WO2020248917A1 - 阵列天线总辐射功率测量方法、装置、系统、终端以及计算机存储介质 - Google Patents

阵列天线总辐射功率测量方法、装置、系统、终端以及计算机存储介质 Download PDF

Info

Publication number
WO2020248917A1
WO2020248917A1 PCT/CN2020/094753 CN2020094753W WO2020248917A1 WO 2020248917 A1 WO2020248917 A1 WO 2020248917A1 CN 2020094753 W CN2020094753 W CN 2020094753W WO 2020248917 A1 WO2020248917 A1 WO 2020248917A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radiation power
array antenna
array
total radiation
Prior art date
Application number
PCT/CN2020/094753
Other languages
English (en)
French (fr)
Inventor
高华
庄言春
杨华
金鹤飞
赵俊飞
张飞越
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2021571654A priority Critical patent/JP7320627B2/ja
Priority to US17/618,748 priority patent/US11879926B2/en
Priority to EP20822053.3A priority patent/EP3968036A4/en
Publication of WO2020248917A1 publication Critical patent/WO2020248917A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • G01R29/105Radiation diagrams of antennas using anechoic chambers; Chambers or open field sites used therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/102Power radiated at antenna

Definitions

  • the 5th generation (5 th -Generation, 5G) mobile communication technology contains a number of new technologies, including large Large-scale array antenna (Massive-MIMO), beam forming technology (Beam Forming), millimeter wave communication, etc.
  • the millimeter wave communication technology mainly refers to the communication technology that uses electromagnetic waves with a wavelength in the order of millimeters (frequency 30 GHz ⁇ 300 GHz) as a base station access network carrier. The intervention of millimeter wave technology has reduced the size of the vibrator to the millimeter level. Large-scale array antenna technology can be widely used in 5G communication products.
  • the number of vibrator units of the array antenna ranges from 128 to 256, and even 512, and there have been successful application cases.
  • Millimeter wave circuit design and the application of large-scale phased array antennas require the integration of the antenna and the remote radio unit (Radio Remote Unit, RRU) to form an Active Antenna System (AAS).
  • RRU Radio Remote Unit
  • AAS Active Antenna System
  • the traditional low-frequency TRP test specification (CTIA specification) is not suitable for millimeter-wave array antennas because of too large measurement errors.
  • 3GPP (3rd Generation Partnership Project) stipulates that there are two types of equipment for active antenna system (Active Antenna System, AAS) base stations, namely 1-O type and 2-O type. The difference between the two is that the operating frequency is different, but the overall The architecture is almost the same, see Figure 1.
  • the antenna of this type of equipment is fixedly connected to the radio frequency port. The purpose is to make the base station more compact and reduce transmission loss. In principle, the antenna cannot be removed from the radio frequency port. Therefore, the conduction test used in the original standard is not applicable due to the disappearance of the radio frequency interface.
  • 3GPP stipulates that radio frequency testing for 1-O and 2-O devices must use radiation testing, that is, OTA (Over the Air) testing.
  • the 3GPP standard TS38.104 stipulates that the AAS base station belongs to the 2-O type 5G equipment, and its radio frequency index must be measured in the dark room through the air interface (Over the Air, OTA) method.
  • the total radiated power (TPR) of the base station is a key OTA test item, which measures the output power of the base station, spurious, and adjacent channel power leakage ratio (Adjacent Channel Leakage Ratio, ACLR) and other radio frequency indicators. basis.
  • the method, terminal, system, device, and computer storage medium for measuring the total radiation power of an array antenna provided by the embodiments of the present invention aim to solve one of the technical problems in related technologies at least to a certain extent, including increasing the total radiation of the super-large array antenna Power test efficiency.
  • an embodiment of the present invention provides a method for measuring the total radiation power of an array antenna, which includes: dividing the array antenna to be tested into N antenna sub-arrays, where N is greater than or equal to 2; and according to the N antenna sub-arrays Determine the sampling interval according to the size of the sampling interval; determine the sampling point according to the sampling interval; determine the total radiation power of the entire array antenna according to the radiation power of the sampling point.
  • the embodiment of the present invention also provides a device for measuring the total radiation power of an array antenna, which includes: a partition determination module for determining the antenna sub-array of the array antenna to be tested and determining the size of the antenna sub-array; The size of the antenna sub-array determines the sampling interval; the sampling point determination module is used to determine the sampling point by uniform sampling in the angular space or the wave vector space according to the sampling interval; the total radiation power confirmation module is used to determine the sampling The radiation power of a point determines the total radiation power of the entire array antenna.
  • the embodiment of the present invention also provides a system for measuring the total radiation power of an array antenna, including a device under test fixed on a turntable, a test antenna system, a power detector, and a testing machine; wherein the device under test includes an integrated array An antenna and a remote radio frequency unit, the power detector is connected to the test antenna system, and the test machine is respectively connected to the device under test, the turntable, the test antenna system, and the power detector to realize the above-mentioned array
  • the device under test includes an integrated array
  • the test machine is respectively connected to the device under test, the turntable, the test antenna system, and the power detector to realize the above-mentioned array
  • the steps of the method for measuring the total radiated power of the antenna including a device under test fixed on a turntable, a test antenna system, a power detector, and a testing machine; wherein the device under test includes an integrated array An antenna and a remote radio frequency unit, the power detector is connected to the test antenna system, and the test machine is respectively connected to the
  • An embodiment of the present invention also provides a terminal for measuring the total radiation power of an array antenna, including: a processor, a memory, and a communication bus; the communication bus is used to implement connection and communication between the processor and the memory; the memory stores a computer Program; The processor is used to execute one or more computer programs stored in the memory to implement the steps of the method for measuring the total radiation power of the array antenna as described above.
  • the embodiment of the present invention also provides a computer-readable storage medium, and the computer-readable storage medium stores one or more computer programs, and the one or more computer programs can be executed by one or more processors to realize the above The steps of the method for measuring the total radiated power of the array antenna.
  • Figure 1 is a schematic diagram of 1-O and 2-O devices according to various embodiments of the present invention.
  • Figure 2 is a schematic diagram of a testing system according to the first embodiment of the present invention.
  • Fig. 3 is a spatial coordinate system of a test environment in the first embodiment of the present invention.
  • Fig. 4(a) is a schematic diagram of angular space Rayleigh resolution sampling in the first embodiment of the present invention.
  • Figure 4(b) is a schematic diagram of wave vector space Rayleigh resolution sampling in the first embodiment of the present invention.
  • 4(c) is a schematic diagram of the position of the sampling point in the spherical coordinate system of the wave vector space in the first embodiment of the present invention
  • FIG. 5 is a schematic diagram of the basic flow of a method for measuring the total radiation power of an array antenna according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a TRP solution using independent partitions in the second embodiment of the present invention.
  • FIG. 7 is a flowchart of a test method for calculating TRP using independent partitions according to the second embodiment of the present invention.
  • FIG. 9 is a flowchart of a test method for calculating TRP by using inverted partitions in the third embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a testing device using independent partitions to calculate TRP according to the fourth embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a test device for calculating TRP by using reverse phase partitions according to the fourth embodiment of the present invention.
  • FIG. 12 is an experimental result of a test scheme for calculating TRP by inverted partition in the system of Embodiment 5 of the present invention.
  • FIG. 13 is a schematic diagram of a measurement terminal according to Embodiment 6 of the present invention.
  • the embodiment of the present invention provides a method for measuring the total radiated power of the array antenna.
  • the system 200 is configured to measure OTA indicators of the EUT 210, which includes a remote radio unit RRU 211 and an array antenna 212.
  • the array antenna 212 and the RRU 211 are tightly integrated to form an integrated device, as shown by the dotted line.
  • the transmit and receive channels of the EUT 210 are directly connected to the array antenna 212 unit. Since the array antenna 212 is integrated with the RRU 211 and there is no radio frequency connection, the array antenna cannot be isolated for testing.
  • EIRP Equivalent Isotropic Radiated Power
  • TRP Total Radiated Power, total radiated power
  • EIS Equivalent Isotropic Sensitivity, equivalent omnidirectional sensitivity
  • TIS Total Isotropic Sensitivity, total omnidirectional sensitivity
  • the EUT210 is installed and fixed on the turntable 220, which can rotate on the horizontal plane and the pitch plane.
  • the test antenna system 230 includes a test antenna 231, an antenna fixing bracket 232, and a test cable 233.
  • the test antenna 231 may be a single antenna or multiple antennas.
  • the antenna fixing bracket 232 is configured to fix the test antenna 231 and can move in three-dimensional space.
  • the test antenna 231 is connected to the power detector 240 through the test cable 233.
  • the power detector 240 may be a vector network analyzer, a spectrum analyzer, or a power meter.
  • the EUT210, the turntable 220, the antenna fixing bracket 232, and the power detector 240 are connected to the testing machine 250, which can be set to control the transmission and reception of the EUT210, the rotation of the turntable 220, the movement of the antenna fixing bracket 232, and the power detector 240 To send and receive data, record and process related test data including EIRP values, and record logs.
  • FIG. 3 is a schematic diagram of a coordinate system with the array antenna 212 on the EUT 210 as a reference point.
  • the x-axis is basically the same as the normal direction of the antenna array, and the y-axis and z-axis correspond to the horizontal and vertical directions, respectively.
  • Two spatial coordinates are used here to describe the direction.
  • One is the angular space, which uses the spherical coordinate system To represent. For example, when the wave vector direction is calibrated as (90°, 0°), it means pointing to the x-axis direction.
  • the other is the normalized wave vector space, which is represented by (u, v) in the Cartesian coordinate system, where u and v respectively represent the size of the normalized wave vector projection on the y axis and z axis .
  • u and v respectively represent the size of the normalized wave vector projection on the y axis and z axis .
  • the wave vector direction is calibrated as (0, 0)
  • it means pointing to the x-axis direction.
  • Angular space There is a space transformation relationship with the normalized wave vector space (u, v), namely
  • 3GPP TS38.141-2 proposes an angular space sampling algorithm based on Rayleigh resolution (I.2.2 Reference angular step criteria) and a sampling algorithm based on normalized wave vector space (I.6 Wave vector space) grid), which can reduce the number of measurement sampling points and greatly improve the measurement efficiency.
  • FIG. 4(a) for a schematic diagram of sampling in angular space with Rayleigh resolution intervals.
  • the background image is the radiation pattern of a 16 ⁇ 8 (y ⁇ z) array antenna with a half-wavelength period in angular space, and the sign "+" indicates the sampling point.
  • the Rayleigh resolution (u r , v r ) of the wave vector space can be determined by the size of the array antenna, namely
  • D y and D z refer to the maximum dimensions of the array antenna in the y direction and the z direction.
  • the antenna corresponding to the sampling point in Figure 4(b) is also a 16 ⁇ 8 (y ⁇ z) array antenna with a half-wavelength period.
  • the mark "+" indicates the sampling point, and the sampling points are uniformly distributed in the space.
  • the sampling point must be within a circle with a radius of 1, because the field that can be measured in the far field is all radiation components, and the field evanescent wave component outside the circle decays exponentially with distance and is cut off in the far field. .
  • the array antenna to be tested is divided into N antenna sub-arrays, that is, the array antenna to be tested is partitioned.
  • the partitioning method includes, but is not limited to, independent partitioning or inverted partitioning.
  • the independent partition method is to arbitrarily divide the array antenna to be tested into N antenna sub-arrays.
  • the size of each antenna sub-array can be the same or different.
  • N can be an odd or even number;
  • S502 Determine a sampling interval according to the size of the N antenna sub-arrays.
  • the size of the antenna subarray is the maximum size of N antenna subarrays. In different directions, the maximum size may be on the same antenna element or on different antenna elements.
  • sampling interval does not exceed the Rayleigh resolution, that is, the sampling interval is less than or equal to the Rayleigh resolution; when the sampling interval is equal to the Rayleigh resolution, it is the most efficient sampling method for the total radiation power test of the array antenna .
  • S503 Determine a sampling point according to the sampling interval.
  • the sampling point can also be determined.
  • the specific method of determining the sampling point refer to the above-mentioned Figure 4(a), Figure 4(b) and Figure 4(c), and will not be repeated here.
  • sampling in the normalized wave vector space is the least number of points. The fewer sampling points, the higher the TRP test efficiency, so sampling in the normalized space can also be called the best sampling plan.
  • S504 Determine the total radiation power of the entire array antenna according to the equivalent omnidirectional radiation power of the sampling point.
  • the array antenna is partitioned in two ways, independent partitioning and reverse partitioning.
  • independent partitioning method the power of each antenna sub-array is transmitted in turn at each sampling point, and the equivalent isotropic power EIRP corresponding to each antenna sub-array is recorded by the test instrument, and the entire array is obtained through relevant data processing.
  • the method for measuring the total radiation power of the array antenna divides the array antenna to be tested, and on the basis of the Rayleigh resolution sampling scheme, in the process of measuring the total radiation power of the array antenna, the sampling point The number of points is reduced, which greatly improves the test efficiency of the total radiation power of the array antenna.
  • the embodiment of the present invention uses an independent partition mode as an example to further describe the method for testing the total radiation power of the array antenna.
  • Fig. 6 is an embodiment of calculating the total radiated power TRP of an array antenna using an independent partition method, where the array antenna is divided into 4 antenna sub-arrays, namely A1, A2, A3, and A4.
  • the maximum size D z,max in the vertical direction is the size corresponding to the antenna sub-arrays A1 and A2, and the maximum size D y,max in the horizontal direction is the size corresponding to the antenna sub-array A3.
  • the Rayleigh resolution in the y and z directions and the resulting sampling points are determined by the dimensions D y,max and D z,max .
  • S702 Determine the Rayleigh resolution according to the maximum size of the N antenna sub-arrays, and determine the sampling interval according to the Rayleigh resolution.
  • determining the maximum size of the antenna sub-array can be divided into two cases, one is that the maximum size of the y-direction and the z-direction are both in the same antenna sub-array, and the other is the maximum size of the y-direction and the z-direction. Belong to different antenna sub-arrays.
  • the Rayleigh resolution can be determined from two different spaces, one is the angular space, and the other is the normalized wave vector space.
  • is the signal wavelength
  • D y,max and D z,max are the corresponding maximum antenna size of the array antenna in the y direction and z direction respectively
  • the minimum Rayleigh resolution corresponding to the direction, u r, min and v r, min are the minimum Rayleigh resolutions of each sub-array in the y direction and z direction in the normalized wave vector space, respectively.
  • sampling interval is determined by not exceeding the Rayleigh resolution, as follows:
  • the transmit power of the N antenna subarrays is the transmit power of one antenna subarray in turn, the other antenna subarrays are in the off state, that is, no power is transmitted.
  • the total radiated power TRP value of each antenna sub-array can be obtained, the formula is as follows:
  • TRP j is the TRP value of the j-th subarray
  • ⁇ i refers to the pitch angle corresponding to the i-th sampling point.
  • the total radiated power TRP value of each antenna sub-array can be obtained, the formula is as follows:
  • TRP j is the TRP value of the jth subarray
  • angle I refer to the i-th sampling point (u i, v i) a value corresponding to (1) connected therebetween by a conversion formula.
  • S705 Determine the total radiation power TRP of the entire array antenna according to the TRP corresponding to each antenna sub-array.
  • sampling in the angular space and sampling in the normalized wave vector space are respectively taken as examples, and the method for measuring the total radiated power TRP of the entire array antenna is further described in detail through specific embodiments.
  • the size of the array antenna is 8 ⁇ 8 ⁇ , where ⁇ represents the wavelength.
  • the array antenna to be tested is divided into two antenna sub-arrays, specifically composed of two identical antenna sub-arrays on the left and right, and TRP sampling is performed in angular space.
  • the 8 ⁇ 8 ⁇ array antenna to be tested is divided into two 4 ⁇ 8 ⁇ sub-arrays with the same left and right sides, and N is determined to be 2.
  • S702 Determine the Rayleigh resolution according to the maximum size of the N antenna sub-arrays, and determine the sampling interval according to the Rayleigh resolution.
  • the full array antenna is composed of two identical antenna sub-arrays on the left and right, the maximum dimensions D y,max and D z,max of the antenna sub-arrays in the y direction and z direction are 4 ⁇ and 8 ⁇ , respectively.
  • the corresponding Rayleigh resolution It is (14.4°, 7.1°).
  • ⁇ and The sampling interval of the direction can be set to 14.4° and 7.1°.
  • S703 Determine the sampling point according to the sampling interval.
  • This example is to collect points uniformly in angular space, and the distance between points is between ⁇ and The directions are 14.4° and 7.1° respectively.
  • the starting position of the sampling can be the normal direction of the array antenna, or it can deviate from the normal direction.
  • the backward radiation can be ignored, and scanning can be performed only on the front hemisphere of the array antenna, so the number of sampling points M s determined in this way is about 300 points.
  • the testing machine 250 controls the turntable 220 to a designated sampling point, and at each sampling point i, it switches the left and right sub-arrays so that they transmit power in turn.
  • the frequency domain meter 240 records the equivalent total of each sub-array.
  • the TRP 1 and TRP 2 of the left and right sub-arrays can be obtained by formula (8).
  • S705 Determine the total radiation power TRP of the entire array antenna according to the TRP corresponding to each antenna sub-array.
  • the size of the array antenna is 8 ⁇ 8 ⁇ , where ⁇ represents the wavelength.
  • the array antenna to be tested is divided into two antenna sub-arrays, specifically consisting of two identical antenna sub-arrays on the left and right, and TRP sampling is performed in the normalized wave vector space.
  • the 8 ⁇ 8 ⁇ array antenna to be tested is divided into two 4 ⁇ 8 ⁇ sub-arrays with the same left and right sides, and N is determined to be 2.
  • S702 Determine the Rayleigh resolution according to the maximum size of the N antenna sub-arrays, and determine the sampling interval according to the Rayleigh resolution.
  • the full-array antenna can be composed of two identical antenna sub-arrays on the left and right, the maximum dimensions D y,max and D z,max of the antenna sub-arrays in the y direction and z direction are 4 ⁇ and 8 ⁇ , respectively.
  • the corresponding Rayleigh resolution (u r, min , v r, min ) is (0.25, 0.125).
  • the sampling interval in the u and v directions can be set to 0.25 and 0.125.
  • S703 Determine the sampling point according to the sampling interval.
  • This example is to collect points uniformly in the wave vector space, and the distance between points is 0.25 and 0.125 in the u and v directions, respectively.
  • the starting position of the sampling can be the normal direction of the array antenna, or it can deviate from the normal direction.
  • These sampling points uniformly distributed in the wave vector space must be within the unit circle from the center point, which is determined by the propagation model.
  • the backward radiation can be ignored, and scanning can be performed only on the front hemisphere of the array antenna, so the number of sampling points Mw determined in this way is about 100 points.
  • the corresponding value of the point in the wave vector space in the angle space is obtained by transforming the relational equation (1).
  • the testing machine 250 controls the turntable 220 to a point in the angular space, and at each sampling point i, switches the left and right sub-arrays so that they transmit power in turn.
  • the TRP 1 and TRP 2 of the left and right sub-arrays can be obtained by formula (9).
  • S705 Determine the total radiation power TRP of the entire array antenna according to the TRP corresponding to each antenna sub-array.
  • the total radiation power TRP of the entire array antenna TRP 1 + TRP 2 .
  • the array antenna to be tested is partitioned in a manner of independent partition.
  • This sampling method ensures that no aliasing occurs under the antenna sub-array, thereby ensuring that the antenna sub-array
  • the accuracy of the TRP results; the switching time of the sub-array is two orders of magnitude shorter than the turntable stop time, which can be ignored.
  • the reduction in the number of sampling points greatly improves the test efficiency of the total radiation power of the array antenna; the wave vector spatial field distribution and the antenna surface
  • the current distribution has a Fourier transform relationship, so sampling in the wave vector space is the least number of points. The fewer sampling points, the higher the TRP test efficiency.
  • the method for testing the total radiation power of the array antenna is further described in detail by taking the reverse partition mode as an example.
  • Fig. 8(a) is a schematic diagram of calculating the TRP of an array antenna using a two-partition method.
  • the entire array antenna is divided into two antenna sub-arrays A1 and A2 of the same size. Sampling with a sampling interval corresponding to the size of the antenna sub-array will cause aliasing of the two antenna sub-array areas, resulting in the calculated TRP value and the actual value. Create a deviation.
  • 811 is the case where the phase of the two antenna subarrays is 0
  • 812 is the case where the phase difference of the two antenna subarrays is 180°, that is, the 822 compares the 811 only one inversion operation, which is used in the active phased array It is very easy to implement in the antenna.
  • Figure 8(b) shows a schematic diagram of a four-partition inverse calculation TRP scheme.
  • the entire array antenna is divided into four antenna sub-arrays A1, A2, A3, and A4 of the same size. Sampling at a sampling interval corresponding to the size of the antenna sub-array will cause aliasing in the four antenna sub-array areas, resulting in TRP The calculated value deviates from the actual value.
  • 821 is the case that the two antenna sub-arrays maintain the phase at 0.
  • 822 is the case where the phase difference between the left and right antenna sub-arrays is 180, that is, the two antenna sub-arrays on the right of 822 only perform one inversion operation compared to 821.
  • the size of the antenna sub-array can be sampled corresponding to the Rayleigh resolution, so that the sampling point is reduced to 1/4 of the original, and since the phase shift is negligible compared to the stopping time of the test point, Generally speaking, this four-division reverse calculation TRP method can increase the test efficiency by 3 times.
  • Figure 8(c) shows a schematic diagram of the N-partition inversion calculation TRP scheme.
  • the antenna sub-array is divided in a dichotomy. For the case of 4 partitions, it can be expressed as 0000, 0101, 0011, and 0110, where 1 represents the inversion operation. For more partitions, you can continue to expand on this basis.
  • the size of the antenna sub-array can be sampled corresponding to the Rayleigh resolution, so that the sampling point is reduced to the original 1/N, and since the phase shift is negligible compared to the stopping time of the test point, Generally speaking, this N-division reverse calculation TRP method can increase the test efficiency by N-1 times.
  • the array antenna is divided into the same size of antenna sub-arrays, and the sizes of the antenna sub-arrays may also be different. The specific division depends on actual conditions and needs.
  • S902 Determine the Rayleigh resolution according to the maximum size of the N antenna sub-arrays, and determine the sampling interval according to the Rayleigh resolution.
  • determining the maximum size of the antenna sub-array can be divided into two cases, one is that the maximum size of the y-direction and the z-direction are both in the same antenna sub-array, and the other is the maximum size of the y-direction and the z-direction. Belong to different antenna sub-arrays.
  • the Rayleigh resolution can be determined from two different spaces, one is the angular space, and the other is the normalized wave vector space.
  • the angle space Rayleigh resolution and the normalized wave vector space Rayleigh resolution can be determined by formula (5) and formula (6).
  • the sampling interval of the angular space and the normalized wave vector space can be determined by formula (7).
  • TRP j in formula (9) refers to the TRP value of the j-th reverse sequence.
  • S905 Determine the total radiation power TRP of the entire array antenna according to the TRP corresponding to each inverted sequence.
  • sampling in the angular space and sampling in the normalized wave vector space are respectively taken as examples, and the method for measuring the total radiated power TRP of the entire array antenna is further described in detail through specific embodiments.
  • the size of the array antenna is 8 ⁇ 8 ⁇ , where ⁇ represents the wavelength.
  • the array antenna to be tested is divided into two antenna sub-arrays, specifically composed of two identical antenna sub-arrays on the left and right, and TRP sampling is performed in angular space.
  • S902 Determine the Rayleigh resolution according to the maximum size of the N antenna sub-arrays, and determine the sampling interval according to the Rayleigh resolution.
  • the full-array antenna can be composed of two identical antenna sub-arrays on the left and right, the maximum dimensions D y,max and D z,max of the sub-arrays in the y direction and z direction are 4 ⁇ and 8 ⁇ , respectively.
  • the corresponding Rayleigh resolution It is (14.4°, 7.1°).
  • ⁇ and The sampling interval of the direction can be set to 14.4° and 7.1°.
  • the test machine 250 controls the turntable 220 to the designated sampling point.
  • two antiphase sequences are applied to the left and right antenna sub-arrays.
  • One sequence makes the two antenna sub-arrays in phase, and the other
  • the sequence reverses the phase of the two antenna sub-arrays.
  • the TRP 1 and TRP 2 of the two reverse sequences can be obtained by formula (8).
  • S905 Determine the total radiation power TRP of the entire array antenna according to the TRP corresponding to each inverted sequence.
  • the size of the array antenna is 8 ⁇ 8 ⁇ , where ⁇ represents the wavelength.
  • the array antenna to be tested is divided into two antenna sub-arrays, specifically composed of two identical antenna sub-arrays on the left and right, and TRP sampling is performed in the normalized wave vector space.
  • S902 Determine the Rayleigh resolution according to the maximum size of the N antenna sub-arrays, and determine the sampling interval according to the Rayleigh resolution.
  • the full-array antenna can be composed of two identical antenna sub-arrays on the left and right, the maximum sizes D y,max and D z,max of the antenna sub-arrays in the y direction and z direction are 4 ⁇ and 8 ⁇ , respectively.
  • the corresponding Rayleigh resolution (u r, min , v r, min ) is (0.25, 0.125).
  • the sampling interval in the u and v directions can be set to 0.25 and 0.125.
  • This example collects points uniformly in the wave vector space, and the distance between points is 0.25 and 0.125 in the u and v directions, respectively.
  • the starting position of the sampling can be the normal direction of the array antenna, or it can deviate from the normal direction.
  • These sampling points uniformly distributed in the wave vector space must be within the unit circle from the center point, which is determined by the propagation model.
  • the backward radiation can be ignored, and scanning can be performed only on the front hemisphere of the array antenna, so the number of sampling points Mw determined in this way is about 100 points.
  • the corresponding value of the point in the wave vector space in the angle space is obtained by transforming the relational equation (1).
  • the test machine 250 controls the turntable 220 to the designated sampling point.
  • two antiphase sequences are applied to the left and right antenna sub-arrays.
  • One sequence makes the two antenna sub-arrays in phase, and the other
  • the sequence reverses the phase of the two antenna sub-arrays.
  • the TRP 1 and TRP 2 of the two reverse sequences can be obtained by formula (9).
  • S905 Determine the total radiation power TRP of the entire array antenna according to the TRP corresponding to each inverted sequence.
  • the method for measuring the total radiation power of the array antenna is to partition the array antenna to be tested in a phase-phase partitioning manner, based on the full array antenna angular space and the wave vector space Rayleigh sampling rate scheme, Since usually the switching time of the sub-array is two orders of magnitude shorter than the turntable stop time, it can be ignored, which can improve the calculation efficiency, and this partition method improves the test efficiency by reducing the sampling points. The efficiency of this sampling scheme and the number of partitions Proportionally.
  • This embodiment also provides a device for measuring the total radiation power of an array antenna.
  • the device includes a partition determination module, a sampling interval determination module, a sampling point determination module, and a total radiation power determination module, which are used to implement the test method as in the above-mentioned embodiment.
  • FIG. 10 for a schematic diagram of a testing device that uses independent partitioning to calculate TRP.
  • the device includes:
  • the partition determination module 1001 is used to divide the entire array antenna to be tested into N areas to form N antenna sub-arrays, where N is greater than or equal to 2.
  • the sampling interval determining module 1002 is used to make the sampling interval not greater than the Rayleigh resolution corresponding to the maximum size of each antenna sub-array.
  • the sampling point determination module 1003 is used to determine the position of the sampling point according to the sampling interval.
  • the total radiated power confirmation module includes an antenna sub-array TRP determination module 1004 and a full-array antenna TRP determination module 1005.
  • the antenna sub-array TRP determination module 1004 is used to determine the TRP value of each antenna sub-array according to the sampling point.
  • the determining module 1005 is used to determine the TRP value of the full array antenna according to the TRP of the antenna sub-array.
  • FIG. 11 for a schematic diagram of a test device for calculating TRP by using the inverted partition method.
  • the device includes:
  • the sampling interval determining module 1102 is used to make the sampling interval not greater than the Rayleigh resolution corresponding to the maximum size of each antenna sub-array.
  • the sampling point determination module 1103 is used to determine the position of the sampling point according to the sampling interval.
  • the total radiated power confirmation module includes a reverse sequence TRP determination module 1104 and a full array antenna TRP determination module 1105.
  • the reverse sequence TRP determination module 1104 is used to determine the TRP value of each reverse sequence according to the sampling point.
  • the full array antenna TRP The determining module 805 is configured to determine the TRP value of the full array antenna according to the TRP of the reverse sequence.
  • This embodiment also provides a system for measuring the total radiation power of an array antenna, which is used to implement at least one step of the method for measuring the total radiation power of an array antenna as described in the foregoing embodiment.
  • the system includes an equipment under test 210 (Equipment Under Test, EUT) fixed on a turntable, a test antenna system 230, a power detector 240, and a test machine 250.
  • the equipment under test 210 includes Together with the array antenna 212 and the remote radio frequency unit 211, the power detector 240 is connected to the test antenna system 230, and the test machine 250 is respectively connected to the device under test 210, the turntable 220, the test antenna system 230 and the power detector 240.
  • the test antenna system 230 includes a test antenna 231, an antenna fixing bracket 232, and a test cable 233.
  • the test antenna 231 may be a single antenna or multiple antennas.
  • the antenna fixing bracket 232 is configured to fix the test antenna 231 and can move in three-dimensional space.
  • the test antenna 231 is connected to the power detector 240 through the test cable 233.
  • the power detector 240 may be a vector network analyzer, a spectrum analyzer, or a power meter.
  • the device under test 210, the turntable 220, the antenna fixing bracket 232, and the power detector 240 are connected to the testing machine 250, which can be set to control the receiving and sending of the device under test 210, the rotation of the turntable 220, and the antenna fixing bracket 232.
  • the transmission and reception of the mobile and power detector 240 records and processes related test data including the EIRP value, and records a log.
  • the full-wave anechoic chamber environment is isolated from the external environment by the absorbing material 260 and the anechoic wall 270 to simulate the situation of an infinite space.
  • the tester is used to determine the array antenna partition and antenna sub-array, the maximum size of the antenna sub-array and the Rayleigh resolution corresponding to the largest-size antenna sub-array; set the sampling interval of the sampling points according to the Rayleigh resolution; and determine according to the sampling interval At a uniform sampling point in angular space or wave vector space, control the device under test 210, turntable 220, test antenna system 230, and power detector 240 to measure the equivalent isotropic radiation power EIRP corresponding to each antenna sub-array at the sampling point. EIRP determines TRP.
  • the testing machine is used to determine the N partitions of the active array antenna 212 to form N sub-arrays, determine the sampling interval according to the maximum size of all antenna sub-arrays, determine the sampling points according to the sampling interval, and control the device under test 210 and the turntable 220 ,
  • the test antenna system 230 and the power detector 240 measure the equivalent isotropic radiation power EIRP of each antenna sub-array at the sampling point, determine the TRP of each antenna sub-array according to EIRP, and determine the TRP value of each antenna sub-array TRP with full array antenna.
  • this embodiment also provides a terminal for measuring the total radiation power of an array antenna, including a processor 1301, a memory 1302, and a communication bus 1303, where:
  • the communication bus 1303 is used to realize the connection and communication between the processor 1301 and the memory 1302; the memory 1302 stores computer programs; the processor 1301 is used to execute one or more computer programs stored in the memory 1302 to implement the above-mentioned embodiments At least one step of the method for measuring the total radiated power of the array antenna in one to three.
  • This embodiment also provides a computer-readable storage medium, which is included in any method or technology for storing information (such as computer-readable instructions, data structures, computer program modules, or other data). Volatile or non-volatile, removable or non-removable media.
  • Computer readable storage media include but are not limited to RAM (Random Access Memory), ROM (Read-Only Memory, read-only memory), EEPROM (Electrically Erasable Programmable read only memory, charged Erasable Programmable Read-Only Memory) ), flash memory or other storage technology, CD-ROM (Compact Disc Read-Only Memory), digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, Or any other medium that can be used to store desired information and can be accessed by a computer.
  • the array antenna to be tested is partitioned, so that the number of sampling points during the measurement of the total radiation power of the array antenna Reduction, in some implementation processes can greatly improve test efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种阵列天线(212)总辐射功率测量方法、装置、系统(200)、终端以及计算机存储介质,通过将待测的阵列天线(212)进行分区,使在阵列天线(212)总辐射功率测量过程中,采样点的点数减少。

Description

阵列天线总辐射功率测量方法、装置、系统、终端以及计算机存储介质
相关申请的交叉引用
本申请基于申请号为201910517592.7、申请日为2019年06月14日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明实施例涉及但不限于无线通信技术领域,具体而言,涉及但不限于一种阵列天线总辐射功率测量方法、装置、系统、终端以及计算机存储介质。
背景技术
随着人们对更高质量、更高清晰度和更快响应速度内容需求的提升,第5代(5 th-Generation,5G)移动通信技术应运而生,它包含了多项新技术,包括大规模阵列天线(Massive-MIMO)、波束成型技术(Beam Forming)、毫米波通信等。其中毫米波通信技术主要指的是利用波长在毫米量级的电磁波(频率为30 GHz~300GHz)作为基站接入网络载体的通信技术。毫米波技术的介入,使得振子尺寸缩小到毫米级,大规模阵列天线技术得以广泛应用于5G通信产品中,阵列天线的振子单元数从128到256,甚至512,都已有成功应用案例。毫米波电路设计及大规模相控阵列天线的应用,要求天线与远端射频单元(Radio Remote Unit,RRU)实现一体化,从而形成有源天线系统(Active Antenna System,AAS)。
传统的低频TRP测试规范(CTIA规范)因测量误差太大,已不适用于毫米波阵列天线。3GPP(3rd Generation Partnership Project)规定,有源天线系统(Active Antenna System,AAS)基站的设备有两种类型,分别为1-O类型和2-O类型,两者差别是工作频率不同,但整体架构几乎相同,请参见图1。如图1所示,该种设备的天线与射频口被固定连接在一起,目的是使基站更为紧凑,减小传输损耗,原则上来讲,天线不可从射频口上拆除。因此原先标准使用的传导测试由于射频接口的消失不在适用。3GPP规定针对1-O和2-O设备的射频测试必须使用辐射测试的方式,即OTA(Over the Air)测试。3GPP标准TS38.104规定,AAS基站属于2-O类型5G设备,其射频指标必须在暗室中通过空口(Over the Air,OTA)方式测量。其中基站辐射总功率(Total Radiated Power,TPR)是一项关键性的OTA测试条目,是衡量基站输出功率、杂散、邻道功率泄漏率(Adjacent Channel Leakage Ratio,ACLR)等多项射频指标的基础。
而3GPP最新版本的TS38.141-2标准中提出了基于瑞利分辨率的采样算法(I.2.2 Reference angular step criteria)和基于归一化波矢空间的采样算法(I.6 Wave vector space grid),可以减少测量采样点数,大幅度提升测量效率。但是当阵列单元数成倍增大,随着这波束宽度进一步变小,瑞利分辨率采样方案所需的点数也会成倍增加。因此对于超大阵列天线,为了提高测试效率,需要提出更高效的测试方案。
发明内容
本发明实施例提供的一种阵列天线总辐射功率测量方法、终端、系统、装置及计算机存储介质,旨在至少在一定程度上解决相关技术中的技术问题之一,包括提高超大阵列天线总辐射功率的测试效率。
有鉴于此,本发明实施例提供一种阵列天线总辐射功率测量方法,包括:将待测的阵列天线划分为N个天线子阵,所述N大于等于2;根据所述N个天线子阵的尺寸确定采样间距;根据所述采样间距确定采样点;根据所述采样点的辐射功率确定整个阵列天线的总辐射功率。
本发明实施例还提供一种阵列天线总辐射功率测量装置,包括:分区确定模块,用于确定待测阵列天线的天线子阵,确定天线子阵的尺寸;采样间距确定模块,用于根据所述天线子阵的尺寸确定采样间距;采样点确定模块,用于根据所述采样间距通过在角度空间或波矢空间均匀采样的方式确定采样点;总辐射功率确认模块,用于根据所述采样点的辐射功率确定整个阵列天线的总辐射功率。
本发明实施例还提供一种阵列天线总辐射功率测量系统,包括固定在转台上的被测试设备、测试天线系统、功率检测仪和测试机;其中,所述被测试设备包括集成在一起的阵列天线和远端射频单元,所述功率检测仪与所述测试天线系统相连,所述测试机分别与所述被测试设备、转台、测试天线系统和功率检测仪相连,以实现如上所述的阵列天线总辐射功率测量方法的步骤。
本发明实施例还提供一种阵列天线总辐射功率测量终端,包括:处理器、存储器及通信总线;所述通信总线用于实现处理器和存储器之间的连接通信;所述存储器中存储有计算机程序;所述处理器用于执行存储 器中存储的一个或者多个计算机程序,以实现如上所述的阵列天线总辐射功率测量方法的步骤。
本发明实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有一个或者多个计算机程序,一个或者多个计算机程序可被一个或者多个处理器执行,以实现如上所述的阵列天线总辐射功率测量方法的步骤。
附图说明
图1为本发明各实施例的1-O和2-O设备示意图;
图2为本发明实施例一的一种测试系统示意图;
图3为本发明实施例一的测试环境的空间坐标系;
图4(a)为本发明实施例一的角度空间瑞利分辨率采样示意图;
图4(b)为本发明实施例一的波矢空间瑞利分辨率采样示意图;
图4(c)为本发明实施例一的波矢空间采样点在球坐标系位置示意图;
图5为本发明实施例一阵列天线总辐射功率测量方法的基本流程示意图;
图6为本发明实施例二的采用独立分区计算TRP方案的示意图;
图7为本发明实施例二的采用独立分区计算TRP的测试方法的流程图;
图8(a)、(b)和(c)为本发明实施例三的采用反相分区计算TRP方案的示意图;
图9为本发明实施例三的采用反相分区计算TRP的测试方法的流程图;
图10为本发明实施例四的采用独立分区计算TRP的测试装置的示意图;
图11为本发明实施例四的采用反相分区计算TRP的测试装置的示意图;
图12为本发明实施例五的系统中采用反相分区计算TRP的测试方案的实验结果;
图13为本发明实施例六的测量终端的示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面通过具体实施方式结合附图对本发明实施例作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明实施例,并不用于限定本发明。
实施例一:
为了提升5G有源天线系统的阵列天线总辐射功率(Total Radiated Power,TPR)的测试效率,本发明实施例提供了一种阵列天线总辐射功率测量方法。
3GPP规定,有源天线系统基站分为1-O和2-O设备两种类型,两者差别是工作频率不同,但整体架构几乎相同,关于1-O和2-O设备已于前记载,这里不再赘述。3GPP规定针对1-O和2-O设备的射频测试必须使用辐射测试的方式,即OTA测试。
一般来讲,进行OTA测试需要暗室环境。目前来讲暗室环境主要分3种,分别是远场、紧缩场和近场暗室。近场暗室由于测试项非常有限,3GPP对这种暗室的测试能力还处于初步研究阶段。远场和紧缩场所能涵盖的测试项较多,因此是3GPP目前认可的测试环境。
下面以远场暗室为例对OTA测试环境进行描述,测试系统具体参见图2。
系统200配置为测量EUT 210的OTA指标,该EUT 210包括远端射频单元RRU 211和阵列天线212。阵列天线212与RRU211紧密集成在一起形成一体化设备,如虚线所示。与单独和独立可测的RRU和天线系统相反,EUT 210的发射和接收通道直接连接到阵列天线212单元。由于阵列天线212与RRU211集成在一起,没有射频连接,因此阵列天线不能被隔离测试。这也就是说不能简单地测试阵列天线212的辐射性能和RRU211的发射和接收链路性能来计算包括EIRP(Equivalent Isotropic Radiated Power,等效全向辐射功率)、TRP(Total Radiated Power,辐射总功率)、EIS(Equivalent Isotropic Sensitivity,等效全向灵敏度)和TIS(Total Isotropic Sensitivity,总全向灵敏度)等射频整机指标。对EUT 210的测量需要同时进行。
EUT210被安置固定在转台220上,转台220可以在水平面上和俯仰面上进行转动。测试天线系统230包括测试天线231、天线固定支架232和测试线缆233。测试天线231可以为单个天线,也可以是多个天线。天线固定支架232设置为固定测试天线231,并可以进行三维空间的移动。测试天线231通过测试线缆233被连接到功率检测仪240上,功率检测仪240可以是矢量网络分析仪,可以为频谱仪,也可以为功率计等。
EUT210、转台220、天线固定支架232和功率检测仪240被连接到测试机250上,该测试机250可设置为控制EUT210的收发、转台220的转动、天线固定支架232的移动和功率检测仪240的收发,对包括EIRP 值的相关测试数据进行记录和处理,并记录日志。
在整个测试过程中,全电波暗室环境通过吸波材料260和暗室外墙270与外界环境隔绝以模拟无穷大空间的情况。
图3为以EUT 210上阵列天线212为参考点的坐标系示意图。其中x轴与天线阵面法线方向基本相一致,y轴和z轴分别对应水平和垂直方向。这里采用了两种空间坐标来描述方向。一种是角度空间,即利用球坐标系中的
Figure PCTCN2020094753-appb-000001
来表示。比如当波矢方向标定为(90°,0°)时,意味着指向x轴方向。另一种是归一化波矢空间,即用笛卡尔坐标系中的(u,v)来表示,其中u和v分别表示的是归一化波矢投影在y轴和z轴上的大小。比如当波矢方向标定为(0,0)时,意味着指向x轴方向。角度空间
Figure PCTCN2020094753-appb-000002
和归一化波矢空间(u,v)存在一个空间变换关系,即
Figure PCTCN2020094753-appb-000003
关于OTA测试,主要关心EIRP、EIS和TRP。其中TRP的测试时OTA测试的难点。
3GPP最新版本的TS38.141-2标准中提出了基于瑞利分辨率的角度空间采样算法(I.2.2 Reference angular step criteria)和基于归一化波矢空间的采样算法(I.6 Wave vector space grid),可以减少测量采样点数,大幅度提升测量效率。
参见图4(a)所示为在角度空间以瑞利分辨率为间隔的采样示意图。其中背景图为周期为半波长的16×8(y×z)阵列天线在角度空间辐射方向图,标志“+”表示的是采样点。瑞利分辨率
Figure PCTCN2020094753-appb-000004
可通过天线尺寸和公式
Figure PCTCN2020094753-appb-000005
其中,λ为波长,D z和D y指的是阵列天线在y方向和z方向上的最大尺寸。
对于常见的阵列天线,即等幅同相矩形阵列天线,还可通过方向图第一零陷半宽(First Null Beamwidth,FNBW)来确定瑞利分辨率,即
Figure PCTCN2020094753-appb-000006
参见图4(b)所示为在归一化波矢空间以瑞利分辨率为间隔的采样示意图。波矢空间瑞利分辨率(u r,v r)可由阵列天线尺寸确定,即
Figure PCTCN2020094753-appb-000007
其中D y和D z指的是阵列天线在y方向和z方向上的最大尺寸。
对于常见的阵列天线,即等幅同相矩形阵列天线,还可通过方向图第一零陷半宽(First Null Beamwidth,FNBW)来确定瑞利分辨率,具体参见公式(3)。
图4(b)中的采样点对应的天线也是周期为半波长的16×8(y×z)阵列天线,标志“+”表示的是采样点,采样点在该空间中呈均匀分布。采样点必须要保证在半径为1的圆内,这是因为在远场能被测到的场都是辐射分量,而圈外的场消逝波分量由于随距离呈指数衰减,在远场被截断。
图4(c)是图4(b)中所展示的在波矢空间的采样点对应在求坐标系下的位置。其中标志“+”表示的是采样点。从图中可以看出采样点在求坐标系下呈非均匀分布,且与图4(a)的采样点相比,点数有了明显的较少(约为图4(a)结果的1/3)。考虑到图4(b)和(c)与图4(a)对应的是同样的天线阵列,图4(b)和(c)的结果在波矢空间进行采样点数更少,效率更高。进一步讲,由于波矢空间与阵列天线对应空间存在傅里叶变换的关系,因此在波矢空间采样是点数最少的方式。因此在该空间采样也可称为最佳采样方案。
本实施例中,为了进一步减少采样点数,提高测试效率,提出将整个天线阵列进行分区测试TRP的方案。具体方法流程请参见图5所示:
S501、将待测的阵列天线划分为N个天线子阵,N大于等于2。
本实施例中,将待测的阵列天线划分为N个天线子阵,也就是将待测的阵列天线进行分区,分区的方式包括但不限于独立分区或者反相分区。
需要说明的是,独立分区方式为将待测的阵列天线任意划分为N个天线子阵,每个天线子阵的尺寸可以相同,也可以不相同,N可以为奇数也可以为偶数;反相分区方式为将待测的阵列天线按照二分法划分为N=2 n个天线子阵。
S502、根据N个天线子阵的尺寸确定采样间距。
本实施例中,天线子阵的尺寸为N个天线子阵的最大尺寸,不同方向上,最大尺寸可能在同一个天线阵子上,也可能在不同的天线阵子上。
本实施例中,采样的方案有两种,一种为在角度空间采样,另一种为在归一化波矢空间采样,采样间距由瑞利分辨率来确定。公式(2)和公式(4)分别为在角度空间和归一化波矢空间进行采样时天线子阵的尺寸与瑞利分辨率的换算关系。
需要说明的是,采样间距不超过瑞利分辨率,也就是说采样间距小于或者等于瑞利分辨率;当采样间距等于瑞利分辨率时是阵列天线总辐射功率测试效率最高的一种采样方式。
S503、根据采样间距确定采样点。
本实施例中,确定采样间距后,也就可以确定采样点了。具体的确定采样点的方式参见上述图4(a)、图4(b)和图4(c),这里不再赘述。
需要说明的是,归一化波矢空间与角度空间存在傅里叶变换的关系,具体的变换关系参见公式(1),因此在归一化波矢空间采样是点数最少的方式。采样点数越少,TRP测试效率越高,因此在归一化空间采样也可称为最佳采样方案。
S504、根据采样点的等效全向辐射功率确定整个阵列天线的总辐射功率。
本实施例中,采用独立分区和反相分区两种方式对阵列天线进行分区。采用独立分区方式时,在每个采样点上让每个天线子阵依次发射功率,并通过测试仪表记录每个天线子阵对应的等效全向功率EIRP,最后通过相关数据处理得出整个阵列天线的TRP;采用反相分区方式时,将阵列天线分为N=2 n个天线子阵,在每个采样点让天线子阵同时发射功率,且根据二分法使天线子阵相位产生180°变化,记录N相位变化所对应的EIRP,最后通过相关数据处理得出整个阵列天线的TRP。
本发明实施例提供的阵列天线总辐射功率测量方法,通过将待测的阵列天线进行分区,在瑞利分辨率采样方案的基础之上,在阵列天线总辐射功率测量过程中,使采样点的点数减少,大大地提升了阵列天线总辐射功率的测试效率。
实施例二:
在上述实施例的基础上,本发明实施例以独立分区方式为示例对阵列天线总辐射功率测试方法做进一步详细说明。
图6为采用独立分区方式计算阵列天线总辐射功率TRP的一个实施例,其中阵列天线被分为4个天线子阵,分别为A1,A2,A3和A4。在垂直方向上最大尺寸D z,max为天线子阵A1和A2对应的尺寸,在水平方向上最大尺寸D y,max则为天线子阵A3所对应的尺寸。在y方向和z方向上的瑞利分辨率和由此得出的采样点由尺寸D y,max和D z,max决定。
参见图7所示为采用独立分区方式计算TRP的测试方法的流程图,具体如下:
S701、将整个待测阵列天线分为N个区域,形成N个天线子阵,N大于等于2。
S702、根据N个天线子阵的最大尺寸确定瑞利分辨率,根据瑞利分辨率确定采样间距。
本实施例中,确定天线子阵的最大尺寸可以分为两种情况,一种是y方向和z方向最大尺寸都在同一个天线子阵中,另一种是y方向和z方向最大尺寸分属于不同的天线子阵。
本实施例中,瑞利分辨率可以从两种不同的空间进行确定,一种是角度空间,另一种是归一化波矢空间。
确定角度空间瑞利分辨率的方式:
Figure PCTCN2020094753-appb-000008
确定归一化波矢空间瑞利分辨率的方式:
Figure PCTCN2020094753-appb-000009
其中,λ为信号波长,D y,max和D z,max分别为阵列天线在y方向和z方向上对应的最大天线尺寸;θ r,min
Figure PCTCN2020094753-appb-000010
分别为各子阵在角度空间中θ和
Figure PCTCN2020094753-appb-000011
方向上对应的最小瑞利分辨率,u r,min和v r,min分别为各子阵在归一化波矢空间中y方向和z方向上对应的最小瑞利分辨率。
需要说明的是,采样间距通过不超过瑞利分辨率来确定,具体如下:
Figure PCTCN2020094753-appb-000012
S703、根据采样间距确定采样点。
对于在角度空间进行采样的方案,需要测试系统在角度空间
Figure PCTCN2020094753-appb-000013
Figure PCTCN2020094753-appb-000014
为采样间隔进行均匀采样确定M s个采样点
Figure PCTCN2020094753-appb-000015
其中i=1,2…M s
对于在归一化波矢空间采样方案,需要测试系统在波矢空间(u,v)以(Δu,Δv)为采样间隔进行均匀采样确定M w个采样点(u i,v i)和在角度空间的对应值
Figure PCTCN2020094753-appb-000016
其中i=1,2…M w,(u i,v i)和
Figure PCTCN2020094753-appb-000017
的关系通过公式(1)进行变换。
S704、根据采样点得出每个天线子阵的总辐射功率TRP值。
本实施例中,在每个采样点上,让N个天线子阵依次发射功率,测试仪表记录每个子阵对应的等效全向功率EIRP j,j=1,2…N。
需要说明的是,让N个天线子阵依次发射功率为一个天线子阵发射功率时,其他天线子阵处于关闭状态,即不发射功率。
以采样点是在角度空间上进行均匀采样为例,则在每个采样点上所记录的每个天线子阵的EIRP值为EIRP ij,i=1,2…M s,j=1,2…N,由此可以得出每个天线子阵的总辐射功率TRP值,公式如下:
Figure PCTCN2020094753-appb-000018
其中,TRP j是第j个子阵的TRP值,θ i指的是第i个采样点对应的俯仰角。
以采样点是在归一化波矢空间上进行均匀采样为例,则在每个采样点上所记录的每个天线子阵的EIRP值为EIRP ij,i=1,2…M w,j=1,2…N,由此可以得出每个天线子阵的总辐射功率TRP值,公式如下:
Figure PCTCN2020094753-appb-000019
其中,TRP j是第j个子阵的TRP值,角度
Figure PCTCN2020094753-appb-000020
指的是第i个采样点(u i,v i)对应的值,它们之间通过变换公式(1)连接。
S705、根据每个天线子阵对应的TRP确定整个阵列天线的总辐射功率TRP。
本实施例中,每个天线子阵对应的TRP值可表示为TRP j,j=1,2…N,则整个阵列天线的总辐射功率为:
Figure PCTCN2020094753-appb-000021
本发明实施例分别以在角度空间进行采样和归一化波矢空间进行采样为示例,通过具体实施例对整个阵列天线的总辐射功率TRP测量方法做进一步详细说明。
示例一:
此示例中,采用阵列天线的尺寸为8λ×8λ,其中λ表示波长。将待测是的阵列天线划分为两个天线子阵,具体为由左右两个相同的天线子阵组成,且TRP采样在角度空间进行。
S701、将整个待测阵列天线分为N个区域,形成N个天线子阵,N大于等于2。
具体的,将8λ×8λ的待测阵列天线分为左右相同的两个4λ×8λ子阵,确定N为2。
S702、根据N个天线子阵的最大尺寸确定瑞利分辨率,根据瑞利分辨率确定采样间距。
具体的,由于满阵阵列天线由左右两个相同的天线子阵组成,因此天线子阵对应在y方向和z方向上的最大尺寸D y,max和D z,max分别为4λ和8λ。通过代入公式(5)可知,对应的瑞利分辨率
Figure PCTCN2020094753-appb-000022
为(14.4°,7.1°)。按照公式(7),θ和
Figure PCTCN2020094753-appb-000023
方向的采样间隔可设为14.4°和7.1°。
S703、根据采样间距确定采样点。
本示例是在角度空间中进行均匀采点,点的间距在θ和
Figure PCTCN2020094753-appb-000024
方向的分别为14.4°和7.1°。采样的起始位置可以为阵列天线法线方向,也可为偏离法线方向。由于对于这种高增益阵列天线来讲,后向辐射可以忽略,扫描可以只在阵列天线前半球面进行,因此这种方式确定的采样点数M s约为300个点。
S704、根据采样点得出每个天线子阵的总辐射功率TRP值。
具体的,测试机250控制转台220到指定的采样点,在每个采样点i上,对左右两个子阵进行切换,使其轮流发射功率,频域仪240记录每个子阵对应的等效全向功率EIRP ij,i=1,2…M s,j=1,2。左右两个子阵的TRP 1和TRP 2可由公式(8)得出。
S705、根据每个天线子阵对应的TRP确定整个阵列天线的总辐射功率TRP。
本示例中,整个阵列天线的总辐射功率TRP=TRP 1+TRP 2
示例二:
此示例中,采用阵列天线的尺寸为8λ×8λ,其中λ表示波长。将待测是的阵列天线划分为两个天线子阵,具体为由左右两个相同的天线子阵组成,且TRP采样在归一化波矢空间进行。
S701、将整个待测阵列天线分为N个区域,形成N个天线子阵,N大于等于2。
具体的,将8λ×8λ的待测阵列天线分为左右相同的两个4λ×8λ子阵,确定N为2。
S702、根据N个天线子阵的最大尺寸确定瑞利分辨率,根据瑞利分辨率确定采样间距。
具体的,由于满阵天线可由左右两个相同天线子阵组成,因此天线子阵对应在y方向和z方向上的最大尺寸D y,max和D z,max分别为4λ和8λ。通过代入公式(6)可知,对应的瑞利分辨率(u r,min,v r,min)为(0.25,0.125)。按照公式(7),u和v方向的采样间隔可设为0.25和0.125。
S703、根据采样间距确定采样点。
本示例是在波矢空间中进行均匀采点,点的间距在u和v方向分别为0.25和0.125。采样的起始位置可以为阵列天线法线方向,也可为偏离法线方向。这些在波矢空间中均匀分布的采样点离中心点位置必须在单位圆之内,这是由传播模特性决定的。由于对于这种高增益阵列天线来讲,后向辐射可以忽略,扫描可以只在阵列天线前半球面进行,因此这种方式确定的采样点数M w约为100个点。通过变换关系式(1)得出波矢空间的点在角度空间对应值。
S704、根据采样点得出每个天线子阵的总辐射功率TRP值。
具体的,测试机250控制转台220到所述角度空间中的点,在每个采样点i上,对左右两个子阵进行切换,使其轮流发射功率,频域仪240记录每个子阵对应的等效全向功率EIRP ij,i=1,2…M s,j=1,2。左右两个子阵的TRP 1和TRP 2可由公式(9)得出。
S705、根据每个天线子阵对应的TRP确定整个阵列天线的总辐射功率TRP。
本示例中,整个阵列天线的总辐射功率TRP=TRP 1+TRP 2
本发明实施例提供的阵列天线总辐射功率测量方法,通过将待测的阵列天线进行按照独立分区的方式进行分区,这种采样方式以保证天线子阵下不产生混叠,进而保证天线子阵TRP结果的准确性;子阵切换时间相比转台停等时间小两个数量级,可以忽略,采样点数的减少,大大地提升了阵列天线总辐射功率的测试效率;波矢空间场分布与天线面电流分布存在傅里叶变换的关系,因此在波矢空间采样是点数最少的方式。采样点数越少,TRP测试效率越高。
实施例三:
本发明实施例以反相分区方式为示例对阵列天线总辐射功率测试方法做进一步详细说明。
图8(a)为采用二分区方式计算阵列天线TRP的示意图。
其中,整个阵列天线分为大小相同的两个天线子阵A1和A2,以天线子阵的尺寸对应的采样间距进行采 样会使两个天线子阵区域产生混叠,导致TRP计算值与实际值产生偏差。其中811为两个天线子阵保持相位为0为情况,812为两个天线子阵相位相差180°的情况,即822比较811只进行了一个反相操作,这种操作在有源相控阵天线中是很容易实现的。以所述采样方式对811的情况进行测试所得到的TRP为TRP 1,对812的情况进行测试所得到的TRP为TRP 2。虽然TRP 1和TRP 2都无法直接代表满阵列天线TRP值,但可以证明所述满阵列天线TRP值可为
Figure PCTCN2020094753-appb-000025
这个结果可由场的相干特性得出。
通过公式(11)这种方式就可以天线子阵的尺寸对应瑞利分辨率进行采样,从而较少一半的采样点,且由于移相相比于测试点停等时间可以忽略,一般来讲,这种二分区反相计算TRP方式可以提高1倍测试效率。
图8(b)展示的是四分区反相计算TRP方案的示意图。
其中,整个阵列天线分为大小相同的四个天线子阵A1、A2、A3和A4,以天线子阵的的尺寸对应的采样间隔进行采样会使四个天线子阵区域产生混叠,导致TRP计算值与实际值产生偏差。其中821为两个天线子阵保持相位为0为情况。822为左右两个天线子阵相位相差180的情况,即822右边两个天线子阵比较821只进行了一个反相操作。图823是上下两个天线子阵相位相差180的情况,即823下面两个天线子阵比较821只进行了一个反相操作。图824是对角两个天线子阵相位相差180的情况,即824下面两个天线子阵比较822只进行了一个反相操作。这种移相操作在有源相控阵天线中是很容易实现的。以所述采样方式对821、822、823和824的情况进行测试所得到的TRP为TRP 1、TRP 2、TRP 3和TRP 4。虽然TRP 1、TRP 2、TRP 3和TRP 4都无法直接代表满阵列天线TRP值,但可以证明所述满阵列天线TRP值可为
Figure PCTCN2020094753-appb-000026
这个结果可由场的相干特性得出。
通过公式(12)这种方式就可以天线子阵的尺寸对应瑞利分辨率进行采样,从而使采样点减少为原先的1/4,且由于移相相比于测试点停等时间可以忽略,一般来讲,这种四分区反相计算TRP方式可以提高3倍测试效率。
图8(c)展示的是N分区反相计算TRP方案的示意图。
通过图8(a)和(b)的观察可知,天线子阵是按二分法的方式分割的。对于4分区的情况,可以表示为0000、0101、0011和0110这几种情况,其中1代表的是反相操作。对于更多的分区情况,可以在此基础之上继续拓展。可将阵列天线分为N=2 n个相同的天线子阵,按天线子阵的尺寸对应的采样间距进行采样,得到每次反相对应的TRP值,即TRP j,j=1,2…N值。可以证明满阵列天线TRP值为:
Figure PCTCN2020094753-appb-000027
通过公式(13)这种方式就可以天线子阵的尺寸对应瑞利分辨率进行采样,从而使采样点减少为原先的1/N,且由于移相相比于测试点停等时间可以忽略,一般来讲,这种N分区反相计算TRP方式可以提高N-1倍测试效率。
需要说明的是,上述是将阵列天线划分为天线子阵尺寸相同的情况,天线子阵的尺寸也可以为不相同,具体如何划分,根据实际情况以及需要而定。
参见图9所示为采用反相分区方式计算TRP的测试方法的流程图,具体如下:
S901、将整个待测阵列天线按照二分法分为N=2 n个区域,形成N个子阵。
S902、根据N个天线子阵的最大尺寸确定瑞利分辨率,根据瑞利分辨率确定采样间距。
本实施例中,确定天线子阵的最大尺寸可以分为两种情况,一种是y方向和z方向最大尺寸都在同一个天线子阵中,另一种是y方向和z方向最大尺寸分属于不同的天线子阵。
本实施例中,瑞利分辨率可以从两种不同的空间进行确定,一种是角度空间,另一种是归一化波矢空间。角度空间瑞利分辨率和归一化波矢空间瑞利分辨率的确定可由公式(5)和公式(6)实现。
本实施例中角度空间和归一化波矢空间的采样间距可由公式(7)确定。
S903、根据采样间距确定采样点。
对于在角度空间进行采样的方案,需要测试系统在角度空间
Figure PCTCN2020094753-appb-000028
Figure PCTCN2020094753-appb-000029
为采样间隔进行均匀采样确定M s个采样点
Figure PCTCN2020094753-appb-000030
其中i=1,2…M s
对于在归一化波矢空间采样方案,需要测试系统在波矢空间(u,v)以(Δu,Δv)为采样间隔进行均匀采样确定M w个采样点(u i,v i)和在角度空间的对应值
Figure PCTCN2020094753-appb-000031
其中i=1,2…M w,(u i,v i)和
Figure PCTCN2020094753-appb-000032
的关系通过公式(1)进行变换。
S904、根据采样点得出反相序列的总辐射功率TRP j值,j=1,2…N。
本实施例中,在每个采样点上,让所有天线子阵同时发射功率,对每个子阵进行编号,且按照图8(c)的方式获得反相序列,测试仪表记录反相序列的等效全向功率EIRP j,j=1,2…N。
当采样点是在角度空间上均匀采样得出的时,在每个采样点上所记录的每个反相序列的EIRP值为EIRP ij,i=1,2…Ms,j=1,2…N,且每个反相序列的TRP值可通过公式(8)得出。
需要注意的是,此时公式(9)中TRP j指的是第j个反相序列的TRP值。
当采样点是在归一化波矢空间上均匀采样得出的时,在每个采样点上所记录的每个反相序列的EIRP值为EIRP ij,i=1,2…M w,j=1,2…N,且每个子阵的TRP值可通过公式(9)得出。需要注意的是,此时公式(9)中TRP j指的是第j个反相序列的TRP值。
S905、根据每个反相序列对应的TRP确定整个阵列天线的总辐射功率TRP。
具体的,每个反相序列对应的TRP值可表示为TRP j,j=1,2…N,则整个阵列的总辐射功率可由公式(13)得出。
本发明实施例分别以在角度空间进行采样和归一化波矢空间进行采样为示例,通过具体实施例对整个阵列天线的总辐射功率TRP测量方法做进一步详细说明。
示例一:
此示例中,采用阵列天线的尺寸为8λ×8λ,其中λ表示波长。将待测是的阵列天线划分为两个天线子阵,具体为由左右两个相同的天线子阵组成,且TRP采样在角度空间进行。
S901、将整个待测阵列天线按照二分法分为N=2 n个区域,形成N个子阵。
本示例中,将8λ×8λ的阵列天线分为左右相同的两个4λ×8λ天线子阵,确定N为2,n=1。
S902、根据N个天线子阵的最大尺寸确定瑞利分辨率,根据瑞利分辨率确定采样间距。
本实施例中,由于满阵天线可由左右两个相同天线子阵组成,因此子阵对应在y方向和z方向上的最大尺寸D y,max和D z,max分别为4λ和8λ。通过代入公式(5)可知,对应的瑞利分辨率
Figure PCTCN2020094753-appb-000033
为(14.4°,7.1°)。按照公式(7),θ和
Figure PCTCN2020094753-appb-000034
方向的采样间隔可设为14.4°和7.1°。
S903、根据采样间距确定采样点。
本示例在角度空间中进行均匀采点,点的间距在θ和
Figure PCTCN2020094753-appb-000035
方向的分别为14.4°和7.1°。采样的起始位置可以为阵列天线法线方向,也可为偏离法线方向。由于对于这种高增益阵列天线来讲,后向辐射可以忽略,扫描可以只在阵列天线前半球面进行,因此这种方式确定的采样点数Ms约为300个点。
S904、根据采样点得出反相序列的总辐射功率TRP j值,j=1,2…N。
测试机250控制转台220到指定的采样点,在每个采样点i上,将两种反相序列作用到左右两个天线子阵上,一种序列使得两天线子阵相位同相,另一种序列使两天线子阵的相位反相。频域仪240记录每个反相序列对应的等效全向功率EIRP ij,i=1,2…M s,j=1,2。两个反相序列的TRP 1和TRP 2可由公式(8)得出。
S905、根据每个反相序列对应的TRP确定整个阵列天线的总辐射功率TRP。
本示例中,整个阵列天线的总辐射功率
Figure PCTCN2020094753-appb-000036
示例二:
此示例中,采用阵列天线的尺寸为8λ×8λ,其中λ表示波长。将待测是的阵列天线划分为两个天线子阵,具体为由左右两个相同的天线子阵组成,且TRP采样在归一化波矢空间进行。
S901、将整个待测阵列天线按照二分法分为N=2 n个区域,形成N个子阵。
本示例中,将8λ×8λ的阵列天线分为左右相同的两个4λ×8λ天线子阵,确定N为2,n=1。
S902、根据N个天线子阵的最大尺寸确定瑞利分辨率,根据瑞利分辨率确定采样间距。
本实施例中,由于满阵天线可由左右两个相同天线子阵组成,因此天线子阵对应在y方向和z方向上的最大尺寸D y,max和D z,max分别为4λ和8λ。通过代入公式(6)可知,对应的瑞利分辨率(u r,min,v r,min)为(0.25,0.125)。按照公式(7),u和v方向的采样间隔可设为0.25和0.125。
S903、根据采样间距确定采样点。
本示例在波矢空间中进行均匀采点,点的间距在u和v方向分别为0.25和0.125。采样的起始位置可以为阵列天线法线方向,也可为偏离法线方向。这些在波矢空间中均匀分布的采样点离中心点位置必须在单位圆之内,这是由传播模特性决定的。由于对于这种高增益阵列天线来讲,后向辐射可以忽略,扫描可以只在阵列天线前半球面进行,因此这种方式确定的采样点数M w约为100个点。通过变换关系式(1)得出波矢空间的点在角度空间对应值。
S904、根据采样点得出反相序列的总辐射功率TRP j值,j=1,2…N。
测试机250控制转台220到指定的采样点,在每个采样点i上,将两种反相序列作用到左右两个天线子阵上,一种序列使得两天线子阵相位同相,另一种序列使两天线子阵的相位反相。频域仪240记录每个反相序列对应的等效全向功率EIRP ij,i=1,2…M w,j=1,2。两个反相序列的TRP 1和TRP 2可由公式(9)得出。
S905、根据每个反相序列对应的TRP确定整个阵列天线的总辐射功率TRP。
本示例中,整个阵列天线的总辐射功率
Figure PCTCN2020094753-appb-000037
本发明实施例提供的阵列天线总辐射功率测量方法,通过将待测的阵列天线进行按照反相分区的方式进行分区,基于满阵列天线角度空间和波矢空间瑞利采样率方案的基础上,由于通常子阵切换时间相比转台停等时间小两个数量级,可以忽略,能够提高计算效率,而且这种分区方法通过减少采样点的方式提升了测试效率,这种采样方案的效率与分区数量成正比。
实施例四:
本实施例还提供了一种阵列天线总辐射功率测量装置,该装置包括分区确定模块、采样间距确定模块、采样点确定模块、总辐射功率确认模块,用于实现如上述实施例的测试方法。
参见图10所示为采用独立分区方式计算TRP的测试装置示意图,该装置包括:
分区确定模块1001用于将整个待测阵列天线分为N个区域,形成N个天线子阵,N大于等于2。
采样间距确定模块1002用于使采样间距不大于每个天线子阵的最大尺寸所对应的瑞利分辨率。
采样点确定模块1003用于根据采样间距确定采样点位置。
总辐射功率确认模块包括天线子阵TRP确定模块1004和满阵列天线TRP确定模块1005,其中,天线子阵TRP确定模块1004用于根据采样点确定每个天线子阵的TRP值,满阵列天线TRP确定模块1005用于根据天线子阵的TRP确定满阵列天线TRP值。
参见图11所示为采用反相分区方式计算TRP的测试装置示意图,该装置包括:
分区确定模块1101用于将整个待测阵列天线按照二分法分为N=2 n个区域,形成N个天线子阵。
采样间距确定模块1102用于使采样间距不大于每个天线子阵的最大尺寸所对应的瑞利分辨率。
采样点确定模块1103用于根据采样间距确定采样点位置。
总辐射功率确认模块包括反相序列TRP确定模块1104和满阵列天线TRP确定模块1105,其中,反相序列TRP确定模块1104用于根据采样点确定每个反相序列的TRP值,满阵列天线TRP确定模块805用于根据反相序列的TRP确定满阵列天线TRP值。
实施例五:
本实施例还提供了一种阵列天线总辐射功率测量系统,该系统用于实现如上述实施例的阵列天线总辐射功率测量方法至少一个步骤。具体参见图2所示,该系统包括固定在转台上的被测试设备210(Equipment Under Test,EUT)、测试天线系统230、功率检测仪240和测试机250,其中,被测试设备210包括集成在一起的阵列天线212和远端射频单元211,功率检测仪240与测试天线系统230相连,测试机250分别与被测试设备210、转台220、测试天线系统230和功率检测仪240相连。
被测试设备210被安置固定在转台220上,转台220可以在水平面上和俯仰面上进行转动。
测试天线系统230包括测试天线231、天线固定支架232和测试线缆233。测试天线231可以为单个天线,也可以是多个天线。天线固定支架232设置为固定测试天线231,并可以进行三维空间的移动。测试天线231通过测试线缆233被连接到功率检测仪240上,功率检测仪240可以是矢量网络分析仪,可以为频谱仪,也可以为功率计等。
被测试设备210、转台220、天线固定支架232和功率检测仪240被连接到测试机250上,该测试机250可设置为控制被测试设备210的收发、转台220的转动、天线固定支架232的移动和功率检测仪240的收发,对包括EIRP值的相关测试数据进行记录和处理,并记录日志。
在整个测试过程中,全电波暗室环境通过吸波材料260和暗室外墙270与外界环境隔绝以模拟无穷大空间的情况。
本实施例中,采用独立分区方式计算TRP时,被测试设备210中的阵列天线可被分为N个天线子阵,N大于等于2,天线子阵的切换包括调节幅值,也包括开关天线子阵。
测试机用于确定阵列天线分区和天线子阵、天线子阵的最大尺寸和最大尺寸天线子阵对应的瑞利分辨率;根据瑞利分辨率设置采样点的采样间距;以及,按照采样间距确定在角度空间或者波矢空间的均匀采样点,控制被测试设备210、转台220、测试天线系统230和功率检测仪240在采样点位置测量各个天线子阵对应的等效全向辐射功率EIRP,根据EIRP确定TRP。
具体的,测试机用于确定有源阵列天线212的N个分区,形成N个子阵,根据所有天线子阵的最大尺寸确定采样间距,根据采样间距确定采样点,控制被测试设备210、转台220、测试天线系统230和功率检测仪240在采样点位置测量每个天线子阵的等效全向辐射功率EIRP,根据EIRP确定每个天线子阵的TRP,根据每个天线子阵的TRP值确定满阵列天线的TRP。
本实施例中,采用反相分区方式计算TRP时,被测试设备210中的阵列天线按照二分法被分为N=2 n个天线子阵,天线子阵的控制包括调节相位或者符号。
测试机用于确定阵列天线分区和天线子阵、天线子阵的最大尺寸和最大尺寸天线子阵对应的瑞利分辨率;根据瑞利分辨率设置采样点的采样间距;以及,按照采样间距确定在角度空间或者波矢空间的均匀采样点,控制被测试设备210、转台220、测试天线系统230和功率检测仪240在采样点位置,根据二分法对天线子阵进行N=2 n次反相设置,测量每次反相设置对应的等效全向辐射功率EIRP,根据EIRP确定TRP。
具体的,测试机用于确定有源阵列天线212的N=2 n分区,形成N个子阵,根据所有天线子阵的最大尺寸确定采样间距,根据采样间距确定采样点,控制被测试设备210、转台220、测试天线系统230和功率检测仪240在采样点位置测量反相序列的等效全向辐射功率EIRP,根据EIRP确定每个反相序列的TRP,根据每个反相序列的TRP值确定满阵列天线的TRP。
图12为在该系统中采用分区反相算法的试验验证结果。试验选取了16×8阵列进行分区反相,分成两个8×8子阵列。曲线1和曲线2分别是同相码本、反相码本方向图的欠采样测量数据,欠采样导致了测量结果的大幅度波动;曲线3是两次数据合成,计算结果十分平稳,测量结果与标准采样测量结果一致。
实施例六:
如图13所示,本实施例还提供了一种阵列天线总辐射功率测量终端,包括处理器1301、存储器1302及通信总线1303,其中:
通信总线1303用于实现处理器1301和存储器1302之间的连接通信;存储器1302中存储有计算机程序;处理器1301用于执行存储器1302中存储的一个或者多个计算机程序,以实现如上述实施例一至三中的阵列天线总辐射功率测量方法的至少一个步骤。
实施例七:
本实施例还提供了一种计算机可读存储介质,该计算机可读存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、计算机程序模块或其他数据)的任何方法或技术中实施的易失性或非易失性、可移除或不可移除的介质。计算机可读存储介质包括但不限于RAM(Random Access Memory,随机存取存储器),ROM(Read-Only Memory,只读存储器),EEPROM(Electrically Erasable Programmable read only memory,带电可擦可编程只读存储器)、闪存或其他存储器技术、CD-ROM(Compact Disc Read-Only Memory,光盘只读存储器),数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。
本实施例中的计算机可读存储介质可用于存储一个或者多个计算机程序,其存储的一个或者多个计算机程序可被处理器执行,以实现上述实施例一至实施例三中的阵列天线总辐射功率测量方法的至少一个步骤。
根据本发明实施例提供的阵列天线总辐射功率测量方法、装置、系统、终端以及计算机存储介质,通过将待测的阵列天线进行分区,使在阵列天线总辐射功率测量过程中,采样点的点数减少,在一些实施过程中可以大大地提升测试效率。
以上内容是结合具体的实施方式对本发明实施例所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (13)

  1. 一种阵列天线总辐射功率测量方法,包括:
    将待测的阵列天线划分为N个天线子阵,所述N大于等于2;
    根据所述N个天线子阵的尺寸确定采样间距;
    根据所述采样间距确定采样点;
    根据所述采样点的等效全向辐射功率确定整个阵列天线的总辐射功率。
  2. 如权利要求1所述的阵列天线总辐射功率测量方法,其中,所述根据所述N个天线子阵的尺寸确定采样间距包括:
    根据所述N个天线子阵的最大尺寸确定瑞利分辨率;
    根据所述瑞利分辨率确定采样间距。
  3. 如权利要求2所述的阵列天线总辐射功率测量方法,其中,所述瑞利分辨率为等于瑞利分辨率。
  4. 如权利要求2所述的阵列天线总辐射功率测量方法,其中,所述根据所述采样间距确定采样点包括:
    在角度空间以所述采样间距进行均匀采样,确定采样点。
  5. 如权利要求2所述的阵列天线总辐射功率测量方法,其中,所述根据所述采样间距确定采样点包括:
    在归一化波矢空间以所述采样间距进行均匀采样,确定采样点。
  6. 如权利要求1所述的阵列天线总辐射功率测量方法,其中,所述根据所述采样点的辐射功率确定整个阵列天线的总辐射功率包括:
    根据划分的N个天线子阵,让每个天线子阵单独发射功率;
    测量每个天线子阵中所述采样点的等效全向辐射功率;
    根据所述等效全向辐射功率确定每个天线子阵的总辐射功率;
    根据所述每个天线子阵的总辐射功率确定整个阵列天线的总辐射功率。
  7. 如权利要求1所述的阵列天线总辐射功率测量方法,其中,所述根据所述采样点的辐射功率确定整个阵列天线的总辐射功率包括:
    将待测的阵列天线按照二分法划分为N=2n个天线子阵;
    将按照二分法划分的N=2n个天线子阵进行N=2n次反相设置;
    每次反相设置后根据所述采样点测量出反相序列的总辐射功率;
    根据所述每个反相序列对应的总辐射功率确定整个阵列天线的总辐射功率。
  8. 一种阵列天线总辐射功率测量装置,包括:
    分区确定模块,用于确定待测阵列天线的天线子阵,确定天线子阵的尺寸;
    采样间距确定模块,用于根据所述天线子阵的尺寸确定采样间距;
    采样点确定模块,用于根据所述采样间距通过在角度空间或波矢空间均匀采样的方式确定采样点;
    总辐射功率确认模块,用于根据所述采样点的辐射功率确定整个阵列天线的总辐射功率。
  9. 如权利要求8所述的阵列天线总辐射功率测量装置,其中,所述总辐射功率确认模块用于根据各个天线子阵在采样点上的等效全向辐射功率确定出每个天线子阵的总辐射功率,根据所述每个天线子阵的总辐射功率确定整个阵列天线的总辐射功率。
  10. 如权利要求8所述的阵列天线总辐射功率测量装置,还包括分区反相确定模块,用于将按照二分法划分的N=2n个天线子阵进行N=2n次反相设置;所述总辐射功率确认模块用于每次反相设置后根据所述采样点测量出反相序列的总辐射功率,根据所述每个反相序列对应的总辐射功率确定整个阵列天线的总辐射功率。
  11. 一种阵列天线总辐射功率测量系统,包括:固定在转台上的被测试设备、测试天线系统、功率检测仪和测试机,其中,
    所述被测试设备包括集成在一起的阵列天线和远端射频单元,所述功率检测仪与所述测试天线系统相连,所述测试机分别与所述被测试设备、转台、测试天线系统和功率检测仪相连,以实现如权利要求1至7中任一项所述的阵列天线总辐射功率测量方法的步骤。
  12. 一种阵列天线总辐射功率测量终端,包括:处理器、存储器及通信总线,其中,
    所述通信总线用于实现处理器和存储器之间的连接通信;
    所述存储器中存储有计算机程序;
    所述处理器用于执行存储器中存储的一个或者多个计算机程序,以实现如权利要求1至7中任一项所述的阵列天线总辐射功率测量方法的步骤。
  13. 一种计算机可读存储介质,存储有一个或者多个计算机程序,其中,所述一个或者多个计算机程序可被一个或者多个处理器执行,以实现如权利要求1至7中任一项所述的阵列天线总辐射功率测量方法的步骤。
PCT/CN2020/094753 2019-06-14 2020-06-05 阵列天线总辐射功率测量方法、装置、系统、终端以及计算机存储介质 WO2020248917A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021571654A JP7320627B2 (ja) 2019-06-14 2020-06-05 アレイアンテナ総放射電力の測定方法、装置、システム、端末及びコンピュータ記憶媒体
US17/618,748 US11879926B2 (en) 2019-06-14 2020-06-05 Method, device, system and terminal for measuring total radiation power of array antenna and computer storage medium
EP20822053.3A EP3968036A4 (en) 2019-06-14 2020-06-05 METHOD, DEVICE, SYSTEM AND TERMINAL FOR MEASURING THE TOTAL RADIANT POWER OF AN ARRAY ANTENNA AND COMPUTER STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910517592.7A CN112083234A (zh) 2019-06-14 2019-06-14 阵列天线总辐射功率测量方法、装置以及计算机存储介质
CN201910517592.7 2019-06-14

Publications (1)

Publication Number Publication Date
WO2020248917A1 true WO2020248917A1 (zh) 2020-12-17

Family

ID=73734123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094753 WO2020248917A1 (zh) 2019-06-14 2020-06-05 阵列天线总辐射功率测量方法、装置、系统、终端以及计算机存储介质

Country Status (5)

Country Link
US (1) US11879926B2 (zh)
EP (1) EP3968036A4 (zh)
JP (1) JP7320627B2 (zh)
CN (1) CN112083234A (zh)
WO (1) WO2020248917A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112730998B (zh) * 2020-12-24 2022-05-31 中国信息通信研究院 基于近场的大规模阵列天线ota测试方法及系统
CN112949193B (zh) * 2021-03-09 2023-06-20 中国电子科技集团公司第三十八研究所 一种子阵级稀疏阵列天线方向图数值方法及系统
CN115913421A (zh) * 2021-08-13 2023-04-04 中兴通讯股份有限公司 射频指标测量方法、装置、系统、电子设备及存储介质
CN116260531A (zh) * 2021-12-10 2023-06-13 中兴通讯股份有限公司 功率测量方法及其装置、存储介质、程序产品
CN114553326B (zh) * 2022-02-08 2022-12-20 山东大学 一种用于天线ota测试的球面采样方法
WO2023209558A1 (en) * 2022-04-25 2023-11-02 Lenovo (Singapore) Pte. Ltd. Multi-antenna panel testing efficiency
CN115378518B (zh) * 2022-09-19 2023-04-07 深圳市中承科技有限公司 基于深度学习的射频通信设备空间辐射测试系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102857310A (zh) * 2012-07-27 2013-01-02 中兴通讯股份有限公司 一种有源天线系统无线指标的测试方法及装置
US20130249746A1 (en) * 2012-03-22 2013-09-26 Electronics And Telecommunications Research Institute Method and apparatus for measuring radiated power of antenna
CN104079330A (zh) * 2014-06-27 2014-10-01 北京计算机技术及应用研究所 一种mimo-相控阵天线装置、系统及其实现方法
CN104237651A (zh) * 2014-09-18 2014-12-24 国家电网公司 移动通信基站天线辐射功率密度计算方法
CN109791171A (zh) * 2016-09-30 2019-05-21 瑞典爱立信有限公司 用于总辐射功率测量的精简网格

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399621B (zh) 2007-09-24 2012-07-04 中兴通讯股份有限公司 空间射频性能测试方法
CN102016608B (zh) * 2008-05-09 2013-04-17 安立股份有限公司 用于测定辐射功率的方法、辐射功率的测定用耦合器以及用于测定辐射功率的装置
CN101769967A (zh) * 2008-12-30 2010-07-07 中兴通讯股份有限公司 辐射性能测试方法和系统
CN102833017B (zh) 2012-08-21 2014-09-03 北京众谱达科技有限公司 手机全向辐射功率的快速测试方法
CN103257282B (zh) 2013-05-02 2016-01-13 惠州Tcl移动通信有限公司 一种终端天线trp快速测试方法
US10422823B2 (en) 2016-08-01 2019-09-24 Rohde & Schwarz Gmbh & Co. Kg System and a method for determining a radiation pattern
US10601695B2 (en) * 2016-09-01 2020-03-24 Keysight Technologies, Inc. Systems and methods for radio channel emulation of a multiple input multiple output (MIMO) wireless link
CN206096274U (zh) * 2016-09-28 2017-04-12 北京中科国技信息系统有限公司 倍率采样天线测试系统
CN110582944A (zh) 2017-03-24 2019-12-17 瑞典爱立信有限公司 用于启用eut的ota测试的方法和节点
KR102094159B1 (ko) * 2017-03-31 2020-03-27 미쓰비시덴키 가부시키가이샤 페이즈드 어레이 안테나의 위상 조정 제어 장치, 어레이 안테나 장치, 안테나 측정 장치 및 페이즈드 어레이 안테나의 위상 조정 방법
US10334454B2 (en) * 2017-05-11 2019-06-25 Intel Corporation Multi-finger beamforming and array pattern synthesis
US10587350B2 (en) * 2017-10-12 2020-03-10 Spirent Communications, Inc. Calibrating a programmable phase matrix and channel emulator and performing massive MIMO array testing using the calibrated phase matrix and channel emulator
US10393786B2 (en) * 2017-12-15 2019-08-27 Rohde & Schwarz Gmbh & Co. Kg Test system and method for over the air (OTA) measurements based on randomly adjusted measurement points
CN108540342A (zh) 2018-03-23 2018-09-14 上海鸿洛通信电子有限公司 测试方法、装置及设备
CN113225147B (zh) 2018-05-07 2024-05-14 中兴通讯股份有限公司 一种阵列天线总辐射功率的测量方法、装置和系统
CN111371513B (zh) * 2018-12-26 2024-04-09 是德科技股份有限公司 用于测试待测设备的天线阵列的方法及测试系统
CN115913421A (zh) 2021-08-13 2023-04-04 中兴通讯股份有限公司 射频指标测量方法、装置、系统、电子设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130249746A1 (en) * 2012-03-22 2013-09-26 Electronics And Telecommunications Research Institute Method and apparatus for measuring radiated power of antenna
CN102857310A (zh) * 2012-07-27 2013-01-02 中兴通讯股份有限公司 一种有源天线系统无线指标的测试方法及装置
CN104079330A (zh) * 2014-06-27 2014-10-01 北京计算机技术及应用研究所 一种mimo-相控阵天线装置、系统及其实现方法
CN104237651A (zh) * 2014-09-18 2014-12-24 国家电网公司 移动通信基站天线辐射功率密度计算方法
CN109791171A (zh) * 2016-09-30 2019-05-21 瑞典爱立信有限公司 用于总辐射功率测量的精简网格

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3968036A4 *

Also Published As

Publication number Publication date
CN112083234A (zh) 2020-12-15
JP7320627B2 (ja) 2023-08-03
US11879926B2 (en) 2024-01-23
EP3968036A1 (en) 2022-03-16
JP2022536276A (ja) 2022-08-15
US20220260625A1 (en) 2022-08-18
EP3968036A4 (en) 2022-06-22

Similar Documents

Publication Publication Date Title
WO2020248917A1 (zh) 阵列天线总辐射功率测量方法、装置、系统、终端以及计算机存储介质
US11804913B2 (en) Method, apparatus and system for measuring total radiated power of array antenna
CN107566052B (zh) 用于表征具有集成天线阵列的待测设备的紧凑型系统
CN110542798B (zh) 使用中场天线方向图测试天线阵列的方法和系统
CN110095658B (zh) 用于esa度量的方法和系统
Joy et al. Applications of probe-compensated near-field measurements
Kildal et al. Characterization of reverberation chambers for OTA measurements of wireless devices: Physical formulations of channel matrix and new uncertainty formula
US9335359B2 (en) Far electromagnetic field estimation method and apparatus, and near electromagnetic field measurement apparatus
CN111987462B (zh) 一种相控阵天线相位校准测量系统及方法
CN110221131A (zh) 一种基于电扫天线的太赫兹紧缩场测试系统
WO2022088213A1 (zh) 用于天线阵列的相位差测量方法和系统及相位补偿方法和系统
CN112034264A (zh) 一种多探头紧缩场天线测试系统和生成方法
CN113917241B (zh) 一种天线方向图快速测量和预估方法、系统、设备及终端
RU2783695C1 (ru) Способ, устройство, система и терминал для измерения полной излучаемой мощности и машиночитаемый носитель данных
Lembo et al. Enhancing WiFi RSS fingerprint positioning accuracy: lobe-forming in radiation pattern enabled by an air-gap
Xin et al. OTA testing for massive MIMO devices using cascaded APM networks and channel emulators
Räisänen et al. Antenna measurements at millimeter and submillimeter wavelengths
US9356342B1 (en) Method for determining an antenna pattern in a reverberant environment
Lan et al. A UAV-based measurement method for three-dimensional antenna radiation pattern
Dang et al. A Local RCS Diagnosis Method Based on Near Field Measurement
López et al. Improving the performance of the phaseless Sources Reconstruction Method for antenna diagnostics and characterization
Ikeda et al. DOA Estimation by Synthetic Aperture Measurement with Compressed Sensing and Neural Network
Mitsui et al. EIRP estimation using a phase-less spherical near field measurement
Craeye et al. Appendix H On the Extended Admittance Matrix
Lou et al. Research and Implementation of Mono-Anchor AOA Positioning System Based on UWB

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20822053

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021571654

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020822053

Country of ref document: EP

Effective date: 20211207

NENP Non-entry into the national phase

Ref country code: DE