a portion of the first insulator layer 31 located within the display region AA.
  • a first bonding sub-lead 51 is formed in each of the first signal sub-holes in the first insulating sub-layer 31, and each of the first bonding sub-leads 51 is connected to an input terminal of the display driving circuit 2.
  • First electrode sub-leads 61 are formed in each of the second signal sub-holes of the first insulating sub-layer 31, and each of the first electrode sub-leads 61 is connected to an output terminal of the display driving circuit 2.
  • a layer of lead sub-layers that is, a first lead sub-layer is formed on the surface of the first insulator sub-layer 31 facing away from the substrate 1, and the first lead sub-layer is disposed in the at least one bonding region.
  • the plurality of first connection leads 711 and the plurality of second connection leads 721 of the first lead sub-layer are insulated from each other, and each of the first connection leads 711 is connected to a first binding sub-lead 51, each second The connection lead 721 is connected to a first electrode sub-lead 61.
  • an insulator layer that is, a second insulator layer 32, is further formed on the surface of the first lead sub-layer facing away from the base substrate 1.
  • a plurality of second signal sub-holes are formed in portions of the second connection leads 721.
  • a second bond sub-lead 52 is formed in each of the first signal sub-holes in the second insulator layer 32, and each of the second bond sub-leads 52 is connected to one of the first lead sub-layers.
  • a second electrode sub-lead 62 is formed in each of the second signal sub-holes of the second insulator layer 32, and each of the second electrode sub-leads 62 is connected to one of the first lead sub-layers.
  • a layer of lead sub-layers that is, a second lead sub-layer is formed on the surface of the second insulator layer 32 facing away from the substrate 1 , and the second lead sub-layer is disposed in the at least one bonding region.
  • the plurality of first connection leads 712 and the plurality of second connection leads 721 of the second lead sub-layer are insulated from each other, and each of the first connection leads 712 is connected to a second binding sub-lead 52, each second The connection lead 722 is connected to a second electrode sub-lead 62.
  • an insulator layer that is, a third insulator layer 33, is further formed on the surface of the second lead sub-layer facing away from the base substrate 1.
  • a third insulator layer 33 is further formed on the surface of the second lead sub-layer facing away from the base substrate 1.
  • a pixel structure layer 4 is formed on the surface of the third insulator layer 33 facing away from the base substrate 1, and each of the light-emitting devices 42 in the pixel structure layer 4 is connected to one of the third insulator sub-layers 33. 63.
  • a plurality of first signal sub-holes are formed in portions of the third insulating sub-layer 33 covering the plurality of first connection leads 712 in the second lead sub-layer, and each of the third insulating sub-layers 33
  • a third bond sub-lead 53 is formed in each of the first signal sub-holes, and each of the third bond sub-leads 53 is connected to one of the second lead sub-layers.
  • the step of "forming a plurality of first signal sub-holes in the third insulating sub-layer 33" is performed in a step of "forming a plurality of second signal sub-holes in the third insulating sub-layer 33".
  • the step of “forming a plurality of first signal sub-holes in the third insulator layer 33” is performed after the fabrication of the pixel structure layer 4 is completed, and the subsequent fabrication of the pixel structure layer 4 can be avoided for each of the first signal sub-holes, or
  • the bonding sub-lead formed in each of the first signal sub-holes causes contamination, which is advantageous for simplifying the manufacturing process of the display substrate and improving the production yield of the display substrate.
  • step of "forming a plurality of first signal sub-holes in the third insulator layer 33" is performed simultaneously with the step of "forming a plurality of second signal sub-holes in the third insulator layer 33", for example, as shown in FIG. 7E. It is also allowed to perform in the structure shown. Some embodiments of the present disclosure do not limit this.
  • each bonding sub-lead after the bonding sub-leads are formed in each of the first signal sub-holes, the exposed surface of each bonding sub-lead needs to be chemically mechanically ground so that the bonding sub-leads are The exposed surface is relatively flat, which facilitates subsequent fabrication of the display substrate.
  • the electrode sub-lead in each second signal sub-hole it is necessary to perform chemical mechanical polishing on the exposed surface of each electrode sub-lead, so that the exposed surface of each electrode sub-lead is relatively flat, thereby facilitating the display substrate.
  • at least one of each of the binding sub-leads or each of the electrode sub-leads is formed by a metal wire bonding process.
  • Some embodiments of the present disclosure also provide a display device including the display substrate provided by some of the above embodiments.
  • the beneficial effects that can be achieved by the display device provided by the embodiments of the present disclosure are the same as those of the display substrate provided by the above embodiments, and are not described herein.
  • the display device is an immersive near-eye display product based on VR or AR technology, including a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, a smart glasses, or a smart helmet.
  • a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, a smart glasses, or a smart helmet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示基板,具有一显示区域和位于所述显示区域的外围的至少一个绑定区域。所述显示基板包括:位于所述至少一个绑定区域内的配置为提供绑定引线通道的多个第一信号过孔;以及,位于所述显示区域内的配置为提供电极引线通道的多个第二信号过孔;其中,每个第一信号过孔的孔径均大于任一第二信号过孔的孔径。

Description

显示基板及其制作方法、显示装置
本申请要求于2018年05月09日提交中国专利局、申请号为201810437587.0、申请名称为“一种OLED显示基板及其制作方法、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示基板及其制作方法、显示装置。
背景技术
目前,基于虚拟现实(Virtual Reality,缩写为VR)或增强显示(Augmented Reality,缩写为AR)等技术的微型显示设备所显示的画面需要具备高分辨率、高亮度和高对比度的特点。相关技术中的微型显示设备,大多使用具有自发光性能的有机发光二极管(Organic Light-Emitting Diode,简称OLED)显示基板进行画面显示。
发明内容
一方面,提供一种显示基板。所述显示基板具有一显示区域和位于所述显示区域的外围的至少一个绑定区域。所述显示基板包括:位于所述至少一个绑定区域内的配置为提供绑定引线通道的多个第一信号过孔;以及,位于所述显示区域内的配置为提供电极引线通道的多个第二信号过孔;其中,每个第一信号过孔的孔径均大于任一第二信号过孔的孔径。
在一些实施例中,所述显示基板还包括衬底基板、以及层叠设置在所述衬底基板上的显示驱动电路、绝缘层和像素结构层,其中,所述像素结构层包括位于所述显示区域内的多个发光器件,所述多个第一信号过孔和所述多个第二信号过孔设置在所述绝缘层中。所述显示基板还包括:设置 在每个第一信号过孔内且配置为与所述显示驱动电路的一输入端绑定在一起的绑定引线;以及,设置在每个第二信号过孔内且配置为连接所述显示驱动电路的一输出端与一发光器件的电极引线;其中,每个所述绑定引线的线径均大于任一所述电极引线的线径。
在一些实施例中,所述绝缘层包括沿远离所述衬底基板的方向依次设置的至少两层绝缘子层。所述显示基板还包括设置在每相邻的两层绝缘子层之间的引线子层,其中,每层所述引线子层包括位于所述至少一个绑定区域内的多个第一连接引线、以及位于所述显示区域内的多个第二连接引线,且所述多个第一连接引线和所述多个第二连接引线两两绝缘。所述每个第一信号过孔包括设置在每层绝缘子层中的一第一信号子孔。每个所述绑定引线包括位于每个第一信号子孔内的一绑定子引线,且每相邻的两个所述绑定子引线通过对应引线子层中的一个第一连接引线电连接。所述每个第二信号过孔包括设置在每层绝缘子层中的一第二信号子孔。每个所述电极引线包括位于每个第二信号子孔内的一电极子引线,且每相邻的两个所述电极子引线通过对应引线子层中的一个第二连接引线电连接。
在一些实施例中,所述每个绑定引线中距离所述显示驱动电路最近的绑定子引线连接所述显示驱动电路的一输入端。所述每个电极引线中距离所述显示驱动电路最近的电极子引线连接所述显示驱动电路的一输出端,所述每个电极引线中距离所述像素结构层最近的电极子引线连接一所述发光器件。
在一些实施例中,所述每个第一信号过孔中的至少两个第一信号子孔在所述衬底基板上的正投影至少部分重合。所述每个第二信号过孔中的至少两个第二信号子孔在所述衬底基板上的正投影至少部分重合。
在一些实施例中,至少一层所述引线子层中的每个第一连接引线和每个第二连接引线均包括:沿远离所述衬底基板的方向依次层叠设置的第一防水汽引线部、中间导电引线部和第二防水汽引线部。
在一些实施例中,至少一层所述引线子层中的每个第一连接引线和每个第二连接引线均为不透光的导电引线。
在一些实施例中,所述像素结构层还包括位于所述绝缘层的背离所述显示驱动电路的表面的像素界定层。所述像素界定层具有多个像素开口,每个像素开口内设置有一所述发光器件。
在一些实施例中,每个所述发光器件包括相对设置的阳极和阴极、以及位于所述阳极和所述阴极之间的发光功能层,其中,所述阳极位于所述发光功能层靠近所述绝缘层的一侧。
在一些实施例中,所述阳极包括层叠设置的钛层、铜铝合金层和氮化钛层。
在一些实施例中,所述衬底基板为单晶硅晶圆,所述单晶硅晶圆所含有的单晶硅材料的载流子迁移率为500cm 2/V·s~1500cm 2/V·s。
另一方面,提供了一种显示基板的制作方法。所述显示基板的制作方法包括:在显示基板的至少一个绑定区域形成配置为提供绑定引线通道的多个第一信号过孔,在显示基板的一显示区域形成配置为提供电极引线通道的多个第二信号过孔,其中,每个第一信号过孔的孔径均大于任一第二信号过孔的孔径。在每个第一信号过孔内形成绑定引线,在每个第二信号过孔内形成电极引线,其中,每个所述绑定引线的线径均大于任一所述电极引线的线径。
在一些实施例中,所述在显示基板的至少一个绑定区域形成配置为提供绑定引线通道的多个第一信号过孔,在显示基板的一显示区域形成配置为提供电极引线通道的多个第二信号过孔,包括:提供一衬底基板。在所述衬底基板上形成显示驱动电路,所述显示驱动电路包括位于所述至少一个绑定区域内的多个输入端,以及位于所述显示区域内的多个输出端。在所述显示驱动电路的背离所述衬底基板的表面形成绝缘层。在所述绝缘层覆盖所述多个输入端的部分中形成所述多个第一信号过孔,且至少一个第 一信号过孔对应一个输入端。在所述绝缘层覆盖所述多个输出端的部分中形成所述多个第二信号过孔,且至少一个第二信号过孔对应一个输出端。
在一些实施例中,在所述显示驱动电路的背离所述衬底基板的表面形成绝缘层,还包括:在所述显示驱动电路的背离所述衬底基板的表面,依次形成至少两层绝缘子层。
所述显示基板的制作方法,还包括:在形成每相邻两层绝缘子层的过程中,在所述每相邻两层绝缘子层中先形成的绝缘子层上形成一引线子层,其中,所述引线子层包括位于所述至少一个绑定区域内的多个第一连接引线、以及位于所述显示区域内的多个第二连接引线,且所述多个第一连接引线和所述多个第二连接引线两两绝缘。
形成一个第一信号过孔,还包括:在每层绝缘子层中形成一个第一信号子孔,由所述至少两层绝缘子层中的各第一信号子孔构成所述第一信号过孔。在每个第一信号过孔内形成绑定引线,还包括:在所述第一信号过孔的每个第一信号子孔内形成一绑定子引线,其中,每相邻的两个所述绑定子引线通过对应引线子层中的一个第一连接引线连接。
形成一个第二信号过孔,还包括:在每层绝缘子层中形成一个第二信号子孔,由所述至少两层绝缘子层中的各第二信号子孔构成所述第二信号过孔。在每个第二信号过孔内形成电极引线,还包括:在所述第二信号过孔的每个第二信号子孔内形成一电极子引线,其中,每相邻的两个所述电极子引线通过对应引线子层中的一个第二连接引线连接。
在一些实施例中,所述显示基板的制作方法,还包括:在所述绝缘层背离所述显示驱动电路的表面形成像素结构层,其中,所述像素结构层包括位于所述显示区域内的多个发光器件,且一个发光器件连接至少一条电极引线。
在一些实施例中,每个所述发光器件包括相对设置的阳极和阴极、以及位于所述阳极和所述阴极之间的发光功能层。在所述绝缘层背离所述显 示驱动电路的表面形成像素结构层,包括:采用干法刻蚀工艺,在所述绝缘层背离所述显示驱动电路的表面形成图案化的多个阳极,所述多个阳极位于显示区域内,且每个阳极连接至少一条电极引线。在所述绝缘层未被所述多个阳极覆盖的表面、以及所述多个阳极背离所述绝缘层的表面形成像素界定层。在所述像素界定层中形成多个像素开口,每个像素开口在所述衬底基板上的正投影位于一个阳极在所述衬底基板上的正投影内。在所述每个像素开口内形成与阳极接触的发光功能层。在每个发光功能层背离所述阳极的表面形成阴极。
又一方面,提供一种显示装置。所述显示装置包括上述的显示基板。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开一些实施例的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为根据本公开一些实施例中的一种显示基板的结构示意图;
图2为图1所示的一种显示基板的沿C-C'向的剖面示意图;
图3为图1所示的另一种显示基板的沿C-C'向的剖面示意图;
图4为图3所示的一种显示基板中的第一连接引线的结构示意图;
图5为图3所示的一种显示基板中的阳极的结构示意图;
图6为图1所示的又一种显示基板的沿C-C'向的剖面示意图;
图7A~图7G为图6所示的一种显示基板的制作方法步骤的结构示意图;
图8为根据本公开一些实施例中的一种显示基板的制作方法的流程框图。
具体实施方式
下面将结合本公开一些实施例中的附图,对本公开一些实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本公开一部分实施例,而 不是全部的实施例。基于本公开中的一些实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
在基于VR或AR技术的微型显示设备中,OLED显示基板内的显示驱动电路与外部电路之间通过线绑定的方式绑定在一起,以有效缩小微型显示设备的体积。然而,在进行线绑定的过程中,所使用的配置为绑定所述显示驱动电路和所述外部电路的金属走线比较细,容易使得该金属走线存在脱落的风险。由此,一旦所述显示驱动电路和所述外部电路之间的金属走线脱落,就会导致微型显示设备难以正常显示。
请参阅图1和图2,本公开一些实施例提供了一种显示基板。该显示基板具有一显示区域AA、以及位于显示区域AA的外围的至少一个绑定区域(例如,图1中的B 1区域、B 2区域、B 3区域或B 4区域中的至少一个)。所述显示基板包括:位于所述至少一个绑定区域内的配置为提供绑定引线通道的多个第一信号过孔50;以及,位于所述显示区域AA内的配置为提供电极引线通道的多个第二信号过孔60;其中,每个第一信号过孔50的孔径均大于任一第二信号过孔60的孔径。
此处,多个第一信号过孔50的孔径相同或不同,多个第二信号过孔60的孔径相同或不同,本公开一些实施例对此不作限定。示例的,多个第一信号过孔50的孔径不同,多个第二信号过孔60的孔径不同,所述每个第一信号过孔50的孔径均大于任一第二信号过孔60的孔径,是指多个第一信号过孔50中的最小孔径大于多个第二信号过孔60中的最大孔径。
此外,若每个第一信号过孔50的孔径渐变(例如每个第一信号过孔50为锥状孔),且每个第二信号过孔60的孔径渐变(例如每个第二信号过孔60为锥状孔),则每个第一信号过孔50的孔径均大于任一第二信号过孔60的孔径,是指每个第一信号过孔50的最小孔径大于任一第二信号过孔60的最小孔径,或每个第一信号过孔50的最小孔径大于任一第二信号过孔60的最大孔径。
在一些实施例中,请继续参阅图1和图2,显示基板还包括衬底基板1、以及层叠设置在衬底基板1上的显示驱动电路2、绝缘层3和像素结构层4,其中,像素结构层4包括位于显示区域AA内的多个发光器件42,所述多个第一信号过孔50和所述多个第二信号过孔60设置在绝缘层3中。示例的,显示基板为OLED显示基板,其像素结构层4中的各发光器件42均为OLED。当然,若显示基板为量子点发光二极管(Quantum Dot Light Emitting Diodes,简称QLED)显示基板,则其像素结构层4中的各发光器件42均为QLED。本公开一些实施例对发光器件的类型不作限定。
此处,显示驱动电路2一般包括多个像素电路以及与所述多个像素电路对应连接的多条信号线,其中,一条信号线的输入端对应为显示驱动电路2的一输入端,每个像素电路的输出端与一个发光器件42连接,且每个像素电路的输出端对应为显示驱动电路2的一输出端。第一信号过孔50的数量应当根据显示驱动电路2所需传输的信号种类决定,第二信号过孔60的数量应当根据显示基板中发光器件42的数量决定。
显示基板还包括:设置在每个第一信号过孔50内且配置为与显示驱动电路2的一输入端绑定在一起的绑定引线5、以及设置在每个第二信号过孔60内且配置为连接显示驱动电路2的一输出端与一发光器件42的电极引线6,其中,每个绑定引线5的线径均大于任一电极引线6的线径。此处,绑定引线5的线径是指垂直于其线性延伸方向的直径,电极引线6的线径是指垂直于其线性延伸方向的直径。
示例的,每个绑定引线5通过在对应的第一信号过孔50内填充导电材料形成,每个电极引线6通过在对应的第二信号过孔60内填充导电材料形成。由此,每个绑定引线5的形状与对应的第一信号过孔50的形状相匹配,每个电极引线6的形状与对应的第二信号过孔60的形状相匹配。本公开一些实施例对“每个绑定引线5的线径均大于任一电极引线6的线径”的限定,可参照前述“每个第一信号过孔50的孔径均大于任一第二信号过孔 60的孔径”的相关限定,此处不做赘述。
本公开一些实施例在制作显示基板的过程中,在该显示基板的至少一个绑定区域内形成多个第一信号过孔,可以利用该多个第一信号过孔50形成多条绑定引线5,也即,将多条绑定引线5固定在显示基板的绑定区域,以对显示驱动电路2的各输入端进行线绑定。
并且,本公开一些实施例设置每个第一信号过孔50的孔径均大于任一第二信号过孔60的孔径,使得每个绑定引线5的线径均大于任一电极引线6的线径,也即,与常规的电极引线相比,可以有效增大每个绑定引线5的线径,从而有效提高每个绑定引线5的连接强度及耐磨强度,进而防止显示基板内的显示驱动电路2与外部电路之间的绑定引线脱落。
如此,本公开一些实施例提供的显示基板在应用于微型显示设备,特别是微型移动显示设备中时,可以提高微型显示设备的使用可靠性,确保微型显示设备正常显示。
请参阅图3和图6,在一些实施例中,绝缘层3包括沿远离衬底基板1的方向依次设置的至少两层绝缘子层(例如图3所示的第一绝缘子层31和第二绝缘子层32,或如图6所示的第一绝缘子层31、第二绝缘子层32和第三绝缘子层33)。显示基板还包括设置在每相邻的两层绝缘子层之间的引线子层,其中,每层引线子层包括位于至少一个绑定区域内的多个第一连接引线71、以及位于显示区域AA内的多个第二连接引线72,且所述多个第一连接引线71和所述多个第二连接引线72两两绝缘。此处,多个第一连接引线71与多个第一信号过孔50一一对应,多个第二连接引线72与多个第二信号过孔60一一对应。
请继续参阅图3和图6,在上述显示基板中,每个第一信号过孔50包括设置在每层绝缘子层中的一第一信号子孔;每个绑定引线5包括位于每个第一信号子孔内的一绑定子引线(例如图3所示的第一绑定子引线51和第二绑定子引线52,或如图6所示的第一绑定子引线51、第二绑定子引 线52和第三绑定子引线53),且每相邻的两个绑定子引线通过对应引线子层中的一个第一连接引线71电连接。这样在每个绑定引线5对应的同一空间范围内,利用每相邻两个绑定子引线之间的第一连接引线71,可以等效增加所述绑定引线5的长度及导电性能,即可以将所述第一连接引线71的长度及导电能力等效视为绑定引线5所能具有的长度及导电能力。如此,在确保每个绑定引线5具有相同导电能力的情况下,若增加了该绑定引线5的长度,则能对应减小该绑定引线5的线径,从而减小绑定区域在衬底基板1上的正投影面积,以实现显示基板中绑定区域的小型化。
每个第二信号过孔60包括设置在每层绝缘子层中的一第二信号子孔;每个电极引线6包括位于每个第二信号子孔内的一电极子引线(例如图3所示的第一电极子引线61和第二电极子引线62,或如图6所示的第一电极子引线61、第二电极子引线62和第三电极子引线63),且每相邻的两个电极子引线通过对应引线子层中的一个第二连接引线72电连接。这样在每个电极引线6对应的同一空间范围内,利用每相邻两个电极子引线之间的第二连接引线72,可以等效增加所述电极引线6的长度及导电性能,即可以将所述第二连接引线72的长度及导电能力等效视为电极引线6所能具有的长度及导电能力。
在每个绑定引线5由多个绑定子引线构成的情况下,每个绑定引线5中距离显示驱动电路2最近的绑定子引线连接该显示驱动电路2的一输入端。在每个电极引线6由多个电极子引线构成的情况下,每个电极引线6中距离显示驱动电路2最近的电极子引线连接该显示驱动电路2的一输出端,且每个电极引线6中距离像素结构层4最近的电极子引线连接一发光器件42。
在本公开一些实施例中,绝缘层3由至少两层绝缘子层构成,这样可以通过增加绝缘子层的层数的方式来有效增大绝缘层3的厚度,以对应增加形成在绝缘层3中的各第一信号过孔50的孔深,从而对各第一信号过孔 50内的绑定引线5进行保护,防止各绑定引线5在外力作用或长期磨损的情况下出现断裂、脱落等状况。
在一些示例中,请参阅图3,绝缘层3包括两层绝缘子层,该两层绝缘子层分别为第一绝缘子层31和第二绝缘子层32。显示基板还包括位于第一绝缘子层31和第二绝缘子层32之间的引线子层。第一绝缘子层31位于显示驱动电路2与引线子层之间,第二绝缘子层32位于引线子层与像素结构层4之间。该引线子层包括位于绑定区域B 1内的多个第一连接引线71、以及位于显示区域AA内的多个第二连接引线72,且所述多个第一连接引线71和所述多个第二连接引线72两两绝缘。
此处,所述多个第一连接引线71和所述多个第二连接引线72通过对同一层导电薄膜进行构图工艺获得,其中,每相邻的两个连接引线可以通过第二绝缘子层32绝缘。
每个第一信号过孔50包括两个第一信号子孔,其中一个开设在第一绝缘子层31中,另一个开设在第二绝缘子层32中。每个绑定引线5包括位于第一绝缘子层31中一个第一信号子孔内的第一绑定子引线51和位于第二绝缘子层32中一个第一信号子孔内的第二绑定子引线52。每个绑定引线5中的第一绑定子引线51和第二绑定子引线52通过一个第一连接引线71连接,且每个第一绑定子引线51远离第二绑定子引线52的一端与显示驱动电路2的一输入端连接,每个第二绑定子引线52远离第一绑定子引线51的一端与外部电路连接。外部电路向每条绑定引线5传输的信号,可以依次通过第二绑定子引线52、第一连接引线71和第一绑定子引线51传输至显示驱动电路2中对应的输入端。
类似的,每个第二信号过孔60包括两个第二信号子孔,其中一个开设在第一绝缘子层31中,另一个开设在第二绝缘子层32中。每个电极引线6包括位于第一绝缘子层31中一个第二信号子孔内的第一电极子引线61和位于第二绝缘子层32中一个第二信号子孔内的第二电极子引线62。每 个电极引线6中的第一电极子引线61和第二电极子引线62通过一个第二连接引线72连接,且每个第一电极子引线61远离第二电极子引线62的一端与显示驱动电路2的一输出端连接,每个第二电极子引线62远离第一电极子引线61的一端与一发光器件42连接。显示驱动电路2中每个输出端输出的信号可以依次通过第一电极子引线61、第二连接引线72和第二电极子引线62传输至对应的发光器件42,以驱动该发光器件42发光。
在另一些示例中,请参阅图6,绝缘层3包括三层绝缘子层,该三层绝缘子层分别为第一绝缘子层31、第二绝缘子层32和第三绝缘子层33。显示基板还包括位于第一绝缘子层31和第二绝缘子层32之间的第一引线子层,以及位于第二绝缘子层32和第三绝缘子层33之间的第二引线子层。第一绝缘子层31位于显示驱动电路2与第一引线子层之间,第二绝缘子层32位于第一引线子层与第二引线子层之间,第三绝缘子层33位于第二引线子层与像素结构层4之间。
第一引线子层包括位于绑定区域B 1内的多个第一连接引线711、以及位于显示区域AA内的多个第二连接引线721,且所述第一引线子层中的多个第一连接引线711和多个第二连接引线721两两绝缘。此处,所述第一引线子层中的多个第一连接引线711和多个第二连接引线721通过对同一层导电薄膜进行构图工艺获得,其中,每相邻的两个连接引线可以通过第二绝缘子层32绝缘。
第二引线子层包括位于绑定区域B 1内的多个第一连接引线712、以及位于显示区域AA内的多个第二连接引线722,且所述第二引线子层中的多个第一连接引线712和多个第二连接引线722两两绝缘。此处,所述第二引线子层中的多个第一连接引线712和多个第二连接引线722通过对同一层导电薄膜进行构图工艺获得,其中,每相邻的两个连接引线可以通过第三绝缘子层32绝缘。
每个第一信号过孔50包括三个第一信号子孔,三个中的一个开设在第 一绝缘子层31中,一个开设在第二绝缘子层32中,另一个开设在第三绝缘子层33中。每个绑定引线5包括位于第一绝缘子层31中一个第一信号子孔内的第一绑定子引线51,位于第二绝缘子层32中一个第一信号子孔内的第二绑定子引线52,以及位于第三绝缘子层33中一个第一信号子孔内的第三绑定子引线53。每个绑定引线5中,第一绑定子引线51和第二绑定子引线52通过第一引线子层中的一个第一连接引线711连接,第二绑定子引线52和第三绑定子引线53通过第二引线子层中的一个第一连接引线712连接。并且,每个第一绑定子引线51远离第二绑定子引线52的一端与显示驱动电路2的一输入端连接,每个第三绑定子引线53远离第二绑定子引线52的一端与外部电路连接。外部电路向每条绑定引线5传输的信号,可以依次通过第三绑定子引线53、第二引线子层中的第一连接引线712、第二绑定子引线52、第一引线子层中的第一连接引线711、以及第一绑定子引线51传输至显示驱动电路2中对应的输入端。
类似的,每个第二信号过孔60包括三个第二信号子孔,三个中的一个开设在第一绝缘子层31中,一个开设在第二绝缘子层32中,另一个开设在第三绝缘子层33中。每个电极引线6包括位于第一绝缘子层31中一个第二信号子孔内的第一电极子引线61,位于第二绝缘子层32中一个第二信号子孔内的第二电极子引线62,以及位于第三绝缘子层33中一个第二信号子孔内的第三电极子引线63。每个电极引线6中,第一电极子引线61和第二电极子引线62通过第一引线子层中的一个第二连接引线721连接,第二电极子引线62和第三电极子引线63通过第二引线子层中的一个第二连接引线722连接。并且,每个第一电极子引线61远离第二电极子引线62的一端与显示驱动电路2的一输出端连接,每个第三电极子引线63远离第二电极子引线62的一端与一发光器件42连接。显示驱动电路2中每个输出端输出的信号可以依次通过第一电极子引线61、第一引线子层中的第二连接引线721、第二电极子引线62、第二引线子层中的第二连接引线 722、以及第三电极子引线63传输至对应的发光器件42,以驱动该发光器件42发光。
请继续参阅图3和图6,在一些实施例中,每个第一信号过孔50中的至少两个第一信号子孔在衬底基板1上的正投影至少部分重合。这也就是说,在每个第一信号过孔50的各第一信号子孔中,至少两个第一信号子孔在衬底基板1上的正投影重合或大略重合,或者,至少一个第一信号子孔在衬底基板1上的正投影的部分位于同一个第一信号过孔50中其他任一第一信号子孔在衬底基板1上的正投影内。
示例的,在每个第一信号过孔50的各第一信号子孔中,至少一个第一信号子孔在衬底基板1上的正投影的部分位于相邻的一个第一信号子孔在衬底基板1上的正投影内,方便于实现相邻两个第一信号子孔内的绑定子引线的电连接。
类似的,每个第二信号过孔60中的至少两个第二信号子孔在衬底基板1上的正投影至少部分重合。这也就是说,在每个第二信号过孔60的各第二信号子孔中,至少两个第二信号子孔在衬底基板1上的正投影重合或大略重合,或者,至少一个第二信号子孔在衬底基板1上的正投影的部分位于同一第二信号过孔60中其他任一第二信号子孔在衬底基板1上的正投影内。
示例的,在每个第二信号过孔60的各第二信号子孔中,至少一个第二信号子孔在衬底基板1上的正投影的部分位于相邻的一个第二信号子孔在衬底基板1上的正投影内,方便于实现相邻两个第二信号子孔内的电极子引线的电连接。
在一些实施例中,每个第一信号过孔50中的各第一信号子孔在衬底基板1上的正投影重合,且每个第二信号过孔60中的各第二信号子孔在衬底基板1上的正投影重合。这样在绝缘层3由多层绝缘子层构成的情况下,可以使用同一张掩膜版在每层绝缘子层中形成各第一信号子孔和各第二信 号子孔,有利于简化显示基板的制作工艺。
此外,绝缘层3所包括的每层绝缘子层使用相同的绝缘透光材料制作形成,例如氧化硅、氮化硅或氧化铝陶瓷等绝缘材料。
请参阅图3和图4,在一些实施例中,至少一层引线子层中的每个第一连接引线71和每个第二连接引线72均包括:沿远离衬底基板1的方向依次层叠设置的第一防水汽引线部701、中间导电引线部702和第二防水汽引线部703。这样利用每个连接引线中的第一防水汽引线部701和第二防水汽引线部703,可以为其中间导电引线部702构建水汽隔离空间,防止所述中间导电引线部702被水汽腐蚀,从而保证各第一连接引线71和各第二连接引线72均具有较长的使用寿命。此处,第一防水汽引线部701和第二防水汽引线部703作为对应连接引线的组成部分,第一防水汽引线部701和第二防水汽引线部703具备导电能力。
此外,在一些实施例中,至少一层引线子层中的每个第一连接引线71和每个第二连接引线72均为不透光的导电引线,例如采用金属导电材料制作。这样当各发光器件42发出的光线照射至任一第一连接引线71或任一第二连接引线72时,利用第一连接引线71或第二连接引线72对所述光线进行反射,可以提高显示基板中各发光器件42的光线利用效率,从而增加显示基板所显示的画面亮度。
示例性的,上述第一防水汽引线部701和第二防水汽引线部703使用氮化钛(TiN)材料制作形成,中间导电引线部702使用铜铝合金材料制作形成。
请参阅图2,在一些实施例中,像素结构层4还包括位于绝缘层3的背离显示驱动电路2的表面的像素界定层41,像素界定层41通常位于显示区域AA内,像素界定层41具有多个像素开口,每个像素开口内设置有一发光器件42。所述像素界定层41。每个发光器件42包括相对设置的阳极421和阴极423、以及位于阳极421和阴极423之间的发光功能层422, 所述阳极421位于发光功能层422靠近绝缘层3的一侧。每个电极引线6与一发光器件42连接,表现为每个电极引线6与一发光器件42的阳极421连接。
此处,每个发光器件42的阳极421采用干法刻蚀制作形成,有利于形成具有较小尺寸的阳极421,从而形成具有较小尺寸的发光器件42,即实现发光器件42的微型化,以提高显示基板的分辨率,进而在将显示基板应用于微型显示设备中时,利用显示基板的高分辨率可以降低微型显示设备所显示画面的颗粒感。
此外,在一些示例中,每个发光器件42的阳极421包括钛(Ti)层、铜铝合金(AlCu)层或氮化钛(TiN)层中的至少一层。示例的,如图5所示,每个发光器件42的阳极421包括层叠设置的钛(Ti)层4211、铜铝合金(AlCu)层4212和氮化钛(TiN)层4213。此处,每个阳极421中的钛(Ti)层4211与对应的电极引线6连接,或每个阳极421中的氮化钛(TiN)层4213与对应的电极引线6连接,均可。
值得一提的是,在一些实施例中,显示基板的衬底基板1为单晶硅晶圆(也即单晶硅衬底基板),所述单晶硅晶圆所含有的单晶硅材料的载流子迁移率为500cm 2/V·s~1500cm 2/V·s,以使得形成在衬底基板1表面的显示驱动电路2具有比较快的信号传输速度。这样当该显示基板应用于微型显示设备中时,可以有效提高微型显示设备的画面刷新频率,从而确保微型显示设备所显示的画面为用户带来更好的视觉体验。
本公开一些实施例提供了一种显示基板的制作方法。请参阅图1~图6,该显示基板的制作方法包括S100~S200。S100,在显示基板的至少一个绑定区域(例如图1中区域B 1)形成配置为提供绑定引线通道的多个第一信号过孔50,在显示基板的一显示区域AA形成配置为提供电极引线通道的多个第二信号过孔60,其中,每个第一信号过孔50的孔径均大于任一第二信号过孔60的孔径。
在一些示例中,S100包括S110~S140。
S110,提供一衬底基板1。
衬底基板1的制作材料可根据实际需求选择设置,本公开一些实施例对此不作限定。示例的,衬底基板1使用材料载流子迁移率为500cm 2/V·s~1500cm 2/V·s的单晶硅材料制作形成。
S120,在衬底基板1上形成显示驱动电路2,所述显示驱动电路2包括位于至少一个绑定区域(例如图1中区域B 1)内的多个输入端,以及位于显示区域AA内的多个输出端。
显示驱动电路2一般包括多个像素电路以及与每个像素电路连接的多条信号线,其中,一条信号线的输入端对应为显示驱动电路2的一输入端,每个像素电路的输出端与一个发光器件42连接,且每个像素电路的输出端对应为显示驱动电路2的一输出端。
S130,在显示驱动电路2的背离衬底基板1的表面形成绝缘层3。
S140,在绝缘层3覆盖所述多个输入端的部分中形成多个第一信号过孔50,且至少一个第一信号过孔50对应一个输入端;在绝缘层3覆盖所述多个输出端的部分中形成多个第二信号过孔60,且至少一个第二信号过孔60对应一个输出端。
S200,在每个第一信号过孔50内形成绑定引线5,在每个第二信号过孔60内形成电极引线6,其中,每个绑定引线的线径均大于任一电极引线的线径。此处,绑定引线5的线径是指垂直于其线性延伸方向的直径,电极引线6的线径是指垂直于其线性延伸方向的直径。
本公开一些实施例提供的显示基板的制作方法与上述一些实施例提供的显示基板的有益效果相同,在此不做赘述。
此外,在一些实施例中,显示基板的制作方法还包括S300。
S300,在绝缘层3背离显示驱动电路2的表面形成像素结构层4,所述像素结构层4包括位于显示区域AA内的多个发光器件42,且一个发光 器件42连接至少一条电极引线6。
在一些示例中,每个发光器件42包括相对设置的阳极421和阴极423、以及位于阳极421和阴极423之间的发光功能层422。上述S300包括S310~S340。
S310,采用干法刻蚀工艺,在绝缘层3背离显示驱动电路2的表面形成图案化的多个阳极421,所述多个阳极421位于显示区域AA内,且每个阳极421连接至少一条电极引线6。
S320,在绝缘层3未被所述多个阳极421覆盖的表面形成具有多个像素开口的像素界定层41,其中,每个像素开口在衬底基板1上的正投影位于一个阳极421在衬底基板1上的正投影内。
此处,像素界定层41通常形成在绝缘层3位于显示区域AA内的表面上。
S330,在像素界定层41的每个像素开口内形成与阳极421接触的发光功能层422。
S340,在每个发光功能层422背离阳极421的表面形成阴极423。
请参阅图3和图6,在一些实施例中,S130还包括:在显示驱动电路2的背离衬底基板1的表面,依次形成至少两层绝缘子层。
基于此,显示基板的制作方法,还包括:在形成每相邻两层绝缘子层的过程中,在每相邻两层绝缘子层中先形成的绝缘子层上形成一引线子层,其中,所述引线子层包括位于至少一个绑定区域内的多个第一连接引线71、以及位于显示区域AA内的多个第二连接引线72,且所述多个第一连接引线71和所述多个第二连接引线72两两绝缘。
S140中形成一个第一信号过孔50,还包括:在每层绝缘子层中形成一个第一信号子孔,由所述至少两层绝缘子层中的各第一信号子孔构成所述第一信号过孔50。对应的,S200中在每个第一信号过孔50内形成绑定引线5,还包括:在所述第一信号过孔50的每个第一信号子孔内形成一绑 定子引线,其中,每相邻的两个绑定子引线通过对应引线子层中的一个第一连接引线71连接。
同理,S140中形成一个第二信号过孔60,还包括:在每层绝缘子层中形成一个第二信号子孔,由所述至少两层绝缘子层中的各第二信号子孔构成所述第二信号过孔60。对应的,S200中在每个第二信号过孔60内形成电极引线6,还包括:在所述第二信号过孔60的每个第二信号子孔内形成一电极子引线,其中,每相邻的两个电极子引线通过对应引线子层中的一个第二连接引线72连接。
可以理解的是,在显示基板中设计不同数量的引线子层,其对应所需的制作方法不同。
在一些示例中,请参阅图3和图8,显示基板中的引线子层的数量为1,该OELD显示基板的制作方法如下所示。
提供一衬底基板1。在衬底基板1上形成显示驱动电路2。在显示驱动电路2背离衬底基板1的表面形成一层绝缘子层,即第一绝缘子层31。在第一绝缘子层31位于至少一个绑定区域内的部分中形成多个第一信号子孔,在第一绝缘子层31位于显示区域AA内的部分中形成多个第二信号子孔。在第一绝缘子层31中的每个第一信号子孔内形成第一绑定子引线51,每个第一绑定子引线51连接显示驱动电路2的一输入端。在第一绝缘子层31中的每个第二信号子孔内形成第一电极子引线61,每个第一电极子引线61连接显示驱动电路2的一输出端。
在第一绝缘子层31背离衬底基板1的表面形成一层引线子层,所述引线子层包括位于所述至少一个绑定区域内的多个第一连接引线71,以及位于显示区域AA内的多个第二连接引线72,所述多个第一连接引线71和所述多个第二连接引线72两两绝缘,其中,每个第一连接引线71连接一个第一绑定子引线51,每个第二连接引线72连接一个第一电极子引线61。
在所述引线子层背离衬底基板1的表面再形成一层绝缘子层,即第二 绝缘子层32。在第二绝缘子层32的覆盖所述多个第一连接引线71的部分中形成多个第一信号子孔,在第二绝缘子层32的覆盖所述多个第二连接引线72的部分中形成多个第二信号子孔。在第二绝缘子层32中的每个第一信号子孔内形成第二绑定子引线52,每个第二绑定子引线52连接一个第一连接引线71。在第二绝缘子层32中的每个第二信号子孔内形成第二电极子引线62,每个第二电极子引线62连接一个第二连接引线72。
在第二绝缘子层32背离衬底基板1的表面形成像素结构层4,像素结构层4中的每个发光器件42连接第二绝缘子层32中的一个第二电极子引线62。
在采用上述方法制作的显示基板中,绝缘层3由第一绝缘子层31和第二绝缘子层32构成。每个绑定引线5由位于第一绝缘子层31中的第一绑定子引线51和位于第二绝缘子层32中的第二绑定子引线52电连接构成。每个电极引线6由位于第一绝缘子层31中的第一电极子引线61和位于第二绝缘子层32中的第二电极子引线62电连接构成。
在另一些示例中,请继续参阅图6和图8,显示基板中的引线子层的数量>1,例如为3,该显示基板的制作方法如下所示。
如图7A所示,提供一衬底基板1。在衬底基板1上形成显示驱动电路2。在显示驱动电路2背离衬底基板1的表面形成一层绝缘子层,即第一绝缘子层31。在第一绝缘子层31位于至少一个绑定区域内的部分中形成多个第一信号子孔,在第一绝缘子层31位于显示区域AA内的部分中形成多个第二信号子孔。在第一绝缘子层31中的每个第一信号子孔内形成第一绑定子引线51,每个第一绑定子引线51连接显示驱动电路2的一输入端。在第一绝缘子层31中的每个第二信号子孔内形成第一电极子引线61,每个第一电极子引线61连接显示驱动电路2的一输出端。
如图7B所示,在第一绝缘子层31背离衬底基板1的表面形成一层引线子层,即第一引线子层,所述第一引线子层包括位于所述至少一个绑定 区域内的多个第一连接引线711,以及位于显示区域AA内的多个第二连接引线721。所述第一引线子层中的多个第一连接引线711和多个第二连接引线721两两绝缘,且每个第一连接引线711连接一个第一绑定子引线51,每个第二连接引线721连接一个第一电极子引线61。
如图7C所示,在第一引线子层背离衬底基板1的表面再形成一层绝缘子层,即第二绝缘子层32。在第二绝缘子层32的覆盖第一引线子层中的多个第一连接引线711的部分中形成多个第一信号子孔,在第二绝缘子层32的覆盖第一引线子层中的多个第二连接引线721的部分中形成多个第二信号子孔。在第二绝缘子层32中的每个第一信号子孔内形成第二绑定子引线52,每个第二绑定子引线52连接第一引线子层中的一个第一连接引线711。在第二绝缘子层32中的每个第二信号子孔内形成第二电极子引线62,每个第二电极子引线62连接第一引线子层中的一个第二连接引线721。
如图7D所示,在第二绝缘子层32背离衬底基板1的表面形成一层引线子层,即第二引线子层,所述第二引线子层包括位于所述至少一个绑定区域内的多个第一连接引线712,以及位于显示区域AA内的多个第二连接引线722。所述第二引线子层中的多个第一连接引线712和多个第二连接引线721两两绝缘,且每个第一连接引线712连接一个第二绑定子引线52,每个第二连接引线722连接一个第二电极子引线62。
如图7E所示,在第二引线子层背离衬底基板1的表面再形成一层绝缘子层,即第三绝缘子层33。在第三绝缘子层33的覆盖第二引线子层中的多个第二连接引线722的部分中形成多个第二信号子孔,并在第三绝缘子层33中的每个第二信号子孔内形成第三电极子引线63,每个第三电极子引线63连接第二引线子层中的一个第二连接引线722。
如图7F所示,在第三绝缘子层33背离衬底基板1的表面形成像素结构层4,像素结构层4中的每个发光器件42连接第三绝缘子层33中的一个第三电极子引线63。
如图7G所示,在第三绝缘子层33的覆盖第二引线子层中的多个第一连接引线712的部分中形成多个第一信号子孔,并在第三绝缘子层33中的每个第一信号子孔内形成第三绑定子引线53,每个第三绑定子引线53连接第二引线子层中的一个第一连接引线712。
此处,“在第三绝缘子层33中形成多个第一信号子孔”的步骤,滞后于“在第三绝缘子层33中形成多个第二信号子孔”的步骤进行。例如,“在第三绝缘子层33中形成多个第一信号子孔”的步骤在完成像素结构层4的制作之后进行,可以避免后续像素结构层4的制作对各第一信号子孔,或形成在每个第一信号子孔内的绑定子引线造成污染,有利于简化显示基板的制作工艺,并提高显示基板的生产良率。
当然,“在第三绝缘子层33中形成多个第一信号子孔”的步骤,与“在第三绝缘子层33中形成多个第二信号子孔”的步骤同时进行,例如在图7E所示的结构中进行,也是允许的。本公开一些实施例对此不作限定。
此外,若显示基板中的引线子层的数量大于3,则结合图8,参照上述图7B~图7D对应的制作步骤重复进行即可,此处不再详述。
需要补充的是,上述一些实施例中,在每个第一信号子孔内形成绑定子引线后,需要对各绑定子引线的裸露表面进行化学机械研磨,以使得各绑定子引线的裸露表面比较平坦,从而方便于显示基板的后续制作。同理,在每个第二信号子孔内形成电极子引线后,需要对各电极子引线的裸露表面进行化学机械研磨,以使得各电极子引线的裸露表面比较平坦,从而方便于显示基板的后续制作。此外,上述各绑定子引线或各电极子引线中的至少一个引线采用金属打线工艺制作形成。
本公开一些实施例还提供了一种显示装置,该显示装置包括上述一些实施例提供的显示基板。本公开实施例提供的显示装置所能达到的有益效果,与上述一些实施例提供的显示基板所能达到的有益效果相同,在此不做赘述。
在一些示例中,显示装置为基于VR或AR技术的沉浸式近眼显示产品,包括手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、智能眼镜或智能头盔等具有显示功能的产品或部件。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种显示基板,具有一显示区域和位于所述显示区域的外围的至少一个绑定区域;所述显示基板包括:
    位于所述至少一个绑定区域内的配置为提供绑定引线通道的多个第一信号过孔;
    以及,位于所述显示区域内的配置为提供电极引线通道的多个第二信号过孔;
    其中,每个第一信号过孔的孔径均大于任一第二信号过孔的孔径。
  2. 根据权利要求1所述的显示基板,还包括衬底基板、以及层叠设置在所述衬底基板上的显示驱动电路、绝缘层和像素结构层,其中,所述像素结构层包括位于所述显示区域内的多个发光器件,所述多个第一信号过孔和所述多个第二信号过孔设置在所述绝缘层中;
    所述显示基板还包括:
    设置在每个第一信号过孔内且配置为与所述显示驱动电路的一输入端绑定在一起的绑定引线;
    以及,设置在每个第二信号过孔内且配置为连接所述显示驱动电路的一输出端与一发光器件的电极引线;
    其中,每个所述绑定引线的线径均大于任一所述电极引线的线径。
  3. 根据权利要求2所述的显示基板,其中,所述绝缘层包括沿远离所述衬底基板的方向依次设置的至少两层绝缘子层;
    所述显示基板还包括设置在每相邻的两层绝缘子层之间的引线子层,其中,每层所述引线子层包括位于所述至少一个绑定区域内的多个第一连接引线、以及位于所述显示区域内的多个第二连接引线,且所述多个第一连接引线和所述多个第二连接引线两两绝缘;
    所述每个第一信号过孔包括设置在每层绝缘子层中的一第一信号子孔;每个所述绑定引线包括位于每个第一信号子孔内的一绑定子引线,且每相 邻的两个所述绑定子引线通过对应引线子层中的一个第一连接引线电连接;
    所述每个第二信号过孔包括设置在每层绝缘子层中的一第二信号子孔;每个所述电极引线包括位于每个第二信号子孔内的一电极子引线,且每相邻的两个所述电极子引线通过对应引线子层中的一个第二连接引线电连接。
  4. 根据权利要求3所述的显示基板,其中,
    所述每个绑定引线中距离所述显示驱动电路最近的绑定子引线连接所述显示驱动电路的一输入端;
    所述每个电极引线中距离所述显示驱动电路最近的电极子引线连接所述显示驱动电路的一输出端,所述每个电极引线中距离所述像素结构层最近的电极子引线连接一所述发光器件。
  5. 根据权利要求3所述的显示基板,其中,
    所述每个第一信号过孔中的至少两个第一信号子孔在所述衬底基板上的正投影至少部分重合;
    所述每个第二信号过孔中的至少两个第二信号子孔在所述衬底基板上的正投影至少部分重合。
  6. 根据权利要求3所述的显示基板,其中,
    至少一层所述引线子层中的每个第一连接引线和每个第二连接引线均包括:沿远离所述衬底基板的方向依次层叠设置的第一防水汽引线部、中间导电引线部和第二防水汽引线部。
  7. 根据权利要求3所述的显示基板,其中,至少一层所述引线子层中的每个第一连接引线和每个第二连接引线均为不透光的导电引线。
  8. 根据权利要求2~7任一项所述的显示基板,其中,所述像素结构层还包括位于所述绝缘层的背离所述显示驱动电路的表面的像素界定层,所述像素界定层具有多个像素开口,每个像素开口内设置有一所述发光器件。
  9. 根据权利要求2~8任一项所述的显示基板,其中,每个所述发光 器件包括相对设置的阳极和阴极、以及位于所述阳极和所述阴极之间的发光功能层,所述阳极位于所述发光功能层靠近所述绝缘层的一侧。
  10. 根据权利要求9所述的显示基板,其中,所述阳极包括钛层、铜铝合金层或氮化钛层中的至少一层。
  11. 根据权利要求2~10任一项所述的显示基板,其中,所述衬底基板为单晶硅晶圆,所述单晶硅晶圆所含有的单晶硅材料的载流子迁移率为500cm 2/V·s~1500cm 2/V·s。
  12. 一种显示基板的制作方法,包括:
    在显示基板的至少一个绑定区域形成配置为提供绑定引线通道的多个第一信号过孔,在显示基板的一显示区域形成配置为提供电极引线通道的多个第二信号过孔,其中,每个第一信号过孔的孔径均大于任一第二信号过孔的孔径;
    在每个第一信号过孔内形成绑定引线,在每个第二信号过孔内形成电极引线,其中,每个所述绑定引线的线径均大于任一所述电极引线的线径。
  13. 根据权利要求12所述的显示基板的制作方法,其中,所述在显示基板的至少一个绑定区域形成配置为提供绑定引线通道的多个第一信号过孔,在显示基板的一显示区域形成配置为提供电极引线通道的多个第二信号过孔,包括:
    提供一衬底基板;
    在所述衬底基板上形成显示驱动电路,所述显示驱动电路包括位于所述至少一个绑定区域内的多个输入端,以及位于所述显示区域内的多个输出端;
    在所述显示驱动电路的背离所述衬底基板的表面形成绝缘层;
    在所述绝缘层覆盖所述多个输入端的部分中形成所述多个第一信号过孔,且至少一个第一信号过孔对应一个输入端;在所述绝缘层覆盖所述多个输出端的部分中形成所述多个第二信号过孔,且至少一个第二信号过孔 对应一个输出端。
  14. 根据权利要求13所述的显示基板的制作方法,其中,
    在所述显示驱动电路的背离所述衬底基板的表面形成绝缘层,还包括:在所述显示驱动电路的背离所述衬底基板的表面,依次形成至少两层绝缘子层;
    所述显示基板的制作方法,还包括:在形成每相邻两层绝缘子层的过程中,在所述每相邻两层绝缘子层中先形成的绝缘子层上形成一引线子层,其中,所述引线子层包括位于所述至少一个绑定区域内的多个第一连接引线、以及位于所述显示区域内的多个第二连接引线,且所述多个第一连接引线和所述多个第二连接引线两两绝缘;
    形成一个第一信号过孔,还包括:在每层绝缘子层中形成一个第一信号子孔,由所述至少两层绝缘子层中的各第一信号子孔构成所述第一信号过孔;
    在每个第一信号过孔内形成绑定引线,还包括:在所述第一信号过孔的每个第一信号子孔内形成一绑定子引线,其中,每相邻的两个所述绑定子引线通过对应引线子层中的一个第一连接引线连接;
    形成一个第二信号过孔,还包括:在每层绝缘子层中形成一个第二信号子孔,由所述至少两层绝缘子层中的各第二信号子孔构成所述第二信号过孔;
    在每个第二信号过孔内形成电极引线,还包括:在所述第二信号过孔的每个第二信号子孔内形成一电极子引线,其中,每相邻的两个所述电极子引线通过对应引线子层中的一个第二连接引线连接。
  15. 根据权利要求13或14所述的显示基板的制作方法,还包括:
    在所述绝缘层背离所述显示驱动电路的表面形成像素结构层,所述像素结构层包括位于所述显示区域内的多个发光器件,且一个发光器件连接至少一条电极引线。
  16. 根据权利要求15所述的显示基板的制作方法,其中,每个所述发光器件包括相对设置的阳极和阴极、以及位于所述阳极和所述阴极之间的发光功能层;
    在所述绝缘层背离所述显示驱动电路的表面形成像素结构层,包括:
    采用干法刻蚀工艺,在所述绝缘层背离所述显示驱动电路的表面形成图案化的多个阳极,所述多个阳极位于显示区域内,且每个阳极连接至少一条电极引线;
    在所述绝缘层未被所述多个阳极覆盖的表面形成具有多个像素开口的像素界定层,其中,每个像素开口在所述衬底基板上的正投影位于一个阳极在所述衬底基板上的正投影内;
    在所述每个像素开口内形成与阳极接触的发光功能层;
    在每个发光功能层背离所述阳极的表面形成阴极。
  17. 一种显示装置,包括权利要求1~11任一项所述显示基板。
PCT/CN2019/085755 2018-05-09 2019-05-07 显示基板及其制作方法、显示装置 WO2019214590A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/624,217 US11282913B2 (en) 2018-05-09 2019-05-07 Display substrate having signal vias, method for manufacturing the same, and display device having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810437587.0A CN110473895B (zh) 2018-05-09 2018-05-09 一种oled显示基板及其制作方法、显示装置
CN201810437587.0 2018-05-09

Publications (1)

Publication Number Publication Date
WO2019214590A1 true WO2019214590A1 (zh) 2019-11-14

Family

ID=68466881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085755 WO2019214590A1 (zh) 2018-05-09 2019-05-07 显示基板及其制作方法、显示装置

Country Status (3)

Country Link
US (1) US11282913B2 (zh)
CN (1) CN110473895B (zh)
WO (1) WO2019214590A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4131246A4 (en) * 2020-03-27 2023-04-26 BOE Technology Group Co., Ltd. DISPLAY PANEL AND DISPLAY DEVICE
US11903298B2 (en) 2020-03-27 2024-02-13 Boe Technology Group Co., Ltd. Display panel and display device
US11980047B2 (en) 2020-03-27 2024-05-07 Boe Technology Group Co., Ltd. Display panel and display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021189483A1 (zh) * 2020-03-27 2021-09-30 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN113516910B (zh) * 2020-04-09 2022-09-23 上海和辉光电股份有限公司 显示面板及其绑定区平坦化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100066240A1 (en) * 2008-09-18 2010-03-18 Park Jong-Hyun Organic light emitting display and method of manufacturing the same
CN102629046A (zh) * 2011-06-29 2012-08-08 北京京东方光电科技有限公司 阵列基板及其制造方法、液晶显示器件
CN104752465A (zh) * 2013-12-30 2015-07-01 昆山工研院新型平板显示技术中心有限公司 顶发射有机发光显示器件的阵列基板及其制备方法
US20160104803A1 (en) * 2014-10-14 2016-04-14 Samsung Display Co., Ltd. Display substrate and method of manufacturing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW583492B (en) * 2003-04-17 2004-04-11 Hannstar Display Corp Manufacturing method for LCD panel with high aspect ratio
KR101730995B1 (ko) * 2010-10-22 2017-04-28 삼성디스플레이 주식회사 표시장치
KR20120081288A (ko) * 2011-01-11 2012-07-19 삼성전자주식회사 저항소자를 구비하는 집적회로 소자 및 이의 제조방법
KR101994974B1 (ko) * 2013-01-10 2019-07-02 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법
KR102060364B1 (ko) * 2013-04-19 2019-12-31 삼성디스플레이 주식회사 유기발광 표시장치 제조방법
CN104299569B (zh) * 2014-10-30 2019-03-01 京东方科技集团股份有限公司 一种阵列基板及其驱动方法、显示装置
CN105097840B (zh) * 2015-07-27 2018-12-11 合肥鑫晟光电科技有限公司 一种阵列基板、其制作方法、液晶显示面板及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100066240A1 (en) * 2008-09-18 2010-03-18 Park Jong-Hyun Organic light emitting display and method of manufacturing the same
CN102629046A (zh) * 2011-06-29 2012-08-08 北京京东方光电科技有限公司 阵列基板及其制造方法、液晶显示器件
CN104752465A (zh) * 2013-12-30 2015-07-01 昆山工研院新型平板显示技术中心有限公司 顶发射有机发光显示器件的阵列基板及其制备方法
US20160104803A1 (en) * 2014-10-14 2016-04-14 Samsung Display Co., Ltd. Display substrate and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4131246A4 (en) * 2020-03-27 2023-04-26 BOE Technology Group Co., Ltd. DISPLAY PANEL AND DISPLAY DEVICE
US11903298B2 (en) 2020-03-27 2024-02-13 Boe Technology Group Co., Ltd. Display panel and display device
US11930673B2 (en) 2020-03-27 2024-03-12 Boe Technology Group Co., Ltd. Display panel and display device
US11980047B2 (en) 2020-03-27 2024-05-07 Boe Technology Group Co., Ltd. Display panel and display device

Also Published As

Publication number Publication date
CN110473895B (zh) 2022-01-18
CN110473895A (zh) 2019-11-19
US20210074790A1 (en) 2021-03-11
US11282913B2 (en) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2019214590A1 (zh) 显示基板及其制作方法、显示装置
US9537069B1 (en) Inorganic light-emitting diode with encapsulating reflector
JP6136578B2 (ja) 表示装置および表示装置の製造方法ならびに電子機器
JP6164402B2 (ja) 有機el装置の製造方法、および有機el装置
KR100635066B1 (ko) 유기 전계 발광 표시 장치 및 그의 제조 방법
WO2021218395A1 (zh) 显示面板及显示装置
CN109979981A (zh) 一种显示面板及其制作方法、显示装置
WO2020154875A1 (zh) 像素单元及其制造方法和双面oled显示装置
KR102566090B1 (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법
JP7339432B2 (ja) 表示装置およびその製造方法、駆動基板
WO2021213510A1 (zh) 显示面板、显示装置以及显示面板的制造方法
CN210245502U (zh) 显示基板、显示面板及显示装置
US20240038773A1 (en) Display panel and display device
CN113421904A (zh) 显示面板及其制作方法
KR20180130845A (ko) 반도체 발광소자를 이용한 디스플레이 장치
CN110429098B (zh) 一种显示面板及其制作方法、显示装置
WO2020105544A1 (ja) 発光素子、表示装置及び電子機器
JP2017162832A (ja) 表示装置および電子機器
WO2020122037A1 (ja) 半導体装置及び電子機器
JP5313769B2 (ja) 積層基板および発光素子の製造方法
US11930673B2 (en) Display panel and display device
WO2021035543A1 (zh) 发光装置、制备发光装置的方法以及电子设备
TWI706206B (zh) 畫素結構
US11980047B2 (en) Display panel and display device
WO2023044914A1 (zh) 显示基板及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800088

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19800088

Country of ref document: EP

Kind code of ref document: A1