TWI352208B - Method and related electronic device for adjusting - Google Patents

Method and related electronic device for adjusting Download PDF

Info

Publication number
TWI352208B
TWI352208B TW096146318A TW96146318A TWI352208B TW I352208 B TWI352208 B TW I352208B TW 096146318 A TW096146318 A TW 096146318A TW 96146318 A TW96146318 A TW 96146318A TW I352208 B TWI352208 B TW I352208B
Authority
TW
Taiwan
Prior art keywords
radio frequency
test
circuit
total
antenna
Prior art date
Application number
TW096146318A
Other languages
Chinese (zh)
Other versions
TW200925622A (en
Inventor
Yung Jinn Chen
Original Assignee
Wistron Neweb Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wistron Neweb Corp filed Critical Wistron Neweb Corp
Priority to TW096146318A priority Critical patent/TWI352208B/en
Priority to US12/049,381 priority patent/US8019307B2/en
Publication of TW200925622A publication Critical patent/TW200925622A/en
Application granted granted Critical
Publication of TWI352208B publication Critical patent/TWI352208B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • H03H7/40Automatic matching of load impedance to source impedance

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transceivers (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Description

九、發明說明: 【發明所屬之技術領域】 本發明係關於一種以阻抗負載特性調整—無線射頻電路的方 法及其相關電子裝置,尤指-種可節省無線射_ 時間和資源的方法及其相關電子裝置。 f 【先前技術】 …無線通訊裝置的射頻發射和接收能力決定了無線通訊系統的 通u n線通訊裝置的發射峨辨不佳,齡影響基地 台的訊號接收品質;反之,若無線通訊裝置的接收靈敏度不佳, 則會影響無線通訊裝置的接收效能。換句話說,無論上行鍵路 (Uplink )或下行鏈路(D_iink ),只要其中—條鏈路出現問題, 都會大大㈣響整義通訊品f,甚至造成触情。因此,在 設計無線通訊裝糾,需考量其無線_電_發射及接收能 力,以達到所需的通信品質。 請參考第!圖,第!圖為習知用於一無線通訊裝置之一無線 射頻電路H)之示意圖。無線射頻電路1〇包含有一射頻發射模組 12、一射頻接收模組14、一天線切換模組16、-天線18及-天 線匹配電路20。射頻發射模組12包含有一功率放大器12〇及一匹 配電路122,用來提升一射頻訊號處理單元所輸出之訊號的功率, 1352208IX. Description of the Invention: [Technical Field] The present invention relates to a method for adjusting a radio frequency circuit by impedance load characteristics and related electronic devices, and more particularly to a method for saving radio shot time and resources and Related electronic devices. f [Prior Art] ... The radio frequency transmitting and receiving capability of the wireless communication device determines the poor transmission of the communication line of the wireless communication system, and the age affects the signal receiving quality of the base station; otherwise, if the wireless communication device receives Poor sensitivity will affect the receiving performance of wireless communication devices. In other words, regardless of the uplink (Dlink) or the downlink (D_iink), as long as there is a problem with the -link, it will greatly (4) ring the neat communication product f, and even cause a touch. Therefore, in designing wireless communication equipment, it is necessary to consider its wireless_electric_transmitting and receiving capabilities to achieve the required communication quality. Please refer to the first! Figure, the first! The figure is a schematic diagram of a conventional radio frequency circuit H) for use in a wireless communication device. The radio frequency circuit 1 includes a radio frequency transmitting module 12, an RF receiving module 14, an antenna switching module 16, an antenna 18, and an antenna matching circuit 20. The RF transmitting module 12 includes a power amplifier 12A and a matching circuit 122 for boosting the power of the signal output by the RF signal processing unit, 1352208

I : 以透過天線18發射至空氣中。射頻接收模組14包含有—低雜訊 - 放大器140、一匹配電路144及-表面聲波滤波器146,用來透過 天線I8接收無線訊號,並轉發至射頻訊號處理單元進行解調、解 碼等運作…般而言,在設計無線射頻電路1G時,細—測义點 IT絲界,先制試點TP輕至—職設備,在峨為的 條件下,調整射頻發射模組12及射頻接收模組14的特性,以達 成設計規格。接著,將天線18安裝至無線射頻電路10令,藉由 ❿網路分析儀(NetWGricAnalyzeO由贱點TP量測天線18,二調 整天線18的形狀和天線匹配電路2〇的特性,以期達到最佳駐波 比或反射係數。 / 完成無線射頻電路10的設計後,接著,將裝有無線射頻電路 10的無線通訊裝置放置於三維微波暗室,以測試「總幅射功率」 (Total Radiation Power ^ TRP) ^ r tj ( τ〇^ 鲁sensmvity,TIS),如第2圖所示。「總幅射功率」及「總全向靈敏 度」係用來評估無線通訊裝置的發射及接收能力,相關說明如下。 總幅射功率」係指在立體全方向上,無線通訊裝置之發射 、、:子卜轄射功率的平均值,其係在三維空間上,全面地衡量無線I : is transmitted through the antenna 18 into the air. The RF receiving module 14 includes a low-noise-amplifier 140, a matching circuit 144 and a surface acoustic wave filter 146 for receiving wireless signals through the antenna I8 and forwarding them to the RF signal processing unit for demodulation and decoding operations. In general, when designing the radio frequency circuit 1G, the fine-measurement point IT wire boundary, the first pilot TP light to the equipment, under the condition of the adjustment, adjust the RF transmission module 12 and the RF receiving module 14 The characteristics to achieve design specifications. Next, the antenna 18 is mounted to the radio frequency circuit 10, and the network analyzer (NetWGricAnalyzeO measures the antenna 18 by the defect point TP, adjusts the shape of the antenna 18 and the characteristics of the antenna matching circuit 2〇 in order to achieve the best. Standing wave ratio or reflection coefficient. / After completing the design of the radio frequency circuit 10, the wireless communication device equipped with the radio frequency circuit 10 is then placed in a three-dimensional microwave dark room to test "Total Radiation Power ^ TRP" ^ r tj ( τ〇^ 鲁 sensmvity, TIS), as shown in Figure 2. "Total radiated power" and "total omnidirectional sensitivity" are used to evaluate the transmitting and receiving capabilities of wireless communication devices. "Total radiated power" refers to the average of the launching power of the wireless communication device in the stereo omnidirectional direction, and the average power of the sub-discipline, which is measured in three dimensions and comprehensively measures the wireless.

、裝置之發射機的發射能力。「總幅射功率」的測試方法係將I 線通訊裝置設置於筮9 ’’、、 ^ 复於第2圖所不之三維微波暗室,透過控制無線通 •次旦 在一球座標的0軸和❿轴分別間隔15度量測一 人'則里其有效等方向輻射功率(Effective Isotropic Radiated 1352208The transmitting capability of the transmitter of the device. The test method of "Total Radiated Power" is to set the I-line communication device to 三维9 '', ^ to the three-dimensional microwave darkroom in Figure 2, and to control the wireless axis. And the axis is measured at intervals of 15 respectively to measure a person's effective unequal radiant power (Effective Isotropic Radiated 1352208

Power ’ EIRP) ’並將所有測量結果進行積分運算,即可得到「總 幅射功率」。 另一方面’「總全向靈敏度」是指在立體全方向上,無線通訊 裝置之接收機的接收靈敏度,用以全面地衡量無線通訊裝置的接 收機接收能力。「總全向靈敏度」的測試方法係透過控制無線通訊 裝置的位置,在球座標的0轴和φ軸分別間隔3〇度量測一次,測 籲量其有效全向接收靈敏度(EffectiveisotropicSensitivity,ms), 並將所有測量絲進行積分計算,即可得到「總全向靈敏度」。 因此’當無線通訊裝置的設計者完成無線射電 於㈣的設計後,必須在三維微波暗室量測無線通訊裝置H 幅射功率」及「總全向錄度」’以評估無_訊裝置的發射及接 收能力。然後’根據所測得的「總幅射功率」及「總全向靈敏度」, 設計者可重新調整無線射頻電路1〇(未標示於圖1},以便得到符合 # 軌規範的最大「總幅射功率」和最低「總全向靈敏度然而二 這樣的設計雜耗時費力,在有限的時間和魏下,未必得到最 佳的「總幅射功率」及「總全向靈敏度」。 度增加。舉例來說,請參考第3圖至第6 、如别所述,,,、線通戒裝置之設計者通常假設所有頻段之阻抗 皆為50Ω。實際上’為了減小天線尺寸並符合錢段的要求,天 線加上匹配電路後的阻抗難以接近·,因而造成設計時的困難 圖。第3圖及第4圖為 1352208 κ 一 GSM三頻天線之史密斯圖及電壓駐波比示意圖,第5圖及第6 圖為另一 GSM三頻天線之史密斯圖及電壓駐波比示意圖。上述的 二頻段所對應的通訊系統為:EGSM900系統,接收頻帶介於925.2 兆赫與959.8死赫之間,而傳輸頻帶則介於88〇 2兆赫與914 8兆 赫之間’ DCS1800系統,接收頻帶介於18〇5 2兆赫與1879 8兆赫 / Η而傳輸頻帶則介於〗710.2兆赫與1784.8兆赫之間;PCS1900 =統’接收頻帶介於193〇兆赫與199〇兆赫之間,而傳輸頻帶則 φ "於185〇死赫與丨91〇兆赫之間。 由第3 ®及第5断知,GSM三頻天線不錢成三頻段都接 的要求’使得設計者無從得知那—天線及其匹配電路可以 使得無線通訊裝置的主動輕射特性得到最佳發揮。 【發明内容】 法,露一種以阻抗負載特性調整一無線射頻電路的方 複數個職操作頻段,設計複數個職治具,其中該 數個測試阻抗貞錢域;將該複 接至該無_頻電路之-測試點,以透過該 1352208 ;複數細m純量顺無線義電路之概組㈣躲;根據該 複數組射頻雛,決定該無線射頻電路之—最餘抗負載區域; 以及根據該最佳阻抗負賴域,調整該無線射頻電路。 本發明另揭露-種以阻抗負載特性調整一無線射頻電路的電 子織,包対魏伽说治具,每—測試治撕獻—預設操 作頻段之一阻抗負載區域;一測試設備,透過該複數個測試治具 鲁之-測試治具轉接至該無線射頻電路之一測試點,用以透過該複 數個測試棘量測該無線射頻電路之複數組射頻特性;以及一判 斷裳置,麵接於該測試設備,用來根據該複數組射頻特性,決定 =無線射頻之-最餘抗貞倾域,以提侧整該無線麵 電路之依據。 【實施方式】 治。睛參考第7圖’第7圖為本發明實施例一流程%之示意圖。 7 韓峨抗負倾_整—無__路,無線射頻電路 以疋第1圖所示之無線射頻電路1〇。流程70包含以下步驟: 步驟700 :開始。 步驟7〇2 :根據-預設操作頻段,料複數個測試治具,其中 該複數個測試治具之每—測試治具皆對應於一阻抗 負载區域。 步驟7〇4:將該複數個測試治具分別耦接至無線射頻電路之_ 1352208 測試點’錢過細m治具量測鱗射頻電路 之複數組射頻特性。 步驟观:根軸數組射頻特性,决定無線_路之一最 佳阻抗負載區域。 m·根據該最佳阻抗負裁區域,調整無線射 步驟刀〇:結束。 同阻^Γ本發明係根據—預設操作頻段,設計對應於不 _域之測試治具。接著,將每_測試 射頻電―娜娜轉麵。然後 根據所測得的射頻特性,本發 …、 > 無線射頻電路之最佳阻抗負 載&域,並據以5周整無線射頻電路。 70 ,當完成無線射_關設職,設計者可透過流程 二ό如:頻=路之初步發射及接收能力,並據以調整無線射頻 Θ靈’在未進人三維微波暗飼量總幅射功率及總全 ft設計騎可姆估計鱗_祕之魏及接收能 H以調整無線射_路,以節省無線_電路所f的設計時 間和資源。 一在本發月/7|表70中’每一測試治具係對應於預設操作頻段之 :抗負載區域’其係用來模擬天線負載。因此,在設計每一測 。”台具時’可根據所需的阻抗㈣及賴駐波比,設計其電路。 1352208Power ’ EIRP) ’ and all the measurements are integrated to get the “total radiated power”. On the other hand, "total omnidirectional sensitivity" refers to the receiving sensitivity of the receiver of the wireless communication device in stereo omnidirectional direction to comprehensively measure the receiver receiving capability of the wireless communication device. The "total omnidirectional sensitivity" test method measures the position of the wireless communication device, and the 0 coordinate and the φ axis of the spherical coordinate are measured at intervals of 3 ,, and the effective omnidirectional receiving sensitivity (mf of the effective omnidirectional receiving sensitivity) is measured. , and all the measured wires are integrated to calculate the "total omnidirectional sensitivity". Therefore, when the designer of the wireless communication device completes the design of the radio (IV), it must measure the radio frequency of the wireless communication device in the three-dimensional microwave darkroom and the "total omnidirectional recording" to evaluate the emission of the device. And receiving ability. Then, based on the measured "total radiated power" and "total omnidirectional sensitivity", the designer can readjust the radio frequency circuit 1 (not shown in Figure 1) to get the maximum "total size" in accordance with the # rail specification. The "power" and the lowest "total omnidirectional sensitivity, however, are so laborious and time consuming. Under limited time and Wei, the best "total radiation power" and "total omnidirectional sensitivity" may not be obtained. For example, please refer to Figures 3 to 6, as described elsewhere, the designer of the line switching device usually assumes that the impedance of all frequency bands is 50 Ω. In fact, 'in order to reduce the size of the antenna and meet the money section The requirements, the impedance of the antenna plus the matching circuit is difficult to access, thus causing difficulty in design. Figures 3 and 4 are Schematic diagram and voltage standing wave ratio diagram of the 1352208 κ-GSM tri-band antenna, 5th Figure 6 and Figure 6 are schematic diagrams of the Smith chart and voltage standing wave ratio of another GSM tri-band antenna. The communication system corresponding to the above two-band is: EGSM900 system, the receiving frequency band is between 925.2 MHz and 959.8 dead, and transmission The frequency band is between 88〇2 MHz and 914 8 MHz' DCS1800 system, the receiving frequency band is between 18〇5 2 MHz and 1879 8 MHz/Η and the transmission band is between 710.2 MHz and 1784.8 MHz; PCS1900 = The receiving band is between 193 megahertz and 199 megahertz, and the transmission band is φ " between 185 〇 赫 丨 and 丨 91 〇 GHz. From the 3 ′′ and 5th, the GSM tri-band antenna The requirement of not being able to connect to the three-bands is such that the designer has no way of knowing that the antenna and its matching circuit can make the active light-radiation characteristics of the wireless communication device to be optimally utilized. [Invention] The law reveals an impedance load characteristic. Adjusting a plurality of service operating frequency bands of a radio frequency circuit, designing a plurality of service fixtures, wherein the plurality of test impedances are in the money domain; and multiplexing the test points to the non-frequency circuit to pass the 1352208; The plurality of fine m scalar singular wireless circuit circuits (four) dodge; according to the complex array radio frequency, determine the radio frequency circuit - the most anti-load area; and adjust the radio frequency circuit according to the optimal impedance negative domain Ben According to another aspect of the invention, an electronic ray of a radio frequency circuit is adjusted by an impedance load characteristic, and the Wei Jia said a fixture, each of which is a test load, an impedance load region of one of the preset operating frequency bands; a test device, through the plural Test fixtures - test fixtures are transferred to one of the test points of the radio frequency circuit for measuring the radio frequency characteristics of the radio frequency circuit through the plurality of test spikes; The test device is configured to determine, according to the RF characteristics of the complex array, the maximum anti-turning domain of the radio frequency to improve the basis of the wireless surface circuit. [Embodiment] The eye is referred to Figure 7 Figure 7 is a schematic diagram showing the flow % of the embodiment of the present invention. 7 Han Wei anti-negative tilt _ whole - no __ road, wireless RF circuit The wireless RF circuit shown in Figure 1 is 1〇. The process 70 includes the following steps: Step 700: Start. Step 7〇2: According to the preset operating frequency band, a plurality of test fixtures are prepared, wherein each of the plurality of test fixtures corresponds to an impedance load region. Step 7: 4: The plurality of test fixtures are respectively coupled to the radio frequency circuit _ 1352208 test point 'monetary over-fine m fixture scale measurement RF circuit's complex array radio frequency characteristics. Step view: The RF characteristics of the root axis array determine the best impedance load area of the wireless_road. m· Adjust the wireless shot according to the best impedance negative cut area. The invention relates to a test fixture corresponding to a non-domain according to a preset operating frequency band. Next, each _ test RF power - Nana turned. Then according to the measured radio frequency characteristics, the best impedance load & field of the ..., > wireless RF circuit, and according to the 5 weeks of the entire radio frequency circuit. 70. When the wireless shooting is completed, the designer can use the process 2, such as: the initial transmission and reception capability of the frequency = road, and adjust the wireless radio frequency to the total amount of the three-dimensional microwave dark feed. The power and total ft design rides the estimated size of the _ _ _ wei and the receiving energy H to adjust the wireless _ road to save the design time and resources of the wireless _ circuit f. In the present month/7|Table 70, 'each test fixture corresponds to the preset operating frequency band: the anti-load area' is used to simulate the antenna load. Therefore, in designing each test. When the table is used, the circuit can be designed according to the required impedance (4) and the standing wave ratio.

首先°月參考第8圖,第8圖為一阻抗負載分區示意圖。在第8 圖中針對預叹操作頻段,先將史密斯圖分為8大區,依序分為卜 u、m、IV' v、VI、w、獲共8大區;而每—大區又依據電 堅 贿之圓分為5小區,依序為VSWR<2、2<VSWR <VSWR〇 ' 3<VSWR<4 > 4<VSWR<5 ' VSWR>5 ° ,完成所纽抗負舰域設定後,接下來,可根據每-阻抗負 載區域。又。十對應的測試治具。請參考第9圖,第9圖為本發明 實施例-峨治具9()之^賴。戦治具%包含_纟%、94 及兀件Z1 Z5,讀Z1〜Z5可由可變電容、電阻或電感所組成, 來產生不同的阻^特性。在設計測試治具⑻時,係將端點幻、 94之一端軸接至具__抗元件,由另-端量_試治具90 的阻抗,並根據所對應的阻抗負載區域,調整元件Z1〜Z5之電容 或電感值,使制試治具9G _抗能落在對應的阻抗貞載區域。 以此類推,針對每-操作舰,可設計出⑽個阻抗負_試治具, 做為此頻段之標準組件。 特別注意的是’第8圖所示之阻抗負載分區示意圖係用以說 柄明,其縣將史密蘭分為M大區,再依據賴駐波比將 分為Ν小區Μ、Ν社何依設計私需而規書, 數目愈大,解析度愈精準。同樣地,第9圖之測試治且9〇亦僅為 本發明之實_,本倾具通常知識者當可«所f 增加销First, please refer to Figure 8 for the month. Figure 8 is a schematic diagram of an impedance load partition. In the 8th figure, for the pre-sighing operation frequency band, the Smith chart is first divided into 8 large areas, which are divided into two groups: u, m, IV' v, VI, w, and a total of 8 areas; According to the circle of electric bribery, it is divided into 5 communities, which are VSWR<2,2<VSWR<VSWR〇' 3<VSWR<4 >4<VSWR<5'VSWR>5 ° After the domain is set, next, it can be based on the per-impedance load area. also. Ten corresponding test fixtures. Please refer to Fig. 9, which is a diagram of the embodiment of the present invention. The fixtures contain _纟%, 94 and components Z1 Z5. Readings Z1 to Z5 can be composed of variable capacitors, resistors or inductors to produce different resistance characteristics. When designing the test fixture (8), the end point of the end point, 94 is connected to the __ anti-component, the impedance of the other end _ test fixture 90, and the component is adjusted according to the corresponding impedance load area The capacitance or inductance value of Z1~Z5 makes the test fixture 9G _ resistance fall in the corresponding impedance load region. By analogy, for each-operating ship, (10) impedance negative test fixtures can be designed to be standard components for this frequency band. Special attention is given to the 'impedance load partitioning diagram shown in Figure 8 is used to describe the handle. The county divides Smithland into M large areas, and then according to Lai standing wave ratio will be divided into Ν Ν, Ν community According to the design of private needs and regulations, the greater the number, the more accurate the resolution. Similarly, the test of Figure 9 and 9〇 are only the actual invention _, the general knowledge of this dumper can be increased

11 1352208 : 絲嶋於每—险負親域之戦治賤,流程7G係將每 -測試治具分_接至無線射頻電路之職點及—阻抗為之 測試設備之間,以量測無線射頻電路之射雜性,如傳導功率、 接收靈敏度及耗電量等。接著,根據所測得的傳導辨、接收靈 敏度及耗電1 ’本發明可判斷出無線射頻電路之初步最佳效能、 對應_試治具及最她抗負顧域。進—步地,本發明可根據 對應於最佳阻抗負載區域之傳導發射功率、接收靈敏度及天線效 •率’約略估算總幅射功率及總全向靈敏度,例如,設定-初步總 巾田射功率(J^dBm騎位)等於最佩抗負賴之料發射功率 加上10 log N ’ N表示天線效率,並設定一初步總全向靈敏度等於 最佳負载區之接收靈敏度減2〇 1〇gN。如此一來,設計者可據以調 整無線射頻電路之天線及天線匹配電路,以符合最佳阻抗負載區 域。當然,根據最佳阻抗負載區域調整完無線射頻電路後,較佳 地,本發明仍可於三維微波暗室中,估測準叙總幅射功率及總 i向靈敏度’叹計^符合所需的鱗射頻電路。 關於流程7G的實現方式,請參考第1G圖。在第1G圖中,當 ^測試-無線軌妓112之鱗發射及触效糾,可將測試 冶具90減至無線通訊裝置112之無線_(未繪於第ι〇 圖中)的測試㈣與—測試設備⑽之間,以透過職設備nc 3之1"、°77析儀、網路分析儀或電源供應11,量測傳導發射 L廄沾接收靈敏度及耗f量。接著,置換不_麟治具,量測 …傳導發射功率、接收靈敏度及耗電量。根據測試設備110 12 1352208 所量測的結果’較佳地’本㈣可透過—靖裝置114,決定最佳 阻抗負賴域’以提供調整鱗射頻電路之依據,如調整無線射 頻電路之天線或天線匹配電路。除此之外,決定最恤抗負載區 域後,較佳地,本發明可透過—估測裝置(未繪於第⑴圖中), 根據對應於最恤抗負賴域之料發射辨、接收錄度及天 線效率,估算初步總幅射功率及初步總全向$敏度;或於三維微 波暗室中,侧準確之能射辨及總全向錄度,並據以調整 無線射頻電路。 因此’透過本發明,當完成無線射頻電路的設計後,設計者 可得到無線_電路之初步發概魏能力,並_調整無線射 頻電路。如此-來,在未進人三維微波暗室測量總幅射功率及織 ,向靈敏麟,料騎可初步估計鱗麵魏之發射及接收 此力’據以赃無線射頻電路,以節省無線賴電路所需的設 時間和資源。 。"11 1352208 : 嶋 嶋 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在The radio noise of the RF circuit, such as conduction power, receiving sensitivity, and power consumption. Then, based on the measured conductivity, reception sensitivity and power consumption 1 ', the present invention can determine the initial optimal performance of the radio frequency circuit, the corresponding _ test fixture and the most her anti-negative domain. Further, the present invention can approximate the total radiated power and the total omnidirectional sensitivity according to the conducted transmit power, the receive sensitivity, and the antenna efficiency ratio corresponding to the optimal impedance load region, for example, setting - preliminary total towel field shot The power (J^dBm ride) is equal to the transmit power of the most resistant material plus 10 log N 'N for antenna efficiency, and sets a preliminary total omnidirectional sensitivity equal to the receive sensitivity of the optimal load zone minus 2〇1〇 gN. In this way, the designer can adjust the antenna and antenna matching circuit of the radio frequency circuit to conform to the optimal impedance load area. Of course, after the radio frequency circuit is adjusted according to the optimal impedance load region, preferably, the present invention can estimate the total radiated power and the total i-direction sensitivity of the quasi-synthesis in the three-dimensional microwave darkroom. Scale RF circuit. For the implementation of Process 7G, please refer to Figure 1G. In Fig. 1G, when the test-radio trajectory 112 scale emission and touch effect correction, the test tool 90 can be reduced to the wireless communication device 112 (not shown in the figure) (four) and - Between the test equipment (10), the transmission emission L 廄 接收 接收 nc nc nc nc nc 、 nc nc nc nc nc nc nc nc nc 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Next, the replacement is not _Lin fixture, and the measured transmission power, reception sensitivity, and power consumption are measured. According to the measurement results of the test equipment 110 12 1352208, 'better' (the fourth) can be used to determine the optimal impedance negative domain to provide the basis for adjusting the scale RF circuit, such as adjusting the antenna of the radio frequency circuit or Antenna matching circuit. In addition, after determining the most resistant load-resisting area, preferably, the present invention is permeable-estimating means (not shown in the figure (1)), and is transmitted and received according to the material corresponding to the most resistant area. Receiver and antenna efficiency, estimate initial total radiated power and initial total omnidirectional $-sensitivity; or in a three-dimensional microwave darkroom, side accurate energy detection and total omnidirectional recording, and adjust the radio frequency circuit accordingly. Therefore, through the present invention, when the design of the radio frequency circuit is completed, the designer can obtain the initial capability of the wireless_circuit and adjust the wireless radio frequency circuit. So-to, in the three-dimensional microwave darkroom measurement of the total radiation power and weaving, to the sensitive Lin, the material ride can be initially estimated to scale the Wei Wei launch and receive this force 'according to the wireless RF circuit to save wireless circuit The time and resources required. . "

【圖式簡單說明】 第1圖為習知用於一無線通訊裝置之-無線射頻電路之干音圄 第2圖為習知測試總幅射功率及總全向靈敏度之示意圖。- 13 1352208 第3圖為一 GSM三頻天線之史密斯圖。 第4圖為一 GSM三頻天線之電壓駐波比示意圖。 第5圖為另一 GSM三頻天線之史密斯圖。 第6圖為另一 GSM三頻天線之電壓駐波比示意圖。 第7圖為本發明實施例一流程之示意圖。 第8圖為本發明實施例一阻抗負載分區示意圖。 第9圖為本發明實施例一測試治具之示意圖。 第10圖為本發明實施例測試無線通訊裝置之示意圖。 【主要元件符號說明】 10 無線射頻電路 12 射頻發射模組 14 射頻接收模組 16 天線切換模組 18 天線 20 天線匹配電路 120 功率放大器 122 匹配電路 140 低雜訊放大器 144 匹配電路 146 表面聲波濾波器 TP 測試點 14 1352208 70 流程 700、702、704、706、708、710 步驟 90 測試治具 92、94 Z1 〜Z5 110 112 114 端點 元件 測試設備 無線通訊裝置 判斷裝置BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a conventional radio frequency circuit for a wireless communication device. FIG. 2 is a schematic diagram showing a conventional test of total radiation power and total omnidirectional sensitivity. - 13 1352208 Figure 3 shows the Smith chart of a GSM tri-band antenna. Figure 4 is a schematic diagram of the voltage standing wave ratio of a GSM tri-band antenna. Figure 5 is a Smith chart of another GSM tri-band antenna. Figure 6 is a schematic diagram of the voltage standing wave ratio of another GSM tri-band antenna. FIG. 7 is a schematic diagram of a process of an embodiment of the present invention. FIG. 8 is a schematic diagram of an impedance load partition according to an embodiment of the present invention. Figure 9 is a schematic view of a test fixture according to an embodiment of the present invention. FIG. 10 is a schematic diagram of testing a wireless communication device according to an embodiment of the present invention. [Main component symbol description] 10 Radio frequency circuit 12 RF transmitting module 14 RF receiving module 16 Antenna switching module 18 Antenna 20 Antenna matching circuit 120 Power amplifier 122 Matching circuit 140 Low noise amplifier 144 Matching circuit 146 Surface acoustic wave filter TP test point 14 1352208 70 process 700, 702, 704, 706, 708, 710 step 90 test fixture 92, 94 Z1 ~ Z5 110 112 114 endpoint component test equipment wireless communication device judgment device

1515

Claims (1)

、申請專利範圍: 種以阻仏負载特性調整一無線射頻電路的方法,包含有: 根據操麵段,設計複數個測試治具,其中該複數侧 忒之每一測試治具皆對應於一阻抗負載區域; 將該複數_試治具分_接至該無線射頻電路之 一測試 點’以透過該複數個測試治具量猶無線射頻電路之複 數組射頻特性; 根據該複數__性,蚊該無線㈣電路之—最佳阻抗負 載區域;以及 根據該最錄抗負載區域,調㈣無線射頻電路。 如請求項1所述之方法,其中根據該舫操作頻段設計該複 數個測試治具,係根據對應_預設操作頻段之阻抗匹配及 電壓駐波比,設計該複數個測試治具。 如明求項1所述之方法’其中該複數組射頻特性之每一組射 頻特性包含有-傳導功率、—接收靈敏度及—耗電量。 如明求項3所述之方法’其中該複數組射頻特性係由一測試 設備透職魏_騎爾,細憤賴之阻 歐姆。 如請求項4所述之方法’其巾制試設備錢過該複數個測 试治具之-測試治具输至該無線射頻電路之—測試點以 透過該複數_試治具4_無線棚電路之該複數組射頻 特性。 如請求項1所述之方法,其巾根觀複數__性決定該 無線射頻電路之該最佳阻抗負載區域,係由該複數組射頻特 性選擇-最佳射雜性’以及根據對應於該最佳射頻特性之 -測試治具’決定該無線射頻電路之該最她抗負載區域。 如。月求項6所述之方法’其巾根據該最她抗貞倾域調整 及無線射頻f路’係根據該最恤抗貞域,調整該無線 射頻電路之-天線及—天_配電路。 …、 如吻求項1所叙方法’其另包含伽m無線射頻電路之-總幅射功率及一總全向靈敏度。 μ二?所述之方法’其中估測該無線射頻電路之該總幅 祕二〜王向靈敏度’係根據對應於該最佳阻抗負載區 三-射頻特性及該無線射頻電路之一天線的天線效率,估 异該總巾啸解域總全向靈敏度。 頻電路之該總幅 如明求項9所述之方法,射估職無線射 1352208 射功率及該總全向靈敏度係於一 r 射㈣^ 一維微波暗至令估測該無線 ,電路之射功率及該總麵靈敏度。 11.如请求項1〇所述之方法, 八^ 3根據雜㈣功率及該總 王向靈敏度,調整該無線射頻電路。 以阻抗負載特性調整—無線射頻電路的電子裝置,包含Patent application scope: A method for adjusting a wireless radio frequency circuit by using a load rejection characteristic includes: designing a plurality of test fixtures according to a face segment, wherein each test fixture of the plurality of side clamps corresponds to an impedance a load region; the plurality of test fixtures are connected to one of the test points of the radio frequency circuit to pass through the plurality of test fixtures and the radio frequency characteristics of the plurality of radio frequency circuits; according to the plural __ sex, the mosquito The wireless (four) circuit - the best impedance load region; and according to the most recorded anti-load region, adjust (four) wireless RF circuit. The method of claim 1, wherein the plurality of test fixtures are designed according to the operating frequency band, and the plurality of test fixtures are designed according to impedance matching and voltage standing wave ratio of the corresponding preset frequency band. The method of claim 1, wherein each of the set of radio frequency characteristics of the complex array includes - conduction power, - reception sensitivity, and - power consumption. The method of claim 3, wherein the complex array radio frequency characteristic is transmitted from a test device to Wei _ _ er, and the anger is ohmic. The method of claim 4, wherein the towel test device passes the plurality of test fixtures - the test fixture is transferred to the radio frequency circuit - the test point passes through the plurality of test fixtures The complex array RF characteristics of the circuit. The method of claim 1, wherein the root-of-the-counter __determination determines the optimal impedance load region of the wireless radio frequency circuit, the selection of the radio frequency characteristic of the complex array--the best interfering property and according to the corresponding The best RF characteristics - the test fixture 'determines the most resistant load area of the radio frequency circuit. Such as. The method of claim 6 is characterized in that the towel is adjusted according to the most tamper-resistant and radio frequency f-channel according to the tactile field, and the antenna and antenna-adaptive circuit of the radio frequency circuit are adjusted. ..., as described in Kiss Method 1 'which additionally includes the total radiated power of the gamma radio frequency circuit and a total omnidirectional sensitivity. The method described in the method of estimating the total amplitude of the radio frequency circuit and the sensitivity of the antenna according to the antenna of the radio frequency circuit and the antenna of the radio frequency circuit Efficiency, estimating the total omnidirectional sensitivity of the total toweling domain. The total amplitude of the frequency circuit is as described in the method of claim 9, the estimated power of the radio 1352208 and the total omnidirectional sensitivity are in a r (four) ^ one-dimensional microwave dark to estimate the wireless, the circuit Shooting power and the total surface sensitivity. 11. The method of claim 1 , wherein the radio frequency circuit is adjusted according to the hybrid power and the total sensitivity. Adjusted by impedance load characteristics—electronic devices for wireless RF circuits, including 複數每—測試治具對應於—預設操作紐之-阻 -測試設備’透财複數_試治狀—戦治具触至該無 線射頻電路之-測試點’用以透過該複數個測試治具量 測δ亥無線射頻電路之複數組射頻特性;以及 -判斷裝置’触於該測試設備,用來根據該複數組射頻特Each of the test fixtures corresponds to - the default operation - the resistance - the test equipment - the full amount of money - the test - the ruler touches the radio frequency circuit - the test point is used to pass the plurality of tests Having a measurement of the RF characteristics of the complex array of the MIMO radio circuit; and - the determining device is adapted to the test device for use in accordance with the complex array of RF 12,-—種 有·· 性’決㈣無線射頻電路之—最佳阻抗負載區域,以提 供調整該無線射頻電路之依據。 I3·如月求項I2所述之電子裝置,其中該複數個測試治具係根據 對應於铜設操作頻段之阻抗匹配及電壓駐波比所設計。 14.如請求項12所述之電子裝置,其中該複數組射_性之每一 組射頻特性包含有—傳導功率、—接收靈敏度及—耗電量。 S 18 1352208 .15.如請求項U所述之電子裝置,其中該測試設備之阻抗為5〇 歐姆。 16.如„月求項15所述之電子裝置其中制試設備包含一綜合分 析儀及一網路分析儀。 17·如請求項16所述之電子裝置,其中該測試設備另包含一電源 供應器。 18. 如印求項12所述之電子裝置’其中該判斷裝置係用來由該複 數組射頻特性選擇—最佳射頻特性,以及根據對應於該最佳 射頻特性之-測試治具’蚊該無線㈣電狀該最佳阻抗 負載區域。 19. 如請求項12所述之電子裝置,其中該判斷裝置係用來提供調 • 整該無線射頻電路之一天線及一天線匹配電路之依據。 2〇,如請求項12所述之電子裝置,其另包含一估測裝置,耦接於 該判斷裝置,用來估測該無線射頻電路之一總幅射功率及一 總全向靈敏度。 如請求項20所述之電子裝置,其中該估測裝置係根據對應於 -該最佳阻抗負載區域之一射頻特性及該無線射頻電路之一天 — 線的天線效率,約略估算該總幅射功率及該總全向靈敏度。 19 (S ) 1352208 22.如請求項21所述之電子裝置,其中該估測裝置係於一三維微 波暗室中估測該無線射頻電路之該總幅射功率及該總全向靈 敏度。 參 十一、圖式:12,--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- I3. The electronic device of item I2, wherein the plurality of test fixtures are designed according to impedance matching and voltage standing wave ratio corresponding to a copper operating frequency band. 14. The electronic device of claim 12, wherein each of the plurality of radio frequency characteristics of the complex array includes - conduction power, - reception sensitivity, and - power consumption. S18 1352208.15. The electronic device of claim U, wherein the test device has an impedance of 5 ohms. 16. The electronic device of claim 15 wherein the test equipment comprises a comprehensive analyzer and a network analyzer. The electronic device of claim 16, wherein the test device further comprises a power supply 18. The electronic device of claim 12, wherein the determining device is adapted to select from the complex array of radio frequency characteristics - an optimal radio frequency characteristic, and based on a test fixture corresponding to the optimal radio frequency characteristic The wireless device (4) electrically selects the optimal impedance load region. 19. The electronic device of claim 12, wherein the determining device is configured to provide an antenna for adjusting one of the radio frequency circuits and an antenna matching circuit. The electronic device of claim 12, further comprising an estimating device coupled to the determining device for estimating a total radiated power and a total omnidirectional sensitivity of the wireless radio frequency circuit. The electronic device of claim 20, wherein the estimating device estimates the antenna according to an RF characteristic corresponding to one of the optimal impedance load regions and an antenna efficiency of one of the wireless RF circuits The total radiated power and the total omnidirectional sensitivity. The electronic device of claim 21, wherein the estimating device estimates the total amplitude of the wireless radio frequency circuit in a three-dimensional microwave darkroom Shooting power and the total omnidirectional sensitivity. 2020
TW096146318A 2007-12-05 2007-12-05 Method and related electronic device for adjusting TWI352208B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW096146318A TWI352208B (en) 2007-12-05 2007-12-05 Method and related electronic device for adjusting
US12/049,381 US8019307B2 (en) 2007-12-05 2008-03-17 Method and related electronic device for adjustment of a radio frequency circuit by impedance loading features

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096146318A TWI352208B (en) 2007-12-05 2007-12-05 Method and related electronic device for adjusting

Publications (2)

Publication Number Publication Date
TW200925622A TW200925622A (en) 2009-06-16
TWI352208B true TWI352208B (en) 2011-11-11

Family

ID=40721089

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096146318A TWI352208B (en) 2007-12-05 2007-12-05 Method and related electronic device for adjusting

Country Status (2)

Country Link
US (1) US8019307B2 (en)
TW (1) TWI352208B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI355500B (en) * 2008-01-10 2012-01-01 Wistron Neweb Corp Test system for adjusting a wireless communication
CN105071873A (en) * 2008-05-15 2015-11-18 中兴通讯股份有限公司 System and method for testing receiving sensitivity performance of wireless terminal based on data mode
TWI409480B (en) * 2011-03-07 2013-09-21 Meirgen Electronics Corp Radial frequency measurement method
US8610439B2 (en) 2011-04-14 2013-12-17 Apple Inc. Radio-frequency test probes with integrated matching circuitry for testing transceiver circuitry
US9157930B2 (en) * 2011-05-09 2015-10-13 Apple Inc. Bidirectional radio-frequency probing
US8587335B2 (en) 2011-06-17 2013-11-19 Apple Inc. Methods for providing proper impedance matching during radio-frequency testing
US9083074B2 (en) * 2012-04-09 2015-07-14 Blackberry Limited Dynamic antenna selection based on user hand position
FR3018637B1 (en) * 2014-03-13 2018-08-17 Samsung Electronics Co., Ltd. RADIO COMMUNICATION USING MULTIPLE ANTENNAS AND LOCATION VARIABLES
CN110460400A (en) * 2018-05-07 2019-11-15 中兴通讯股份有限公司 A kind of measurement method, the device and system of array antenna total radiant power
CN110444893B (en) * 2019-08-16 2020-05-26 歌尔科技有限公司 Monopole antenna bandwidth adjusting method and system
CN112448773B (en) * 2019-08-29 2023-02-07 惠州比亚迪电子有限公司 Radio frequency compensator, radio frequency test method and system
CN110646674B (en) * 2019-10-16 2022-04-01 普联技术有限公司 Radio frequency chip pin impedance test method
US10979154B1 (en) 2019-12-30 2021-04-13 T-Mobile Usa, Inc. Performing different radio frequency (RF) tests by using common ports of an RF testing chamber
CN117452073A (en) * 2023-12-25 2024-01-26 深圳市瀚强科技股份有限公司 Load impedance detection method and device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI355500B (en) * 2008-01-10 2012-01-01 Wistron Neweb Corp Test system for adjusting a wireless communication

Also Published As

Publication number Publication date
US20090146891A1 (en) 2009-06-11
US8019307B2 (en) 2011-09-13
TW200925622A (en) 2009-06-16

Similar Documents

Publication Publication Date Title
TWI352208B (en) Method and related electronic device for adjusting
TWI355500B (en) Test system for adjusting a wireless communication
Alomainy et al. UWB on-body radio propagation and system modelling for wireless body-centric networks
US11294089B2 (en) Circuit, transmission system and method for determining proximity of an object
US9407335B2 (en) Method and wireless communication device for using an antenna as a sensor device in guiding selection of optimized tuning networks
CN101459476B (en) Method for tuning wireless radio frequency circuit by impedance load characteristic and related device
EP2678899B1 (en) Capacitive sensor device and radio transceiver with a capacitive device and a method for adjusting a transmission power of a handheld radio transceiver
TW201228104A (en) Method to reduce specific absorption rate of electronic device and electronic device with low specific absorption rate
US9276312B2 (en) Antenna tuner control system using state tables
Chen et al. Inter-chip wireless communication channel: Measurement, characterization, and modeling
WO2011134206A1 (en) Method and device for testing effective isotropic sensitivity
WO2017152732A1 (en) Channel correction method and device
CN101488813B (en) Test system for adjusting wireless communication device by impedance load characteristic
Dunlap et al. Characterizing reverberation chambers by measurements of the enhanced backscatter coefficient
US20120142290A1 (en) Apparatus and method for detecting effective radiated power
CN107276597A (en) A kind of two benches frequency spectrum perception optimization method based on USRPN200
CN104981706A (en) Antennas with unique electronic signature
WO2005112593A2 (en) Body-worn radio signal transmitting apparatus
JP5250058B2 (en) Radio terminal transmission / reception performance measuring method and apparatus
CN114844520A (en) Radio frequency system and SAR value regulation and control method
GB2476379A (en) Measuring a radio wave reception environment using RSSI values
CN110392983A (en) A kind of antenna resources dispatching method and equipment
CN217405695U (en) Terminal antenna
Kubaszek et al. Evaluation of antenna diversity scheme for 868MHz narrowband communication systems
CN111106878B (en) Multiple input multiple output antenna measurement system