WO2019210885A1 - 一种基于磁流变效应的智能化立井制动缓冲系统及其应用 - Google Patents

一种基于磁流变效应的智能化立井制动缓冲系统及其应用 Download PDF

Info

Publication number
WO2019210885A1
WO2019210885A1 PCT/CN2019/089093 CN2019089093W WO2019210885A1 WO 2019210885 A1 WO2019210885 A1 WO 2019210885A1 CN 2019089093 W CN2019089093 W CN 2019089093W WO 2019210885 A1 WO2019210885 A1 WO 2019210885A1
Authority
WO
WIPO (PCT)
Prior art keywords
buffer
cage
retarder
speed
controller
Prior art date
Application number
PCT/CN2019/089093
Other languages
English (en)
French (fr)
Inventor
王成龙
苗根远
刘延玺
王成武
陈萌
曾庆良
马淑萌
高远
陈一方
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Priority to CH00537/21A priority Critical patent/CH716954B1/de
Publication of WO2019210885A1 publication Critical patent/WO2019210885A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/04Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for detecting excessive speed
    • B66B5/06Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for detecting excessive speed electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/04Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for detecting excessive speed
    • B66B5/044Mechanical overspeed governors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/32Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on braking devices, e.g. acting on electrically controlled brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3407Setting or modification of parameters of the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/08Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for preventing overwinding
    • B66B5/10Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for preventing overwinding electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/16Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/28Buffer-stops for cars, cages, or skips
    • B66B5/282Structure thereof

Definitions

  • the invention relates to an intelligent vertical shaft brake buffer system based on magnetorheological effect and an application thereof, and belongs to the technical field of mining equipment.
  • the mine hoist is one of the main equipments in the coal mine production and transportation system. In actual production, the normal operation of the mine hoist is related to the safe production of the entire mine. In recent years, vertical shaft upgrading has gradually become an improved transportation mode widely used in mine production in China. According to incomplete statistics, there are more than 37,000 vertical shafts in China.
  • Anti-collision beams and cupping devices must be installed in lifting systems with lifting speeds greater than 3 m/s.” “Anti-collision beams must be able to block containers or counterweights that have risen after over-rolling. The cupping device must be able to hold the container or counterweight that has hit the impact beam and then fall, and ensure that the drop distance does not exceed 0.5m.”
  • Article 397 stipulates that "in the over-roll height or over-discharge distance, it shall be installed. A reliable cushioning device that is capable of steadily stopping the container at full speed.”
  • Cipheral patent document CN107512644A discloses a bucket over-buffering buffering device, which is mainly composed of an upper and lower fixing frame, an energy absorbing device and a bow-shaped top plate.
  • the energy absorber uses a rubber plate of 30 to 50 cm thick.
  • the cantilever is struck by the cage to deform to form a first-stage buffer.
  • the energy absorber made of the rubber plate is deformed to form a second-stage buffer.
  • the rubber plate and the bow-shaped top plate have limited energy absorption capacity, and can only have a certain buffering effect on the running speed and the load of the can in a small range.
  • the cage speed and load exceed the set range, the device can not absorb and dissipate the impact energy completely.
  • the lifting system cannot be effectively buffered.
  • Chinese patent document CN106395542A discloses an ABS-based friction hoist anti-winding and alarm system.
  • the system mainly installs a speed measuring device and an electronic control device outside the brake device of the original vertical shaft hoist winch, and judges the hoist through the speed measuring device. Whether it is running within the specified speed, if the hoist is running at over speed, the electronic control device controls the brake to perform "point brake" braking on the hoist winch.
  • the advantage of this design is that the brake disc can be always in the closed state without the brake brake emergency stop, and the cage can be prevented from suddenly stopping the rope breakage accident under the condition of high speed and heavy load.
  • the vertical shaft brake buffer system based on the magnetorheological effect proposed by the present invention focuses on solving the braking and over-winding accidents of the vertical shaft lifting system under different speeds and load conditions. Buffering problem.
  • the present invention provides an intelligent vertical shaft brake buffer system based on a magnetorheological effect.
  • the invention also provides a working method of the above-mentioned intelligent vertical shaft brake buffer system based on the magnetorheological effect.
  • An intelligent vertical shaft brake buffer system based on magnetorheological effect comprising a retarder, a buffer, a rotational speed sensor, a pressure sensor, a photoelectric switch and a controller;
  • the retarder drive is connected between the lift motor and the hoist drum.
  • the damper is installed on the box girder of the shaft and connected to the tank device.
  • the speed sensor is installed on the hoist drum, the pressure sensor is installed at the bottom of the tank, and the photoelectric switch is installed.
  • the retarder, the buffer, the rotational speed sensor, the pressure sensor, and the photoelectric switch are respectively connected to the controller.
  • the retarder comprises a moving coil, a stator, an explosion-proof outer casing and a transmission shaft; the moving coil, the stator and the explosion-proof outer casing are sequentially arranged from the inside to the outside and are packaged at both ends through the small end cover and the large end cover, and the outer circumference of the stator is wound
  • the electromagnetic coil, the moving coil and the stator are filled with magnetorheological fluid, the transmission shaft penetrates the small end cover at both ends, the large end cover is connected with the moving coil through the rib plate, and the two ends of the transmission shaft are respectively connected with the output shaft of the lifting motor,
  • the shaft of the hoist drum is rigidly connected.
  • the cupping device is a square steel plate.
  • the advantage of this design is that the square steel plate acts to spread the impact of the cage to the four buffers.
  • the ribs are arranged obliquely, and the inclination angle is 15 to 25°.
  • the ribbed plate with the angle of inclination can rotate with the rotation of the transmission shaft, which acts as a fan to cool the retarder and prevent the overheating effect caused by the retarder running for a long time. Braking efficiency.
  • the buffer comprises an explosion-proof outer casing and a cylinder tube
  • the explosion-proof casing is provided with a damping passage and is assembled by the damping passage end cover of the upper and lower ends
  • the outer circumference of the damping passage is wound with an electromagnetic coil
  • the damping passage and the upper and lower ends of the damping passage end cover are opened.
  • There is a coaxial damping hole the upper and lower ends of the explosion-proof housing are respectively connected to the cylinder tube
  • the upper end cylinder tube is provided with a living column and is sealed by a buffer end cover
  • the lower end cylinder tube is provided with a return spring, a living column and passes through the buffer end
  • the cover package is filled with a magnetorheological fluid between the live column and the damping channel.
  • four buffers are provided between the box girder and the can holder, and the four buffers are arranged in a square shape.
  • the photoelectric switch is mounted at a position 10 m from the bottom and top of the shaft.
  • the controller selects a computer.
  • Operation state 1 When the cage is in normal operation, the running speed of the elevator drum is within the specified range.
  • the pressure sensor measures the load M of the cage and transmits it to the controller. After the lifting motor starts, the speed sensor measures the running speed S of the elevator drum and transmits it to the controller. The controller compares the measured speed with the specified value S g when S ⁇ When S g is judged to be operating normally, the retarder does not work;
  • the controller controls the retarder to be energized, and adjusts the supply current I h according to the measured cage weight M and the real-time speed S, thereby Control the retarder damping force F h to make the cage speed drop smoothly and cooperate with the elevator brake to stop the cage at the specified position; at the same time, when the photoelectric switch is triggered, the controller controls the buffer to energize and corresponding according to M and S Adjusting the current I d to the buffer output to adjust the buffer damping force F d of the buffer;
  • the pressure sensor measures the weight M of the cage and transmits it to the controller.
  • the speed sensor measures the running speed S of the elevator drum and transmits it to the controller.
  • the controller compares the measured speed with the specified value S g when S> When S g is judged to be in an overspeed state, the controller controls the retarder coil to be energized and adjusts the damping force F h according to the running speed of the hoist drum to decelerate the hoist drum to a prescribed speed;
  • Or operation state 3 When the cage arrives at the parking position, it fails to brake in time for some reason, and a rollover or overdischarge accident occurs.
  • the photoelectric switch mounted on the well wall is triggered when the cage is near the bottom or top of the well.
  • the rotational speed sensor transmits the real-time monitoring speed of the elevator drum S to the controller, and the controller combines the cage weight M and the elevator drum.
  • the running speed S adjusts the buffer coil current I d and the retarder coil current I h accordingly , so that the buffer and the retarder generate corresponding damping forces F d and F h to ensure that the cage can be used in the case of a rollover accident.
  • the controlled speed hits the cupping device, so that the buffer can be flexibly buffered according to the load and impact speed of the cage;
  • the operator manually controls the brake buffer system to be powered off.
  • the magnetorheological fluid in the buffer loses the magnetic field and becomes the Newtonian fluid state, and the orifice is damped under the action of the return spring. Return to the buffer upper cavity to complete the system reset.
  • the invention adds a retarder between the vertical shaft hoist and the motor.
  • the retarder starts to decelerate the hoist brake to the specified speed range. This on the one hand ensures the safe and reliable transport of the vertical shaft and on the other hand extends the life of the lift brake and its hydraulic system.
  • the rib plate with the inclined angle is connected between the moving coil of the retarder and the transmission shaft.
  • the rib with the inclination can rotate with the rotation of the transmission shaft, and the function of the fan is The retarder cools down, preventing the retarder from running for a long time, causing overheating to affect the braking efficiency.
  • Both the buffer and the retarder are designed based on the magnetorheological effect.
  • the damping force can be adjusted according to the running speed of the hoist and the weight of the cage to achieve flexible cushioning, which makes the buffering process more stable and controllable, and the braking performance is more reliable.
  • the whole set of vertical shaft brake buffer system adopts closed-loop control.
  • the speed sensor, pressure sensor and photoelectric switch respectively detect the speed, load and position information of the cage operation.
  • the controller automatically adjusts the current of the magnetorheological coil through the control buffer and retarder. Buffer damping. Over-roll, over-discharge and overspeed accidents caused by personnel errors are avoided.
  • Figure 1 is a schematic view showing the arrangement of the buffer portion of the brake buffer system
  • Figure 2 is a plan view showing the buffer portion of the brake buffer system
  • Figure 3 is a schematic view showing the arrangement of the retarder of the brake buffer system
  • Figure 4 is a schematic structural view of the retarder
  • Figure 5 is a side view showing the structure of the retarder
  • Figure 6 is a schematic structural view of a buffer
  • Figure 7 is a cross-sectional view showing the structure of the damper
  • Figure 8 is a control circuit diagram of the brake buffer system
  • the embodiment provides an intelligent vertical shaft brake buffer system based on a magnetorheological effect
  • the brake buffer system mainly includes a retarder, a buffer 2, a rotational speed sensor 13, and a pressure sensor. 6, photoelectric switch 7 and controller;
  • the retarder drive is connected between the lift motor 8 and the hoist drum 1, and the hoist drum 1 hoistes the cage 5 in the vertical shaft.
  • the damper 2 is mounted on the vertical box girder 4 and connected to the canister device 3, in this embodiment
  • the canning device 3 is a square steel plate, and four buffers 2 are respectively mounted on the bottom and top box beams 4, and the four buffers 2 are arranged in a square shape on the square steel plate to ensure that the cage 5 hits the square steel plate.
  • the force is evenly distributed to the four buffers 2.
  • the rotational speed sensor 13 is mounted on the hoist drum 1 for knowing the rotational speed of the hoist.
  • the pressure sensor 6 is installed at the bottom of the cage 5 for knowing the overall mass of the cage.
  • the photoelectric switch 7 is mounted on the side wall of the vertical shaft at a distance from the vertical shaft. A pair of photoelectric switches are respectively installed at the bottom of the well and the top 10m.
  • the retarder, the buffer 2, the rotational speed sensor 13, the pressure sensor 6, and the photoelectric switch 7 are respectively connected to the controller, and adopt closed-loop control.
  • the controller selects a computer, and the subsequent computer is based on the rotational speed sensor 13, the pressure sensor 6, and the photoelectric
  • the speed, weight, and position information acquired by the switch 7 adjust the coil current of the retarder and the buffer 2, thereby functioning as an intelligent control retarder and a buffer.
  • the retarder includes a moving coil 15, a stator 10, an explosion-proof casing 11, and a transmission shaft 9.
  • the movable coil 15, the stator 10, and the explosion-proof casing 11 are sequentially assembled from the inside to the outside and pass through the small end cover 17, and the large end cover 16.
  • the two ends are packaged, and the electromagnetic coil 12 is wound around the outer circumference of the stator 10.
  • the magnetorheological fluid 14 is filled between the moving coil 15 and the stator 10.
  • the transmission shaft 9 penetrates the small end cover 17 at both ends, the large end cover 16 and passes through the ribs. 18 is connected to the moving coil 15, and both ends of the transmission shaft 9 are rigidly connected to the output shaft of the lift motor 8 and the rotating shaft of the hoist drum 1, respectively.
  • the rib 18 is disposed obliquely.
  • the angle between the rib 18 and the axis of the transmission shaft 9 is 15°, and the transmission shaft 9 extends through the small end cover 17 and the hole of the large end cover 16 has the same inner diameter as the moving coil. Larger heat sink.
  • the ribbed plate with the angle of inclination can rotate with the rotation of the drive shaft, and the function of the fan is to reduce the temperature of the retarder, preventing the overheating of the retarder from running for a long time and affecting the braking efficiency.
  • the damper 2 includes an explosion-proof casing 24 and a cylinder barrel 22.
  • the explosion-proof casing 24 is provided with a damper passage 25 and is assembled through the damper passage end cover 23 at the upper and lower ends.
  • the outer circumference of the damper passage 25 is wound with an electromagnetic coil 27, a damper passage 25 and upper and lower sides.
  • the end damping passage end cover 23 is provided with a coaxial damping hole 28, and the upper and lower ends of the explosion-proof outer casing 24 are respectively connected to the cylinder tube 22.
  • the upper end cylinder tube is provided with a living column 20 and is sealed by a buffer end cover 21, and the lower end cylinder tube A return spring 29, a live column 20 is disposed and encapsulated by the buffer end cap 21, and a magnetorheological fluid 26 is filled between the live column 20 and the damping passage.
  • the installation position relationship of the entire brake buffer system is as shown in FIG. 1
  • the circuit connection relationship (control relationship) is as shown in FIG. 8
  • the specific route wiring construction can be implemented according to conventional techniques.
  • the rotational speed sensor, the pressure sensor, and the photoelectric switch may be selected from commercially available products.
  • the retarder and the buffer rely on the computer to control the current of the electromagnetic coil, and the magnetic field generated by the electromagnetic coil acts to change the state of the magnetorheological fluid. Since the magnetorheological fluid can realize real-time control, the adjustment of the corresponding damping force continuously changes and changes. Reversible. Buffers and retarders use this characteristic of magnetorheological fluid to adjust the damping force in real time, ensuring that the brake buffer system can act as a flexible buffer when the system is operated at different loads and speeds. Brake reliability to prevent accidents.
  • An intelligent vertical shaft brake buffer system based on magnetorheological effect the structure is as described in Embodiment 1, and the difference is that the angle between the rib 18 and the axis of the transmission shaft 9 is 25°.
  • Operation state 1 When the cage is in normal operation, the running speed of the elevator drum is within the specified range.
  • the pressure sensor 6 measures the load M of the cage 5 and transmits it to the controller.
  • the speed sensor 13 measures the running speed S of the elevator drum 1 and transmits it to the controller, and the controller measures the speed and the specified value S g . Contrast, when S ⁇ S g , it is judged that its operation is normal, and the retarder does not work;
  • the controller controls the retarder to be energized and adjusts the supply current I h according to the measured cage weight M and the real-time speed S. Therefore, the retarder damping force F h is controlled to make the cage speed drop smoothly and the brake of the hoist brake is held (the brake here is the brake of the original hoist brake, and the retarder only serves as an aid in this operating state)
  • the purpose of deceleration is to stop the cage 5 at the specified position; at the same time, when the photoelectric switch 7 is triggered, the controller controls the buffer to be energized and adjusts the current I d output to the buffer according to M and S, thereby adjusting the buffer. Buffer damping force F d ;
  • the pressure sensor 6 measures the weight M of the cage and transmits it to the controller.
  • the rotation speed sensor 13 measures the running speed S of the elevator drum 1 and transmits it to the controller, and the controller compares the measured speed with the specified value S g .
  • S>S g it is judged that it is running in the overspeed state, the controller controls the retarder coil to be energized and adjusts the damping force F h according to the running speed of the hoist drum 1 to decelerate the hoist drum 1 to the prescribed speed;
  • Or operation state 3 When the cage arrives at the parking position, it fails to brake in time for some reason, and a rollover or overdischarge accident occurs.
  • the photoelectric switch 7 mounted on the wall of the well is triggered when the cage 5 approaches the bottom or top of the well.
  • the rotational speed sensor 13 transmits the real-time monitoring speed S of the elevator drum 1 to the controller, and the controller combines the cage weight M and
  • the running speed S of the hoist drum is adjusted correspondingly to the snubber coil current I d and the retarder coil current I h , so that the damper and the retarder generate corresponding damping forces F d and F h to ensure that the lifting system is in the event of a rollover accident.
  • the cage 5 can impact the tray device 3 at a controlled speed, so that the buffer 2 can be flexibly buffered according to the load and impact speed of the cage;
  • the operator manually controls the brake buffer system to be powered off.
  • the magnetorheological fluid in the damper 2 loses the magnetic field and becomes the Newtonian fluid state, and is under the action of the return spring 29.
  • the orifice is returned to the upper chamber of the buffer to complete the system reset.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Braking Arrangements (AREA)

Abstract

一种基于磁流变效应的智能化立井制动缓冲系统及其应用,包括缓速器、缓冲器(2)、转速传感器(13)、压力传感器(6)、光电开关(7)和控制器;缓速器传动连接在提升电机(8)和提升机滚筒(1)之间,缓冲器(2)安装在立井内箱梁(4)上并连接托罐装置(3),转速传感器(13)安装在提升机滚筒(1)上,压力传感器(6)安装在罐笼(5)的底部,光电开关(7)安装在立井侧壁上;缓速器、缓冲器(2)、转速传感器(13)、压力传感器(6)、光电开关(7)分别与控制器连接;该制动缓冲系统智能化程度高,能够根据罐笼(5)的速度、重量和位置信息,及时调整缓速器和缓冲器(2)的阻尼力,使缓冲器(2)起到承接罐笼(5)柔性缓冲作用,防止人员或物资由于冲击受到损害,同时可避免人员操作失误导致的过卷、过放和超速事故。

Description

一种基于磁流变效应的智能化立井制动缓冲系统及其应用 技术领域
本发明涉及一种基于磁流变效应的智能化立井制动缓冲系统及其应用,属于矿山设备技术领域。
背景技术
矿井提升机在煤矿生产运输系统中是主要的设备之一,在实际生产中矿井提升机的正常工作关系到整个矿井安全生产。近年来,立井提升逐渐成为我国矿山生产中广泛采用的一种提升运输方式。据不完全统计,我国已有立井三万七千多个。
针对当前立井提升系统在矿山的使用现状,提升容器、单次提升量以及提升速度均在不断地刷新极限,立井提升安全保护技术的问题愈加突显。目前在提升机的控制、制动等环节设置有多道电器控制及机械制动保护装置,其技术也日臻完善,但由于操作失误,制动环节机械故障及电器、电路等方面的原因,过卷事故的发生还是屡见不鲜,甚至造成蹾罐、坠罐之类的重大事故,造成了极大的经济损失和人员伤亡,严重影响了矿山生产的正常运行。
根据《煤矿安全规程》第396条规定,“在提升速度大于3m/s的提升系统内必须设置防撞梁和托罐装置。”“防撞梁必须能够挡住过卷后上升的容器或平衡锤;托罐装置必须能够将撞击防撞梁后再下落的容器或配重托住,并保证下落距离不超过0.5m。”第397条规定,“在过卷高度或过放距离内,应安设性能可靠的缓冲装置,缓冲装置应能将全速过卷的容器平稳地停住。”
然而仅靠防撞梁和传统的托罐装置并不能完全解决提升机超速运行发生过卷事故时冲击能量对提升系统的损害。
因此,为了避免矿山提升系统在重载高速运行过程中发生过卷事故,许多科研人员和工程师提出了多种解决方案。
中国专利文献CN107512644A公开了一种箕斗过卷缓冲托罐装置,装置主要由上下固定架、吸能器和弓形顶板等部分组成。其中吸能器采用30~50cm厚的橡胶板。装置工作时先由罐笼撞击弓形顶板使其发生形变形成第一级缓冲,当弓形顶板形变完成后,再由 橡胶板制成的吸能器发生形变形成第二级缓冲。但采用此种缓冲思路,橡胶板和弓形顶板的吸能能力有限,只能对罐的运行速度和载重在小范围内时有一定的缓冲效果。当罐笼速度和载重超过设定范围时,此装置无法将冲击能量全部吸收耗散,而当罐笼速度和载重低于设定值但仍大于安全范围时,又无法对提升系统进行有效的缓冲。
中国专利文献CN106395542A公开了一种基于ABS的摩擦提升机防过卷及报警系统,系统主要在原有立井提升绞车的刹车装置外加装了一套测速装置和电子控制装置,通过测速装置判断提升机是否运行在规定速度内,若提升机超速运行,则电子控制装置控制制动器对提升机绞车盘进行“点刹”制动。这样设计的好处在于可以使制动盘始终处于紧闸状态而又不会发生抱死制动急停的情况,防止罐笼在高速重载的情况下突然停止发生断绳坠井的事故。这种设计思路虽然可以防止绞车突然制动对提升系统的冲击,但是液压系统不断对制动器充放液会造成液压系统过热影响其可靠性,另一方面当提升系统载荷变化时,该系统无法调整制动力来适应提升系统载荷的变化,造成制动加速动过大或制动距离过长。
以上设计均未能解决立井运输提升在不同速度、不同载重时的制动缓冲阻尼力可调和可靠性的问题。因此,针对以上设计思路存在的问题,本发明提出的一种基于磁流变效应的立井制动缓冲系统就着重解决立井提升系统在不同速度、载重情况下运行时的制动和发生过卷事故时的缓冲问题。
发明内容
针对现有技术的不足,本发明提供一种基于磁流变效应的智能化立井制动缓冲系统。
本发明还提供上述一种基于磁流变效应的智能化立井制动缓冲系统的工作方法。
本发明的技术方案如下:
一种基于磁流变效应的智能化立井制动缓冲系统,包括缓速器、缓冲器、转速传感器、压力传感器、光电开关和控制器;
缓速器传动连接在提升电机和提升机滚筒之间,缓冲器安装在立井内箱梁上并连接托罐装置,转速传感器安装在提升机滚筒上,压力传感器安装在罐笼的底部,光电开关安装在立井侧壁上;
缓速器、缓冲器、转速传感器、压力传感器、光电开关分别与控制器连接。
优选的,缓速器包括动圈、定子、防爆外壳、传动轴;动圈、定子、防爆外壳由内到外依次套装并通过小端盖、大端盖对两端进行封装,定子外周缠绕有电磁线圈,动圈 与定子之间填充有磁流变液,传动轴贯穿两端的小端盖、大端盖并通过筋板与动圈连接,传动轴的两端分别与提升电机的输出轴、提升机滚筒的转轴刚性连接。
优选的,所述托罐装置选用一方形钢板。此设计的好处是,方形钢板能起到把罐笼的冲击力分散到四个缓冲器上的作用。
优选的,筋板呈倾斜设置,倾斜角度为15~25°。此设计的好处是,在保证连接和传动可靠的前提下,带倾角的筋板可随传动轴转动而旋转,起到风机的作用为缓速器降温,防止缓速器长时间运行导致过热影响制动效率。
优选的,缓冲器包括防爆外壳和缸筒,防爆外壳内设置有阻尼通道并通过上下两端的阻尼通道端盖装配,阻尼通道的外周缠绕有电磁线圈,阻尼通道和上下两端阻尼通道端盖开设有同轴阻尼孔,防爆外壳的上下两端分别连接所述的缸筒,上端缸筒设置有活柱并通过缓冲器端盖封装,下端缸筒设置有复位弹簧、活柱并通过缓冲器端盖封装,活柱与阻尼通道之间填充有磁流变液。
优选的,在箱梁与托罐装置之间设置有四个缓冲器,四个缓冲器呈正方形布置。
优选的,光电开关安装在距立井井底和顶部10m的位置处。
优选的,控制器选用计算机。
一种基于磁流变效应的智能化立井制动缓冲系统的工作方法,包括以下步骤:
运行状态一:罐笼正常运行时,即提升机滚筒的运行速度在规定范围内
压力传感器测得罐笼的载重M并传输给控制器,提升电机启动后转速传感器测得提升机滚筒运行速度S并传输给控制器,控制器将测得速度与规定值S g对比,当S<S g时判断其运行正常,缓速器不工作;
当罐笼运行到接近井底或顶部停车区时,触发安装在立井井壁上的光电开关,控制器控制缓速器通电并根据测得的罐笼重量M和实时速度S调整供电电流Ⅰ h,从而控制缓速器阻尼力F h让罐笼速度平稳下降配合提升机制动器抱闸将罐笼停止在规定位置;与此同时,当光电开关被触发时,控制器控制缓冲器通电工作并根据M和S相应调整对缓冲器输出的电流Ⅰ d,从而调节缓冲器的缓冲阻尼力F d
或运行状态二:罐笼超速运行时,即提升机滚筒的运行速度大于规定速度
压力传感器测得罐笼的重量M并传输给控制器,提升电机启动后转速传感器测得提升机滚筒运行速度S并传输给控制器,控制器将测得速度与规定值S g对比,当S>S g时判断其运行在超速状态,控制器控制缓速器线圈通电并根据提升机滚筒运行速度调整阻尼 力F h,使提升机滚筒减速至规定速度;
或运行状态三:罐笼在到达停车位置时由于某些原因未能及时制动停车,发生过卷、过放事故
当罐笼接近井底或顶部时安装在井壁上的光电开关被触发,此时,转速传感器将实时监测提升机滚筒的运行速度S传输至控制器,控制器结合罐笼重量M和提升机滚筒的运行速度S相应调整对缓冲器线圈电流Ⅰ d和缓速器线圈电流Ⅰ h,使缓冲器和缓速器产生相应阻尼力F d和F h,保证提升系统在发生过卷事故时,罐笼能以一个可控的速度撞击托罐装置,使缓冲器能根据罐笼的载重和撞击速度做到柔性缓冲;
当提升系统过卷事故处理完成后,操作人员手动控制制动缓冲系统断电,此时,缓冲器内的磁流变液失去磁场作用变为牛顿流体状态,在复位弹簧的作用下经阻尼孔返回缓冲器上腔,完成系统复位。
本发明的有益效果在于:
1)本发明在立井提升机与电机之间加装缓速器,当转速传感器检测到提升机超速运行时,缓速器启动,使提升机制动减速至规定速度范围内。这样一方面确保了立井运输的安全可靠,另一方面延长了提升机制动器和其液压系统的寿命。
2)在距立井井底和顶部10m处安装光电开关。当罐笼运行至该位置时光电开关被触发,缓速器通电运行,使罐笼运行速度降低,一方面配合提升机制动器制动刹车,可以延长提升机制动器寿命;另一方面可以保证即使提升机发生过卷事故,罐笼也能以一个可控的速度撞击缓冲装置。
3)缓速器动圈与传动轴之间采用带倾斜角的筋板连接,在保证连接和传动可靠的前提下,带倾角的筋板可随传动轴转动而旋转,起到风机的作用为缓速器降温,防止缓速器长时间运行导致过热影响制动效率。
4)在井底和顶部安装缓冲器,当由于人员操作失误或机电系统故障引发过卷、坠罐事故时,控制器根据罐笼载重和速度调整缓冲器缓冲阻力,使缓冲器起到承接罐笼柔性缓冲作用,防止人员或物资由于冲击受到损害。
5)缓冲器和缓速器均基于磁流变效应设计,可根据提升机运行速度和罐笼重量调节缓冲阻尼力,做到柔性缓冲,使缓冲过程更加平稳可控,制动性能更可靠。
6)整套立井制动缓冲系统采用闭环控制,由转速传感器、压力传感器和光电开关分别检测罐笼运行的速度、载重和位置信息,控制器通过控制缓冲器和缓速器的磁流变线 圈电流自动调节缓冲阻尼。避免了人员操作失误导致的过卷、过放和超速事故。
附图说明
图1为制动缓冲系统缓冲器部分布置示意图;
图2为为制动缓冲系统缓冲器部分布置俯视图;
图3为制动缓冲系统缓速器部分布置示意图;
图4为缓速器的结构示意图;
图5为缓速器的结构侧视图;
图6为缓冲器的结构示意图;
图7为缓冲器的结构剖面图;
图8为制动缓冲系统控制电路图;
其中:1-提升机滚筒;2-缓冲器;3-托罐装置;4-箱梁;5-罐笼;6-压力传感器;7-光电开关;8-提升电机;9-传动轴;10-定子;11-防爆外壳;12-电磁线圈;13-转速传感器;14-磁流变液;15-动圈;16-大端盖;17-小端盖;18-筋板;20-活柱;21-缓冲器端盖;22-缸筒;23-阻尼通道端盖;24-防爆外壳;25-阻尼通道;26-磁流变液;27-电磁线圈;28-阻尼孔;29-复位弹簧。
具体实施方式
下面通过实施例并结合附图对本发明做进一步说明,但不限于此。
实施例1:
如图1至图8所示,本实施例提供一种基于磁流变效应的智能化立井制动缓冲系统,该制动缓冲系统主要包括缓速器、缓冲器2、转速传感器13、压力传感器6、光电开关7和控制器;
缓速器传动连接在提升电机8和提升机滚筒1之间,提升机滚筒1吊装立井内的罐笼5,缓冲器2安装在立井内箱梁4上并连接托罐装置3,本实施例中的托罐装置3为一方形钢板,在井底和顶部的箱梁4上分别安装有四个缓冲器2,且四个缓冲器2在方形钢板上呈正方形布置,可保证罐笼5撞击方形钢板时使力均匀地分散到四个缓冲器2上。转速传感器13安装在提升机滚筒1上,用来获知提升机的转速,压力传感器6安装在罐笼5的底部,用来获知罐笼的整体质量,光电开关7安装在立井侧壁上,在距离立井井底和顶部10m的位置处分别安装有一对光电开关。
缓速器、缓冲器2、转速传感器13、压力传感器6、光电开关7分别与控制器连接, 采用闭环控制,本实施例中控制器选用计算机,后续计算机根据转速传感器13、压力传感器6、光电开关7获取的速度、重量、位置信息来调节缓速器、缓冲器2的线圈电流,从而起到智能控制缓速器、缓冲器的作用。
具体而言,缓速器包括动圈15、定子10、防爆外壳11、传动轴9;动圈15、定子10、防爆外壳11由内到外依次套装并通过小端盖17、大端盖16对两端进行封装,定子10外周缠绕有电磁线圈12,动圈15与定子10之间填充有磁流变液14,传动轴9贯穿两端的小端盖17、大端盖16并通过筋板18与动圈15连接,传动轴9的两端分别与提升电机8的输出轴、提升机滚筒1的转轴刚性连接。
其中,筋板18呈倾斜设置,本实施例中筋板18与传动轴9的轴线夹角为15°,传动轴9贯穿小端盖17、大端盖16的孔与动圈内径相同,能有较大的散热通道。在保证连接和传动可靠的前提下,带倾角的筋板可随传动轴转动而旋转,起到风机的作用为缓速器降温,防止缓速器长时间运行导致过热影响制动效率。
缓冲器2包括防爆外壳24和缸筒22,防爆外壳24内设置有阻尼通道25并通过上下两端的阻尼通道端盖23装配,阻尼通道25的外周缠绕有电磁线圈27,阻尼通道25和上下两端阻尼通道端盖23开设有同轴阻尼孔28,防爆外壳24的上下两端分别连接所述的缸筒22,上端缸筒设置有活柱20并通过缓冲器端盖21封装,下端缸筒设置有复位弹簧29、活柱20并通过缓冲器端盖21封装,活柱20与阻尼通道之间填充有磁流变液26。
整个制动缓冲系统的安装位置关系如图1所示,电路连接关系(控制关系)如图8所示,具体的走线布线施工按照常规技术实施即可。本实施例中,转速传感器、压力传感器、光电开关选用市售产品即可。缓速器、缓冲器依靠计算机来控制电磁线圈的电流,通过电磁线圈产生的磁场作用来改变磁流变液的状态,由于磁流变液可以实现实时控制,相应阻尼力的调节连续变化且变化可逆。缓冲器和缓速器正是利用磁流变液的这一特性来对阻尼力进行实时调节,确保制动缓冲系统在提升系统运行于不同载重和速度时均能起到柔性缓冲的作用,提高了制动可靠性,防止事故发生。
实施例2:
一种基于磁流变效应的智能化立井制动缓冲系统,结构如实施例1所述,其不同之处在于:筋板18与传动轴9的轴线夹角为25°。
实施例3:
如实施例1所述的一种基于磁流变效应的智能化立井制动缓冲系统的工作方法,具 体的运行过程如下:
运行状态一:罐笼正常运行时,即提升机滚筒的运行速度在规定范围内
压力传感器6测得罐笼5的载重M并传输给控制器,提升电机8启动后转速传感器13测得提升机滚筒1运行速度S并传输给控制器,控制器将测得速度与规定值S g对比,当S<S g时判断其运行正常,缓速器不工作;
当罐笼5运行到接近井底或顶部停车区时,触发安装在立井井壁上的光电开关7,控制器控制缓速器通电并根据测得的罐笼重量M和实时速度S调整供电电流Ⅰ h,从而控制缓速器阻尼力F h让罐笼速度平稳下降配合提升机制动器抱闸(这里的抱闸是原有提升机的刹车装置抱闸,缓速器在这一运行状态中只是起到辅助减速的目的)将罐笼5停止在规定位置;与此同时,当光电开关7被触发时,控制器控制缓冲器通电工作并根据M和S相应调整对缓冲器输出的电流Ⅰ d,从而调节缓冲器的缓冲阻尼力F d
或运行状态二:罐笼超速运行时,即提升机滚筒的运行速度大于规定速度
压力传感器6测得罐笼的重量M并传输给控制器,提升电机8启动后转速传感器13测得提升机滚筒1运行速度S并传输给控制器,控制器将测得速度与规定值S g对比,当S>S g时判断其运行在超速状态,控制器控制缓速器线圈通电并根据提升机滚筒1运行速度调整阻尼力F h,使提升机滚筒1减速至规定速度;
或运行状态三:罐笼在到达停车位置时由于某些原因未能及时制动停车,发生过卷、过放事故
当罐笼5接近井底或顶部时安装在井壁上的光电开关7被触发,此时,转速传感器13将实时监测提升机滚筒1的运行速度S传输至控制器,控制器结合罐笼重量M和提升机滚筒的运行速度S相应调整对缓冲器线圈电流Ⅰ d和缓速器线圈电流Ⅰ h,使缓冲器和缓速器产生相应阻尼力F d和F h,保证提升系统在发生过卷事故时,罐笼5能以一个可控的速度撞击托罐装置3,使缓冲器2能根据罐笼的载重和撞击速度做到柔性缓冲;
当提升系统过卷事故处理完成后,操作人员手动控制制动缓冲系统断电,此时,缓冲器2内的磁流变液失去磁场作用变为牛顿流体状态,在复位弹簧29的作用下经阻尼孔返回缓冲器上腔,完成系统复位。

Claims (9)

  1. 一种基于磁流变效应的智能化立井制动缓冲系统,其特征在于,包括缓速器、缓冲器、转速传感器、压力传感器、光电开关和控制器;
    缓速器传动连接在提升电机和提升机滚筒之间,缓冲器安装在立井内箱梁上并连接托罐装置,转速传感器安装在提升机滚筒上,压力传感器安装在罐笼的底部,光电开关安装在立井侧壁上;
    缓速器、缓冲器、转速传感器、压力传感器、光电开关分别与控制器连接。
  2. 如权利要求1所述的基于磁流变效应的智能化立井制动缓冲系统,其特征在于,缓速器包括动圈、定子、防爆外壳、传动轴;动圈、定子、防爆外壳由内到外依次套装并通过小端盖、大端盖对两端进行封装,定子外周缠绕有电磁线圈,动圈与定子之间填充有磁流变液,传动轴贯穿两端的小端盖、大端盖并通过筋板与动圈连接,传动轴的两端分别与提升电机的输出轴、提升机滚筒的转轴刚性连接。
  3. 如权利要求1所述的基于磁流变效应的智能化立井制动缓冲系统,其特征在于,所述托罐装置选用一方形钢板。
  4. 如权利要求2所述的基于磁流变效应的智能化立井制动缓冲系统,其特征在于,筋板呈倾斜设置,倾斜角度为15~25°。
  5. 如权利要求1所述的基于磁流变效应的智能化立井制动缓冲系统,其特征在于,缓冲器包括防爆外壳和缸筒,防爆外壳内设置有阻尼通道并通过上下两端的阻尼通道端盖装配,阻尼通道的外周缠绕有电磁线圈,阻尼通道和上下两端阻尼通道端盖开设有同轴阻尼孔,防爆外壳的上下两端分别连接所述的缸筒,上端缸筒设置有活柱并通过缓冲器端盖封装,下端缸筒设置有复位弹簧、活柱并通过缓冲器端盖封装,活柱与阻尼通道之间填充有磁流变液。
  6. 如权利要求1所述的基于磁流变效应的智能化立井制动缓冲系统,其特征在于,在箱梁与托罐装置之间设置有四个缓冲器,四个缓冲器呈正方形布置。
  7. 如权利要求1所述的基于磁流变效应的智能化立井制动缓冲系统,其特征在于,光电开关安装在距立井井底和顶部10m的位置处。
  8. 如权利要求1所述的基于磁流变效应的智能化立井制动缓冲系统,其特征在于,控制器选用计算机。
  9. 一种如权利要求1-8任一项所述的基于磁流变效应的智能化立井制动缓冲系统的工作方法,包括以下步骤:
    运行状态一:罐笼正常运行时,即提升机滚筒的运行速度在规定范围内
    压力传感器测得罐笼的载重M并传输给控制器,提升电机启动后转速传感器测得提升机滚筒运行速度S并传输给控制器,控制器将测得速度与规定值S g对比,当S<S g时判断其运行正常,缓速器不工作;
    当罐笼运行到接近井底或顶部停车区时,触发安装在立井井壁上的光电开关,控制器控制缓速器通电并根据测得的罐笼重量M和实时速度S调整供电电流Ⅰ h,从而控制缓速器阻尼力F h让罐笼速度平稳下降配合提升机制动器抱闸将罐笼停止在规定位置;与此同时,当光电开关被触发时,控制器控制缓冲器通电工作并根据M和S相应调整对缓冲器输出的电流Ⅰ d,从而调节缓冲器的缓冲阻尼力F d
    或运行状态二:罐笼超速运行时,即提升机滚筒的运行速度大于规定速度
    压力传感器测得罐笼的重量M并传输给控制器,提升电机启动后转速传感器测得提升机滚筒运行速度S并传输给控制器,控制器将测得速度与规定值S g对比,当S>S g时判断其运行在超速状态,控制器控制缓速器线圈通电并根据提升机滚筒运行速度调整阻尼力F h,使提升机滚筒减速至规定速度;
    或运行状态三:罐笼在到达停车位置时由于某些原因未能及时制动停车,发生过卷、过放事故
    当罐笼接近井底或顶部时安装在井壁上的光电开关被触发,此时,转速传感器将实时监测提升机滚筒的运行速度S传输至控制器,控制器结合罐笼重量M和提升机滚筒的运行速度S相应调整对缓冲器线圈电流Ⅰ d和缓速器线圈电流Ⅰ h,使缓冲器和缓速器产生相应阻尼力F d和F h,保证提升系统在发生过卷事故时,罐笼能以一个可控的速度撞击托罐装置,使缓冲器能根据罐笼的载重和撞击速度做到柔性缓冲;
    当提升系统过卷事故处理完成后,操作人员手动控制制动缓冲系统断电,此时,缓冲器内的磁流变液失去磁场作用变为牛顿流体状态,在复位弹簧的作用下经阻尼孔返回缓冲器上腔,完成系统复位。
PCT/CN2019/089093 2018-11-12 2019-05-29 一种基于磁流变效应的智能化立井制动缓冲系统及其应用 WO2019210885A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CH00537/21A CH716954B1 (de) 2018-11-12 2019-05-29 Vertikalschacht-Brems-Puffersystem basierend auf dem magnetorheologischen Effekt und seine Anwendung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811338307.7A CN109230935B (zh) 2018-11-12 2018-11-12 一种基于磁流变效应的智能化立井制动缓冲系统及其应用
CN201811338307.7 2018-11-12

Publications (1)

Publication Number Publication Date
WO2019210885A1 true WO2019210885A1 (zh) 2019-11-07

Family

ID=65078076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089093 WO2019210885A1 (zh) 2018-11-12 2019-05-29 一种基于磁流变效应的智能化立井制动缓冲系统及其应用

Country Status (3)

Country Link
CN (1) CN109230935B (zh)
CH (1) CH716954B1 (zh)
WO (1) WO2019210885A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113513103A (zh) * 2021-09-14 2021-10-19 中国电建集团山东电力建设第一工程有限公司 一种悬挂式复合调谐减振装置及方法
CN114084772A (zh) * 2021-11-18 2022-02-25 湖北工程学院 电梯防冲顶装置及防冲顶方法
CN114530906A (zh) * 2021-10-12 2022-05-24 湖北金诚信矿业服务有限公司 一种井下矿用充电设备参数报送装置
CN115027425A (zh) * 2022-07-12 2022-09-09 南京工业职业技术大学 一种含行程感知与力感反馈的踏板机构
CN115215242A (zh) * 2022-09-19 2022-10-21 杭州未名信科科技有限公司 一种智能塔吊的卷扬梯度刹车动力系统及智能塔吊

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109230935B (zh) * 2018-11-12 2023-04-25 山东科技大学 一种基于磁流变效应的智能化立井制动缓冲系统及其应用
CN110219905B (zh) * 2019-06-20 2024-01-26 迈格钠磁动力股份有限公司 一种离心触发式缓速器和提升运输装置
CN111824913B (zh) * 2020-07-24 2021-07-13 中国矿业大学 一种磁流变式罐道与罐道梁连接结构及矿山竖井设备
CN113270011A (zh) * 2021-06-07 2021-08-17 安徽理工大学 一种立井提升系统实验台及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136370A1 (en) * 2006-05-22 2007-11-29 Otis Elevator Company Roller guide with speed dependent stiffness
EP2607291A1 (en) * 2011-12-22 2013-06-26 Kone Corporation Electromagnetic actuator, brake arrangement comprising the electromagnetic actuator, and a method for reducing the energy consumption of the electromagnetic actuator
CN104444695A (zh) * 2014-12-13 2015-03-25 重庆和航科技股份有限公司 电梯适应性递进阻尼力的缓冲系统
CN106115432A (zh) * 2016-08-31 2016-11-16 江苏创力电梯部件有限公司 一种结构紧凑的安全电梯
CN109230935A (zh) * 2018-11-12 2019-01-18 山东科技大学 一种基于磁流变效应的智能化立井制动缓冲系统及其应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044931A (ja) * 2004-08-09 2006-02-16 Mitsubishi Electric Building Techno Service Co Ltd エレベータの制御装置
CN203402872U (zh) * 2013-08-08 2014-01-22 山东鸿顺集团有限公司 一种建筑用电控卷扬机
CN105626754A (zh) * 2016-02-29 2016-06-01 东南大学 一种基于蛇形磁路的多片旋转式磁流变液阻尼器
CN107512644A (zh) * 2016-06-15 2017-12-26 山东华联矿业股份有限公司 箕斗过卷缓冲托罐装置
CN106395542A (zh) * 2016-09-30 2017-02-15 新疆大学 一种基于abs的摩擦提升机防过卷及故障报警系统
CN107215744A (zh) * 2017-07-19 2017-09-29 金陵科技学院 一种电梯用永磁与磁流变相结合的减速缓冲装置
CN108725510B (zh) * 2018-07-17 2024-03-22 山东科技大学 一种斜巷运输的防跑车自调节缓冲系统及其应用
CN209177790U (zh) * 2018-11-12 2019-07-30 山东科技大学 一种基于磁流变效应的智能化立井制动缓冲系统
JP2021031237A (ja) * 2019-08-26 2021-03-01 株式会社日立ビルシステム エレベーター安全装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136370A1 (en) * 2006-05-22 2007-11-29 Otis Elevator Company Roller guide with speed dependent stiffness
EP2607291A1 (en) * 2011-12-22 2013-06-26 Kone Corporation Electromagnetic actuator, brake arrangement comprising the electromagnetic actuator, and a method for reducing the energy consumption of the electromagnetic actuator
CN104444695A (zh) * 2014-12-13 2015-03-25 重庆和航科技股份有限公司 电梯适应性递进阻尼力的缓冲系统
CN106115432A (zh) * 2016-08-31 2016-11-16 江苏创力电梯部件有限公司 一种结构紧凑的安全电梯
CN109230935A (zh) * 2018-11-12 2019-01-18 山东科技大学 一种基于磁流变效应的智能化立井制动缓冲系统及其应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113513103A (zh) * 2021-09-14 2021-10-19 中国电建集团山东电力建设第一工程有限公司 一种悬挂式复合调谐减振装置及方法
CN114530906A (zh) * 2021-10-12 2022-05-24 湖北金诚信矿业服务有限公司 一种井下矿用充电设备参数报送装置
CN114084772A (zh) * 2021-11-18 2022-02-25 湖北工程学院 电梯防冲顶装置及防冲顶方法
CN115027425A (zh) * 2022-07-12 2022-09-09 南京工业职业技术大学 一种含行程感知与力感反馈的踏板机构
CN115215242A (zh) * 2022-09-19 2022-10-21 杭州未名信科科技有限公司 一种智能塔吊的卷扬梯度刹车动力系统及智能塔吊
CN115215242B (zh) * 2022-09-19 2023-04-18 杭州未名信科科技有限公司 一种智能塔吊的卷扬梯度刹车动力系统及智能塔吊

Also Published As

Publication number Publication date
CH716954B1 (de) 2022-09-15
CN109230935A (zh) 2019-01-18
CN109230935B (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
WO2019210885A1 (zh) 一种基于磁流变效应的智能化立井制动缓冲系统及其应用
KR101706883B1 (ko) 엘리베이터 장치
CN101472825B (zh) 确保检查中的电梯井道顶部或底部最小空间的安全装置及具有这种安全装置的电梯
JP4303133B2 (ja) エレベータシステムの超過速度調整装置
KR20130093650A (ko) 엘리베이터 장치
CN205170106U (zh) 安全逃生电梯
JP2000327241A (ja) エレベータ装置および調速装置
KR101993538B1 (ko) 엘리베이터 장치
CN105417311A (zh) 一种安全电梯
CN103175708B (zh) 一种电梯下行试验系统
JP2015227251A (ja) エレベータ装置
CN209177790U (zh) 一种基于磁流变效应的智能化立井制动缓冲系统
CN112027848A (zh) 一种电梯运行安全监测系统
CN104627773A (zh) 独立式电梯快速响应多级安全防护系统
WO2018103110A1 (zh) 一种深井提升系统过卷保护方法与装置
CN110294385A (zh) 电梯耗能减震装置
CN206580415U (zh) 一种电梯紧急制动安全防护装置
CN104944247B (zh) 一种新型电梯坠落安全防护装置
CN103196692B (zh) 一种电梯试验用的释放装置
CN114772413A (zh) 一种物料垂直输送系统中的失速保护装置
CN205222344U (zh) 一种带有防坠装置的电梯
CN208292456U (zh) 电梯防坠落安全装置
CN209065224U (zh) 电梯端站保护结构
CN109896390B (zh) 一种高安全性的罐笼保护系统
CN106115411B (zh) 一种用于电梯运行中的安全保护装置及其运行工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19796194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19796194

Country of ref document: EP

Kind code of ref document: A1