WO2020224044A1 - 天线测试方法、设备和存储介质 - Google Patents

天线测试方法、设备和存储介质 Download PDF

Info

Publication number
WO2020224044A1
WO2020224044A1 PCT/CN2019/095088 CN2019095088W WO2020224044A1 WO 2020224044 A1 WO2020224044 A1 WO 2020224044A1 CN 2019095088 W CN2019095088 W CN 2019095088W WO 2020224044 A1 WO2020224044 A1 WO 2020224044A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
antenna
phase
amplitude
probe
Prior art date
Application number
PCT/CN2019/095088
Other languages
English (en)
French (fr)
Inventor
任宇鑫
潘冲
吴翔
李雷
张翔
徐菲
魏贵明
郭宇航
张宇
陈凯
杨思远
郭凤然
朱颖
孙浩
Original Assignee
中国信息通信研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国信息通信研究院 filed Critical 中国信息通信研究院
Publication of WO2020224044A1 publication Critical patent/WO2020224044A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas

Definitions

  • the embodiments of the present invention relate to the field of wireless communication technologies, and in particular, to an antenna testing method, equipment, and storage medium.
  • the new generation of 5G (fifth generation) mobile technology needs to achieve higher spectrum efficiency in a limited frequency band to improve cell capacity and user experience rate.
  • 3GPP Transmissiond Generation Partnership Project
  • Massive MIMO Multiple Input Multiple Output
  • the base station in the frequency band below 6GHz uses 64 channels, 128 or 192 cycles, and simultaneously transmits up to 16 streams of independent data.
  • the peak rate of the base station is increased by 8 times.
  • the millimeter wave wireless communication equipment introduced by 5G can achieve a further increase in the peak rate by adopting a higher frequency band, a larger bandwidth and Massive MIMO technology.
  • passive OTA (air interface) testing methods are mostly used. Test methods such as far field, near field, and compressed field can be used to obtain the direction pattern, gain, front-to-back ratio and other indicators of the tested device.
  • the radio frequency unit test of the base station is mostly conducted by the direct connection of radio frequency cables. Due to the tighter connection between the radio frequency unit and the antenna of 5G equipment, traditional passive testing methods cannot be directly used in 5G base stations.
  • Test indicators include traditional antenna OTA indicators, such as: test transmission power, receiving sensitivity, gain, directivity, lobe width, front-to-back ratio, etc., as well as traditional radio frequency indicators tested by conducting means, such as EVM, ACLR, OBUE, etc.
  • the following test site schemes can be used for 5G base station equipment testing specified by 3GPP:
  • Direct far field The test distance between the tested base station equipment and the test probe exceeds 2D 2 / ⁇ , where D is the aperture size of the tested base station antenna, and ⁇ is the working wavelength of the tested base station. Because the 5G base station has a large volume and the far field calculated by 2D 2 / ⁇ is far away, its darkroom and test system are expensive to build.
  • the compact field In order to reduce the size of the darkroom, the compact field uses a high-precision reflective surface to achieve a quasi-plane wave effect through the reflection of electromagnetic waves by the reflective surface.
  • the compact field reflecting surface requires high deformation, the site requires constant temperature and humidity, the reflecting surface is expensive, and the maintenance requirements are high.
  • the embodiment of the present invention provides an antenna testing method, equipment and storage medium.
  • An antenna test equipment which includes:
  • One or more memories are One or more memories
  • One or more processors among them,
  • the one or more memories stores one or more instruction modules, which are configured to be executed by the one or more processors; wherein,
  • the one or more instruction modules include:
  • the probe array is used to set the amplitude and phase so that the transmitted signal is within the preset frequency band and the specified quiet zone forms a plane wave that meets the test requirements; and during the test, it receives and transmits signals;
  • the signal processing unit is used to perform power control, signal synthesis and signal filtering processing on the signal received by the probe array, and output the processing result to a test meter to test the radio frequency index of the antenna.
  • An antenna test method applied to a test system including the test equipment, tester, and antenna under test, the method includes:
  • the test system place the test equipment and the antenna under test in a microwave anechoic chamber, the probe array of the test equipment is placed vertically and perpendicular to the direction of the antenna under test; the phase center coordinates of the antenna under test are located in the center of the quiet zone ;
  • the tested antenna rotates or moves according to the preset method
  • the test equipment sends signals to the antenna under test through the probe array, and processes the signals received through the probe array;
  • the tester obtains the signal processed by the test equipment and measures the radio frequency index of the antenna.
  • FIG. 1 is a schematic diagram of an antenna testing system in which the tested antenna is a passive antenna in an embodiment of the application;
  • Fig. 2 is a schematic diagram of an antenna test system in which the tested antenna is an active antenna in an embodiment of the application.
  • FIG. 3 is a schematic diagram of the internal structure of the test device in an embodiment of the application.
  • FIG. 4 is a structural block diagram of an instruction module in a test device in an embodiment of the application.
  • Figure 5 is a schematic diagram of the amplitude distribution of a designated quiet zone in an embodiment of the application.
  • FIG. 6 is a schematic diagram of the phase distribution of a designated quiet zone in an embodiment of the application.
  • FIG. 7 is a structural block diagram of an instruction module in another test device in an embodiment of the application.
  • FIG. 8 is a schematic diagram of the structure of the probe array in an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of an integrated active probe in an embodiment of the application.
  • Figure 10 is a schematic diagram of static zone verification
  • FIG. 11 is a schematic diagram of an antenna test process in an embodiment of the application.
  • the embodiments of the present application provide an antenna test system. When the test system is deployed, the test system is separately deployed for the active antenna and the passive antenna under test.
  • Fig. 1 is a schematic diagram of an antenna testing system in which the tested antenna is a passive antenna in an embodiment of the application.
  • FIG. 2 is a schematic diagram of an antenna test system in which the tested antenna is an active antenna in an embodiment of the application.
  • the test system in Fig. 1 and Fig. 2 includes the same equipment, including test equipment, antenna under test and tester.
  • the test equipment and the antenna under test are placed in a microwave anechoic chamber, and the antenna under test is placed on the turntable, robotic arm and other equipment.
  • the turntable controller controls the turntable, robotic arm and other equipment to realize the rotation or movement of the antenna equipment.
  • the turntable controller and tester are placed outside the microwave darkroom;
  • the positional relationship between the test equipment placed in the microwave anechoic chamber and the antenna under test is:
  • the probe array of the test equipment is placed vertically and perpendicular to the incoming wave direction of the tested antenna; the phase center coordinate of the tested antenna is located in the center of the quiet zone.
  • the antenna under test in Fig. 1 is a passive antenna, that is, when the antenna under test is a passive antenna, the tester can be a vector network analyzer, a signal source spectrum analyzer, or a combination of a signal source and a power meter, etc.;
  • One end (B port) of the tester is connected to the tested antenna through a radio frequency line, the other end (C port) is connected to the test equipment through a radio frequency line, and the tested antenna is connected to the tester through port A.
  • the antenna under test in Fig. 2 is an active antenna.
  • the tester is a spectrum analyzer or a power meter.
  • the tester only needs to be connected to the test equipment through the RF cable.
  • a PC can also be connected to a tester to read the index information measured by the tester.
  • the tested index information can be: the pattern, gain, EIRP, EIS, etc. of the antenna under test.
  • a turntable controller can be set to control the movement and rotation of the turntable, robotic arm and other equipment, or not set, so that the turntable, robotic arm and other equipment move at a preset rate.
  • the turntable controller can be an operable device, or it can be operated and controlled by a PC.
  • test equipment in Figure 1 and Figure 2 is as follows:
  • FIG. 3 is a schematic diagram of the internal structure of the test equipment (or test device) in an embodiment of the application.
  • the test equipment includes a processor, a non-volatile storage medium, an internal memory, and a network interface connected by a system bus.
  • the non-volatile storage medium of the test equipment stores an operating system, a database, and an instruction module in the test device (that is, an instruction module for executing the antenna test method).
  • the database may include the amplitude and phase of the antenna test, the preset frequency range, the probe polarization direction, etc.
  • the command module in the antenna testing device is used to implement an antenna testing method suitable for testing equipment.
  • the server's processor is used to provide computing and control capabilities to support the operation of the entire server.
  • the internal memory of the test equipment provides an environment for the operation of the instruction module of the antenna detection device in the non-volatile storage medium.
  • the internal memory can store computer-readable instructions.
  • Make the processor execute an antenna test method.
  • the network interface of the test equipment is used to communicate with external terminals through the network connection, such as receiving and transmitting signals.
  • the test equipment can be implemented by independent test equipment or a test cluster composed of multiple test equipment. Those skilled in the art can understand that the structure shown in FIG. 3 is only a block diagram of part of the structure related to the solution of the present application, and does not constitute a limitation on the test equipment to which the solution of the present application is applied.
  • the specific server may include More or fewer components than shown in Figure 3, or some components are combined, or have a different component arrangement.
  • FIG. 4 is a structural block diagram of an instruction module in a test device 400 (for example, a test device) in an embodiment of the application.
  • the testing device 400 includes:
  • One or more memories for example, the non-volatile storage medium in FIG. 3;
  • One or more processors among them,
  • the one or more memories stores one or more instruction modules, which are configured to be executed by the one or more processors; wherein,
  • the one or more instruction modules include: a probe array 401 and a signal processing unit 402;
  • the probe array 401 is used to set the amplitude and phase so that the transmitted signal forms a plane wave that meets the test requirements within the preset frequency band and the designated quiet zone; and during the test, it receives and transmits signals;
  • the amplitude and phase that meet the test requirements can be calculated in advance, and the specific calculation method is available, but not limited to the following implementations:
  • N is the number of integrated active probes
  • M is the number of points uniformly sampled for the position of the quiet zone
  • x m is the position coordinates of the m-th point sampled in the quiet zone
  • x, y m is the quiet zone
  • the position coordinates y, x n of the sampled m-th point are the position coordinates of the n-th integrated active probe.
  • x, y n are the position coordinates of the n-th integrated active probe.
  • Place the probe array in a specific coordinate bring all the probe coordinates and quiet zone coordinates into the formula, get 36 ⁇ 36 equations with ⁇ , use the target software to optimize the equation set, get n ⁇ values, that is, amplitude and phase adjustment Unit value.
  • the amplitude and phase adjustment values of the integrated active probe can be calculated by formulas, as shown in Table 1 and Table 2 below; Table 1 is the content corresponding to the ⁇ amplitude value; Table 2 is the content corresponding to the ⁇ phase value.
  • the phase and amplitude determined for each probe array are respectively sent to the probe array in the form of a configuration file, and the corresponding amplitude and phase are set by the probe array.
  • FIG. 5 is a schematic diagram of the amplitude distribution of a designated quiet zone in an embodiment of this application.
  • FIG. 6 which is a schematic diagram of the phase distribution of a designated quiet zone in an embodiment of this application.
  • the center of the electric field distribution forms a square plane wave area.
  • Figure 5 shows that the amplitude fluctuation is less than 0.5dB
  • Figure 6 shows that the phase fluctuation is less than 5 degrees.
  • the signal processing unit 402 is used to perform power control, signal synthesis and signal filtering processing on the signal received by the probe array 401, and output the processing result to a test meter to test the radio frequency index of the antenna.
  • the testing device 700 includes:
  • One or more memories for example, the non-volatile storage medium in FIG. 3;
  • One or more processors among them,
  • the one or more memories stores one or more instruction modules, which are configured to be executed by the one or more processors; wherein,
  • the one or more instruction modules include: a probe array 701, a signal processing unit 702, and a control unit 703;
  • the probe array 701 is used to set the amplitude and phase so that the transmitted signal forms a plane wave that meets the test requirements within the preset frequency band and the designated quiet zone; and during the test, it receives and transmits signals;
  • the amplitude and phase that meet the test requirements can be calculated in advance, and the specific calculation method is available, but not limited to the following implementations:
  • N is the number of integrated active probes
  • M is the number of points uniformly sampled for the position of the quiet zone
  • x m is the position coordinates of the m-th point sampled in the quiet zone
  • x, y m is the quiet zone
  • the position coordinates y, x n of the sampled m-th point are the position coordinates of the n-th integrated active probe.
  • x, y n are the position coordinates of the n-th integrated active probe.
  • the phase and amplitude determined for each probe array are respectively sent to the probe array in the form of a configuration file through the control unit 703, and the corresponding amplitude and phase are set by the probe array.
  • the signal processing unit 702 is configured to perform power control, signal synthesis and signal filtering processing on the signal received by the probe array 701, and output the processing result to a test instrument to test the radio frequency index of the antenna;
  • the control unit 703 is used to receive instructions sent by the host computer, and control the working status of the probe array 701 and the signal processing unit 702 through electrical signals.
  • the probe array in Figure 7 and Figure 7 can be realized by the following structure:
  • the probe array includes: at least two integrated active probes and a probe position adjustment unit; K probes are taken as an example in FIG. 8 where K is an integer greater than 1.
  • the integrated active probe has a one-to-one correspondence with the probe position adjustment unit, which means that each integrated active probe corresponds to one and is the only probe position adjustment unit;
  • Each probe position adjustment unit is used to install and adjust the position and angle of the corresponding integrated active probe.
  • the number and types of integrated active probes in the probe array are not limited, as long as the realized probe array can meet the test requirements.
  • the probe position adjustment unit is fixed in the test equipment and can adjust the position and angle of the integrated active probe installed on it.
  • the position adjustment here refers to up, down, left, and right adjustments, and the angle adjustment is adjusted for the orientation of the probe.
  • the probe array in the test equipment in this embodiment includes a probe position adjustment unit, which can appropriately adjust the corresponding integrated active probes so that all integrated active probes can form a probe array that can meet the test conditions.
  • Each probe position adjustment unit is connected with the integrated active probe through hardware, such as screws, etc.
  • the probe position adjustment unit can mechanically adjust the position and angle of the corresponding integrated active probe.
  • the integrated active probe in Figure 8 can be realized by the following structure:
  • FIG. 9 is a schematic structural diagram of an integrated active probe in an embodiment of the application.
  • the integrated active probe includes: an active probe, an amplitude-phase module and a polarization module;
  • the active probe is used to receive and transmit signals
  • the polarization module is used to set the polarization of the active probe
  • the amplitude and phase module is used to set the amplitude and phase of the signal.
  • the amplitude and phase module is further configured to update the set amplitude and phase when the updated amplitude and phase are received.
  • the control unit when controlling the probe array, specifically controls the position adjustment unit, amplitude and phase unit and polarization unit in the probe array through control information;
  • the amplitude and phase adjustment unit is integrated into the probe to improve the efficiency of generating the amplitude and phase consistency of the quiet zone.
  • the control unit controls the parameter setting, position, angle and other changes of each module, which can greatly Meet the requirements of various needs of testing, can reduce the manufacturing cost of the equipment, and realize the miniaturization and light weight of the measurement equipment.
  • an antenna testing method is also provided in the embodiment of the present application. Used in the test system shown in Figure 1 and Figure 2.
  • test equipment Before testing, first deploy a test system, place the test equipment and the antenna under test in a microwave anechoic chamber, the probe array of the test equipment is placed vertically and perpendicular to the direction of the antenna under test; the phase of the antenna under test The center coordinates are at the center of the quiet zone.
  • the test system in order to further verify whether the amplitude and phase of the device meet the test requirements; after the test system is deployed and before the test, it further includes:
  • the device under test is checked again by adjusting the amplitude and phase of the probe array until it is within the preset frequency range and the specified A plane wave meeting the test requirements is formed in the quiet zone.
  • the verification of the designated quiet zone during the implementation of this application includes:
  • Figure 10 is a schematic diagram of quiet zone verification. As shown in Figure 10, if it is determined that a plane wave that meets the test requirements is formed within the preset frequency band and the designated quiet zone, it is determined that the currently set amplitude and phase are appropriate.
  • FIG. 11 is a schematic diagram of an antenna test process in an embodiment of the application. The specific steps are:
  • Step 1101 During the test, the tested antenna rotates or moves in a preset manner, and transmits and receives signals.
  • the rotation or movement of the tested antenna according to the preset mode can be a preset movement or rotation mode, or the rotation and movement of the tested antenna can be controlled by a turntable controller in a preset mode outside the microwave anechoic chamber.
  • Step 1102 The test equipment sends a signal to the antenna under test through the probe array, and processes the signal received through the probe array.
  • the signal transmitted by the control signal is transmitted through the probe array, and the transmitted signal meets the amplitude and phase of the probe array, and the polarization setting, so that the transmitted signal forms a plane wave in the quiet zone that meets the test requirements.
  • the test equipment receives the signal through the probe array. After the signal passes through the probe array, the amplitude, phase, and polarization settings of the probe array are satisfied. When the signal reaches the signal processing unit, the signal also forms a plane wave that meets the preset test conditions.
  • Step 1103 The tester obtains the signal processed by the test equipment and measures the radio frequency index of the antenna under test.
  • the tester is a vector network analyzer, a signal source spectrum analyzer, or a combination of a signal source and a power meter;
  • the tester is also connected to the antenna under test.
  • the tester is a spectrum analyzer or a power meter.
  • the radio frequency index here is the index such as direction pattern, EIRP, EIS, ACLR, EVM.
  • the test needs need to be changed, only the angle, position, amplitude, phase, and polarization of the probe can be changed by controlling the probe array through the control unit, without re-architecting and generating test equipment, which can save test costs.
  • this application can adjust the amplitude, phase, and polarization of the probe array to meet various test requirements without reorganizing the test equipment, and can generate in the quiet zone to meet the test requirements by adjusting the amplitude and phase.
  • the flat surface in turn, can achieve far-field and tight-field test capabilities at a shorter distance and lower cost.
  • the processes in the above-mentioned embodiment methods can be implemented by instructing relevant hardware through a computer program, which can be stored in a non-volatile computer readable storage medium.
  • the program When the program is executed, it may include the processes of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), etc.
  • the embodiment of the present invention also provides a non-volatile storage medium having computer-readable instructions stored thereon to enable at least one processor to execute the above-mentioned antenna test method.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种天线测试方法、设备和存储介质,该测试设备包括:探头阵列,用于设置幅度和相位使发射的信号在预设频带范围内,以及指定的静区内形成符合测试要求的平面波;并在测试时,接收和发射信号;信号处理单元,用于将所述探头阵列接收的信号进行功率控制、信号合成和信号滤波处理,并将处理结果输出至测试仪表以测试天线的射频指标。该方案能够在较近的距离和较低的成本下,实现远场和紧缩场的测试能力。

Description

天线测试方法、设备和存储介质
本申请要求于2019年05月05日提交中国专利局、申请号为201910366770.0、发明名称为“一种天线测试方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及无线通信技术领域,特别是涉及一种天线测试方法、设备和存储介质。
背景
新一代5G(第五代)移动技术需要在有限的频段内实现更高的频谱效率,以提升小区容量和用户体验速率。3GPP(第三代伙伴计划)讨论并引入了Massive(大规模)MIMO(多输入多输出)技术,6GHz以下频段基站通过采用64通道,128或192阵子,同时并行传输高达16流的独立数据,相比传统的第四代移动通信技术,基站的峰值速率提升8倍。而5G引入的毫米波无线通信设备,通过采用更高频段、更大带宽与Massive MIMO技术,可实现峰值速率的进一步抬升。
在4G及之前的基站的天线测试多采用无源OTA(空口)测试方式,可以通过远场、近场、紧缩场等测试方法,得到被测件的方向图、增益、前后比等指标。基站的射频单元测试,多采用射频线缆直接连接的传导方式进行。由于5G设备射频单元与天线的连接更紧密,所以传统无源测试方式无法直接用于5G基站。
由于上述原因,Massive MIMO的射频测试采用OTA方式已逐渐成为共识。测试指标包括传统天线OTA指标,如:测试发射功率、接收灵敏度、增益、方向性、波瓣宽度、前后比等,还包括传统采用传导手段测试的射频指标,如EVM、ACLR、OBUE等。3GPP规定的5G基站 设备测试可采用以下测试场地方案:
直接远场:被测基站设备与测试探头的测试距离超过2D 2/λ,其中D为被测基站天线的口面尺寸,λ为被测基站的工作波长。由于5G基站体积较大,通过2D 2/λ计算的远场较远,所以其暗室和测试系统造价昂贵。
紧缩场:为了减少暗室尺寸,紧缩场使用高精度反射面,通过反射面的对电磁波的反射实现准平面波效果。紧缩场反射面对形变要求高,场地要求恒温恒湿,反射面价格昂贵,维护要求高。
技术内容
本发明实施例提供一种天线测试方法、设备和存储介质。
一种天线测试设备,该测试设备包括:
一个或一个以上存储器;
一个或一个以上处理器;其中,
所述一个或一个以上存储器存储有一个或者一个以上指令模块,经配置由所述一个或者一个以上处理器执行;其中,
所述一个或者一个以上指令模块包括:
探头阵列,用于设置幅度和相位使发射的信号在预设频带范围内,以及指定的静区内形成符合测试要求的平面波;并在测试时,接收和发射信号;
信号处理单元,用于将所述探头阵列接收的信号进行功率控制、信号合成和信号滤波处理,并将处理结果输出值测试仪表以测试天线的射频指标。
一种天线测试方法,应用于包括所述测试设备、测试仪和被测天线的测试系统中,所述方法包括:
部署测试系统,将所述测试设备和被测天线置于微波暗室中,所述测试设备的探头阵列垂直放置,且与被测天线来波方向垂直;被测天线的相位中心坐标位于静区中心;
进行测试时,被测天线按照预设方式旋转或移动;
测试设备通过探头阵列向被测天线发送信号,并处理通过探头阵列接收到的信号;
测试仪获取测试设备处理后的信号,测量天线的射频指标。
一种非易失性存储介质,其上存储有计算机可读指令,可以使至少一个处理器执行如所述天线测试的方法。
附图简要说明
图1为本申请实施例中被测天线为无源天线的天线测试系统示意图;
图2为本申请实施例中被测天线为有源天线的天线测试系统示意图。
图3为本申请实施例中测试设备的内部结构示意图。
图4为本申请实施例中一测试装置中的指令模块的结构框图;
图5为本申请实施例中一指定静区幅度分布示意图;
图6为本申请实施例中一指定静区相位分布示意图;
图7为本申请实施例中另一测试装置中的指令模块的结构框图;
图8为本申请实施例中探头阵列的结构示意图;
图9为本申请实施例中一体化有源探头的结构示意图;
图10为静区校验示意图;
图11为本申请实施例中天线测试流程示意图。
实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本申请实施例中提供一种天线测试系统,在部署测试系统时,针对被测天线是有源天线和无源天线分别部署测试系统。
参见图1,图1为本申请实施例中被测天线为无源天线的天线测试系统示意图。
参见图2,图2为本申请实施例中被测天线为有源天线的天线测试系统示意图。
图1和图2中的测试系统包括的设备是相同的,均包括测设设备、被测天线和测试仪。测试设备和被测天线置于微波暗室,被测天线置于转台、机械臂等设备上,通过转台控制器控制转台、机械臂等设备来实现天线设备的旋转或移动。
转台控制器和测试仪置于微波暗室之外;
置于微波暗室的测试设备和被测天线之间的位置关系为:
测试设备的探头阵列垂直放置,且与被测天线来波方向垂直;被测天线的相位中心坐标位于静区中心。
图1中的被测天线为无源天线,即当被测天线为无源天线时,所述测试仪可以为矢量网络分析仪、信号源频谱仪,或信号源与功率计的组合等;
所述测试仪的一端(B端口)通过射频线连接被测天线,另一端(C端口)通过射频线连接测试设备,被测天线通过端口A连接测试仪。
图2中的被测天线为有源天线,当被测天线为有源天线时,所述 测试仪为频谱分析仪或功率计。
测试仪仅通过射频线与测试设备连接即可。
本申请实施例具体实现时,还可以通过一台PC连接测试仪,来读取测试仪测量的指标信息,测试的指标信息可以为:被测天线的方向图、增益、EIRP、EIS等。
还可以将被测天线安装在转台、机械臂等设备上,以便在微波暗室的被测天线能够转动和移动。
在微波暗室外,可以设置转台控制器,来控制转台、机械臂等设备的移动和转动,也可以不设置,使转台、机械臂等设备按照预设速率移动。
转台控制器可以是可操作的设备,也可以通过一台PC操作、控制。
其中,图1和图2中的测试设备的具体实现如下:
图3为本申请实施例中测试设备(或测试装置)的内部结构示意图。如图3所示,该测试设备包括通过系统总线连接的处理器、非易失性存储介质、内存储器和网络接口。其中,该测试设备的非易失性存储介质存储有操作系统、数据库和测试装置中的指令模块(即执行天线测试方法的指令模块)。数据库可包括天线测试的幅度、相位,预设频带范围、探头极化方向等。该天线测试装置中的指令模块用于实现适用于测试设备的一种天线测试方法。该服务器的处理器用于提供计算和控制能力,支撑整个服务器的运行。该测试设备的内存储器为非易失性存储介质中的天线检测装置的指令模块的运行提供环境,该内存储器中可存储有计算机可读指令,该计算机可读指令被处理器执行时,可使得处理器执行一种天线测试方法。该测试设备的网络接口用于据以与外部的终端通过网络连接通信,比如接收和发射信号 等。测试设备可以用独立的测试设备或者是多个测试设备组成的测试集群来实现。本领域技术人员可以理解,图3中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的测试设备的限定,具体的服务器可以包括比图3中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
参见图4,图4为本申请实施例中一测试装置400(例如,测试设备)中的指令模块的结构框图。该测试装置400包括:
一个或一个以上存储器(例如,图3中的非易失性存储介质);
一个或一个以上处理器;其中,
所述一个或一个以上存储器存储有一个或者一个以上指令模块,经配置由所述一个或者一个以上处理器执行;其中,
参照图4,所述一个或者一个以上指令模块包括:探头阵列401和信号处理单元402;
探头阵列401,用于设置幅度和相位使发射的信号在预设频带范围内,以及指定的静区内形成符合测试要求的平面波;并在测试时,接收和发射信号;
可以预先计算出符合测试要求的幅度和相位,具体计算方法可以,但不限于如下实现:
使用如下公式进行优化:
Figure PCTCN2019095088-appb-000001
其中,N为一体化有源探头的个数,M为针对静区位置均匀抽样的点的个数,x m为静区中抽样的第m个点的位置坐标x、y m为静区中抽样的第m个点的位置坐标y、x n为第n个一体化有源探头的位置坐标x、y n为第n个一体化有源探头的位置坐标y,z=d为探头与被测 天线之间的距离,其中
Figure PCTCN2019095088-appb-000002
设目标电场E为幅度相同相位一致的数值,将所有探头和优化区域坐标带入公式,得到带有ω的M×N个方程,使用目标软件优化该方程组,得到N个ω值,即幅度相位对应的值。
假设被测天线的频点为3.5GHz,坐标设目标电场E为幅度相同相位相等的数值等于1,M=36,N=36。探头阵列摆放至特定坐标内,将所有探头坐标和静区坐标带入公式,得到带有ω的36×36个方程,使用目标软件优化该方程组,得到n个ω值,即幅度相位调整单元数值。可由公式计算得到一体化有源探头的幅度和相位调整值,如下表1和表2;表1为ω幅度数值对应的内容;表2为ω相位数值对应的内容。
0.52 1.03 1.25 1.23 1.08 0.51
1.11 3.00 4.21 4.45 3.08 1.00
1.14 4.45 6.92 6.80 4.34 1.16
1.25 4.45 6.41 6.34 4.16 1.13
1.08 2.87 4.18 4.39 3.04 1.01
0.52 1.03 1.25 1.23 1.08 0.51
表1
-1.11 -1.01 -1.40 -1.44 -1.01 -1.12
-1.03 -0.64 -0.99 -1.00 -0.67 -1.04
-1.39 -1.02 -1.40 -1.37 -1.00 -1.43
-1.44 -1.00 -1.38 -1.40 -0.99 -1.43
-1.03 -0.66 -0.99 -1.00 -0.64 -1.01
-1.13 -1.02 -1.43 -1.43 -1.00 -1.14
表2
将针对每个探头阵列确定的相位和幅度分别以配置文件的方式发送给探头阵列,由探头阵列设置对应的幅度和相位。
探头阵列设置幅度和相位后,由理论可以推导出在该情况下被测天线区域内形成的静区的幅度和相位的分布图。参见图5,图5为本申请实施例中一指定静区幅度分布示意图。参见图6,图6为本申请实施例中一指定静区相位分布示意图。如图5和图6所示,电场分布的中心位置形成了正方形的平面波区域,图5中显示幅度波动小于0.5dB,图6中显示相位波动小于5度。
信号处理单元402,用于将探头阵列401接收的信号进行功率控制、信号合成和信号滤波处理,并将处理结果输出值测试仪表以测试天线的射频指标。
参见图7,图7为本申请实施例中另一测试装置700(例如,测试设备)中的指令模块的结构框图。该测试装置700包括:
一个或一个以上存储器(例如,图3中的非易失性存储介质);
一个或一个以上处理器;其中,
所述一个或一个以上存储器存储有一个或者一个以上指令模块,经配置由所述一个或者一个以上处理器执行;其中,
参照图7,所述一个或者一个以上指令模块包括:探头阵列701、信号处理单元702和控制单元703;
探头阵列701,用于设置幅度和相位使发射的信号在预设频带范围内,以及指定的静区内形成符合测试要求的平面波;并在测试时,接收和发射信号;
可以预先计算出符合测试要求的幅度和相位,具体计算方法可以,但不限于如下实现:
使用如下公式进行优化:
Figure PCTCN2019095088-appb-000003
其中,N为一体化有源探头的个数,M为针对静区位置均匀抽样的点的个数,x m为静区中抽样的第m个点的位置坐标x、y m为静区中抽样的第m个点的位置坐标y、x n为第n个一体化有源探头的位置坐标x、y n为第n个一体化有源探头的位置坐标y,z=d为探头与被测天线之间的距离,其中
Figure PCTCN2019095088-appb-000004
设目标电场E为幅度相同相位一致的数值,将所有探头和优化区域坐标带入公式,得到带有ω的M×N个方程,使用目标软件优化该方程组,得到N个ω值,即幅度相位对应的值。
将针对每个探头阵列确定的相位和幅度分别通过控制单元703以配置文件的方式发送给探头阵列,由探头阵列设置对应的幅度和相位。
信号处理单元702,用于将探头阵列701接收的信号进行功率控制、信号合成和信号滤波处理,并将处理结果输出值测试仪表以测试天线的射频指标;
控制单元703,用于接收上位机发送的指令,通过电信号控制探 头阵列701和信号处理单元702的工作状态。
针对图7和图7中的探头阵列可以通过如下结构实现:
参见图8,图8为本申请实施例中探头阵列的结构示意图。该探头阵列包括:至少两个一体化有源探头和探头位置调整单元;图8中以K个探头为例K为大于1的整数。
一体化有源探头与探头位置调整单元一一对应,也就是说每个一体化有源探头对应一个,也是唯一一个探头位置调整单元;
每个探头位置调整单元,用于安装并调整对应的一体化有源探头的位置和角度。
探头阵列中的一体化有源探头的个数和类型不进行限制,只要实现的探头阵列能够满足测试需求即可。
探头位置调整单元在测试设备中位置固定,且可调节安装在其上的一体化有源探头的位置和角度,这里的位置调整指上下左右调整,角度调整针对探头的指向进行调整。
该实施例中测试设备中的探头阵列包括探头位置调整单元,能够适当调整对应一体化有源探头使所有一体化有源探头组成的能够满足测试条件的探头阵列。
每个探头位置调整单元与一体化有源探头通过硬件连接,如螺钉等,探头位置调整单元可以机械调整对应一体化有源探头的位置和角度。
针对图8中的一体化有源探头可以通过如下结构实现:
参见图9,图9为本申请实施例中一体化有源探头的结构示意图。
所述一体化有源探头包括:有源探头、幅相模块和极化模块;
所述有源探头,用于接收和发射信号;
所述极化模块,用于设置所述有源探头的极化;
所述幅相模块,用于设置信号的幅度和相位。
优选地,
所述幅相模块,进一步用于接收到更新后的幅度和相位时,更新设置的幅度和相位。
控制单元,控制探头阵列时,具体通过控制信息控制探头阵列中的位置调整单元、幅相单元和极化单元;
控制探头阵列中的位置调整单元调整有源探头的位置和角度,控制幅相单元设置、更新幅度和相位,控制极化单元设置探头的极化为单极化还是双极化。
本申请实施例中幅相调整单元整合到探头上提高生成静区的幅度和相位一致性的效率,本申请实施例中通过控制单元控制各模块的参数设置、位置、角度等变化,能够极大满足各种需求的测试的要求,能够压缩设备的制造成本,实现测量设备的小型化和轻量化。
基于同样的发明构思,本申请实施例中还提供一种天线测试方法。应用于图1和图2所示的测试系统中。
在进行测试之前,先部署测试系统,将所述测试设备和被测天线置于微波暗室中,所述测试设备的探头阵列垂直放置,且与被测天线来波方向垂直;被测天线的相位中心坐标位于静区中心。
本申请实施例中为了进一步验证设备的幅度和相位是否满足测试需求;在部署测试系统之后,进行测试之前,进一步包括:
对指定的静区进行校验;
若在预设频带范围内,以及指定的静区内形成的波不符合测试要求的平面波,则被测设备通过探头阵列调整幅度和相位再次进行校验,直至在预设频带范围内,以及指定的静区内形成符合测试要求的平面波。
本申请实施中对指定的静区进行校验,包括:
使用二维平面扫描架对指定静区对应的区域进行扫描,获取静区内的幅度和相位;
当静区内的幅度相同,且相位一致时,确定在预设频带范围内,以及指定的静区内形成符合测试要求的平面波;否则,确定在预设频带范围内,以及指定的静区内未形成符合测试要求的平面波。
参见图10,图10为静区校验示意图。如图10中,确定在预设频带范围内,以及指定的静区内形成符合测试要求的平面波,则确定当前设置的幅度和相位是合适的。
参见图11,图11为本申请实施例中天线测试流程示意图。具体步骤为:
步骤1101,进行测试时,被测天线按照预设方式旋转或移动,并发射和接收信号。
这里的被测天线按照预设方式旋转或移动可以是预先设置的移动或旋转方式,也可以是在微波暗室外通过转台控制器按照预设方式控制被测天线的旋转和移动。
步骤1102,测试设备通过探头阵列向被测天线发送信号,并处理通过探头阵列接收到的信号。
控制信号发射的信号通过探头阵列发射,发射的信号满足探头阵列的幅度和相位,以及极化的设置,使得发射的信号在静区内形成符合测试要求的平面波。
测试设备通过探头阵列接收到信号,信号经过探头阵列后,满足探头阵列的幅度和相位,以及极化的设置,信号在到达信号处理单元处使得信号也形成满足预设测试条件的平面波。
步骤1103,测试仪获取测试设备处理后的信号,测量被测天线 的射频指标。
当被测天线为无源天线时,所述测试仪为矢量网络分析仪、信号源频谱仪,或信号源与功率计的组合;
测试仪还与被测天线连接。
当被测天线为有源天线时,所述测试仪为频谱分析仪或功率计。
这里的射频指标为方向图、EIRP、EIS、ACLR、EVM等指标。
本申请实施例中如果需要改变测试需要时,只需通过控制单元控制探头阵列改变探头的角度、位置、幅度、相位和极化即可,不需要重新架构、生成测试设备,能够节省测试成本。
综上所述,本申请通过探头阵列的幅度、相位、极化的可调,能够不重组测试设备的情况下,满足多种测试需要,并且通过调整幅度和相位能够在静区生成满足测试要求的平面,进而可以在较近的距离和较低的成本下,实现远场和紧缩场的测试能力。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,该程序可存储于一非易失性计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,该存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)等。
本发明实施例还提供一种非易失性存储介质,其上存储有计算机可读指令,可以使至少一个处理器执行上述天线测试的方法。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详 细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种天线测试设备,其特征在于,该测试设备包括:
    一个或一个以上存储器;
    一个或一个以上处理器;其中,
    所述一个或一个以上存储器存储有一个或者一个以上指令模块,经配置由所述一个或者一个以上处理器执行;其中,
    所述一个或者一个以上指令模块包括:
    探头阵列,用于设置幅度和相位使发射的信号在预设频带范围内,以及指定的静区内形成符合测试要求的平面波;并在测试时,接收和发射信号;
    信号处理单元,用于将所述探头阵列接收的信号进行功率控制、信号合成和信号滤波处理,并将处理结果输出值测试仪表以测试天线的射频指标。
  2. 根据权利要求1所述的测试设备,其特征在于,所述测试设备进一步包括:
    控制单元,用于接收上位机发送的指令,通过电信号控制所述探头阵列和所述信号处理单元的工作状态。
  3. 根据权利要求1所述的测试设备,其特征在于,
    所述探头阵列至少包括两个一体化有源探头和探头位置调整单元,其中,一体化有源探头与探头位置调整单元一一对应;
    所述一体化有源探头,用于设置幅度和相位;
    所述探头位置调整单元,用于安装并调整对应的一体化有源阵列的位置和角度。
  4. 根据权利要求3所述的测试设备,其特征在于,所述一体化有源探头包括:有源探头、幅相模块和极化模块;
    所述有源探头,用于接收和发射信号;
    所述幅相模块,用于设置信号的幅度和相位,有信号发射和接收时,按照设置的幅度和相位调整对应的信号;
    所述极化模块,用于设置有源探头的极化。
  5. 根据权利要求4所述的测试设备,其特征在于,
    所述幅相模块,进一步用于接收到所述控制单元发送的更新后的幅度和相位时,更新设置的幅度和相位;
    所述极化模块,用于接收到所述控制单元发送的调整探头的极化的指令时,根据指令内容调整极化。
  6. 一种天线测试方法,其特征在于,应用于包括权利要求1-5所述的测试设备、测试仪和被测天线的测试系统中,所述方法包括:
    部署测试系统,将所述测试设备和被测天线置于微波暗室中,所述测试设备的探头阵列垂直放置,且与被测天线来波方向垂直;被测天线的相位中心坐标位于静区中心;
    进行测试时,被测天线按照预设方式旋转或移动;
    测试设备通过探头阵列向被测天线发送信号,并处理通过探头阵列接收到的信号;
    测试仪获取测试设备处理后的信号,测量天线的射频指标。
  7. 根据权利要求6所述的方法,其特征在于,所述部署测试系统之后,所述进行测试之前,所述方法进一步包括:
    对指定的静区进行校验;
    若在预设频带范围内,以及指定的静区内形成的波不符合测试要求的平面波,则被测设备通过探头阵列调整幅度和相位再次进行校验,直至在预设频带范围内,以及指定的静区内形成符合测试要求的平面波。
  8. 根据权利要求7所述的方法,其特征在于,所述对指定的静区进行校验,包括:
    使用二维平面扫描架对指定静区对应的区域进行扫描,获取静区内的幅度和相位;
    当静区内的幅度相同,且相位一致时,确定在预设频带范围内,以及指定的静区内形成符合测试要求的平面波;否则,确定在预设频带范围内,以及指定的静区内未形成符合测试要求的平面波。
  9. 根据权利要求6-8任一项所述的方法,其特征在于,
    当被测天线为无源天线时,所述测试仪为矢量网络分析仪、信号源频谱仪,或信号源与功率计的组合;
    所述测试仪还与被测天线连接。
  10. 根据权利要求6-8任一项所述的方法,其特征在于,
    当被测天线为有源天线时,所述测试仪为频谱分析仪或功率计。
  11. 一种非易失性存储介质,其上存储有计算机可读指令,可以使至少一个处理器执行如权利要求6-10任一项所述的方法。
PCT/CN2019/095088 2019-05-05 2019-07-08 天线测试方法、设备和存储介质 WO2020224044A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910366770.0A CN110133386A (zh) 2019-05-05 2019-05-05 一种天线测试方法和设备
CN201910366770.0 2019-05-05

Publications (1)

Publication Number Publication Date
WO2020224044A1 true WO2020224044A1 (zh) 2020-11-12

Family

ID=67576114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095088 WO2020224044A1 (zh) 2019-05-05 2019-07-08 天线测试方法、设备和存储介质

Country Status (2)

Country Link
CN (1) CN110133386A (zh)
WO (1) WO2020224044A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032682A (ja) * 2019-08-23 2021-03-01 アンリツ株式会社 温度試験装置及び温度試験方法
CN110988501B (zh) * 2019-12-09 2021-02-09 北京航空航天大学 一种基于可移动阵列天线的应用于基站天线产线的平面波生成器测量系统
CN111413553A (zh) * 2020-04-02 2020-07-14 南京捷希科技有限公司 一种天线测试系统及测试方法
CN111610377A (zh) * 2020-04-27 2020-09-01 宁波锐眼电子科技有限公司 天线测试系统、方法、毫米波雷达和计算机可读存储介质
CN113708852B (zh) * 2020-05-21 2022-11-11 华为技术有限公司 一种天线的在位检测方法和装置
CN111965439B (zh) * 2020-06-24 2023-08-01 中国电子科技集团公司第十四研究所 基于机械臂的天线测试系统、方法及装置
CN112887039A (zh) * 2020-09-03 2021-06-01 上海无委无线电检测实验室有限公司 一种5g基站射频一致性测试方法
GB2615500A (en) * 2020-10-22 2023-08-09 Keysight Technologies Inc System and method for performng measurements of antenna under test offset from center of quiet zone
US11251840B1 (en) 2020-10-22 2022-02-15 Keysight Technologies, Inc. System and method for performing measurements of antenna under test offset from center of quiet zone
CN112363000B (zh) * 2020-11-18 2023-04-07 扬州船用电子仪器研究所(中国船舶重工集团公司第七二三研究所) 一种机载电子对抗设备的自动测试装置及方法
CN112526228A (zh) * 2020-11-27 2021-03-19 上海移远通信技术股份有限公司 天线测试方法及装置
CN114726456B (zh) * 2021-01-05 2024-05-14 中国移动通信有限公司研究院 有源天线测试方法、装置、终端、系统、设备和存储介质
CN113848394A (zh) * 2021-09-23 2021-12-28 南京捷希科技有限公司 一种紧缩场空口测试设备
CN114325135B (zh) * 2022-03-11 2022-05-13 南京隼眼电子科技有限公司 天线测量装置及雷达测试系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246744A (ja) * 1997-03-05 1998-09-14 Kokusai Electric Co Ltd 電波暗室の構造
US20120058729A1 (en) * 2010-09-02 2012-03-08 Chang Donald C D Apparatus and Method of Generating Quiet Zone by Cancellation-Through-Injection Techniques
CN106771585A (zh) * 2016-11-21 2017-05-31 南京长峰航天电子科技有限公司 一种微波暗室静区反射电平的数据处理方法
CN108631886A (zh) * 2017-03-17 2018-10-09 罗德施瓦兹两合股份有限公司 具有数字静区的测量系统和方法
CN109462447A (zh) * 2019-01-28 2019-03-12 南京捷希科技有限公司 通信基站ota射频性能测试方法及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443209B (zh) * 2016-12-03 2023-09-29 刘科宏 有源基站天线三维空间远场辐射特性的测试系统和方法
US10033473B1 (en) * 2017-01-23 2018-07-24 Keysight Technologies, Inc. Systems and methods for performing multiple input, multiple output (MIMO) over-the-air testing
CN108966264B (zh) * 2017-05-22 2023-05-02 是德科技股份有限公司 对大规模多入多出无线系统执行空中测试的系统和方法
CN108896831B (zh) * 2018-05-11 2021-07-20 武汉虹信科技发展有限责任公司 一种结合室内近场和远场对有源天线进行ota测量的方法
CN108508393A (zh) * 2018-07-03 2018-09-07 上海益麦电磁技术有限公司 一种多探头天线测试系统探头校准系统和校准方法
CN109541330B (zh) * 2018-11-12 2021-01-12 北京航空航天大学 一种平面波模拟器的阵列天线通道校准系统
CN109547128A (zh) * 2019-01-15 2019-03-29 南京捷希科技有限公司 Massive MIMO端到端性能的快速测试方法
CN109889239B (zh) * 2019-03-27 2020-12-08 北京邮电大学 一种用于mimo ota测试的双暗室结构及测试方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246744A (ja) * 1997-03-05 1998-09-14 Kokusai Electric Co Ltd 電波暗室の構造
US20120058729A1 (en) * 2010-09-02 2012-03-08 Chang Donald C D Apparatus and Method of Generating Quiet Zone by Cancellation-Through-Injection Techniques
CN106771585A (zh) * 2016-11-21 2017-05-31 南京长峰航天电子科技有限公司 一种微波暗室静区反射电平的数据处理方法
CN108631886A (zh) * 2017-03-17 2018-10-09 罗德施瓦兹两合股份有限公司 具有数字静区的测量系统和方法
CN109462447A (zh) * 2019-01-28 2019-03-12 南京捷希科技有限公司 通信基站ota射频性能测试方法及系统

Also Published As

Publication number Publication date
CN110133386A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
WO2020224044A1 (zh) 天线测试方法、设备和存储介质
CN108966264B (zh) 对大规模多入多出无线系统执行空中测试的系统和方法
US10033473B1 (en) Systems and methods for performing multiple input, multiple output (MIMO) over-the-air testing
CN112154331B (zh) 具有集成天线的毫米波集成电路的空中测试
WO2019214570A1 (zh) 一种阵列天线总辐射功率的测量方法、装置和系统
JP4438905B2 (ja) 放射効率測定装置および放射効率測定方法
US8502546B2 (en) Multichannel absorberless near field measurement system
JP7309847B2 (ja) アンテナアレイのリモート無線制御用の近接場アンテナ
US20190285678A1 (en) Test arrangement and test method
US20070285322A1 (en) Multichannel absorberless near field measurement system
US10393786B2 (en) Test system and method for over the air (OTA) measurements based on randomly adjusted measurement points
WO2020248917A1 (zh) 阵列天线总辐射功率测量方法、装置、系统、终端以及计算机存储介质
CN209821290U (zh) 一种基于3d探头阵列的紧缩场天线测试装置
WO2009046516A1 (en) Multichannel absorberless near field measurement system
CN110514907B (zh) 无线通信装置空中传输量测系统
WO2024045649A1 (zh) 一种有源阵列天线方向图的近场空口快速测量系统及方法
CN112034264A (zh) 一种多探头紧缩场天线测试系统和生成方法
CN117590092A (zh) 天线辐射效率测量方法、系统及电子设备
WO2023103798A1 (zh) 功率测量方法及其装置、存储介质、程序产品
WO2023016571A1 (zh) 射频指标测量方法、装置、系统、电子设备及存储介质
CN217820801U (zh) 一种平面波生成装置及平面波生成装置测试系统
Tang et al. Efficient Angle Calibration Method for Peak Beam Measurements in Transmitarray-Based Compact Antenna Test Range
Sapuan et al. A fast and accurate analytical method based on input impedance for antenna directivity [Antenna Applications Corner]
JP7382430B2 (ja) アンテナ装置及び性能試験方法
CN115753837B (zh) 一种平面波生成器及平面波生成器测试系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927683

Country of ref document: EP

Kind code of ref document: A1