WO2019214259A1 - 一种用于测量阵列天线的相位补偿方法和装置 - Google Patents

一种用于测量阵列天线的相位补偿方法和装置 Download PDF

Info

Publication number
WO2019214259A1
WO2019214259A1 PCT/CN2018/124558 CN2018124558W WO2019214259A1 WO 2019214259 A1 WO2019214259 A1 WO 2019214259A1 CN 2018124558 W CN2018124558 W CN 2018124558W WO 2019214259 A1 WO2019214259 A1 WO 2019214259A1
Authority
WO
WIPO (PCT)
Prior art keywords
array unit
array
phase compensation
phase
unit
Prior art date
Application number
PCT/CN2018/124558
Other languages
English (en)
French (fr)
Inventor
刘若鹏
赵治亚
田华
姚洁
Original Assignee
深圳光启高等理工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启高等理工研究院 filed Critical 深圳光启高等理工研究院
Priority to EP18917969.0A priority Critical patent/EP3792641B1/en
Priority to JP2020563511A priority patent/JP7241094B2/ja
Publication of WO2019214259A1 publication Critical patent/WO2019214259A1/zh
Priority to US17/093,083 priority patent/US11876302B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • H01Q3/38Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters the phase-shifters being digital
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0871Complete apparatus or systems; circuits, e.g. receivers or amplifiers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0087Apparatus or processes specially adapted for manufacturing antenna arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/40Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix

Definitions

  • the present invention relates to the field of antennas, and in particular to a phase compensation method and apparatus for measuring an array antenna.
  • the deviation of the array unit from the rotation center of the turntable is likely to cause errors in the measured far-field pattern.
  • the phase error is sensitive, such as not pre-processing (phase compensation) of the measured phase,
  • the beam pointing deviation occurs when the far field of each array unit is beam-synthesized, which affects the test accuracy of the microwave transmittance and other electrical performance indicators.
  • the existing measurement has low test efficiency and complicated test fixture. Or there is a defect in the inherent test error.
  • the present invention provides a phase compensation method and device for measuring an array antenna, which can avoid additional introduction of beam pointing errors after phase compensation and port zeroing of each array unit, thereby improving the radome. Electrical performance test accuracy.
  • a phase compensation method for measuring an array antenna is provided, wherein the array antenna includes a first array unit and a second array unit.
  • the phase compensation method includes: step S1, deriving the measured far field patterns of the first array unit and the second array unit to establish a coordinate system to determine a spatial geometric relationship between the first array unit and the second array unit; S2, determining a wave path difference between the first array unit and the second array unit according to a spatial geometric relationship between the first array unit and the second array unit; and step S3, performing phase on the second array unit according to the wave path difference make up.
  • step S1 includes: step S11, deriving the measured far field patterns of the first array unit and the second array unit to establish a coordinate system, wherein the coordinate system uses (x, y, z) ) indicating; in step S12, establishing a first coordinate system, using the first array unit as the origin O, defining the coordinates (x0, y0, z0) of the origin 0, and defining the array antenna beam pointing Where the array antenna beam pointing is defined Including: in the coordinate system (x, y, z), the angle between the projection of the array antenna beam pointing in the xy plane and the positive direction of the x-axis is Angle, the angle between the array antenna beam pointing and the xz plane is ⁇ angle; in step S13, the second coordinate system is established, the second array unit is taken as another point O1 on the coordinate axis, and the coordinates of another point O1 are defined (x1, y1 , z1).
  • step S2 includes: step S21, taking a vertical line from another point O1 to the array antenna beam pointing direction, and acquiring an intersection M of the vertical line and the array antenna beam pointing direction line to determine the beam pointing at the array antenna beam.
  • the wave path difference OM in the direction; in step S21, the wave path difference OM is calculated based on the vertical relationship between the vector OM and the vector O1M.
  • step S1 includes: predetermining a phase ⁇ 2 of the second array unit; and step S3 includes: substituting the wave path difference OM and the phase ⁇ 2 of the second array unit into a phase compensation formula to determine The phase ⁇ 1 of the first array unit, wherein the phase compensation formula is:
  • the phase compensation method further includes: shifting the first array unit to a position of the second array unit, and setting the shifted first array unit to the third array unit, and The three array elements are phase compensated to obtain the phase of the first array unit by phase inversion of the third array unit.
  • the method further includes: shifting the second array unit to a position of the first array unit, and setting the shifted second array unit to the fourth array unit, and to the fourth array unit Phase compensation is performed to obtain the phase of the second array unit by phase inversion by the fourth array unit.
  • the method further includes: connecting each array unit to an electronic switch, and controlling each array unit according to the electronic switch to sequentially test the far field of each array unit.
  • a phase compensating apparatus for measuring an array antenna wherein the array antenna includes a first array unit and a second array unit.
  • the phase compensation device for measuring an array antenna includes: a first determining module, configured to derive the measured far field patterns of the first array unit and the second array unit to establish a coordinate system to determine the first array unit and a spatial relationship of the second array unit; a second determining module, configured to determine a wave path difference between the first array unit and the second array unit according to a spatial geometric relationship between the first array unit and the second array unit; and a phase The compensation module is configured to perform phase compensation on the second array unit according to the wave path difference.
  • the phase compensating apparatus further includes: a first offset inversion module for shifting the first array unit to a position of the second array unit, and offsetting the first array unit It is set as a third array unit, and phase compensation is performed on the third array unit to obtain phase of the first array unit by phase inversion of the third array unit.
  • the phase compensating apparatus further includes: a second offset inversion module for shifting the second array unit to a position of the first array unit, and offsetting the second array unit It is set as a fourth array unit, and phase compensation is performed on the fourth array unit to obtain phase of the second array unit by phase inversion of the fourth array unit.
  • the present invention derives the measured far-field patterns of the first array unit and the second array unit to establish a coordinate system to determine the spatial geometric relationship of the first array unit and the second array unit, and then according to the first array unit and The spatial geometric relationship of the second array unit determines a wave path difference between the first array unit and the second array unit, and finally performs phase compensation on the second array unit according to the wave path difference, so that each array unit is phase compensated and port After zero calibration, additional beam pointing errors can be avoided, which improves the accuracy of the radome electrical performance test.
  • FIG. 1 is a flow chart of a phase compensation method for measuring an array antenna according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a far field pattern of a far field pattern according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of one-dimensional phase comparison according to a first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of two-dimensional phase contrast according to a first embodiment of the present invention.
  • Figure 5 is a schematic diagram of phase compensation error according to a first embodiment of the present invention.
  • FIG. 6 is a schematic diagram of one-dimensional phase comparison according to a second embodiment of the present invention.
  • Figure 7 is a schematic diagram of two-dimensional phase contrast according to a second embodiment of the present invention.
  • Figure 8 is a schematic diagram of phase compensation error according to a second embodiment of the present invention.
  • FIG. 9 is a block diagram of a phase compensation apparatus for measuring an array antenna, in accordance with an embodiment of the present invention.
  • a phase compensation method for measuring an array antenna wherein the array antenna includes a first array unit and a second array unit.
  • a phase compensation method for measuring an array antenna includes: step S101, deriving a measured far field pattern of the first array unit and the second array unit to establish a coordinate system. Thereby determining a spatial geometric relationship between the first array unit and the second array unit; and in step S103, determining a wave path difference between the first array unit and the second array unit according to a spatial geometric relationship between the first array unit and the second array unit And step S105, performing phase compensation on the second array unit according to the wave path difference.
  • the measured far-field patterns of the first array unit and the second array unit are derived to establish a coordinate system to determine the spatial geometric relationship between the first array unit and the second array unit, and then according to The spatial geometric relationship between the first array unit and the second array unit determines a wave path difference between the first array unit and the second array unit, and finally performs phase compensation on the second array unit according to the wave path difference, so that each array unit After phase compensation and port zeroing, additional beam pointing errors can be avoided, which improves the accuracy of the radome electrical performance test.
  • the invention discloses a phase compensation method for measuring an array antenna, the phase compensation method comprising: step S1, deriving the measured far field patterns of the first array unit and the second array unit to establish a coordinate system The spatial geometric relationship of the first array unit and the second array unit is determined.
  • step S1 includes: step S11, deriving the measured far field patterns of the first array unit and the second array unit to establish a coordinate system, wherein the coordinate system uses (x, y, z) Representing; step S12, establishing a first coordinate system, using the first array unit as the origin O, defining the coordinates (x0, y0, z0) of the origin 0, and defining the array antenna beam pointing Where the array antenna beam pointing is defined Including: in the coordinate system (x, y, z), the angle between the projection of the array antenna beam pointing in the xy plane and the positive direction of the x-axis is Angle, the angle between the array antenna beam pointing and the xz plane is ⁇ angle; in step S13, the second coordinate system is established, the second array unit is taken as another point O1 on the coordinate axis, and the coordinates of another point O1 are defined (x1, y1 , z1), specifically:
  • the measured far field patterns of the first array unit and the second array unit are derived to establish a coordinate system, wherein the coordinate system of the first array unit is represented by (x, y, z), and In the coordinate system (x, y, z), the angle between the projection of the array antenna beam pointing direction OM in the xy plane and the positive direction of the x-axis is the direction angle. (or phi), the angle between the array antenna beam pointing direction OM and the straight line oz is a high base angle ⁇ (theta), and the coordinate system of the second array unit is represented by (x', y', z'), and is defined. The origin of this coordinate system (x', y', z') is O1.
  • Step S2 determining a wave path difference between the first array unit and the second array unit according to a spatial geometric relationship between the first array unit and the second array unit.
  • step S21 a vertical line is drawn from the other point O1 to the array antenna beam pointing direction, and the intersection M of the vertical line and the array antenna beam pointing direction line is obtained to determine the wave path difference in the direction of the array antenna beam pointing.
  • step S21 calculating the wave path difference OM according to the vertical relationship between the vector OM and the vector O1M, specifically,
  • a vertical line O1M is made to the array antenna beam pointing direction OM through the point O1, and the intersection of the perpendicular line O1M and the array antenna beam pointing direction OM is M, and can be determined according to the geometric positional relationship, and the triangle OO1M is a right triangle.
  • the vector is represented by a vector OM ⁇ vector O1M, and the wave path difference OM is obtained by the geometric positional relationship, as follows:
  • the wave path difference OM can be obtained according to the above formula, and after the wave path difference OM is calculated, the phase difference of the second array unit is compensated.
  • step S3 phase compensation is performed on the second array unit according to the wave path difference.
  • step S1 comprising: predetermining a phase ⁇ 2 of the second array unit; and step S3 comprises: substituting the wave path difference OM and the phase ⁇ 2 of the second array unit into a phase compensation formula to determine the first array unit Phase ⁇ 1 , where the phase compensation formula is:
  • the conditions of the phase compensation include: 1.
  • the antenna 1 (or the first array unit) is placed at 0, the antenna 2 (or the second array unit) is placed at O1; 2.
  • the far field derives the reference coordinate system.
  • the origin (0,0,0) at the same time, in the process of phase compensation, it is also necessary to know: the phase ⁇ 1 (or phase0) of the antenna 1 and the phase ⁇ 2 (or phase 1 ) of the antenna 2, wherein the origin O and the other A space coordinate of O1, which is calculated as follows:
  • Phase phase 0 of antenna 1 is obtained from the spatial coordinates of phase 1, O and O1.
  • phase compensation method further includes: shifting the first array unit to a position of the second array unit, and setting the offset first array unit to the third array unit, and phase the third array unit Compensating to obtain the phase of the first array unit by phase inversion by the third array unit.
  • the phase verification is performed on the simulation verification process.
  • the antenna 1 is located at (0, 0, 0), and the antenna 1 is offset to (0, 100, 0), that is, the antenna 2 is obtained, and
  • the phase of the antenna 2 is phase compensated, and the compensated results are shown in Fig. 3, as shown in Fig. 4 and Fig. 5.
  • the method further includes: offsetting the second array unit to the position of the first array unit, and setting the offset second array unit as the fourth array unit, and performing phase compensation on the fourth array unit to The phase inversion of the fourth array unit results in the phase of the second array unit.
  • the phase compensation process is reverse verified.
  • the antenna 1 is located at (0, 100, 0), and the offset of the antenna 1 is (0, 0, 0), that is, the antenna 2 is obtained.
  • the phase of the antenna 2 is phase compensated, and the compensated results are shown in Figs. 6, 7, and 8.
  • the method further comprises: connecting each array unit to an electronic switch, and controlling each array unit according to the electronic switch to sequentially test the far field of each array unit, thereby not fixing the antenna position, fixing the antenna, and arranging the array units Connect the electronic switch to test the far field of each element in turn, thus improving the test efficiency.
  • a phase compensating apparatus for measuring an array antenna wherein the array antenna includes a first array unit and a second array unit.
  • the phase compensation device for measuring the array antenna includes: a first determining module 91, configured to derive the measured far field patterns of the first array unit and the second array unit to establish a coordinate system The spatial relationship between the first array unit and the second array unit is determined.
  • the second determining module 92 is configured to determine the first array unit and the second array unit according to the spatial geometric relationship between the first array unit and the second array unit.
  • the phase compensating means 93 further comprises: a first offset inversion module (not shown) for shifting the first array unit to the position of the second array unit and offsetting The latter first array unit is arranged as a third array unit, and phase compensation is performed on the third array unit to obtain phase of the first array unit by phase inversion of the third array unit.
  • the phase compensating means 93 further comprises: a second offset inversion module (not shown) for shifting the second array unit to the position of the first array unit and offsetting
  • the second array unit is disposed as a fourth array unit, and phase compensation is performed on the fourth array unit to obtain phase of the second array unit by phase inversion of the fourth array unit.
  • the phase compensation device further includes: a connection unit for each array The unit is connected to an electronic switch, and each array unit is controlled according to the electronic switch to sequentially test the far field of each array unit, so that the antenna position is not required to be moved, the antenna is fixed, and the array units are connected to the electronic switch, and each test is sequentially tested.
  • the far field of the array element is used to improve the test efficiency, which is not limited by the present invention.
  • the first array unit and the second array unit are determined by deriving the measured far field patterns of the first array unit and the second array unit to establish a coordinate system. Spatial geometric relationship, then determining the wave path difference between the first array unit and the second array unit according to the spatial geometric relationship of the first array unit and the second array unit, and finally performing the second array unit according to the wave path difference Phase compensation, so that after the phase compensation and port zeroing of each array unit, additional beam pointing error can be avoided, thereby improving the electrical performance test accuracy of the radome.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提出了一种用于测量阵列天线的相位补偿方法和装置,该相位补偿方法包括:步骤S1,将测得的第一阵列单元和第二阵列单元的远场方向图导出,以建立坐标系从而确定第一阵列单元和第二阵列单元的空间几何关系;步骤S2,根据第一阵列单元和第二阵列单元的空间几何关系,确定第一阵列单元和第二阵列单元之间的波程差;以及步骤S3,根据波程差,对第二阵列单元进行相位补偿。本发明将各阵列单元经相位补偿及端口校零后,可避免额外引入波束指向误差,进而提高天线罩电性能测试精度。

Description

一种用于测量阵列天线的相位补偿方法和装置 技术领域
本发明涉及天线领域,具体来说,涉及一种用于测量阵列天线的相位补偿方法和装置。
背景技术
在测量阵列天线及其天线罩的过程中,阵列单元偏离转台旋转中心易导致测量所得远场方向图存在误差,其中,相位误差比较敏感,如不对测量的相位做预处理(相位补偿),易导致各阵列单元所得远场做波束合成时存在波束指向偏差,进而影响透波率及其它电性能指标的测试精度。
但是,在现有的测量中,通常忽略上述误差,或通过调整单个天线的位置,使单天线测试时,天线位于转台旋转中心,因此,现有的测量中存在测试效率低、测试工装复杂、或存在固有测试误差的缺陷。
针对相关技术中的问题,目前尚未提出有效的解决方案。
发明内容
针对相关技术中的问题,本发明提出一种用于测量阵列天线的相位补偿方法和装置,能够使得各阵列单元经相位补偿及端口校零后,可避免额外引入波束指向误差,进而提高天线罩电性能测试精度。
本发明的技术方案是这样实现的:
根据本发明的一个方面,提供了一种用于测量阵列天线的相位补偿方法,其中,阵列天线包括第一阵列单元和第二阵列单元。
该相位补偿方法包括:步骤S1,将测得的第一阵列单元和第二阵列单元的远场方向图导出,以建立坐标系从而确定第一阵列单元和第二阵列单元的空间几何关系;步骤S2,根据第一阵列单元和第二阵列单元的空间几何关系,确定第一阵列单元和第二阵列单元之间的波程差;以及步骤S3, 根据波程差,对第二阵列单元进行相位补偿。
根据本发明的一个实施例,步骤S1包括:步骤S11,将测得的第一阵列单元和第二阵列单元的远场方向图导出,建立坐标系,其中,坐标系用(x,y,z)表示;步骤S12,建立第一坐标系,将第一阵列单元作为原点O,并定义原点0的坐标(x0,y0,z0),以及定义阵列天线波束指向
Figure PCTCN2018124558-appb-000001
其中,定义阵列天线波束指向
Figure PCTCN2018124558-appb-000002
包括:在坐标系(x,y,z)中,阵列天线波束指向在xy平面的投影与x轴正方向的夹角为
Figure PCTCN2018124558-appb-000003
角,阵列天线波束指向与xz平面的夹角为θ角;步骤S13,建立第二坐标系,将第二阵列单元作为坐标轴上的另一点O1,并且定义另一点O1的坐标(x1,y1,z1)。
根据本发明的一个实施例,步骤S2包括:步骤S21,从另一点O1向阵列天线波束指向方向作垂线,获取垂线和阵列天线波束指向方向线的交点M,以确定在阵列天线波束指向方向上的波程差OM;步骤S21,根据向量OM和向量O1M的垂直关系,计算出波程差OM。
根据本发明的一个实施例,步骤S1之前包括:预先确定第二阵列单元的相位φ 2;以及步骤S3包括:将波程差OM和第二阵列单元的相位φ 2代入相位补偿公式,以确定第一阵列单元的相位φ 1,其中相位补偿公式为:
Figure PCTCN2018124558-appb-000004
其中,r表示波程差,λ表示波长。
根据本发明的一个实施例,相位补偿方法还包括:将第一阵列单元偏移至第二阵列单元的位置处,并将偏移后的第一阵列单元设置为第三阵列单元,并对第三阵列单元做相位补偿,以由第三阵列单元相位反演得到第一阵列单元的相位。
根据本发明的一个实施例,还包括:将第二阵列单元偏移至第一阵列单元的位置处,并将偏移后的第二阵列单元设置为第四阵列单元,并对第四阵列单元做相位补偿,以由第四阵列单元相位反演得到第二阵列单元的相位。
根据本发明的一个实施例,还包括:将各阵列单元连接一电子切换开关,并根据电子开关控制各阵列单元,以依次测试各阵列单元的远场。
根据本发明的另一方面,提供了一种用于测量阵列天线的相位补偿装 置,其中,阵列天线包括第一阵列单元和第二阵列单元。
该用于测量阵列天线的相位补偿装置包括:第一确定模块,用于将测得的第一阵列单元和第二阵列单元的远场方向图导出,以建立坐标系从而确定第一阵列单元和第二阵列单元的空间几何关系;第二确定模块,用于根据第一阵列单元和第二阵列单元的空间几何关系,确定第一阵列单元和第二阵列单元之间的波程差;以及相位补偿模块,用于根据波程差,对第二阵列单元进行相位补偿。
根据本发明的一个实施例,相位补偿装置还包括:第一偏移反演模块,用于将第一阵列单元偏移至第二阵列单元的位置处,并将偏移后的第一阵列单元设置为第三阵列单元,并对第三阵列单元做相位补偿,以由第三阵列单元相位反演得到第一阵列单元的相位。
根据本发明的一个实施例,相位补偿装置还包括:第二偏移反演模块,用于将第二阵列单元偏移至第一阵列单元的位置处,并将偏移后的第二阵列单元设置为第四阵列单元,并对第四阵列单元做相位补偿,以由第四阵列单元相位反演得到第二阵列单元的相位。
本发明的有益效果在于:
本发明通过将测得的第一阵列单元和第二阵列单元的远场方向图导出,以建立坐标系从而确定第一阵列单元和第二阵列单元的空间几何关系,随后根据第一阵列单元和第二阵列单元的空间几何关系,确定第一阵列单元和第二阵列单元之间的波程差,最后根据波程差,对第二阵列单元进行相位补偿,从而各阵列单元经相位补偿及端口校零后,可避免额外引入波束指向误差,进而提高天线罩电性能测试精度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的用于测量阵列天线的相位补偿方法的流程图;
图2是根据本发明实施例的远场方向图的远场方向图的示意图;
图3是根据本发明第一实施例的一维相位对比示意图;
图4是根据本发明第一实施例的二维相位对比示意图;
图5是根据本发明第一实施例的相位补偿误差示意图;
图6是根据本发明第二实施例的一维相位对比示意图;
图7是根据本发明第二实施例的二维相位对比示意图;
图8是根据本发明第二实施例的相位补偿误差示意图;
图9是根据本发明实施例的用于测量阵列天线的相位补偿装置的框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
根据本发明的实施例,提供了一种用于测量阵列天线的相位补偿方法,其中,阵列天线包括第一阵列单元和第二阵列单元。
如图1所示,根据本发明实施例的用于测量阵列天线的相位补偿方法包括:步骤S101,将测得的第一阵列单元和第二阵列单元的远场方向图导出,以建立坐标系从而确定第一阵列单元和第二阵列单元的空间几何关系;步骤S103,根据第一阵列单元和第二阵列单元的空间几何关系,确定第一阵列单元和第二阵列单元之间的波程差;以及步骤S105,根据波程差,对第二阵列单元进行相位补偿。
通过本发明的上述方案,通过将测得的第一阵列单元和第二阵列单元的远场方向图导出,以建立坐标系从而确定第一阵列单元和第二阵列单元的空间几何关系,随后根据第一阵列单元和第二阵列单元的空间几何关系,确定第一阵列单元和第二阵列单元之间的波程差,最后根据波程差,对第 二阵列单元进行相位补偿,从而各阵列单元经相位补偿及端口校零后,可避免额外引入波束指向误差,进而提高天线罩电性能测试精度。
为了便于理解本发明的技术方案,下面通过具体的实施例进行详细的描述。
本发明公开了一种用于测量阵列天线的相位补偿方法,该相位补偿方法包括:步骤S1,将测得的第一阵列单元和第二阵列单元的远场方向图导出,以建立坐标系从而确定第一阵列单元和第二阵列单元的空间几何关系。
在该步骤S1中,该步骤S1包括:步骤S11,将测得的第一阵列单元和第二阵列单元的远场方向图导出,建立坐标系,其中,坐标系用(x,y,z)表示;步骤S12,建立第一坐标系,将第一阵列单元作为原点O,并定义原点0的坐标(x0,y0,z0),以及定义阵列天线波束指向
Figure PCTCN2018124558-appb-000005
其中,定义阵列天线波束指向
Figure PCTCN2018124558-appb-000006
包括:在坐标系(x,y,z)中,阵列天线波束指向在xy平面的投影与x轴正方向的夹角为
Figure PCTCN2018124558-appb-000007
角,阵列天线波束指向与xz平面的夹角为θ角;步骤S13,建立第二坐标系,将第二阵列单元作为坐标轴上的另一点O1,并且定义另一点O1的坐标(x1,y1,z1),具体地:
如图2所示,将测得的第一阵列单元和第二阵列单元的远场方向图导出,建立坐标系,其中,第一阵列单元的坐标系用(x,y,z)表示,且在坐标系(x,y,z)中,阵列天线波束指向方向OM在xy平面的投影与x轴正方向的夹角为方向角
Figure PCTCN2018124558-appb-000008
(或phi),阵列天线波束指向方向OM与直线oz的夹角为高底角θ(theta),同时,第二阵列单元的坐标系用(x’,y’,z’)表示,并且定义该坐标系(x’,y’,z’)的原点为O1。
步骤S2,根据第一阵列单元和第二阵列单元的空间几何关系,确定第一阵列单元和第二阵列单元之间的波程差。
在该步骤S2中,步骤S21,从另一点O1向阵列天线波束指向方向作垂线,获取垂线和阵列天线波束指向方向线的交点M,以确定在阵列天线波束指向方向上的波程差OM;步骤S21,根据向量OM和向量O1M的垂直关系,计算出波程差OM,具体地,
继续参见图2,通过点O1向阵列天线波束指向方向OM做垂线O1M,并且该垂线O1M和阵列天线波束指向方向OM的交点为M,并且根据几 何位置关系可以确定,三角形OO1M为直角三角形,通过向量表示该关系为向量OM⊥向量O1M,并通过该几何位置关系获得波程差OM,具体如下:
根据以下坐标可以确定以上向量,即向量OM=(x-x0,y-y0,z-z0),向量O 1M=(x-x1,y-y1,z-z1);
并且根据几何关系可以确定,
Figure PCTCN2018124558-appb-000009
Figure PCTCN2018124558-appb-000010
又:
Figure PCTCN2018124558-appb-000011
Figure PCTCN2018124558-appb-000012
Figure PCTCN2018124558-appb-000013
或r=0(舍去),
其中,
Figure PCTCN2018124558-appb-000014
从而根据上述公式可求得波程差OM,在计算得到波程差OM后,再对第二阵列单元的相位做程差补偿。
步骤S3,根据波程差,对第二阵列单元进行相位补偿。
此外,在步骤S1之前包括:预先确定第二阵列单元的相位φ 2;以及步骤S3包括:将波程差OM和第二阵列单元的相位φ 2代入相位补偿公式,以确定第一阵列单元的相位φ 1,其中相位补偿公式为:
Figure PCTCN2018124558-appb-000015
其中,r表示波程差,λ表示波长
在该实施例中,该相位补偿的条件包括:1、天线1(或第一阵列单元)放置于O处,天线2(或第二阵列单元)放置于O1;2、远场导出参照坐标系原点(0,0,0),同时,在进行相位补偿的过程中还需知道:天线1的相位φ 1(或phase0)、天线2的相位φ 2(或phase1),其中,原点O及另一点O1的空间坐标,从而通过如下计算:
Figure PCTCN2018124558-appb-000016
(或Phase0=phase1+360*r/lamda),
其中,r表示波程差,λ表示波长。
随后进行验证:由phase1、O及O1的空间坐标求得天线1的相位phase0。
另外,该相位补偿方法还包括:将第一阵列单元偏移至第二阵列单元的位置处,并将偏移后的第一阵列单元设置为第三阵列单元,并对第三阵列单元做相位补偿,以由第三阵列单元相位反演得到第一阵列单元的相位。
在该实施例中,对上述相位补偿进行仿真验证过程,继续参照图2,天线1位于(0,0,0)处,天线1偏移至(0,100,0),即得到天线2,并对天线2的相位做相位补偿,补偿后的结果如图3、如4和图5所示。
此外,还包括:将第二阵列单元偏移至第一阵列单元的位置处,并将偏移后的第二阵列单元设置为第四阵列单元,并对第四阵列单元做相位补偿,以由第四阵列单元相位反演得到第二阵列单元的相位。
在该实施例中,对上述相位补偿进行反向验证过程,继续参照图2,天线1位于(0,100,0)处,天线1的偏移至(0,0,0),即得到天线2,并对天线2的相位做相位补偿,补偿后的结果如图6、图7和图8所示。
另外,还包括:将各阵列单元连接一电子切换开关,并根据电子开关控制各阵列单元,以依次测试各阵列单元的远场,从而不需移动天线位置,在将天线固定,将各阵列单元接电子切换开关,依次测试各阵元的远场,从而提高测试效率。
根据本发明的另一个方面,提供了一种用于测量阵列天线的相位补偿装置,其中,阵列天线包括第一阵列单元和第二阵列单元。
如图9所示,该用于测量阵列天线的相位补偿装置包括:第一确定模块91,用于将测得的第一阵列单元和第二阵列单元的远场方向图导出,以建立坐标系从而确定第一阵列单元和第二阵列单元的空间几何关系;第二确定模块92,用于根据第一阵列单元和第二阵列单元的空间几何关系,确定第一阵列单元和第二阵列单元之间的波程差;以及相位补偿模块93,用于根据波程差,对第二阵列单元进行相位补偿。
根据本发明的一个实施例,相位补偿装置93还包括:第一偏移反演模 块(未示出),用于将第一阵列单元偏移至第二阵列单元的位置处,并将偏移后的第一阵列单元设置为第三阵列单元,并对第三阵列单元做相位补偿,以由第三阵列单元相位反演得到第一阵列单元的相位。
根据本发明的一个实施例,相位补偿装置93还包括:第二偏移反演模块(未示出),用于将第二阵列单元偏移至第一阵列单元的位置处,并将偏移后的第二阵列单元设置为第四阵列单元,并对第四阵列单元做相位补偿,以由第四阵列单元相位反演得到第二阵列单元的相位。
此外,虽然在该相位补偿装置中仅限定了第一确定模块91、第二确定模块92、相位补偿模块93、第一偏移反演模块和第二偏移反演模块,但本领域的技术人员当然可以理解,与相位补偿方法中对应的其他模块仍适用于本发明中的相位补偿装置,例如,根据本发明的一个实施例,该相位补偿装置还包括:连接单元,用于将各阵列单元连接一电子切换开关,并根据电子开关控制各阵列单元,以依次测试各阵列单元的远场,从而不需移动天线位置,在将天线固定,将各阵列单元接电子切换开关,依次测试各阵元的远场,从而提高测试效率,本发明对此不做限定。
综上所述,借助于本发明的上述技术方案,通过将测得的第一阵列单元和第二阵列单元的远场方向图导出,以建立坐标系从而确定第一阵列单元和第二阵列单元的空间几何关系,随后根据第一阵列单元和第二阵列单元的空间几何关系,确定第一阵列单元和第二阵列单元之间的波程差,最后根据波程差,对第二阵列单元进行相位补偿,从而各阵列单元经相位补偿及端口校零后,可避免额外引入波束指向误差,进而提高天线罩电性能测试精度。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种用于测量阵列天线的相位补偿方法,所述阵列天线包括第一阵列单元和第二阵列单元,其特征在于,所述相位补偿方法包括:
    步骤S1,将测得的所述第一阵列单元和所述第二阵列单元的远场方向图导出,以建立坐标系从而确定所述第一阵列单元和所述第二阵列单元的空间几何关系;
    步骤S2,根据所述第一阵列单元和所述第二阵列单元的空间几何关系,确定所述第一阵列单元和所述第二阵列单元之间的波程差;以及
    步骤S3,根据所述波程差,对所述第二阵列单元进行相位补偿。
  2. 根据权利要求1所述的相位补偿方法,其特征在于,步骤S1包括:
    步骤S11,将测得的所述第一阵列单元和所述第二阵列单元的远场方向图导出,建立坐标系,其中,所述坐标系用(x,y,z)表示;
    步骤S12,建立第一坐标系,将所述第一阵列单元作为原点O,并定义所述原点0的坐标(x0,y0,z0),以及定义所述阵列天线波束指向
    Figure PCTCN2018124558-appb-100001
    其中,定义所述阵列天线波束指向
    Figure PCTCN2018124558-appb-100002
    包括:
    在所述坐标系(x,y,z)中,阵列天线波束指向在xy平面的投影与x轴正方向的夹角为
    Figure PCTCN2018124558-appb-100003
    角,阵列天线波束指向与xz平面的夹角为θ角;
    步骤S13,建立第二坐标系,将所述第二阵列单元作为坐标轴上的另一点O1,并且定义所述另一点O1的坐标(x1,y1,z1)。
  3. 根据权利要求2所述的相位补偿方法,其特征在于,步骤S2包括:
    步骤S21,从所述另一点O1向所述阵列天线波束指向方向作垂线,获取所述垂线和所述阵列天线波束指向方向线的交点M,以确定在所述阵列天线波束指向方向上的所述波程差OM;
    步骤S21,根据向量OM和向量O1M的垂直关系,计算出所述波程差OM。
  4. 根据权利要求3所述的相位补偿方法,其特征在于,步骤S1之前包括:
    预先确定所述第二阵列单元的相位φ 2;以及
    步骤S3包括:
    将所述波程差OM和所述第二阵列单元的相位φ 2代入相位补偿公式,以确定所述第一阵列单元的相位φ 1,其中所述相位补偿公式为:
    Figure PCTCN2018124558-appb-100004
    其中,r表示所述波程差,λ表示波长。
  5. 根据权利要求4所述的相位补偿方法,其特征在于,所述相位补偿方法还包括:
    将所述第一阵列单元偏移至所述第二阵列单元的位置处,并将所述偏移后的第一阵列单元设置为所述第三阵列单元,并对所述第三阵列单元做相位补偿,以由所述第三阵列单元相位反演得到所述第一阵列单元的相位。
  6. 根据权利要求5所述的相位补偿方法,其特征在于,还包括:
    将所述第二阵列单元偏移至所述第一阵列单元的位置处,并将所述偏移后的第二阵列单元设置为所述第四阵列单元,并对所述第四阵列单元做相位补偿,以由所述第四阵列单元相位反演得到所述第二阵列单元的相位。
  7. 根据权利要求1所述的相位补偿方法,其特征在于,还包括:
    将各阵列单元连接一电子切换开关,并根据所述电子开关控制所述各阵列单元,以依次测试各阵列单元的远场。
  8. 一种用于测量阵列天线的相位补偿装置,所述阵列天线包括第一阵列单元和第二阵列单元,其特征在于,所述相位补偿装置包括:
    第一确定模块,用于将测得的所述第一阵列单元和所述第二阵列单元的远场方向图导出,以建立坐标系从而确定所述第一阵列单元和所述第二阵列单元的空间几何关系;
    第二确定模块,用于根据所述第一阵列单元和所述第二阵列单元的空间几何关系,确定所述第一阵列单元和所述第二阵列单元之间的波程差;以及
    相位补偿模块,用于根据所述波程差,对所述第二阵列单元进行相位补偿。
  9. 根据权利要求8所述的相位补偿装置,其特征在于,所述相位补偿装置还包括:
    第一偏移反演模块,用于将所述第一阵列单元偏移至所述第二阵列单元的位置处,并将所述偏移后的第一阵列单元设置为所述第三阵列单元,并对所述第三阵列单元做相位补偿,以由所述第三阵列单元相位反演得到所述第一阵列单元的相位。
  10. 根据权利要求9所述的相位补偿装置,其特征在于,所述相位补偿装置还包括:
    第二偏移反演模块,用于将所述第二阵列单元偏移至所述第一阵列单元的位置处,并将所述偏移后的第二阵列单元设置为所述第四阵列单元,并对所述第四阵列单元做相位补偿,以由所述第四阵列单元相位反演得到所述第二阵列单元的相位。
PCT/CN2018/124558 2018-05-08 2018-12-28 一种用于测量阵列天线的相位补偿方法和装置 WO2019214259A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18917969.0A EP3792641B1 (en) 2018-05-08 2018-12-28 Phase compensation method and device for measuring array antenna
JP2020563511A JP7241094B2 (ja) 2018-05-08 2018-12-28 アレイアンテナを測定するための位相補償方法及び装置
US17/093,083 US11876302B2 (en) 2018-05-08 2020-11-09 Phase compensation method and apparatus for measuring array antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810432530.1A CN110459877B (zh) 2018-05-08 2018-05-08 一种用于测量阵列天线的相位补偿方法和装置
CN201810432530.1 2018-05-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/093,083 Continuation US11876302B2 (en) 2018-05-08 2020-11-09 Phase compensation method and apparatus for measuring array antenna

Publications (1)

Publication Number Publication Date
WO2019214259A1 true WO2019214259A1 (zh) 2019-11-14

Family

ID=68467762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124558 WO2019214259A1 (zh) 2018-05-08 2018-12-28 一种用于测量阵列天线的相位补偿方法和装置

Country Status (5)

Country Link
US (1) US11876302B2 (zh)
EP (1) EP3792641B1 (zh)
JP (1) JP7241094B2 (zh)
CN (1) CN110459877B (zh)
WO (1) WO2019214259A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023102707A1 (zh) * 2021-12-07 2023-06-15 唐勇 雷达校准方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276452A (en) * 1992-06-24 1994-01-04 Raytheon Company Scan compensation for array antenna on a curved surface
CN106199220A (zh) * 2016-07-14 2016-12-07 厦门大学 基于光程差校正的阵列天线相位一致性测量方法
CN106291129A (zh) * 2015-06-01 2017-01-04 北京空间飞行器总体设计部 相控阵天线远场方向图测量方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204112A (en) * 1986-06-16 1993-04-20 The Liposome Company, Inc. Induction of asymmetry in vesicles
US6380893B1 (en) * 2000-09-05 2002-04-30 Hughes Electronics Corporation Ground-based, wavefront-projection beamformer for a stratospheric communications platform
JP6212879B2 (ja) 2013-02-22 2017-10-18 三菱電機株式会社 アンテナ測定装置
CN103308913A (zh) * 2013-07-12 2013-09-18 西安电子科技大学 一种高速飞行器载双天线前视sar解模糊算法
JP6209951B2 (ja) * 2013-11-14 2017-10-11 富士通株式会社 トランス接続相判定装置、方法、及びプログラム
JP6435756B2 (ja) * 2014-09-30 2018-12-12 富士通株式会社 トランス接続相判定装置、方法、及びプログラム
TWI587577B (zh) * 2015-10-20 2017-06-11 Reflective array antenna structure
CN105388449A (zh) * 2015-11-27 2016-03-09 南京航空航天大学 一种衡量天线罩对天线阵列测向性能影响的方法
CN105790812B (zh) * 2016-04-29 2018-08-31 中国人民解放军国防科学技术大学 一种使用分布式天线阵的地面站信号增强接收系统及方法
CN106093898B (zh) 2016-08-23 2018-05-25 中国电子科技集团公司第四十一研究所 一种分区域式的mimo阵列校准方法
CN106252886A (zh) * 2016-08-29 2016-12-21 中国人民解放军火箭军工程大学 基于天线波束指向偏差最小化的多子阵天线波束切换方法
CN107038299B (zh) * 2017-04-10 2019-10-22 西安电子科技大学 一种考虑互耦效应的变形阵列天线远场方向图补偿方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276452A (en) * 1992-06-24 1994-01-04 Raytheon Company Scan compensation for array antenna on a curved surface
CN106291129A (zh) * 2015-06-01 2017-01-04 北京空间飞行器总体设计部 相控阵天线远场方向图测量方法
CN106199220A (zh) * 2016-07-14 2016-12-07 厦门大学 基于光程差校正的阵列天线相位一致性测量方法

Also Published As

Publication number Publication date
JP2021524191A (ja) 2021-09-09
JP7241094B2 (ja) 2023-03-16
US20210057816A1 (en) 2021-02-25
EP3792641B1 (en) 2023-01-25
EP3792641A1 (en) 2021-03-17
US11876302B2 (en) 2024-01-16
CN110459877B (zh) 2021-11-19
CN110459877A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
JP6535046B2 (ja) 無線端末のアンテナ指向特性測定システムおよび測定方法
CN109732228B (zh) 一种激光振镜精度校正方法、装置及系统
CN109309533B (zh) 一种校准方法及设备
CN112098964B (zh) 路端雷达的标定方法、装置、设备及存储介质
CN107783086B (zh) 用于诊断天线阵口径幅相场的畸变位置的方法
CN112799025B (zh) 获取毫米波雷达与标定平台偏差的方法、系统及电子设备
JP2024522667A (ja) ウエハv型切欠き中心の位置決め方法、システム及びコンピュータ記憶媒体
CN110470320B (zh) 摆动扫描式线结构光测量系统的标定方法及终端设备
CN112834995B (zh) 一种车载毫米波雷达角度标定方法、系统及电子设备
CN116045851B (zh) 线激光轮廓仪标定方法、装置、电子设备及存储介质
WO2019214259A1 (zh) 一种用于测量阵列天线的相位补偿方法和装置
US10352966B2 (en) Method, system for utilizing a probe card, and the probe card
KR20130031327A (ko) 수리관·설계관 측정시스템
CN116452679A (zh) 一种相机与转台的位置标定方法、装置、系统及介质
CN116359615A (zh) 一种平面近场测量中的准直装置及方法
CN104751005A (zh) 一种基于正交实验的平面度误差评定方法
CN115061102A (zh) 一种标定方法、装置、电子设备和存储介质
CN112557769B (zh) 片上天线测试系统及测试方法
US10944491B2 (en) Method and system for positioning a device under test within a test area
TWI741906B (zh) 天線相位中心的快測方法
Kaslis et al. Revising the Theory and Practice of Electrical Alignment Procedures for Spherical Antenna Measurement Facilities
JP2000208590A (ja) ウエハの位置検出方法および位置検出装置
CN114624521A (zh) 天线相位中心的快测方法
JPH11297794A (ja) ウエハアライメント方法
CN115345943B (zh) 一种基于差模概念的标定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563511

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018917969

Country of ref document: EP

Effective date: 20201208