WO2023103798A1 - 功率测量方法及其装置、存储介质、程序产品 - Google Patents

功率测量方法及其装置、存储介质、程序产品 Download PDF

Info

Publication number
WO2023103798A1
WO2023103798A1 PCT/CN2022/134074 CN2022134074W WO2023103798A1 WO 2023103798 A1 WO2023103798 A1 WO 2023103798A1 CN 2022134074 W CN2022134074 W CN 2022134074W WO 2023103798 A1 WO2023103798 A1 WO 2023103798A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
measurement
signal
base station
target
Prior art date
Application number
PCT/CN2022/134074
Other languages
English (en)
French (fr)
Inventor
陈江涛
周栋
朱龙明
仲丽媛
田岛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020247013562A priority Critical patent/KR20240065300A/ko
Publication of WO2023103798A1 publication Critical patent/WO2023103798A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/102Power radiated at antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of communications, in particular to a power measurement method and its device, storage medium, and program product.
  • 5G mobile communication technology
  • RRU Radio Remote Unit
  • AAS Active Antenna System
  • the radio frequency index of the AAS base station must be measured through the air interface (Over the Air, OTA). Power, spurious, adjacent channel leakage ratio (Adjacent Channel Leakage Radio, ACLR) and other radio frequency indicators basis.
  • the TRP measurement method stipulated in the current standard needs to be carried out in a dark room, and there is no clear implementation method for how to measure TRP in the field environment.
  • Embodiments of the present application provide a power measurement method and its device, storage medium, and program product, capable of measuring TRP in an external field environment.
  • the embodiment of the present application provides a power measurement method, which is applied to a power measurement device, and the power measurement method includes: acquiring the signal power and signal wavelength of the measurement signal sent by the base station to be measured; according to the signal power and The signal wavelength is calculated to obtain the equivalent isotropic radiation power of the measurement signal; according to the equivalent isotropic radiation power of the measurement signal, the preset target direction parameter and the preset power scaling factor, the calculation is to obtain the The total radiation power of the carrier signal of the base station to be measured; wherein, the target direction parameter is the directivity parameter of the base station to be measured pointing to the power measuring device, and the power scaling factor is used to calculate the measured signal and the measured signal A scaling factor for the power ratio of the carrier signal.
  • the embodiment of the present application also provides a power measurement method, including: acquiring measurement signals sent by the base station to be tested to multiple sampling positions, wherein the sampling positions are measured according to the target measurement determined by the target Rayleigh resolution of the space; calculate the equivalent isotropic radiation power of each of the measurement signals; calculate the total radiation power of the base station to be measured according to the equivalent isotropic radiation power of all the measurement signals .
  • the embodiment of the present application also provides a power measurement device, including: a memory, a processor, and a computer program stored in the memory and operable on the processor, and the processor implements the computer program when executing the computer program. Power measurement method as previously described.
  • the embodiment of the present application further provides a computer-readable storage medium storing computer-executable instructions, and the computer-executable instructions are used to execute the power measurement method as described above.
  • an embodiment of the present application also provides a computer program product, including a computer program or a computer instruction, the computer program or the computer instruction is stored in a computer-readable storage medium, and the processor of the computer device reads from the The computer-readable storage medium reads the computer program or the computer instruction, and the processor executes the computer program or the computer instruction, so that the computer device executes the power measurement method as described above.
  • the total radiated power of the carrier signal of the base station to be tested is calculated by introducing the target direction parameter and the power scaling factor, wherein the power scaling factor is a scaling factor used to calculate the power ratio of the measured signal to the carrier signal, that is to say , calculate the total radiated power of the carrier signal of the base station under test according to the measured signal and the power scaling factor, which can avoid using the carrier signal of the base station under test to calculate the total radiated power of the carrier signal, thereby reducing the impact on the normal use of the carrier signal
  • the target direction parameter is the directional parameter of the pointing power measuring device of the base station to be measured, that is to say, calculate the total radiation power of the carrier signal of the base station to be measured according to the target direction parameter, which can solve the problem of total radiation in the field environment of the field.
  • the embodiment of the present application can realize the measurement of the total radiated power in the field environment of the field, thereby filling the technical gap of the related measurement method.
  • FIG. 1 is a schematic diagram of a system architecture for performing a power measurement method provided by an embodiment of the present application
  • FIG. 2 is a flowchart of a power measurement method on the first communication device side provided by an embodiment of the present application
  • FIG. 3 is a flowchart of determining target vector information in a power measurement method on the first communication device side provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of four pilots in a power measurement method on the first communication device side provided by an embodiment of the present application;
  • FIG. 5 is a schematic diagram of eight pilots in the power measurement method on the first communication device side provided by an embodiment of the present application;
  • FIG. 6 is a flowchart of determining target control information in a power measurement method on the first communication device side provided by an embodiment of the present application
  • Fig. 7 is a flowchart of instruction information including target control information sent to the smart panel in the power measurement method on the first communication device side provided by an embodiment of the present application;
  • FIG. 8 is a flow chart of a power measurement method on the smart panel side provided by an embodiment of the present application.
  • Fig. 9 is a flow chart of adjusting the electromagnetic unit in the smart panel according to the target control information in the power measurement method on the smart panel side provided by an embodiment of the present application;
  • FIG. 10 is a flow chart for further explanation of step S230 provided by an embodiment of the present application when the target measurement space is an angular space;
  • FIG. 11 is a flow chart for further explanation of step S230 provided by an embodiment of the present application when the target measurement space is a normalized wave vector space;
  • FIG. 12 is a schematic diagram of a spatial coordinate system with the array antenna of the base station to be tested as a reference point provided by an embodiment of the present application;
  • FIG. 13 is a flow chart of an angle space sampling method in an offline test mode provided by an embodiment of the present application.
  • Fig. 14 is a flowchart of a wave vector space sampling method in an offline test mode provided by an embodiment of the present application.
  • the present application provides a power measurement method, a power measurement device, a computer readable storage medium and a computer program product.
  • the power measurement method in one of the embodiments includes: obtaining the signal power and signal wavelength of the measurement signal sent by the base station to be measured; calculating the equivalent isotropic radiated power of the measurement signal according to the signal power and signal wavelength; The total radiation power of the carrier signal of the base station to be tested is calculated by using the effective omnidirectional radiation power, the preset target direction parameter and the preset power scaling factor.
  • the total radiated power of the carrier signal of the base station to be tested is calculated by introducing the target direction parameter and the power scaling factor, wherein the power scaling factor is a scaling factor used to calculate the power ratio of the measured signal to the carrier signal, and also That is to say, calculating the total radiated power of the carrier signal of the base station under test according to the measured signal and the power scaling factor can avoid using the carrier signal of the base station under test to calculate the total radiated power of the carrier signal, thereby reducing the normal use of the carrier signal
  • the target direction parameter is the directional parameter of the pointing power measurement device of the base station to be measured, that is to say, calculating the total radiation power of the carrier signal of the base station to be measured according to the target direction parameter can solve the problem in the field environment.
  • the power measurement method in another embodiment includes: acquiring measurement signals sent by the base station to be measured to multiple sampling positions, wherein the sampling positions are determined according to the target Rayleigh resolution of the transmitting antenna of the base station to be measured in the target measurement space; calculating each Measure the equivalent isotropic radiated power of the signal; calculate the total radiated power of the base station to be tested according to the equivalent isotropic radiated power of all measured signals.
  • the technical method provided by the embodiment of the present application can realize the measurement of the total radiated power in the field environment of the field, thereby filling the technical gap of the related measurement method.
  • FIG. 1 is a schematic diagram of an implementation environment for performing a power measurement method provided by an embodiment of the present application.
  • the implementation environment includes a base station to be tested 110 and a power measuring device 120, wherein the power measuring device 120 can receive a wireless signal sent by the base station to be tested 110, so that it can calculate the power to be tested according to the received wireless signal.
  • the total radiated power of the base station 110 is measured.
  • the power measurement device 120 can move along the radiation sphere formed by the base station under test 110 when radiating signals to the outside, so as to receive wireless signals sent by the base station under test 110 at different spatial positions.
  • the power measuring device 120 may include a signal receiving module 121 and a signal analyzing module 122 , and the signal receiving module 121 and the signal analyzing module 122 are connected by wired or wireless communication.
  • the signal receiving module 121 can be installed in a device that can move in three-dimensional space, such as a drone, and through the movement control of the device, the device can carry the signal receiving module 121 to move along the radiation sphere, so that The signal receiving module 121 can receive wireless signals sent by the base station 110 to be tested at different positions on the radiation sphere, and send the received wireless signals to the signal analysis module 122 for calculation and processing of the total radiation power.
  • the signal receiving module 121 can be a receiving antenna module, and the signal analysis module 122 can be a signal analyzer, and the receiving antenna module and the signal analyzer are connected in a wired manner such as a signal line; in other examples, The signal receiving module 121 can be a device that includes a receiving antenna module and a wireless communication module, and the receiving antenna module is electrically connected to the wireless communication module, the signal analysis module 122 can be a signal analyzer, and the wireless communication module and the signal analyzer pass through for example Bluetooth or Wi-Fi -Fi and other wireless communication connection.
  • the power measurement device 120 can be installed in a device that can move in a three-dimensional space, such as a drone. By controlling the movement of the device, the device can carry the power measurement device 120 along the radiation sphere. to move.
  • the power measurement device 120 may be a device capable of moving in three-dimensional space with the functions of receiving wireless signals and calculating the total radiation power according to the wireless signals. By controlling the movement of the power measurement device 120, the power measurement The device 120 can move along the radiating sphere.
  • the base station 110 to be tested at least has the function of sending wireless signals to the outside based on the preset operation logic or sending the wireless signals to the outside based on the control of the operator.
  • the base station 110 to be tested may be a general mobile communication base station or a millimeter wave AAS base station, which is not specifically limited here.
  • the power measuring device 120 at least has the functions of calculating the equivalent isotropic radiation power of the measurement signal according to the measurement signal from the base station to be tested 110, and calculating the total radiation power of the carrier signal of the base station to be tested according to the equivalent isotropic radiation power of the measurement signal.
  • the measurement signal sent by the base station 110 to be tested can be obtained, the equivalent isotropic radiated power of the measurement signal can be calculated according to the signal power and signal wavelength of the measurement signal, and then according to the measurement signal Calculate the total radiation power of the carrier signal of the base station to be measured by the equivalent isotropic radiation power of the base station to be measured.
  • the power measurement device 120 calculates the total radiation power of the carrier signal of the base station to be measured
  • the total radiation power can also be displayed, so that The operator can judge whether the radio frequency index of the base station 110 to be tested meets the requirements according to the total radiation power.
  • the power measurement device 120 includes a receiving antenna module and a signal analyzer, the signal analyzer is provided with a display screen, the receiving antenna module is installed on the drone, and the signal analyzer can receive signals sent by the receiving antenna module.
  • the power measurement device 120 obtains The signal power and signal wavelength of the measurement signal sent by the base station 110 to be tested, and then calculate the equivalent isotropic radiation power of the measurement signal according to the signal power and signal wavelength, and then calculate the equivalent isotropic radiation power of the measurement signal according to the equivalent isotropic radiation power of the measurement signal and the preset target direction parameter and the preset power scale factor, calculate the total radiated power of the carrier signal of the base station 110 to be tested; after the power measuring device 120 calculates the total radiated power of the carrier signal of the base station 110 to be measured, the power measuring device
  • the power measurement device 120 includes a receiving antenna module and a signal analyzer, the signal analyzer is provided with a display screen, the receiving antenna module is installed on the drone, and the signal analyzer can receive signals sent by the receiving antenna module.
  • the power measurement device 120 acquires the measurement signals sent by the base station under test 110 to multiple sampling positions, wherein the sampling positions are determined according to the target Rayleigh resolution of the transmitting antenna of the base station under test 110 in the target measurement space Obtained, then, the power measurement device 120 calculates the equivalent isotropic radiation power of each measurement signal, and then, the power measurement device 120 calculates the total radiation power of the base station to be tested 110 according to the equivalent isotropic radiation power of all measurement signals; when the power After
  • FIG. 2 is a flowchart of a power measurement method provided by an embodiment of the present application.
  • the power measurement method is applied to a power measurement device, such as the power measurement device 120 in the embodiment shown in FIG. 1 .
  • the power measurement method can be applied to a scenario where the base station to be tested is in a normal working state and network traffic is in peak hours.
  • the power measurement method may include but not limited to step S110, step S120 and step S130.
  • Step S110 acquiring the signal power and signal wavelength of the measurement signal sent by the base station to be tested.
  • the signal power and signal wavelength of the measurement signal sent by the base station to be tested may be different implementation manners for acquiring the signal power and signal wavelength of the measurement signal sent by the base station to be tested, which are not specifically limited here.
  • the signal power and signal wavelength of the measurement signal can be performed before step S110 It is pre-negotiated and determined. Therefore, when the measurement signal sent by the base station to be measured is received, the signal power and signal wavelength of the measurement signal can be obtained based on the result of the pre-negotiated determination.
  • the measurement signal sent by the base station to be tested can be an instantaneous signal periodically sent by the base station to be tested when the network traffic is in a peak period, or it can be an instantaneous signal sent by the base station to be tested at a preset time when the network traffic is in a peak period.
  • the average value signal sent in the segment may also be other types of signals, which are not specifically limited here. Wherein, when the measurement signal is an instantaneous signal, the acquired signal power of the measurement signal is the instantaneous power; when the measurement signal is an average signal, the acquired signal power of the measurement signal is the average power.
  • the obtained measurement signal sent by the base station to be tested can be a measurement signal received at multiple sampling positions, or a measurement signal received at a fixed sampling position, which is not specifically limited here .
  • the measurement signal may be a specific peak beam used for TRP measurement, or a reference beam used for TRP measurement, which is not specifically limited here.
  • the reference beam may be a synchronization signal block (Synchronization Signal Block, SSB) defined in the 5G New Radio (5G New Radio, 5GNR) by the 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP).
  • SSB Synchronization Signal Block
  • Step S120 calculating the equivalent isotropic radiation power of the measurement signal according to the signal power and the signal wavelength.
  • the equivalent isotropic radiation power of the measurement signal can be calculated according to the signal power and signal wavelength, so that subsequent steps can be based on the equivalent
  • the omnidirectional radiation power calculates the total radiation power of the carrier signal of the base station under test.
  • EIRP Equivalent Isotropic Radiated Power
  • TRP Total Radiated Power
  • Step S130 according to the equivalent isotropic radiation power of the measured signal, the preset target direction parameter and the preset power scaling factor, calculate the total radiation power of the carrier signal of the base station to be tested.
  • the target direction parameter is a directional parameter of the base station to be measured pointing to the power measuring device
  • the power scaling factor is a scaling factor used to calculate the power ratio of the measurement signal to the carrier signal.
  • the equivalent isotropic radiation power of the measurement signal is calculated in step S120, it can be calculated according to the equivalent isotropic radiation power of the measurement signal, the preset target direction parameter and the preset power scaling factor The total radiated power of the carrier signal of the base station to be tested, so as to achieve the purpose of measuring the total radiated power in the field environment.
  • the power scaling factor is a scaling factor used to calculate the power ratio of the measured signal to the carrier signal, it is possible to avoid using The carrier signal of the base station to be tested is used to calculate the total radiated power of the carrier signal, thereby reducing the impact on the normal use of the carrier signal; in addition, since the target direction parameter is the directional parameter of the pointing power measurement device of the base station to be tested, according to the target The direction parameter is used to calculate the total radiated power of the carrier signal of the base station to be tested, which can solve the problem of measurement errors caused by the inability to accurately capture the beam direction when measuring the total radiated power in the field environment.
  • Step S120 may include but not limited to step S121 to step S123.
  • Step S121 acquiring the measurement distance between the power measurement device and the base station to be measured.
  • Equation (1) is the equivalent isotropic radiated power of the measurement signal;
  • P rx is the signal power of the measurement signal;
  • r is the measurement distance between the power measurement device and the base station to be measured;
  • is the signal wavelength of the measurement signal;
  • ⁇ 1 is the elevation angle value of the measurement antenna pointing to the base station to be measured; is the azimuth angle value of the measurement antenna pointing to the base station under test.
  • the measurement distance between the power measurement device and the base station to be measured can be obtained first, so that the subsequent steps can calculate the equivalent full range of the measurement signal according to the measurement distance between the power measurement device and the base station to be measured. to radiate power.
  • the power measurement device can directly obtain the measurement distance;
  • the measurement function of the device is triggered, the power measurement device reads the pre-saved measurement distance;
  • the power measurement device can communicate with the base station to be tested, and the base station to be tested has the size parameters of the transmitting antenna in advance, so the power The measuring device can request the size parameter of the transmitting antenna from the base station to be measured.
  • the power measuring device After the power measuring device receives the size parameter of the transmitting antenna sent by the base station to be measured, the power measuring device calculates the power measuring device and the base station to be measured according to the size parameter of the transmitting antenna.
  • Step S122 acquiring a gain parameter of the measuring antenna of the power measuring device.
  • the gain parameter of the measurement antenna can be obtained first, so that the subsequent step can calculate the equivalent isotropic radiated power of the measurement signal according to the gain parameter of the measurement antenna.
  • the power measurement device can directly obtain the gain parameter;
  • the power measurement device reads the pre-saved gain parameters.
  • Step S123 calculating the equivalent isotropic radiation power of the measurement signal according to the measurement distance, the gain parameter, the signal power and the signal wavelength.
  • step S110 since the signal power and signal wavelength of the measurement signal are obtained in step S110, the measurement distance between the power measurement device and the base station to be measured is obtained in step S121, and the measurement distance of the power measurement device is obtained in step S122.
  • the gain parameter of the antenna so the equivalent isotropic radiation power of the measured signal can be calculated according to the measurement distance, gain parameter, signal power and signal wavelength, combined with the above formula (1), so that the subsequent steps can be based on the equivalent of the measured signal
  • the omnidirectional radiation power calculates the total radiation power of the carrier signal of the base station under test.
  • an embodiment of the present application further describes the acquisition of the measurement distance between the power measurement device and the base station to be measured, and the measurement distance between the power measurement device and the base station to be measured can be calculated according to the following steps get:
  • Step S1211 Obtain the size parameters of the transmitting antenna of the base station to be tested;
  • Step S1212 According to the size parameter and the signal wavelength, calculate the measurement distance between the power measurement device and the base station to be measured.
  • the size parameter of the transmitting antenna of the base station to be tested can be obtained first, and then according to the size parameter and the signal wavelength, combined with the following formula (2), The measurement distance between the power measurement device and the base station to be measured is calculated.
  • r is the measurement distance between the power measurement device and the base station to be measured; D is the size parameter of the transmitting antenna; ⁇ is the signal wavelength of the measurement signal.
  • the power measurement device can directly obtain the size parameter;
  • the power measurement device reads the pre-saved size parameters;
  • the power measurement device can communicate with the base station to be tested, and the base station to be tested has the size parameters of the transmitting antenna in advance, so the power The measuring device may request the size parameter of the transmitting antenna from the base station to be measured.
  • Step S130 may include but not limited to step S131 and step S132.
  • Step S131 Calculate the total radiation power of the measurement signal according to the target direction parameter and the equivalent isotropic radiation power of the measurement signal.
  • the total radiation power of the measurement signal can be calculated first, and then the total radiation power of the carrier signal of the base station under test can be calculated according to the total radiation power of the measurement signal.
  • the total radiation power of the measurement signal can be calculated according to the equivalent isotropic radiation power of the measurement signal and the preset target direction parameter in combination with the following formula (3).
  • TRP test is the total radiated power of the measurement signal; is the equivalent isotropic radiated power of the measurement signal in the above formula (1); is the target direction parameter; ⁇ 2 is the elevation angle value of the base station to be measured pointing to the measurement antenna; is the azimuth angle value of the base station to be measured pointing to the measuring antenna.
  • the acquisition of the target direction parameter may have different implementation manners, which are not specifically limited here.
  • the power measurement device can directly obtain the target direction parameter;
  • the measurement function of the power measuring device is triggered, the power measuring device reads the pre-saved target direction parameter; for another example, communication can be performed between the power measuring device and the base station to be measured, and the base station to be measured has the target direction parameter stored in advance , so the power measurement device can request the target direction parameter from the base station under test.
  • the value of the target direction parameter may be provided by the manufacturer of the base station to be tested.
  • the target direction parameter is the directional parameter of the pointing power measuring device of the base station to be measured
  • the total radiation power of the carrier signal of the base station to be measured is calculated in combination with the target direction parameter and the equivalent omnidirectional radiation power of the measurement signal, It can solve the problem of measurement error caused by the inability to accurately capture the beam direction when measuring the total radiated power in the field environment, thereby improving the accuracy and efficiency of the measurement, and is suitable for environments that are easily restricted by environmental conditions Measurement of total radiated power in field environment.
  • Step S132 According to the power scaling factor and the total radiated power of the measured signal, calculate the total radiated power of the carrier signal of the base station to be tested.
  • the total radiation power of the measurement signal since the total radiation power of the measurement signal has been calculated in step S131, the total radiation power of the carrier signal of the base station to be tested can be calculated according to the power scaling factor and the total radiation power of the measurement signal in combination with the following formula (4). radiant power.
  • TRP is the total radiated power of the carrier signal of the base station to be tested
  • TRP test is the total radiated power of the measured signal in the above formula (3)
  • C is the power scaling factor.
  • the acquisition of the power scaling factor may have different implementation manners, which are not specifically limited here.
  • the power measuring device can directly obtain the power scaling factor; for another example, the power scaling factor can be pre-stored in the power measuring device, and when the power measuring device is started Or when the measurement function of the power measuring device is triggered, the power measuring device reads the pre-stored power scale factor; another example, the power measuring device can communicate with the base station to be tested, and the base station to be tested has the power scale factor stored in advance , so the power measurement device can request the power scaling factor from the base station to be measured.
  • the value of the power scaling factor may be provided by the manufacturer of the base station under test.
  • the power scaling factor is a scaling factor for calculating the power ratio of the measurement signal to the carrier signal
  • the total radiation power of the carrier signal of the base station to be measured is calculated in combination with the power scaling factor and the total radiation power of the measurement signal, It can avoid using the carrier signal of the base station to be tested to calculate the total radiated power of the carrier signal, thereby reducing the impact on the normal use of the carrier signal, and is suitable for measuring the total radiated power in the field environment that is easily restricted by environmental conditions.
  • FIG. 6 is a flowchart of a power measurement method provided by another embodiment of the present application.
  • the power measurement method can be applied to a power measurement device, such as the power measurement device 120 in the embodiment shown in FIG. 1 .
  • the power measurement method can be applied to a scenario where the base station to be tested is in a normal working state and network traffic is in a low-trough period, or the power measurement method can be applied to a scenario where the base station to be tested is in an offline state.
  • the power measurement method may include but not limited to step S210, step S220 and step S230.
  • Step S210 Obtain measurement signals sent to multiple sampling positions by the base station to be measured.
  • the total radiated power refers to the total transmitted power of the base station under test on the entire radiating sphere
  • the measurement signals can be obtained at multiple sampling positions on the radiating sphere, Then, the total radiation power of the base station to be tested is calculated according to the measurement signals obtained at these sampling locations, so as to achieve the purpose of measuring the total radiation power in the field environment.
  • the sampling position may be determined according to the target Rayleigh resolution of the transmitting antenna of the base station under test in the target measurement space.
  • the Rayleigh resolution is the resolution determined according to the Rayleigh Criterion
  • the Rayleigh resolution is the resolution in the limit state.
  • the content of the Rayleigh criterion is: two incoherent point light sources, if the center of the Airy disk produced by one point light source just falls on the first dark fringe of the Airy disk produced by the second point light source, Then the two incoherent point light sources are the two point light sources that the diffraction-limited system can "just resolve".
  • the target measurement space can be an angle space, a normalized wave vector space, or other types of spaces, which can be properly selected according to actual application conditions, and are not specifically limited here.
  • the measurement signal can be random data sent by the base station to be tested using unused resources, or a specific peak beam used for TRP measurement, or a reference beam used for TRP measurement, which will not be described here. Specific limits.
  • the measurement signal when the measurement signal is random data sent by the base station under test using unused resources, the base station under test can generate random data based on a preset test strategy (such as a dedicated test signal method) for transmission on unused resources , so that the load carrier can be simulated to transmit the signal.
  • the measurement signal is a reference beam
  • the reference beam may be a synchronization signal block defined by 3GPP in 5GNR.
  • Step S220 Calculate the equivalent isotropic radiation power of each measurement signal.
  • step S210 since the measurement signals sent to multiple sampling positions by the base station to be tested are obtained in step S210, the equivalent isotropic radiated power of each measurement signal can be calculated, so that in subsequent steps, the equivalent isotropic radiation power of these measurement signals can be calculated.
  • the omnidirectional radiated power calculates the total radiated power of the base station under test.
  • the equivalent isotropic radiated power of the measurement signal can be calculated by using the preceding steps S121 to S123.
  • Step S230 Calculate the total radiation power of the base station to be tested according to the equivalent isotropic radiation power of all measured signals.
  • step S220 since the equivalent isotropic radiation power of each measurement signal is calculated in step S220, the total radiation power of the base station to be tested can be calculated according to the equivalent isotropic radiation power of all measurement signals.
  • the calculation of the total radiated power of the base station under test according to the equivalent isotropic radiated power of all measured signals may have different implementations, which are not specifically limited here.
  • the target Rayleigh resolution of the target measurement space determines multiple sampling positions, and calculates the total radiation power of the base station to be tested according to the measurement signals obtained at these sampling positions, since this embodiment does not use 1° as the step spacing to measure the signal Therefore, the calculation of the total radiated power of the base station to be tested can be realized with fewer sampling times, so that the sampling efficiency can be improved, and the measurement efficiency can be improved. Measurement of radiated power.
  • an embodiment of the present application further describes the acquisition of the target Rayleigh resolution.
  • the target Rayleigh resolution can be obtained by The following steps are obtained:
  • Step S211 Obtain the size parameter of the transmitting antenna
  • Step S212 Obtain the signal wavelength of the measurement signal
  • Step S213 Calculate and obtain the target Rayleigh resolution of the transmitting antenna in the target measurement space according to the size parameter and the signal wavelength.
  • the size parameter of the transmitting antenna when it is necessary to calculate the target Rayleigh resolution of the transmitting antenna in the target measurement space, the size parameter of the transmitting antenna and the signal wavelength of the measurement signal can be obtained first, and then According to the size parameters and signal wavelength, the target Rayleigh resolution of the transmitting antenna in the target measurement space is calculated.
  • the target measurement space is a different type of measurement space
  • the calculation of the target Rayleigh resolution of the transmitting antenna in the target measurement space according to the size parameters and signal wavelengths can have different implementation methods. Some examples are used below to illustrate .
  • the target Rayleigh resolution of the transmitting antenna in the angular space can be calculated according to the size parameter and the signal wavelength, combined with the following formula (5).
  • ⁇ r is the target Rayleigh resolution of the transmitting antenna in the elevation direction in angular space; is the target Rayleigh resolution of the transmitting antenna in the azimuth direction in angular space; D y is the maximum antenna aperture of the transmitting antenna in the horizontal direction; D z is the maximum antenna aperture of the transmitting antenna in the vertical direction; ⁇ is the signal wavelength . It should be noted that when ⁇ r and When the values of are small, the above formula (5) can be adjusted to the following formula (6):
  • the target Rayleigh resolution of the transmitting antenna in the angular space can be calculated more easily, so that the efficiency of determining the sampling position according to the target Rayleigh resolution can be improved to a certain extent, so that to a certain extent
  • the calculation efficiency of the total radiation power of the base station to be tested is improved.
  • the target Rayleigh resolution of the transmitting antenna in the normalized wave vector space can be calculated according to the size parameter and signal wavelength, combined with the following formula (7).
  • Kyr is the target Rayleigh resolution of the transmitting antenna in the direction of the azimuth angle in the normalized wave vector space
  • K zr is the target Rayleigh resolution of the transmitting antenna in the direction of the elevation angle in the normalized wave vector space
  • D y is the maximum antenna aperture of the transmitting antenna in the horizontal direction
  • D z is the maximum antenna aperture of the transmitting antenna in the vertical direction
  • is the signal wavelength.
  • the acquisition of the target Rayleigh resolution is further explained.
  • the target measurement space is an angular space
  • the size parameter of the transmitting antenna of the base station to be measured is unknown
  • the target Rayleigh resolution The rate can be obtained by the following steps:
  • the target Rayleigh resolution of the transmitting antenna in angular space is obtained through calculation according to the beamwidth of the first null.
  • the maximum radiation power point may be included Measure the first null beamwidth of the main beam in the elevation direction and the azimuth direction of the spherical coordinate system, and then calculate the target ray of the transmitting antenna in the angle space according to the first null beamwidth, combined with the following formula (8): benefit resolution.
  • ⁇ r is the target Rayleigh resolution of the transmitting antenna in the elevation direction in angular space; is the target Rayleigh resolution of the transmitting antenna in the azimuth direction in the angular space; FNBW ⁇ is the first null beamwidth of the measurement signal in the elevation direction; is the first null beamwidth of the measurement signal in the azimuth direction.
  • the first null beam width (First Null Beam Width, FNBW), also known as the main lobe opening angle, refers to the angle between the first null on both sides of the main lobe in the plane containing the main lobe in the antenna pattern. angle.
  • the first null beamwidth is an important lobe pattern parameter used to describe the antenna directivity.
  • the acquisition of the target Rayleigh resolution is further described.
  • the target measurement space is a normalized wave vector space
  • the size parameter of the transmitting antenna of the base station to be measured is unknown
  • the target Rayleigh resolution can be obtained by the following steps:
  • the candidate Rayleigh resolution is mapped to obtain the target Rayleigh resolution of the transmitting antenna in the normalized wave vector space.
  • the maximum radiation power point may be included Measure the first null beamwidth of the main beam in the elevation direction and the azimuth direction of the spherical coordinate system, and then calculate the candidate ray of the transmitting antenna in the angle space according to the first null beamwidth and the above formula (8). Rayleigh resolution, and then map the candidate Rayleigh resolution in the angle space to the normalized wave vector space to obtain the target Rayleigh resolution of the transmitting antenna in the normalized wave vector space.
  • the candidate Rayleigh resolution in the angle space can be mapped to the normalized wave vector space by the following formula (9), so as to obtain the target Rayleigh resolution of the transmitting antenna in the normalized wave vector space.
  • K y is the target Rayleigh resolution of the transmitting antenna in the direction of the azimuth angle in the normalized wave vector space
  • K z is the target Rayleigh resolution of the transmitting antenna in the direction of the elevation angle in the normalized wave vector space Rayleigh resolution
  • is the target Rayleigh resolution of the transmitting antenna in the elevation direction in the angular space
  • the determination of the sampling position is further described.
  • the sampling position can be obtained by the following steps:
  • a number of sampling locations are determined in angular space according to the sampling spacing.
  • the sampling interval can be determined according to the target Rayleigh resolution first, and then multiple sampling intervals can be determined in the angular space according to the sampling interval. Location.
  • the sampling interval may be set to be smaller than or equal to the target Rayleigh resolution.
  • the sampling interval may be set to be equal to the target Rayleigh resolution.
  • the output signal power of the millimeter-wave large-scale array antenna (that is, the transmitting antenna) is basically concentrated in the first half of the radiation sphere containing the main beam, and the backward radiation is relatively small, which affects the total radiation power.
  • the contribution is almost negligible, so multiple sampling positions can be determined according to the sampling interval in the first half of the radiation sphere, so that the measurement signals sent by the base station to be tested can be obtained at these sampling positions, and then the base station to be tested can be calculated based on these measurement signals. total radiated power.
  • the determination of the sampling position is further explained.
  • the sampling position can be obtained by the following steps:
  • Each candidate sampling position is mapped to obtain multiple sampling positions in the angle space.
  • the sampling interval can be determined according to the target Rayleigh resolution first, and then the normalization can be performed according to the sampling interval. Multiple candidate sampling positions are determined in the wave vector space, and then the candidate sampling positions in the normalized wave vector space are mapped to the angle space to obtain multiple sampling positions in the angle space.
  • the sampling interval may be set to be smaller than or equal to the target Rayleigh resolution.
  • the sampling interval may be set to be equal to the target Rayleigh resolution.
  • the sampling intervals are K step,y and K step,z , where K step,y is the sampling interval in the azimuth direction in the normalized wave vector space, and K step,z is the normalized The sampling spacing in the elevation direction in the wave vector space, so it can be uniformly sampled in the normalized wave vector space according to the sampling spacing K step, y and K step, z , and a set of discrete values can be obtained to form a normalized wave vector space
  • the vector sampling points of in, and are coefficients K ym is the unit vector in the azimuth direction in the normalized wave vector space, K zn is the unit vector in the elevation direction in the normalized wave vector space; then, choose The vector (K ym , K zn ) of the vector (K ym , K zn ) is used as the uniform sampling point in the normalized wave vector space (that is, the candidate sampling position); then, the uniform sampling point (K ym , K zn ) are
  • step S220 is further described, and step S220 may include but not limited to the following steps:
  • Step S221 Obtain the signal power and signal wavelength of each measurement signal
  • Step S222 Calculate the equivalent isotropic radiation power of each measurement signal according to the signal power and the signal wavelength.
  • the signal power and signal wavelength of each measurement signal there may be different implementation manners for acquiring the signal power and signal wavelength of each measurement signal, which are not specifically limited here.
  • the signal power and signal wavelength of the measurement signal can be performed before step S221 It is pre-negotiated and determined. Therefore, when the measurement signal sent by the base station to be measured is received, the signal power and signal wavelength of the measurement signal can be obtained based on the result of the pre-negotiated determination.
  • the equivalent isotropic radiation power of each measurement signal can be calculated according to the signal power and signal wavelength, so that in subsequent steps, it can be based on The equivalent isotropic radiated power of these measured signals is used to calculate the total radiated power of the base station under test.
  • step S222 is further described, and step S222 may include but not limited to the following steps:
  • Step S2221 Obtain the measurement distance between the base station to be measured and each sampling location;
  • Step S2222 Obtain the gain parameter of the measurement antenna, wherein the measurement antenna is an antenna for receiving measurement signals;
  • Step S2223 Calculate the equivalent isotropic radiation power of each measurement signal according to the measurement distance, gain parameter, signal power and signal wavelength.
  • each sampling position is within the radiation sphere of the base station to be tested, the measurement distances between the base station to be tested and each sampling position are equal, that is to say, only one of the base stations to be tested and one of them needs to be obtained.
  • the measurement distance between the sampling locations can be used to obtain the measurement distance between the base station to be tested and each sampling location.
  • the power measurement device can directly obtain the measurement distance; Or when the measurement function of the power measuring device is triggered, the power measuring device reads the pre-saved measurement distance; for another example, communication can be performed between the power measuring device set at the sampling position and the base station to be measured, and the base station to be measured has stored a distance in advance.
  • the size parameter of the transmitting antenna so the power measuring device can request the size parameter of the transmitting antenna to the base station to be measured, and when the power measuring device receives the size parameter of the transmitting antenna sent by the base station to be measured, the power measuring device calculates according to the size parameter of the transmitting antenna Obtain the measurement distance between the base station to be measured and the sampling location; for another example, the power measuring device can be provided with a device for sending out such as infrared rays or ultrasonic waves, and the power measuring device arranged at the sampling location can directly measure by methods such as infrared rays or ultrasonic waves The measurement distance between the base station to be tested and the sampling location.
  • the power measurement device can directly obtain the gain parameter;
  • the power measurement device reads the pre-saved gain parameters.
  • step S221 when the signal power and signal wavelength of each measurement signal are obtained in step S221, the measurement distance between the base station to be measured and each sampling position is obtained in step S2221, and the measurement distance of the measurement antenna is obtained in step S2222.
  • Gain parameter so the equivalent isotropic radiation power of each measurement signal can be calculated according to the measurement distance, gain parameter, signal power and signal wavelength, combined with the above formula (1), so that the subsequent steps can be based on the equivalent of these measurement signals
  • the omnidirectional radiated power calculates the total radiated power of the base station under test.
  • the acquisition of the measurement distance between the base station to be tested and each sampling location is further described.
  • the measurement distance between the base station to be tested and each sampling location can be calculated according to the following steps:
  • the measurement distance between the base station to be tested and each sampling location is calculated.
  • the measurement distance between the base station to be tested and each sampling position can be calculated according to the size parameters, signal wavelength and the above formula (2) .
  • the power measurement device can directly obtain the size parameter;
  • the power measurement device reads the pre-saved size parameters; as another example, the power measurement device can communicate with the base station to be tested, and the base station to be tested has the size parameters of the transmitting antenna in advance, so the power The measuring device may request the size parameter of the transmitting antenna from the base station to be measured.
  • step S230 is further described.
  • step S230 may include but not limited to the following steps:
  • Step S231 Obtain the elevation angle parameters of each measurement signal
  • Step S232 Calculate and obtain the total radiation power of the base station to be tested according to the sampling interval, all elevation angle parameters and the equivalent isotropic radiation power of all measurement signals.
  • the elevation angle parameter of the measurement signal refers to the angle parameter of the measurement signal in a spherical coordinate system with the base station to be measured (or the transmitting antenna) as the coordinate origin.
  • the formula for calculating the total radiation power provided in 3GPP TS37.843 can be optimized to obtain the Formula (10) for calculating the total radiated power in the field environment.
  • TRP is the total radiation power of the base station to be tested; is the equivalent isotropic radiated power of the measurement signal at different sampling positions; sin( ⁇ n ) is the elevation angle parameter of different measurement signals; ⁇ n is the elevation angle value of different sampling positions relative to the base station (or transmitting antenna) to be measured; is the azimuth angle value of different sampling positions relative to the base station to be measured (or transmitting antenna); Among them, ⁇ step is the sampling interval in the elevation direction, is the sampling spacing in the azimuth direction.
  • this embodiment since the sampling interval, elevation angle parameters, and equivalent isotropic radiated power of the measurement signal are obtained first, then the base station to be tested is calculated according to the sampling interval, all elevation angle parameters, and the equivalent isotropic radiation power of all measurement signals The total radiation power, therefore, this embodiment can reduce the number of sampling, thereby improving the calculation efficiency of the total radiation power.
  • D y is defined as the maximum antenna aperture of the array antenna in the horizontal direction
  • D z is defined as the maximum antenna aperture of the array antenna in the vertical direction
  • is the signal wavelength
  • step S230 is further described.
  • step S230 may include but not limited to the following steps:
  • Step S233 Obtain the elevation angle parameter and azimuth angle parameter of each measurement signal
  • Step S234 According to the sampling interval, all elevation parameters, all azimuth parameters and the equivalent isotropic radiation power of all measured signals, calculate the total radiation power of the base station to be tested.
  • the elevation parameter of the measurement signal refers to the angle parameter of the measurement signal in the elevation direction in the spherical coordinate system with the base station to be measured (or the transmitting antenna) as the coordinate origin;
  • the azimuth parameter of the measurement signal refers to Measure the angle parameter of the signal in the azimuth direction in the spherical coordinate system with the base station to be measured (or the transmitting antenna) as the coordinate origin.
  • K step, y is the sampling interval in the azimuth direction in the normalized wave vector space
  • K step, z is the sampling interval in the elevation direction in the normalized wave vector space
  • ⁇ n is the normalized wave vector discrete sampling point
  • the elevation angle value in the corresponding angle space, correspondingly, sin( ⁇ n ) is the elevation angle parameter
  • the azimuth angle value in the corresponding angle space correspondingly, is the azimuth parameter; is a discrete sampling point in the angle space equivalent isotropic radiated power.
  • ⁇ n and It can also be transformed by the above formula (9), so that the normalized wave vector can be used
  • the component K ym in the elevation direction represents ⁇ n
  • the component K zm in the azimuth direction represents
  • this embodiment since the equivalent isotropic radiated power of the sampling interval, all elevation parameters, all azimuth parameters, and all measurement signals is obtained first, and then according to the sampling interval, all elevation parameters, all azimuth parameters, and all measurement signals The equivalent isotropic radiation power is calculated to obtain the total radiation power of the base station to be tested. Therefore, this embodiment can eliminate redundant sampling points, thereby improving the calculation efficiency of sampling. Taking the 30GHz millimeter wave signal and the array antenna (transmitting antenna) arranged in 8 ⁇ 16 as an example, in the anechoic room measurement method provided by the existing standard, it is necessary to use 1° as the step spacing for uniform sampling.
  • the power measurement method is further described. Before performing step S210, the power measurement method may also include but not limited to the following steps:
  • the base station to be tested to send a measurement signal according to a preset test strategy, wherein the measurement signal is random data sent by the base station to be tested using unused resources;
  • the test terminal is used to initiate a traffic request to the base station to be tested, so that the base station to be tested sends a measurement signal.
  • the base station to be tested in the scenario where the base station to be tested is in a normal working state and the network traffic is in a low period of time, or in the scenario where the base station to be tested is offline, there will be low or no network traffic.
  • the test of the total radiation power of the base station to be tested can be effectively realized, and a proprietary test configuration method or a terminal-initiated traffic method can be adopted, so that the base station to be tested can send out corresponding measurement signals.
  • the network operator can enable the vendor-specific test signal method to generate random data, so that the base station under test transmits the random data on unused resources to simulate the transmission of a loaded carrier. It should be noted that the random data is controlled by the network operator, and coordination can be established between the power measurement device and the network operator to allow specific test methods to be performed.
  • one or more test terminals can download a large amount of data to force the base station to be tested to schedule all resources to ensure stable traffic data transmission and maintain beam signal stability.
  • the test terminal can be equipped with a network operator-specific Subscriber Identification Module (SIM), and can receive data under the full carrier bandwidth of the base station to be tested to ensure that the carrier is fully loaded.
  • SIM Subscriber Identification Module
  • the beam signal of the base station under test will point to the test terminal, so that the calculation of the total radiation power of the base station under test can be realized.
  • the power measurement method and its device, storage medium, and program product proposed in the embodiments of the present application can be applied to various application scenarios, especially in the field environment, and can reduce measurement errors and improve measurement efficiency.
  • the following is a further description of the field environment in the field.
  • the power device in the embodiment of the present application can be a device that can move in three-dimensional space with the functions of receiving wireless signals and calculating the total radiation power based on the wireless signals, or it can be a device with the functions of receiving wireless signals and calculating the total radiation power based on the wireless signals.
  • the TRP measurement in this application scenario also needs to be carried out under far-field conditions.
  • the near-field and far-field emission areas are calculated based on the size of the base station antenna and the wavelength of the frequency, and the signal analyzer (signal analysis module) and Receive the location of the test antenna (signal receiving module).
  • an appropriate test distance can be selected according to the requirements of measurement accuracy, for example, the minimum far-field test distance can be calculated according to the above formula (2).
  • the far-field test location should be designated as an area adjacent to the near-field.
  • the base station When measuring TRP in the field environment, when the base station is in online mode, it is difficult to ensure that the beam direction is fixed during the measurement process, that is, the stable signal required for the measurement cannot be guaranteed under the condition of high network traffic; and in the case of low network traffic , it is difficult to guarantee the measurement conditions of carrier full load and maximum power.
  • the measurement of fixed beams needs to consider reducing the number of sampling points to improve measurement efficiency and accuracy.
  • the measurement method in the embodiment of the present application can solve the above problems.
  • the base station When the base station is in the online mode, that is, the base station is in a normal working state and keeps running online.
  • a base station operating normally has different network traffic at different time periods. In the initial stage of network deployment, the traffic load is low. When more and more UEs use this frequency band, the traffic will gradually increase. TRP measurement needs to distinguish between high and low network traffic.
  • the carrier In the application scenario of TRP measurement during the peak hours of base station operation, when data is scheduled, the carrier will be fully loaded and the maximum power will be configured.
  • the service signal In the normal peak operation state, the service signal is time-varying and the beam direction is not fixed. If the signal is stable, a large number of mobile devices (such as drones) carrying receiving test antennas can be deployed at the measurement sampling point for periodic instantaneous measurement during peak hours. At the same time, long-time averaging measurements are required to more accurately capture time-varying emissions due to beam direction changes, and the required time will vary depending on base station utilization and the distribution of test terminals.
  • the EIRP measurement of a large number of sampling points cannot be performed due to unstable signals or limited measurement equipment conditions, it can be converted to a single-point EIRP measurement and used to extrapolate the full carrier power, or converted to an equivalent TRP.
  • the equivalent of TRP is measured from the peak beam or the reference beam, which can be the SSB as defined by 3GPP in 5GNR.
  • the SSB beam is measured to extrapolate the full carrier power result or convert to the equivalent of field TRP.
  • 5G AAS will periodically transmit SSB sets at constant power in multiple beam preset directions, the best setup for measuring SSB beams is with a real-time analyzer that can be synchronized to the SSB set during the measurement time, or something like a mobile scanner special equipment to demodulate the signal.
  • the EIRP of the test signal to the measurement antenna can be expressed as The definition can refer to the relevant description in formula (1).
  • the TRP of the test signal is obtained according to formula (3), and the calculation of carrier TRP can be calculated according to formula (4).
  • test configuration when the TRP measurement is performed during the low period of base station operation, there may be low or no network traffic.
  • two technical methods can be adopted: proprietary test configuration and test terminal initiating traffic.
  • proprietary test configuration operators can enable vendor-specific test signal methods to generate random data for transmission on unused resources to simulate a loaded carrier. This test signal is controlled by the network operator, and coordination can be established between the receive signal analyzer and the operator to allow specific test methods.
  • the test terminal initiates traffic one or more test terminals need to download a large amount of data to force the base station to schedule all resources. During this period, stable traffic data transmission is ensured and beam signal stability is maintained.
  • test terminal should be equipped with a SIM card dedicated to the operator, and be able to receive data under the full carrier bandwidth of the base station, so as to ensure that the carrier is fully loaded.
  • SIM card dedicated to the operator
  • the beam direction of the 5G AAS base station points to the test terminal, so that the fixed-point beam signal can be measured.
  • the steps of the two measurement methods are the same during the trough period of the online mode: first, set the position of the test antenna and the test terminal, and the best position is the main beam area of the base station under test; then, download a large amount of test data through the test terminal, and maintain high throughput and transmission Stability; finally, signal measurements using test equipment.
  • the base station When the base station is in offline mode, that is, the base station is in a non-working state, it is set to the offline test mode, and the power level and antenna radiation pattern of the base station need to be fixed throughout the measurement process.
  • the base station under test In the test mode, the base station under test can be set to transmit at full power.
  • the test terminal needs to download a large amount of test signal data and keep the data transmission stable. A large number of measurement results are used to calculate the TRP, and the EUT needs to generate a stable signal during the measurement period. To avoid disrupting normal business, operators must perform tests before base stations are fully operational.
  • FIG. 12 is a schematic diagram of a space coordinate system with the array antenna on the EUT as a reference point according to this embodiment.
  • the x-axis in the figure is consistent with the normal direction of the antenna front, and the y-axis and z-axis correspond to the horizontal and vertical directions respectively.
  • There are two kinds of space coordinate systems in the figure one is angular space, which is represented by the spherical coordinate system, where ⁇ and They are the elevation angle and the azimuth angle respectively, and (90°,0°) means the direction of the x-axis.
  • the other is the normalized wave vector space, which is expressed in the Cartesian coordinate system, where K y and K z are the projections of the normalized wave vector on the y-axis and z-axis respectively, (0,0) That is, the direction of the x-axis.
  • K y and K z are the projections of the normalized wave vector on the y-axis and z-axis respectively, (0,0) That is, the direction of the x-axis.
  • two measurement sampling methods are used in the valley period of the online operation mode and in the offline test mode: one is to use a sampling method with equal angular intervals in the angular space, which is called the angular space sampling method; the other is The equal-spaced sampling method in the normalized wave-vector space, which is unequal-spaced in the angle space, is called the wave-vector space sampling method.
  • the two sampling methods are described in detail below.
  • the angle space sampling method is to sample the EIRP in the traditional angle space, and thus calculate the TRP. This method can be implemented without acquiring AAS a priori information such as antenna gain or directivity, the base station needs to generate a stable signal during the measurement period.
  • FIG. 13 is a flowchart of an angle space sampling method in an offline test mode provided by an embodiment of the present application.
  • the sampling method may include but not limited to step S310, step S320 and step S330.
  • Step 310 determining the Rayleigh resolution of the array antenna in angular space.
  • the Rayleigh resolution of the array antenna in angular space may be determined in different ways depending on whether the array size of the array antenna is known.
  • the Rayleigh resolution of the array antenna in angular space is determined according to the array size of the array antenna and the signal wavelength. Determine the Rayleigh resolution of the array antenna in angular space according to formula (5). at ⁇ r and When the value is small, the Rayleigh resolution of the array antenna in angular space can be determined according to formula (6).
  • the first null beam width is determined, and the Rayleigh resolution of the array antenna in angular space is determined according to FNBW.
  • the FNBW of the main beam can be measured on the elevation plane and azimuth plane of the spherical coordinate system containing the point of maximum radiated power. Then refer to formula (8) to determine the Rayleigh resolution of the array antenna in angular space according to FNBW.
  • Step 320 setting the step sampling interval of the sampling points according to the Rayleigh resolution.
  • the step sampling interval of the sampling points is set to be less than or equal to the array antenna in the spherical coordinate system ⁇ and The Rayleigh resolution ⁇ r in the direction and That is, ⁇ step ⁇ ⁇ r ,
  • the stepping sampling interval of sampling points is set to be equal to the Rayleigh resolution.
  • Step 330 determine the sampling point according to the step sampling interval, measure the EIRP at the position of the sampling point, and determine the TRP according to the EIRP.
  • the output signal power of the millimeter-wave large-scale array antenna is basically concentrated in the first half of the sphere containing the main beam, and the backward radiation is relatively small. The contribution to TRP can be ignored, so the value of the rear hemisphere is no longer .
  • the angular space sampling method described in the embodiment of the present application can reduce the number of sampling points and improve calculation efficiency.
  • D y and D z are the maximum apertures of the array antenna in the horizontal direction and the vertical direction respectively, and ⁇ is the signal wavelength.
  • the element spacing in the array antenna is generally ⁇ /2, and the array side lengths of M ⁇ N are D y ⁇ N ⁇ /2, D z ⁇ M ⁇ /2.
  • the wave vector space sampling method introduces the concept of normalized wave vector space.
  • the uniform sampling points are obtained in the normalized wave vector space first, and then the corresponding non-uniform sampling points in the angle space are calculated through the transformation formula. Realized the compression of sampling points.
  • This method needs to obtain the general direction of the beam, and the direction fluctuation is within the range of the first zero-sink angle, and the base station needs to generate a stable signal during the measurement period.
  • the EIRP is sampled in the traditional angular space, from which the TRP is calculated. This method can be implemented without acquiring AAS a priori information such as antenna gain or directivity, the base station needs to generate a stable signal during the measurement period.
  • the method samples uniformly in the normalized wave vector space (K y , K z ).
  • the transformation relationship between normalized wave vector space (K y , K z ) and angle space is shown in formula (9).
  • FIG. 14 is a flowchart of a wave vector space sampling method in an offline test mode provided by an embodiment of the present application.
  • the sampling method may include but not limited to step S410, step S420, step S430, step S440 and step S450.
  • Step 410 determining the Rayleigh resolution of the array antenna in the normalized wave vector space.
  • the Rayleigh resolution of the array antenna in the wave vector space can be determined in different ways depending on whether the array size of the array antenna is known.
  • the Rayleigh resolution of the array antenna in wave vector space is determined according to the array size of the array antenna and the signal wavelength. Determine the Rayleigh resolution of the array antenna in angular space according to formula (7).
  • the Rayleigh resolution of the array antenna in angle space is determined, and the Rayleigh resolution in angle space is converted into the Rayleigh resolution in wave vector space.
  • the FNBW of the main beam can be measured on the elevation plane and azimuth plane of the spherical coordinate system containing the point of maximum radiated power. Then refer to formula (8) to determine the Rayleigh resolution of the array antenna in angular space according to FNBW.
  • Step 420 Determine the sampling interval of the sampling points of the array antenna in the normalized wave vector space according to the Rayleigh resolution.
  • the step sampling spacing K step,y and K step,z of the sampling points of the array antenna in the normalized wave vector space are set to be less than or equal to the Rayleigh resolution K yr ,K zr , that is, K step,y ⁇ K yr ,K step,z ⁇ K zr .
  • the stepping sampling interval of the sampling points is set to be equal to the Rayleigh resolution.
  • Step 430 determine uniform sampling points (K ym , K zn ) in the normalized wave vector space according to the sampling distance.
  • uniform sampling is performed in the normalized wave vector space according to the sampling interval K step,y , K step,z to obtain a set of discrete values, which form the vector sampling points of the normalized wave vector space
  • the vector (K ym , K zn ) of is used as a uniform sampling point in the normalized wave vector space.
  • Step 440 determine the corresponding non-uniform sampling points in the angle space according to the uniform sampling points in the normalized wave vector space
  • the sampling point corresponding to the uniform sampling point (K ym , K zn ) in the normalized wave vector space in the angle space is determined by the transformation formula (9) of the normalized wave vector space and the angle space where ⁇ n and is non-uniformly distributed in angular space.
  • Step 450 measure the EIRP in the angular space according to the position of the non-uniform sampling point in the spherical coordinate system, and determine the TRP according to the EIRP.
  • TRP is determined according to formula (11).
  • K ym and K zm in the y and z directions are represented.
  • the wave vector space sampling method described in the embodiment of the present application can eliminate redundant sampling points and improve sampling calculation efficiency.
  • D y and D z are the maximum apertures of the array antenna in the horizontal direction and the vertical direction respectively, and ⁇ is the signal wavelength.
  • the element spacing in the array antenna is generally ⁇ /2, and the array side lengths of M ⁇ N are D y ⁇ N ⁇ /2, D z ⁇ M ⁇ /2.
  • the size of the array antenna arranged in 8 ⁇ 16 can be expressed as: D y ⁇ 8 ⁇ and Dz ⁇ 4 ⁇ .
  • an embodiment of the present application also discloses a power measurement device, which includes a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • a power measurement device which includes a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the processor executes the computer program, the following The power measurement method in any of the preceding embodiments.
  • an embodiment of the present application also discloses a computer-readable storage medium, in which computer-executable instructions are stored, and the computer-executable instructions are used to execute the power measurement method in any of the foregoing embodiments.
  • an embodiment of the present application also discloses a computer program product, including computer programs or computer instructions, the computer programs or computer instructions are stored in a computer-readable storage medium, and the processor of the computer device reads the computer program from the computer-readable storage medium. Taking a computer program or a computer instruction, the processor executes the computer program or computer instruction, so that the computer device executes the power measurement method as in any of the preceding embodiments.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种功率测量方法及其装置、存储介质、程序产品。其中,功率测量方法包括:获取由待测基站发送的测量信号的信号功率和信号波长;根据所述信号功率和所述信号波长,计算得到所述测量信号的等效全向辐射功率;根据所述测量信号的等效全向辐射功率、预设的目标方向参数和预设的功率比例因子,计算得到所述待测基站的载波信号的总辐射功率。

Description

功率测量方法及其装置、存储介质、程序产品
相关申请的交叉引用
本申请基于申请号为202111510550.4、申请日为2021年12月10日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信技术领域,尤其是一种功率测量方法及其装置、存储介质、程序产品。
背景技术
信息化时代的快速发展,衍生出超高速、大带宽、低时延等一系列的通信需求,第5代移动通信技术(5th Generation,5G)随之应运而生。5G中引入了多项关键技术,包括大规模阵列天线、波束成形技术、毫米波通信等。其中,毫米波通信技术要求天线与远端射频单元(Radio Remote Unit,RRU)一体化,形成有源天线系统(Active Antenna System,AAS)。
目前的标准中,规定必须通过空口(Over the Air,OTA)方式测量AAS基站的射频指标,其中,总辐射功率(Total Radiated Power,TRP)是OTA测试中的一项关键性条目,是衡量输出功率、杂散、邻道泄漏比(Adjacent Channel Leakage Radio,ACLR)等多项射频指标的基础。但是,目前标准中规定的TRP测量方法需要在暗室中进行,如何在外场实地环境中测量TRP,则没有明确的实现方法。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种功率测量方法及其装置、存储介质、程序产品,能够在外场实地环境中对TRP进行测量。
一方面,本申请实施例提供了一种功率测量方法,应用于功率测量装置,所述功率测量方法包括:获取由待测基站发送的测量信号的信号功率和信号波长;根据所述信号功率和所述信号波长,计算得到所述测量信号的等效全向辐射功率;根据所述测量信号的等效全向辐射功率、预设的目标方向参数和预设的功率比例因子,计算得到所述待测基站的载波信号的总辐射功率;其中,所述目标方向参数为所述待测基站指向所述功率测量装置的方向性参数,所述功率比例因子为用于计算所述测量信号与所述载波信号的功率比的比例因子。
另一方面,本申请实施例还提供了一种功率测量方法,包括:获取待测基站发送至多个采样位置的测量信号,其中,所述采样位置根据所述待测基站的发射天线在目标测量空间的目标瑞利分辨率而确定得到;计算各个所述测量信号的等效全向辐射功率;根据所有所述测量信号的等效全向辐射功率,计算得到所述待测基站的总辐射功率。
另一方面,本申请实施例还提供了一种功率测量装置,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如前面所述的功率测量方法。
另一方面,本申请实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如前面所述的功率测量方法。
另一方面,本申请实施例还提供了一种计算机程序产品,包括计算机程序或计算机指令,所述计算机程序或所述计算机指令存储在计算机可读存储介质中,计算机设备的处理器从所述计算机可读存储介质读取所述计算机程序或所述计算机指令,所述处理器执行所述计算机程序或所述计算机指令,使得所述计算机设备执行如前面所述的功率测量方法。本申请实施例通过引入目标方向参数和功率比例因子来计算待测基站的载波信号的总辐射功率,其中,功率比例因子为用于计算测量信号与载波信号的功率比的比例因子,也就是说,根据测量信号和功率比例因子来计算待测基站的载波信号的总辐射功率,可以避免使用待测基站的载波信号来计算载波信号的总辐射功率,从而可以降低对载波信号的正常使用的影响;此外,目标方向参数为待测基站指向功率测量装置的方向性参数,也就是说,根据目标方向参数来计算待测基站的载波信号的总辐射功率,能够解决在外场实地环境中对总辐射功率进行测量时所存在的由于无法准确捕获波束方向而导致测量存在误差的问题。因此,本申请实施例能够实现在外场实地环境中对总辐射功率的测量,从而可以弥补相关测量方法的技术空白。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结 构来实现和获得。
附图说明
附图用来提供对本申请技术方法的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方法,并不构成对本申请技术方法的限制。
图1是本申请一个实施例提供的用于执行功率测量方法的系统架构的示意图;
图2是本申请一个实施例提供的第一通信设备侧的功率测量方法的流程图;
图3是本申请一个实施例提供的第一通信设备侧的功率测量方法中确定目标矢量信息的流程图;
图4是本申请一个实施例提供的第一通信设备侧的功率测量方法中4个导频的示意图;
图5是本申请一个实施例提供的第一通信设备侧的功率测量方法中8个导频的示意图;
图6是本申请一个实施例提供的第一通信设备侧的功率测量方法中确定目标调控信息的流程图;
图7是本申请一个实施例提供的第一通信设备侧的功率测量方法中向智能面板发送的包括目标调控信息的指示信息的流程图;
图8是本申请一个实施例提供的智能面板侧的功率测量方法的流程图;
图9是本申请一个实施例提供的智能面板侧的功率测量方法中根据目标调控信息对智能面板中的电磁单元进行调整的流程图;
图10是本申请一个实施例提供的在目标测量空间为角度空间的情况下对步骤S230进行进一步说明的流程图;
图11是本申请一个实施例提供的在目标测量空间为归一化波矢空间的情况下对步骤S230进行进一步说明的流程图;
图12是本申请一个实施例提供的以待测基站的阵列天线为参考点的空间坐标系示意图;
图13是本申请一个实施例提供的离线测试模式角度空间采样方法流程图;
图14是本申请一个实施例提供的离线测试模式波矢空间采样方法流程图。
具体实施方式
为了使本申请的目的、技术方法及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请提供了一种功率测量方法、功率测量装置、计算机可读存储介质以及计算机程序产品。其中一个实施例的功率测量方法包括:获取由待测基站发送的测量信号的信号功率和信号波长;根据信号功率和信号波长,计算得到测量信号的等效全向辐射功率;根据测量信号的等效全向辐射功率、预设的目标方向参数和预设的功率比例因子,计算得到待测基站的载波信号的总辐射功率。在该实施例中,通过引入目标方向参数和功率比例因子来计算待测基站的载波信号的总辐射功率,其中,功率比例因子为用于计算测量信号与载波信号的功率比的比例因子,也就是说,根据测量信号和功率比例因子来计算待测基站的载波信号的总辐射功率,可以避免使用待测基站的载波信号来计算载波信号的总辐射功率,从而可以降低对载波信号的正常使用的影响;此外,目标方向参数为待测基站指向功率测量装置的方向性参数,也就是说,根据目标方向参数来计算待测基站的载波信号的总辐射功率,能够解决在外场实地环境中对总辐射功率进行测量时所存在的由于无法准确捕获波束方向而导致测量存在误差的问题。另外一个实施例的功率测量方法包括:获取待测基站发送至多个采样位置的测量信号,其中,采样位置根据待测基站的发射天线在目标测量空间的目标瑞利分辨率而确定得到;计算各个测量信号的等效全向辐射功率;根据所有测量信号的等效全向辐射功率,计算得到待测基站的总辐射功率。在该实施例中,通过根据待测基站的发射天线在目标测量空间的目标瑞利分辨率确定多个采样位置,并根据在这些采样位置获取到的测量信号计算待测基站的总辐射功率,相较于目前标准所规定的以1°作为步进间距进行采样的方式,具有更少的采样次数,能够提高采样效率,进而能够提高测量效率,特别适用于在容易受到环境条件制约的外场实地环境中对总辐射功率的测量。因此,本申请实施例提供的技术方法能够实现在外场实地环境中对总辐射功率的测量,从而可以弥补相关测量方法的技术空白。
下面结合附图,对本申请实施例作进一步阐述。
如图1所示,图1是本申请一个实施例提供的用于执行的功率测量方法的实施环境的示意图。
在图1的实施例中,该实施环境包括待测基站110和功率测量装置120,其中,功率测量装置120可以接收由待测基站110发送的无线信号,从而可以根据接收到的无线信号计算待测基站110的总辐射功率。
需要说明的是,功率测量装置120可以沿着待测基站110在对外辐射信号时所形成的辐射球面进行移 动,从而可以在不同空间位置接收待测基站110所发送的无线信号。
在一实施方式中,如图1所示,功率测量装置120可以包括信号接收模块121和信号分析模块122,信号接收模块121和信号分析模块122通过有线或者无线的方式通信连接。其中,信号接收模块121可以安装在例如无人机等可以在三维空间进行移动的设备中,通过对该设备的移动控制,使得该设备可以携带信号接收模块121沿着辐射球面进行移动,从而使得信号接收模块121可以在辐射球面的不同位置接收待测基站110发送的无线信号,并将接收到的无线信号发送给信号分析模块122进行总辐射功率的计算处理。在一些例子中,信号接收模块121可以为接收天线模块,信号分析模块122可以为信号分析仪,接收天线模块与信号分析仪通过例如信号线等有线的方式通信连接;在另外的一些例子中,信号接收模块121可以为包括接收天线模块和无线通信模块的装置,并且接收天线模块与无线通信模块电连接,信号分析模块122可以为信号分析仪,无线通信模块与信号分析仪通过例如蓝牙或者Wi-Fi等无线的方式通信连接。
在另一实施方式中,功率测量装置120可以安装在例如无人机等可以在三维空间进行移动的设备中,通过对该设备的移动控制,使得该设备可以携带功率测量装置120沿着辐射球面进行移动。
在另一实施方式中,功率测量装置120可以为具备接收无线信号以及根据无线信号计算总辐射功率等功能的可以在三维空间进行移动的设备,通过对功率测量装置120进行移动控制,使得功率测量装置120可以沿着辐射球面进行移动。
待测基站110至少具有基于预设的运行逻辑对外发送无线信号或者基于操作人员的控制对外发送无线信号等功能。待测基站110可以是一般的移动通信基站,也可以是毫米波AAS基站,此处不作具体限定。
功率测量装置120至少具有根据来自待测基站110的测量信号计算测量信号的等效全向辐射功率,以及根据测量信号的等效全向辐射功率计算待测基站的载波信号的总辐射功率等功能,例如,能够响应于操作人员对功率测量装置120的操作,获取待测基站110发送的测量信号,根据测量信号的信号功率和信号波长计算测量信号的等效全向辐射功率,然后根据测量信号的等效全向辐射功率计算待测基站的载波信号的总辐射功率,另外,在功率测量装置120计算得到待测基站的载波信号的总辐射功率之后,还能够显示该总辐射功率,以便于操作人员能够根据该总辐射功率判断待测基站110的射频指标是否符合要求。
需要说明的是,待测基站110和功率测量装置120所具有的上述功能,可以应用于不同的应用场景中,例如:
在一应用场景中,功率测量装置120包括接收天线模块和信号分析仪,信号分析仪设置有显示屏,接收天线模块安装于无人机,信号分析仪能够接收由接收天线模块发送的信号。在待测基站110处于正常工作状态,并且网络流量处于高峰时段的场景中,响应于操作人员对功率测量装置120以及无人机的操作,在无人机的协助下,功率测量装置120获取由待测基站110发送的测量信号的信号功率和信号波长,然后根据信号功率和信号波长计算测量信号的等效全向辐射功率,接着根据测量信号的等效全向辐射功率、预设的目标方向参数和预设的功率比例因子,计算待测基站110的载波信号的总辐射功率;当功率测量装置120计算得到待测基站110的载波信号的总辐射功率之后,功率测量装置120通过显示屏显示该总辐射功率。
在另一应用场景中,功率测量装置120包括接收天线模块和信号分析仪,信号分析仪设置有显示屏,接收天线模块安装于无人机,信号分析仪能够接收由接收天线模块发送的信号。在待测基站110处于正常工作状态,并且网络流量处于低谷时段的场景中,或者,在待测基站110处于离线状态的场景中,响应于操作人员对功率测量装置120以及无人机的操作,在无人机的协助下,功率测量装置120获取待测基站110发送至多个采样位置的测量信号,其中,采样位置根据待测基站110的发射天线在目标测量空间的目标瑞利分辨率而确定得到,然后,功率测量装置120计算各个测量信号的等效全向辐射功率,接着,功率测量装置120根据所有测量信号的等效全向辐射功率,计算待测基站110的总辐射功率;当功率测量装置120计算得到待测基站110的总辐射功率之后,功率测量装置120通过显示屏显示该总辐射功率。
本领域技术人员可以理解的是,该实施环境可以应用于5G、6G通信网络系统以及后续演进的移动通信网络系统等,本实施例对此并不作具体限定。
本领域技术人员可以理解的是,图1中示出的实施环境并不构成对本申请实施例的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
基于上述实施环境,下面提出本申请的功率测量方法的各个实施例。
如图2所示,图2是本申请一个实施例提供的功率测量方法的流程图,该功率测量方法应用于功率测量装置,例如图1所示实施例中的功率测量装置120。该功率测量方法可以应用于待测基站处于正常工作状态,并且网络流量处于高峰时段的场景中。该功率测量方法可以包括但不限于步骤S110、步骤S120以及步骤S130。
步骤S110,获取由待测基站发送的测量信号的信号功率和信号波长。
需要说明的是,获取由待测基站发送的测量信号的信号功率和信号波长,可以有不同的实施方式,此处不作具体限定。例如,可以在接收到由待测基站发送的测量信号时,获取其信号功率和信号频率,然后 根据信号频率计算得到信号波长;又如,测量信号的信号功率和信号波长可以在执行步骤S110之前预先协商确定,因此,当接收到由待测基站发送的测量信号时,即可基于预先协商确定的结果获取测量信号的信号功率和信号波长。
需要说明的是,由待测基站发送的测量信号,可以为待测基站在网络流量处于高峰时段时周期性发送的瞬时信号,也可以为待测基站在网络流量处于高峰时段时在预设时间段内发送的均值信号,还可以为其他类型的信号,此处不作具体限定。其中,当测量信号为瞬时信号时,获取到的测量信号的信号功率为瞬时功率;当测量信号为均值信号时,获取到的测量信号的信号功率为均值功率。
需要说明的是,获取到的由待测基站发送的测量信号,可以为在多个采样位置接收到的测量信号,也可以为在某一固定采样位置接收到的测量信号,此处不作具体限定。
需要说明的是,测量信号可以为用于进行TRP测量的特定峰值波束,也可以为用于进行TRP测量的参考波束,此处不作具体限定。其中,参考波束可以为第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)在5G新空口(5G New Radio,5GNR)中定义的同步信号块(Synchronization Signal Block,SSB)。
步骤S120,根据信号功率和信号波长,计算得到测量信号的等效全向辐射功率。
本步骤中,由于在步骤S110中获取到了测量信号的信号功率和信号波长,因此可以根据信号功率和信号波长计算测量信号的等效全向辐射功率,以便于后续步骤可以根据测量信号的等效全向辐射功率计算待测基站的载波信号的总辐射功率。
需要说明的是,等效全向辐射功率(Equivalent Isotropic Radiated Power,EIRP),是指待测基站在某个指定方向上的辐射功率;总辐射功率(Total Radiated Power,TRP),是指待测基站在整个辐射球面的发射总功率。因此,在计算得到辐射球面各个位置的等效全向辐射功率之后,即可根据这些等效全向辐射功率计算得到待测基站的总辐射功率,从而能够实现在外场实地环境中对总辐射功率进行测量的目的。
步骤S130,根据测量信号的等效全向辐射功率、预设的目标方向参数和预设的功率比例因子,计算得到待测基站的载波信号的总辐射功率。
需要说明的是,目标方向参数为待测基站指向功率测量装置的方向性参数,功率比例因子为用于计算测量信号与载波信号的功率比的比例因子。
本步骤中,由于在步骤S120计算得到了测量信号的等效全向辐射功率,因此可以根据测量信号的等效全向辐射功率、预设的目标方向参数和预设的功率比例因子,计算得到待测基站的载波信号的总辐射功率,从而实现在外场实地环境中对总辐射功率进行测量的目的。
需要说明的是,由于功率比例因子为用于计算测量信号与载波信号的功率比的比例因子,因此,根据测量信号和功率比例因子来计算待测基站的载波信号的总辐射功率,可以避免使用待测基站的载波信号来计算载波信号的总辐射功率,从而可以降低对载波信号的正常使用的影响;此外,由于目标方向参数为待测基站指向功率测量装置的方向性参数,因此,根据目标方向参数来计算待测基站的载波信号的总辐射功率,能够解决在外场实地环境中对总辐射功率进行测量时所存在的由于无法准确捕获波束方向而导致测量存在误差的问题。
参照图3所示,本申请的一个实施例,对步骤S120进行进一步的说明,步骤S120可以包括但不限于步骤S121至步骤S123。
步骤S121,获取功率测量装置与待测基站之间的测量距离。
需要说明的是,测量信号的等效全向辐射功率可以根据以下公式(1)计算得到:
Figure PCTCN2022134074-appb-000001
在公式(1)中,
Figure PCTCN2022134074-appb-000002
为测量信号的等效全向辐射功率;P rx为测量信号的信号功率;r为功率测量装置与待测基站之间的测量距离;
Figure PCTCN2022134074-appb-000003
为测量天线的增益参数;λ为测量信号的信号波长;θ 1为测量天线指向待测基站的仰角角度值;
Figure PCTCN2022134074-appb-000004
为测量天线指向待测基站的方位角角度值。
根据公式(1)可知,计算测量信号的等效全向辐射功率时,需要先获取测量信号的信号功率、功率测量装置与待测基站之间的测量距离、测量天线的增益参数和测量信号的信号波长,因此,本步骤中,可以先获取功率测量装置与待测基站之间的测量距离,以便于后续步骤可以根据功率测量装置与待测基站之间的测量距离计算测量信号的等效全向辐射功率。
需要说明的是,获取功率测量装置与待测基站之间的测量距离,可以有不同的实施方式,此处不作具体限定。例如,当操作人员在功率测量装置中录入该测量距离时,功率测量装置可以直接获取该测量距离;又如,功率测量装置中可以预先保存有该测量距离,当功率测量装置被启动或者功率测量装置的测量功能 被触发时,功率测量装置读取预先保存的测量距离;又如,功率测量装置与待测基站之间可以进行通信,并且待测基站预先保存有发射天线的尺寸参数,因此功率测量装置可以向待测基站请求发射天线的尺寸参数,当功率测量装置接收到待测基站发送的发射天线的尺寸参数之后,功率测量装置根据发射天线的尺寸参数计算得到功率测量装置与待测基站之间的测量距离;再如,功率测量装置可以设置有用于发出例如红外线或超声波等的装置,功率测量装置可以通过例如红外线或超声波等方式直接测量功率测量装置与待测基站之间的测量距离。
需要说明的是,根据待测基站的发射天线的尺寸参数计算得到功率测量装置与待测基站之间的测量距离的内容说明,会在后续的实施例中给出,此处不展开描述。
步骤S122,获取功率测量装置的测量天线的增益参数。
根据公式(1)可知,计算测量信号的等效全向辐射功率时,需要先获取测量信号的信号功率、功率测量装置与待测基站之间的测量距离、测量天线的增益参数和测量信号的信号波长,因此,本步骤中,可以先获取测量天线的增益参数,以便于后续步骤可以根据测量天线的增益参数计算测量信号的等效全向辐射功率。
需要说明的是,获取功率测量装置的测量天线的增益参数,可以有不同的实施方式,此处不作具体限定。例如,当操作人员在功率测量装置中录入该增益参数时,功率测量装置可以直接获取该增益参数;又如,功率测量装置中可以预先保存有该增益参数,当功率测量装置被启动或者功率测量装置的测量功能被触发时,功率测量装置读取预先保存的增益参数。
步骤S123,根据测量距离、增益参数、信号功率和信号波长,计算得到测量信号的等效全向辐射功率。
本步骤中,由于在步骤S110中获取到了测量信号的信号功率和信号波长,在步骤S121中获取到了功率测量装置与待测基站之间的测量距离,在步骤S122中获取到了功率测量装置的测量天线的增益参数,因此可以根据测量距离、增益参数、信号功率和信号波长,结合上述公式(1),计算得到测量信号的等效全向辐射功率,以便于后续步骤可以根据测量信号的等效全向辐射功率计算待测基站的载波信号的总辐射功率。
参照图4所示,本申请的一个实施例,对功率测量装置与待测基站之间的测量距离的获取进行进一步的说明,功率测量装置与待测基站之间的测量距离可以根据以下步骤计算得到:
步骤S1211:获取待测基站的发射天线的尺寸参数;
步骤S1212:根据尺寸参数和信号波长,计算得到功率测量装置与待测基站之间的测量距离。
本实施例中,当需要计算功率测量装置与待测基站之间的测量距离时,可以先获取待测基站的发射天线的尺寸参数,然后根据尺寸参数和信号波长,结合如下公式(2),计算得到功率测量装置与待测基站之间的测量距离。
Figure PCTCN2022134074-appb-000005
在公式(2)中,r为功率测量装置与待测基站之间的测量距离;D为发射天线的尺寸参数;λ为测量信号的信号波长。
根据公式(2)可知,计算功率测量装置与待测基站之间的测量距离时,需要先获取发射天线的尺寸参数和测量信号的信号波长,因此,本实施例中,先获取待测基站的发射天线的尺寸参数,然后根据该尺寸参数和测量信号的信号波长,计算得到功率测量装置与待测基站之间的测量距离,以便于后续步骤可以根据该测量距离计算测量信号的等效全向辐射功率。
需要说明的是,获取待测基站的发射天线的尺寸参数,可以有不同的实施方式,此处不作具体限定。例如,当操作人员在功率测量装置中录入该尺寸参数时,功率测量装置可以直接获取该尺寸参数;又如,功率测量装置中可以预先保存有该尺寸参数,当功率测量装置被启动或者功率测量装置的测量功能被触发时,功率测量装置读取预先保存的尺寸参数;又如,功率测量装置与待测基站之间可以进行通信,并且待测基站预先保存有发射天线的尺寸参数,因此功率测量装置可以向待测基站请求发射天线的尺寸参数。
参照图5所示,本申请的一个实施例,对步骤S130进行进一步的说明,步骤S130可以包括但不限于步骤S131和步骤S132。
步骤S131:根据目标方向参数和测量信号的等效全向辐射功率,计算得到测量信号的总辐射功率。
需要说明的是,当需要计算待测基站的载波信号的总辐射功率时,可以先计算测量信号的总辐射功率,然后根据测量信号的总辐射功率计算待测基站的载波信号的总辐射功率。其中,在计算测量信号的总辐射功率时,可以根据测量信号的等效全向辐射功率和预设的目标方向参数,结合如下公式(3),计算得到测量信号的总辐射功率。
Figure PCTCN2022134074-appb-000006
在公式(3)中,TRP test为测量信号的总辐射功率;
Figure PCTCN2022134074-appb-000007
为上述公式(1)中的测量信号的等效全向辐射功率;
Figure PCTCN2022134074-appb-000008
为目标方向参数;θ 2为待测基站指向测量天线的仰角角度值;
Figure PCTCN2022134074-appb-000009
为待测基站指向测量天线的方位角角度值。
需要说明的是,目标方向参数的获取,可以有不同的实施方式,此处不作具体限定。例如,当操作人员在功率测量装置中录入该目标方向参数时,功率测量装置可以直接获取该目标方向参数;又如,功率测量装置中可以预先保存有该目标方向参数,当功率测量装置被启动或者功率测量装置的测量功能被触发时,功率测量装置读取预先保存的目标方向参数;又如,功率测量装置与待测基站之间可以进行通信,并且待测基站预先保存有该目标方向参数,因此功率测量装置可以向待测基站请求该目标方向参数。需要说明的是,目标方向参数的数值,可以由待测基站的制造商提供。
本步骤中,由于目标方向参数为待测基站指向功率测量装置的方向性参数,因此,结合目标方向参数和测量信号的等效全向辐射功率来计算待测基站的载波信号的总辐射功率,能够解决在外场实地环境中对总辐射功率进行测量时所存在的由于无法准确捕获波束方向而导致测量存在误差的问题,从而可以提高测量的准确性以及效率,适用于在容易受到环境条件制约的外场实地环境中对总辐射功率的测量。
步骤S132:根据功率比例因子和测量信号的总辐射功率,计算得到待测基站的载波信号的总辐射功率。
本步骤中,由于在步骤S131中计算得到了测量信号的总辐射功率,因此可以根据功率比例因子和测量信号的总辐射功率,结合如下公式(4),计算得到待测基站的载波信号的总辐射功率。
TRP=TRP test·C       (4)
在公式(4)中,TRP为待测基站的载波信号的总辐射功率;TRP test为上述公式(3)中的测量信号的总辐射功率;C为功率比例因子。
需要说明的是,功率比例因子的获取,可以有不同的实施方式,此处不作具体限定。例如,当操作人员在功率测量装置中录入该功率比例因子时,功率测量装置可以直接获取该功率比例因子;又如,功率测量装置中可以预先保存有该功率比例因子,当功率测量装置被启动或者功率测量装置的测量功能被触发时,功率测量装置读取预先保存的功率比例因子;又如,功率测量装置与待测基站之间可以进行通信,并且待测基站预先保存有该功率比例因子,因此功率测量装置可以向待测基站请求该功率比例因子。需要说明的是,功率比例因子的数值,可以由待测基站的制造商提供。
本步骤中,由于功率比例因子为用于计算测量信号与载波信号的功率比的比例因子,因此,结合功率比例因子和测量信号的总辐射功率来计算待测基站的载波信号的总辐射功率,可以避免使用待测基站的载波信号来计算载波信号的总辐射功率,从而可以降低对载波信号的正常使用的影响,适用于在容易受到环境条件制约的外场实地环境中对总辐射功率的测量。
如图6所示,图6是本申请另一个实施例提供的功率测量方法的流程图,该功率测量方法可以应用于功率测量装置,例如图1所示实施例中的功率测量装置120。该功率测量方法可以应用于待测基站处于正常工作状态,并且网络流量处于低谷时段的场景中,或者,该功率测量方法可以应用于待测基站处于离线状态的场景中。该功率测量方法可以包括但不限于步骤S210、步骤S220以及步骤S230。
步骤S210:获取待测基站发送至多个采样位置的测量信号。
需要说明的是,由于总辐射功率是指待测基站在整个辐射球面的发射总功率,因此当需要计算待测基站的总辐射功率时,可以先在辐射球面的多个采样位置获取测量信号,然后根据在这些采样位置获取到的测量信号计算待测基站的总辐射功率,从而实现在外场实地环境中对总辐射功率进行测量的目的。
需要说明的是,采样位置可以根据待测基站的发射天线在目标测量空间的目标瑞利分辨率而确定得到。需要说明的是,瑞利分辨率是根据瑞利判据(Rayleigh Criterion)而确定的分辨率,瑞利分辨率是极限状态下的分辨率。其中,瑞利判据的内容为:两个非相干点光源,若一个点光源产生的爱里斑的中心正好落在第二个点光源所产生的爱里斑的第一个暗纹上,则这两个非相干点光源是衍射受限系统“刚刚能分辨”的两个点光源。
需要说明的是,目标测量空间可以为角度空间,也可以为归一化波矢空间,还可以为其他类型的空间,可以根据实际应用情况而进行适当的选择,此处并不作具体限定。
需要说明的是,测量信号可以为待测基站利用未使用的资源发送的随机数据,也可以为用于进行TRP测量的特定峰值波束,还可以为用于进行TRP测量的参考波束,此处不作具体限定。其中,当测量信号为待测基站利用未使用的资源发送的随机数据时,待测基站可以基于预设测试策略(例如专用的测试信号方 法)生成随机数据,用以在未使用的资源上传输,从而可以模拟负载载波发送信号。当测量信号为参考波束时,参考波束可以为3GPP在5GNR中定义的同步信号块。
步骤S220:计算各个测量信号的等效全向辐射功率。
本步骤中,由于在步骤S210中获取到了待测基站发送至多个采样位置的测量信号,因此可以计算各个测量信号的等效全向辐射功率,以便于后续步骤中可以根据这些测量信号的等效全向辐射功率计算待测基站的总辐射功率。
需要说明的是,计算测量信号的等效全向辐射功率,可以有不同的实施方式,此处不作具体限定。例如,可以采用前面的步骤S121至步骤S123计算测量信号的等效全向辐射功率。
步骤S230:根据所有测量信号的等效全向辐射功率,计算得到待测基站的总辐射功率。
本步骤中,由于在步骤S220中计算得到了各个测量信号的等效全向辐射功率,因此可以根据所有测量信号的等效全向辐射功率计算待测基站的总辐射功率。
需要说明的是,根据所有测量信号的等效全向辐射功率计算待测基站的总辐射功率,可以有不同的实施方式,此处不作具体限定。例如,可以采用3GPP TS37.843中提供的公式计算测量信号的等效全向辐射功率;也可以先对3GPP TS37.843中提供的公式进行优化,然后利用优化后的公式计算测量信号的等效全向辐射功率。
需要说明的是,利用优化后的公式计算测量信号的等效全向辐射功率的内容说明,会在后续的实施例中给出,此处不展开描述。
需要说明的是,目前标准所提供的在暗室中进行TRP测量的方法中,要求以1°作为步进间距进行测量信号的采样,然后根据采样到的测量信号计算待测基站的总辐射功率,但这需要进行大量的采样处理,例如,如果要在整个辐射球面完成测量信号的采样,需要进行64800次采样,导致测量效率低下,而在本实施例中,通过根据待测基站的发射天线在目标测量空间的目标瑞利分辨率确定多个采样位置,并根据在这些采样位置获取到的测量信号计算待测基站的总辐射功率,由于本实施例并非以1°作为步进间距进行测量信号的采样,因此能够以更少的采样次数实现待测基站的总辐射功率的计算,从而能够提高采样效率,进而能够提高测量效率,特别适用于在容易受到环境条件制约的外场实地环境中对总辐射功率的测量。
参照图7所示,本申请的一个实施例,对目标瑞利分辨率的获取进行进一步的说明,在待测基站的发射天线的尺寸参数为已知的情况下,目标瑞利分辨率可以由以下步骤得到:
步骤S211:获取发射天线的尺寸参数;
步骤S212:获取测量信号的信号波长;
步骤S213:根据尺寸参数和信号波长,计算得到发射天线在目标测量空间的目标瑞利分辨率。
本实施例中,在已知发射天线的尺寸参数的情况下,当需要计算发射天线在目标测量空间的目标瑞利分辨率时,可以先获取发射天线的尺寸参数以及测量信号的信号波长,然后根据尺寸参数和信号波长,计算得到发射天线在目标测量空间的目标瑞利分辨率。
需要说明的是,当目标测量空间为不同类型的测量空间时,根据尺寸参数和信号波长计算发射天线在目标测量空间的目标瑞利分辨率,可以有不同的实施方式,下面以一些例子进行说明。
当目标测量空间为角度空间时,可以根据尺寸参数和信号波长,结合如下公式(5),计算得到发射天线在角度空间的目标瑞利分辨率。
Figure PCTCN2022134074-appb-000010
在公式(5)中,θ r为发射天线在角度空间中仰角方向上的目标瑞利分辨率;
Figure PCTCN2022134074-appb-000011
为发射天线在角度空间中方位角方向上的目标瑞利分辨率;D y为发射天线在水平方向上的最大天线口径;D z为发射天线在垂直方向上的最大天线口径;λ为信号波长。需要说明的是,当θ r
Figure PCTCN2022134074-appb-000012
的取值均较小时,上述公式(5)可以调整为如下公式(6):
Figure PCTCN2022134074-appb-000013
通过公式(6),可以更加简便地计算得到发射天线在角度空间的目标瑞利分辨率,从而可以在一定程度上提高根据目标瑞利分辨率确定采样位置的效率,以便于可以在一定程度上提高待测基站的总辐射功率的计算效率。
当目标测量空间为归一化波矢空间时,可以根据尺寸参数和信号波长,结合如下公式(7),计算得到发射天线在归一化波矢空间的目标瑞利分辨率。
Figure PCTCN2022134074-appb-000014
在公式(7)中,K yr为发射天线在归一化波矢空间中方位角方向上的目标瑞利分辨率;K zr为发射天线在归一化波矢空间中仰角方向上的目标瑞利分辨率;D y为发射天线在水平方向上的最大天线口径;D z为发射天线在垂直方向上的最大天线口径;λ为信号波长。
另外,本申请的一个实施例,对目标瑞利分辨率的获取进行进一步的说明,在目标测量空间为角度空间,并且待测基站的发射天线的尺寸参数为未知的情况下,目标瑞利分辨率可以由以下步骤得到:
获取测量信号的第一零点波束宽度;
根据第一零点波束宽度计算得到发射天线在角度空间的目标瑞利分辨率。
本实施例中,在未知发射天线的尺寸参数的情况下,例如由于不易打开待测基站的发射天线的天线罩而导致无法准确获知发射天线的尺寸参数的情况下,可以在包含最大辐射功率点的球形坐标系的仰角方向上和方位角方向上测量主波束的第一零点波束宽度,然后根据第一零点波束宽度,结合如下公式(8),计算得到发射天线在角度空间的目标瑞利分辨率。
Figure PCTCN2022134074-appb-000015
在公式(8)中,θ r为发射天线在角度空间中仰角方向上的目标瑞利分辨率;
Figure PCTCN2022134074-appb-000016
为发射天线在角度空间中方位角方向上的目标瑞利分辨率;FNBW θ为测量信号在仰角方向上的第一零点波束宽度;
Figure PCTCN2022134074-appb-000017
为测量信号在方位角方向上的第一零点波束宽度。
需要说明的是,第一零点波束宽度(First Null Beam Width,FNBW),又称为主瓣张角,是指天线方向图中包含主瓣的平面内主瓣两侧第一个零点间的夹角。第一零点波束宽度是重要的波瓣图参量,用于描述天线方向性。
另外,本申请的一个实施例,对目标瑞利分辨率的获取进行进一步的说明,在目标测量空间为归一化波矢空间,并且待测基站的发射天线的尺寸参数为未知的情况下,目标瑞利分辨率可以由以下步骤得到:
获取测量信号的第一零点波束宽度;
根据第一零点波束宽度计算得到发射天线在角度空间的候选瑞利分辨率;
对候选瑞利分辨率进行映射处理,得到发射天线在归一化波矢空间的目标瑞利分辨率。
本实施例中,在未知发射天线的尺寸参数的情况下,例如由于不易打开待测基站的发射天线的天线罩而导致无法准确获知发射天线的尺寸参数的情况下,可以在包含最大辐射功率点的球形坐标系的仰角方向上和方位角方向上测量主波束的第一零点波束宽度,然后根据第一零点波束宽度和上述的公式(8),计算得到发射天线在角度空间的候选瑞利分辨率,接着把角度空间中的候选瑞利分辨率映射至归一化波矢空间,得到发射天线在归一化波矢空间的目标瑞利分辨率。
需要说明的是,可以通过如下公式(9),把角度空间中的候选瑞利分辨率映射至归一化波矢空间,从而得到发射天线在归一化波矢空间的目标瑞利分辨率。
Figure PCTCN2022134074-appb-000018
在公式(9)中,K y为发射天线在归一化波矢空间中方位角方向上的目标瑞利分辨率;K z为发射天线在归一化波矢空间中仰角方向上的目标瑞利分辨率;θ为发射天线在角度空间中仰角方向上的目标瑞利分辨率;
Figure PCTCN2022134074-appb-000019
为发射天线在角度空间中方位角方向上的目标瑞利分辨率。
另外,本申请的一个实施例,对采样位置的确定进行进一步的说明,在目标测量空间为角度空间的情况下,采样位置可以由以下步骤得到:
根据目标瑞利分辨率确定采样间距;
根据采样间距在角度空间中确定多个采样位置。
本实施例中,在目标测量空间为角度空间的情况下,当计算得到目标瑞利分辨率之后,可以先根据目标瑞利分辨率确定采样间距,然后根据采样间距在角度空间中确定多个采样位置。
在一些实施例中,可以设置采样间距小于或等于目标瑞利分辨率,例如,在实际应用中,可以设置采样间距等于目标瑞利分辨率。
需要说明的是,例如5G基站,其毫米波大规模阵列天线(即发射天线)的输出信号功率基本集中于包含主波束的前半个辐射球面内,后向辐射相对较小,对总辐射功率的贡献几乎可以忽略,因此可以只在前半个辐射球面内根据采样间距确定多个采样位置,以便于能够在这些采样位置获取待测基站发送的测量信 号,进而能够根据这些测量信号计算待测基站的总辐射功率。
另外,本申请的一个实施例,对采样位置的确定进行进一步的说明,在目标测量空间为归一化波矢空间的情况下,采样位置可以由以下步骤得到:
根据目标瑞利分辨率确定采样间距;
根据采样间距在归一化波矢空间中确定多个候选采样位置;
对各个候选采样位置进行映射处理,得到在角度空间中的多个采样位置。
本实施例中,在目标测量空间为归一化波矢空间的情况下,当计算得到目标瑞利分辨率之后,可以先根据目标瑞利分辨率确定采样间距,然后根据采样间距在归一化波矢空间中确定多个候选采样位置,接着把归一化波矢空间中的候选采样位置映射至角度空间,得到在角度空间中的多个采样位置。
在一些实施例中,可以设置采样间距小于或等于目标瑞利分辨率,例如,在实际应用中,可以设置采样间距等于目标瑞利分辨率。
在一些实施例中,假设采样间距为K step,y和K step,z,其中,K step,y为归一化波矢空间中方位角方向上的采样间距,K step,z为归一化波矢空间中仰角方向上的采样间距,因此可以根据采样间距K step,y和K step,z在归一化波矢空间内均匀采样,得到一组离散值,组成归一化波矢空间内的矢量采样点
Figure PCTCN2022134074-appb-000020
其中,
Figure PCTCN2022134074-appb-000021
Figure PCTCN2022134074-appb-000022
均为系数,K ym为归一化波矢空间中方位角方向上的单位矢量,K zn为归一化波矢空间中仰角方向上的单位矢量;然后,选择
Figure PCTCN2022134074-appb-000023
的矢量(K ym,K zn)作为归一化波矢空间内的均匀采样点(即候选采样位置);接着,利用上述公式(9)将归一化波矢空间内的均匀采样点(K ym,K zn)映射为角度空间内的采样点
Figure PCTCN2022134074-appb-000024
即可得到在角度空间中的多个采样位置。值得注意的是,θ n
Figure PCTCN2022134074-appb-000025
在角度空间内是非均匀分布的。
参照图8所示,本申请的一个实施例,对步骤S220进行进一步的说明,步骤S220可以包括但不限于以下步骤:
步骤S221:获取各个测量信号的信号功率和信号波长;
步骤S222:根据信号功率和信号波长,计算得到各个测量信号的等效全向辐射功率。
需要说明的是,获取各个测量信号的信号功率和信号波长,可以有不同的实施方式,此处不作具体限定。例如,可以在接收到由待测基站发送的测量信号时,获取其信号功率和信号频率,然后根据信号频率计算得到信号波长;又如,测量信号的信号功率和信号波长可以在执行步骤S221之前预先协商确定,因此,当接收到由待测基站发送的测量信号时,即可基于预先协商确定的结果获取测量信号的信号功率和信号波长。
需要说明的是,由于在步骤S221中获取到了各个测量信号的信号功率和信号波长,因此可以根据信号功率和信号波长,计算各个测量信号的等效全向辐射功率,以便于后续步骤中可以根据这些测量信号的等效全向辐射功率计算待测基站的总辐射功率。
参照图9所示,本申请的一个实施例,对步骤S222进行进一步的说明,步骤S222可以包括但不限于以下步骤:
步骤S2221:获取待测基站与各个采样位置之间的测量距离;
步骤S2222:获取测量天线的增益参数,其中,测量天线为用于接收测量信号的天线;
步骤S2223:根据测量距离、增益参数、信号功率和信号波长,计算得到各个测量信号的等效全向辐射功率。
需要说明的是,由于各个采样位置均为待测基站的辐射球面内的位置,因此待测基站与各个采样位置之间的测量距离均相等,也就是说,只需要获取待测基站与其中一个采样位置之间的测量距离,即可得到待测基站与各个采样位置之间的测量距离。
需要说明的是,获取待测基站与采样位置之间的测量距离,可以有不同的实施方式,此处不作具体限定。例如,当操作人员在采样位置往功率测量装置中录入该测量距离时,功率测量装置可以直接获取该测量距离;又如,功率测量装置中可以预先保存有该测量距离,当功率测量装置被启动或者功率测量装置的测量功能被触发时,功率测量装置读取预先保存的测量距离;又如,设置在采样位置的功率测量装置与待测基站之间可以进行通信,并且待测基站预先保存有发射天线的尺寸参数,因此功率测量装置可以向待测基站请求发射天线的尺寸参数,当功率测量装置接收到待测基站发送的发射天线的尺寸参数之后,功率测量装置根据发射天线的尺寸参数计算得到待测基站与采样位置之间的测量距离;再如,功率测量装置可以设置有用于发出例如红外线或超声波等的装置,设置在采样位置的功率测量装置可以通过例如红外线或超 声波等方式直接测量待测基站与采样位置之间的测量距离。
需要说明的是,获取测量天线的增益参数,可以有不同的实施方式,此处不作具体限定。例如,当操作人员在功率测量装置中录入该增益参数时,功率测量装置可以直接获取该增益参数;又如,功率测量装置中可以预先保存有该增益参数,当功率测量装置被启动或者功率测量装置的测量功能被触发时,功率测量装置读取预先保存的增益参数。
需要说明的是,当在步骤S221中获取到了各个测量信号的信号功率和信号波长,在步骤S2221中获取到了待测基站与各个采样位置之间的测量距离,在步骤S2222中获取到了测量天线的增益参数,因此可以根据测量距离、增益参数、信号功率和信号波长,结合上述公式(1),计算得到各个测量信号的等效全向辐射功率,以便于后续步骤可以根据这些测量信号的等效全向辐射功率计算待测基站的总辐射功率。
另外,本申请的一个实施例,对待测基站与各个采样位置之间的测量距离的获取进行进一步的说明,待测基站与各个采样位置之间的测量距离可以根据以下步骤计算得到:
获取发射天线的尺寸参数;
获取各个测量信号的信号波长;
根据尺寸参数和信号波长,计算得到待测基站与各个采样位置之间的测量距离。
需要说明的是,当获取到发射天线的尺寸参数以及各个测量信号的信号波长之后,可以根据尺寸参数、信号波长以及上述公式(2),计算得到待测基站与各个采样位置之间的测量距离。
需要说明的是,获取发射天线的尺寸参数,可以有不同的实施方式,此处不作具体限定。例如,当操作人员在功率测量装置中录入该尺寸参数时,功率测量装置可以直接获取该尺寸参数;又如,功率测量装置中可以预先保存有该尺寸参数,当功率测量装置被启动或者功率测量装置的测量功能被触发时,功率测量装置读取预先保存的尺寸参数;又如,功率测量装置与待测基站之间可以进行通信,并且待测基站预先保存有发射天线的尺寸参数,因此功率测量装置可以向待测基站请求发射天线的尺寸参数。
参照图10所示,本申请的一个实施例,对步骤S230进行进一步的说明,在目标测量空间为角度空间的情况下,步骤S230可以包括但不限于以下步骤:
步骤S231:获取各个测量信号的仰角参数;
步骤S232:根据采样间距、所有仰角参数和所有测量信号的等效全向辐射功率,计算得到待测基站的总辐射功率。
需要说明的是,测量信号的仰角参数,是指测量信号在以待测基站(或者发射天线)作为坐标原点的球坐标系中的角度参数。当获取到采样间距、所有仰角参数和所有测量信号的等效全向辐射功率之后,可以根据如下公式(10)计算得到待测基站的总辐射功率。
Figure PCTCN2022134074-appb-000026
需要说明的是,根据前面的内容描述可知,由于采样位置基本集中于前半个辐射球面内,因此可以对3GPP TS37.843中提供的用于计算总辐射功率的公式进行优化,从而得到适用于在外场实地环境对总辐射功率进行计算的公式(10)。在公式(10)中,TRP为待测基站的总辐射功率;
Figure PCTCN2022134074-appb-000027
为不同采样位置的测量信号的等效全向辐射功率;sin(θ n)为不同测量信号的仰角参数;θ n为不同采样位置相对于待测基站(或者发射天线)的仰角角度值;
Figure PCTCN2022134074-appb-000028
为不同采样位置相对于待测基站(或者发射天线)的方位角角度值;
Figure PCTCN2022134074-appb-000029
其中,θ step为仰角方向上采样间距,
Figure PCTCN2022134074-appb-000030
为方位角方向上采样间距。
本实施例中,由于是先获取采样间距、仰角参数和测量信号的等效全向辐射功率,然后根据采样间距、所有仰角参数和所有测量信号的等效全向辐射功率,计算得到待测基站的总辐射功率,因此,本实施例能够减少采样次数,从而能够提高总辐射功率的计算效率。以30GHz的毫米波信号和8×16排列的阵列天线(即发射天线)为例,在现有标准提供的暗室测量的方式中,需要采用1°作为步进间距进行均匀采样,对于半个辐射球面来说,需要进行32400次(180×180=32400)的测量信号的采样。而在本实施例中,由于定义了D y为阵列天线在水平方向的最大天线口径,定义了D z为阵列天线在垂直方向的最大天线口径,λ为信号波长,而阵列天线中的天线单元之间一般间隔λ/2设置,因此,M×N的阵列天线的边长分别为D y≈Nλ/2以及D z≈Mλ/2,例如,8×16排列的阵列天线的尺寸可表示为D y≈8λ和D z≈4λ,因此,以角度空间的瑞利分辨率进行均匀采样时,半个辐射球面内的采样次数不超过338次(26×13=338),所 以,本实施例能够大幅提升采样效率。
参照图11所示,本申请的一个实施例,对步骤S230进行进一步的说明,在目标测量空间为归一化波矢空间的情况下,步骤S230可以包括但不限于以下步骤:
步骤S233:获取各个测量信号的仰角参数和方位角参数;
步骤S234:根据采样间距、所有仰角参数、所有方位角参数和所有测量信号的等效全向辐射功率,计算得到待测基站的总辐射功率。
需要说明的是,测量信号的仰角参数,是指测量信号在以待测基站(或者发射天线)作为坐标原点的球坐标系中的仰角方向上的角度参数;测量信号的方位角参数,是指测量信号在以待测基站(或者发射天线)作为坐标原点的球坐标系中的方位角方向上的角度参数。当获取到采样间距、所有仰角参数、所有方位角参数和所有测量信号的等效全向辐射功率之后,可以根据如下公式(11)计算得到待测基站的总辐射功率。
Figure PCTCN2022134074-appb-000031
在公式(11)中,K step,y为归一化波矢空间中方位角方向上的采样间距;K step,z为归一化波矢空间中仰角方向上的采样间距;
Figure PCTCN2022134074-appb-000032
为采样点的归一化波矢,关系式
Figure PCTCN2022134074-appb-000033
指的是在
Figure PCTCN2022134074-appb-000034
中只取其模值小于1的采样点,即进行了模值小于1的筛选;θ n为归一化波矢离散采样点
Figure PCTCN2022134074-appb-000035
所对应的角度空间中的仰角角度值,对应地,sin(θ n)为仰角参数;
Figure PCTCN2022134074-appb-000036
为归一化波矢离散采样点
Figure PCTCN2022134074-appb-000037
所对应的角度空间中的方位角角度值,对应地,
Figure PCTCN2022134074-appb-000038
为方位角参数;
Figure PCTCN2022134074-appb-000039
为角度空间中离散采样点
Figure PCTCN2022134074-appb-000040
的等效全向辐射功率。需要说明的是,θ n
Figure PCTCN2022134074-appb-000041
还可以通过上述的公式(9)进行变换,从而可以采用归一化波矢
Figure PCTCN2022134074-appb-000042
在仰角方向上的分量K ym表示θ n,采用归一化波矢
Figure PCTCN2022134074-appb-000043
在方位角方向上的分量K zm表示
Figure PCTCN2022134074-appb-000044
本实施例中,由于是先获取采样间距、所有仰角参数、所有方位角参数和所有测量信号的等效全向辐射功率,然后根据采样间距、所有仰角参数、所有方位角参数和所有测量信号的等效全向辐射功率,计算得到待测基站的总辐射功率,因此,本实施例能够排除冗余的采样点,从而能够提高采样的计算效率。以30GHz的毫米波信号和8×16排列的阵列天线(即发射天线)为例,在现有标准提供的暗室测量的方式中,需要采用1°作为步进间距进行均匀采样,对于半个辐射球面来说,需要进行32400次(180×180=32400)的测量信号的采样。而在本实施例中,由于定义了D y为阵列天线在水平方向的最大天线口径,定义了D z为阵列天线在垂直方向的最大天线口径,λ为信号波长,而阵列天线中的天线单元之间一般间隔λ/2设置,因此,M×N的阵列天线的边长分别为D y≈Nλ/2以及D z≈Mλ/2,例如,8×16排列的阵列天线的尺寸可表示为D y≈8λ和D z≈4λ,因此,可以计算得到归一化波矢空间的瑞利分辨率为K yr=λ/D y=1/8,K zr=λ/D z=1/4,根据上述的公式(9)把归一化波矢空间中的瑞利分辨率转换成对应的角度空间中的瑞利分辨率后,计算可知半个辐射球面内的采样次数不超过75次(25×3=75),所以,本实施例能够大幅减少采样的数量,从而能够大幅提升总辐射功率的测量效率。
另外,本申请的一个实施例,对该功率测量方法进行进一步的说明,在执行步骤S210之前,该功率测量方法还可以包括但不限于以下步骤:
根据预设测试策略控制待测基站发送测量信号,其中,测量信号为待测基站利用未使用的资源发送的随机数据;
或者,
利用测试终端向待测基站发起流量请求,使得待测基站发送测量信号。
需要说明的是,在待测基站处于正常工作状态,并且网络流量处于低谷时段的场景中,或者,在待测基站处于离线状态的场景中,会出现网络流量低或无网络流量的情况,为了能够有效实现针对待测基站的总辐射功率的测试,可以采用专有测试配置方式或者终端发起流量方式,使得待测基站能够发出对应的测量信号。
在专有测试配置方式中,网络运营商可以启用供应商专用的测试信号方法来生成随机数据,使得待测 基站在未使用的资源上传输该随机数据,以模拟负载载波的发送。需要说明的是,该随机数据由网络运营商控制,可以在功率测量装置和网络运营商之间建立协调,以允许执行特定的测试方法。
在终端发起流量方式中,可以采用一个或多个测试终端通过下载大量数据的方式来迫使待测基站调度所有资源,保证稳定的流量数据的传输,维持波束信号的稳定。需要说明的是,测试终端可以配备网络运营商专用的用户识别模块(Subscriber Identification Module,SIM),并能够在待测基站的满载波带宽下接收数据,以保证载波满载。测试终端发起流量后,待测基站的波束信号会指向测试终端,从而能够实现针对待测基站的总辐射功率的计算。
为了更加清楚的说明本申请实施例所提供的功率测量方法的处理流程,下面结合应用场景给出实施例以进行说明。
本申请实施例提出的功率测量方法及其装置、存储介质、程序产品,能够适用于多种应用场景,尤其适用于外场实地环境,可以降低测量误差、提高测量效率。下面对外场实地环境做进一步说明。
在外场实地环境中测量TRP,由于被测试的基站位置是固定的,测量装置需要围绕基站在其球面空间内移动并接收信号。本申请实施例的功率装置可以为具备接收无线信号以及根据无线信号计算总辐射功率等功能的可以在三维空间进行移动的设备,也可以为具备接收无线信号以及根据无线信号计算总辐射功率等功能的且能独立设置在可以在三维空间进行移动设备上的装置,还可以为具备接收无线信号以及根据无线信号计算总辐射功率等功能的且信号接收模块能独立设置在可以在三维空间进行移动设备上的装置。
在该应用场景的TRP测量还需要在远场条件下进行,基于基站天线的尺寸和频率的波长来计算近场和远场发射区,并在远场区指定信号分析仪(信号分析模块)和接收测试天线(信号接收模块)的位置。实际测量时,可以根据测量精度的要求选择合适的测试距离,例如可以根据上述的公式(2)计算远场最小测试距离。
需要说明的是,当外场测试距离增加,信号衰减和不确定因素也随之增加,因此,在可实现的情况下,应将远场测试位置指定为与近场相邻的区域。
在外场实地环境中测量TRP,基站处于在线模式时,在网络流量高的情况下,难以保证测量过程中波束方向的固定,即无法保证测量所需的稳定信号;而在网络流量低的情况下,难以保证载波满载和最大功率的测量条件。基站处于离线模式时,对于固定波束的测量需要考虑减少采样点数,提高测量效率及测量精度。本申请实施例的测量方法可以解决上述问题。
当基站处于在线模式时,即基站处于正常工作状态,保持在线运行。正常运行的基站,各时段的网络流量不同,网络部署初期,流量负载低,当越来越多的UE在该频带使用时,流量将逐渐增加。TRP测量需要根据网络流量高低情况进行区分。
在基站运行的高峰时段进行TRP测量的应用场景中,当数据被调度将发生载波满载并配置最大功率的情况。正常的高峰运行状态下,业务信号时变,波束方向不固定。若信号稳定,则可通过在测量采样点位置大量部署携带接收测试天线的移动设备(如无人机)进行高峰时段的周期性瞬时测量。同时,需要长时间的均值测量以保证更准确地捕获由于波束方向变化而引起的时变发射,所需时间将根据基站利用率和测试终端的分布而变化。因此,因信号不稳定或测量设备条件受限而无法进行大量采样点的EIRP测量时,可转换为单点EIRP测量,将其用于外推全载波功率,或者转换为等效TRP。从峰值波束或参考波束测量TRP的等效值,该参考波束可以是如3GPP在5GNR中定义的SSB。测量SSB波束来推断出全载波功率的结果或转换为外场TRP的等效值。5G AAS将以恒定功率在多个波束预设方向周期性地传输SSB集,测量SSB波束的最佳设置是在测量时间内采用可同步到SSB集的实时分析仪,或者诸如移动扫描仪之类的特殊设备来解调信号。
测试信号到测量天线的EIRP,可以表示为
Figure PCTCN2022134074-appb-000045
定义可参考公式(1)中的相关描述。根据EIRP,测试信号的TRP根据公式(3)获得,载波TRP的计算可根据公式(4)计算得到。
本申请实施例中,在基站运行的低谷时段进行TRP测量时,会出现网络流量低或无网络流量的情况,对此可采用专有测试配置和测试终端发起流量两种技术方法。专有测试配置中,运营商可以启用供应商专用的测试信号方法来生成随机数据,用于在未使用的资源上传输,以模拟负载载波。该测试信号由网络运营商控制,可以在接收信号分析仪和运营商之间建立协调,以允许特定的测试方法。测试终端发起流量则需要由一个或多个测试终端通过下载大量数据来迫使基站调度所有资源,在此期间保证稳定流量数据传输,维持波束信号稳定。需要说明的是,测试终端应配备运营商专用的SIM卡,并能够在基站满载波带宽下接收数据,以此保证载波满载。测试终端发起流量后,5G AAS基站波束方向指向测试终端,从而可以对固定指向的波束信号进行测量。
在线模式低谷时段两种测量方法步骤相同:首先,设置测试天线和测试终端的位置,最佳位置为被测基站主波束区域;然后,通过测试终端下载大量测试数据,并保持高吞吐量和传输稳定性;最后,使用测试设备进行信号测量。
当基站处于离线模式时,即基站处于非工作状态,将其设置为离线测试模式,基站的功率电平和天线辐射方向图在整个测量过程中都需固定不变。测试模式下被测基站可以设置为满功率发射,测试终端需下载大量测试信号数据并保持数据传输稳定,测试天线通过在被测设备(Equipment Under Test,EUT)辐射球面内多个采样点处采集大量测量结果来计算得到TRP,EUT在测量期间需要产生稳定的信号。为了避免影响正常业务,运营商必须在基站完全运行之前执行测试。
本申请一实施例中的测量采样方法,需定义相关参考坐标系。参照图12所示,图12是根据本实施例给出的以EUT上的阵列天线为参考点的空间坐标系示意图。图中的x轴与天线阵面法线方向一致,y轴和z轴分别对应水平和垂直方向。图中包含两种空间坐标系,一种是角度空间,即利用球坐标系中的来表示,其中θ和
Figure PCTCN2022134074-appb-000046
分别为仰角和方位角,(90°,0°)即表示x轴方向。另一种是归一化波矢空间,即用笛卡尔坐标系中的来表示,其中K y和K z分别为归一化波矢在y轴和z轴上的投影,(0,0)即表示x轴方向。角度空间和归一化波矢空间存在相应的空间变换关系。
在本申请实施例中,在线运行模式低谷时段及离线测试模式下均采用两种测量采样方法:一种是在角度空间使用等角度间距的采样方法,称作角度空间采样方法;另一种为在归一化波矢空间进行等间距的采样方法,该采样方法在角度空间表现为不等间距,称作波矢空间采样方法。下面分别对两种采样方法进行详细说明。
角度空间采样方法是在传统角度空间内采样EIRP,由此计算TRP。此方法可在未获取AAS先验信息(例如天线增益或方向性)的情况下实施,基站需要在测量期间产生稳定信号。
参照图13所示,图13是本申请一个实施例提供的离线测试模式角度空间采样方法流程图。该采样方法可以包括但不限于步骤S310、步骤S320以及步骤S330。
步骤310,确定阵列天线在角度空间的瑞利分辨率。
需要说明的是,可以根据阵列天线的阵列尺寸是否已知,采用不同的方式确定阵列天线在角度空间的瑞利分辨率。
当阵列天线的阵列尺寸已知时,根据所述阵列天线的阵列尺寸和信号波长确定该阵列天线在角度空间的瑞利分辨率。按照如公式(5)确定阵列天线在角度空间的瑞利分辨率。在θ r
Figure PCTCN2022134074-appb-000047
取值较小时,可以按照如公式(6)确定该阵列天线在角度空间的瑞利分辨率。
当阵列天线的阵列尺寸未知时,确定第一零点波束宽度,根据FNBW确定阵列天线在角度空间的瑞利分辨率。对于无法准确获知天线阵列尺寸的情况(比如不易打开EUT天线罩),可以在包含最大辐射功率点的球形坐标系的俯仰面上和方位面上测量主波束的FNBW。然后参公式(8)根据FNBW确定阵列天线在角度空间的瑞利分辨率。
步骤320,根据瑞利分辨率设置采样点的步进采样间距。
在一实施例中,设置采样点的步进采样间距小于等于所述阵列天线在球形坐标系θ和
Figure PCTCN2022134074-appb-000048
方向的瑞利分辨率θ r
Figure PCTCN2022134074-appb-000049
即θ step≤θ r,
Figure PCTCN2022134074-appb-000050
在一实施例中,设置采样点的步进采样间距等于所述瑞利分辨率。
步骤330,根据步进采样间距确定采样点,在采样点位置测量EIRP,根据EIRP确定TRP。
确定球坐标系中的采样点后,在采样点位置进行测量。对于高频5G基站,其毫米波大规模阵列天线的输出信号功率基本集中于包含主波束的前半个球面,后向辐射相对较小,对TRP的贡献可以忽略,故后半球面不再取值。
本申请实施例所述的角度空间采样方法,能够减少采样点数,提高计算效率。以30GHz的毫米波信号和8×16排列的阵列天线为例,暗室中毫米波常规测量方法采用1°步进间距均匀采样,半球面采样需要180×180=32400次采样。本申请实施例中,定义了D y和D z分别为阵列天线在水平方向和垂直方向的天线最大口径,λ为信号波长。阵列天线中单元间隔一般为λ/2,M×N的阵列边长分别为D y≈Nλ/2,D z≈Mλ/2。8×16排列的阵列天线尺寸可表示为:D y≈8λ和D z≈4λ。因此,以角度空间的瑞利分辨率进行均匀采样,半球面采样不超过26×13=338次采样,采样效率大幅提升。
波矢空间采样方法引入了归一化波矢空间的概念。该方法首先在归一化波矢空间内求取均匀采样点,然后通过变换公式计算角度空间内对应的非均匀采样点。实现了采样点数的压缩。此方法需获取波束大致方向,方向波动在第一零陷角范围内,基站需要在测量期间产生稳定信号。
是在传统角度空间内采样EIRP,由此计算TRP。此方法可在未获取AAS先验信息(例如天线增益或方向性)的情况下实施,基站需要在测量期间产生稳定信号。
该方法在归一化波矢空间(K y,K z)内均匀采样。归一化波矢空间(K y,K z)与角度空间的变换关系如公式(9)。
参照图14所示,图14是本申请一个实施例提供的离线测试模式波矢空间采样方法流程图。该采样方法可以包括但不限于步骤S410、步骤S420、步骤S430、步骤S440以及步骤S450。
步骤410,确定阵列天线在归一化波矢空间的瑞利分辨率。
需要说明的是,可以根据阵列天线的阵列尺寸是否已知,采用不同的方式确定阵列天线在波矢空间的瑞利分辨率。
当阵列天线的阵列尺寸已知时,根据阵列天线的阵列尺寸和信号波长确定该阵列天线在波矢空间的瑞利分辨率。按照如公式(7)确定阵列天线在角度空间的瑞利分辨率。
当阵列天线的阵列尺寸未知时,确定所述阵列天线在角度空间的瑞利分辨率,将角度空间的瑞利分辨率转换为波矢空间的瑞利分辨率。
确定第一零点波束宽度,根据FNBW确定阵列天线在角度空间的瑞利分辨率。对于无法准确获知天线阵列尺寸的情况(比如不易打开EUT天线罩),可以在包含最大辐射功率点的球形坐标系的俯仰面上和方位面上测量主波束的FNBW。然后参公式(8)根据FNBW确定阵列天线在角度空间的瑞利分辨率。
步骤420,根据瑞利分辨率确定所述阵列天线在归一化波矢空间内采样点的采样间距。
需要说明的是,在一实施例中,设置所述阵列天线在归一化波矢空间内采样点的步进采样间距K step,y,K step,z小于等于所述瑞利分辨率K yr,K zr,即K step,y≤K yr,K step,z≤K zr
在一实施例中,设置采样点的步进采样间距等于瑞利分辨率。
步骤430,根据采样间距确定归一化波矢空间内的均匀采样点(K ym,K zn)。
在一实施例中,根据采样间距K step,y,K step,z在归一化波矢空间内均匀采样,得到一组离散值,组成归一化波矢空间的矢量采样点
Figure PCTCN2022134074-appb-000051
选择
Figure PCTCN2022134074-appb-000052
的矢量(K ym,K zn)作为归一化波矢空间内的均匀采样点。
步骤440,根据归一化波矢空间内的均匀采样点确定角度空间内对应的非均匀采样点
Figure PCTCN2022134074-appb-000053
在一实施例中,通过归一化波矢空间和角度空间的变换公式(9)确定归一化波矢空间的均匀采样点(K ym,K zn)在角度空间对应的采样点
Figure PCTCN2022134074-appb-000054
其中θ n
Figure PCTCN2022134074-appb-000055
在角度空间是非均匀分布的。
步骤450,在角度空间按照球坐标系中的非均匀采样点位置测量EIRP,根据EIRP确定TRP。
在一实施例中,按公式(11)确定TRP。
公式(11)也可以在波矢空间进行表述,此时参数θ n
Figure PCTCN2022134074-appb-000056
可通过空间变换公式
Figure PCTCN2022134074-appb-000057
K z=cosθ,用归一化波矢
Figure PCTCN2022134074-appb-000058
在y和z方向上的分量K ym和K zm表示。
本申请实施例所述的波矢空间采样方法,能够排除冗余采样点,提高采样计算效率。类似的,以30GHz的毫米波信号和8×16排列的阵列天线为例,暗室中毫米波常规测量方法采用1°步进间距均匀采样,半球面采样需要180×180=32400次采样。本申请实施例中,定义了D y和D z分别为阵列天线在水平方向和垂直方向的天线最大口径,λ为信号波长。阵列天线中单元间隔一般为λ/2,M×N的阵列边长分别为D y≈Nλ/2,D z≈Mλ/2。8×16排列的阵列天线尺寸可表示为:D y≈8λ和D z≈4λ。计算可得归一化波矢空间的瑞利分辨率为:K yr=λ/D y=1/8,K zr=λ/D z=1/4,根据公式(9)转换为对应的角度空间瑞利分辨率后,计算可知半球面采样不超过25×3=75次采样,采样数量大幅减少,测量效率大幅提升。
另外,本申请的一个实施例还公开了一种功率测量装置,该功率测量装置包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如前面任意实施例中的功率测量方法。
另外,本申请的一个实施例还公开了一种计算机可读存储介质,其中存储有计算机可执行指令,计算机可执行指令用于执行如前面任意实施例中的功率测量方法。
此外,本申请的一个实施例还公开了一种计算机程序产品,包括计算机程序或计算机指令,计算机程 序或计算机指令存储在计算机可读存储介质中,计算机设备的处理器从计算机可读存储介质读取计算机程序或计算机指令,处理器执行计算机程序或计算机指令,使得计算机设备执行如前面任意实施例中的功率测量方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的一些实施进行了说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请范围的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (19)

  1. 一种功率测量方法,应用于功率测量装置,所述功率测量方法包括:
    获取由待测基站发送的测量信号的信号功率和信号波长;
    根据所述信号功率和所述信号波长,计算得到所述测量信号的等效全向辐射功率;
    根据所述测量信号的等效全向辐射功率、预设的目标方向参数和预设的功率比例因子,计算得到所述待测基站的载波信号的总辐射功率;
    其中,所述目标方向参数为所述待测基站指向所述功率测量装置的方向性参数,所述功率比例因子为用于计算所述测量信号与所述载波信号的功率比的比例因子。
  2. 根据权利要求1所述的功率测量方法,其中,所述根据所述信号功率和所述信号波长,计算得到所述测量信号的等效全向辐射功率,包括:
    获取所述功率测量装置与所述待测基站之间的测量距离;
    获取所述功率测量装置的测量天线的增益参数;
    根据所述测量距离、所述增益参数、所述信号功率和所述信号波长,计算得到所述测量信号的等效全向辐射功率。
  3. 根据权利要求2所述的功率测量方法,其中,所述测量距离由以下步骤得到:
    获取所述待测基站的发射天线的尺寸参数;
    根据所述尺寸参数和所述信号波长,计算得到所述功率测量装置与所述待测基站之间的测量距离。
  4. 根据权利要求1所述的功率测量方法,其中,所述根据所述测量信号的等效全向辐射功率、预设的目标方向参数和预设的功率比例因子,计算得到所述待测基站的载波信号的总辐射功率,包括:
    根据所述目标方向参数和所述测量信号的等效全向辐射功率,计算得到所述测量信号的总辐射功率;
    根据所述功率比例因子和所述测量信号的总辐射功率,计算得到所述待测基站的载波信号的总辐射功率。
  5. 一种功率测量方法,包括:
    获取待测基站发送至多个采样位置的测量信号,其中,所述采样位置根据所述待测基站的发射天线在目标测量空间的目标瑞利分辨率而确定得到;
    计算各个所述测量信号的等效全向辐射功率;
    根据所有所述测量信号的等效全向辐射功率,计算得到所述待测基站的总辐射功率。
  6. 根据权利要求5所述的功率测量方法,其中,所述目标瑞利分辨率由以下步骤得到:
    获取所述发射天线的尺寸参数;
    获取所述测量信号的信号波长;
    根据所述尺寸参数和所述信号波长,计算得到所述发射天线在所述目标测量空间的目标瑞利分辨率。
  7. 根据权利要求5所述的功率测量方法,其中,所述目标测量空间为角度空间,所述目标瑞利分辨率由以下步骤得到:
    获取所述测量信号的第一零点波束宽度;
    根据所述第一零点波束宽度计算得到所述发射天线在所述角度空间的目标瑞利分辨率。
  8. 根据权利要求5所述的功率测量方法,其中,所述目标测量空间为归一化波矢空间,所述目标瑞利分辨率由以下步骤得到:
    获取所述测量信号的第一零点波束宽度;
    根据所述第一零点波束宽度计算得到所述发射天线在角度空间的候选瑞利分辨率;
    对所述候选瑞利分辨率进行映射处理,得到所述发射天线在所述归一化波矢空间的目标瑞利分辨率。
  9. 根据权利要求5所述的功率测量方法,其中,所述目标测量空间为角度空间,所述采样位置由以下步骤得到:
    根据所述目标瑞利分辨率确定采样间距;
    根据所述采样间距在所述角度空间中确定多个采样位置。
  10. 根据权利要求5所述的功率测量方法,其中,所述目标测量空间为归一化波矢空间,所述采样位置由以下步骤得到:
    根据所述目标瑞利分辨率确定采样间距;
    根据所述采样间距在所述归一化波矢空间中确定多个候选采样位置;
    对各个所述候选采样位置进行映射处理,得到在角度空间中的多个采样位置。
  11. 根据权利要求5所述的功率测量方法,其中,所述计算各个所述测量信号的等效全向辐射功率,包括:
    获取各个所述测量信号的信号功率和信号波长;
    根据所述信号功率和所述信号波长,计算得到各个所述测量信号的等效全向辐射功率。
  12. 根据权利要求11所述的功率测量方法,其中,所述根据所述信号功率和所述信号波长,计算得到各个所述测量信号的等效全向辐射功率,包括:
    获取所述待测基站与各个所述采样位置之间的测量距离;
    获取测量天线的增益参数,其中,所述测量天线为用于接收所述测量信号的天线;
    根据所述测量距离、所述增益参数、所述信号功率和所述信号波长,计算得到各个所述测量信号的等效全向辐射功率。
  13. 根据权利要求12所述的功率测量方法,其中,所述测量距离由以下步骤得到:
    获取所述发射天线的尺寸参数;
    获取各个所述测量信号的信号波长;
    根据所述尺寸参数和所述信号波长,计算得到所述待测基站与各个所述采样位置之间的测量距离。
  14. 根据权利要求9所述的功率测量方法,其中,所述根据所有所述测量信号的等效全向辐射功率,计算得到所述待测基站的总辐射功率,包括:
    获取各个所述测量信号的仰角参数;
    根据所述采样间距、所有所述仰角参数和所有所述测量信号的等效全向辐射功率,计算得到所述待测基站的总辐射功率。
  15. 根据权利要求10所述的功率测量方法,其中,所述根据所有所述测量信号的等效全向辐射功率,计算得到所述待测基站的总辐射功率,包括:
    获取各个所述测量信号的仰角参数和方位角参数;
    根据所述采样间距、所有所述仰角参数、所有所述方位角参数和所有所述测量信号的等效全向辐射功率,计算得到所述待测基站的总辐射功率。
  16. 根据权利要求5所述的功率测量方法,其中,所述获取待测基站发送至多个采样位置的测量信号之前,所述功率测量方法还包括:
    根据预设测试策略控制所述待测基站发送所述测量信号,其中,所述测量信号为所述待测基站利用未使用的资源发送的随机数据;
    或者,
    利用测试终端向所述待测基站发起流量请求,使得所述待测基站发送所述测量信号。
  17. 一种功率测量装置,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求1至16任意一项所述的功率测量方法。
  18. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至16任意一项所述的功率测量方法。
  19. 一种计算机程序产品,包括计算机程序或计算机指令,其中,所述计算机程序或所述计算机指令存储在计算机可读存储介质中,计算机设备的处理器从所述计算机可读存储介质读取所述计算机程序或所述计算机指令,所述处理器执行所述计算机程序或所述计算机指令,使得所述计算机设备执行如权利要求1至16任意一项所述的功率测量方法。
PCT/CN2022/134074 2021-12-10 2022-11-24 功率测量方法及其装置、存储介质、程序产品 WO2023103798A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247013562A KR20240065300A (ko) 2021-12-10 2022-11-24 전력 측정 방법 및 이의 장치, 저장 매체, 프로그램 제품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111510550.4A CN116260531A (zh) 2021-12-10 2021-12-10 功率测量方法及其装置、存储介质、程序产品
CN202111510550.4 2021-12-10

Publications (1)

Publication Number Publication Date
WO2023103798A1 true WO2023103798A1 (zh) 2023-06-15

Family

ID=86684946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134074 WO2023103798A1 (zh) 2021-12-10 2022-11-24 功率测量方法及其装置、存储介质、程序产品

Country Status (3)

Country Link
KR (1) KR20240065300A (zh)
CN (1) CN116260531A (zh)
WO (1) WO2023103798A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116539952A (zh) * 2023-07-05 2023-08-04 北京中成康富科技股份有限公司 基于物联网的毫米波治疗仪功率智能采样方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108923863A (zh) * 2018-07-26 2018-11-30 Oppo广东移动通信有限公司 设备等效全向辐射功率测量方法、装置、设备及介质
CN110460400A (zh) * 2018-05-07 2019-11-15 中兴通讯股份有限公司 一种阵列天线总辐射功率的测量方法、装置和系统
JP2020024165A (ja) * 2018-08-08 2020-02-13 株式会社Nttドコモ 放射電力推定方法
CN112083234A (zh) * 2019-06-14 2020-12-15 中兴通讯股份有限公司 阵列天线总辐射功率测量方法、装置以及计算机存储介质
CN112702126A (zh) * 2020-12-24 2021-04-23 京信网络系统股份有限公司 全向辐射功率测试设备、系统、方法、装置和存储介质
WO2021099498A1 (de) * 2019-11-20 2021-05-27 Rohde & Schwarz Gmbh & Co. Kg Messgerät und messverfahren zur bestimmung einer gesamten strahlungsleistung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110460400A (zh) * 2018-05-07 2019-11-15 中兴通讯股份有限公司 一种阵列天线总辐射功率的测量方法、装置和系统
CN113225147A (zh) * 2018-05-07 2021-08-06 中兴通讯股份有限公司 一种阵列天线总辐射功率的测量方法、装置和系统
CN108923863A (zh) * 2018-07-26 2018-11-30 Oppo广东移动通信有限公司 设备等效全向辐射功率测量方法、装置、设备及介质
JP2020024165A (ja) * 2018-08-08 2020-02-13 株式会社Nttドコモ 放射電力推定方法
CN112083234A (zh) * 2019-06-14 2020-12-15 中兴通讯股份有限公司 阵列天线总辐射功率测量方法、装置以及计算机存储介质
WO2021099498A1 (de) * 2019-11-20 2021-05-27 Rohde & Schwarz Gmbh & Co. Kg Messgerät und messverfahren zur bestimmung einer gesamten strahlungsleistung
CN112702126A (zh) * 2020-12-24 2021-04-23 京信网络系统股份有限公司 全向辐射功率测试设备、系统、方法、装置和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Base Station (BS) conformance testing Part 2: Radiated conformance testing (Release 15)", 3GPP DRAFT; 38141-2-F10, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 4 April 2019 (2019-04-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051698579 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116539952A (zh) * 2023-07-05 2023-08-04 北京中成康富科技股份有限公司 基于物联网的毫米波治疗仪功率智能采样方法及系统
CN116539952B (zh) * 2023-07-05 2023-09-26 北京中成康富科技股份有限公司 基于物联网的毫米波治疗仪功率智能采样方法及系统

Also Published As

Publication number Publication date
KR20240065300A (ko) 2024-05-14
CN116260531A (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
WO2019214570A1 (zh) 一种阵列天线总辐射功率的测量方法、装置和系统
US11824272B2 (en) In-field millimeter-wave phased array radiation pattern estimation and validation
CN110542798B (zh) 使用中场天线方向图测试天线阵列的方法和系统
US10784972B2 (en) Reduced grid for measurement of total radiated power
US9780890B2 (en) Wireless measuring system and method for measurement of a device under test with an antenna-array, considering maximum gain direction of the antenna array
WO2020224044A1 (zh) 天线测试方法、设备和存储介质
US10250342B2 (en) System for measuring reception performance of wireless terminal and method of measurement
CN111371513B (zh) 用于测试待测设备的天线阵列的方法及测试系统
US20130141287A1 (en) Apparatus for Measuring a Radiation Pattern of an Active Antenna Arrangement
EP3462190B1 (en) Measurement system and method for performing test measurements
WO2023103798A1 (zh) 功率测量方法及其装置、存储介质、程序产品
CN106712864A (zh) 一种智能天线性能测试及优化的方法及装置
US11057737B2 (en) Indoor positioning for mobile devices
CN112394234A (zh) 快速空中产线测试平台
US11387921B2 (en) Mobile terminal testing device and mobile terminal testing method
JP2021118469A (ja) 電波監視装置および電波監視方法
CN109661029B (zh) 确定通信设备位置的方法、设备以及计算机可读介质
CN113940011B (zh) 预配置的天线波束形成
Wang et al. 5G OTA testing: Challenges and standardization progress
Singh et al. Rotational motion-aware beam refinement for high-throughput mmWave communications
CN113747565B (zh) 一种天线阵列实现无线终端定位系统
US20230232258A1 (en) Ota estimation of an rf parameter of a radio transmitter
US20230296715A1 (en) Direction determining for over-the-air testing of a radio transceiver device
CN116488697A (zh) 通信方法及装置
Hu et al. Construction Method of Outdoor Electromagnetic Space Based on Ubiquitous Perception Intelligent Platform

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903221

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247013562

Country of ref document: KR

Kind code of ref document: A