WO2019211948A1 - 逆走判定システム、逆走判定方法、及び逆走判定プログラム - Google Patents

逆走判定システム、逆走判定方法、及び逆走判定プログラム Download PDF

Info

Publication number
WO2019211948A1
WO2019211948A1 PCT/JP2019/009881 JP2019009881W WO2019211948A1 WO 2019211948 A1 WO2019211948 A1 WO 2019211948A1 JP 2019009881 W JP2019009881 W JP 2019009881W WO 2019211948 A1 WO2019211948 A1 WO 2019211948A1
Authority
WO
WIPO (PCT)
Prior art keywords
target vehicle
turning radius
vehicle
determination
road
Prior art date
Application number
PCT/JP2019/009881
Other languages
English (en)
French (fr)
Inventor
花井雄規
菊地正憲
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Publication of WO2019211948A1 publication Critical patent/WO2019211948A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a reverse running determination system, a reverse running determination method, and a reverse running determination program for determining the possibility of a vehicle running backward.
  • Patent Document 1 An example of a reverse running warning device that detects a reverse running of a vehicle and issues a warning is disclosed in Japanese Patent No. 5227220 (Patent Document 1). Specifically, Patent Document 1 describes a technique for detecting reverse running of a vehicle on the condition that the turning angle or yaw angle of the vehicle is larger than a reversal determination threshold. As the inversion determination threshold, for example, a value between 80 degrees and 180 degrees is described.
  • Patent Document 1 determines the possibility that the vehicle will run backward before the vehicle traveling direction (orientation) changes to the extent that the turning angle or yaw angle of the vehicle exceeds the inversion determination threshold. It is difficult to do.
  • the characteristic configuration of the reverse running determination system is based on the determination unit that determines the possibility that the target vehicle runs backward, and the vehicle behavior of the target vehicle that is detected every predetermined cycle.
  • a turning radius acquisition unit that acquires a predicted turning radius of the target vehicle, wherein the determination unit determines whether or not the target vehicle may run backward based on the predicted turning radius.
  • the characteristic configuration of the reverse running determination method is based on the determination step for determining the possibility that the target vehicle runs backward, and the vehicle behavior of the target vehicle detected every predetermined cycle.
  • the characteristic configuration of the reverse running determination program in that case is based on the determination function for determining the possibility that the target vehicle runs backward and the vehicle behavior of the target vehicle detected at every predetermined cycle.
  • a turning radius acquisition function for acquiring a predicted turning radius of the target vehicle at a computer, and the determination function determines whether or not the target vehicle may run backward based on the predicted turning radius In the point.
  • the turning radius of the vehicle is basically within a predictable range. Therefore, when the turning radius of the vehicle is out of this range, it can be estimated that there is a possibility that a direction change (U-turn or the like) leading to reverse running is being performed.
  • U-turn or the like a direction change leading to reverse running
  • the turning radius of the target vehicle which is an index for determining whether the target vehicle is likely to run backward, is determined for each predetermined cycle based on the vehicle behavior of the target vehicle detected every predetermined cycle. The predicted turning radius of the target vehicle at. Therefore, it is possible to determine whether or not the target vehicle may run backward at a relatively early stage before the traveling direction of the vehicle changes significantly.
  • Block diagram showing schematic configuration of reverse running determination system Illustration of how to derive the turning radius The flowchart which shows an example of the procedure of reverse running determination processing The figure which shows an example of the situation where vehicles run backward The figure which shows another example of the situation where vehicles run backward
  • the reverse running determination system 1 includes a control unit 10.
  • the control unit 10 includes an arithmetic processing device such as one or a plurality of CPUs (Central Processing Unit) as a core member, and also includes a storage device that can be referred to by the arithmetic processing device.
  • the storage device is, for example, a RAM (Random Access Memory) or a ROM (Read Only Memory).
  • the control unit 10 performs reverse running determination by executing each program stored in the main storage device (storage device included in the control unit 10) or the storage device 3 (storage device provided separately from the control unit 10). Realize each function to do.
  • the storage device 3 includes a storage medium capable of storing and rewriting information, such as a flash memory and a hard disk, as a hardware configuration.
  • a storage medium capable of storing and rewriting information
  • data including programs and the like
  • a configuration in which at least a part of data to be described (including a program and the like) is stored in the main storage device may be employed.
  • the control unit 10 functions as a “computer”.
  • the reverse running determination system 1 includes a plurality of functional units.
  • the reverse running determination system 1 includes a determination unit 11 and a turning radius acquisition unit 12.
  • a road width information acquisition unit 13 In the present embodiment, a road width information acquisition unit 13, a warning processing unit 14, and A position information acquisition unit 15 is provided.
  • the plurality of functional units are configured to be able to exchange information with each other, and are configured to be able to extract data from the storage device (main storage device or storage device 3).
  • the plurality of functional units are at least logically distinguished and need not be physically separated.
  • the plurality of functional units do not need to be realized by common hardware, and may be realized by being divided into a plurality of hardware (for example, the control unit 10 and the server device) that can communicate with each other.
  • the control unit 10 executes each program (each program constituting the reverse running determination program) stored in the storage device (main storage device or storage device 3), thereby performing the functions of the functional units shown in FIG. Realize. That is, each functional unit of the reverse running determination system 1 is configured by software (program) stored in a storage device, hardware such as a separately provided arithmetic circuit, or both. In other words, a program (reverse running determination program) for causing the arithmetic processing device (computer) to realize the function of each functional unit of the reverse running determination system 1 is stored in a storage device that can be referred to by the arithmetic processing device.
  • the reverse running determination program is provided by, for example, a storage medium or via a communication network.
  • the provided reverse running determination program is installed in, for example, an in-vehicle device of the navigation system, and the reverse running determination system 1 is realized.
  • the reverse running determination system 1 is not limited to an in-vehicle device, and may be realized using a portable device (portable navigation device, portable information terminal device, multifunctional mobile phone, etc.) that can be carried by the user.
  • the reverse running determination system 1 is realized using a plurality of devices (specifically, each device included in the information acquisition unit 20, the storage device 3, and the warning device 4).
  • the information acquisition unit 20 includes various devices (various sensors) that acquire information necessary for performing reverse running determination.
  • the information acquisition unit 20 includes a vehicle speed detection unit 21, a yaw rate detection unit 22, and a GPS receiver 23.
  • the GPS receiver 23 is a device that receives GPS signals from GPS (Global Positioning System) satellites.
  • the control unit 10 is comprised so that the information (detection information of each apparatus with which the information acquisition part 20 is provided) which the information acquisition part 20 acquired can be acquired.
  • the “device” is not limited to one integrated hardware, and one “device” may be configured by a plurality of hardware (device group) separated from each other. .
  • at least a part of the plurality of devices for realizing the reverse running determination system 1 is not the target vehicle 2 (the vehicle that is the target of the reverse running determination) but can be carried by the user. It may be provided in a carrying device or an external device (for example, a server device) that can communicate with the target vehicle 2.
  • the reverse running determination system 1 is a system for determining the possibility that the target vehicle 2 runs backward.
  • the reverse running determination system 1 is configured to issue a warning to the target vehicle 2 (an occupant of the target vehicle 2, particularly a driver) when it is determined that the target vehicle 2 may run backward.
  • this reverse running determination system 1 is comprised so that the presence or absence of the possibility that the target vehicle 2 may run backward is determined based on the predicted turning radius R1. Thereby, it is possible to determine whether or not the target vehicle 2 may run backward at a relatively early stage before the traveling direction of the target vehicle 2 changes significantly.
  • the configuration of each functional unit (see FIG. 1) of the reverse running determination system 1 for realizing such a configuration will be specifically described.
  • the turning radius acquisition unit 12 is based on the vehicle behavior of the target vehicle 2 (in this embodiment, the vehicle speed V and the yaw rate Y) detected every predetermined cycle, and the predicted turning radius R1 ( This is a functional unit that acquires the instantaneous turning radius. That is, the predicted turning radius R1 is a turning radius at each time of the target vehicle 2, in other words, an instantaneous turning radius of the target vehicle 2, or an average turning radius of the target vehicle 2 in a very short time. .
  • the predicted turning radius R1 is derived based on the vehicle behavior at each time point of the target vehicle 2, in other words, based on the instantaneous vehicle behavior of the target vehicle 2.
  • the predetermined cycle can be a sampling cycle of the vehicle behavior of the target vehicle 2 (for example, 100 [msec]).
  • the turning radius acquisition unit 12 acquires the predicted turning radius R1 every predetermined cycle. That is, the turning radius acquisition unit 12 repeatedly acquires the predicted turning radius R1. In other words, the turning radius acquisition unit 12 continues to acquire the predicted turning radius R1 of the target vehicle 2 at predetermined intervals. Then, the information on the predicted turning radius R1 acquired by the turning radius acquisition unit 12 is input to the determination unit 11.
  • the process executed by the turning radius acquisition unit 12 corresponds to a “turning radius acquisition step”, and a function realized by executing the process corresponds to a “turning radius acquisition function”.
  • the reverse running determination system 1 detects the vehicle speed detection unit 21 that detects the vehicle speed V that is the traveling speed of the target vehicle 2, and the yaw rate Y of the target vehicle 2. And a yaw rate detection unit 22.
  • the vehicle speed detection unit 21 detects the vehicle speed V every predetermined cycle (every sampling cycle). That is, the vehicle speed V detected by the vehicle speed detection unit 21 is the traveling speed of the target vehicle 2 at each time point, in other words, the instantaneous traveling speed of the target vehicle 2 or the extremely short time of the target vehicle 2. Is the average travel speed.
  • the yaw rate detection unit 22 detects the yaw rate Y at every predetermined period (every sampling period).
  • the yaw rate Y detected by the yaw rate detection unit 22 is the yaw rate at each time point of the target vehicle 2, in other words, the instantaneous yaw rate of the target vehicle 2, or the average yaw rate of the target vehicle 2 over a very short time. It is.
  • the vehicle speed detection unit 21 generates a signal corresponding to the vehicle speed V of the target vehicle 2, and the control unit 10 acquires the vehicle speed V of the target vehicle 2 based on the signal input from the vehicle speed detection unit 21.
  • the vehicle speed detection unit 21 for example, a vehicle speed pulse sensor that generates a pulse signal according to the rotation of the wheels of the target vehicle 2 can be used.
  • the yaw rate detection unit 22 generates a signal corresponding to the yaw rate Y of the target vehicle 2, and the control unit 10 acquires the yaw rate Y of the target vehicle 2 based on the signal input from the yaw rate detection unit 22.
  • a gyro sensor that generates a signal according to the traveling direction of the target vehicle 2 or a change in the traveling direction can be used.
  • the turning radius acquisition unit 12 is configured to acquire the predicted turning radius R1 based on the vehicle speed V detected by the vehicle speed detection unit 21 and the yaw rate Y detected by the yaw rate detection unit 22. Specifically, the turning radius acquisition unit 12 is configured to acquire a value obtained by dividing the vehicle speed V by the yaw rate Y as the predicted turning radius R1.
  • the predicted turning radius R1 is acquired with reference to FIG.
  • FIG. 2 shows a situation where the target vehicle 2 is turning at a vehicle speed V [m / sec].
  • the traveling locus when the target vehicle 2 is turning can be regarded as a perfect circular arc. Therefore, between the turning angle A [rad] of the target vehicle 2, the predicted turning radius R1 [m], and the travel distance L [m] of the target vehicle 2 during the time ⁇ T [sec], When a relationship such as the equation (1) is established and the equation (1) is transformed, the following equation (2) is obtained.
  • R1 ⁇ (A / ⁇ T) V (2)
  • the yaw rate Y [rad / sec] of the target vehicle 2 is equal to the time derivative of the change amount ⁇ [rad] in the traveling direction of the target vehicle 2.
  • Y ⁇ / ⁇ T (3)
  • the change amount ⁇ [rad] in the traveling direction is equal to the turning angle A [rad]
  • the respective time derivatives are also equal to each other. Therefore, the following equation (4) is obtained from the equations (1) and (2).
  • R1 ⁇ Y V (4)
  • the predicted turning radius R1 is derived by dividing the vehicle speed V by the yaw rate Y.
  • the turning radius acquisition unit 12 is configured to acquire an estimated turning radius R2 (non-instantaneous turning radius) in addition to the predicted turning radius R1 (instantaneous turning radius).
  • the estimated turning radius R2 is the turning radius of the target vehicle 2 derived based on the change amount ⁇ in the traveling direction (direction) of the target vehicle 2. That is, the estimated turning radius R2 is not the instantaneous behavior of the target vehicle 2, but from the past time point of the target vehicle 2 (the time point when the change amount ⁇ becomes a reference, in other words, the time point when the change amount ⁇ becomes zero). Derived based on behavior. Information on the estimated turning radius R2 acquired by the turning radius acquisition unit 12 is input to the determination unit 11.
  • the turning radius acquisition unit 12 is based on the change amount ⁇ in the traveling direction of the target vehicle 2 and the travel distance L of the target vehicle 2 while the traveling direction of the target vehicle 2 changes by the change amount ⁇ .
  • An estimated turning radius R2 is derived.
  • the turning radius acquisition unit 12 is configured to acquire a value obtained by dividing the travel distance L by the change amount ⁇ in the traveling direction as the estimated turning radius R2.
  • the turning radius acquisition unit 12 performs, for example, calculation each time, or a value obtained by dividing the travel distance L and the travel direction change amount ⁇ by the travel distance L by the travel direction change amount ⁇ (that is, the estimated turn)
  • the estimated turning radius R2 is obtained with reference to a table that defines the relationship with the radius R2).
  • the turning radius when it is assumed that the target vehicle 2 has turned along a perfect circular arc is assumed to be an estimated turning radius R2.
  • the turning angle A [rad] of the target vehicle 2 the amount of change ⁇ [rad] in the traveling direction of the target vehicle 2
  • the estimated turning radius R2 [m]
  • the travel distance L [m] of the target vehicle 2 Is established as shown in the following formula (5).
  • the estimated turning radius R2 is derived by dividing the travel distance L by the change amount ⁇ in the traveling direction.
  • the determination unit 11 is a functional unit that determines the possibility that the target vehicle 2 runs backward. The determination unit 11 determines whether or not the target vehicle 2 may run backward based on the predicted turning radius R1. In the present embodiment, the process executed by the determination unit 11 corresponds to a “determination step”, and the function realized by executing the process corresponds to a “determination function”.
  • the determination unit 11 is configured to determine that the target vehicle 2 may run backward on the condition that the predicted turning radius R1 is equal to or less than the first threshold value. In other words, the determination unit 11 is configured to determine that there is a possibility that the target vehicle 2 will run backward when a predetermined reverse running determination condition is satisfied.
  • the reverse running determination condition includes the predicted turning radius R1 being equal to or less than the first threshold value.
  • the determination unit 11 is configured to determine that the target vehicle 2 may run backward when the predicted turning radius R1 is equal to or less than the first threshold value. That is, in the present embodiment, the reverse running determination condition includes only that the predicted turning radius R1 is equal to or smaller than the first threshold, and the determination unit 11 has the predicted turning radius R1 equal to or smaller than the first threshold. It is determined that there is a possibility that the target vehicle 2 will run backward only on the condition.
  • the target vehicle 2 has a turning radius equal to or less than half the width of the road 90 (road width W).
  • the first threshold value is set based on a value that is half the road width W. In this way, by setting the first threshold value to a value set with reference to half the road width W, it is possible to appropriately determine that the target vehicle 2 may run backward. .
  • the first threshold value is set to a half value of the road width W, or is set to a value obtained by adjusting a half value of the road width W (corrected value).
  • the first threshold value can be set to a value obtained by subtracting a value based on the vehicle width of the target vehicle 2 (for example, a value that is half the vehicle width) from a half value of the road width W.
  • the road width W is the width of the road area in the same traffic direction on the road 90.
  • the road area includes at least a lane 93.
  • the road 90 has a plurality of lanes 93 in which the normal traveling direction of the target vehicle 2 matches the direction of travel, basically, all of the plurality of lanes 93 are included in the road region.
  • the road area may include an area (for example, a road shoulder 94) that is provided adjacent to the lane 93 and in which the vehicle can travel.
  • “running” means physically running.
  • the road area including the road 92 and the shoulders 94 on both outer sides in the road width direction is shown.
  • the width is the road width W.
  • the roadway 92 main roadway
  • the width of the road area including the merge lane 93a (acceleration lane) of the approach road 95 and the shoulders 94 on both outer sides in the road width direction is defined as a road width W.
  • the road width W including the roadway 92 and the shoulders 94 on both outer sides in the road width direction is set as the road width W at points other than the junction point, as in the example shown in FIG. 4. Can do.
  • the road width W can be variably set according to the location (position along the extending direction of the road 90).
  • the same value as the road width W for example, the maximum value of the road width W on the road 90
  • the reverse running determination system 1 (control unit 10) includes a road width information acquisition unit 13.
  • the road width information acquisition unit 13 is a functional unit that acquires road width information indicating the road width W of the road 90 on which the target vehicle 2 is traveling.
  • the road width information acquired by the road width information acquisition unit 13 is input to the determination unit 11, and the determination unit 11 sets a first threshold value based on a half value of the road width W represented by the road width information.
  • the first threshold value is a value set with reference to a half value of the road width W represented by the road width information.
  • the road width information acquisition unit 13 executes a process (road width information acquisition step) for acquiring road width information indicating the road width W of the road 90 on which the target vehicle 2 is traveling.
  • a function (road width information acquisition function) for acquiring road width information representing the road width W of the traveling road 90 is realized.
  • the reverse running determination system 1 (control unit 10) includes a position information acquisition unit 15.
  • the position information acquisition unit 15 is a functional unit that acquires position information indicating the current position of the target vehicle 2.
  • the position information acquisition unit 15 acquires position information based on the signal input from the information acquisition unit 20.
  • the current position of the target vehicle 2 may be corrected based on road information or feature information stored in the storage device 3.
  • a process (position information acquisition step) for acquiring position information representing the current position of the target vehicle 2 is executed by the position information acquisition unit 15, and position information representing the current position of the target vehicle 2 is acquired by executing this process.
  • a function location information acquisition function
  • the road width information acquisition unit 13 is based on the position information acquired by the position information acquisition unit 15 and the road information stored in the storage device 3, and the road 90 on which the target vehicle 2 is traveling.
  • Road width information representing the road width W of the current road is acquired.
  • the storage device 3 stores road information necessary for route guidance, traffic information guidance, map display, and the like.
  • the road information includes, for example, information that directly represents the road width W of the road 90 on which the target vehicle 2 is traveling, or for deriving the road width W of the road 90 on which the target vehicle 2 is traveling.
  • Information for example, information such as road type (road grade), road width, number of lanes, lane width, shoulder width, etc. is included.
  • the road width information acquisition unit 13 may acquire road width information representing the road width W of the road 90 on which the target vehicle 2 is traveling by communication.
  • the road width information acquisition unit 13 may acquire the road width information through road-to-vehicle communication with a communication device (a roadside communication device such as an optical beacon) installed on the roadside.
  • a communication device a roadside communication device such as an optical beacon
  • the warning processing unit 14 is a functional unit that issues a warning when the determination unit 11 determines that the target vehicle 2 may run backward.
  • the warning processing unit 14 issues a warning using the warning device 4 when the determination unit 11 determines that the target vehicle 2 may run backward.
  • a process for issuing a warning is executed, and the target vehicle 2 may run backward by executing the process.
  • a function (warning processing function) that issues a warning when it is determined that there is a possibility is realized.
  • the warning processing unit 14 uses, for example, a display as the warning device 4 and displays warning character information and a flashing pattern of light on the display to warn the passenger (particularly, the driver) of the target vehicle 2. Do. Further, the warning processing unit 14 uses a speaker as the warning device 4, for example, and issues a warning message or warning sound for warning from the speaker to warn the passenger of the target vehicle 2.
  • the determination unit 11 determines that the target vehicle 2 is likely to run backward based on the predicted turning radius R1, and the determination unit 11 determines that the vehicle speed V is the second.
  • the second determination process is executed instead of the first determination process.
  • the second threshold can be set to 10 [km / h], for example.
  • the determination unit 11 determines whether or not the target vehicle 2 may run backward based on the change amount ⁇ in the traveling direction of the target vehicle 2. Note that the determination unit 11 acquires the change amount ⁇ in the traveling direction based on the detection information of the yaw rate detection unit 22 (specifically, by integrating the yaw rate Y over time). In the present embodiment, the amount of change ⁇ in the traveling direction is the amount of change from the direction along the extending direction of the road 90 (lane 93).
  • the determination unit 11 determines that the estimated turning radius R2 is equal to or less than the fourth threshold when the amount of change ⁇ in the traveling direction of the target vehicle 2 is equal to or greater than the third threshold. As a condition, it is determined that the target vehicle 2 may run backward.
  • the third threshold value can be set, for example, to a value within the range of 80 degrees to 180 degrees expressed by the frequency method.
  • the fourth threshold value can be set, for example, with a value half the road width W as a reference, similarly to the first threshold value.
  • the fourth threshold value may be set to the same value as the first threshold value, or may be set to a value different from the first threshold value (for example, a value smaller than the first threshold value).
  • the estimated turning radius R2 is the turning radius of the target vehicle 2 derived based on the change amount ⁇ in the traveling direction, and the change amount ⁇ in the traveling direction and the change in the traveling direction by the change amount ⁇ . It is derived based on the travel distance L of the target vehicle 2.
  • the determination unit 11 acquires the travel distance L based on the detection information of the vehicle speed detection unit 21 (in the present embodiment, based on the number of pulse signals generated by the vehicle speed detection unit 21).
  • the third threshold is set to 90 degrees.
  • the traveling direction of the target vehicle 2 is orthogonal to the extending direction of the road 90.
  • the presence or absence of possibility that the target vehicle 2 runs backward is determined based on the estimated turning radius R2.
  • the first determination process it is possible to determine whether or not the target vehicle 2 may run backward based on the predicted turning radius R1 that is the turning radius of the target vehicle 2 at predetermined intervals. It is possible to determine whether or not there is a possibility that the target vehicle 2 runs backward at a relatively early stage before the traveling direction of the vehicle 2 changes greatly. For example, in the scene shown in FIG.
  • the first determination process is performed at each of time T1, time T2, and time T3. At time T3, it is determined that the predicted turning radius R1 is equal to or less than the first threshold. A situation can be assumed in which it is determined that the vehicle 2 may run backward. Further, in the scene as shown in FIG. 5, the first determination process is performed at each of time T10, time T11, and time T12. At time T12, it is determined that the predicted turning radius R1 is equal to or less than the first threshold. A situation can be assumed in which it is determined that the vehicle 2 may run backward.
  • step # 01: Yes when the target vehicle 2 is traveling on an automobile-only road (such as an expressway road or a city expressway) (step # 01: Yes), each process after step # 02 (target vehicle 2 Is performed). That is, in the present embodiment, the determination unit 11 determines whether or not the target vehicle 2 is likely to run backward on the condition that the target vehicle 2 is traveling on an automobile-only road. Whether or not the target vehicle 2 is traveling on an automobile-only road is determined based on the position information acquired by the position information acquisition unit 15 and the road information stored in the storage device 3 (specifically, information on the road type). ). It may be determined whether or not the target vehicle 2 is traveling on an automobile-only road based on image recognition such as a guide sign photographed by an in-vehicle camera or based on information obtained by communication.
  • image recognition such as a guide sign photographed by an in-vehicle camera or based on information obtained by communication.
  • the determination unit 11 When the target vehicle 2 is traveling on an automobile-only road (step # 01: Yes) and the vehicle speed V is higher than the second threshold (step # 02: Yes), the determination unit 11 performs the first determination process. Is done. Specifically, the turning radius acquisition unit 12 acquires the predicted turning radius R1 (step # 03), and the determination unit 11 determines whether or not the predicted turning radius R1 is equal to or smaller than the first threshold (step #). 04). Then, when the predicted turning radius R1 is equal to or less than the first threshold (step # 04: Yes), the determination unit 11 determines that the target vehicle 2 may run backward (step # 05), and a warning. The processing unit 14 performs a warning process (step # 06).
  • the turning radius acquisition unit 12 predicts the target vehicle 2 for each predetermined period on the condition that the target vehicle 2 is traveling on the automobile exclusive road (step # 01: Yes).
  • the turning radius R1 is continuously acquired (step # 03).
  • the turning radius acquisition unit 12 acquires the predicted turning radius R1 of the target vehicle 2 for each predetermined cycle on condition that the vehicle speed V is greater than the second threshold (Step # 02: Yes). (Step # 03).
  • the turning radius acquisition unit 12 is conditioned on the condition that the target vehicle 2 is traveling on an automobile-only road and the vehicle speed V is greater than the second threshold (step # 01: Yes, step (# 02: Yes), the predicted turning radius R1 of the target vehicle 2 for each predetermined cycle is continuously acquired (step # 03).
  • step # 02 determines whether or not the change amount ⁇ in the traveling direction of the target vehicle 2 is greater than or equal to the third threshold (step # 07). If the change amount ⁇ in the traveling direction is smaller than the third threshold value (step # 07: No), the process ends, and the process from step # 01 is executed again. On the other hand, when the change amount ⁇ in the traveling direction of the target vehicle 2 is greater than or equal to the third threshold (step # 07: Yes), the turning radius acquisition unit 12 acquires the estimated turning radius R2 (step # 08), and the determination is made.
  • the unit 11 determines whether or not the estimated turning radius R2 is equal to or smaller than the fourth threshold value (step # 09). Then, when the estimated turning radius R2 is equal to or smaller than the fourth threshold (step # 09: Yes), the determination unit 11 determines that the target vehicle 2 may run backward (step # 05), and a warning The processing unit 14 performs a warning process (step # 06). On the other hand, when the estimated turning radius R2 is larger than the fourth threshold value (step # 09: No), the process ends, and the process from step # 01 is executed again.
  • step # 04: No when it is determined in the first determination process that the predicted turning radius R1 is larger than the first threshold (step # 04: No), the process proceeds to step # 07. (That is, the determination unit 11 executes the second determination process). Thereby, it is possible to suppress detection omission in a situation where the target vehicle 2 may run backward. Unlike such a configuration, when it is determined in the first determination process that the predicted turning radius R1 is larger than the first threshold value (step # 04: No), the process ends, and from step # 01 It is also possible to adopt a configuration in which processing is executed again.
  • the reverse running determination system 1 is provided with the road width information acquisition part 13 which acquires the road width information showing the road width W of the road 90 where the object vehicle 2 is traveling, and the first threshold value is
  • the configuration that is set with reference to the half value of the road width W represented by the road width information has been described.
  • the configuration in which the first threshold value is variably set according to the road width W of the road 90 on which the target vehicle 2 is traveling has been described as an example.
  • the first threshold value may be a fixed value without being limited to such a configuration.
  • the road 90 to be determined by the determination unit 11 is the target road 91
  • the maximum value among the road widths W of all the target roads 91 is the maximum road width
  • the first threshold is the maximum road width. It can be set as the structure set on the basis of a half value. That is, in this case, the first threshold value is a value set with reference to half the maximum road width.
  • the fourth threshold value can be a value set with reference to a value that is half of the maximum road width.
  • the maximum road width is, for example, a road width W (for example, about 20 [m]) at a point where two lanes 93 (merging lane 93a) merge with respect to a road 92 (main lane) having four lanes 93. Is done.
  • the target road 91 can be limited to, for example, an automobile-only road.
  • the first threshold value is set based on the road width W, specifically, the first threshold value is set based on half the road width W as an example. As explained. However, without being limited to such a configuration, for example, the first threshold is set based on the value of the road width W (the maximum road width in the example of the other embodiment (1) above). You can also The first threshold value may be set without being based on the road width W. For example, the first threshold value may be set based on the minimum curvature radius on the curved road of each road 90. Can do.
  • the determination unit 11 determines that the estimated turning radius R2 is equal to or less than the fourth threshold value when the change amount ⁇ in the traveling direction of the target vehicle 2 is equal to or greater than the third threshold value in the second determination process.
  • the configuration in which it is determined that the target vehicle 2 may run backward is described as an example.
  • the determination unit 11 changes the traveling direction change amount ⁇ of the target vehicle 2 before and after traveling a predetermined travel distance L (in other words, Then, it is determined that there is a possibility that the target vehicle 2 runs backward on condition that the change amount ⁇ ) of the traveling direction of the target vehicle 2 during traveling the predetermined travel distance L is equal to or greater than the determination threshold value. It can also be configured. As a specific example, for example, when the change amount ⁇ in the traveling direction of the target vehicle 2 before and after traveling a distance of 20 [m] is 80 degrees or more, the determination unit 11 makes the target vehicle 2 run backward. It can be set as the structure which determines that there is a possibility of doing.
  • the determination unit 11 executes the second determination process instead of the first determination process when the vehicle speed V is equal to or less than the second threshold value.
  • the present invention is not limited to such a configuration.
  • the determination unit 11 may or may not cause the target vehicle 2 to run backward by the first determination process.
  • the determination unit 11 may not determine whether or not the target vehicle 2 may run backward.
  • it can also be set as the structure which the determination part 11 determines the presence or absence of the possibility that the object vehicle 2 reverse
  • the determination unit 11 determines whether there is a possibility that the target vehicle 2 runs backward on the condition that the target vehicle 2 is traveling on an automobile exclusive road. did. However, without being limited to such a configuration, even when the target vehicle 2 is traveling on a road 90 other than an automobile-only road, the determination unit 11 determines whether the target vehicle 2 may run backward. It can also be set as the structure determined.
  • the target vehicle 2 is traveling on a one-way road 90, the target vehicle 2 is traveling on a road 90 with a median, and the target vehicle 2 is located at a place where there is no intersection (from the intersection It is good also as conditions for determining the presence or absence of the possibility that the target vehicle 2 runs backward, such as traveling in a remote place.
  • the determination unit 11 determines that there is a possibility that the target vehicle 2 runs backward only on the condition that the predicted turning radius R1 is equal to or less than the first threshold is described as an example. did.
  • the determination unit 11 is not limited to such a configuration, and the target vehicle 2 runs backward on the condition that the predicted turning radius R1 is equal to or less than the first threshold value and on another condition. It can also be set as the structure which determines that there is a possibility of doing. For example, the determination unit 11 repeatedly obtains the predicted turning radius R1, and the predicted turning radius R1 is equal to or smaller than the first threshold value. It can be set as the structure which determines with the further condition that it is acquired having the possibility that the target vehicle 2 runs backward. Note that the set number of times can be set to a number within a range of 5 to 10 times, for example.
  • the configuration in which the determination unit 11 determines that the target vehicle 2 may run backward is described as an example on the condition that the predicted turning radius R1 is equal to or less than the first threshold.
  • the present invention is not limited to such a configuration, and the configuration in which the predicted turning radius R1 is not more than the first threshold is not included in the condition for determining that the target vehicle 2 may run backward.
  • the determination unit 11 is configured on the condition that the decrease rate or the decrease width of the predicted turning radius R1 (for example, the decrease rate or the decrease width from the straight traveling state) is equal to or greater than the determination threshold. It can be set as the structure which determines that there is a possibility of reverse running.
  • the turning radius acquisition unit 12 acquires the value obtained by dividing the vehicle speed V by the yaw rate Y as the predicted turning radius R1, that is, the turning radius acquisition unit 12
  • the configuration for obtaining the predicted turning radius R1 based only on the yaw rate Y has been described as an example.
  • the turning radius acquisition unit 12 is not limited to such a configuration, and the predicted turning radius is based on the vehicle speed V and the yaw rate Y as well as another index (for example, the steering angle of the steered wheels). It can also be set as the structure which acquires R1.
  • the configuration in which the turning radius acquisition unit 12 acquires the predicted turning radius R1 based on the vehicle speed V and the yaw rate Y has been described as an example.
  • the configuration is not limited to such a configuration, and the configuration in which the turning radius acquisition unit 12 acquires the predicted turning radius R1 without using one of the vehicle speed V and the yaw rate Y, or the turning radius acquisition unit 12 has the vehicle speed V Further, the predicted turning radius R1 can be obtained without using both the yaw rate Y and the yaw rate Y.
  • the turning radius acquisition unit 12 may acquire the predicted turning radius R1 based on the vehicle speed V and the steering angle of the steered wheels.
  • the vehicle behavior of the target vehicle 2 detected every predetermined cycle is the vehicle speed V detected every predetermined cycle and the steering angle of the steered wheels.
  • the turning radius acquisition unit 12 may acquire the predicted turning radius R1 based on the change (transition) of the current position (coordinates) of the target vehicle 2.
  • the vehicle behavior of the target vehicle 2 detected every predetermined cycle is the current position of the target vehicle 2 detected every predetermined cycle.
  • the reverse running determination system 1 (control unit 10) includes the warning processing unit 14 and determines that the target vehicle 2 may run backward
  • the warning processing unit 14 The configuration for issuing a warning has been described as an example. However, without being limited to such a configuration, when the reverse running determination system 1 determines that there is a possibility that the target vehicle 2 runs backward, instead of the warning process or in addition to the warning process, the target A configuration in which the behavior of the vehicle 2 is controlled (for example, control for suppressing steering by the driver) is also possible.
  • the reverse running determination system (1) is based on the determination unit (11) for determining the possibility that the target vehicle (2) runs backward, and the vehicle behavior of the target vehicle (2) detected at predetermined intervals.
  • a turning radius acquisition unit (12) that acquires a predicted turning radius (R1) of the target vehicle (2) at predetermined intervals, and the determination unit (11) is based on the predicted turning radius (R1). The presence or absence of the possibility that the target vehicle (2) runs backward is determined.
  • the turning radius of the vehicle is basically within a predictable range. Therefore, when the turning radius of the vehicle is out of this range, it can be estimated that there is a possibility that a direction change (U-turn or the like) leading to reverse running is being performed.
  • U-turn or the like a direction change leading to reverse running
  • index for determining the presence or absence of reverse running of the target vehicle (2) is detected for every predetermined period. Based on the predicted turning radius (R1) of the target vehicle (2) at predetermined intervals. Therefore, it is possible to determine whether or not the target vehicle (2) may run backward at a relatively early stage before the traveling direction of the vehicle changes significantly.
  • the determination unit (11) determines that the target vehicle (2) may run backward on the condition that the predicted turning radius (R1) is equal to or less than a first threshold value. .
  • the turning radius of the vehicle is basically not less than a certain value determined according to the shape of the road. Therefore, if the turning radius of the vehicle is greater than a certain value, the possibility of reverse running is low, and if the turning radius of the vehicle is smaller than a certain value, a direction change leading to reverse running is performed. It is expected that According to this configuration, in view of this, it is possible to appropriately determine whether or not the target vehicle (2) may run backward.
  • the determination unit (11) determines that the target vehicle (2) may run backward on condition that the predicted turning radius (R1) is equal to or less than the first threshold value. In the above, the determination unit (11) repeatedly acquires the predicted turning radius (R1), and the predicted turning radius (R1) equal to or less than the first threshold is continuously acquired for a set number of times or more. It is preferable to determine that the target vehicle (2) may run backward.
  • the road (90) to be determined by the determination unit (11) is the target road (91), and the maximum value among the road widths (W) of all the target roads (91) is the maximum road.
  • the first threshold value is a value set with reference to a half value of the maximum road width.
  • the target vehicle (2) when the target vehicle (2) changes direction with a turning radius equal to or less than half of the road width (W), there is a high possibility that the target vehicle (2) will run backward. Can be considered.
  • the target vehicle (2) may run backward by setting the first threshold value to a value set with reference to half the road width (W). Can be determined appropriately.
  • the road width (W) serving as a reference for setting the first threshold value is the maximum value among the road widths (W) of all the target roads (91). Even on a road with a large road width (W) that is likely to be a problem, it can be appropriately determined that the target vehicle (2) may run backward.
  • the vehicle further includes a road width information acquisition unit (13) that acquires road width information indicating the road width (W) of the road (90) on which the target vehicle (2) is traveling, and the first threshold value is the road It is preferable that the value is set with reference to a half value of the road width (W) represented by the width information.
  • the target vehicle (2) may run backward by setting the first threshold value to a value set with a value half of the road width (W) as a reference. Can do.
  • the road width (W) serving as a reference for setting the first threshold value is the road width (W) of the road (90) on which the target vehicle (2) is traveling. ) Can be improved.
  • a vehicle speed detector (21) that detects a vehicle speed (V) that is a traveling speed of the target vehicle (2); a yaw rate detector (22) that detects a yaw rate (Y) of the target vehicle (2); It is preferable that the turning radius obtaining unit (12) obtains the predicted turning radius (R1) based on the vehicle speed (V) and the yaw rate (Y).
  • the predicted turning radius (R1) can be appropriately estimated based on two physical quantities that can be measured for the target vehicle (2).
  • the turning radius acquisition unit (12) acquires the predicted turning radius (R1) based on the vehicle speed (V) and the yaw rate (Y) as described above, the turning radius acquisition unit (12) It is preferable to obtain a value obtained by dividing the vehicle speed (V) by the yaw rate (Y) as the predicted turning radius (R1).
  • the calculation for obtaining the predicted turning radius (R1) can be simplified. Therefore, it is possible to shorten the time from the detection of the vehicle speed (V) and the yaw rate (Y) to the determination based on the vehicle speed (V) and the yaw rate (Y).
  • the reverse running determination system (1) having each configuration described above includes a vehicle speed detection unit (21) that detects a vehicle speed (V) that is a running speed of the target vehicle (2), and is based on the predicted turning radius (R1).
  • a process for determining whether or not the target vehicle (2) is likely to run backward is defined as a first determination process.
  • the determination unit (11) The second determination process is executed instead of the first determination process, and the target vehicle (2) can run backward based on the amount of change ( ⁇ ) in the traveling direction of the target vehicle (2) in the second determination process. It is preferable to determine the presence or absence of sex.
  • the turn of the target vehicle (2) derived based on the change amount ( ⁇ ) when the change amount ( ⁇ ) in the traveling direction of the target vehicle (2) is equal to or greater than a third threshold. It is preferable to determine that the target vehicle (2) may run backward on the condition that the radius (R2) is equal to or less than the fourth threshold value.
  • the turning radius (R2) of the target vehicle (2) Is equal to or less than the fourth threshold value as a condition for determining that the target vehicle may run backward. Therefore, when the turning radius (R2) of the vehicle is smaller than a certain value and the amount of change ( ⁇ ) in the traveling direction of the target vehicle (2) is larger than a certain value, the direction change leading to reverse running is performed. In view of the fact that the vehicle speed of the target vehicle (2) is low, it is possible to appropriately determine whether or not the target vehicle (2) may run backward.
  • the turning radius acquisition unit (12) is configured so that the target vehicle (2) is traveling on the road for exclusive use of the vehicle at every predetermined period. It is preferable that the predicted turning radius (R1) of the target vehicle (2) is continuously acquired.
  • the turning radius acquisition unit (12) predicts the turning radius (R1) of the target vehicle (2) every predetermined period on the condition that the target vehicle (2) is traveling on an automobile exclusive road. Keep getting. Therefore, the determination by the determination unit (11) can be performed based on the predicted turning radius (R1) that is repeatedly acquired every predetermined period, particularly on an automobile road where reverse running is likely to be a problem. As a result, the traveling direction of the vehicle It is possible to determine whether or not there is a possibility that the target vehicle (2) runs backward on the basis of the predicted turning radius (R1) at a relatively early stage before the vehicle greatly changes.
  • the turning radius acquisition unit (12) is configured such that the target vehicle (2) at each predetermined period is provided on the condition that a vehicle speed (V) that is a traveling speed of the target vehicle (2) is larger than a second threshold value. It is preferable to continue acquiring the predicted turning radius (R1).
  • a driving operation that decreases the predicted turning radius (R1) may be performed for normal traveling such as lane change.
  • the vehicle speed (V) being larger than the second threshold is a condition for continuously obtaining the predicted turning radius (R1) of the target vehicle (2) at every predetermined cycle, the lane change is performed.
  • the determination unit (11) performs determination based on the predicted turning radius (R1) repeatedly acquired at predetermined intervals. It is possible to determine whether or not there is a possibility that the target vehicle (2) runs backward based on the predicted turning radius (R1) at a relatively early stage before the traveling direction of the vehicle greatly changes.
  • the reverse running determination system (1) according to the present disclosure only needs to exhibit at least one of the effects described above.
  • the reverse running determination method can include steps including the features of the reverse running determination system (1) described above.
  • the reverse running determination program can cause a computer to realize the functions having the features of the reverse running determination system (1) described above.
  • the reverse running determination method and the reverse running determination program can also provide the above-described effects of the reverse running determination system (1).
  • various additional features exemplified as a preferred embodiment of the reverse running determination system (1) can be incorporated into the reverse running determination method and the reverse running determination program. The effects corresponding to the target characteristics can also be achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

逆走判定システム(1)は、対象車両が逆走する可能性を判定する判定部(11)と、所定周期毎に検出される対象車両の車両挙動に基づき、所定周期毎での対象車両の予測旋回半径を取得する旋回半径取得部(12)と、を備える。判定部(11)は、予測旋回半径に基づき、対象車両が逆走する可能性の有無を判定する。

Description

逆走判定システム、逆走判定方法、及び逆走判定プログラム
 本発明は、車両が逆走する可能性を判定する逆走判定システム、逆走判定方法、及び逆走判定プログラムに関する。
 車両の逆走を検出して警告を行う逆走警告装置の一例が、特許第5227220号公報(特許文献1)に開示されている。具体的には、特許文献1には、車両の旋回角度又はヨー角が反転判定閾値よりも大きくなったこと等を条件に、車両の逆走を検出する技術が記載されている。反転判定閾値としては、例えば、80度~180度の間の値とすることが記載されている。
 ところで、車両が逆走する可能性を早いタイミングで検知することができれば、誤った運転操作の開始後の早期の段階で運転者に対して警告を行うことができ、その後の運転操作で逆走を未然に防ぐことも可能となる。この点に関し、特許文献1に記載の技術では、車両の旋回角度又はヨー角度が上記反転判定閾値を超える程度に車両の進行方向(向き)が変わる前に、車両が逆走する可能性を判定することは困難である。
特許第5227220号公報
 そこで、車両が逆走する可能性をより早いタイミングで判定することが可能な技術の実現が望まれる。
 上記に鑑みた、逆走判定システムの特徴構成は、対象車両が逆走する可能性を判定する判定部と、所定周期毎に検出される前記対象車両の車両挙動に基づき、前記所定周期毎での前記対象車両の予測旋回半径を取得する旋回半径取得部と、を備え、前記判定部は、前記予測旋回半径に基づき、前記対象車両が逆走する可能性の有無を判定する点にある。
 また、上記に鑑みた、逆走判定システムの技術的特徴は逆走判定方法や逆走判定プログラムにも適用可能であり、そのような方法やプログラム、更には、そのようなプログラムが記憶された記憶媒体(例えば、光ディスク、フラッシュメモリ等)も、本明細書によって開示される。
 その場合における、逆走判定方法の特徴構成は、対象車両が逆走する可能性を判定する判定ステップと、所定周期毎に検出される前記対象車両の車両挙動に基づき、前記所定周期毎での前記対象車両の予測旋回半径を取得する旋回半径取得ステップと、を含み、前記判定ステップでは、前記予測旋回半径に基づき、前記対象車両が逆走する可能性の有無を判定する点にある。
 また、その場合における、逆走判定プログラムの特徴構成は、対象車両が逆走する可能性を判定する判定機能と、所定周期毎に検出される前記対象車両の車両挙動に基づき、前記所定周期毎での前記対象車両の予測旋回半径を取得する旋回半径取得機能と、をコンピュータに実現させ、前記判定機能では、前記予測旋回半径に基づき、前記対象車両が逆走する可能性の有無を判定する点にある。
 一般的に、道路に定められた通行方向に従って車両が走行している場合には、車両の旋回半径は基本的に予測可能な範囲内に収まる。そのため、車両の旋回半径がこの範囲から外れる場合には、逆走につながる方向転換(Uターン等)が行われている可能性があると推測できる。この点に鑑みて、上記の構成では、対象車両の旋回半径に基づくことで、対象車両が逆走する可能性の有無を判定することができる。
 そして、上記の構成では、対象車両が逆走する可能性の有無を判定するための指標である対象車両の旋回半径を、所定周期毎に検出される対象車両の車両挙動に基づく、所定周期毎での対象車両の予測旋回半径としている。よって、車両の進行方向が大きく変化する前の比較的早い段階で、対象車両が逆走する可能性の有無を判定することが可能となっている。
 逆走判定システム、逆走判定方法、及び逆走判定プログラムのさらなる特徴と利点は、図面を参照して記述する以下の実施形態の説明によってより明確となる。
逆走判定システムの概略構成を示すブロック図 旋回半径の導出方法の説明図 逆走判定処理の手順の一例を示すフローチャート 車両が逆走を行う状況の一例を示す図 車両が逆走を行う状況の別例を示す図
 逆走判定システムの実施形態について、図面を参照して説明する。図1に示すように、逆走判定システム1は、制御ユニット10を備えている。図示は省略するが、制御ユニット10は、単数又は複数のCPU(Central Processing Unit)等の演算処理装置を中核部材として備えると共に、当該演算処理装置が参照可能な記憶装置を備えている。この記憶装置は、例えば、RAM(Random Access Memory)やROM(Read Only Memory)等とされる。制御ユニット10は、主記憶装置(制御ユニット10が備える記憶装置)や記憶装置3(制御ユニット10とは別に設けられる記憶装置)に記憶されている各プログラムを実行することで、逆走判定を行うための各機能を実現する。記憶装置3は、例えばフラッシュメモリやハードディスク等の、情報を記憶及び書き換え可能な記憶媒体をハードウェア構成として備える。なお、以下の説明において主記憶装置に記憶されると説明するデータ(プログラム等を含む)の少なくとも一部が記憶装置3に記憶される構成や、以下の説明において記憶装置3に記憶されると説明するデータ(プログラム等を含む)の少なくとも一部が主記憶装置に記憶される構成とすることもできる。本実施形態では、制御ユニット10が「コンピュータ」として機能する。
 図1に示すように、逆走判定システム1(制御ユニット10)は、複数の機能部を備えている。具体的には、逆走判定システム1(制御ユニット10)は、判定部11及び旋回半径取得部12を備えており、本実施形態では更に、道路幅情報取得部13、警告処理部14、及び位置情報取得部15を備えている。これら複数の機能部は、互いに情報の受け渡しを行うことが可能に構成されていると共に、記憶装置(主記憶装置又は記憶装置3)からデータを抽出可能に構成されている。なお、これら複数の機能部は、少なくとも論理的に区別されるものであり、物理的には必ずしも区別される必要はない。また、これら複数の機能部は、共通のハードウェアで実現される必要はなく、互いに通信可能な複数のハードウェア(例えば、制御ユニット10とサーバ装置)に分かれて実現されてもよい。
 制御ユニット10は、記憶装置(主記憶装置又は記憶装置3)に記憶されている各プログラム(逆走判定プログラムを構成する各プログラム)を実行することで、図1に示す各機能部の機能を実現する。すなわち、逆走判定システム1の各機能部は、記憶装置に記憶されたソフトウェア(プログラム)又は別途設けられた演算回路等のハードウェア、或いはそれらの両方により構成される。言い換えれば、逆走判定システム1の各機能部の機能を演算処理装置(コンピュータ)に実現させるためのプログラム(逆走判定プログラム)は、当該演算処理装置が参照可能な記憶装置に記憶される。逆走判定プログラムは、例えば、記憶媒体により提供され、或いは、通信ネットワークを介して提供される。逆走判定システム1が、車両用のナビゲーションシステムに組み込まれて利用される場合、提供された逆走判定プログラムは例えばナビゲーションシステムの車載装置にインストールされて、逆走判定システム1が実現される。なお、逆走判定システム1は、車載装置に限らず、ユーザが持ち運び可能な可搬装置(ポータブルナビゲーション装置、携帯型情報端末装置、多機能携帯電話等)を用いて実現されてもよい。
 図1に示すように、逆走判定システム1は、複数の装置(具体的には、情報取得部20が備える各装置、記憶装置3、及び警告装置4)を用いて実現される。情報取得部20は、逆走判定を行うために必要な情報を取得する各種装置(各種センサ)を備えている。本実施形態では、情報取得部20は、車速検出部21、ヨーレート検出部22、及びGPS受信機23を備えている。なお、GPS受信機23は、GPS(Global Positioning System)衛星からのGPS信号を受信する機器である。そして、制御ユニット10は、情報取得部20が取得した情報(情報取得部20が備える各装置の検出情報)を取得することが可能に構成されている。なお、本明細書において、「装置」は一体化された1つのハードウェアに限定されるものではなく、1つの「装置」が互いに分離した複数のハードウェア(装置群)により構成されてもよい。また、逆走判定システム1を実現するための複数の装置の少なくとも一部(例えば、記憶装置3)が、対象車両2(逆走判定の対象となる車両)ではなく、ユーザが持ち運び可能な可搬装置や、対象車両2と通信可能な外部装置(例えば、サーバ装置)に設けられてもよい。
 逆走判定システム1は、対象車両2が逆走する可能性を判定するシステムである。逆走判定システム1は、対象車両2が逆走する可能性があると判定した場合には、対象車両2(対象車両2の乗員、特に運転者)に対して警告を発するように構成される。そして、この逆走判定システム1は、対象車両2が逆走する可能性の有無を予測旋回半径R1に基づき判定するように構成される。これにより、対象車両2の進行方向が大きく変化する前の比較的早い段階で、対象車両2が逆走する可能性の有無を判定することが可能となっている。以下、このような構成を実現するための逆走判定システム1の各機能部(図1参照)の構成について具体的に説明する。
 旋回半径取得部12は、所定周期毎に検出される対象車両2の車両挙動(本実施形態では、車速V及びヨーレートY)に基づき、当該所定周期毎での対象車両2の予測旋回半径R1(瞬時旋回半径)を取得する機能部である。すなわち、予測旋回半径R1は、対象車両2の各時点での旋回半径、言い換えれば、対象車両2の瞬間的な旋回半径、或いは、対象車両2の極短時間の間での平均旋回半径である。そして、予測旋回半径R1は、対象車両2の各時点での車両挙動に基づき、言い換えれば、対象車両2の瞬間的な車両挙動に基づき導出される。所定周期は、対象車両2の車両挙動のサンプリング周期(例えば、100[msec])とすることができる。旋回半径取得部12は、所定周期毎に予測旋回半径R1を取得する。すなわち、旋回半径取得部12は、予測旋回半径R1を繰り返し取得する。言い換えれば、旋回半径取得部12は、所定周期毎での対象車両2の予測旋回半径R1を取得し続ける。そして、旋回半径取得部12が取得した予測旋回半径R1の情報は、判定部11に入力される。本実施形態では、旋回半径取得部12により実行される処理が「旋回半径取得ステップ」に相当し、その処理の実行により実現される機能が「旋回半径取得機能」に相当する。
 本実施形態では、逆走判定システム1(具体的には、情報取得部20)は、対象車両2の走行速度である車速Vを検出する車速検出部21と、対象車両2のヨーレートYを検出するヨーレート検出部22とを備えている。車速検出部21は、所定周期毎(サンプリング周期毎)に車速Vを検出する。すなわち、車速検出部21により検出される車速Vは、対象車両2の各時点での走行速度、言い換えれば、対象車両2の瞬間的な走行速度、或いは、対象車両2の極短時間の間での平均走行速度である。ヨーレート検出部22は、所定周期毎(サンプリング周期毎)にヨーレートYを検出する。すなわち、ヨーレート検出部22により検出されるヨーレートYは、対象車両2の各時点のヨーレート、言い換えれば、対象車両2の瞬間的なヨーレート、或いは、対象車両2の極短時間の間での平均ヨーレートである。
 車速検出部21は、対象車両2の車速Vに応じた信号を発生させ、制御ユニット10は、車速検出部21から入力される信号に基づいて、対象車両2の車速Vを取得する。車速検出部21として、例えば、対象車両2の車輪の回転に応じてパルス信号を発生させる車速パルスセンサを用いることができる。また、ヨーレート検出部22は、対象車両2のヨーレートYに応じた信号を発生させ、制御ユニット10は、ヨーレート検出部22から入力される信号に基づいて、対象車両2のヨーレートYを取得する。ヨーレート検出部22として、例えば、対象車両2の進行方位又はその進行方位の変化に応じた信号を発生させるジャイロセンサを用いることができる。
 本実施形態では、旋回半径取得部12は、車速検出部21が検出した車速Vと、ヨーレート検出部22が検出したヨーレートYとに基づき、予測旋回半径R1を取得するように構成されている。具体的には、旋回半径取得部12は、車速VをヨーレートYにより除算して得られる値を予測旋回半径R1として取得するように構成されている。旋回半径取得部12は、例えば、その都度演算を行うことにより、或いは、車速V及びヨーレートYと、車速VをヨーレートYにより除算した値(すなわち、予測旋回半径R1)との関係を規定したテーブルを参照して、予測旋回半径R1を取得する。
 車速VをヨーレートYにより除算することで予測旋回半径R1を導出することが可能な理由について、図2を参照して説明する。図2は、対象車両2が車速V[m/sec]で旋回している状況を示している。十分に短い期間では、図2に示すように、対象車両2の旋回時の走行軌跡を真円の円弧とみなすことができる。そのため、時間ΔT[sec]の間における、対象車両2の旋回角A[rad]と、予測旋回半径R1[m]と、対象車両2の走行距離L[m]との間には、下記の式(1)のような関係が成立し、式(1)を変形すると下記の式(2)が得られる。
  L=R1×A=ΔT×V ・・・(1)
  R1×(A/ΔT)=V ・・・(2)
 また、下記の式(3)に示すように、対象車両2のヨーレートY[rad/sec]は、対象車両2の進行方向の変化量θ[rad]の時間微分に等しい。
  Y=θ/ΔT ・・・(3)
 そして、対象車両2の横滑りがない状況を想定すると、進行方向の変化量θ[rad]は、旋回角A[rad]に等しく、それぞれの時間微分も互いに等しい。よって、式(1)及び式(2)から下記の式(4)が得られる。
  R1×Y=V・・・(4)
 この式(4)に示されるように、車速VをヨーレートYにより除算することで予測旋回半径R1が導出される。
 本実施形態では、旋回半径取得部12は、予測旋回半径R1(瞬時旋回半径)に加えて、推定旋回半径R2(非瞬時旋回半径)も取得するように構成されている。推定旋回半径R2は、対象車両2の進行方向(向き)の変化量θに基づき導出される対象車両2の旋回半径である。すなわち、推定旋回半径R2は、対象車両2の瞬間的な挙動ではなく、対象車両2の過去の時点(変化量θの基準となる時点、言い換えれば、変化量θがゼロとなる時点)からの挙動に基づき導出される。旋回半径取得部12が取得した推定旋回半径R2の情報は、判定部11に入力される。
 本実施形態では、旋回半径取得部12は、対象車両2の進行方向の変化量θと、対象車両2の進行方向が変化量θだけ変化する間の対象車両2の走行距離Lとに基づき、推定旋回半径R2を導出する。具体的には、旋回半径取得部12は、走行距離Lを進行方向の変化量θにより除算して得られる値を推定旋回半径R2として取得するように構成されている。旋回半径取得部12は、例えば、その都度演算を行うことにより、或いは、走行距離L及び進行方向の変化量θと、走行距離Lを進行方向の変化量θにより除算した値(すなわち、推定旋回半径R2)との関係を規定したテーブルを参照して、推定旋回半径R2を取得する。
 走行距離Lを進行方向の変化量θにより除算することで推定旋回半径R2を導出することが可能な理由について、図2を参照して説明する。図2に示すように、本実施形態では、対象車両2が真円の円弧に沿って旋回したと仮定した場合の旋回半径を、推定旋回半径R2とする。また、予測旋回半径R1を導出する場合と同様に、対象車両2の横滑りがない状況を想定する。このとき、対象車両2の旋回角A[rad]と、対象車両2の進行方向の変化量θ[rad]と、推定旋回半径R2[m]と、対象車両2の走行距離L[m]との間には、下記の式(5)のような関係が成立する。
  L=R2×A=R2×θ ・・・(5)
 この式(5)に示されるように、走行距離Lを進行方向の変化量θにより除算することで推定旋回半径R2が導出される。
 判定部11は、対象車両2が逆走する可能性を判定する機能部である。判定部11は、予測旋回半径R1に基づき、対象車両2が逆走する可能性の有無を判定する。本実施形態では、判定部11により実行される処理が「判定ステップ」に相当し、その処理の実行により実現される機能が「判定機能」に相当する。
 本実施形態では、判定部11は、予測旋回半径R1が第1閾値以下であることを条件として、対象車両2が逆走する可能性があると判定するように構成されている。すなわち、判定部11は、予め規定された逆走判定条件が満たされた場合に、対象車両2が逆走する可能性があると判定するように構成されている。そして、本実施形態では、逆走判定条件に、予測旋回半径R1が第1閾値以下であることが含まれる。
 本実施形態では、判定部11は、予測旋回半径R1が第1閾値以下である場合に、対象車両2が逆走する可能性があると判定するように構成されている。すなわち、本実施形態では、上記逆走判定条件には、予測旋回半径R1が第1閾値以下であることのみが含まれており、判定部11は、予測旋回半径R1が第1閾値以下であることのみを条件として、対象車両2が逆走する可能性があると判定する。
 図4及び図5に対象車両2が逆走を行う状況の例を示すように、単純化して考えると、対象車両2が道路90の幅(道路幅W)の半分の値以下の旋回半径で方向転換(Uターン等)を行った場合には、対象車両2による逆走が行われる可能性が高いと考えることができる。この点に鑑みて、本実施形態では、第1閾値を、道路幅Wの半分の値を基準として設定している。このように第1閾値を道路幅Wの半分の値を基準として設定された値とすることで、対象車両2が逆走する可能性があることを適切に判定することが可能となっている。なお、本明細書において「ある値を基準として設定する」とは、当該値と同じ値に設定することと、当該値を調整して(補正して)設定することとの双方を含む概念である。すなわち、第1閾値は、道路幅Wの半分の値に設定され、又は、道路幅Wの半分の値を調整した値(補正した値)に設定される。後者の例として、第1閾値を、道路幅Wの半分の値から対象車両2の車幅に基づく値(例えば、車幅の半分の値)を減算した値に設定することができる。なお、図5では、進入路95から進入した対象車両2が車道92(本線車道)を逆走する状況を想定しているが、車道92(本線車道)を走行中の対象車両2が進入路95に対して逆向きに進入して進入路95を逆走する状況も想定することができる。
 道路幅Wは、道路90における同じ通行方向の道路領域の幅である。道路90が、通行方向が互いに異なる2つの道路領域を有する場合には、対象車両2の正常な進行方向と通行方向が一致する道路領域の幅を、道路幅Wとする。また、道路領域には、少なくとも車線93が含まれる。道路90が、対象車両2の正常な進行方向と通行方向が一致する複数の車線93を有する場合には、基本的に、当該複数の車線93の全てを道路領域に含める。但し、当該複数の車線93の中に、立体的な構造物によって分離された車線93が存在する場合には、当該分離された車線93を除外してもよい。また、道路領域に、車線93に加えて、車線93に隣接して設けられて車両が走行可能な領域(例えば、路肩94)を含めてもよい。ここで、「走行可能」とは、物理的に走行可能であることを意味する。
 例えば、図4に示す例では、車道92が3つの車線93(同じ通行方向の3つの車線93)を有する道路90において、車道92と道路幅方向の両外側の路肩94とを含む道路領域の幅を、道路幅Wとしている。また、図5に示す例では、車道92が2つの車線93(同じ通行方向の2つの車線93)を有する道路90における、進入路95が合流する合流地点において、車道92(本線車道)と、進入路95の合流車線93a(加速車線)と、道路幅方向の両外側の路肩94と含む道路領域の幅を、道路幅Wとしている。図5に示す例において、合流地点を除く地点では、図4に示す例と同様に、車道92と道路幅方向の両外側の路肩94とを含む道路領域の幅を、道路幅Wとすることができる。このように、同じ道路90であっても、場所(道路90の延在方向に沿った位置)に応じて道路幅Wを可変に設定することができる。なお、同じ道路90については、場所によらずに道路幅Wとして同じ値(例えば、当該道路90における道路幅Wの最大値)を用いることもできる。
 図1に示すように、本実施形態では、逆走判定システム1(制御ユニット10)は、道路幅情報取得部13を備えている。道路幅情報取得部13は、対象車両2が走行中の道路90の道路幅Wを表す道路幅情報を取得する機能部である。道路幅情報取得部13が取得した道路幅情報は、判定部11に入力され、判定部11は、当該道路幅情報が表す道路幅Wの半分の値を基準として、第1閾値を設定する。すなわち、本実施形態では、第1閾値は、道路幅情報が表す道路幅Wの半分の値を基準として設定された値である。道路幅情報取得部13により、対象車両2が走行中の道路90の道路幅Wを表す道路幅情報を取得する処理(道路幅情報取得ステップ)が実行され、その処理の実行により、対象車両2が走行中の道路90の道路幅Wを表す道路幅情報を取得する機能(道路幅情報取得機能)が実現される。
 本実施形態では、逆走判定システム1(制御ユニット10)は、位置情報取得部15を備えている。位置情報取得部15は、対象車両2の現在位置を表す位置情報を取得する機能部である。位置情報取得部15は、情報取得部20から入力される信号に基づき、位置情報を取得する。この際、記憶装置3に記憶されている道路情報又は地物情報に基づき、対象車両2の現在位置を補正してもよい。位置情報取得部15により、対象車両2の現在位置を表す位置情報を取得する処理(位置情報取得ステップ)が実行され、その処理の実行により、対象車両2の現在位置を表す位置情報を取得する機能(位置情報取得機能)が実現される。
 本実施形態では、道路幅情報取得部13は、位置情報取得部15により取得される位置情報と、記憶装置3に記憶されている道路情報とに基づいて、対象車両2が走行中の道路90の道路幅Wを表す道路幅情報を取得する。具体的には、記憶装置3には、経路案内、交通情報案内、及び地図表示等に必要な道路情報が記憶されている。道路情報には、例えば、対象車両2が走行中の道路90の道路幅Wを直接的に表す情報が含まれ、或いは、対象車両2が走行中の道路90の道路幅Wを導出するための情報(例えば、道路種別(道路格)、車道幅、車線数、車線幅、路肩幅等の情報)が含まれる。
 道路幅情報取得部13が、対象車両2が走行中の道路90の道路幅Wを表す道路幅情報を、通信により取得する構成とすることもできる。例えば、道路幅情報取得部13が、道路側に設置された通信装置(光ビーコン等の路側通信器)との間での路車間通信によって、道路幅情報を取得する構成とすることができる。
 警告処理部14は、対象車両2が逆走する可能性があると判定部11により判定された場合に、警告を発する機能部である。警告処理部14は、対象車両2が逆走する可能性があると判定部11により判定された場合に、警告装置4を用いた警告を行う。警告処理部14により、対象車両2が逆走する可能性があると判定された場合に警告を発する処理(警告処理ステップ)が実行され、その処理の実行により、対象車両2が逆走する可能性があると判定された場合に警告を発する機能(警告処理機能)が実現される。
 警告処理部14は、例えば、警告装置4としてのディスプレイを用い、警告用の文字情報や光の点滅パターンをディスプレイに表示して、対象車両2の乗員(特に、運転者)に対して警告を行う。また、警告処理部14は、例えば、警告装置4としてのスピーカを用い、警告用の警告メッセージや警告音をスピーカから鳴動して、対象車両2の乗員に対して警告を行う。
 ところで、車速Vが低い場合には、予測旋回半径R1が小さくなるような運転操作(例えば、予測旋回半径R1が第1閾値以下となる運転操作)が、車線変更等の正常な走行のために行われる場合がある。この点を考慮して、本実施形態では、予測旋回半径R1に基づき対象車両2が逆走する可能性の有無を判定する処理を第1判定処理として、判定部11が、車速Vが第2閾値以下である場合に、第1判定処理に代えて第2判定処理を実行するように構成されている。これにより、上記のように車線変更等の正常な走行のために予測旋回半径R1が小さくなるような運転操作が行われた場合に、対象車両2が逆走する可能性があると誤判定される割合を低減して、判定部11による判定精度の向上を図ることが可能となっている。なお、第2閾値は、例えば、10[km/h]に設定することができる。
 判定部11は、第2判定処理では、対象車両2の進行方向の変化量θに基づき、対象車両2が逆走する可能性の有無を判定する。なお、判定部11は、ヨーレート検出部22の検出情報に基づき(具体的には、ヨーレートYを時間積分することで)、進行方向の変化量θを取得する。本実施形態では、進行方向の変化量θは、道路90(車線93)の延在方向に沿う方向からの変化量とする。
 本実施形態では、判定部11は、第2判定処理では、対象車両2の進行方向の変化量θが第3閾値以上となった場合に、推定旋回半径R2が第4閾値以下であることを条件として、対象車両2が逆走する可能性があると判定する。第3閾値は、例えば、度数法で表して80度~180度の範囲内の値に設定することができる。また、第4閾値は、例えば、第1閾値と同様に、道路幅Wの半分の値を基準として設定することができる。第4閾値は、第1閾値と同一の値に設定しても、第1閾値とは異なる値(例えば、第1閾値よりも小さい値)に設定してもよい。推定旋回半径R2は、上述したように、進行方向の変化量θに基づき導出される対象車両2の旋回半径であり、進行方向の変化量θと、進行方向が変化量θだけ変化する間の対象車両2の走行距離Lとに基づき導出される。判定部11は、車速検出部21の検出情報に基づき(本実施形態では、車速検出部21によるパルス信号の発生数に基づき)、走行距離Lを取得する。
 図4及び図5では、第3閾値が90度に設定される場合を想定しており、この場合、第2判定処理では、対象車両2の進行方向が道路90の延在方向に対して直交する方向となった時点で、推定旋回半径R2に基づき対象車両2が逆走する可能性の有無が判定される。これに対して、第1判定処理では、所定周期毎での対象車両2の旋回半径である予測旋回半径R1に基づき対象車両2が逆走する可能性の有無を判定することができるため、対象車両2の進行方向が大きく変化する前の比較的早い段階で、対象車両2が逆走する可能性の有無を判定することができる。例えば、図4に示すような場面において、時刻T1、時刻T2、時刻T3のそれぞれで第1判定処理が行われ、時刻T3において、予測旋回半径R1が第1閾値以下であると判定されて対象車両2が逆走する可能性があると判定される状況を想定することができる。また、図5に示すような場面において、時刻T10、時刻T11、時刻T12のそれぞれで第1判定処理が行われ、時刻T12において、予測旋回半径R1が第1閾値以下であると判定されて対象車両2が逆走する可能性があると判定される状況を想定することができる。
 以下、図3を参照して、本実施形態の逆走判定システム1において実行される逆走判定処理の処理手順について説明する。なお、以下に述べる各ステップは、逆走判定システム1が備える演算処理装置(コンピュータ)によって実行される。
 図3に示すように、対象車両2が自動車専用道路(高速自動車道路や都市高速道路等)を走行中である場合に(ステップ#01:Yes)、ステップ#02以降の各処理(対象車両2が逆走する可能性の有無の判定処理)が実行される。すなわち、本実施形態では、判定部11は、対象車両2が自動車専用道路を走行中であることを条件として、対象車両2が逆走する可能性の有無を判定する。対象車両2が自動車専用道路を走行中であるか否かは、位置情報取得部15により取得される位置情報と、記憶装置3に記憶されている道路情報(具体的には、道路種別の情報)とに基づいて判定することができる。車載カメラで撮影される案内標識等の画像認識に基づき、又は、通信により得られる情報に基づき、対象車両2が自動車専用道路を走行中であるか否かを判定してもよい。
 対象車両2が自動車専用道路を走行中であり(ステップ#01:Yes)、車速Vが第2閾値よりも大きい場合には(ステップ#02:Yes)、判定部11により第1判定処理が実行される。具体的には、旋回半径取得部12が予測旋回半径R1を取得し(ステップ#03)、判定部11が、予測旋回半径R1が第1閾値以下であるか否かの判定を行う(ステップ#04)。そして、判定部11は、予測旋回半径R1が第1閾値以下である場合には(ステップ#04:Yes)、対象車両2が逆走する可能性があると判定し(ステップ#05)、警告処理部14が警告処理を行う(ステップ#06)。このように、本実施形態では、旋回半径取得部12は、対象車両2が自動車専用道路を走行中であることを条件として(ステップ#01:Yes)、所定周期毎での対象車両2の予測旋回半径R1を取得し続ける(ステップ#03)。また、本実施形態では、旋回半径取得部12は、車速Vが第2閾値よりも大きいことを条件として(ステップ#02:Yes)、所定周期毎での対象車両2の予測旋回半径R1を取得し続ける(ステップ#03)。すなわち、本実施形態では、旋回半径取得部12は、対象車両2が自動車専用道路を走行中であり、且つ、車速Vが第2閾値よりも大きいことを条件として(ステップ#01:Yes、ステップ#02:Yes)、所定周期毎での対象車両2の予測旋回半径R1を取得し続ける(ステップ#03)。
 一方、車速Vが第2閾値以下である場合には(ステップ#02:No)、判定部11により第2判定処理が実行される。具体的には、判定部11は、対象車両2の進行方向の変化量θが第3閾値以上であるか否かの判定を行う(ステップ#07)。進行方向の変化量θが第3閾値よりも小さい場合には(ステップ#07:No)、処理は終了し、ステップ#01からの処理が再度実行される。一方、対象車両2の進行方向の変化量θが第3閾値以上である場合には(ステップ#07:Yes)、旋回半径取得部12が推定旋回半径R2を取得し(ステップ#08)、判定部11が、推定旋回半径R2が第4閾値以下であるか否かの判定を行う(ステップ#09)。そして、判定部11は、推定旋回半径R2が第4閾値以下である場合には(ステップ#09:Yes)、対象車両2が逆走する可能性があると判定し(ステップ#05)、警告処理部14が警告処理を行う(ステップ#06)。一方、推定旋回半径R2が第4閾値よりも大きい場合には(ステップ#09:No)、処理は終了し、ステップ#01からの処理が再度実行される。
 図3に示すように、本実施形態では、第1判定処理において予測旋回半径R1が第1閾値よりも大きいと判定された場合に(ステップ#04:No)、処理がステップ#07に進むように(すなわち、判定部11が第2判定処理を実行するように)構成されている。これにより、対象車両2が逆走する可能性がある状況における検知漏れを抑制することが可能となっている。なお、このような構成とは異なり、第1判定処理において予測旋回半径R1が第1閾値よりも大きいと判定された場合に(ステップ#04:No)、処理が終了し、ステップ#01からの処理が再度実行される構成とすることもできる。
〔その他の実施形態〕
 次に、逆走判定システムのその他の実施形態について説明する。
(1)上記の実施形態では、逆走判定システム1が、対象車両2が走行中の道路90の道路幅Wを表す道路幅情報を取得する道路幅情報取得部13を備え、第1閾値が、当該道路幅情報が表す道路幅Wの半分の値を基準として設定される構成を例として説明した。すなわち、上記の実施形態では、第1閾値が、対象車両2が走行中の道路90の道路幅Wに応じて可変に設定される構成を例として説明した。しかし、そのような構成に限定されることなく、第1閾値を固定値とすることもできる。例えば、判定部11による判定を行う対象となる道路90を対象道路91とし、全ての対象道路91の道路幅Wの中での最大値を最大道路幅として、第1閾値が、最大道路幅の半分の値を基準として設定される構成とすることができる。すなわち、この場合、第1閾値は、最大道路幅の半分の値を基準として設定された値となる。第4閾値についても同様に、最大道路幅の半分の値を基準として設定された値とすることができる。最大道路幅は、例えば、4つの車線93を有する車道92(本線車道)に対して2つの車線93(合流車線93a)が合流する地点での道路幅W(例えば、20[m]程度)とされる。また、対象道路91は、例えば自動車専用道路に限定することができる。
(2)上記の実施形態では、第1閾値が、道路幅Wに基づき設定される構成、具体的には、第1閾値が、道路幅Wの半分の値を基準として設定される構成を例として説明した。しかし、そのような構成に限定されることなく、例えば、第1閾値が、道路幅W(上記のその他の実施形態(1)の例では最大道路幅)の値を基準として設定される構成とすることもできる。また、第1閾値が、道路幅Wに基づかずに設定される構成とすることもでき、例えば、第1閾値が、各道路90のカーブ路における最小曲率半径に基づき設定される構成とすることができる。
(3)上記の実施形態では、判定部11が、第2判定処理では、対象車両2の進行方向の変化量θが第3閾値以上となった場合に、推定旋回半径R2が第4閾値以下であることを条件として、対象車両2が逆走する可能性があると判定する構成を例として説明した。しかし、そのような構成に限定されることなく、判定部11が、第2判定処理では、予め定められた走行距離Lを走行する前後での対象車両2の進行方向の変化量θ(言い換えれば、予め定められた走行距離Lを走行する間での対象車両2の進行方向の変化量θ)が判定閾値以上であることを条件として、対象車両2が逆走する可能性があると判定する構成とすることもできる。具体例を挙げると、例えば、20[m]の距離を走行する前後での対象車両2の進行方向の変化量θが80度以上である場合に、判定部11が、対象車両2が逆走する可能性があると判定する構成とすることができる。
(4)上記の実施形態では、判定部11が、車速Vが第2閾値以下である場合に、第1判定処理に代えて第2判定処理を実行する構成を例として説明した。しかし、そのような構成に限定されることなく、例えば、車速Vが第2閾値よりも大きいことを条件に、判定部11が、第1判定処理によって対象車両2が逆走する可能性の有無を判定する構成とすること、すなわち、車速Vが第2閾値以下である場合には、対象車両2が逆走する可能性の有無を判定部11が判定しない構成とすることもできる。また、判定部11が、車速Vの大きさにかかわらず、第1判定処理によって対象車両2が逆走する可能性の有無を判定する構成とすることもできる。
(5)上記の実施形態では、判定部11が、対象車両2が自動車専用道路を走行中であることを条件として、対象車両2が逆走する可能性の有無を判定する構成を例として説明した。しかし、そのような構成に限定されることなく、対象車両2が自動車専用道路以外の道路90を走行中である場合にも、判定部11が、対象車両2が逆走する可能性の有無を判定する構成とすることもできる。この場合、例えば、対象車両2が一方通行の道路90を走行中であること、対象車両2が中央分離帯のある道路90を走行中であること、対象車両2が交差点のない場所(交差点から離れた場所)を走行中であること等を、対象車両2が逆走する可能性の有無を判定するための条件としてもよい。
(6)上記の実施形態では、判定部11が、予測旋回半径R1が第1閾値以下であることのみを条件として、対象車両2が逆走する可能性があると判定する構成を例として説明した。しかし、そのような構成に限定されることなく、判定部11が、予測旋回半径R1が第1閾値以下であることを条件とすると共に、更に別のことを条件として、対象車両2が逆走する可能性があると判定する構成とすることもできる。例えば、判定部11が、予測旋回半径R1を繰り返し取得し、予測旋回半径R1が第1閾値以下であることを条件とすると共に、第1閾値以下の予測旋回半径R1が設定回数以上連続して取得されたことを更なる条件として、対象車両2が逆走する可能性があると判定する構成とすることができる。なお、設定回数は、例えば、5回~10回の範囲内の回数に設定することができる。
(7)上記の実施形態では、判定部11が、予測旋回半径R1が第1閾値以下であることを条件として、対象車両2が逆走する可能性があると判定する構成を例として説明した。しかし、そのような構成に限定されることなく、予測旋回半径R1が第1閾値以下であることが、対象車両2が逆走する可能性があると判定するための条件に含まれない構成とすることもできる。このような構成として、例えば、判定部11が、予測旋回半径R1の減少率又は減少幅(例えば、直進状態からの減少率又は減少幅)が判定閾値以上であることを条件として、対象車両2が逆走する可能性があると判定する構成とすることができる。
(8)上記の実施形態では、旋回半径取得部12が、車速VをヨーレートYにより除算して得られる値を予測旋回半径R1として取得する構成、すなわち、旋回半径取得部12が、車速VとヨーレートYのみに基づき予測旋回半径R1を取得する構成を例として説明した。しかし、そのような構成に限定されることなく、旋回半径取得部12が、車速VとヨーレートYとに加えて更に別の指標(例えば、操舵輪の舵角)にも基づいて、予測旋回半径R1を取得する構成とすることもできる。
(9)上記の実施形態では、旋回半径取得部12が、車速VとヨーレートYとに基づき予測旋回半径R1を取得する構成を例として説明した。しかし、そのような構成に限定されることなく、旋回半径取得部12が、車速V及びヨーレートYの一方を用いずに予測旋回半径R1を取得する構成や、旋回半径取得部12が、車速V及びヨーレートYの双方を用いずに予測旋回半径R1を取得する構成とすることもできる。前者の構成として、例えば、旋回半径取得部12が、車速Vと操舵輪の舵角とに基づいて、予測旋回半径R1を取得する構成とすることができる。この場合、所定周期毎に検出される対象車両2の車両挙動は、所定周期毎に検出される車速V及び操舵輪の舵角となる。また、後者の構成として、例えば、旋回半径取得部12が、対象車両2の現在位置(座標)の変化(推移)に基づいて、予測旋回半径R1を取得する構成とすることができる。この場合、所定周期毎に検出される対象車両2の車両挙動は、所定周期毎に検出される対象車両2の現在位置となる。
(10)上記の実施形態では、逆走判定システム1(制御ユニット10)が警告処理部14を備え、対象車両2が逆走する可能性があると判定した場合には、警告処理部14が警告を発する構成を例として説明した。しかし、そのような構成に限定されることなく、逆走判定システム1が、対象車両2が逆走する可能性があると判定した場合に、警告処理に代えて或いは警告処理に加えて、対象車両2の挙動を制御する(例えば、運転者による操舵を抑制する制御を行う)構成とすることもできる。
(11)上記の実施形態で示した逆走判定システム1(制御ユニット10)の各機能部の割り当ては単なる一例であり、複数の機能部を組み合わせたり、1つの機能部を更に区分けしたりすることも可能である。
(12)なお、上述した各実施形態で開示された構成は、矛盾が生じない限り、他の実施形態で開示された構成と組み合わせて適用すること(その他の実施形態として説明した実施形態同士の組み合わせを含む)も可能である。その他の構成に関しても、本明細書において開示された実施形態は全ての点で単なる例示に過ぎない。従って、本開示の趣旨を逸脱しない範囲内で、適宜、種々の改変を行うことが可能である。
〔上記実施形態の概要〕
 以下、上記において説明した逆走判定システムの概要について説明する。
 逆走判定システム(1)は、対象車両(2)が逆走する可能性を判定する判定部(11)と、所定周期毎に検出される前記対象車両(2)の車両挙動に基づき、前記所定周期毎での前記対象車両(2)の予測旋回半径(R1)を取得する旋回半径取得部(12)と、を備え、前記判定部(11)は、前記予測旋回半径(R1)に基づき、前記対象車両(2)が逆走する可能性の有無を判定する。
 一般的に、道路に定められた通行方向に従って車両が走行している場合には、車両の旋回半径は基本的に予測可能な範囲内に収まる。そのため、車両の旋回半径がこの範囲から外れる場合には、逆走につながる方向転換(Uターン等)が行われている可能性があると推測できる。この点に鑑みて、上記の構成では、対象車両(2)の旋回半径に基づくことで、対象車両(2)が逆走する可能性の有無を判定することができる。
 そして、上記の構成では、対象車両(2)が逆走する可能性の有無を判定するための指標である対象車両の旋回半径を、所定周期毎に検出される対象車両(2)の車両挙動に基づく、所定周期毎での対象車両(2)の予測旋回半径(R1)としている。よって、車両の進行方向が大きく変化する前の比較的早い段階で、対象車両(2)が逆走する可能性の有無を判定することが可能となっている。
 ここで、前記判定部(11)は、前記予測旋回半径(R1)が第1閾値以下であることを条件として、前記対象車両(2)が逆走する可能性があると判定すると好適である。
 道路に定められた通行方向に従って車両が走行している場合には、車両の旋回半径が道路の形状等に応じて定まる一定値を下回ることは基本的にない。そのため、車両の旋回半径が一定値以上である場合には、逆走が行われる可能性が低く、車両の旋回半径が一定値よりも小さい場合には、逆走につながる方向転換が行われていることが予想される。この構成によれば、このことに鑑みて、対象車両(2)が逆走する可能性の有無を適切に判定することができる。
 上記のように、前記判定部(11)が、前記予測旋回半径(R1)が前記第1閾値以下であることを条件として前記対象車両(2)が逆走する可能性があると判定する構成において、前記判定部(11)は、前記予測旋回半径(R1)を繰り返し取得し、前記第1閾値以下の前記予測旋回半径(R1)が設定回数以上連続して取得されたことを更なる条件として、前記対象車両(2)が逆走する可能性があると判定すると好適である。
 この構成によれば、車両の一時的な挙動変化によって第1閾値以下の予測旋回半径(R1)が取得される状況において、対象車両(2)が逆走する可能性があると誤判定される割合を低減して、判定部(11)による判定精度の向上を図ることができる。
 また、前記判定部(11)による判定を行う対象となる道路(90)を対象道路(91)とし、全ての前記対象道路(91)の道路幅(W)の中での最大値を最大道路幅として、前記第1閾値が、前記最大道路幅の半分の値を基準として設定された値であると好適である。
 単純化して考えると、対象車両(2)が道路幅(W)の半分の値以下の旋回半径で方向転換を行った場合には、対象車両(2)による逆走が行われる可能性が高いと考えることができる。この点に鑑みて、上記の構成では、第1閾値を道路幅(W)の半分の値を基準として設定された値とすることで、対象車両(2)が逆走する可能性があることを適切に判定することができる。そして、この構成では、第1閾値を設定する基準となる道路幅(W)が、全ての対象道路(91)の道路幅(W)の中での最大値とされるため、特に逆走が問題となりやすい道路幅(W)の大きい道路においても、対象車両(2)が逆走する可能性があることを適切に判定することができる。
 また、前記対象車両(2)が走行中の道路(90)の道路幅(W)を表す道路幅情報を取得する道路幅情報取得部(13)を更に備え、前記第1閾値が、前記道路幅情報が表す前記道路幅(W)の半分の値を基準として設定された値であると好適である。
 上述したように、第1閾値を道路幅(W)の半分の値を基準として設定された値とすることで、対象車両(2)が逆走する可能性があることを適切に判定することができる。そして、この構成では、第1閾値を設定する基準となる道路幅(W)が、対象車両(2)が走行中の道路(90)の道路幅(W)とされるため、判定部(11)による判定精度の向上を図ることができる。
 また、前記対象車両(2)の走行速度である車速(V)を検出する車速検出部(21)と、前記対象車両(2)のヨーレート(Y)を検出するヨーレート検出部(22)と、を更に備え、前記旋回半径取得部(12)は、前記車速(V)と前記ヨーレート(Y)とに基づき前記予測旋回半径(R1)を取得すると好適である。
 この構成によれば、予測旋回半径(R1)を、対象車両(2)についての計測可能な2つの物理量に基づき適切に推定することができる。
 上記のように前記旋回半径取得部(12)が前記車速(V)と前記ヨーレート(Y)とに基づき前記予測旋回半径(R1)を取得する構成において、前記旋回半径取得部(12)は、前記車速(V)を前記ヨーレート(Y)により除算して得られる値を前記予測旋回半径(R1)として取得すると好適である。
 この構成によれば、予測旋回半径(R1)を取得するための演算を簡素化することができる。従って、車速(V)及びヨーレート(Y)が検出されてから、これらの車速(V)及びヨーレート(Y)に基づく判定が行われるまでの時間の短縮を図ることができる。
 上記の各構成の逆走判定システム(1)において、前記対象車両(2)の走行速度である車速(V)を検出する車速検出部(21)を備え、前記予測旋回半径(R1)に基づき前記対象車両(2)が逆走する可能性の有無を判定する処理を第1判定処理として、前記判定部(11)は、前記車速(V)が第2閾値以下である場合に、前記第1判定処理に代えて第2判定処理を実行し、前記第2判定処理では、前記対象車両(2)の進行方向の変化量(θ)に基づき、前記対象車両(2)が逆走する可能性の有無を判定すると好適である。
 車速(V)が低い場合には、予測旋回半径(R1)が小さくなるような運転操作が、車線変更等の正常な走行のために行われる場合がある。この点を考慮して、上記の構成では、車速(V)が第2閾値以下である場合には、予測旋回半径(R1)に基づく第1判定処理に代えて、対象車両(2)の進行方向の変化量(θ)に基づく第2判定処理が実行される。これにより、上記のように車線変更等の正常な走行のために予測旋回半径(R1)が小さくなるような運転操作が行われた場合に、対象車両(2)が逆走する可能性があると誤判定される割合を低減して、判定部(11)による判定精度の向上を図ることができる。
 上記のように前記第2判定処理では、前記対象車両(2)の進行方向の変化量(θ)に基づき前記対象車両(2)が逆走する可能性の有無を判定する構成において、前記第2判定処理では、前記対象車両(2)の進行方向の変化量(θ)が第3閾値以上となった場合に、前記変化量(θ)に基づき導出される前記対象車両(2)の旋回半径(R2)が第4閾値以下であることを条件として、前記対象車両(2)が逆走する可能性があると判定すると好適である。
 この構成によれば、第2判定処理において、対象車両(2)の進行方向の変化量(θ)が第3閾値以上となったことに加えて、対象車両(2)の旋回半径(R2)が第4閾値以下であることが、対象車両が逆走する可能性があると判定する条件とされる。よって、車両の旋回半径(R2)が一定値よりも小さく、且つ対象車両(2)の進行方向の変化量(θ)が一定値よりも大きい場合には、逆走につながる方向転換が行われていることが予想されることに鑑みて、対象車両(2)の車速が低い状況において、対象車両(2)が逆走する可能性の有無を適切に判定することができる。
 上記の各構成の逆走判定システム(1)において、前記旋回半径取得部(12)は、前記対象車両(2)が自動車専用道路を走行中であることを条件として、前記所定周期毎での前記対象車両(2)の前記予測旋回半径(R1)を取得し続けると好適である。
 自動車専用道路には一般に交差点や曲率の大きいカーブが存在しないため、車両の旋回半径が一定値よりも小さい場合には、逆走につながる方向転換が行われている可能性が高い。上記の構成では、旋回半径取得部(12)が、対象車両(2)が自動車専用道路を走行中であることを条件として、所定周期毎での対象車両(2)の予測旋回半径(R1)を取得し続ける。よって、特に逆走が問題となりやすい自動車専用道路において、所定周期毎に繰り返し取得される予測旋回半径(R1)に基づき判定部(11)による判定を行うことができ、この結果、車両の進行方向が大きく変化する前の比較的早い段階で、予測旋回半径(R1)に基づき対象車両(2)が逆走する可能性の有無を判定することが可能となっている。
 また、前記旋回半径取得部(12)は、前記対象車両(2)の走行速度である車速(V)が第2閾値よりも大きいことを条件として、前記所定周期毎での前記対象車両(2)の前記予測旋回半径(R1)を取得し続けると好適である。
 車速(V)が低い場合には、予測旋回半径(R1)が小さくなるような運転操作が、車線変更等の正常な走行のために行われる場合がある。上記の構成によれば、車速(V)が第2閾値よりも大きいことが、所定周期毎での対象車両(2)の予測旋回半径(R1)を取得し続ける条件とされるため、車線変更等の正常な運転操作が行われている場合に対象車両(2)が逆走する可能性があると誤判定される割合を低く抑えることができる。その上で、上記の構成によれば、車速が第2閾値よりも大きい場合には、所定周期毎に繰り返し取得される予測旋回半径(R1)に基づき判定部(11)による判定を行うことで、車両の進行方向が大きく変化する前の比較的早い段階で、予測旋回半径(R1)に基づき対象車両(2)が逆走する可能性の有無を判定することが可能となっている。
 本開示に係る逆走判定システム(1)は、上述した各効果のうち、少なくとも1つを奏することができれば良い。
 上述した逆走判定システム(1)の種々の技術的特徴は、逆走判定方法や逆走判定プログラムにも適用可能である。例えば、逆走判定方法は、上述した逆走判定システム(1)の特徴を備えたステップを有することができる。また、逆走判定プログラムは、上述した逆走判定システム(1)の特徴を備えた機能をコンピュータに実現させることが可能である。当然ながらこれらの逆走判定方法及び逆走判定プログラムも、上述した逆走判定システム(1)の作用効果を奏することができる。さらに、逆走判定システム(1)の好適な態様として例示した種々の付加的特徴を、これら逆走判定方法や逆走判定プログラムに組み込むことも可能であり、当該方法及び当該プログラムはそれぞれの付加的特徴に対応する作用効果も奏することができる。
1:逆走判定システム
2:対象車両
11:判定部
12:旋回半径取得部
13:道路幅情報取得部
21:車速検出部
22:ヨーレート検出部
90:道路
91:対象道路
R1:予測旋回半径
R2:推定旋回半径(進行方向の変化量に基づき導出される対象車両の旋回半径)
V:車速
W:道路幅
Y:ヨーレート
θ:進行方向の変化量

Claims (13)

  1.  対象車両が逆走する可能性を判定する判定部と、
     所定周期毎に検出される前記対象車両の車両挙動に基づき、前記所定周期毎での前記対象車両の予測旋回半径を取得する旋回半径取得部と、を備え、
     前記判定部は、前記予測旋回半径に基づき、前記対象車両が逆走する可能性の有無を判定する、逆走判定システム。
  2.  前記判定部は、前記予測旋回半径が第1閾値以下であることを条件として、前記対象車両が逆走する可能性があると判定する、請求項1に記載の逆走判定システム。
  3.  前記判定部は、前記予測旋回半径を繰り返し取得し、前記第1閾値以下の前記予測旋回半径が設定回数以上連続して取得されたことを更なる条件として、前記対象車両が逆走する可能性があると判定する、請求項2に記載の逆走判定システム。
  4.  前記判定部による判定を行う対象となる道路を対象道路とし、全ての前記対象道路の道路幅の中での最大値を最大道路幅として、
     前記第1閾値が、前記最大道路幅の半分の値を基準として設定された値である、請求項2又は3に記載の逆走判定システム。
  5.  前記対象車両が走行中の道路の道路幅を表す道路幅情報を取得する道路幅情報取得部を更に備え、
     前記第1閾値が、前記道路幅情報が表す前記道路幅の半分の値を基準として設定された値である、請求項2又は3に記載の逆走判定システム。
  6.  前記対象車両の走行速度である車速を検出する車速検出部と、
     前記対象車両のヨーレートを検出するヨーレート検出部と、を更に備え、
     前記旋回半径取得部は、前記車速と前記ヨーレートとに基づき前記予測旋回半径を取得する、請求項1から5のいずれか一項に記載の逆走判定システム。
  7.  前記旋回半径取得部は、前記車速を前記ヨーレートにより除算して得られる値を前記予測旋回半径として取得する、請求項6に記載の逆走判定システム。
  8.  前記対象車両の走行速度である車速を検出する車速検出部を備え、
     前記予測旋回半径に基づき前記対象車両が逆走する可能性の有無を判定する処理を第1判定処理として、前記判定部は、前記車速が第2閾値以下である場合に、前記第1判定処理に代えて第2判定処理を実行し、
     前記第2判定処理では、前記対象車両の進行方向の変化量に基づき、前記対象車両が逆走する可能性の有無を判定する、請求項1から7のいずれか一項に記載の逆走判定システム。
  9.  前記第2判定処理では、前記対象車両の進行方向の変化量が第3閾値以上となった場合に、前記変化量に基づき導出される前記対象車両の旋回半径が第4閾値以下であることを条件として、前記対象車両が逆走する可能性があると判定する、請求項8に記載の逆走判定システム。
  10.  前記旋回半径取得部は、前記対象車両が自動車専用道路を走行中であることを条件として、前記所定周期毎での前記対象車両の前記予測旋回半径を取得し続ける、請求項1から9のいずれか一項に記載の逆走判定システム。
  11.  前記旋回半径取得部は、前記対象車両の走行速度である車速が第2閾値よりも大きいことを条件として、前記所定周期毎での前記対象車両の前記予測旋回半径を取得し続ける、請求項1から10のいずれか一項に記載の逆走判定システム。
  12.  対象車両が逆走する可能性を判定する判定ステップと、
     所定周期毎に検出される前記対象車両の車両挙動に基づき、前記所定周期毎での前記対象車両の予測旋回半径を取得する旋回半径取得ステップと、を含み、
     前記判定ステップでは、前記予測旋回半径に基づき、前記対象車両が逆走する可能性の有無を判定する、逆走判定方法。
  13.  対象車両が逆走する可能性を判定する判定機能と、
     所定周期毎に検出される前記対象車両の車両挙動に基づき、前記所定周期毎での前記対象車両の予測旋回半径を取得する旋回半径取得機能と、をコンピュータに実現させ、
     前記判定機能では、前記予測旋回半径に基づき、前記対象車両が逆走する可能性の有無を判定する、逆走判定プログラム。
PCT/JP2019/009881 2018-05-01 2019-03-12 逆走判定システム、逆走判定方法、及び逆走判定プログラム WO2019211948A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-088200 2018-05-01
JP2018088200A JP2019194756A (ja) 2018-05-01 2018-05-01 逆走判定システム、逆走判定方法、及び逆走判定プログラム

Publications (1)

Publication Number Publication Date
WO2019211948A1 true WO2019211948A1 (ja) 2019-11-07

Family

ID=68386562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009881 WO2019211948A1 (ja) 2018-05-01 2019-03-12 逆走判定システム、逆走判定方法、及び逆走判定プログラム

Country Status (2)

Country Link
JP (1) JP2019194756A (ja)
WO (1) WO2019211948A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116601690A (zh) 2020-12-10 2023-08-15 三菱电机株式会社 逆行判定装置及逆行判定方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010204748A (ja) * 2009-02-27 2010-09-16 Toyota Motor Corp 逆走警告装置、逆走警告方法
JP2013167452A (ja) * 2012-02-14 2013-08-29 Honda Motor Co Ltd ナビゲーションシステム
JP2017102520A (ja) * 2015-11-30 2017-06-08 株式会社デンソー 運転支援装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010204748A (ja) * 2009-02-27 2010-09-16 Toyota Motor Corp 逆走警告装置、逆走警告方法
JP2013167452A (ja) * 2012-02-14 2013-08-29 Honda Motor Co Ltd ナビゲーションシステム
JP2017102520A (ja) * 2015-11-30 2017-06-08 株式会社デンソー 運転支援装置

Also Published As

Publication number Publication date
JP2019194756A (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
US10668925B2 (en) Driver intention-based lane assistant system for autonomous driving vehicles
US10353393B2 (en) Method and system for improving stability of autonomous driving vehicles
US11113547B2 (en) Planning control in response to a driving obstruction during operation of an autonomous driving vehicle (ADV)
JP6700382B2 (ja) 車線縁石補助による自律走行車の車線逸脱検出及び車線維持システム
US20200023838A1 (en) Methods and systems to predict object movement for autonomous driving vehicles
CN108688660B (zh) 运行范围确定装置
EP3324556A1 (en) Visual communication system for autonomous driving vehicles (adv)
EP3405374B1 (en) Deceleration curb-based direction checking and lane keeping system for autonomous driving vehicles
EP3655298B1 (en) A tunnel-based planning system for autonomous driving vehicles
JP6315107B2 (ja) 目標経路生成装置および走行制御装置
WO2007132860A1 (ja) 対象物認識装置
WO2020008220A1 (ja) 走行軌道生成方法及び走行軌道生成装置
JP6954469B2 (ja) 運転支援方法及び運転支援装置
US20210188307A1 (en) Spiral curve based vertical parking planner system for autonomous driving vehicles
US20210188282A1 (en) Methods for obstacle filtering for a non-nudge planning system in an autonomous driving vehicle
JP2007024834A (ja) 一時停止通知装置
EP3697656B1 (en) A mutual nudge algorithm for self-reverse lane of autonomous driving
JP2020125988A (ja) 進入車線推定システム、進入車線推定方法、及び進入車線推定プログラム
WO2019211948A1 (ja) 逆走判定システム、逆走判定方法、及び逆走判定プログラム
JP2019095852A (ja) 逆走警告システム、逆走警告方法、及び逆走警告プログラム
JP6650635B2 (ja) 判定装置、判定方法、および判定プログラム
JP2019164602A (ja) 逆走警告システム、逆走警告方法、及び逆走警告プログラム
JP2020095381A (ja) 逆走判定システム、逆走判定方法、及び逆走判定プログラム
JP2019179407A (ja) 逆走警告システム、逆走警告方法、及び逆走警告プログラム
JP2019125318A (ja) 決定システム、及び決定プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19796871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19796871

Country of ref document: EP

Kind code of ref document: A1