WO2019214570A1 - 一种阵列天线总辐射功率的测量方法、装置和系统 - Google Patents

一种阵列天线总辐射功率的测量方法、装置和系统 Download PDF

Info

Publication number
WO2019214570A1
WO2019214570A1 PCT/CN2019/085645 CN2019085645W WO2019214570A1 WO 2019214570 A1 WO2019214570 A1 WO 2019214570A1 CN 2019085645 W CN2019085645 W CN 2019085645W WO 2019214570 A1 WO2019214570 A1 WO 2019214570A1
Authority
WO
WIPO (PCT)
Prior art keywords
array antenna
wave vector
antenna
trp
determining
Prior art date
Application number
PCT/CN2019/085645
Other languages
English (en)
French (fr)
Inventor
庄言春
高华
钟坤静
薛飞
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020207034858A priority Critical patent/KR102481050B1/ko
Priority to EP19799439.5A priority patent/EP3817249A4/en
Priority to CA3099603A priority patent/CA3099603A1/en
Publication of WO2019214570A1 publication Critical patent/WO2019214570A1/zh
Priority to US17/090,727 priority patent/US11804913B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/102Power radiated at antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/354Adjacent channel leakage power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/103Reflected power, e.g. return loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/104Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof of other parameters, e.g. DC offset, delay or propagation times
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/29Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a method, device and system for measuring total radiated power (TRP) of an array antenna.
  • TRP total radiated power
  • the 5th generation (5th-Generation, 5G) mobile communication technology came into being, which includes a number of new technologies, including large-scale Array antenna (Massive-MIMO), beam forming technology (Beam Forming), millimeter wave communication, and the like.
  • the millimeter wave communication technology mainly refers to a communication technology that uses electromagnetic waves having a wavelength of the order of millimeters (frequency of 30 GHz to 300 GHz) as a base station access network carrier. The intervention of millimeter wave technology has reduced the size of the vibrator to the millimeter level.
  • the large-scale array antenna technology is widely used in 5G communication products.
  • the number of vibrator units of the array antenna has been successfully applied from 128 to 256 or even 512.
  • the millimeter wave circuit design and the application of large-scale array antennas require the integration of an Active Antenna System (AAS) and a Remote Radio Unit (RRU).
  • AAS Active Antenna System
  • RRU Remote Radio Unit
  • the millimeter-wave AAS integrated base station belongs to the 2-O type 5G equipment, and its radio frequency index must pass through the air interface in the millimeter-wave darkroom (OTA) mode measurement.
  • the base station TRP is a key OTA test entry; it is the basis for measuring multiple RF indicators such as base station output power, spurs, and Adjacent Channel Leakage Ratio (ACLR).
  • Embodiments of the present disclosure provide a method, apparatus, and system for measuring an array antenna TRP to reduce measurement errors.
  • Embodiments of the present disclosure provide a method for measuring total radiated power TRP of an array antenna, including:
  • a sampling point is determined according to the step grid spacing, an Equivalent Isotropic Radiated Power (EIRP) is measured at the sampling point position, and a TRP is determined according to the EIRP.
  • EIRP Equivalent Isotropic Radiated Power
  • the embodiment of the present disclosure further provides a measuring device for the total radiated power TRP of the array antenna, including:
  • a step grid spacing module configured to determine a Rayleigh resolution of the array antenna in the angular space, and setting a step grid spacing of the sampling points according to the Rayleigh resolution;
  • the TRP determining module is configured to determine a sampling point according to the step grid spacing, measure an equivalent isotropic radiated power EIRP at the sampling point position, and determine a TRP according to the EIRP.
  • An embodiment of the present disclosure further provides a measurement system for an array antenna total radiated power TRP, including: a device under test, a test antenna system, a power detector, and a test machine fixed on a turntable, wherein the device under test includes an integrated device An array antenna and a remote radio unit, wherein the power detector is connected to the test antenna system, and the test machine is respectively connected to the device under test, the turntable, the test antenna system and the power detector;
  • the testing machine is configured to: determine a Rayleigh resolution of the array antenna in an angular space, set a step grid spacing of the sampling points according to the Rayleigh resolution; and determine sampling points according to the step grid spacing, Controlling the device under test, the turntable, the test antenna system, and the power detector to measure an equivalent isotropic radiated power EIRP at the sampling point position, and determining a TRP according to the EIRP.
  • the embodiment of the present disclosure further provides a method for measuring total radiation power TRP of an array antenna, including:
  • the EIRP is measured in the angular space according to the position of the non-uniform sampling point in the spherical coordinate system, and the TRP is determined according to the EIRP.
  • the embodiment of the present disclosure further provides a measuring device for the total radiated power TRP of the array antenna, including:
  • a grid spacing determining module configured to determine a grid spacing of the sampling points of the array antenna within the normalized wave vector space
  • a uniform sampling point determining module configured to determine a uniform sampling point in the normalized wave vector space according to the grid spacing
  • a non-uniform sampling point determining module configured to determine a corresponding non-uniform sampling point in the angular space according to the uniform sampling points in the normalized wave vector space;
  • the TRP determination module is configured to measure the EIRP according to the non-uniform sampling point position in the spherical coordinate system in the angular space, and determine the TRP according to the EIRP.
  • An embodiment of the present disclosure further provides a measurement system for an array antenna total radiated power TRP, including: a device under test, a test antenna system, a power detector, and a test machine fixed on a turntable, wherein the device under test includes an integrated device An array antenna and a remote radio unit, wherein the power detector is connected to the test antenna system, and the test machine is respectively connected to the device under test, the turntable, the test antenna system and the power detector;
  • the testing machine is configured to: determine a grid spacing of the sampling points of the array antenna in the normalized wave vector space; determine uniform sampling points in the normalized wave vector space according to the grid spacing; according to the normalization Uniform sampling points in the wave vector space determine corresponding non-uniform sampling points in the angular space; controlling the device under test, the turntable, the test antenna system and the power detector to measure the position of the non-uniform sampling points in the spherical coordinate system in the angular space
  • the EIRP determines the TRP based on the EIRP.
  • a storage medium having stored therein a computer program, wherein the computer program is configured to perform the steps of any one of the method embodiments described above at runtime.
  • an electronic device comprising a memory and a processor, wherein the memory stores a computer program, the processor being configured to execute the computer program to perform any of the above The steps in the method embodiments.
  • Embodiments of the present disclosure step relative to a conventional angle step grid ⁇ grid ,
  • the 15° test method reduces the measurement error; in addition, the normalized wave vector space conversion further reduces the number of sampling points and improves the measurement efficiency.
  • Figure 1 is an 8 ⁇ 16 oscillator array ⁇ grid , When taking a 15° scan interval, ⁇ , When the initial scan angle changes, the calculated TRP value fluctuates greatly.
  • FIG. 2 is a schematic diagram of a test system of an embodiment of the present disclosure.
  • 3 is a spatial coordinate system of a test environment of an embodiment of the present disclosure.
  • Figure 4(a) is a schematic illustration of a regular rectangular transducer array.
  • Figures 4(b) and (c) are schematic diagrams of an irregular array.
  • FIG. 5 is a flow chart of a method of measuring an array antenna TRP using a uniform sampling scheme in accordance with an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a measuring device of an array antenna TRP employing a uniform sampling scheme according to an embodiment of the present disclosure.
  • Figures 7(a) and (b) show the two-dimensional planar expansion of the experimental antenna simulation three-dimensional pattern in the angular space.
  • FIG. 8 is a flow chart of a method of measuring an array antenna TRP using a non-uniform sampling scheme in accordance with an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a measurement device of an array antenna TRP employing a non-uniform sampling scheme in accordance with an embodiment of the present disclosure.
  • Figures 10(a) and (b) show the two-dimensional planar expansion of the experimental antenna simulation three-dimensional pattern in the normalized wave vector space.
  • FIG. 11 is a flow chart of a method of measuring an array antenna TRP using a uniform sampling scheme, which is an application example of the present disclosure.
  • FIG. 12 is a flow chart of a method of measuring an array antenna TRP employing a non-uniform sampling scheme, which is an application example of the present disclosure.
  • Figure 13 is an 8 ⁇ 16 oscillator array ⁇ grid , Calculate the error of TRP at ⁇ grid from 1° to 30°. A distribution of two dimensions.
  • the current measurement of TRP can be measured in a millimeter-wave darkroom with the aid of a three-dimensional turntable.
  • the steps are: the Equipment Under Test (EUT) is fixed on the turntable, and the Equivalent Isotropic Radiated Power (EIRP) of the EUT is measured by the receiving probe at the far field.
  • EIRP Equivalent Isotropic Radiated Power
  • the EIRP distribution of the antenna spherical field is measured by a cone cutting method or a large circle cutting method in a spherical coordinate system.
  • calculate the TRP by referring to the following formula (cited from 3GPP TS37.843):
  • TRP is based on N x M EIRP measurements.
  • N and M depend on ⁇ and Step grid:
  • the US CTIA specification and the Chinese communication industry standard YD/T 1484 specify the angle step grid ⁇ grid , It is 15°.
  • the signal is transmitted at 30 GHz, and the spherical measuring step grid ⁇ grid is Each was taken 15° and the TRP was tested according to the conventional protocol (ie YD/T 1484 measurement procedure).
  • the initial position of the spherical measurement EIRP is changed by 1° to 15°.
  • the curve of the final test value of TRP with respect to the true value is obtained.
  • the cell spacing of the array antenna is 0.5 ⁇ , and the abscissa Refers to the scan start position. This traditional 15° scan interval is typically applied to sub 6 GHz terminal equipment. As can be seen from Fig.
  • the calculated TRP result fluctuates by about 14 dB with the change of the starting point position.
  • the main reason is that the first zero beam width (FNBW) of the millimeter wave array antenna is smaller than the FNBW of the conventional Sub 6GHz antenna beam, and the spherical energy density space of the millimeter wave base station antenna is sampled by the angle of 15°. The measurement results will be distorted. Therefore, the 15° scan interval can not accurately reflect the TRP value, and it is necessary to increase the number of points to increase the scanning density.
  • FNBW first zero beam width
  • TRP measurement techniques for millimeter-wave large-scale array antennas are still under investigation.
  • the current conventional solution for millimeter-wave darkrooms (such as KeySight in the US, MVG in France, etc.) is based on ⁇ grid ,
  • the EIRP is measured in steps of no more than 1° to obtain a fine three-dimensional pattern and then the TRP is calculated.
  • this method theoretically requires at least 360 ⁇ 180 measurements, which is not efficient.
  • the traditional TRP algorithm 15° grid is no longer suitable for the total radiated power measurement of a 5G base station millimeter wave array antenna.
  • the conventional scheme of using a step of about 1° in the darkroom leads to too many sampling points and low measurement efficiency.
  • Embodiments of the present disclosure provide a method, device, and system for measuring an array antenna TRP, which can reduce measurement errors and improve measurement efficiency.
  • test environment is described below.
  • a microwave darkroom can be used to perform a complete far field characterization of an EUT (eg, including transmit and receive chains) with millimeter wave array antennas.
  • the radiant energy distribution can be tested using at least one test antenna, receive link, and detection device.
  • FIG. 2 is a schematic diagram of a darkroom OTA test system for measuring TRP of a millimeter wave AAS device, in accordance with a representative embodiment.
  • system 200 is configured to measure the TRP of EUT 210, which includes a remote radio unit RRU 211 and an array antenna 212.
  • Array antenna 212 is tightly integrated with RRU 211 to form an integrated device, as shown by the dashed lines.
  • the transmit and receive channels of EUT 210 are directly connected to the array antenna 212 unit.
  • the array antenna 212 may be a matrix-arranged antenna, or other irregularly arranged antennas, and the radiated electromagnetic wave energy may be in the millimeter wave band.
  • the array antenna 212 is integrated with the RRU 211 and there is no RF connection, the array antenna cannot be tested for isolation. This means that the radiation performance of the array antenna 212 and the transmit and receive link performance of the RRU 211 cannot be simply tested to calculate an RF machine including EIRP, TRP, equivalent omnidirectional sensitivity (EIRS), and total omnidirectional sensitivity (TIS). index. Measurements of the EUT 210 need to be performed simultaneously.
  • the EUT 210 is fixed to the turntable 220, and the turntable 220 is rotatable on a horizontal plane and a pitch plane.
  • the test antenna system 230 includes a test antenna 231, an antenna mount bracket 232, and a test cable 233.
  • the test antenna 231 may be a single antenna or a plurality of antennas.
  • the antenna fixing bracket 232 is provided to fix the test antenna 231 and can perform three-dimensional movement.
  • the test antenna 231 is connected to the power detector 240 via a test cable 233, which may be a vector network analyzer, may be a spectrum analyzer, or a power meter or the like.
  • the EUT 210, the turntable 220, the antenna mount 232, and the power detector 240 are coupled to a test machine 250 that can be configured to control the transceiving of the EUT 210, the rotation of the turret 220, the movement of the antenna mount 232, and the power detector 240.
  • Transceiver, record and process related test data including EIRP values, and record logs.
  • the full anechoic chamber environment was isolated from the outside environment by the absorbing material 260 and the dark exterior wall 270 to simulate an infinite space.
  • FIG. 3 is a schematic diagram of a coordinate system with reference to array antenna 212 on EUT 210 as a reference point, in accordance with a representative embodiment.
  • the x-axis is substantially consistent with the normal direction of the antenna array, and the y-axis and the z-axis respectively correspond to the horizontal and vertical directions.
  • Two spatial coordinates are used here to describe the direction.
  • One is the angular space, which uses ( ⁇ , in the spherical coordinate system). )To represent. For example, when the wave vector direction is (90°, 0°), it means pointing to the x-axis direction.
  • the other is the normalized wave vector space, which is represented by (K y , K z ) in the Cartesian coordinate system, where K y and K z represent the normalized wave vector projection on the y-axis and z, respectively.
  • the size on the shaft For example, when the wave vector direction is set to (0, 0), it means pointing to the x-axis direction.
  • FIG. 4 is a diagram of several arrangements of array elements in array antenna 212 in accordance with a representative embodiment.
  • Figure 4(a) shows the case of a common rectangular array in which the cell spacing is d and the cells are typically squares with side length a.
  • the side lengths of the rectangular array in the y direction and the z direction are D y and D z , since the cell spacing d is generally ⁇ /2, the side length a is not greater than the cell spacing d, and an M ⁇ N array side length D y ⁇ N ⁇ / 2 and D z ⁇ M ⁇ /2.
  • the antenna size can be expressed as D y ⁇ 8 ⁇ and D z ⁇ 4 ⁇ .
  • the far-field pattern of the array antenna is approximately the Fourier transform of the shape of the array antenna, so according to the Nyquist sampling law, as long as the The sampling interval in the direction is smaller than the Rayleigh resolution, ie sin -1 ( ⁇ /D y ) and sin -1 ( ⁇ /D z ), and the discrete sampling hardly loses the array information. With this sampling interval, the integrated TRP value can represent the true TRP value of the rectangular array.
  • Figure 4(b) shows the case of a Z-type array.
  • this shape is irregular, the corresponding pattern lacks obvious regularity, but this shape can be regarded as a D y ⁇ D z rectangular array in which some cells in the upper right corner and the lower left corner are eliminated, where D y and D z can be considered as the maximum size of the Z-array in the y-direction and the z-direction. Therefore, according to Nyquist's law of sampling, when the sampling interval on the pattern is smaller than the Rayleigh resolution corresponding to D y and D z , the discrete sampling hardly loses the information of the equivalent rectangular array, and thus the loss is not lost. Z-array information. With this sampling interval, the integral TRP value can represent the true TRP value of the Z-array.
  • Figure 4(c) shows the case of an O-type array.
  • the pattern corresponding to this shape tends to the Airy spot.
  • this shape can also be seen as a rectangular array of D y ⁇ D z from which some cells are removed. Therefore, according to Nyquist's law of sampling, the sampling interval on the pattern is smaller than that corresponding to D y and D z .
  • D y and D z At Rayleigh resolution, discrete sampling hardly loses information about the equivalent rectangular array and therefore does not lose information about the O-array. With this sampling interval, the integral TRP value can represent the true TRP value of the O-array.
  • sampling schemes are proposed: one is a sampling scheme using equal angular spacing in an angular space, which is called a uniform sampling scheme; and the other is an equally spaced sampling scheme in a normalized wave vector space. Since this sampling method appears as unequal spacing in the angular space, it can be referred to as a non-uniform sampling scheme.
  • the uniform sampling scheme is to sample the EIRP in the traditional angular space to calculate the TRP.
  • the uniform sampling scheme avoids the excessive error of the traditional test specification (YD/T 1484 standard and CTIA specification) when measuring the millimeter wave array antenna TRP.
  • a method for measuring an array antenna TRP using a uniform sampling scheme includes:
  • Step 501 Determine a Rayleigh resolution of the array antenna in an angular space, and set a step grid spacing of the sampling points according to the Rayleigh resolution.
  • the Rayleigh resolution of the array antenna in the angular space can be determined in different ways according to whether the array size of the array antenna is known.
  • a Rayleigh resolution of the array antenna in an angular space is determined according to an array size and a signal wavelength of the array antenna.
  • the Rayleigh resolution of the array antenna in the angular space is determined according to the array size and signal wavelength of the array antenna as follows:
  • ⁇ r and Array antennas in the spherical coordinate system ⁇ and The Rayleigh resolution of the direction, D y , D z are the maximum aperture of the antenna of the array antenna in the horizontal direction and the vertical direction, respectively, and ⁇ is the signal wavelength.
  • the Rayleigh resolution of the array antenna in the angular space may also be determined according to the array size and the signal wavelength of the array antenna as follows:
  • Determining a first zero spot beam width FNBW Determining a first zero spot beam width FNBW, determining a Rayleigh resolution of the array antenna in an angular space according to the FNBW.
  • the FNBW of the main beam can be measured on the elevation plane and the azimuth plane of the spherical coordinate system including the maximum radiation power point.
  • the Rayleigh resolution of the array antenna in an angular space is determined according to the FNBW as follows:
  • Step 502 Determine a sampling point according to the step grid spacing, measure an equivalent isotropic radiation power EIRP at the sampling point position, and determine a TRP according to the EIRP.
  • the step grid spacing of the set sampling points is less than or equal to the Rayleigh resolution.
  • the sampling step spacing should be no larger than the array antenna in the spherical coordinate system ⁇ and Rayleigh resolution of the direction ( ⁇ r , ), ie: ⁇ grid ⁇ ⁇ r ,
  • the step grid spacing of the sampling points can be set equal to the Rayleigh resolution.
  • the determining the TRP according to the EIRP may calculate the TRP by using the formula (1).
  • the output signal power of the millimeter-wave large-scale array antenna is basically concentrated on the first half of the spherical surface containing the main beam, the backward radiation is relatively small, and the contribution to the TRP can be neglected, so the rear hemisphere is no longer Value.
  • ⁇ grid The spherical coordinate system ⁇ and The step grid spacing of the direction.
  • determining the TRP according to the EIRP may be performed by using, but not limited to, formula (1) and formula (4), for example, transforming formula (1) or formula (4), using different coordinate systems. Express and so on.
  • the calculation accuracy can be improved compared with the conventional scheme: an array antenna of 128 vibrators (8 ⁇ 16 array) is taken as an example, and a millimeter wave signal is transmitted at 30 GHz, and the grid is stepped by 15° according to a conventional algorithm.
  • the TRP calculation results in more than 14dB error fluctuations; if the array size is larger, the error will increase.
  • the uniform sampling scheme implemented by the present disclosure uses a Rayleigh resolution as a step grid, and the TRP error fluctuation does not exceed 0.15 dB under the same test stress.
  • the calculation efficiency can be improved compared with the conventional scheme: still taking the 128-vibrator (8 ⁇ 16 array) array antenna as an example, the conventional measurement method of the current millimeter-wave darkroom is 1° stepping.
  • Uniform sampling of the grid requires 32400 (180 ⁇ 180) sampling points for hemispherical scanning, and stepping with angular space Rayleigh resolution, the number of sampling points does not exceed 338 (26 ⁇ 13), and the efficiency is increased by 95 times.
  • the apparatus for measuring total radiated power TRP of an array antenna includes:
  • a step grid spacing module 601 configured to determine a Rayleigh resolution of the array antenna in an angular space, and setting a step grid spacing of the sampling points according to the Rayleigh resolution;
  • the TRP determining module 602 is configured to determine a sampling point according to the step grid spacing, measure an equivalent isotropic radiated power EIRP at the sampling point position, and determine a TRP according to the EIRP.
  • the step grid spacing module 601 is set to be:
  • Determining a first zero spot beam width FNBW Determining a first zero spot beam width FNBW, determining a Rayleigh resolution of the array antenna in an angular space according to the FNBW.
  • the step grid spacing module 601 is configured to determine a Rayleigh resolution of the array antenna in an angular space according to an array size and a signal wavelength of the array antenna as follows:
  • ⁇ r and Array antennas in the spherical coordinate system ⁇ and The Rayleigh resolution of the direction, D y , D z are the maximum aperture of the antenna of the array antenna in the horizontal direction and the vertical direction, respectively, and ⁇ is the signal wavelength.
  • the step grid spacing module 601 is configured to measure the FNBW of the main beam on the elevation and azimuth planes of the spherical coordinate system including the maximum radiation power point.
  • the step grid spacing module 601 is configured to determine a Rayleigh resolution of the array antenna in an angular space according to the FNBW as follows:
  • the step grid spacing module 601 is configured to set the step grid spacing of the sampling points to be less than or equal to the Rayleigh resolution.
  • the TRP determining module 602 is configured to determine the TRP according to the EIRP as follows:
  • ⁇ grid The spherical coordinate system ⁇ and The step grid spacing of the direction.
  • Embodiments of the present disclosure step relative to a conventional angle step grid ⁇ grid , For the 15° test mode, the measurement error is reduced; compared to the uniform sampling with 1° step grid, the number of sampling points is reduced, and the measurement efficiency is improved.
  • the system for measuring the total radiated power TRP of the array antenna of the embodiment of the present disclosure includes: a device under test 210, a test antenna system 230, a power detector 240, and a test machine 250 fixed on the turntable 220, wherein
  • the device under test 210 includes an array antenna 212 and a remote radio unit 211 that are integrated together, and the power detector 240 is connected to the test antenna system 230, and the test machine 250 and the device under test 210, respectively.
  • the turntable 220, the test antenna system 230 and the power detector 240 are connected;
  • the testing machine 250 is configured to: determine a Rayleigh resolution of the array antenna 212 in an angular space, set a step grid spacing of the sampling points according to the Rayleigh resolution; and determine sampling according to the step grid spacing Point, controlling the device under test 210, the turntable 220, the test antenna system 230, and the power detector 240 to measure the equivalent isotropic radiation power EIRP at the sampling point position, and determine the TRP according to the EIRP.
  • FIG. 7(a) and (b) are demonstrations of an analog pattern and a uniform sampling scan scheme, respectively, of an 8x16 rectangular array 410, in accordance with a representative embodiment.
  • each cell is of equal amplitude in phase
  • the cell spacing d is ⁇ /2
  • the array antenna is parallel to the yz plane, and the normal to the front of the array is parallel to the x-axis.
  • the two-dimensional pattern in Figure 7(a) shows the rectangular antenna EIRP in the front hemisphere angular space ( ⁇ , )Distribution.
  • the maximum EIRP value is located at (90°, 0), which is the x-axis direction.
  • the first zero power beamwidth can be named as And among them It can be called Rayleigh resolution in the azimuth plane.
  • the interval between the azimuth plane and the elevation plane of the two-dimensional sampling grid is less than the corresponding Rayleigh resolution, ie ⁇ grid ⁇ ⁇ r and This sample hardly destroys the array information and can be considered as lossless sampling. Therefore, based on the above sampling, the calculated TRP value should match the true TRP value.
  • This sampling scheme is referred to as a uniform sampling scheme, as indicated by the "+" periodic array in the angular space radiation sampling plot of Figure 7(b).
  • ⁇ grid and The values are the same as the corresponding Rayleigh resolutions, so the value points are included.
  • the elevation plane and the first zero point on the azimuth plane of ⁇ 90°. This is the most economical and fast one of the uniform sampling schemes.
  • the non-uniform sampling scheme introduces the concept of normalized wave vector space.
  • the scheme first obtains uniform sampling points in the normalized wave vector space, and then calculates the non-uniform sampling points in the angular space by the transformation formula. The compression of the sampling points is achieved.
  • the non-uniform sampling scheme eliminates redundant sampling points by normalized wave vector sampling, so that the number of sampling points is greatly reduced.
  • the test efficiency of the non-uniform sampling scheme is significantly improved compared to the uniform sampling scheme (the former is more than three times more efficient than the latter).
  • a method for measuring an array antenna TRP using a non-uniform sampling scheme includes:
  • Step 801 determining grid spacings K grid, y , K grid, z of the sampling points of the array antenna in the normalized wave vector space.
  • the Rayleigh resolution of the array antenna in the wave vector space is determined, and the grid spacing of the sample points in the normalized wave vector space is determined according to the Rayleigh resolution.
  • the Rayleigh resolution of the array antenna in the wave vector space can be determined in different ways according to whether the array size of the array antenna is known.
  • the Rayleigh resolution of the array antenna in the wave vector space is determined based on the array size and signal wavelength of the array antenna.
  • the Rayleigh resolution of the array antenna in the wave vector space is determined according to the array size and signal wavelength of the array antenna as follows:
  • K yr ⁇ /D y
  • K zr ⁇ /D z (6)
  • K yr and K zr are Rayleigh resolutions of the array antenna in the wave vector space
  • D y and D z are the maximum antenna apertures of the array antenna in the horizontal direction and the vertical direction, respectively
  • is the signal wavelength
  • the Rayleigh resolution of the array antenna in the angular space is determined, and the Rayleigh resolution of the angular space is converted into the Rayleigh resolution of the wave vector space.
  • the FNBW is determined, and the Rayleigh resolution of the array antenna in the angular space is determined according to the FNBW.
  • the FNBW of the main beam can be measured on the elevation plane and the azimuth plane of the spherical coordinate system including the maximum radiation power point.
  • the Rayleigh resolution of the array antenna in an angular space is determined according to the FNBW as follows:
  • the grid spacing of the sample antennas in the normalized wave vector space is set to be less than or equal to the Rayleigh resolution.
  • the grid spacing K grid, y , K grid, z of the sample points in the normalized wave vector space is not greater than the Rayleigh resolutions K yr , K zr of the array antenna in the wave vector space.
  • the grid spacing of the sample points in the normalized wave vector space may be set to be equal to the Rayleigh resolution.
  • Step 802 determining uniform sampling points (K ym , K zn ) in the normalized wave vector space according to the grid spacing.
  • the grid spacing K grid, y , K grid, z is uniformly sampled in the normalized wave vector space to obtain a set of discrete values, which form a vector sampling point of the normalized wave vector space.
  • the vector (K ym , K zn ) is used as a uniform sampling point in the normalized wave vector space.
  • Step 803 determining a corresponding non-uniform sampling point ( ⁇ n in the angular space according to the uniform sampling point in the normalized wave vector space. ).
  • the transformation relationship is determined to determine the uniform sampling points (K ym , K zn ) in the normalized wave vector space in the angular space ( ⁇ n , ).
  • Step 804 according to the non-uniform sampling point ( ⁇ n , in the spherical coordinate system in the angular space
  • the position is measured EIRP, and the TRP is determined based on the EIRP.
  • the TRP is determined from the EIRP as follows:
  • K grid, y and K grid,z are the grid spacings of the sampling points in the y direction and the z direction , respectively, in the normalized wave vector space;
  • Pitch angle ⁇ n and azimuth Normalized wave vector discrete sampling point The discrete value of the corresponding angular space, that is, the normalized wave vector discrete sampling point with the modulus less than 1 filtering Corresponding discrete values in the angular space.
  • the calculation accuracy can be improved compared with the conventional scheme: taking a 128-vibrator (8 ⁇ 16 array) array antenna as an example, a millimeter wave signal is transmitted at 30 GHz, and the grid 15 is stepped according to a conventional algorithm. ° When the initial angle of the all-wave darkroom turntable changes, the TRP calculation results in more than 14dB error fluctuations; if the array size is larger, the error will increase.
  • the non-uniform sampling algorithm of the present disclosure implements error fluctuations of no more than 0.3 dB.
  • the calculation efficiency can be improved compared with the conventional scheme: still taking the 128-vibrator (8 ⁇ 16 array) array antenna as an example, the conventional measurement method of the mainstream millimeter-wave darkroom is to adopt the 1° step.
  • Uniform sampling into the grid requires 32400 (180 ⁇ 180) sampling points for hemispherical scanning.
  • wave vector space Rayleigh resolution for step non-uniform sampling, the number of sampling points is no more than 93, and the efficiency is increased by 348 times.
  • the measuring device of the array antenna TRP of the non-uniform sampling scheme of the embodiment of the present disclosure includes:
  • the grid spacing determining module 901 is configured to determine a grid spacing of the sampling points of the array antenna in the normalized wave vector space;
  • the uniform sampling point determining module 902 is configured to determine a uniform sampling point in the normalized wave vector space according to the grid spacing;
  • the non-uniform sampling point determining module 903 is configured to determine a corresponding non-uniform sampling point in the angular space according to the uniform sampling points in the normalized wave vector space;
  • the TRP determination module 904 is configured to measure the EIRP according to the non-uniform sampling point position in the spherical coordinate system in the angular space, and determine the TRP according to the EIRP.
  • the grid spacing determining module 901 is configured to:
  • the grid spacing determining module 901 is configured to:
  • the Rayleigh resolution of the array antenna in the angular space is determined, and the Rayleigh resolution of the angular space is converted into the Rayleigh resolution of the wave vector space.
  • the grid spacing determining module 901 is configured to determine a Rayleigh resolution of the array antenna in a wave vector space according to an array size and a signal wavelength of the array antenna as follows:
  • K yr ⁇ /D y
  • K zr ⁇ /D z
  • K yr and K zr are Rayleigh resolutions of the array antenna in the wave vector space
  • D y and D z are the maximum antenna apertures of the array antenna in the horizontal direction and the vertical direction, respectively
  • is the signal wavelength
  • the grid spacing determining module 901 is configured to:
  • Determining a first zero spot beam width FNBW Determining a first zero spot beam width FNBW, determining a Rayleigh resolution of the array antenna in an angular space according to the FNBW.
  • the grid spacing determining module 901 is configured to measure the FNBW of the main beam on a pitch plane and an azimuth plane of a spherical coordinate system including a point of maximum radiated power.
  • the grid spacing determining module 901 is configured to determine a Rayleigh resolution of the array antenna in an angular space according to the FNBW as follows:
  • the grid spacing determining module 901 is configured to:
  • the grid spacing of the sample antennas in the normalized wave vector space is set to be less than or equal to the Rayleigh resolution.
  • the uniform sampling point determining module 902 is configured to:
  • the vector (K ym , K zn ) is used as a uniform sampling point in the normalized wave vector space.
  • the non-uniform sampling point determining module 903 is configured to:
  • the TRP determining module 904 is configured to determine the TRP according to the EIRP as follows:
  • K grid, y and K grid,z are the grid spacings of the sampling points in the y direction and the z direction , respectively, in the normalized wave vector space;
  • Embodiments of the present disclosure step relative to a conventional angle step grid ⁇ grid ,
  • the 15° test method reduces the measurement error; it reduces the number of sampling points and improves the measurement efficiency compared to the uniform sampling with 1° step grid.
  • the system for measuring the total radiated power TRP of the array antenna includes: a device under test 210, a test antenna system 230, a power detector 240, and a test machine 250 fixed on the turntable 220, wherein
  • the device under test 210 includes an array antenna 212 and a remote radio unit 211 that are integrated together, and the power detector 240 is connected to the test antenna system 230, and the test machine 250 and the device under test 210, respectively.
  • the turntable 220, the test antenna system 230 and the power detector 240 are connected;
  • the testing machine 250 is configured to: determine a grid spacing of the sampling points of the array antenna 212 in the normalized wave vector space; determine a uniform sampling point in the normalized wave vector space according to the grid spacing; Uniform sampling points in the localized wave vector determine corresponding non-uniform sampling points in the angular space; controlling the device under test 210, the turntable 220, the test antenna system 230 and the power detector 240 in an angular space according to a spherical coordinate system
  • the non-uniform sampling point position measures the EIRP, and the TRP is determined according to the EIRP.
  • Figures 10 (a) and (b) are demonstrations of an analog pattern and a non-uniform sampling scan scheme for an 8 x 16 rectangular array in accordance with a representative embodiment.
  • each cell is of equal amplitude in phase
  • the cell spacing d is ⁇ /2
  • the array antenna is parallel to the yz plane
  • the normal to the front of the array is parallel to the x-axis.
  • the two-dimensional pattern in Fig. 10(a) shows the distribution of the rectangular antenna EIRP in the normalized wave vector space (K y , K z ).
  • the maximum EIRP value is at (0,0), which is the x-axis direction.
  • the interval of the two-dimensional sampling grid in the normalized wave vector space is smaller than the corresponding Rayleigh resolution, that is, K grid, y ⁇ K yr and K grid, z ⁇ K zr , the sampling is almost It does not destroy array information and can be considered as non-destructive sampling. Therefore, based on the above sampling, the calculated TRP value should match the true TRP value.
  • the "+" periodic array in the normalized wave vector spatial radiation sampling plot in Figure 10(b) demonstrates the above sampling scheme. In the sampling diagram of Fig.
  • the values of K grid, y and K grid,z are respectively the same as the corresponding Rayleigh resolutions, so the value points include all the zero points in the y direction and the z direction.
  • these sampling points are uniformly distributed in the normalized wave vector space (K y , K z ), they are non-uniformly distributed in the angular space. In fact, these sampling points are in the angular space ( ⁇ , The distribution of the grid covers exactly the grid formed by the null curve, as shown in Figure 7(a). Therefore this sampling scheme can be referred to as a non-uniform sampling scheme.
  • Figure 10(b) is a special case of a non-uniform sampling scheme and is the most economical and fast one of the non-uniform sampling schemes.
  • FIGS. 11 and 12 are flow diagrams of several application examples including uniform and non-uniform sampling schemes associated with the foregoing systems. Based on the above discussion, the following four representative application examples can be provided.
  • the processing in Figures 11 and 12 can be implemented by the test environment of Figure 2 and the sampling of Figures 7(b) and 10(b).
  • the method is described in a series of blocks for simplicity of the description, it is to be understood that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in a different order than that described herein. And/or coincide with other boxes. Moreover, not all of the blocks in the examples are necessary to achieve the described effect.
  • the size of the antenna is known, and D y and D z are respectively in the y direction and the z direction, and a uniform sampling scheme is employed.
  • the test environment can be a far field millimeter wave darkroom test system 200, but is not limited thereto.
  • the near field including the planar field, the cylindrical field, the spherical field
  • the compact field millimeter wave dark room capable of measuring the antenna pattern can be used as the measurement environment.
  • FIG 11 shows the flow of a TRP test method based on a uniform sampling scheme, including the following steps:
  • step 1111 the full anechoic chamber and its measurement environment are calibrated, including: air path loss, cable insertion loss, spherical coordinate system position parameters, etc., which are the basis of subsequent measurement steps.
  • Darkroom environmental calibration is a routine preparation for RF testing.
  • step 1112 it is determined whether the size of the integrated antenna is known. In this application example, the antenna size is known, so the process proceeds to step 1121.
  • Step 1121 since the antenna size is known, the angular space Rayleigh resolution ⁇ r and the angle space can be directly obtained by formula (2) or formula (3). The result is written to test machine 250 and proceeds to step 1141.
  • Step 1141 determining a uniform sampling interval ⁇ grid and As mentioned in the description of Figure 7(b), the sampling interval ⁇ grid and Less than and as close as possible to the Rayleigh resolution ⁇ r and One of the most cost-effective ways is to make the sampling interval equal to Rayleigh resolution. After the sampling interval is determined, it is written to test machine 250 and proceeds to step 1142.
  • the measurement antenna system 230 and the power receiving instrument 240 then measure and record the EIRP values at these sample point locations. The latter transmits the data to test machine 250 and proceeds to step 1143.
  • step 1143 after obtaining the sampling point EIRP value, the testing machine 250 calculates the TRP value by using the formula (4), outputs the calculation result, and ends the test.
  • the size of the antenna is unknown (such as with a radome, not easy to disassemble), using a uniform sampling scheme.
  • the test environment can be a far field millimeter wave darkroom test system 200, but is not limited thereto.
  • the near field including the planar field, the cylindrical field, the spherical field
  • the compact field millimeter wave dark room capable of measuring the antenna pattern can be used as the measurement environment.
  • FIG 11 shows the flow of a TRP test method based on a uniform sampling scheme, including the following steps:
  • step 1111 the full anechoic chamber and its measurement environment are calibrated, including: air path loss, cable insertion loss, spherical coordinate system position parameters, etc., which are the basis of subsequent measurement steps.
  • Darkroom environmental calibration is a routine preparation for RF testing.
  • step 1112 it is determined whether the size of the integrated antenna is known. In this embodiment, the antenna size is unknown, so the process proceeds to step 1131.
  • step 1131 since the antenna size is unknown, the Rayleigh resolution is indirectly calculated by testing the first zero power beamwidth FNBW of the main beam. Therefore, step 1131 measures the pattern at a 1° interval or other smaller interval in the elevation plane and the azimuth plane where the main beam is located, and calculates a corresponding first zero power beam width FNBW ⁇ and
  • the value of the Rayleigh resolution is written to the test machine 250 and then proceeds to step 1141.
  • Step 1141 determining a uniform sampling interval ⁇ grid and As mentioned in the description of Figure 7(b), the sampling interval ⁇ grid and Less than and as close as possible to the Rayleigh resolution ⁇ r and One of the most cost-effective ways is to make the sampling interval equal to Rayleigh resolution. After the sampling interval is determined, it is written to test machine 250 and proceeds to step 1142.
  • the testing machine 250 calculates the orientation of each sampling point ( ⁇ n , at the front hemisphere of the main beam by determining a good sampling interval. ), determining the number of sampling points, estimating the sampling time, and controlling the orientation of the sampling point by the turntable 220 and the measuring antenna support 232.
  • the actual sampling process can be either a large round cut or a conical cut.
  • the measurement antenna system 230 and the power receiving instrument 240 then measure and record the EIRP values at these sample point locations. The latter transmits the data to test machine 250 and proceeds to step 1143.
  • step 1143 after obtaining the sampling point EIRP value, the testing machine 250 calculates the TRP value by using the formula (4), outputs the calculation result, and ends the test.
  • the following application example is to uniformly sample in the normalized wave vector space, that is, the angular space non-uniform sampling scheme.
  • This sampling scheme can further compress the number of sampling points.
  • the antenna size is known in this application example, D y and D z in the y and z directions, respectively, using a non-uniform sampling scheme.
  • the test environment can be a far field millimeter wave darkroom test system 200, but is not limited thereto.
  • the near field including the planar field, the cylindrical field, the spherical field
  • the compact field millimeter wave darkroom which can measure the antenna pattern, can be used as the measurement environment.
  • Figure 12 shows the flow of a TRP test method based on a non-uniform sampling scheme, including the following steps:
  • step 1211 the full anechoic chamber and its measurement environment are calibrated, including: air path loss, cable insertion loss, spherical coordinate system position parameters, etc., which are the basis of subsequent measurement steps.
  • Darkroom environmental calibration is a routine preparation for RF testing.
  • step 1212 it is determined whether the size of the integrated antenna is known. In this embodiment, the antenna size is known, so step 1221 is entered.
  • step 1221 since the antenna size is known, the normalized wave vector spatial Rayleigh resolutions K yr and K zr can be directly obtained by the formula (6). The result is written to test machine 250 and proceeds to step 1241.
  • step 1241 the grid spacings K grid, y and K grid,z of the sampling points in the normalized wave vector space are determined.
  • the grid spacing K grid, y and K grid,z of the sampling points are respectively smaller than and as close as possible to the Rayleigh resolutions K yr and K zr .
  • One of the most cost-effective ways is to make the sampling interval equal to Rayleigh resolution. After the sampling interval is determined, it is written to test machine 250 and proceeds to step 1242.
  • Step 1242 the testing machine 250 calculates the discrete sampling points of the normalized wave vector space by determining a good sampling interval, that is,
  • Step 1243 after obtaining the filtered sampling points, the testing machine 250 transforms the sampling points in the normalized wave vector space into the angular space by the formula (5) to obtain the non-uniform distribution sampling points in the angular space ( ⁇ n , ). Then proceed to step 1244.
  • test machine 250 controls turntable 220 and measurement antenna mount 232 to divert the established sample point orientation.
  • the measurement antenna system 230 and the power receiving instrument 240 then measure and record the EIRP values at these sample point locations. The latter transmits the data to test machine 250 and proceeds to step 1245.
  • step 1245 after obtaining the sampling point EIRP value, the testing machine 250 calculates the TRP value by using the formula (7), outputs the calculation result, and ends the test.
  • the antenna size is unknown (such as with a radome, not easy to disassemble), using a non-uniform sampling scheme.
  • the test environment can be a far field millimeter wave darkroom test system 200, but is not limited thereto.
  • the near field including the planar field, the cylindrical field, the spherical field
  • the compact field millimeter wave dark room capable of measuring the antenna pattern can be used as the measurement environment.
  • Figure 12 shows the flow of a TRP test method based on a non-uniform sampling scheme, including the following steps:
  • step 1211 the full anechoic chamber and its measurement environment are calibrated, including: air path loss, cable insertion loss, spherical coordinate system position parameters, etc., which are the basis of subsequent measurement steps.
  • Darkroom environmental calibration is a routine preparation for RF testing.
  • step 1212 it is determined whether the size of the integrated antenna is known. In this embodiment, the antenna size is unknown, so step 1231 is entered.
  • Step 1232 using the transformation formula (5) to calculate the angular space Rayleigh resolution ⁇ r and The Rayleigh resolutions K yr and K zr are transformed to the normalized wave vector space and proceed to step 1241.
  • the intervals K grid,y and K grid,z of the samples in the normalized wave vector space are determined.
  • the sampling intervals K grid, y and K grid, z are respectively smaller and as close as possible to the Rayleigh resolutions K yr and K zr .
  • One of the most cost-effective ways is to make the sampling interval equal to Rayleigh resolution.
  • Step 1242 the testing machine 250 calculates the discrete sampling points of the normalized wave vector space by determining a good sampling interval, that is,
  • Step 1243 after obtaining the filtered sampling points, the testing machine 250 transforms the sampling points in the normalized wave vector space into the angular space by the formula (5) to obtain the non-uniform distribution sampling points in the angular space ( ⁇ n , ). Then proceed to step 1244.
  • test machine 250 controls turntable 220 and measurement antenna mount 232 to divert the established sample point orientation.
  • the measurement antenna system 230 and the power receiving instrument 240 then measure and record the EIRP values at these sample point locations. The latter transmits the data to test machine 250 and proceeds to step 1245.
  • step 1245 after obtaining the sampling point EIRP value, the testing machine 250 calculates the TRP value by using the formula (7), outputs the calculation result, and ends the test.
  • Figure 13 is a verification result for the value of the angle grid.
  • the cell spacing of the array antenna is 0.5 ⁇ ;
  • the bottom coordinate axis of the 3D coordinate system is ⁇ grid , which takes values from 1° to 30°, calculates the TRP value according to formula (1), and the error is three-dimensionally distributed.
  • the error distribution flat area is at ⁇ grid ⁇ 15°.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions for performing the steps in the method of measuring the array antenna TRP of any of the above.
  • Embodiments of the present invention also provide an electronic device comprising a memory and a processor having a computer program stored therein, the processor being arranged to execute a computer program to perform the steps of any of the method embodiments described above.
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .
  • a method, apparatus, and system for measuring total radiated power of an array antenna provided by an embodiment of the present disclosure have the following beneficial effects: the embodiment of the present disclosure is compared with a conventional angle step grid ⁇ grid, The 15° test method reduces the measurement error; in addition, the normalized wave vector space conversion further reduces the number of sampling points and improves the measurement efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本公开实施例公开了一种阵列天线总辐射功率的测量方法、装置和系统,其中,所述方法包括:确定阵列天线在角度空间的瑞利分辨率,根据所述瑞利分辨率设置采样点的步进栅格间距;按照所述步进栅格间距确定采样点,在所述采样点位置测量等效全向辐射功率EIRP,根据所述EIRP确定TRP。本公开实施例相对于传统的角度步进栅格θgrid、φgrid为15°的测试方式,降低了测量误差;另外通过归一化波矢空间转换,进一步减少采样点数,提高了测量效率。

Description

一种阵列天线总辐射功率的测量方法、装置和系统 技术领域
本申请涉及无线通信技术领域,尤指一种阵列天线总辐射功率(Total Radiated Power,TRP)的测量方法、装置和系统。
背景技术
随着人们对更高质量、更高清晰度和更快响应速度内容需求的提升,第5代(5th-Generation,5G)移动通信技术应运而生,它包含了多项新技术,包括大规模阵列天线(Massive-MIMO)、波束成型技术(Beam Forming)、毫米波通信等。其中毫米波通信技术主要指的是利用波长在毫米量级的电磁波(频率为30GHz~300GHz)作为基站接入网络载体的通信技术。毫米波技术的介入,使得振子尺寸缩小到毫米级,大规模阵列天线技术广泛应用于5G通信产品中,阵列天线的振子单元数从128到256,甚至512,都已有成功应用案例。毫米波电路设计及大规模阵列天线的应用,要求有源天线系统(Active Antenna System,AAS)与远端射频单元(Radio Remote Unit,RRU)实现一体化。
第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)中的一项标准TS38.104规定,毫米波AAS一体化基站属于2-O类型5G设备,其射频指标必须在毫米波暗室中通过空口(Over the Air,OTA)方式测量。其中基站TRP是一项关键性的OTA测试条目;是衡量基站输出功率、杂散、邻道功率泄漏率(Adjacent Channel Leakage Ratio,ACLR)等多项射频指标的基础。
在传统低频段(Sub 6GHz)TRP测量中,美国无线通信和互联网协会(CTIA)规范以及中国通信行业标准YD/T 1484规定角度步进栅格θ grid
Figure PCTCN2019085645-appb-000001
为15°。但是对毫米波大规模阵列天线基站,该测试规范将导致较大 的测量误差。
发明内容
本公开实施例提供了一种阵列天线TRP的测量方法、装置和系统,以降低测量误差。
本公开实施例提供了一种阵列天线总辐射功率TRP的测量方法,包括:
确定阵列天线在角度空间的瑞利分辨率,根据所述瑞利分辨率设置采样点的步进栅格间距;
按照所述步进栅格间距确定采样点,在所述采样点位置测量等效全向辐射功率(Equivalent Isotropic Radiated Power,EIRP),根据所述EIRP确定TRP。
本公开实施例还提供一种阵列天线总辐射功率TRP的测量装置,包括:
设置步进栅格间距模块,设置为确定阵列天线在角度空间的瑞利分辨率,根据所述瑞利分辨率设置采样点的步进栅格间距;
TRP确定模块,设置为按照所述步进栅格间距确定采样点,在所述采样点位置测量等效全向辐射功率EIRP,根据所述EIRP确定TRP。
本公开实施例还提供一种阵列天线总辐射功率TRP的测量系统,包括:固定在转台上的被测试设备、测试天线系统、功率检测仪和测试机,其中,所述被测试设备包括集成在一起的阵列天线和远端射频单元,所述功率检测仪与所述测试天线系统相连,所述测试机分别与所述被测试设备、转台、测试天线系统和功率检测仪相连;
所述测试机设置为:确定阵列天线在角度空间的瑞利分辨率,根据所述瑞利分辨率设置采样点的步进栅格间距;以及,按照所述步进栅格间距确定采样点,控制所述被测试设备、转台、测试天线系统和功率检测仪在 所述采样点位置测量等效全向辐射功率EIRP,根据所述EIRP确定TRP。
本公开实施例还提供一种阵列天线总辐射功率TRP的测量方法,包括:
确定阵列天线在归一化波矢空间内采样点的栅格间距;
根据所述栅格间距确定归一化波矢空间内的均匀采样点;
根据所述归一化波矢空间内的均匀采样点确定角度空间内对应的非均匀采样点;
在角度空间按照球形坐标系中的非均匀采样点位置测量EIRP,根据所述EIRP确定TRP。
本公开实施例还提供一种阵列天线总辐射功率TRP的测量装置,包括:
栅格间距确定模块,设置为确定阵列天线在归一化波矢空间内采样点的栅格间距;
均匀采样点确定模块,设置为根据所述栅格间距确定归一化波矢空间内的均匀采样点;
非均匀采样点确定模块,设置为根据所述归一化波矢空间内的均匀采样点确定角度空间内对应的非均匀采样点;
TRP确定模块,设置为在角度空间按照球形坐标系中的非均匀采样点位置测量EIRP,根据所述EIRP确定TRP。
本公开实施例还提供一种阵列天线总辐射功率TRP的测量系统,包括:固定在转台上的被测试设备、测试天线系统、功率检测仪和测试机,其中,所述被测试设备包括集成在一起的阵列天线和远端射频单元,所述功率检测仪与所述测试天线系统相连,所述测试机分别与所述被测试设备、转台、测试天线系统和功率检测仪相连;
所述测试机设置为:确定阵列天线在归一化波矢空间内采样点的栅格间距;据所述栅格间距确定归一化波矢空间内的均匀采样点;根据所述归 一化波矢空间内的均匀采样点确定角度空间内对应的非均匀采样点;控制所述被测试设备、转台、测试天线系统和功率检测仪在角度空间按照球形坐标系中的非均匀采样点位置测量EIRP,根据所述EIRP确定TRP。
根据本公开的又一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本公开的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
本公开实施例相对于传统的角度步进栅格θ grid
Figure PCTCN2019085645-appb-000002
为15°的测试方式,降低了测量误差;另外通过归一化波矢空间转换,进一步减少采样点数,提高了测量效率。
本公开的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1是8×16振子阵列θ grid
Figure PCTCN2019085645-appb-000003
取15°扫描间隔时,θ,
Figure PCTCN2019085645-appb-000004
初始扫描角度变化时,计算得出的TRP数值出现的大幅度波动。
图2是本公开实施例的测试系统示意图。
图3是本公开实施例的测试环境的空间坐标系。
图4(a)是规则矩形振子阵列的示意图。
图4(b)和(c)是不规则阵列示意图。
图5是本公开实施例采用均匀采样方案的阵列天线TRP的测量方法的流程图。
图6是本公开实施例采用均匀采样方案的阵列天线TRP的测量装置的示意图。
图7(a)和(b)是实验天线仿真三维方向图在角度空间的二维平面展开。
图8是本公开实施例采用非均匀采样方案的阵列天线TRP的测量方法的流程图。
图9是本公开实施例采用非均匀采样方案的阵列天线TRP的测量装置的示意图。
图10(a)和(b)是实验天线仿真三维方向图在归一化波矢空间的二维平面展开。
图11是本公开应用实例的采用均匀采样方案的阵列天线TRP的测量方法的流程图。
图12是本公开应用实例的采用非均匀采样方案的阵列天线TRP的测量方法的流程图。
图13是8×16振子阵列θ grid
Figure PCTCN2019085645-appb-000005
取值1°~30°情况下计算TRP的误差在θ grid
Figure PCTCN2019085645-appb-000006
两个维度的分布图。
具体实施方式
下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情 况下,可以以不同于此处的顺序执行所示出或描述的步骤。
目前测量TRP,可以在毫米波暗室中内借助三维转台进行测量。其步骤为:被测设备(Equipment Under Test,EUT)固定在转台上,通过远场处的接收探头测量EUT的等效全向辐射功率(Equivalent Isotropic Radiated Power,EIRP)。在球形坐标系中以圆锥切法或者大圆切法,测量天线球面场的EIRP分布。最后参照如下公式(引自3GPP TS37.843)计算TRP:
Figure PCTCN2019085645-appb-000007
根据公式(1),TRP的计算基于N×M次EIRP测量。N、M的取值则依赖于θ和
Figure PCTCN2019085645-appb-000008
的步进栅格:
Figure PCTCN2019085645-appb-000009
在传统低频段(Sub 6GHz)TRP测量中,美国CTIA规范以及中国通信行业标准YD/T 1484规定角度步进栅格θ grid
Figure PCTCN2019085645-appb-000010
为15°。
以较为成熟的128振子(8×16排列)阵列天线为例,发射信号30GHz,球面测量步进栅格θ grid
Figure PCTCN2019085645-appb-000011
各取15°,根据传统方案(即YD/T 1484测量步骤)测试TRP。为定量观察测量误差,将球面测量EIRP的初始位置按照1°~15°变化,参照图1,得出TRP最终测试值相对于真实值的变化曲线,阵列天线的单元间距为0.5λ,横坐标指的是扫描起始点位置。这种传统的15°扫描间隔通常应用于sub 6GHz终端设备。从图1中就可以看出,采用这种15°扫描间隔时,计算所得的TRP结果随起始点位置的变化产生了14dB左右的波动。主要原因是毫米波阵列天线第一零点波束宽度(First Null Beamwidth,FNBW)已小于传统的Sub 6GHz天线波束的FNBW,对于毫米波基站天线的球面能量密度空间按15°的角度栅格采样,测量结果会失真。所以15°扫描间隔已经不能准确反映TRP数值,需要增加点数,提高扫描密度。
既然传统的15°扫描间隔TRP测试方案不能有效应用于毫米波阵列天线TRP的测量,人们需要升级传统的测试方案,甚至需要设计全新的测 试方案来应对这种情况。
毫米波大规模阵列天线的TRP测量技术尚在研究之中。目前知名毫米波暗室(如美国KeySight公司、法国MVG公司等)采用的常规方案是以θ grid
Figure PCTCN2019085645-appb-000012
不大于1°的步进测量EIRP,得出精细的三维方向图,然后计算TRP。但这种方式理论上至少需进行360×180次测量,效率不高。
总之,传统TRP算法15°栅格已不适用5G基站毫米波阵列天线的总辐射功率测量。而目前暗室用1°左右步进的常规方案,又会导致采样点过多,测量效率低下。
本公开实施例提出一种阵列天线TRP的测量方法、装置和系统,可以降低测量误差,提高测量效率。
下面对测试环境进行描述。
通常,根据代表性实施例,可以使用微波暗室来进行具有毫米波阵列天线的EUT(例如包括发射和接收链)的完整远场表征。此外,可以使用至少一个测试天线、接收链路和检测设备对辐射能量分布进行测试。
图2是根据代表性实施例的用于测量毫米波AAS设备的TRP的暗室OTA测试系统示意图。
参考图2,系统200配置为测量EUT 210的TRP,该EUT 210包括远端射频单元RRU 211和阵列天线212。阵列天线212与RRU211紧密集成在一起形成一体化设备,如虚线所示。与单独和独立可测的RRU和天线系统相反,EUT 210的发射和接收通道直接连接到阵列天线212单元。在所描述的实施例中,阵列天线212可为矩阵型布置的天线,也可为其他非规则排列的天线,辐射的电磁波能量可处于毫米波波段。
因为阵列天线212与RRU211集成在一起,没有射频连接,因此阵列天线不能被隔离测试。这也就是说不能简单地测试阵列天线212的辐射性能和RRU211的发射和接收链路性能来计算包括EIRP、TRP、等效全向灵敏度(EIRS)和总全向灵敏度(TIS)等射频整机指标。对EUT 210的测量需要同时进行。
EUT210被安置固定在转台220上,转台220可以在水平面上和俯仰面上进行转动。
测试天线系统230包括测试天线231、天线固定支架232和测试线缆233。测试天线231可以为单个天线,也可以是多个天线。天线固定支架232设置为固定测试天线231,并可以进行三维空间的移动。测试天线231通过测试线缆233被连接到功率检测仪240上,功率检测仪240可以是矢量网络分析仪,可以为频谱仪,也可以为功率计等等。
EUT210、转台220、天线固定支架232和功率检测仪240被连接到测试机250上,该测试机250可设置为控制EUT210的收发、转台220的转动、天线固定支架232的移动和功率检测仪240的收发,对包括EIRP值的相关测试数据进行记录和处理,并记录日志。
在整个测试过程中,全电波暗室环境通过吸波材料260和暗室外墙270与外界环境隔绝以模拟无穷大空间的情况。
图3是根据代表性实施例的以EUT 210上阵列天线212为参考点的坐标系示意图。其中x轴与天线阵面法线方向基本相一致,y轴和z轴分别对应水平和垂直方向。这里采用了两种空间坐标来描述方向。一种是角度空间,即利用球坐标系中的(θ,
Figure PCTCN2019085645-appb-000013
)来表示。比如当波矢方向标定为(90°,0°)时,意味着指向x轴方向。另一种是归一化波矢空间,即用笛卡尔坐标系中的(K y,K z)来表示,其中K y和K z分别表示的是归一化波矢投影在y轴和z轴上的大小。比如当波矢方向标定为(0,0)时,意味着指向x轴方向。角度空间(θ,
Figure PCTCN2019085645-appb-000014
)和归一化波矢空间(K y,K z)存在一个空间变换关系。
图4是根据代表性实施例的阵列天线212中阵列单元的几种排列情况。图4(a)展示的是常见的矩形阵列的情况,矩形阵列中单元间隔d,单元一般为边长为a的正方形。矩形阵列在y方向和z方向上的边长为D y和D z,由于单元间隔d一般为λ/2,边长a不大于单元间隔d,一个M×N阵列边长D y≈Nλ/2且D z≈Mλ/2。以8×16阵列天线为例,天线尺寸可表示为 D y≈8λ和D z≈4λ。阵列天线的远场方向图近似为阵列天线形状的傅里叶变换,因此根据奈奎斯特采样定律,只要在θ方向和
Figure PCTCN2019085645-appb-000015
方向上采样间隔小于瑞利分辨率,即sin -1(λ/D y)和sin -1(λ/D z),离散采样几乎不会丢失阵列信息。采用这种采样间隔,积分所得的TRP数值可以代表该矩形阵列真实的TRP数值。
图4(b)为Z型阵列的情况。这种形状虽然不规则,对应的方向图也缺乏明显的规律性,但这种形状可以看成是灭掉了右上角和左下角一些单元的D y×D z矩形阵列,其中D y和D z可以认为是Z型阵列在y方向和z方向上最大尺寸。因此根据奈奎斯特采样定律,在方向图上的采样间隔小于D y和D z对应的瑞利分辨率时,离散采样几乎不会丢失该等效矩形阵列的信息,因此也不会丢失该Z型阵列的信息。采用这种采样间隔,积分所得的TRP数值可以代表该Z型阵列真实的TRP数值。
图4(c)为O型阵列的情况。这种形状对应的方向图趋向于艾里斑。同样地,这种形状也可以看成是四周的一些单元被去掉的D y×D z矩形阵列,因此根据奈奎斯特采样定律,在方向图上的采样间隔小于D y和D z对应的瑞利分辨率时,离散采样几乎不会丢失该等效矩形阵列的信息,因此也不会丢失该O型阵列的信息。采用这种采样间隔,积分所得的TRP数值可以代表该O型阵列真实的TRP数值。
从上面3个例子可以分析出,对于非规则形状的阵列,都可以看成是矩形阵列。该矩形阵列在y方向和z方向上的边长为该非规则形状的阵列在y方向上和z方向上最大尺寸。只要采样间隔不丢失该矩形阵列信息,积分所得的TRP数值可以反映真实的TRP的真实值。因此在以下的讨论中,我们只考虑矩形阵列的情况。
本公开实施例中,提出两种采样方案:一种是在角度空间使用等角度间距的采样方案,称作均匀采样方案;另一种为在归一化波矢空间进行等间距的采样方案,由于这种采样方法在角度空间表现为不等间距,因此可称作非均匀采样方案。
下面分别对两种方案进行说明。
一、均匀采样方案:
均匀采样方案是在传统角度空间内采样EIRP,进而计算TRP。均匀采样方案避免了传统测试规范(YD/T 1484标准和CTIA规范)在测量毫米波阵列天线TRP时误差过大的情况。
如图5所示,本公开实施例的采用均匀采样方案的阵列天线TRP的测量方法,包括:
步骤501,确定阵列天线在角度空间的瑞利分辨率,根据所述瑞利分辨率设置采样点的步进栅格间距。
其中,可以根据阵列天线的阵列尺寸是否已知,采用不同的方式确定阵列天线在角度空间的瑞利分辨率。
(1)阵列天线的阵列尺寸已知:
根据所述阵列天线的阵列尺寸和信号波长确定所述阵列天线在角度空间的瑞利分辨率。
在一实施例中,按照如下方式根据所述阵列天线的阵列尺寸和信号波长确定所述阵列天线在角度空间的瑞利分辨率:
Figure PCTCN2019085645-appb-000016
其中θ r
Figure PCTCN2019085645-appb-000017
分别为阵列天线在球形坐标系θ和
Figure PCTCN2019085645-appb-000018
方向的瑞利分辨率,D y、D z分别为阵列天线在水平方向和垂直方向的天线最大口径,λ为信号波长。
在θ r
Figure PCTCN2019085645-appb-000019
取值较小时,也可以按照如下方式根据所述阵列天线的阵列尺寸和信号波长确定所述阵列天线在角度空间的瑞利分辨率:
Figure PCTCN2019085645-appb-000020
(2)阵列天线的阵列尺寸未知:
确定第一零点波束宽度FNBW,根据所述FNBW确定所述阵列天线在角度空间的瑞利分辨率。
其中,对于无法准确获知天线阵列尺寸情况(比如不易打开天线罩的基站设备),可以在包含最大辐射功率点的球形坐标系的俯仰面上和方位面上测量主波束的FNBW。
在一实施例中,按照如下方式根据所述FNBW确定所述阵列天线在角度空间的瑞利分辨率:
θ r=FNBW θ/2,
Figure PCTCN2019085645-appb-000021
其中θ r
Figure PCTCN2019085645-appb-000022
分别为阵列天线在球形坐标系θ和
Figure PCTCN2019085645-appb-000023
方向的瑞利分辨率,FNBW θ
Figure PCTCN2019085645-appb-000024
分别为球形坐标系的俯仰面上和方位面上方向图的FNBW。
步骤502,按照所述步进栅格间距确定采样点,在所述采样点位置测量等效全向辐射功率EIRP,根据所述EIRP确定TRP。
在一实施例中,设置采样点的步进栅格间距小于等于所述瑞利分辨率。
也就是说,采样步进间距应不大于阵列天线在球形坐标系θ和
Figure PCTCN2019085645-appb-000025
方向的瑞利分辨率(θ r
Figure PCTCN2019085645-appb-000026
),即:θ grid≤θ r
Figure PCTCN2019085645-appb-000027
在实际应用中,可以设置采样点的步进栅格间距等于所述瑞利分辨率。
所述根据所述EIRP确定TRP,可以采用公式(1)的方式计算TRP。
另外,对于高频5G基站,其毫米波大规模阵列天线的输出信号功率基本集中于包含主波束的前半个球面,后向辐射相对较小,对TRP的贡献可以忽略,因此后半球面不再取值。
因此在一实施例中,对公式(1)稍作修正:
Figure PCTCN2019085645-appb-000028
其中,
Figure PCTCN2019085645-appb-000029
θ grid
Figure PCTCN2019085645-appb-000030
分别为球形坐标系θ和
Figure PCTCN2019085645-appb-000031
方向的步进栅格间距。
需要说明的是,本公开实施例中,根据EIRP确定TRP可以采用但不限于公式(1)和公式(4),例如对公式(1)或公式(4)进行变形,采用不同的坐标系进行表示等等。
采用本公开实施例的均匀采样方案,相对于传统方案,能够改善计算准确度:以128振子(8×16排列)阵列天线为例,发射毫米波信号30GHz,根据传统算法步进栅格15°,全电波暗室转台初始角度变化时,TRP计算结果出现了超过14dB的误差波动;若阵列规模更大,则误差还会增大。本公开实施的均匀采样方案以瑞利分辨率为步进栅格,在相同测试应力下TRP误差波动不超过0.15dB。
采用本公开实施例的均匀采样方案,相对于常规方案,能够提高计算效率:还是以128振子(8×16排列)阵列天线为例,目前主流毫米波暗室的常规测量方法是采用1°步进栅格均匀采样,实现半球面扫描需要32400(180×180)个采样点;而采用角度空间瑞利分辨率步进,采样点数不超过338(26×13)个,效率提升95倍。
如图6所示,本公开实施例的阵列天线总辐射功率TRP的测量装置,包括:
设置步进栅格间距模块601,设置为确定阵列天线在角度空间的瑞利分辨率,根据所述瑞利分辨率设置采样点的步进栅格间距;
TRP确定模块602,设置为按照所述步进栅格间距确定采样点,在所述采样点位置测量等效全向辐射功率EIRP,根据所述EIRP确定TRP。
在一实施例中,所述设置步进栅格间距模块601,设置为:
根据所述阵列天线的阵列尺寸和信号波长确定所述阵列天线在角度空间的瑞利分辨率;或者
确定第一零点波束宽度FNBW,根据所述FNBW确定所述阵列天线在角度空间的瑞利分辨率。
在一实施例中,所述设置步进栅格间距模块601,设置为按照如下方式根据所述阵列天线的阵列尺寸和信号波长确定所述阵列天线在角度空间的瑞利分辨率:
Figure PCTCN2019085645-appb-000032
或者
Figure PCTCN2019085645-appb-000033
其中θ r
Figure PCTCN2019085645-appb-000034
分别为阵列天线在球形坐标系θ和
Figure PCTCN2019085645-appb-000035
方向的瑞利分辨率,D y、D z分别为阵列天线在水平方向和垂直方向的天线最大口径,λ为信号波长。
在一实施例中,所述设置步进栅格间距模块601,设置为:在包含最大辐射功率点的球形坐标系的俯仰面上和方位面上测量主波束的FNBW。
在一实施例中,所述设置步进栅格间距模块601,设置为按照如下方式根据所述FNBW确定所述阵列天线在角度空间的瑞利分辨率:
θ r=FNBW θ/2,
Figure PCTCN2019085645-appb-000036
其中θ r
Figure PCTCN2019085645-appb-000037
分别为阵列天线在球形坐标系θ和
Figure PCTCN2019085645-appb-000038
方向的瑞利分辨率,FNBW θ
Figure PCTCN2019085645-appb-000039
分别为球形坐标系的俯仰面上和方位面上方向图的FNBW。
在一实施例中,所述设置步进栅格间距模块601,设置为:设置采样点的步进栅格间距小于等于所述瑞利分辨率。
在一实施例中,所述TRP确定模块602,设置为按照如下方式根据所述EIRP确定TRP:
Figure PCTCN2019085645-appb-000040
其中,
Figure PCTCN2019085645-appb-000041
θ grid
Figure PCTCN2019085645-appb-000042
分别为球形坐标系θ和
Figure PCTCN2019085645-appb-000043
方向的步进栅格间距。
本公开实施例相对于传统的角度步进栅格θ grid
Figure PCTCN2019085645-appb-000044
为15°的测试方式, 降低了测量误差;相对于采用1°步进栅格均匀采样,减少了采样点数,提高了测量效率。
相应地,参照图2,本公开实施例的阵列天线总辐射功率TRP的测量系统,包括:固定在转台220上的被测试设备210、测试天线系统230、功率检测仪240和测试机250,其中,所述被测试设备210包括集成在一起的阵列天线212和远端射频单元211,所述功率检测仪240与所述测试天线系统230相连,所述测试机250分别与所述被测试设备210、转台220、测试天线系统230和功率检测仪240相连;
所述测试机250设置为:确定阵列天线212在角度空间的瑞利分辨率,根据所述瑞利分辨率设置采样点的步进栅格间距;以及,按照所述步进栅格间距确定采样点,控制所述被测试设备210、转台220、测试天线系统230和功率检测仪240在所述采样点位置测量等效全向辐射功率EIRP,根据所述EIRP确定TRP。
图7(a)和(b)分别是根据代表性实施例的一个8×16矩形阵列410的模拟方向图和均匀采样扫描方案的演示。在该矩形阵列中,每个单元是等幅同相的,单元间距d为λ/2,单元尺寸D y≈8λ且D z≈4λ。,该阵列天线平行于y-z平面,阵面法线方向则平行于x轴。图7(a)中二维方向图展示了该矩形天线EIRP在前半球面角度空间(θ,
Figure PCTCN2019085645-appb-000045
)的分布。其中最大EIRP值位于(90°,0),即x轴方向。多条10dB间隔等高线把方向图分为若干个区域,颜色的深浅代表EIRP值大小,颜色越趋于浅色,EIRP值越大,越趋于深色,EIRP值越小。在二维方向图中可以看到由颜色最倾向于深色的线条组成的网格,这些网格点和组成网格的深色曲线条正是EIRP值零陷位置。
Figure PCTCN2019085645-appb-000046
处的俯仰面中,第一零功率波束宽度可命名为FNBW θ,它与天线尺寸D z存在关系,即FNBW θ/2=θ r=sin -1(λ/D z),其中θ r=sin -1(λ/D z)可称为俯仰面中的瑞利分辨率。同样地,在θ=90°处的方位面中,第一零功率波束宽度可命名为
Figure PCTCN2019085645-appb-000047
Figure PCTCN2019085645-appb-000048
其中
Figure PCTCN2019085645-appb-000049
可称为方位面中的瑞利分辨率。根据奈奎斯特采样定律,二维采样栅格在方位面和俯仰面上的间隔小于对应瑞利分辨率时,即θ grid≤θ r
Figure PCTCN2019085645-appb-000050
该采样几乎不会破坏阵列信息,可被认为是无损采样。因此在上述采样基 础之上,计算的TRP数值应符合真实的TRP数值。这种采样方案我们称为均匀采样方案,正如图7(b)角度空间辐射采样图中“+”周期性阵列所指示的那样。在图7(b)采样图中,θ grid
Figure PCTCN2019085645-appb-000051
的取值分别与对应的瑞利分辨率相同,因此取值点包含了
Figure PCTCN2019085645-appb-000052
俯仰面和θ=90°方位面上的第一个零点。这是均匀采样方案中最经济、快速的一种。
二、非均匀采样方案:
非均匀采样方案引入了归一化波矢空间的概念。该方案首先在归一化波矢空间内求取均匀采样点,然后通过变换公式计算角度空间内的非均匀采样点。实现了采样点数的压缩。
本方案在归一化波矢空间(K y,K z)内均匀采样。归一化波矢空间(K y,K z)与角度空间(θ,
Figure PCTCN2019085645-appb-000053
)的变换关系为:
Figure PCTCN2019085645-appb-000054
非均匀采样方案通过归一化波矢空间采样剔除冗余采样点,使得采样点数量大幅度减少。非均匀采样方案测试效率相对于均匀采样方案有明显提升(前者测试效率是后者三倍以上)。
如图8所示,本公开实施例的采用非均匀采样方案的阵列天线TRP的测量方法,包括:
步骤801,确定阵列天线在归一化波矢空间内采样点的栅格间距K grid,y、K grid,z
在一实施例中,确定所述阵列天线在波矢空间的瑞利分辨率,根据所述瑞利分辨率确定所述阵列天线在归一化波矢空间内采样点的栅格间距。
其中,可以根据阵列天线的阵列尺寸是否已知,采用不同的方式确定阵列天线在波矢空间的瑞利分辨率。
(1)阵列天线的阵列尺寸已知:
根据所述阵列天线的阵列尺寸和信号波长确定所述阵列天线在波矢 空间的瑞利分辨率。
在一实施例中,按照如下方式根据所述阵列天线的阵列尺寸和信号波长确定所述阵列天线在波矢空间的瑞利分辨率:
K yr=λ/D y,K zr=λ/D z    (6)
其中K yr、K zr为阵列天线在波矢空间的瑞利分辨率,D y和D z分别为阵列天线在水平方向和垂直方向的最大天线口径,λ为信号波长。
(2)阵列天线的阵列尺寸未知:
确定所述阵列天线在角度空间的瑞利分辨率,将角度空间的瑞利分辨率转换为波矢空间的瑞利分辨率。
在一实施例中,确定FNBW,根据所述FNBW确定所述阵列天线在角度空间的瑞利分辨率。
其中,对于无法准确获知天线阵列尺寸情况(比如不易打开天线罩的基站设备),可以在包含最大辐射功率点的球形坐标系的俯仰面上和方位面上测量主波束的FNBW。
在一实施例中,按照如下方式根据所述FNBW确定所述阵列天线在角度空间的瑞利分辨率:
θ r=FNBW θ/2,
Figure PCTCN2019085645-appb-000055
其中θ r
Figure PCTCN2019085645-appb-000056
分别为阵列天线在球形坐标系θ和
Figure PCTCN2019085645-appb-000057
方向的瑞利分辨率,FNBW θ
Figure PCTCN2019085645-appb-000058
分别为球形坐标系的俯仰面上和方位面上方向图的FNBW。
在一实施例中,设置所述阵列天线在归一化波矢空间内采样点的栅格间距小于等于所述瑞利分辨率。
本公开实施例中,归一化波矢空间内采样点的栅格间距K grid,y,K grid,z,不大于阵列天线在波矢空间中的瑞利分辨率K yr、K zr
在实际应用中,可以设置所述阵列天线在归一化波矢空间内采样点的栅格间距等于所述瑞利分辨率。
步骤802,根据所述栅格间距确定归一化波矢空间内的均匀采样点(K ym,K zn)。
在一实施例中,根据栅格间距K grid,y、K grid,z在归一化波矢空间内均匀采样,得到一组离散值,组成归一化波矢空间的矢量采样点
Figure PCTCN2019085645-appb-000059
选择
Figure PCTCN2019085645-appb-000060
的矢量(K ym,K zn)作为归一化波矢空间内的均匀采样点。
步骤803,根据所述归一化波矢空间内的均匀采样点确定角度空间内对应的非均匀采样点(θ n,
Figure PCTCN2019085645-appb-000061
)。
在一实施例中,通过归一化波矢空间(K y,K z)与角度空间(θ,
Figure PCTCN2019085645-appb-000062
)的变换关系,确定归一化波矢空间内的均匀采样点(K ym,K zn)在角度空间内对应的(θ n,
Figure PCTCN2019085645-appb-000063
)。
其中,通过变换公式(5),在角度空间找到(K ym,K zn)相应的(θ n,
Figure PCTCN2019085645-appb-000064
)。其中θ n
Figure PCTCN2019085645-appb-000065
在角度空间是非均匀分布的。
步骤804,在角度空间按照球形坐标系中的非均匀采样点(θ n,
Figure PCTCN2019085645-appb-000066
)位置测量EIRP,根据所述EIRP确定TRP。
在一实施例中,按照如下方式根据所述EIRP确定TRP:
Figure PCTCN2019085645-appb-000067
其中K grid,y和K grid,z分别为归一化波矢空间内采样点在y方向和z方向上的栅格间距;
Figure PCTCN2019085645-appb-000068
为采样点的归一化波矢,关系式
Figure PCTCN2019085645-appb-000069
指代的是在
Figure PCTCN2019085645-appb-000070
中只取其模值小于1的采样点,即进行了模值小于1的筛选。
俯仰角θ n和方位角
Figure PCTCN2019085645-appb-000071
为归一化波矢离散采样点
Figure PCTCN2019085645-appb-000072
对应的角度空间的离散取值,也即完成了模值小于1筛选的归一化波矢离散采样点
Figure PCTCN2019085645-appb-000073
对应的在角度空间的离散取值。
EIRP(θ n,
Figure PCTCN2019085645-appb-000074
)为在角度空间离散采样点(θ n
Figure PCTCN2019085645-appb-000075
)上的EIRP。
公式(7)也可以在波矢空间进行表述,此时参数θ n
Figure PCTCN2019085645-appb-000076
可通过空 间变换公式
Figure PCTCN2019085645-appb-000077
K z=cosθ,用归一化波矢
Figure PCTCN2019085645-appb-000078
在y和z方向上的分量K ym和K zn来表示。
采用本公开实施例的非均匀采样方案,相对于传统方案,能够改善计算准确度:以128振子(8×16排列)阵列天线为例,发射毫米波信号30GHz,根据传统算法步进栅格15°,全电波暗室转台初始角度变化时,TRP计算结果出现了超过14dB的误差波动;若阵列规模更大,则误差还会增大。本公开实施的非均匀采样算法误差波动不超过0.3dB。
采用本公开实施例的非均匀采样方案,相对于常规方案,能够提高计算效率:还是以128振子(8×16排列)阵列天线为例,目前主流毫米波暗室的常规测量方法是采用1°步进栅格均匀采样,实现半球面扫描需要32400(180×180)个采样点;而采用波矢空间瑞利分辨率做步进非均匀采样,则采样点数不超过93个,效率提升348倍。
如图9所示,本公开实施例的非均匀采样方案的阵列天线TRP的测量装置,包括:
栅格间距确定模块901,设置为确定阵列天线在归一化波矢空间内采样点的栅格间距;
均匀采样点确定模块902,设置为根据所述栅格间距确定归一化波矢空间内的均匀采样点;
非均匀采样点确定模块903,设置为根据所述归一化波矢空间内的均匀采样点确定角度空间内对应的非均匀采样点;
TRP确定模块904,设置为在角度空间按照球形坐标系中的非均匀采样点位置测量EIRP,根据所述EIRP确定TRP。
在一实施例中,所述栅格间距确定模块901,设置为:
确定所述阵列天线在波矢空间的瑞利分辨率,根据所述瑞利分辨率确定所述阵列天线在归一化波矢空间内采样点的栅格间距。
在一实施例中,所述栅格间距确定模块901,设置为:
根据所述阵列天线的阵列尺寸和信号波长确定所述阵列天线在波矢空间的瑞利分辨率;或者
确定所述阵列天线在角度空间的瑞利分辨率,将角度空间的瑞利分辨率转换为波矢空间的瑞利分辨率。
在一实施例中,所述栅格间距确定模块901,设置为按照如下方式根据所述阵列天线的阵列尺寸和信号波长确定所述阵列天线在波矢空间的瑞利分辨率:
K yr=λ/D y,K zr=λ/D z
其中K yr、K zr为阵列天线在波矢空间的瑞利分辨率,D y和D z分别为阵列天线在水平方向和垂直方向的最大天线口径,λ为信号波长。
在一实施例中,所述栅格间距确定模块901,设置为:
确定第一零点波束宽度FNBW,根据所述FNBW确定所述阵列天线在角度空间的瑞利分辨率。
在一实施例中,所述栅格间距确定模块901,设置为:在包含最大辐射功率点的球形坐标系的俯仰面上和方位面上测量主波束的FNBW。
在一实施例中,所述栅格间距确定模块901,设置为按照如下方式根据所述FNBW确定所述阵列天线在角度空间的瑞利分辨率:
θ r=FNBW θ/2,
Figure PCTCN2019085645-appb-000079
其中θ r
Figure PCTCN2019085645-appb-000080
分别为阵列天线在球形坐标系θ和
Figure PCTCN2019085645-appb-000081
方向的瑞利分辨率,FNBW θ
Figure PCTCN2019085645-appb-000082
分别为球形坐标系的俯仰面上和方位面上方向图的FNBW。
在一实施例中,所述栅格间距确定模块901,设置为:
设置所述阵列天线在归一化波矢空间内采样点的栅格间距小于等于所述瑞利分辨率。
在一实施例中,所述均匀采样点确定模块902,设置为:
根据栅格间距K grid,y、K grid,z在归一化波矢空间内均匀采样,得到一组离散值,组成归一化波矢空间的矢量采样点
Figure PCTCN2019085645-appb-000083
选择
Figure PCTCN2019085645-appb-000084
的矢量(K ym,K zn)作为归一化波矢空间内的均匀采样点。
在一实施例中,所述非均匀采样点确定模块903,设置为:
通过归一化波矢空间(K y,K z)与角度空间(θ,
Figure PCTCN2019085645-appb-000085
)的变换关系,确定归一化波矢空间内的均匀采样点(K ym,K zn)在角度空间内对应的(θ n,
Figure PCTCN2019085645-appb-000086
);
其中,归一化波矢空间(K y,K z)与角度空间(θ,
Figure PCTCN2019085645-appb-000087
)的变换关系为:
Figure PCTCN2019085645-appb-000088
K z=cosθ。
在一实施例中,所述TRP确定模块904,设置为按照如下方式根据所述EIRP确定TRP:
Figure PCTCN2019085645-appb-000089
其中K grid,y和K grid,z分别为归一化波矢空间内采样点在y方向和z方向上的栅格间距;
Figure PCTCN2019085645-appb-000090
为采样点的归一化波矢,俯仰角θ n和方位角
Figure PCTCN2019085645-appb-000091
为归一化波矢离散采样点
Figure PCTCN2019085645-appb-000092
对应的角度空间的离散取值,EIRP(θ n,
Figure PCTCN2019085645-appb-000093
)为在角度空间离散采样点(θ n,
Figure PCTCN2019085645-appb-000094
)上的EIRP。
上述公式也可以在波矢空间进行表述,此时参数θ n
Figure PCTCN2019085645-appb-000095
可通过空间变换公式
Figure PCTCN2019085645-appb-000096
K z=cosθ,用归一化波矢
Figure PCTCN2019085645-appb-000097
在y和z方向上的分量K ym和K zn来表示。
本公开实施例相对于传统的角度步进栅格θ grid
Figure PCTCN2019085645-appb-000098
为15°的测试方式,降低了测量误差;相对于采用1°步进栅格均匀采样,减少了采样点数,提高了测量效率。
相应地,参照图2,本公开实施例的阵列天线总辐射功率TRP的测量系统,包括:固定在转台220上的被测试设备210、测试天线系统230、 功率检测仪240和测试机250,其中,所述被测试设备210包括集成在一起的阵列天线212和远端射频单元211,所述功率检测仪240与所述测试天线系统230相连,所述测试机250分别与所述被测试设备210、转台220、测试天线系统230和功率检测仪240相连;
所述测试机250设置为:确定阵列天线212在归一化波矢空间内采样点的栅格间距;据所述栅格间距确定归一化波矢空间内的均匀采样点;根据所述归一化波矢空间内的均匀采样点确定角度空间内对应的非均匀采样点;控制所述被测试设备210、转台220、测试天线系统230和功率检测仪240在角度空间按照球形坐标系中的非均匀采样点位置测量EIRP,根据所述EIRP确定TRP。
图10(a)和(b)是根据代表性实施例的一个8×16矩形阵列的模拟方向图和非均匀采样扫描方案的演示。在该矩形阵列中,每个单元是等幅同相的,单元间距d为λ/2,单元尺寸D y≈8λ且D z≈4λ。,该阵列天线平行于y-z平面,阵面法线方向则平行于x轴。图10(a)中二维方向图展示了该矩形天线EIRP在归一化波矢空间(K y,K z)中的分布。其中最大EIRP值位于(0,0)处,即x轴方向。多条10dB间隔等高线把方向图分为若干个区域,颜色深浅代表EIRP值大小,颜色越趋于浅色,EIRP值越大,越趋于深色,EIRP值越小。在图10(a)二维方向图中可以看到由颜色最倾向于深色的线条组成的周期性网格,这些周期性网格点和组成网格的深色线条正是EIRP值零陷位置。
在归一化波矢空间(K y,K z)中可以看出零点在y方向和z方向上是等距均匀排列的。该相等的间距可由角度空间中的第一零功率波束宽度表示,即
Figure PCTCN2019085645-appb-000099
和sin(FNBW θ/2),分别对应于归一化波矢空间在y方向和z方向的瑞利分辨率K yr=λ/D y和K zr=λ/D z。根据奈奎斯特采样定律,二维采样栅格在归一化波矢空间的间隔小于对应瑞利分辨率时,即K grid,y≤K yr且K grid,z≤K zr,该采样几乎不会破坏阵列信息,可被认为是无损采样。因此在上述采样基础之上,计算的TRP数值应符合真实的TRP数值。图10(b)中归一化波矢空间辐射采样图中“+”周期性阵列演示了上述采 样方案。在图10(b)采样图中,K grid,y和K grid,z的取值分别与对应的瑞利分辨率相同,因此取值点包含了y方向和z方向上的所有零点。这些采样点虽然在归一化波矢空间(K y,K z)是均匀分布的,但在角度空间却是非均匀分布的。事实上,这些采样点在角度空间(θ,
Figure PCTCN2019085645-appb-000100
)的分布正好覆盖了零陷曲线构成的格点,如图7(a)图中格点位置。因此这种采样方案可称作非均匀采样方案。图10(b)采样图是非均匀采样方案中的一个特例,是该非均匀采样方案中最经济、快速的一种。
下面通过应用实例对本公开实施例进行说明。
图11和图12是与前述系统有关的包括均匀和非均采样方案的几种应用实例的流程图。在上述讨论的基础之上,可以提供以下4种代表性应用实例。图11和图12中的处理可由图2的测试环境和图7(b)和图10(b)的采样方式实现。虽然为了说明的简单起见,所述方法通过一系列方框进行描述,不过要理解要求保护的主体不受方框的顺序限制,因为一些方框可按照与本文中描述的顺序不同的顺序发生,和/或与其他方框同时发生。此外,示例中并非所有的方框都是实现所描述效果所必须的。
应用实例一
在此应用实例中天线的尺寸已知,在y方向和z方向分别是D y和D z,采用均匀采样方案。测试环境可为远场毫米波暗室测试系统200,但不仅局限于此。原则上,能够实现天线方向图测量的近场(包括平面场、柱面场、球面场)和紧缩场毫米波暗室都可作为测量环境。
图11展示了基于均匀采样方案的TRP测试方法的流程,包括如下步骤:
步骤1111,全电波暗室及其测量环境进行校准,包括:空中路损、线缆插损、球形坐标系位置参数等,这是后续测量步骤的基础。暗室环境校准属于射频测试常规准备操作。
步骤1112,判断一体化天线的尺寸是否可知。在这个应用实例中,天 线尺寸是可知的,因此进入步骤1121。
步骤1121,由于天线尺寸已知,通过公式(2)或公式(3)即可直接得出角度空间瑞利分辨率θ r
Figure PCTCN2019085645-appb-000101
将结果写入测试机250,进入步骤1141。
步骤1141,确定均匀采样的间隔θ grid
Figure PCTCN2019085645-appb-000102
正如描述图7(b)采样图时所提到的那样,采样的间隔θ grid
Figure PCTCN2019085645-appb-000103
分别小于且尽量趋近于瑞利分辨率θ r
Figure PCTCN2019085645-appb-000104
其中最经济有效的方式就是让采样间隔等于瑞利分辨率。确定采样间隔以后,将其写入测试机250并进入步骤1142。
步骤1142,测试机250通过确定好的采样间隔计算出主波束所在前半球面处各个采样点方位(θ n
Figure PCTCN2019085645-appb-000105
),m,n=0,±1,±2...,确定采样点数,估算采样时间,并控制转台220和测量天线支架232转向制定的采样点方位(实际的采样过程可以是大圆切法,也可以是圆锥切法)。接着测量天线系统230和功率接收仪表240对这些采样点方位处EIRP值进行测量和记录。后者将数据传送至测试机250,并进入步骤1143。
步骤1143,测试机250在获得采样点EIRP值以后,利用公式(4)计算TRP值,输出计算结果,结束测试。
应用实例二
此应用实例中天线的尺寸未知(比如带天线罩,不易拆卸),采用均匀采样方案。测试环境可为远场毫米波暗室测试系统200,但不仅局限于此。原则上,能够实现天线方向图测量的近场(包括平面场、柱面场、球面场)和紧缩场毫米波暗室都可作为测量环境。
图11展示了基于均匀采样方案的TRP测试方法的流程,包括如下步骤:
步骤1111,全电波暗室及其测量环境进行校准,包括:空中路损、线缆插损、球形坐标系位置参数等,这是后续测量步骤的基础。暗室环境校准属于射频测试常规准备操作。
步骤1112,判断一体化天线的尺寸是否可知。在这个实施例中,天线尺寸是未知的,因此进入步骤1131。
步骤1131,由于天线尺寸未知,通过测试主波束第一零功率波束宽度FNBW来间接计算瑞利分辨率。因此步骤1131在主波束所在俯仰面和方位面中以1°间隔或其它更小的间隔测量方向图,计算出对应的第一零功率波束宽度FNBW θ
Figure PCTCN2019085645-appb-000106
步骤1132,通过公式θ r=FNBW θ/2和
Figure PCTCN2019085645-appb-000107
计算瑞利分辨率。将瑞利分辨率的值写入测试机250后进入步骤1141。
步骤1141,确定均匀采样的间隔θ grid
Figure PCTCN2019085645-appb-000108
正如描述图7(b)采样图时所提到的那样,采样的间隔θ grid
Figure PCTCN2019085645-appb-000109
分别小于且尽量趋近于瑞利分辨率θ r
Figure PCTCN2019085645-appb-000110
其中最经济有效的方式就是让采样间隔等于瑞利分辨率。确定采样间隔以后,将其写入测试机250并进入步骤1142。
步骤1142,测试机250通过确定好的采样间隔计算出主波束所在前半球面处各个采样点方位(θ n
Figure PCTCN2019085645-appb-000111
),确定采样点数,估算采样时间,并控制转台220和测量天线支架232转向制定的采样点方位。实际的采样过程可以是大圆切法,也可以是圆锥切法。接着测量天线系统230和功率接收仪表240对这些采样点方位处EIRP值进行测量和记录。后者将数据传送至测试机250,并进入步骤1143。
步骤1143,测试机250在获得采样点EIRP值以后,利用公式(4)计算TRP值,输出计算结果,结束测试。
下面的应用实例是在归一化波矢空间进行均匀采样,即角度空间非均匀采样方案。这种采样方案可以进一步压缩采样点数。
应用实例三
此应用实例中天线尺寸已知,在y方向和z方向分别是D y和D z,采用非均匀采样方案。测试环境可为远场毫米波暗室测试系统200,但不仅局限于此。原则上,能够实现天线方向图测量的近场(包括平面场、柱面场、 球面场)和紧缩场毫米波暗室都可作为测量环境。
图12展示了基于非均匀采样方案的TRP测试方法的流程,包括如下步骤:
步骤1211,全电波暗室及其测量环境进行校准,包括:空中路损、线缆插损、球形坐标系位置参数等,这是后续测量步骤的基础。暗室环境校准属于射频测试常规准备操作。
步骤1212,判断一体化天线的尺寸是否可知。在这个实施例中,天线尺寸是已知的,因此进入步骤1221。
步骤1221,由于天线尺寸已知,通过公式(6)即可直接得出归一化波矢空间瑞利分辨率K yr和K zr。将结果写入测试机250,进入步骤1241。
步骤1241,确定在归一化波矢空间的采样点的栅格间隔K grid,y和K grid,z。正如描述图10(b)采样图时所提到的那样,采样点的栅格间隔K grid,y和K grid,z分别小于且尽量趋近于瑞利分辨率K yr和K zr。其中最经济有效的方式就是让采样间隔等于瑞利分辨率。确定采样间隔以后,将其写入测试机250并进入步骤1242。
步骤1242,测试机250通过确定好的采样间隔计算出归一化波矢空间各个离散采样点,即
Figure PCTCN2019085645-appb-000112
对这些离散点进行筛选,只取波矢绝对值
Figure PCTCN2019085645-appb-000113
的值。这样做的原因是考虑到在空口能进行长距离传输的电磁模都是辐射模式。在归一化波矢空间筛选完采样点以后,就可确定采样点数,估算采样时间,并进入步骤1243。
步骤1243,测试机250在获得经筛选后的采样点以后,将这些处于归一化波矢空间的采样点通过公式(5)变换到角度空间,得到在角度空间的非均匀分布采样点(θ n
Figure PCTCN2019085645-appb-000114
)。然后进入步骤1244。
步骤1244,测试机250控制转台220和测量天线支架232转向制定的 采样点方位。接着测量天线系统230和功率接收仪表240对这些采样点方位处EIRP值进行测量和记录。后者将数据传送至测试机250,并进入步骤1245。
步骤1245,测试机250在获得采样点EIRP值以后,利用公式(7)计算TRP值,输出计算结果,结束测试。
应用实例四
此应用实例中天线尺寸未知(比如带天线罩,不易拆卸),采用非均匀采样方案。测试环境可为远场毫米波暗室测试系统200,但不仅局限于此。原则上,能够实现天线方向图测量的近场(包括平面场、柱面场、球面场)和紧缩场毫米波暗室都可作为测量环境。
图12展示了基于非均匀采样方案的TRP测试方法的流程,包括如下步骤:
步骤1211,全电波暗室及其测量环境进行校准,包括:空中路损、线缆插损、球形坐标系位置参数等,这是后续测量步骤的基础。暗室环境校准属于射频测试常规准备操作。
步骤1212,判断一体化天线的尺寸是否可知。在这个实施例中,天线尺寸是未知的,因此进入步骤1231。
步骤1231,由于天线尺寸未知,通过测试主波束第一零功率波束宽度FNBW来间接计算瑞利分辨率。因此步骤1231在主波束所在俯仰面和方位面中以1°间隔或其它更小的间隔测量方向图,计算出对应的第一零功率波束宽度FNBW θ
Figure PCTCN2019085645-appb-000115
通过公式θ r=FNBW θ/2和
Figure PCTCN2019085645-appb-000116
计算瑞利分辨率。
步骤1232,利用变换公式(5)将角度空间瑞利分辨率θ r
Figure PCTCN2019085645-appb-000117
变换到归一化波矢空间的瑞利分辨率K yr和K zr并进入步骤1241。
步骤1241,确定在归一化波矢空间的采样的间隔K grid,y和K grid,z。正如 描述图10(b)采样图时所提到的那样,采样的间隔K grid,y和K grid,z分别小于且尽量趋近于瑞利分辨率K yr和K zr。其中最经济有效的方式就是让采样间隔等于瑞利分辨率。确定采样间隔以后,将其写入测试机250并进入步骤1242。
步骤1242,测试机250通过确定好的采样间隔计算出归一化波矢空间各个离散采样点,即
Figure PCTCN2019085645-appb-000118
对这些离散点进行筛选,只取波矢绝对值
Figure PCTCN2019085645-appb-000119
的值。这样做的原因是考虑到在空口能进行长距离传输的电磁模都是辐射模式。在归一化波矢空间筛选完采样点以后,就可确定采样点数,估算采样时间,并进入步骤1243。
步骤1243,测试机250在获得经筛选后的采样点以后,将这些处于归一化波矢空间的采样点通过公式(5)变换到角度空间,得到在角度空间的非均匀分布采样点(θ n
Figure PCTCN2019085645-appb-000120
)。然后进入步骤1244。
步骤1244,测试机250控制转台220和测量天线支架232转向制定的采样点方位。接着测量天线系统230和功率接收仪表240对这些采样点方位处EIRP值进行测量和记录。后者将数据传送至测试机250,并进入步骤1245。
步骤1245,测试机250在获得采样点EIRP值以后,利用公式(7)计算TRP值,输出计算结果,结束测试。
图13是对于角度栅格取值的验证结果。取8×16振子阵列进行实验,阵列天线的单元间距为0.5λ;三维坐标系底部坐标轴为
Figure PCTCN2019085645-appb-000121
θ grid,分别取值1°~30°,根据公式(1)计算TRP值,误差呈三维分布。从图中可知,误差分布平坦区域处于
Figure PCTCN2019085645-appb-000122
θ grid≤15°。根据公式(2)或公式(3)计算瑞利分辨率:
Figure PCTCN2019085645-appb-000123
θ r≈14.5°,可见为保证测量精度,采样间距的最大取值接近瑞利分辨率,与本公开实施例中的讨论一致。
发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一项所述的阵列天线TRP的测量方法中的步骤。
本发明的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
工业实用性
如上所述,本公开实施例提供的一种阵列天线总辐射功率的测量方法、装置和系统具有以下有益效果:本公开实施例相对于传统的角度步进栅格 θgrid、
Figure PCTCN2019085645-appb-000124
为15°的测试方式,降低了测量误差;另外通过归一化波矢空间转换,进一步减少采样点数,提高了测量效率。

Claims (22)

  1. 一种阵列天线总辐射功率TRP的测量方法,包括:
    确定阵列天线在角度空间的瑞利分辨率,根据所述瑞利分辨率设置采样点的步进栅格间距;
    按照所述步进栅格间距确定采样点,在所述采样点位置测量等效全向辐射功率EIRP,根据所述EIRP确定TRP。
  2. 如权利要求1所述的方法,其中,所述确定阵列天线在角度空间的瑞利分辨率包括:
    根据所述阵列天线的阵列尺寸和信号波长确定所述阵列天线在角度空间的瑞利分辨率;或者
    确定第一零点波束宽度FNBW,根据所述FNBW确定所述阵列天线在角度空间的瑞利分辨率。
  3. 如权利要求2所述的方法,其中,按照如下方式根据所述阵列天线的阵列尺寸和信号波长确定所述阵列天线在角度空间的瑞利分辨率:
    Figure PCTCN2019085645-appb-100001
    或者
    Figure PCTCN2019085645-appb-100002
    其中θ r
    Figure PCTCN2019085645-appb-100003
    分别为阵列天线在球形坐标系θ和
    Figure PCTCN2019085645-appb-100004
    方向的瑞利分辨率,D y、D z分别为阵列天线在水平方向和垂直方向的天线最大口径,λ为信号波长。
  4. 如权利要求2所述的方法,其中,所述确定FNBW包括:
    在包含最大辐射功率点的球形坐标系的俯仰面上和方位面上测量主波束的FNBW。
  5. 如权利要求2所述的方法,其中,按照如下方式根据所述FNBW确定所述阵列天线在角度空间的瑞利分辨率:
    θ r=FNBW θ/2,
    Figure PCTCN2019085645-appb-100005
    其中θ r
    Figure PCTCN2019085645-appb-100006
    分别为阵列天线在球形坐标系θ和
    Figure PCTCN2019085645-appb-100007
    方向的瑞利分辨率,FNBW θ
    Figure PCTCN2019085645-appb-100008
    分别为球形坐标系的俯仰面上和方位面上方向图的FNBW。
  6. 如权利要求1所述的方法,其中,所述根据所述瑞利分辨率设置采样点的步进栅格间距,包括:
    设置采样点的步进栅格间距小于等于所述瑞利分辨率。
  7. 如权利要求1~6中任意一项所述的方法,其中,按照如下方式根据所述EIRP确定TRP:
    Figure PCTCN2019085645-appb-100009
    其中,
    Figure PCTCN2019085645-appb-100010
    分别为球形坐标系θ和
    Figure PCTCN2019085645-appb-100011
    方向的步进栅格间距。
  8. 一种阵列天线总辐射功率TRP的测量装置,包括:
    设置步进栅格间距模块,设置为确定阵列天线在角度空间的瑞利分辨率,根据所述瑞利分辨率设置采样点的步进栅格间距;
    TRP确定模块,设置为按照所述步进栅格间距确定采样点,在所述采样点位置测量等效全向辐射功率EIRP,根据所述EIRP确定TRP。
  9. 一种阵列天线总辐射功率TRP的测量系统,包括:固定在转台上的被测试设备、测试天线系统、功率检测仪和测试机,其中,所述被测试设备包括集成在一起的阵列天线和远端射频单元,所述功率检测仪与所述测试天线系统相连,所述测试机分别与所述被测试设备、转台、测试天线系统和功率检测仪相连;
    所述测试机设置为:确定阵列天线在角度空间的瑞利分辨率,根据所述瑞利分辨率设置采样点的步进栅格间距;以及,按照所述步进栅格间距确定采样点,控制所述被测试设备、转台、测试天线系统和功率检测仪在所述采样点位置测量等效全向辐射功率EIRP,根据所述EIRP确定TRP。
  10. 一种阵列天线总辐射功率TRP的测量方法,包括:
    确定阵列天线在归一化波矢空间内采样点的栅格间距;
    根据所述栅格间距确定归一化波矢空间内的均匀采样点;
    根据所述归一化波矢空间内的均匀采样点确定角度空间内对应的非均匀采样点;
    在角度空间按照球形坐标系中的非均匀采样点位置测量EIRP,根据所述EIRP确定TRP。
  11. 如权利要求10所述的方法,其中,所述确定阵列天线在归一化波矢空间内采样点的栅格间距,包括:
    确定所述阵列天线在波矢空间的瑞利分辨率,根据所述瑞利分辨率确定所述阵列天线在归一化波矢空间内采样点的栅格间距。
  12. 如权利要求11所述的方法,其中,确定所述阵列天线在波矢空间的瑞利分辨率,包括:
    根据所述阵列天线的阵列尺寸和信号波长确定所述阵列天线在波矢空间的瑞利分辨率;或者
    确定所述阵列天线在角度空间的瑞利分辨率,将角度空间的瑞利分辨率转换为波矢空间的瑞利分辨率。
  13. 如权利要求12所述的方法,其中,按照如下方式根据所述阵列天线的阵列尺寸和信号波长确定所述阵列天线在波矢空间的瑞利分辨率:
    K yr=λ/D y,K zr=λ/D z
    其中K yr、K zr为阵列天线在波矢空间的瑞利分辨率,D y和D z分别为阵列天线在水平方向和垂直方向的最大天线口径,λ为信号波长。
  14. 如权利要求12所述的方法,其中,所述确定所述阵列天线在角度空间的瑞利分辨率,包括:
    确定第一零点波束宽度FNBW,根据所述FNBW确定所述阵列天线在角度空间的瑞利分辨率。
  15. 如权利要求14所述的方法,其中,所述确定FNBW,包括:
    在包含最大辐射功率点的球形坐标系的俯仰面上和方位面上测量主波束的FNBW。
  16. 如权利要求14所述的方法,其中,按照如下方式根据所述FNBW确定所述阵列天线在角度空间的瑞利分辨率:
    θ r=FNBW θ/2,
    Figure PCTCN2019085645-appb-100012
    其中θ r
    Figure PCTCN2019085645-appb-100013
    分别为阵列天线在球形坐标系θ和
    Figure PCTCN2019085645-appb-100014
    方向的瑞利分辨率,FNBW θ
    Figure PCTCN2019085645-appb-100015
    分别为球形坐标系的俯仰面上和方位面上方向图的FNBW。
  17. 如权利要求11所述的方法,其中,所述根据所述瑞利分辨率确定所述阵列天线在归一化波矢空间内采样点的栅格间距,包括:
    设置所述阵列天线在归一化波矢空间内采样点的栅格间距小于等于所述瑞利分辨率。
  18. 如权利要求10所述的方法,其中,所述根据所述栅格间距确定归一化波矢空间内的均匀采样点,包括:
    根据栅格间距K grid,y、K grid,z在归一化波矢空间内均匀采样,得到一组离散值,组成归一化波矢空间的矢量采样点
    Figure PCTCN2019085645-appb-100016
    选择
    Figure PCTCN2019085645-appb-100017
    的矢量(K ym,K zn)作为归一化波矢空间内的均匀采样点。
  19. 如权利要求10所述的方法,其中,所述根据所述归一化波矢空间内的均匀采样点确定角度空间内对应的非均匀采样点,包括:
    通过归一化波矢空间(K y,K z)与角度空间
    Figure PCTCN2019085645-appb-100018
    的变换关系,确定归一化波矢空间内的均匀采样点(K ym,K zn)在角度空间内对应的
    Figure PCTCN2019085645-appb-100019
    Figure PCTCN2019085645-appb-100020
    其中,归一化波矢空间(K y,K z)与角度空间
    Figure PCTCN2019085645-appb-100021
    的变换关系为:
    Figure PCTCN2019085645-appb-100022
    K z=cosθ。
  20. 如权利要求10~19中任意一项所述的方法,其中,按照如下方 式根据所述EIRP确定TRP:
    Figure PCTCN2019085645-appb-100023
    其中K grid,y和K grid,z分别为归一化波矢空间内采样点在y方向和z方向上的栅格间距;
    Figure PCTCN2019085645-appb-100024
    为采样点的归一化波矢,俯仰角θ n和方位角
    Figure PCTCN2019085645-appb-100025
    为归一化波矢离散采样点
    Figure PCTCN2019085645-appb-100026
    对应的角度空间的离散取值,
    Figure PCTCN2019085645-appb-100027
    为在角度空间离散采样点
    Figure PCTCN2019085645-appb-100028
    上的EIRP。
  21. 一种阵列天线总辐射功率TRP的测量装置,包括:
    栅格间距确定模块,设置为确定阵列天线在归一化波矢空间内采样点的栅格间距;
    均匀采样点确定模块,设置为根据所述栅格间距确定归一化波矢空间内的均匀采样点;
    非均匀采样点确定模块,设置为根据所述归一化波矢空间内的均匀采样点确定角度空间内对应的非均匀采样点;
    TRP确定模块,设置为在角度空间按照球形坐标系中的非均匀采样点位置测量EIRP,根据所述EIRP确定TRP。
  22. 一种阵列天线总辐射功率TRP的测量系统,包括:固定在转台上的被测试设备、测试天线系统、功率检测仪和测试机,其中,所述被测试设备包括集成在一起的阵列天线和远端射频单元,所述功率检测仪与所述测试天线系统相连,所述测试机分别与所述被测试设备、转台、测试天线系统和功率检测仪相连;
    所述测试机设置为:确定阵列天线在归一化波矢空间内采样点的栅格间距;据所述栅格间距确定归一化波矢空间内的均匀采样点;根据所述归一化波矢空间内的均匀采样点确定角度空间内对应的非均匀采样点;控制所述被测试设备、转台、测试天线系统和功率检测仪在角度空间按照球形坐标系中的非均匀采样点位置测量EIRP,根据所述EIRP确定TRP。
PCT/CN2019/085645 2018-05-07 2019-05-06 一种阵列天线总辐射功率的测量方法、装置和系统 WO2019214570A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207034858A KR102481050B1 (ko) 2018-05-07 2019-05-06 어레이 안테나의 총 복사 전력을 측정하기 위한 방법, 장치 및 시스템
EP19799439.5A EP3817249A4 (en) 2018-05-07 2019-05-06 Method, apparatus and system for measuring total radiated power of array antenna
CA3099603A CA3099603A1 (en) 2018-05-07 2019-05-06 Method, apparatus and system for measuring total radiated power of array antenna
US17/090,727 US11804913B2 (en) 2018-05-07 2020-11-05 Method, apparatus and system for measuring total radiated power of array antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810426814.X 2018-05-07
CN201810426814.XA CN110460400A (zh) 2018-05-07 2018-05-07 一种阵列天线总辐射功率的测量方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/090,727 Continuation US11804913B2 (en) 2018-05-07 2020-11-05 Method, apparatus and system for measuring total radiated power of array antenna

Publications (1)

Publication Number Publication Date
WO2019214570A1 true WO2019214570A1 (zh) 2019-11-14

Family

ID=68467706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085645 WO2019214570A1 (zh) 2018-05-07 2019-05-06 一种阵列天线总辐射功率的测量方法、装置和系统

Country Status (6)

Country Link
US (2) US11804913B2 (zh)
EP (1) EP3817249A4 (zh)
KR (1) KR102481050B1 (zh)
CN (2) CN113225147B (zh)
CA (1) CA3099603A1 (zh)
WO (1) WO2019214570A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113162706A (zh) * 2020-01-22 2021-07-23 深圳市通用测试系统有限公司 无线设备的射频性能测试方法及系统
CN113411814A (zh) * 2021-05-11 2021-09-17 西安交通大学 一种基于透射超表面的新型短焦距调幅调相紧缩场及测试方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113225147B (zh) * 2018-05-07 2024-05-14 中兴通讯股份有限公司 一种阵列天线总辐射功率的测量方法、装置和系统
CN112083234B (zh) * 2019-06-14 2024-06-11 中兴通讯股份有限公司 阵列天线总辐射功率测量方法、装置以及计算机存储介质
EP3994810B1 (en) * 2019-07-05 2023-06-07 Telefonaktiebolaget Lm Ericsson (Publ) A method of measuring aas emf
US11956738B2 (en) * 2019-08-16 2024-04-09 Mediatek Inc. Automatic gain control for serving cell activation based on two different reference signals
CN113497657B (zh) * 2020-03-18 2022-10-04 华为技术有限公司 射频指标检测装置及方法
CN112904094B (zh) * 2021-02-04 2022-08-23 中国人民解放军国防科技大学 一种基于无人机的口面天线外场测试方法
US20220260675A1 (en) * 2021-02-18 2022-08-18 The United States Of America, As Represented By The Secretary Of The Navy Ground based radar cross section measurement of countermeasures
CN115913421A (zh) * 2021-08-13 2023-04-04 中兴通讯股份有限公司 射频指标测量方法、装置、系统、电子设备及存储介质
US12040844B2 (en) 2021-11-23 2024-07-16 Samsung Electronics Co., Ltd. Device and method of estimating output power of array antenna
CN116260531A (zh) * 2021-12-10 2023-06-13 中兴通讯股份有限公司 功率测量方法及其装置、存储介质、程序产品
CN114447635B (zh) * 2022-04-11 2022-08-26 西安星通通信科技有限公司 一种提高共形相控阵天线eirp的方法与系统
CN115102635B (zh) * 2022-06-14 2023-04-28 西安交通大学 一种空口测试系统及方法
CN115835231B (zh) * 2023-02-14 2023-06-13 中国铁建电气化局集团有限公司 基站角度确定方法、装置、设备及介质
CN116106644B (zh) * 2023-04-10 2023-06-27 中国人民解放军63921部队 计及角度误差的天线远场辐射功率拟合方法、系统及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101473556A (zh) * 2006-06-19 2009-07-01 五月花通讯股份有限公司 用于高保真高数据率无线通信的抗干扰滤波器系统和方法
CN106471383A (zh) * 2014-01-30 2017-03-01 兰洛斯公司 用于测试与车辆的无线通信的方法和装置
WO2017196246A2 (en) * 2016-05-13 2017-11-16 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
WO2018059821A1 (en) * 2016-09-30 2018-04-05 Telefonaktiebolaget Lm Ericsson (Publ) Reduced grid for measurement of total radiated power

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8134510B2 (en) * 2006-08-09 2012-03-13 Raytheon Company Coherent near-field array
CN101399621B (zh) * 2007-09-24 2012-07-04 中兴通讯股份有限公司 空间射频性能测试方法
TWI352208B (en) * 2007-12-05 2011-11-11 Wistron Neweb Corp Method and related electronic device for adjusting
JP5085728B2 (ja) * 2008-05-09 2012-11-28 アンリツ株式会社 放射電力を測定する方法、放射電力の測定用結合器及び放射電力を測定する装置
US20160286532A1 (en) * 2012-01-24 2016-09-29 Odyssey Wireless, Inc. Systems/methods of preferentially using a first asset, refraining from using a second asset and providing reduced levels of interference to gps and/or satellites
US9374746B1 (en) * 2008-07-07 2016-06-21 Odyssey Wireless, Inc. Systems/methods of spatial multiplexing
CN101769967A (zh) * 2008-12-30 2010-07-07 中兴通讯股份有限公司 辐射性能测试方法和系统
US8412110B2 (en) * 2009-10-06 2013-04-02 Qualcomm Incorporated Apparatus and method for determining multi-antenna radiated performance of wireless devices
US8471758B2 (en) * 2011-02-10 2013-06-25 Raytheon Company Virtual aperture radar (VAR) imaging
DE112013001138B4 (de) * 2012-02-24 2018-01-18 Tokyo University Of Agriculture And Technology Vorrichtung zum Messen der Wärmeabstrahlung eines Messobjekts, Verfahren zum Messen der Wärmeabstrahlung eines Messobjekts und Zelle zum Messen der Wärmeabstrahlung
US9325552B2 (en) * 2013-09-13 2016-04-26 Qualcomm Incorporated Extended duration cyclic prefix with low overhead for LTE broadcast
US9915728B2 (en) * 2014-01-10 2018-03-13 Raytheon Company Sub-diffraction limit resolution radar arrays
CN104168074B (zh) * 2014-08-20 2017-03-29 深圳市佳沃通信技术有限公司 非信令天线trp测试方法及测试系统
CN104713830B (zh) * 2015-03-16 2017-05-17 北京大学 一种在线气溶胶碳质组分采集分析仪的解析装置
WO2016153404A1 (en) * 2015-03-25 2016-09-29 Telefonaktiebolaget Lm Ericsson (Publ) Preparing transmission signals for transmission
CN106211230A (zh) * 2015-05-07 2016-12-07 中兴通讯股份有限公司 一种计算辅小区组测量间隔的方法和装置
WO2017123993A1 (en) * 2016-01-13 2017-07-20 Mars, Incorporated Legume-based food products
US10381743B2 (en) * 2016-01-28 2019-08-13 GM Global Technology Operations LLC Curved sensor array for improved angular resolution
CN107222254A (zh) * 2016-03-21 2017-09-29 中兴通讯股份有限公司 一种光纤状态的检测方法及装置
US20180006745A1 (en) * 2016-06-30 2018-01-04 Keysight Technologies, Inc. Compact system for characterizing a device under test (dut) having integrated antenna array
IL246651B (en) * 2016-07-07 2020-08-31 Elta Systems Ltd System and method for operating an integrating antenna
WO2018006417A1 (zh) * 2016-07-08 2018-01-11 富士通株式会社 波束传输方法、装置以及通信系统
US10425900B2 (en) * 2017-05-15 2019-09-24 Futurewei Technologies, Inc. System and method for wireless power control
CN113225147B (zh) * 2018-05-07 2024-05-14 中兴通讯股份有限公司 一种阵列天线总辐射功率的测量方法、装置和系统
US11050496B2 (en) * 2018-05-21 2021-06-29 National Instruments Corporation Over-the-air testing of millimeter wave integrated circuits with integrated antennas
CN110542798B (zh) * 2018-05-28 2024-04-09 是德科技股份有限公司 使用中场天线方向图测试天线阵列的方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101473556A (zh) * 2006-06-19 2009-07-01 五月花通讯股份有限公司 用于高保真高数据率无线通信的抗干扰滤波器系统和方法
CN106471383A (zh) * 2014-01-30 2017-03-01 兰洛斯公司 用于测试与车辆的无线通信的方法和装置
WO2017196246A2 (en) * 2016-05-13 2017-11-16 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
WO2018059821A1 (en) * 2016-09-30 2018-04-05 Telefonaktiebolaget Lm Ericsson (Publ) Reduced grid for measurement of total radiated power

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113162706A (zh) * 2020-01-22 2021-07-23 深圳市通用测试系统有限公司 无线设备的射频性能测试方法及系统
CN113162706B (zh) * 2020-01-22 2022-10-28 深圳市通用测试系统有限公司 无线设备的射频性能测试方法及系统
CN113411814A (zh) * 2021-05-11 2021-09-17 西安交通大学 一种基于透射超表面的新型短焦距调幅调相紧缩场及测试方法
CN113411814B (zh) * 2021-05-11 2022-08-05 西安交通大学 一种基于透射超表面的新型短焦距调幅调相紧缩场装置及测试方法

Also Published As

Publication number Publication date
EP3817249A4 (en) 2021-12-29
CA3099603A1 (en) 2019-11-14
US11804913B2 (en) 2023-10-31
US20210167870A1 (en) 2021-06-03
KR102481050B1 (ko) 2022-12-23
CN113225147B (zh) 2024-05-14
CN110460400A (zh) 2019-11-15
KR20210008379A (ko) 2021-01-21
EP3817249A1 (en) 2021-05-05
CN113225147A (zh) 2021-08-06
US20240014907A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
WO2019214570A1 (zh) 一种阵列天线总辐射功率的测量方法、装置和系统
CN108966264B (zh) 对大规模多入多出无线系统执行空中测试的系统和方法
CN107566052B (zh) 用于表征具有集成天线阵列的待测设备的紧凑型系统
US10033473B1 (en) Systems and methods for performing multiple input, multiple output (MIMO) over-the-air testing
US11750303B2 (en) Compact system for characterizing a device under test (DUT) having integrated antenna array
CN109791171B (zh) 用于总辐射功率测量的精简网格
WO2020224044A1 (zh) 天线测试方法、设备和存储介质
US9699678B2 (en) Plane wave generation within a small volume of space for evaluation of wireless devices
CN112083234B (zh) 阵列天线总辐射功率测量方法、装置以及计算机存储介质
CN110018361B (zh) 一种相控阵天线增益噪声温度比值测量方法及系统
US11131701B1 (en) Multi-probe anechoic chamber for beam performance testing of an active electronically steered array antenna
US11372037B2 (en) Freespace antenna measurement system
Zhang et al. Plane wave generator in non-anechoic radio environment
Fordham An introduction to antenna test ranges, measurements and instrumentation
WO2024045649A1 (zh) 一种有源阵列天线方向图的近场空口快速测量系统及方法
Tankielun et al. Quiet zone verification of plane wave synthesizer using polar near-field scanner
WO2023103798A1 (zh) 功率测量方法及其装置、存储介质、程序产品
WO2023216595A1 (zh) 有源天线的测试系统
CN112034264A (zh) 一种多探头紧缩场天线测试系统和生成方法
CN107566057B (zh) 无线终端的快速诊断方法和系统
Kong et al. Mid-field OTA RF test method: new developments and performance comparison with the compact antenna test range (CATR)
Hamberger et al. Near-field techniques for millimeter-wave antenna array calibration
CN113917241B (zh) 一种天线方向图快速测量和预估方法、系统、设备及终端
Hu et al. Over the air testing and error analysis of 5G active antenna system base station in compact antenna test range
CN115913421A (zh) 射频指标测量方法、装置、系统、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799439

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3099603

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207034858

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019799439

Country of ref document: EP

Effective date: 20201207