WO2019209051A1 - 개질된 미토콘드리아 및 이의 용도 - Google Patents

개질된 미토콘드리아 및 이의 용도 Download PDF

Info

Publication number
WO2019209051A1
WO2019209051A1 PCT/KR2019/005020 KR2019005020W WO2019209051A1 WO 2019209051 A1 WO2019209051 A1 WO 2019209051A1 KR 2019005020 W KR2019005020 W KR 2019005020W WO 2019209051 A1 WO2019209051 A1 WO 2019209051A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
mitochondria
cells
outer membrane
modified
Prior art date
Application number
PCT/KR2019/005020
Other languages
English (en)
French (fr)
Inventor
한규범
김천형
김유진
유신혜
김나영
김미진
최용수
이서은
Original Assignee
주식회사 파이안바이오테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 파이안바이오테크놀로지 filed Critical 주식회사 파이안바이오테크놀로지
Priority to US17/049,301 priority Critical patent/US20210238249A1/en
Priority to JP2020559381A priority patent/JP2021521819A/ja
Priority to SG11202009787VA priority patent/SG11202009787VA/en
Priority to CA3097108A priority patent/CA3097108A1/en
Priority to AU2019257834A priority patent/AU2019257834A1/en
Priority to BR112020021826-0A priority patent/BR112020021826A2/pt
Priority to EP19791949.1A priority patent/EP3786177A4/en
Priority to CN201980028175.4A priority patent/CN112020553A/zh
Publication of WO2019209051A1 publication Critical patent/WO2019209051A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4746Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used p53
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0006Modification of the membrane of cells, e.g. cell decoration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/81Protease inhibitors
    • C07K14/8107Endopeptidase (E.C. 3.4.21-99) inhibitors
    • C07K14/811Serine protease (E.C. 3.4.21) inhibitors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2827Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2851Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the lectin superfamily, e.g. CD23, CD72
    • C07K16/2854Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the lectin superfamily, e.g. CD23, CD72 against selectins, e.g. CD62
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3053Skin, nerves, brain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6467Granzymes, e.g. granzyme A (3.4.21.78); granzyme B (3.4.21.79)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/03016Phosphoprotein phosphatase (3.1.3.16), i.e. calcineurin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/03048Protein-tyrosine-phosphatase (3.1.3.48)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/03067Phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase (3.1.3.67)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21079Granzyme B (3.4.21.79)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/54Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/54Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
    • A61K35/545Embryonic stem cells; Pluripotent stem cells; Induced pluripotent stem cells; Uncharacterised stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/80Immunoglobulins specific features remaining in the (producing) cell, i.e. intracellular antibodies or intrabodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/07Fusion polypeptide containing a localisation/targetting motif containing a mitochondrial localisation signal
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/50Fusion polypeptide containing protease site
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/95Fusion polypeptide containing a motif/fusion for degradation (ubiquitin fusions, PEST sequence)

Definitions

  • the present invention provides a fusion protein capable of modifying mitochondria, a mitochondria modified by the fusion protein, and a pharmaceutical composition comprising the same as an active ingredient.
  • Mitochondria are eukaryotic cell organelles involved in the synthesis and regulation of adenosine triphosphate, an intracellular energy source. Mitochondria are involved in various metabolic pathways in vivo, such as cell signaling, cell differentiation, apoptosis, as well as control of cell cycle and cell growth. Mitochondria have their own genome and are organelles that play a pivotal role in the cell's energy metabolism. Mitochondria produce energy through electron transfer and oxidative phosphorylation, and play an important role in being involved in apoptosis signaling pathways.
  • Decreased energy production by mitochondrial dysfunction has been reported to cause a variety of diseases.
  • Degradation of the mitochondrial genome and protein causes a decrease in the function of the electron transfer chain reaction, resulting in decreased production, excessive production of free radicals, and a decrease in calcium regulation.
  • a change in the membrane permeability of mitochondria occurs abnormally the function of apoptosis, which can lead to cancer and refractory diseases.
  • cancer cells unlike normal cells, produce 36 ATP per molecule of glucose through the electron transfer process, whereas cancer cells, unlike normal cells, produce 2 ATP per glucose molecule under aerobic glycolysi s under sufficient oxygen conditions. It is known to produce ATP.
  • cancer cells unlike normal cells, use an inefficient glycolytic process in terms of energy, and are known to produce amino acids, lipids, nucleic acids, etc. necessary for rapid cell proliferation. For this reason, cancer cells have a lower oxygen demand than normal cells and are known to produce a large amount of lactic acid.
  • An object of the present invention is to provide an effective protein delivery system by showing that the mitochondria can be used as a means for effectively delivering a protein that can exhibit a variety of pharmacological effects into cells.
  • the present invention provides a recombinant protein for effectively delivering a drug, and aims to provide a modified mitochondria produced using the same.
  • a pharmaceutical composition comprising a modified mitochondria as an active ingredient 2019/209051 1 »(: 1 ⁇ 1 ⁇ 2019/005020 Challenge solution
  • a modified mitochondria wherein the foreign protein is bound to the outer membrane of the mitochondria. Also provided is a fusion protein comprising a mitochondrial outer membrane anchoring peptide and a pharmacological target protein to produce the modified mitochondria. Also provided are fusion proteins comprising antibodies or fragments thereof and mitochondrial outer membrane anchoring peptides.
  • the foreign protein When the mitochondria combined with foreign protein is administered to the human body, the foreign protein can be effectively delivered into the cell.
  • pharmacologically active proteins delivered into cells can restore impaired function of the cells.
  • mitochondria bound to foreign proteins including pharmacologically active proteins
  • the pharmacologically active proteins in cells can be released from mitochondria and expect a useful role.
  • modified mitochondria comprising antibody fragments can be effectively delivered to the targeted cells.
  • the modified mitochondria can be effectively delivered into cancer cells.
  • the introduction of a modified mitochondria not only restores the damaged electron transport system of the cell, but also prevents or treats various diseases by pharmacologically active proteins bound to the modified mitochondria.
  • 1 is a schematic diagram illustrating a method for manufacturing a 1 show 53.
  • FIG. 2 is a schematic diagram of a method for producing ? 1 + -1] 6 53 vector.
  • Figure 3 shows the expression of Yes-? 53 protein in E. coli.
  • Fig. 4 is a schematic diagram of a method for producing a? # 11 (:-1 '(170-1) 6 53 vector.
  • Figure 5 shows the expression of 1 (170-1] 6 53 protein in E. coli.
  • FIG. 6 is a schematic diagram illustrating a method for producing a? 1101X170- (000) 3-1] 8 53 vector; 2019/209051 1 »(: 1 ⁇ 1 ⁇ 2019/005020
  • Figure 7 shows the expression of 1 (170-(( ⁇ 03 ⁇ 4) 3-118 53 protein in E. coli.
  • Figure 13 shows the expression of? 53-1 (: / bar3 protein in transformed ( ⁇ 0- Figure 14 is confirmed after purification of the dog shank protein.
  • Figure 15 shows the purified! ' ⁇ 70-((3 ⁇ 400 ⁇ 3 53 protein is shown.
  • Figure 16 confirms this after purification of 1-70- (0003 ⁇ 4) 3-1] 6 53 protein. 17 shows purified 10170- (0 ⁇ 5) 3 ⁇ -? 53 proteins.
  • Figure 20 shows the confirmation after purification of Example -P3 ⁇ 417 protein.
  • Figure 21 shows purified 1] 8 53 -VII protein.
  • Figure 22 shows a method for producing a root vector to show-VIII.
  • FIG. 23 shows a method of producing? 110! '(170- (00003) 3-1] 6-a2,6 table vector.
  • Figure 24 shows the expression of 11170- (0003 ⁇ 4) 3-1] 6- (urine 2 68 protein in E. coli.
  • Figure 26 shows expression of 1] 8-A 2,68-1X17 protein in E. coli.
  • FIG. 27 shows the results of purification of 1 ′ (170- (0003 ⁇ 4) 3-1] 6- & 2,68 protein.
  • FIG. 28 shows purified 1 ′ (170- (0000 ⁇ 3-VII-A 2,68 protein). 2019/209051 1 »(: 1 ⁇ 1 ⁇ 2019/005020)
  • FIG. 29 shows a method of producing a vector.
  • Figure 32 shows the results of purification of 10170-(( ⁇ 8) 3 ⁇ -13 ⁇ 41? Protein.
  • Figure 33 shows the purified! '(70-(( ⁇ 00 ⁇ 3-Example-13 ⁇ 4 (protein).
  • Fig. 34 shows a method of manufacturing the show table vector.
  • FIG. 35 shows a method of preparing a ? 1101 '(170- (00003) 3-1) 6- ⁇ 3 ⁇ 4 vector.
  • Figure 37 shows the results of purification of 1'03 ⁇ 4170- (000 & 3) 3 -'- table protein. 38 is purified Protein is shown.
  • FIG. 40 shows purified 1] 6 1 3 -1 ′ «7 protein.
  • Figure 44 shows the expression of the protein VII-1 S1-2-2 '(17 protein in Escherichia coli.
  • Figure 45 shows a method for preparing 1 £ -3 acid 1S2-111711% / bar3 vector. will be.
  • FIG. 46 shows expression of% 1 sequence 2-1117 -— (: / 3 protein at transformed strain 0.
  • Fig. 51 shows a method for producing 1 £ -3 acid ⁇ 3 ⁇ 41 ⁇ -1: (171 / bar 3 vector) All.
  • 53 shows a method of preparing a pCMV-scFvPD-Ll-T0M7-myc / His vector.
  • Figure 54 shows expression of scFvPD-Ll-T0M7-myc / His protein in transformed CH0.
  • 55 is a diagram confirming whether the fluorescent protein is bound to the mitochondrial outer membrane.
  • the mitochondria are stained red with MitoTracker CMXRos, and T0M70-UB-GFP is green. The part where the two overlap is yellow.
  • the magnification of 55a is 200 times and the magnification of 55b is 600 times.
  • Figure 56 shows the results confirming the recombinant proteins T0M70- (GGGGS) 3-UB-p53 and UB-p53_T0M7 bound to the foreign mitochondrial outer membrane using Western blot analysis.
  • FIG. 57 shows the results of observing the degree of intracellular injection according to the concentration of mitochondria after fluorescence microscopy after separation of foreign mitochondria and injecting mitochondria into cells.
  • Figure 59 confirms the effect of normal mitochondria on the inhibition of reactive oxygen species (R0S) production of skin cancer cells.
  • 60 confirms the effect of normal mitochondria on drug resistance.
  • 61 shows the effect of normal mitochondria on the expression of antioxidant genes in cells.
  • FIG. 63 is a diagram illustrating a method for loading recombinant protein p53 and confirming intracellular injection into foreign mitochondrial outer membrane.
  • FIG. 64 shows that the recombinant protein p53 was loaded on the foreign mitochondrial outer membrane and that p53 was injected into cells. At this time, the magnification is 200 times.
  • Fig. 65 shows that the recombinant protein p53 was loaded on the foreign mitochondrial outer membrane and that p53 was injected into the cells. At this time, the magnification is 600 times.
  • FIG. 66 is a diagram illustrating a method for confirming apoptosis of modified mitochondria loaded with P 53 injected intracellularly using gastric cancer cell lines.
  • Figure 67a confirms the apoptosis capacity of the modified mitochondria loaded with p53 injected into gastric cancer cells by TUNEL assay. At this time, the magnification is 600 times.
  • 67b shows the apoptosis capacity of the modified mitochondria loaded with p53 injected into gastric cancer cells by fluorescence measurement.
  • FIG. 68 confirms the effect of inhibiting cancer cell metastasis by modified mitochondria loaded with RKIP in MDA-MB-231 cel 1.
  • FIG. 69 shows that a single chain var iable fragment (ScFv) antibody for cancer cell targeting was expressed in cells.
  • FIG. 69 shows that a single chain var iable fragment (ScFv) antibody for cancer cell targeting was expressed in cells.
  • scFV single chain variable fragment
  • ICC immunocytochemi stry
  • FIG. 72 compares the effect of injecting mitochondria conjugated with a single chain variable region antibody for cancer cell targeting to gastric cancer cell lines.
  • 73 is a schematic of animal experiment schedule using modified mitochondria.
  • 74 is a photograph observing that the tumor tissue increased visually.
  • Figure 75 shows the change in body weight of mice after administration of mitochondria and modified mitochondria.
  • Figure 76 shows the tumor size after administration of mitochondria and modified mitochondria.
  • Figure 77 shows that the modified mitochondria loaded with T0M-UB-p53 protein is effective in inhibiting the proliferation of A431 cells.
  • 78 shows the function of the separated mitochondria by ATP content.
  • 79 shows the function of the separated mitochondria by membrane potential (Membrane potent i al).
  • Figure 81a shows the structure of the protein present in the mitochondrial outer membrane and the amino acid sequence of the N-terminal region of T0M70, T0M20 or 0M45.
  • 81B shows the amino acid sequence of the C-terminal region of T0M5, T0M7, Fi sl, VAMP1B, Cytb5, BCL-2 or BCL-X.
  • FIG. 82 shows whether target proteins are dissociated according to the presence or absence of a linker between the outer membrane anchoring peptide and ubiquitin.
  • One aspect of the invention provides a modified mitochondria in which foreign proteins are bound to the outer membrane of the mitochondria.
  • the mitochondria may be obtained from a mammal, or may be obtained from a human. Specifically, the mitochondria may be isolated from cells or tissues. For example, the mitochondria may be obtained from somatic cells, germ cells or stem cells. In addition, the mitochondria may be normal mitochondria obtained from cells in which the biological activity of the mitochondria is normal. In addition, the mitochondria may be cultured in vitro.
  • the mitochondria may be obtained from autologous, allogeneic or xenogeni c.
  • autologous mitochondria means mitochondria obtained from tissues or cells of the same individual.
  • Homologous mitochondria also refers to mitochondria obtained from an individual belonging to the same species as the individual and having a different genotype for the allele.
  • Heterologous mitochondria also refers to mitochondria obtained from individuals belonging to different species. 2019/209051 1 »(: 1 ⁇ 1 ⁇ 2019/005020
  • the somatic cells may be muscle cells, hepatocytes, nerve cells, fibroblasts, epithelial cells, adipocytes, bone cells, leukocytes, lymphocytes, platelets or mucosal cells. Can be.
  • the germ cells may be sperm or ovum as cells that undergo meiosis and somatic division.
  • the stem cells may be any one selected from the group consisting of mesenchymal stem cells, adult stem cells, dedifferentiated stem cells, embryonic stem cells, bone marrow stem cells, neural stem cells, limbal stem cells and tissue-derived stem cells.
  • the mesenchymal stem cells may be any one selected from the group consisting of umbilical cord, umbilical cord blood, bone marrow, fat, muscle, nerve, skin, amniotic membrane and placenta.
  • the mitochondria when the mitochondria are separated from specific cells, for example, the mitochondria can be separated by various known methods such as using a specific buffer solution or using a potential difference and a magnetic field.
  • the foreign protein refers to a protein comprising a target protein that can function in intracellular
  • the foreign protein is a protein that does not exist in non-soil mitochondrial, recombinant protein
  • the foreign protein may include a mitochondrial anchoring peptide and a target protein
  • the foreign protein may be a recombinant fusion protein comprising a mitochondrial anchoring peptide and a target protein.
  • the foreign protein may comprise a mitochondrial anchoring peptide, preferably the mitochondrial anchoring peptide may be a peptide that may be located on the mitochondrial outer membrane, thus the foreign protein may be bound to the outer membrane of the mitochondria by the mitochondrial anchoring peptide.
  • the mitochondria anchoring The peptide may be a peptide comprising a terminal region or zero terminal region of the protein present in the membrane protein of the mitochondria, the terminal region or zero terminal region of the protein present in the outer membrane protein of the mitochondria may be located on the outer membrane of the mitochondria
  • the anchoring peptide may further include a mitochondrial signal sequence.
  • One embodiment of the protein present in the membrane protein of the mitochondria is 1'03 ⁇ 4120, 10170, (145, (15, 1X16,!?, 1X122 ,,
  • the mitochondrial anchoring peptide when it is derived from any one selected from the group consisting of 10120, 1X170 and (145, it may comprise a terminal region of 10120, 10170 or (145.
  • One embodiment of the chondroitic anchoring peptide may be T0M70 derived from yeast represented by SEQ ID NO: 75, or T0M70 derived from human represented by SEQ ID NO: 76.
  • Another embodiment may be T0M20 derived from yeast represented by SEQ ID NO: 77 or T0M20 derived from human represented by SEQ ID NO: 78.
  • Another embodiment may be 0M45 derived from yeast represented by SEQ ID NO: 79.
  • the mitochondrial anchoring peptide when the mitochondrial anchoring peptide is derived from any one selected from the group consisting of T0M5, T0M6, T0M7, T0M22, Fi sl, Bcl-2, Bcl-x and VAMP1B, T0M5, T0M6, T0M7, T0M22, Fi sl, Be ⁇ 2, Bcl-x and VAMP1B may comprise any one C terminal region selected from the group consisting of.
  • One embodiment of the mitochondrial anchoring peptide may be T0M5 derived from yeast represented by SEQ ID NO: 80, or T0M5 derived from human represented by SEQ ID NO: 81.
  • Another embodiment may be human derived Bel-2 alpha represented by SEQ ID NO: 88.
  • the target protein that can function in and outside the cell contained in the foreign protein is in the group consisting of an active protein exhibiting activity in the cell, a protein present in the cell, and a protein capable of binding to a receptor or ligand present in the cell membrane. It may be any one selected.
  • protein present in the active protein or cells include p53, Granzyme B (GranzymeB), Bax, Bak, PDCD5, E2F, AP-1 (Jun / Fos), EGR-1,
  • Ret inoblastoma RB
  • PTEN phosphatase and tensin homo log
  • E-cadher in Neurof ibromin-2 (NF-2), poly [ADP_r ibose] synthase l (PARP-l), BRCA-1, BRCA-2 , Adenomatous polyposis col i (APC), Tumor necrosis factor receptor-associated factor (TRAF), RAF kinase inhibi tory protein (RKIP), pl6, KLF-10, LKB1, LHX6, C-RASSF, DKK-3PD1, 0ct3 / 4, Sox2, Kl f4, and c_Myc May be any one.
  • the target protein can be bound to an anchoring peptide comprising an N-terminal region of T0M20, T0M70 or 0M45.
  • Such fusion proteins may be combined in the following order:
  • N-terminal-anchoring peptide comprising an N-terminal region of TOM20, T0M70 or 0M45
  • the foreign protein may further comprise an amino acid sequence or ubiquitin or a fragment thereof recognized by proteolytic enzymes in eukaryotic cells between the mitochondrial anchoring peptide and the target protein.
  • the proteolytic enzyme in the eukaryotic cell means an enzyme that degrades the protein present in the eukaryotic cell.
  • the foreign protein since the foreign protein includes an amino acid sequence recognized by an enzyme that degrades the protein, the foreign protein bound to the mitochondrial outer membrane can be separated into anchoring peptides and target proteins in cells.
  • the ubiquitin fragment includes the C-terminal Gly-Gly of the amino acid sequence of SEQ ID NO, and may include 3 to 75 amino acids consecutive from the C-terminal.
  • the foreign protein may further include a linker between the target protein and ubiquitin or a fragment thereof.
  • the linker may be composed of 1 to 150 amino acids, 10 to 100 amino acids, or 20 to 50 amino acids, but is not limited thereto.
  • the linker may be appropriately selected from the 20 amino acids, preferably made of glycine and / or serine.
  • One embodiment of the linker may be 5 to 50 amino acids consisting of glycine and serine.
  • the linker is (G 4 S) n, n is an integer of 1 to 10, n may be 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.
  • the protein capable of binding to the receptor or ligand present in the cell membrane may be a receptor or ligand present on the surface of the tumor cell.
  • the receptor or ligand present on the tumor cell surface is CD19, CD20, melanoma ant igen E (MAGE), NY-ES0-1, carcinoembryonic ant igen (CEA), mucin 1 cel l surface associated (MUC-l) , prostat ic acid phosphatase (PAP), prostate speci fic ant i gen (PSA), survivin, tyrosine related protein l (tyrpl), tyrosine related protein l (tyrp2), Brachyury, Mesothel in, Epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER-2), ERBB2, Wilms tumor protein (WTl), FAP, EpCAM, ⁇ -Ll, ACPP , CPT1A, IFNG, CD274, F0LR1,
  • a protein capable of binding to a receptor or ligand present in the cell membrane may be an antibody or fragment thereof that binds to any one selected from the group.
  • a fragment of an antibody means a fragment having the same antigenic determining region (CDR) as the antibody. Specifically, it may be Fab, scFv, F (ab ') 2 or a combination thereof.
  • the target protein may be associated with an anchoring peptide comprising any one C-terminal region selected from the group consisting of T0M5, T0M6, T0M7, T0M22, Fi sl, Be ⁇ 2 Bcl-x, and VAMP1B.
  • the foreign protein may be bound in the following order:
  • N-terminal-target proteins T0M5, T0M6, T0M7, T0M22, Fi sl, Bcl-2, Bcl-x and
  • An anchoring peptide -C terminus comprising any C terminal region selected from the group consisting of VAMP1B.
  • the foreign protein may further include a linker between the target protein and any one C terminal region selected from the group consisting of T0M5, T0M6, T0M7, T0M22, Fi sl, Bcl-2, Bcl-x and VAMP1B. .
  • the linker is as described above.
  • the target protein, the active protein, the protein present in the cell and the protein having a binding ability to the receptor or ligand present in the cell membrane and the like are as described above.
  • target protein is any one C-terminal selected from the group consisting of T0M5, T0M6, T0M7, T0M22, Fi sl, Be ⁇ 2, Bcl-x and VAMP1B to target a specific cell It may be in a form bound to an anchoring peptide comprising a region. Modified mitochondria to which these target proteins are bound can be easily introduced into specific targets, allowing the mitochondria to efficiently enter specific cells.
  • the modified mitochondria may be a form in which one or more target proteins are bound.
  • the target protein comprising p53 and anti-HER [2 antibody or The protein of interest, including fragments thereof, may have a bound form.
  • These modified mitochondria can effectively deliver mitochondria to cancer cells expressing HER-2.
  • cancer cells can be effectively killed by p53 bound to the modified mitochondria.
  • a protein of interest comprising one or more active proteins can be prepared and bound to the mitochondria.
  • the target protein targeting the cell according to the target cells can be produced in various ways.
  • Another aspect of the present invention provides a pharmaceutical composition comprising the above-described modified mitochondria as an active ingredient.
  • the use of the pharmaceutical composition may be for cancer prevention or treatment.
  • the cancer may include gastric cancer, liver cancer, lung cancer, colon cancer, breast cancer, prostate cancer, ovarian cancer, pancreatic cancer, cervical cancer, thyroid cancer, laryngeal cancer, acute myeloid leukemia, brain tumor, neuroblastoma, retinoblastoma, head and neck cancer, salivary gland cancer and lymphoma. It may be any one selected from the group consisting of.
  • the modified mitochondria with p53 may be used as an anticancer agent.
  • a protein such as RKIP which can inhibit metastasis of cancer cells
  • the modified mitochondria to which RKIP is bound can be used as a tumor metastasis inhibitor.
  • Granzyme B Granzyme B, Bax, Bak, PDCD5, E2F, AP-1 (Jun / Fos), EGR-1, Ret, proteins that inhibit cancer cell proliferation, control phosphorylation in cancer cells, or inhibit cancer cell metastasis inoblastoma (RB), phosphatase and tensin homo log (PTEN), E-cadher in, Neurof ibromin-2 (NF-2), poly [ADP_r ibose] synthase l (PARP-1), BRCA-1, BRCA-2, Adenomatous polyposi s col i (APC), Tumor necrosis factor receptor-associated factor (TRAF), pl6, KLF-10, LKB1, LHX6, C-RASSF, DKK-3RAS 1 and combinations thereof If one is bound to the mitochondria, the modified mitochondria to which the active protein is bound can be used as an anticancer agent.
  • the modified mitochondria to which the active protein is bound can be used as an anticancer agent.
  • mitochondria is 0.1 dl / M to 500 fig /, 0.2 jug / m ⁇ to 450 jug / ml. Or 0.5 It may be included as a concentration of 400 // g / mt, but is not limited thereto.
  • the dose of mitochondria can be quantified by quantifying the membrane protein of the isolated mitochondria. Specifically, the isolated mitochondria can be quantified by a Bradford protein assay (J Vis Exp. 2014; (91): 51682.) by James D. McCul ly.
  • the active protein binding to the mitochondria is 0.1 // g / m to 500 iig / ini, 0.2 g / mi to 450 fig / ml or 0.5 fig / mi, to 400 / ig / m It may be included as a concentration, but is not limited thereto.
  • the active protein in the above range, it is easy to adjust the active protein dose at the time of administration, the degree of improvement of the patient's condition can be improved.
  • the targeting protein that can deliver the mitochondria to specific cells is 0.1 ng / mi to 500 It may be included in a concentration of 0.2 fig / ml to 450 ng / mi or 0.5 [ig / mi to 400 // g / m £, but is not limited thereto.
  • administration of the targeting protein at the time of administration can be easily controlled, and the degree of improvement of the patient's condition can be improved.
  • the pharmaceutical composition according to the present invention based on the weight of the individual to be administered once 0/01 rag / kg to 5 mg / kg, 0.1 mg / kg to 4 rag / kg or 0.25 rag / kg to 2.5 mg / kg amount of mitochondria may be administered, but is not limited thereto. That is, the pharmaceutical composition is most preferably in terms of cell activity, the mitochondria modified to the content of the range based on the weight of the individual in which the cancer tissue is present.
  • the pharmaceutical composition may be administered 1 to 10 times, 3 to 8 times or 5 to 6 times, preferably 5 times. At this time, the administration interval may be 1 to 7 days or 2 to 5 days intervals, preferably three days can be administered.
  • the pharmaceutical composition according to the present invention may be cancerous or may be administered to humans or other mammals suffering from cancer.
  • the pharmaceutical composition may be an injection that may be administered intravenously or may be injection first, which may be topically administered, and preferably may be an injection formulation.
  • the pharmaceutical composition according to the present invention is physically and chemically stable by adjusting the pH using a buffer solution such as an acid solution or phosphate which can be used as an injection to ensure product stability according to the distribution of the injection formulation.
  • a buffer solution such as an acid solution or phosphate which can be used as an injection to ensure product stability according to the distribution of the injection formulation.
  • 2019/209051 1 »(: 1 ⁇ 1 ⁇ 2019/005020 may be manufactured by the company.
  • the pharmaceutical composition of the present invention may include water for injection.
  • the water for injection is distilled water prepared for dissolving a solid injection or diluting a water-soluble injection, including glucose injection, xylitol injection, mannitol injection, fructose injection, saline solution, 40 dextran injections, 70 dextran injections, amino acid injections and Ringer's solution.
  • Lactic acid _ Ringer's solution or phosphate buffer in the range of 3.5 to 7.5 or sodium dihydrogen phosphate-calculated buffer solution and the like.
  • the pharmaceutical composition of the present invention may include a stabilizer or dissolution aid.
  • the stabilizer is sodium pyrosulphi
  • Tylene diaminetetraacetic acid (and the dissolution aid may be hydrochloric acid, acetic acid, sodium hydroxide, sodium bicarbonate, sodium carbonate or potassium hydroxide.
  • the present invention may provide a method for preventing or treating cancer, comprising administering the aforementioned pharmaceutical composition to a vein of an individual.
  • the subject here can be a mammal, preferably a human.
  • One aspect of the invention provides a method of producing a modified mitochondria comprising the step of mixing an isolated mitochondria with a target protein comprising an active protein and / or a target protein comprising a target targeting protein.
  • the target protein and mitochondria may be mixed in an appropriate ratio.
  • the target protein: mitochondria may be mixed in a ratio of 1: 100 to 100: 1 based on the weight ratio.
  • the ratio may be mixed as 1: 10, 1: 5, 1: 4, 1: 3, 1: 2, or 1: 1. It may also be 10: 1, 5: 1, 4: 1, 3: 1 or 2: 1.
  • a method for producing a modified mitochondria from transformed cells is provided by injecting polynucleotides encoding the above-described target proteins into eukaryotic cells. Specifically, transforming the above-described polynucleotide into a prokaryotic cell or eukaryotic cell without ubiquitin degrading enzyme or protease in eukaryotic cell; And it provides a method for producing the above-described fusion protein comprising the step of obtaining a fusion protein.
  • This preparation method comprises an amino acid sequence or ubiquitin or a protein of which the target protein is recognized by a protease in eukaryotic cells. Suitable if it does not contain a fragment of.
  • the target protein can be prepared using prokaryotic or prokaryotic extracts.
  • the present invention also provides a method for producing a modified mitochondria using eukaryotic or eukaryotic cell extracts free from ubiquitin degrading enzymes or proteolytic enzymes.
  • mitochondria can be used as a foreign protein delivery means.
  • the modified mitochondria can be used as a means for intracellular and intracellular delivery of foreign proteins, including the protein of interest that can function inside and outside the cell.
  • Mitochondria can be effectively introduced into cells, in which case they can effectively deliver foreign proteins into cells that are desired to be delivered to cells.
  • mitochondria can be used as an effective protein delivery system.
  • the target protein is as described above.
  • Another aspect of the invention provides a fusion protein comprising a mitochondrial outer membrane anchoring peptide and a protein of interest.
  • the target protein is as described above.
  • mitochondria outer membrane anchoring peptide n may be the N terminus or C terminus of a protein present in the outer membrane of the mitochondria.
  • the mitochondria outer membrane anchoring peptide may have an amino acid sequence that is specifically located on the outer membrane of the mitochondria.
  • the mitochondrial outer membrane anchoring peptide allows the fusion protein disclosed in the present invention to be attached to the outer membrane of the mitochondria.
  • the mitochondrial outer membrane anchoring peptide may be used in the same sense as the mitochondrial outer membrane targeting peptide.
  • mitochondrial outer membrane anchoring peptides prevent the fusion proteins disclosed herein from entering the interior of the mitochondria.
  • the TOKtranslocase of the outer membrane complex in the mitochondrial outer membrane has a mitochondrial target sequence at the amino terminus and a single outer membrane anchoring domain, and most of the carboxy terminus may be exposed to the cytoplasm.
  • the translocase of the outer membrane (T0M) complex in the mitochondrial outer membrane has a mitochondrial target sequence and a single outer membrane anchoring domain at the carboxyl terminus and most of the amino terminus is exposed to the cytoplasm.
  • 2019/209051 1 »(: 1 ⁇ 1 ⁇ 2019/005020 may have a structure (Fig. 811)).
  • the protein present in the outer membrane of the mitochondria may be selected from proteins present in the mitochondria present in eukaryotic cells.
  • the protein may be selected from proteins present in the mitochondrial outer membrane existing in yeast, animal cells, or human cells.
  • one embodiment of the protein present in the mitochondrial outer membrane is 1X120,
  • the mitochondrial outer membrane anchoring peptide may be a fragment of any one protein selected from 1'03 ⁇ 4120, 1X170, (145, 1015, 1016, 1017, 1 (122,, 301-2, Bc ⁇ -c and-).
  • the outer membrane anchoring peptide is located in the mitochondrial outer membrane, ⁇ ⁇ , 1X170, ⁇ 45, 1015, 1 ( ⁇ , 1017, 1X122,, ⁇ 2, anti X and It may be a polypeptide.
  • the mitochondrial outer membrane anchoring peptide when the mitochondrial outer membrane anchoring peptide is fused to the N terminus of the target protein, the mitochondrial outer membrane anchoring peptide may comprise a terminal sequence of a protein selected from the group consisting of 10120, 1X170, and (145). It may be the N-terminal sequence of the protein selected from the group consisting of 1X120, Nine, 0145. Specific examples of the mitochondrial outer membrane anchoring peptides are as described above.
  • the outer membrane targeting protein is 1X15, 1X16, 1X17, ,, ⁇ ⁇ 2, It may include the terminal sequence of the protein selected from the group consisting of. Preferably, it may be a 0 terminal sequence of a protein selected from the group consisting of 1015, 1X16, 1X17, 11122,, X2, XX, and the like. Specific examples of the mitochondrial outer membrane anchoring peptides are as described above.
  • ⁇ active protein '' as used herein may be a protein that exhibits physiological activity.
  • One embodiment of such an active protein may be a degraded protein or a modified protein present in damaged cancer cells.
  • One embodiment of an active protein may be a protein that enhances the activity of a cell. Specific examples of such active proteins are as described above. '
  • the fusion protein may be one in which the mitochondrial outer membrane targeting protein and the target protein are bound from the end to the 0 end.
  • Mitochondrial envelope targeting It may further comprise ubiquitin or a fragment thereof having a ubiquitin protease specific cleavage site (Glycin-Glycin) between the protein and the protein of interest.
  • a linker containing serine, glycine and threonine, which are hydrophilic and polar amino acids may be added between the mitochondrial outer membrane targeting protein and the ubiquitin protein.
  • ubiquitin refers to a protein that participates in a proteolytic process, also referred to as an example.
  • One embodiment of ubiquitin may be ubiquitin present in the human body or ubiquitin present in yeast.
  • the quitin consists of 76 amino acids, where ubiquitin can be used as a mature form, as used herein, in the form of a signal peptide removed from the term ⁇ mature form ''. It can mean protein.
  • ubiquitin protease or UBP (ubiquit in-speci fic protease) is naturally present in eukaryotic cells and can cleave the C-terminal amino acid glycine-glycine site of ubiquitin in the cell to induce spontaneous dissociation of Jupiter protein. Can be.
  • the fragment of ubiquitin may include Gly-Gly amino acids at the C terminus of ubiquitin and may include 3 to 75 amino acids consecutively from the C terminus.
  • one embodiment of the fragment of ubiquitin may be Arg-Gly-Gly, may be Leu-Arg-Gly-Gly, may be Arg-Leu-Arg-Gly-Gly, Leu-Ar g- Leu-Ar gG 1 y- Gly.
  • fragments of ubiquitin may have an amino acid sequence of SEQ ID NO.
  • the fusion protein comprising the mitochondrial outer membrane targeting protein and the target protein may be referred to as a fusion protein that modifies mitochondrial activity.
  • Such fusion proteins may have any of the following structures:
  • the outer membrane anchoring peptide may be a terminal sequence of a protein selected from the group consisting of TOM20, T0M70, 0M45, the target protein is p53, Granzyme B (GranzymeB), Bax, Bak, PDCD5, E2F, AP-KJun / Fos), EGR-1, Ret inoblastoma (RB), phosphatase and tens in homo log (PTEN), E-cadher in, Neurof ibromin-2 (NF-2), poly [ADP- r ibose] synthase l (PARP-l), BRCA-1, BRCA-2, Adenomatous polyposi s col i (APC), Tumor necrosis factor receptor-associated factor (TRAF), RAF kinase inhibi tory protein (RKIP), pl6 , KLF-10, LKB1, LHX6, C-RASSF and DKK-3 ⁇ 1 may be any one selected from the group consisting
  • the linker 1 or 2 may be a polypeptide consisting of 1 to 100, 1 to 80, 1 to 50, 1 to 30 amino acids, respectively, preferably serine, glycine or threonine is 1 to 1 alone or in combination It may be composed of 30 polypeptides.
  • the linker 1 or 2 may be a polypeptide consisting of 5 to 15 amino acids each, preferably a polypeptide consisting of 5 to 15 serine, glycine or threonine alone or in combination.
  • One embodiment of the linker may be (GGGGS) 3 (SEQ ID NO: 70).
  • the outer membrane anchoring peptide may be a terminal sequence of a protein selected from the group consisting of T0M5, T0M6, T0M7, T0M22, Fisl, Be 1-2, Bcl-X, and VAMP1B.
  • Proteins of interest include p53, Granzyme B, Bax, Bak, PDCD5, E2F, AP-l (Jun / Fos), EGR-1, Ret inoblastoma (RB), phosphatase and tens in homo log (PTEN), E -cadher in, Neurof ibromin-2 (NF-2), poly [ADP_r ibose] synthase l (PARP-l), BRCA-1, BRCA-2, Adenomatous polyposis coli (APC), Tumor necrosis factor receptor-associated factor ( TRAF), RAF kinase inhibitory protein (RKIP), pl6, KLF-10, LKB1, LHX6, C-RASSF, DKK-3PD1, 0ct3 / 4, Sox2, Klf4, and c-Myc Can be.
  • the linker 1 or 2 is as described above.
  • One aspect of the present invention provides a polynucleotide encoding a fusion protein comprising the mitochondrial outer membrane anchoring peptide and the protein of interest.
  • one aspect of the present invention provides a vector loaded with a polynucleotide encoding the fusion protein containing the target protein.
  • an aspect of the present invention provides a host cell into which a vector loaded with a polynucleotide encoding the fusion protein containing the target protein is loaded.
  • One aspect of the invention provides a fusion protein comprising a target targeting protein and a mitochondrial outer membrane targeting protein.
  • the target targeting protein and the mitochondrial outer membrane anchoring peptide may be coupled from the N terminus to the C terminus.
  • the mitochondrial outer membrane anchoring peptide may be any one selected from the group consisting of T0M20, T0M70, 0M45, T0M5, T0M6, T0M7, T0M22, Fisl, Bcl-2, Bcl-x and VAMP1B.
  • the term "target” refers to where the modified mitochondria should be delivered
  • the target may be a cancer cell
  • the target is a bio-organism present on the surface of a cancer cell
  • the target may be a tumor-associated antigen (TAA), wherein the tumor-associated antigen is CD19, CD20, melanoma ant igen E (MAGE), NY-ES0-1, carcinoembryonic ant igen ( CEA), mucin 1 cel l surface assoc i at ed (MUC-l), prostat ic acid phosphatase (PAP), prostate speci f ic ant i gen (PSA), survivin, tyrosine related protein l (tyrpl), tyrosine related protein l (tyrp2), Brachyury, Mesothel in, Epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER-2), ERBB2, Wilms tumor protein (
  • target targeting protein' as used herein may be a protein sequence capable of binding to the above-described target.
  • the target targeting protein may be a protein that binds to a biomarker present on the cancer cell surface.
  • the biomarker present on the surface of the cancer cell may be ICAM2, NCAM1, LRRC4, UNC5H2 LILRB2, CEACAM, Nect in-3, but is not limited thereto.
  • the target targeting protein may be included in the foreign protein described above.
  • the target targeting protein may be an antibody or fragment thereof.
  • it may be an antibody or fragment thereof that specifically binds the tumor-associated antigen.
  • the fragment of the antibody may be any one selected from the group consisting of Fab, Fab ', scFv and F (ab) 2.
  • target targeting protein may be scFvHER capable of binding to the epidermal growth factor receptor chain.
  • Another embodiment may be scFvMEL that can be targeted to melanoma.
  • scFvPD-Ll capable of binding to PD-L1 overexpressed on the cancer cell surface.
  • Another embodiment may be PD-1 capable of binding PDL-1 overexpressed on the surface of cancer cells.
  • One aspect of the present invention may further comprise ubiquitin or a fragment thereof between the target targeting protein and the mitochondrial outer membrane targeting protein.
  • Mito A fusion protein comprising the chondroitic targeting protein and the target protein may be referred to as a fusion protein that modifies mitochondrial activity.
  • These fusion proteins can have any of the following structures:
  • the outer membrane anchoring peptide may be a terminal sequence of a protein selected from the group consisting of T0M5, T0M6, T0M7, T0M22, Fisl, Bcl-2, Be ⁇ X, and VAMP1B, and the target Targeting proteins include CD19, CD20, melanoma antigen E (MAGE), NY-ES0-1, carcinoembryonic ant igen (CEA), mucin 1 cell surface associated (MUC-l), prostatic acid phosphatase (PAP), prostate specific anti gen (PSA), survivin, tyrosine related protein l (tyrpl), tyrosine related protein l (tyrp2), Brachyury, Mesothel in, Epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER-2), Group consisting of ERBB2, Wilms tumor protein (WTl), FAP, EpCAM, PD-Ll, ACPP, CPT1A,
  • the target targeting protein may be an antibody or fragment thereof that specifically binds to a tumor-associated antigen.
  • the amino acid sequence recognized by the proteolytic enzyme is as described above.
  • the outer membrane anchoring peptide may be any one selected from the group consisting of 1 (120, 1 ⁇ 170, and 145. Further, the target targeting protein, ubiquitin or a fragment thereof, the linker 1 or 2 is as described above.
  • One aspect of the present invention provides a polynucleotide encoding a fusion protein containing the target targeting protein.
  • an aspect of the present invention provides a vector loaded with a polynucleotide encoding the fusion protein containing the target targeting protein.
  • an aspect of the present invention provides a host cell into which a vector loaded with a polynucleotide encoding the fusion protein containing the target targeting protein is introduced.
  • the host cell may be a prokaryote or eukaryotic cell.
  • the eukaryotic cell may be a strain from which an enzyme that degrades ubiquitin is removed.
  • one aspect of the present invention provides a method for producing a modified mitochondria from transformed cells by injecting a polynucleotide encoding the fusion protein into eukaryotic cells.
  • Example 1.1 the width of the p53 gene
  • RNA extract Trizol reagent, Thermo Fisher Scientific
  • RNAse inhibitor RNAse inhibitor
  • M-MLV reverse transcriptase Enzynomics, Korea
  • Amplification reactions of 40 ° C., 58 ° 0 30 seconds, 72 ° 0 1 min were performed in 40 cycles. After the reaction, the amplified show fragment of about 1.2 1 ⁇ 1) is separated by electrophoresis on 1% agarose gel, Inserted using. As a result of sequencing of the obtained field, it was confirmed that 00 encoding the human-derived p53 protein was obtained. Obtained ? 53 gene was named / ⁇ ) 53 and its nucleotide sequence is the same as that of SEQ ID NO: 3 (Fig.
  • Example 1.2 p53 Escherichia coli expression vector preparation
  • Example 53 was represented by the nucleotide sequence of SEQ ID NO.
  • 0.2 170 170 primers and 0.2 1 ⁇ 1170 ⁇ 3 primers (0.2 Polymerase reaction buffer solution (Geun !, ⁇ SHOW) and 1 11 1; 01? 1 ⁇ 1116 Large ⁇ The polymerase was mixed. Thereafter, amplification reactions of 95 ° 0 40 seconds, 58 ° 0 30 seconds, and 72 ° 0 1 minute were performed in a polymerase chain reaction apparatus in 25 cycles to obtain 1X170 gene. The amplified fragment was called -1 (170). Plasmid obtained in Example 1.2.1. Described above was used as a template. Put primer and 0.2 urea primer (3 ⁇ 1? 0.2, IX 0!?
  • the amplified 0-fold family (:- ⁇ is used as the template for 0.2 ⁇ 01 0170 primer and 0.2 01 yode primer (3 ⁇ 41? 0.2 ⁇ , Polymerase reaction buffer solution (1; substitute, urine) and 1 (blood 01? 1 ⁇ 1116 1840 polymerase) were mixed. Subsequently, amplification reactions of 95 ° 0 40 seconds, 58 ° 0 30 seconds, and 72 ° 0 1 minute were performed in a polymerase chain reaction apparatus for 25 cycles, thereby amplifying the ubiquitin gene 1 ' with the amplified 1X170. Obtained.
  • the plasmid show 53 was cut into 3 11 and 3 ⁇ 4, and subjected to 2% agarose gel electrophoresis to obtain 330 1> and 1,500 1), respectively. Subsequently, 141) ⁇ linkage enzyme was inserted into the ⁇ 110 vector digested with restriction enzyme As and]: to obtain a plasmid? # 11 (: -1 '(170- # 53) (Fig. 4). In this case, 1 (170-1] 6 53 is represented by the nucleotide sequence of SEQ ID NO. 2019/209051 1 »(: 1 ⁇ 1 ⁇ 2019/005020 plasmid? 11 (:-1 '(170-A1353) was used to transform the E.
  • Plasmid? 11 (:-1 '(170-1) 6 53) obtained in Example 1.2.2 was used as a template, and 0.201 61'01 «70 primer and 0.2 ⁇ 1 0 1 10170 (03 ⁇ 3 primer) were used.
  • E. coli B21 (B3) strain was transformed using the plasmid ? 11 (: -1 '# 70- (00003) 3-1] 6 53. The transformed strain was then added with antibiotic ampicillin. After incubation in solid medium, the colonies Incubated at 37 ° C in liquid medium. Then, shaking culture was performed for about 4 hours after the addition of 1 ⁇ to the final 1-concentration at the time when the cell density reached about 0.2 absorbance at ( ⁇ 600.
  • the plasmid? 11 (:-1 '(170-1) 653) 53 obtained in Example 1.2.2 was used as a template for the 0.2 ⁇ open primer and 0.2 10170 (03 ⁇ primer (11 0.2, IX vs. large polymerase reaction).
  • 95 ° 0 40 seconds Genetic 1X170 was obtained by performing amplification reaction of 30 seconds, 72 minutes in 25 cycles. The amplified fragments were cladded.
  • Amplified short cut! 1170 3 cuts to hot and 831 to 1, 0 short cut 03-
  • restriction enzyme 3 ⁇ 4 was cut into two. Thereafter, electrophoresis on 2% agarose gel yielded 0 fragments of about 150 ⁇ and 1300 1), respectively, followed by digestion with restriction enzymes ⁇ and crab.
  • the plasmid? 11 (: (170- (00 ⁇ 3) 3) 53) was obtained by inserting the vector into the vector using 140 ligation enzyme (Fig. 8). In this case, 1X170-(( ⁇ ) 3-? 53 is represented by the nucleotide sequence of SEQ ID NO: 17.
  • E. coli ⁇ 21 (Example 3) strain was transformed using the plasmid? 11 (: -1 ') (170- (00 ⁇ 3) 3 53). Thereafter, the transformed strains were cultured in a 1 3 to 6 1) solid medium to which the antibiotic Mpicillin was added, and the colonies obtained therein were cultured in a 37 ° 0 shake incubator in 1 liquid medium to give a cell density of 600. At the point when the absorbance reached about 0.2, the final 1 concentration After the addition, shaking culture was performed for about 4 hours more.
  • a plasmid obtained in Example 1.2.1 was used as a template for 0.2 1) 11101 acid® primer and 0.2 ? 53 (11 0 ! ' ) Primer ( ⁇ 1? 0.2 ⁇ Polymerase reaction complete solution (!!, 13 ⁇ 4 show) and 1 11 1: polymerase were mixed. After that, in the polymerase chain reaction apparatus, 72 1 minute amplification reaction was performed at 25 cycles to obtain gene 116 53.
  • E. coli ⁇ 21 strain (Example 3) was transformed using the plasmid ⁇ 1 ⁇ --53-1 '# 7. Thereafter, the transformed strains were cultured in a ⁇ 13- seedlings solid medium supplemented with antibiotic ampicillin, and the colonies obtained therein were cultured at 37 ° 0 in 18 liquid medium. After that, when the cell density reached about 0.2 absorbance at ⁇ 600, shaking cultivation was performed for about 4 hours after adding 117 ( ⁇ ) to reach a final concentration of 0.5.
  • a part of Escherichia coli cells were obtained by centrifugation, and then the cells were disrupted and subjected to K-polyacrylamide electrophoresis. As shown in FIG. 11, it was confirmed that the 13 protein was expressed in a fused form of about 60 1 3 ubiquitin and 1 ⁇ 17.
  • the lane shows the protein molecular weight marker
  • lane 1 shows the precipitate centrifuged after E. coli crushing after 4 hours after the addition of 11 ( ⁇ )
  • lane 2 shows the supernatant centrifuged after crushing E. coli.
  • Expression vectors for animal cells capable of expressing? 53 were prepared. 13 ⁇ 453 primer was prepared to obtain? 53 gene. The sequence of each primer is as described in Table 7 below.
  • Example 1.2 Plasmid obtained from 1. ⁇ -1] 6 53 rule template, 0.2 0.2 01 13 ⁇ 4) 53 primer and 0.2 01 53 53 (1101 ' ) primer 0.2 ⁇ , IX (: 111 3 1116 large polymerase reaction buffer solution (, 13 ⁇ 4 show) and 1 111 1: 011) 1 ⁇ 1116 large polymerase were mixed. Thereafter, an amplification reaction of 95 ° 0 40 seconds, 58 30 seconds, and 72 ° 0 1 minutes was performed in a polymerase chain reaction apparatus in 25 cycles to obtain a gene? 53.
  • Plasmid! £ 53-1 (: / 3) was used for transfection into animal cells ⁇ 0, the cells were disrupted, polyacrylamide electrophoresis was performed, and they were shown as Western blot using 81111-0 ⁇ 0 antibody. As shown in Figure 13, it was confirmed that the 553 protein of about 55 ⁇ size was expressed, where lane represents a protein molecular weight marker, lane 1 is transfected into animal cell ⁇ 0, and the cells are crushed -poly After acrylamide electrophoresis, it was confirmed by Western blot using 2 ⁇ ⁇ -0 ⁇ 0 antibody Example 1.3.
  • the cells were recovered by centrifugation, and the recovered cells were washed once with seedlings, and then suspended in cells using? 68 solution, and the suspended cells were crushed by using a sonicator. Was performed.
  • the crushed cells were centrifuged using a high-speed centrifuge and the insoluble fractions were recovered.
  • the recovered insoluble fractions were washed three times using an 8.0 solution of 50 ⁇ s Tris and 100 ethylenediaminetetraacetic acid. Thereafter, 6 guanidine, 100 sodium phosphate, and 10 Tris 8.0 solution were dissolved in a 0.45 filter, and then filtered into a pre-packaged nickel chromatography column to perform a primary purification.
  • Lanes 3 to 4 show the results of eluting with 8M UREA / 50mM Na-phosphate / 500mM NaCl / 50mM Imidazole solution.
  • Lanes 5 to 7 show the results of eluting with 8M UREA / 50mM Na-phosphate / 500mM NaCl / 100mM Imidazole solution.
  • Lanes 8 to 9 show the results of eluting with 8M UREA / 50mM Na-phosphate / 500mM NaCl / 250mM Imidazole solution.
  • Lanes 10 to 11 show the results of eluting with 8M UREA / 50 mM Na-phosphate / 500 mM NaCl / 500 mM Imidazole solution.
  • the eluted solution recovered by nickel chromatography was subjected to solution exchange with PBS using the principle of osmotic pressure.
  • the supernatant was recovered by centrifugal separation of the eluted solution, and the protein amount of the recovered eluted solution was measured by protein quantification.
  • T0M70- (GGGGS) 3-p53 protein was quenched with liquid nitrogen and stored in a -80 ° C cryogenic freezer.
  • lane M represents the protein molecular weight marker
  • lane 1 represents the T0M70- (GGGGS) 3-p53 protein obtained after the injection in PBS buffer solution.
  • T0M70- (GGGGS) 3-UB-p53 recombinant protein Using E. coli expressing the T0M70- (GGGGS) 3-UB-p53 recombinant protein, the T0M70- (GGGGS) 3-UB-p53 protein was isolated and purified in the same manner as in Example 1.3.1. As a result, T0M70- (GGGGS) 3-UB-p53 protein was eluted (FIG. 16).
  • lane M of FIG. 16 shows a protein molecular weight marker
  • lane 1 shows a nickel affinity chromatography loading sample.
  • Lane 2 shows no binding to the nickel affinity resin.
  • Lane 3 shows the result of eluting with 8M UREA / 50mM Na-phosphate / 500mM NaCl / 50mM Imidazole solution.
  • Lanes 4 to 7 show the results of eluting with 8M UREA / 50mM Na-phosphate / 500mM NaCl / lOOmM Imidazole solution. Lanes 8 to 11 are 8M UREA / 50mM Na-phosphat e / 500mM NaCl / 250mM Results are shown with the solution of Imidazole.
  • the protein amount of the recovered eluate was measured by protein quantification and confirmed by using S-PAGE.
  • the confirmed T0M70- (GGGGS) 3-UB-p53 protein was quenched with liquid nitrogen and stored in a -80 ° C. cryogenic freezer.
  • lane M of FIG. 17 shows a protein molecular weight marker
  • lane 1 shows the T0M70- (GGGGS) 3-UB-p53 protein obtained after dialysis in a PBS buffer solution.
  • Example 1.3.3 E. coli-derived recombinant UB-p53 protein isolation and purification
  • BL2KDE3 -producing strains expressing the ubiquitin fused mature UB-p53 protein were inoculated in LB liquid medium and incubated in a 37 ° C shake incubator, when the absorbance reached 0.4 at 0D600 for 4 hours by adding 0.5 mM IPTG. Further shaking cultures were used to express mature UB-p53 protein fused with ubiquitin.
  • UB-p53 protein was isolated and purified in the same manner as in Example 1.3.1. As a result, UB-p53 protein was eluted (FIG. 18).
  • the lane of Figure 18 shows the protein molecular weight marker
  • lane 1 shows the nickel affinity chromatography loading springs.
  • Lane 2 shows no binding to the nickel affinity resin.
  • Lane 3 shows the result of eluting with 8M UREA / 50mM Na-phosphate / 500mM NaCl / 50mM Imidazole solution.
  • Lanes 4 to 6 show the results of eluting with 8M UREA / 50 mM Na-phosphate / 500 mM NaCl / 100m Imidazole solution.
  • Lanes 7 to 9 show the results of eluting with 8M UREA / 50mM Na-phosphate / 500mM NaCl / 250mM Imidazole solution.
  • Lanes 10 to 11 are 8M
  • the protein amount of the recovered eluate was measured by protein quantification and confirmed using SDS-PAGE. As shown in Figure 19, the confirmed UB-p53 protein was quenched with liquid nitrogen and stored in a -80 ° C cryogenic freezer. At this time, the lane of Figure 19
  • M shows the protein molecular weight marker
  • lane 1 shows the UB-p53 protein after dialysis in PBS buffer solution.
  • Example 1.3.4 E. coli-derived UB-p53-T0M7 protein isolation and purification
  • E. coli BL2KDE3 producing strain expressing the ubiquitin fused mature UB-P53-T0M7 protein was inoculated into LB medium and incubated at 37 ° C When the absorbance reached 0.4 at 0D600, 0.5 mM IPTG was added and further shaken for 4 hours to express ubiquitin fused mature UB-p53-T0M7 protein.
  • UB-P53-T0M7 protein was isolated and purified in the same manner as in Example 1.3.1. As a result, UB-P53-T0M7 protein was eluted (FIG. 20).
  • lane M of FIG. 20 shows a protein molecular weight marker
  • lane 1 shows a nickel affinity chromatography loading sample.
  • Lane 2 shows no binding to the nickel affinity resin.
  • Lane 3 shows the result of eluting with 8M UREA / 50mM Na-phosphate / 500mM NaCl / 10M Imidazole solution.
  • Lane 4 shows the result of eluting with 8M UREA / 50mM Na-phosphate / 500mM NaCl / 50mM Imidazole solution.
  • Lanes 5 to 7 are 8M UREA / 50mM Na-phosphat e / 500mM NaCl / 100mM
  • Lanes 8-9 are 8M
  • the protein amount of the recovered eluate was measured by protein quantification and confirmed by using S-PAGE. As shown in Figure 21, the confirmed UB-p53 protein was quenched with liquid nitrogen and stored in -80 ° C ultra low temperature cold storage. At this time, the lane of Figure 21
  • M shows the protein molecular weight marker
  • lane 1 shows the UB-P53-T0M7 protein after dialysis in PBS buffer solution.
  • Example 2 Preparation of Fusion Proteins Including Granzyme B
  • human-derived GranzymeB In order to express human-derived GranzymeB as a recombinant protein, total shows were extracted from human-derived natural killer cells to synthesize cDNA from them. Specifically, human-derived natural killer cells (human natural cells) were cultured in 10% serum medium under 5% carbon dioxide at 37 ° C. (1 ⁇ 10 6 cel l). Thereafter, RNA was obtained in the same manner as in Example 1.1, and then used as a template for polymerase chain reaction of the Granzyme B gene.
  • Ubiquitin fused form In order to prepare a protein, an expression vector capable of expressing 1x1170, a linker, and ubiquitin in the form of fusion (urine: urine) was prepared.
  • Plasmid Show-A obtained in Example 2.1 The essential gene was digested with restriction enzymes 3 (: 11 and 3 ⁇ 4) and subjected to 2% agarose gel electrophoresis to about 700. Restriction enzymes after obtaining fragments The cut into 3 ⁇ 4 ⁇ 11 (: -?? 1 '(170- (00003) 3-1] 6- 53) was inserted into a plasmid vector using a ligase 14 £ 1110-10170 - (( ⁇ 5) 3 1] 6-A 2 63 was obtained (SEQ ID NO: 27) (FIG. 23). 2019/209051 1 »(: 1 ⁇ 1 ⁇ 2019/005020 Plasmid ?
  • ⁇ 11 (:-1 ′ (170- (0000 ⁇ 3-1] 6- (Urine 3112,68 Transformed. Subsequently, the transformed strain was added with antibiotic empicillin. After culturing in a solid medium, the colonies obtained therein were cultured in a 37 ° 0 shake incubator in 18 liquid medium and added 1 ⁇ ( ⁇ ) to a final 0.5 concentration when the cell density reached about 0.2 absorbance at ⁇ 600. After shaking, the culture was further shaken for about 4 hours.
  • Ubiquitin in order to prepare the essential protein in the form of a fusion of 1X17 to the ubiquitin and mitochondrial outer membrane
  • An expression vector capable of expressing an arc of fusion form: urine protein in the order of 1 ⁇ 17 was prepared. Plasmid obtained in Example 2. The gene was digested with restriction enzyme 3 11 and ashed, followed by electrophoresis on 2% agarose gel. 0 fragments were obtained, followed by restriction enzymes 3 (: 11 and 3 ⁇ 41 cleaved with? ⁇ 1 ⁇ -example_53). 1 ⁇ 17 was obtained (FIG. 25). In this case, 1] 3-Ah 2,6 Table-103 ⁇ 417 is represented by the nucleotide sequence of SEQ ID NO: 28.
  • E. coli ⁇ 21 (X3) strain was transformed using the plasmid ⁇ 1 ⁇ --- ⁇ : 1117. Thereafter, the transformed strains were cultured in a ⁇ 13 ⁇ 13111 (16) solid medium to which the antibiotic Mpicillin was added, and the colonies obtained therein were cultured in 37 V conditions in 1 liquid medium, and the cell density was 0.00. At the time of reaching the absorbance of about 0.2, shaking culture was further performed for about 4 hours after adding 1 ⁇ ( ⁇ ) to a final concentration of 0.5.
  • T0M70- (GGGGS) 3-UB-Gr anzymeB protein was isolated and purified in the same manner as in Example 1.3.1. As a result, T0M70- (GGGGS) 3-UB-GranzymeB protein was eluted (FIG. 27).
  • the lane of Figure 27 shows a protein molecular weight marker
  • lane 1 shows a nickel affinity chromatography loading sample.
  • Lane 2 shows no binding to the nickel affinity resin.
  • Lanes 3 to 4 show the results of eluting with 8M UREA / 50mM Na-phosphate / 500mM NaCl / 50mM Imidazole solution.
  • Lanes 5 to 7 show the results of eluting with 8M UREA / 50mM Na-phosphate / 500mM NaCl / 100mM Imidazole solution. Lanes 8 to 9 show the results of eluting with 8M UREA / 50mM Na-phosphate / 500mM NaCl / 250mM Imidazole solution.
  • the protein amount of the recovered eluate was measured by protein quantification and confirmed using SDS-PA ⁇ .
  • the confirmed T0M70- (GGGGS) 3-UB-Gr anzymeB protein was quenched with liquid nitrogen and stored in an _80 ° C cryogenic freezer.
  • lane M of Figure 28 shows a protein molecular weight marker
  • lane 1 shows the TOM70- (GGGGS) 3-UB-Gr anzymeB protein after dialysis in PBS buffer solution.
  • Example 3 Preparation of Fusion Proteins Containing RKIP
  • Human dermal fibroblasts fibroblast cell in the 10% serum-free medium and incubated under 5% carbon dioxide, 37 ° C Condition (1x106 cell). Thereafter, RNA was obtained in the same manner as in Example 1.1, and then used as a template for polymerase chain reaction of the RKIP gene.
  • T2RKIP primer encoding amino terminal proline and XRKIP (noT) primer encoding carboxyl terminal were synthesized, and then cDNA prepared above. PCR was performed using as a template. The sequence of each primer is as described in Table 9 below.
  • the mold prepared above was used as a mold 0.2 0.2 0 1 121 ⁇ 1? Primer and 0.2 3 ⁇ 43 ⁇ 411 3 0101 ') primer Only in IX polymerase reaction buffer (!; Yoe, Sho) and 01? 1 ⁇ 1116 of 1 111 ⁇ 1; The polymerase was mixed. Thereafter, the amplification reaction of 95 40 seconds, 58 ° 0 30 seconds, 1 minute in the polymerase chain reaction apparatus was carried out in 40 cycles. After the reaction, the amplified fragment of about 560! was separated by electrophoresis on 1% agarose gel,
  • the plasmid VII gene obtained in Example 3.1 was replaced with restriction enzyme 33 (: 11). 2019/209051 1 »(: 1 ⁇ 1 ⁇ 2019/005020
  • 3 ⁇ 41 was digested with 2% agarose gel and subjected to electrophoresis to obtain 56 fragments of 0 fragments, followed by restriction enzyme 3 (: 1 1 and? ⁇ 11 (:-1 ′ (170- (0000 ⁇ 3- 1] 6-53) was inserted into the vector using a 40-linking enzyme to obtain a plasmid? 11-1 ' (170- (0000 ⁇ 3-1®- ⁇ ⁇ ) (Fig. 30).
  • 1 ′ (170- (000) 3-to-13 ⁇ 411 3 was represented by the nucleotide sequence of SEQ ID NO.
  • Plasmid ⁇ 11 (: -? 1 ' (170- (000) 3- ⁇ - using ⁇ 11) was transformed to E. coli ⁇ 21 ( ⁇ 3) strain. Subsequently, the transformed strain was added with antibiotic empicillin. After incubation in the medium, the colonies obtained here were cultured in a high-pressure liquid medium in a 37 ° 0 shake incubator, and then added 1 such that the final concentration was 0.5 at the time when the cell density reached about 0.2 absorbance at 0 ⁇ 00. Shaking culture was performed for about 4 hours more.
  • Example 1.3 1.1170- (0000 ⁇ 3- -13 ⁇ 41? Protein was isolated and purified. The result is 1 (170- (0000 3-Yes-13 ⁇ 41? Protein was eluted (FIG. 32).
  • lane 3 ⁇ 41 of FIG. 32 shows a protein molecular weight marker
  • lane 1 shows a nickel affinity chromatography loading sample.
  • lane 2 shows that it is not bonded to the nickel affinity resin.
  • Lane 3 shows the result of eluting with 50 mM Na-phosphate / 500 mM NaCl / lOmM Imidazole.
  • Lanes 4 to 6 show the results of eluting with 50 mM Na-phosphat e / 500 mM NaCl / 50 mM Imidazole.
  • Lanes 7 to 8 show the results of eluting with 50 mM Na-phosphat e / 500 mM NaCl / lOOmM Imidazole.
  • Lanes 9 to 10 show the results of eluting with 50 mM Na-phosphat e / 500 mM NaCl / 175 mM Imidazole.
  • Lanes 11 to 13 show the results of eluting with 50 mM Na-phosphat e / 500 mM NaCl / 250 mM Imidazole.
  • Lanes 14 to 16 show the results of eluting with 50 mM Na-phosphat e / 500 mM NaCl / 500 mM Imidazole.
  • the protein amount of the recovered eluate was measured by protein quantification and confirmed by using S-PAGE.
  • the confirmed TOM70- (GGGGS) 3-UB-RKIP protein was quenched with liquid nitrogen and stored in a -80 ° C. cryogenic freezer.
  • lane M of Figure 33 shows a protein molecular weight marker
  • lane 1 shows the T0M70- (GGGGS) 3-UB-RKIP protein after dialysis in PBS buffer solution.
  • Fibroblasts human dermal f ibroblast cel l
  • T2PTEN primer encoding amino terminal threonine and XPTEN (noT) primer encoding carboxyl terminal were synthesized, and then the cDNA prepared above. PCR was performed using as a template. The sequence of each primer is as described in Table 10 below.
  • the above prepared 00 ⁇ as a template was used to prepare 0.2 01 12 ⁇ primer and 0.2 01 pe primer (1? 0.2 ⁇ , IX ⁇ 01 ⁇ 1 ⁇ 26 ⁇ I) polymerase reaction buffer solution (!, ⁇ SHOW) and 1 111111; 00-1 ⁇ 1116 big polymerase were mixed. Thereafter, the amplification reaction of 95 ° 0 40 seconds, 58 X: 30 seconds, 72 ° 0 1 minute was performed in a polymerase chain reaction apparatus in 40 cycles. After the reaction, about 1,200! Of the amplified show fragments were separated by electrophoresis on 1% agarose gel,
  • the vaccinated vector was inserted using 14 ligase.
  • the sequencing of the obtained urine resulted in the encoding of human 13 ⁇ 4 protein. It was confirmed that it was obtained.
  • the obtained gene Named (Fig. 34), The nucleotide sequence is the same as the nucleotide sequence of SEQ ID NO: 35.
  • the strain E. coli ⁇ 21 ( ⁇ 3) was transformed using £ 111 (: -1 ') (170- (0000 ⁇ 3-Example-1> ⁇ ). The transformed strain was then added with antibiotic ampicillin. After incubation in the medium, the colonies obtained therein were When cultured under the conditions in the medium, the cell density reached the final 0.5 concentration at the time when the cell density reached about 0.2 absorbance at 0_0.
  • Example 1 T0M70- (GGGGS) 3-UB-PTEN protein was isolated and purified in the same manner as in 1. As a result, T0M70- (GGGGS) 3-UB-PTEN protein was eluted (FIG. 37). At this time, the lane of Figure 37 shows a protein molecular weight marker, lane 1 shows a nickel affinity chromatography loading sample. Lane 2 shows no binding to the nickel affinity resin. Lane 3 shows the result of eluting with 8M UREA / 50mM Na-phosphate / 500mM NaCl / 10m Imi dazo le solution.
  • Lane 4 shows the result of eluting with 8M UREA / 50mM Na-phosphate / 500mM NaCl / 50mM Imi dazo le solution.
  • Lanes 5 to 8 show the results of eluting with 8M UREA / 50 mM Na-phosphate / 500 mM NaCl / 100 mM Imi dazo le solution.
  • Lanes 9 to 10 show the results of eluting with 8M UREA / 50 mM Na-phosphate / 500 mM NaCl / 250 mM Imi dazo le solution.
  • Lane 11 shows the result of eluting with 8M UREA / 50mM Na-phosphat e / 500mM NaCl / 500mM Imi dazol e solution.
  • the protein amount of the recovered eluate was measured by protein quantification and confirmed using SDS-PAGE.
  • the confirmed TOM70- (GGGGS) 3-UB-PTEN protein was quenched with liquid nitrogen and stored in -8CTC cryogenic freezer.
  • lane M of FIG. 38 shows a protein molecular weight marker
  • lane 1 shows T0M70- (GGGGS) 3-UB-PTEN protein after dialysis in PBS buffer solution. 2019/209051 1 »(: 1 ⁇ 1 ⁇ 2019/005020
  • Example 5.1 E. coli-derived recombination Isolation and Purification of Ubiquitin Matured Type? -Inoculate E. coli ⁇ 21 (Example 3) producing strain expressing 1X17 protein into 1 liquid medium and incubate at 37 V. When the absorbance reaches 0.3 from 0 to 00, put it in the refrigerator to lower the temperature of the culture medium. Change to 1810 and add 0.5 1 ⁇ Protein was expressed.
  • the cells were recovered by centrifugation, and the recovered cells were washed once with 50 mg of sodium phosphate, 500 l, 10 1 imidazole, and 8.0 solutions.
  • the crushing process was performed using a sonicator.
  • the crushed cells were centrifuged using a high-speed centrifuge and the supernatant was recovered.
  • the recovered supernatant was filtered using a 0.45 filter and loaded on a pre-packaged nickel chromatography column to carry out the first purification.
  • Lane 7 shows the result of 50 ⁇ -phosphate / 500mM 01/70 11 (2016).
  • Lane 8 shows the results of eluting with 50-6/500 (31/75 sunk).
  • Lane 9 shows the result of forgiveness as 50 ⁇ / (1/80 1 mi 1 (2016).
  • Lane 10 shows the result of eluting with 50 1) 11031) 11 6/500 () 1/85 sunk.
  • Lane 11 is 50 ⁇ 1 031) 11 6/500 01/90
  • the final 113 1 3 -1 '(17 proteins identified were quenched in liquid nitrogen and stored in -801: cryogenic freezer.
  • the lane of Figure 40 shows a protein molecular weight marker, lane 1 50 after mixing the fusion protein fraction
  • the protein obtained after dialysis in the solution is shown.
  • E. coli ⁇ 21 ( ⁇ 3) producing strains expressing 3 were inoculated into 1 ⁇ liquid medium and incubated at 37 ° 0 condition. When the absorbance reached ⁇ 600 to 0.3, put them in the refrigerator to lower the temperature of the culture medium and set the incubator temperature to 18. After changing to, 0.5 1 ⁇ ⁇ was added, followed by further shaking culture for one day to express one recombinant protein 70- (0000 (3-1] 6-0? 1 3 .
  • the cells were recovered by centrifugation, and the recovered cells were washed once with 50 mg of sodium phosphate, 500, (1, 10 imidazole, 8.0 solution) and suspended.
  • the cells were subjected to the disruption process using a sonicator.
  • the crushed cells were centrifuged using a high-speed centrifuge and the supernatant was recovered, and the recovered supernatant was filtered using a 0.45! M filter and loaded on a pre-packed nickel chromatography column to carry out the first purification.
  • a crushing solution containing the recombinant protein! '(170- (0000 ⁇ 3-1] 6 1) was loaded onto a column containing nickel resin, and then 50 sodomous phosphates, 500 ⁇ (: 1, 20 imidazole, 2019/209051 1 »(: 1 ⁇ 1 ⁇ 2019/005020
  • the .3cin 1 ⁇ 1-2 gene obtained by requesting synthesis of psoas muscle to Bionics was named 1) 1X57-1 seedling2.
  • the nucleotide sequence is the same as the nucleotide sequence of SEQ ID NO: 37. 2019/209051 1 »: 1 ⁇ 1 ⁇ 2019/005020
  • Example 6.2. 1 Quadriple Protein Expression Vector Preparation In order to prepare 1 ⁇ ; 1-2 protein in fused form, an expression vector capable of expressing the ubiquitin, 1 ⁇ 17, fused form of% 1 seedling 2 gene was prepared.
  • Example 6.2.1 As a template, 0.2 0 1 primer ⁇ 1? 2) and 0.2 01 primer 00117 (1101 ') 0.2, The polymerase reaction buffer solution (sea, 13 ⁇ 4 show) and 1 111 ⁇ 1; 011 5 1'11116 184 0. Thereafter, amplification reactions of 95 ° 0 40 seconds, 58 ° 0 30 seconds, and 72 ° 0 1 minute were performed in a polymerase chain reaction apparatus in 25 cycles to obtain gene% 1 1yo 2-1 ⁇ 17.
  • Plasmid Animal cells were transfected into ⁇ 0, and the cells were disrupted and then subjected to ⁇ -polyacrylamide electrophoresis and expressed as Western blot using 3 ⁇ 1-0 ⁇ 0 antibody. As shown in FIG. 46, about 35 Fused form of size 1X17 It was confirmed that the protein was expressed. At this time, the lane of Figure 46 shows a protein molecular weight marker, lane 1 is transfected into animal cells ⁇ 0, crushed the cells and subjected to ⁇ -polyacrylamide electrophoresis It was confirmed by Western blot using the antibody.
  • coli-derived recombinant Sham Shun ⁇ 2-1 (17 protein isolation and purification by the same procedure as in Example 1.3.1. Protein was isolated and purified. The result is every- ⁇ !? ä? Protein was eluted (FIG. 47).
  • lane 3 ⁇ 41 of Figure 47 shows a protein molecular weight marker
  • lane 1 shows a nickel affinity chromatography loading sample.
  • Lane 2 is nickel nickel resin 2019/209051 1 »(: 1 ⁇ 1 ⁇ 2019/005020 It is not combined.
  • Lane 3 shows the result of eluting with 81 11 ′: 501 ⁇ ⁇ - ⁇ 6/5001 01/10 11 (132016).
  • Lanes 4 to 5 are 813 ⁇ 4
  • Ubiquitin a fused form of 1X17 that binds to the mitochondrial envelope
  • an expression vector capable of expressing 1 ⁇ 3 ⁇ 41 in a fused form of ubiquitin, 1 ⁇ 17 was prepared.
  • Example 7 Plasmid obtained in 1.!) 11: 57-% 1 3 ⁇ 41 ⁇ gene was digested with restriction enzymes 3 ⁇ 11 and 3 ⁇ 4 and electrophoresed on 2% agarose gel to obtain approximately 750 ⁇ fragments. 11 ⁇ -1] 6-(? 53) -1 : (1) cut into 3 ⁇ 41 using a 140-linked enzyme into 17 vectors and the plasmid ⁇ 1 ⁇ - ⁇ -3 ⁇ 1 ⁇ 1 ⁇ - 2019/209051 1 »(: 1 ⁇ 1 ⁇ 2019/005020
  • Plasmid ⁇ 1 ⁇ -116-% 1 ⁇ - ?? By using the E. coli was transformed ⁇ 21 ( ⁇ 3) strain. Subsequently, the transformed strains were cultured in a solid medium containing the antibiotic Mpicillin ⁇ -)), and the colonies obtained therein were cultured in a 37 shake incubator in a 1- extraction liquid medium to have a cell density of about 600. At the time of reaching 0.2 absorbance, 1 3 ⁇ 4 was added to the final 1 concentration, followed by further shaking culture for about 4 hours.
  • 1X17 fused form that binds to the mitochondrial envelope In order to prepare a protein, an expression vector for animal cells capable of expressing% 3 ⁇ 41 in a fused form of 1 ⁇ 17 was prepared. Primer 0 acid ⁇ «) was prepared to obtain 1 ⁇ 17 and 3 ⁇ 41 ⁇ genes. The sequence of each primer is as described in Table 12 below.
  • 1 ⁇ agarose gel electrophoresis was obtained by digestion with 3 ⁇ 4101 to obtain 0. fragments of about 850 1), respectively, followed by linkage to 1 ⁇ ⁇ SHO3.1-1 (: / bar3 show vector digested with restriction enzymes 0 and 3 ⁇ 41). It was inserted using an enzyme to obtain plasmid 1) ⁇ 1%-% 1 1 1-1 ' [17-111 / 3 (Fig. 51). In this case,% 1 3 ⁇ 41 ⁇ -1'03 ⁇ 417-1 ⁇ (: / bar3 is represented by the nucleotide sequence of SEQ ID NO: 45.
  • Plasmid Animal cells were transfected into ⁇ 0, and the cells were disrupted and ⁇ ) polyacrylamide electrophoresis was performed, and the antibody was used as a Western blot. Degree
  • lane 3 ⁇ 41 of FIG. 52 shows a protein molecular weight marker
  • lane 1 was transfected into animal cell ⁇ 0, and the cells were crushed and then subjected to -polyacrylamide electrophoresis. It was confirmed by Western blot using the antibody. Preparation of Protein To express it as a protein,
  • Restriction enzymes ⁇ 0 ⁇ and 3 ⁇ 41 were cleaved with 1% agarose gel and electrophoresed to obtain 0 fragments of about 760 1) and then digested with restriction enzymes ⁇ 0 ⁇ and 3 ⁇ 4! £-(3 ⁇ 41 ⁇ ) -1117-1 ⁇ (: / bar3 was inserted into the vector using 140 ligation enzyme to obtain plasmid 1 £-% 1 ⁇ 3 ⁇ 4-1 g-1 '(17-1 (: / 3) (Fig. 53). At this time, 1 ⁇ )-na-1 ' (1717 (: / 3) is represented by the nucleotide sequence of SEQ ID NO: 47.
  • Animal cells CH0 were transfected with plasmid pCMV-scFvPD-Ll-T0M7-myc / Hi s, and the cells were disrupted and subjected to SDS-polyacrylamide electrophoresis and Western blot using ant ic-myc antibody. It is shown. As shown in Figure 54, it was confirmed that the scFvPD-Ll protein of the fused form of about 35 kDa T0M7 size.
  • the lane of Figure 54 shows a protein molecular weight marker
  • lane 1 is transfected into animal cells # 0, and the cells were disrupted and subjected to SDS-polyacrylamide electrophoresis to Western using an ant ic-myc antibody Confirmed by blot.
  • SDS-polyacrylamide electrophoresis to Western using an ant ic-myc antibody Confirmed by blot.
  • mitochondria were separated from umbilical cord-derived mesenchymal stem cells (UC-MSC) by centrifugation. It was then stained with Mi toTr acker CMXRos Red.
  • the unreacted protein was removed by centrifugation and washed twice with PBS buffer. Then, the fluorescent protein in the form bound to the mitochondria was observed using a fluorescence microscope. As a control, purified GFP protein containing no mitochondrial outer membrane binding site was used. As a result, it was confirmed that the fluorescent protein (TOM70- (GGGGS) 3-UB-GFP) fused with the mitochondrial outer membrane binding site was located in the same place as the umbilical cord-derived mesenchymal stem cells (UC-MSC) mitochondria (Fig. 55a, 55b).
  • TOM70- (GGGGS) 3-UB-GFP) fused with the mitochondrial outer membrane binding site was located in the same place as the umbilical cord-derived mesenchymal stem cells (UC-MSC) mitochondria (Fig. 55a, 55b).
  • the bands were identified at the same position as the size of 60 kDa, the expected molecular weight in the mitochondria experimental group combined with T0M70- (GGGGS) 3-UB-p53 or UB-p53-T0M7 compared to the control group without the protein-bound mitochondria alone (Fig. 56). .
  • Mitochondria were isolated from umbilical cord-derived mesenchymal stem cells (UC-MSC) using a centrifugation method.
  • the isolated mitochondria were stained with Mi totracker CMX yoe, and the concentration and total amount of mitochondria isolated by BCA quantification method were used for centrifugation of gastric cancer cell lines using Oug, lug, 5ug, 10ug, 50ug, and LOOug.
  • hepatocytes WRL-68
  • fibroblasts f ibroblast
  • umbilical cord mesenchymal stem cells U-MSC
  • Mitochondria were isolated from the cell cells by centrifugation fractionation, respectively.
  • the cancer cells used as mitochondrial receptor cells were the A431 cell line, which is a skin epidermal cancer cell. At this time, using centrifugal force Mitochondria were delivered to the skin epidermal cancer cells by concentration (see Patent 10-2017-0151526).
  • a-smooth muscle act in (a-SMA) gene one of the genes involved in EMKEpi the al to mesenchymal transit ion
  • the hepatocellular carcinoma cells that received mitochondria showed a significant decrease in the expression of a-SMA protein depending on the mitochondrial concentration compared to those that did not. I could see that.
  • the E-ca er in protein one of the cell adhesion proteins, was found to increase depending on the concentration of mitochondria (Fig. 62). Changes in the proteins known to be involved in cancer metastasis were made by normal mitochondria injected into cancer cells, which may affect metastasis of cancer cells (met ast as is).
  • Example 16 Confirmation of Recombinant Protein p53 and Intracellular Injection in Foreign Mitochondrial Outer Membrane
  • Mitochondria were isolated from umbilical cord mesenchymal stem cells by centrifugation, stained with Mi totracker CMX Ros, and mixed with purified recombinant protein T0M70- (GGGGS) 3-UB-p53 or UB-p53-T0M7. After incubating at 4 ° C for 1 hour at 4 ° C, centrifuged to remove unreacted protein, washed twice with buffer PBS, and centrifugation of mitochondria with p53 protein. Injected into -484 cells (FIG. 63). At this time, the control group was used as a group that did not use mitochondria and a group that used mitochondria alone. After one day of incubation, p53 protein loaded in the foreign mitochondria injected into the cells was examined by fluorescence microscopy using immunocytochemistry (Immunocytochemi stry, ICC).
  • the nucleic acid fragmentation (DNA fragment at ion) has been stained in red color, indicating that apoptosis occurs.
  • the cells stained with mitochondria bound to T0M70- (GGGGS) 3-ub-p53 or p53_T0M7 were found to have a large amount of red stained areas, unlike the control group, which was T0M70- (GGGGS) 3-UB.
  • Apoptosis is caused by mitochondria to which -p53 or UB-p53_T0M7 is bound.
  • it was confirmed that more apoptosis occurred in the mitochondria to which the protein of T0M70- (GGGGS) 3-UB-p53 form was bound (FIG. 67a).
  • Example 17.2. Apoptosis Capability of Luciferase-coupled p53-loaded Foreign Mitochondria
  • T0M70- (GGGGS) 3-UB-p53 protein bound to the mitochondria obtained in Example 5.2 was transferred into the recipient cells
  • T0M70- (GGGGS) 3-UB-p53 protein was transferred into the recipient cells.
  • Cell-based analysis using reporter genes was performed to confirm whether biological activity is maintained.
  • the p53 protein is a transcr ipt ion factor, so the base sequence to which the p53 transcription factor can bind RRRCWWGYYY (where ur represents G or A, W represents A or T, and ' ⁇ represents C or) is 6
  • the gene repeated once was synthesized in the following sequence.
  • the base sequence of P53-promter-S is as follows (5'-GGG CAT GCT CGG GCA TGC) The base sequence of CCG GGC ATG CTC GGG CAT GCC CGG GCA TGC TCG GGC ATG CCC-3 ') (SEQ ID NO: 91) and P53-promter-AS is as follows (5'-GGG CAT GCC CGA GCA TGC CCG GGC ATG CCC) GAG CAT GCC CGG GCA TGC CCG AGC ATG CCC-3 ,) (SEQ ID NO: 92).
  • the polynucleotide T4 kinase enzyme was used to induce phosphorylation.
  • Phosphorylation-induced double-stranded gene was inserted into the pGL3 vector cleaved with restriction enzyme Sma I, and the plasmid p6xp53 was bound to luciferase, a reporter gene, by repeating the 6-sequence of the nucleotide sequence (RRRCWWGYYY) capable of binding p53 transcription factor -Luc completed.
  • Plasmid p6xp53-Luc and beta galactosidase expression vector plasmid pRSVb-gal were transformed into human kidney cells HEK293 cells by lipofectamine method.
  • HEK293 cells were treated with a conjugate of 10ug of mitochondria and 5ug, 10ug, and 20ug of T0M70- (GGGGS) 3-UB-p53 protein, respectively.
  • the control group was treated with 10 mitochondria to which PBS or p53 protein was bound, respectively.
  • luciferase activity was measured and analyzed, and the luciferase value divided by the value obtained by measuring the activity of beta galactosidase in order to correct the transformation efficiency was determined by luciferase. Determined by value.
  • Luciferase values were increased in cells treated with the combination of 10 ug mitochondria and 5 ug, 10 ug and 20 ug of T0M70- (GGGGS) 3-UB-p53 protein, respectively. It was confirmed that the activity was shown (Fig. 67B).
  • Example 18 Confirmation of Cancer Cell Line Metastasis Reduction Capability of Introduced RKIP-Introduced Foreign Mitochondria
  • Mitochondria isolated from umbilical cord-derived mesenchymal stem cells using centrifugation method were mixed with purified recombinant protein T0M70- (GGGGS) 3-UB-RKIP and bound to the reaction condition at 4 ° C for 1 hour at a 1: 1 ratio.
  • Protein bound Mitochondria were injected by centrifugation into breast cancer cell line MDA-MB-231, which is known to have a lowered RKIP protein and increased metastatic capacity.
  • a cell invasion assay was performed using a transwel l plate.
  • a matre igel was coated on 8 ym pore transwel l upper-chamber at 37 ° C for 30 minutes.
  • MDA-MB-231 cells injected with mitochondria alone and MDA-MB-231 cells injected with mitochondria conjugated with RKIP protein were used as test groups.
  • Each cell was placed in a transwel l upper chamber containing 1x105 cells in serum-free medium and a medium containing 10% bovine serum in the lower -chamber. After incubation at 37 ° C. for 12 hours, the cells were fixed with 4% paraformaldehyde for 1 hour (Fixat ion) and then stained with cells passing through matr igel using 1% crystal violet.
  • the show was transfected into CH0 cells using Lipofectamine LTX and PLUS or Lipofectamine 2000. ion).
  • the GFP-T0M7 show was used as a control. Cytosol and mitochondria were isolated from transfected cells by centrifugation to determine whether they were expressed in cells and bound to mitochondria in the same cell. The same protein levels were adjusted using BCA assay. Next PAGE Electrophoresis After Electrophoresis The results were observed by Western Blot. Monoclonal c-myc ant i body was used as the primary antibody and Ant i-mouse IgG HRP was used as the secondary antibody.
  • ScFv-HER2-T0M7 or ScFv-MEL-T0M7 proteins identified bands at the expected 35 kDa size, all of which were found in the mitochondrial layer, indicating that transfected and expressed proteins bind to intracellular mitochondria by T0M7. It could be expected (FIG. 69).
  • Mitochondria were isolated from CH0 cel 1 transfected with pCMV-ScFv-HER2-T0M7 or pCMV-ScFv-VIII-L1-T0M7. As a control , mitochondria of untransformed CH0 cells were isolated and used. Mitochondria isolated from each were stained with Mi totracker CMX Ros. The same amount of mitochondria was treated in SNU-484, a gastric cancer cell line, and the degree of mitochondria injected into the cells was compared the next day using a fluorescence microscope.
  • gastric cancer cell line 3 ⁇ -484 cell line was 5 X 10 6 per mouse.
  • Mitochondria isolated from cord blood mesenchymal stem cells as described above were prepared at 50 11 ⁇ per horse based on protein concentration for transplantation.
  • mitochondria was prepared by mixing well with the table of 100 1 ⁇ containing cancer cells.
  • 11170- (0000 ⁇ 3- ⁇ 53 protein was mixed together at a concentration of 1: 1 with the amount of mitochondria prepared in the Eppendorf tube before mixing with cancer cells, and left at room temperature for 1 hour. After the reaction time was completed, the supernatant was removed after centrifugation at 20,000 for 10 minutes to obtain pellets bound with protein ( ⁇ + 1: (170- (00003) 3-1] 61) 53). by using a buffer solution seedlings after the two times washing? the 53 protein binding mitochondrial Prepared by mixing well with 100 ⁇ of urine mixed with cancer cells.
  • the tumor volume was calculated by measuring the long axis and short length of the tumor and then applying the following equation.
  • mice In order to observe the physiological and morphological changes of mice by the administration of anticancer candidates, the changes were observed by measuring the body weight and tumor size twice a week from the time of administration of cancer cells and test substances (FIG. 74).
  • the weight of the mouse was measured using a scale, and the change of each group was analyzed using the value measured twice a week (FIG. 75). Changes in body weight over three weeks were not significantly different between the groups that were not injected with mitochondria, those who were administered with mitochondria alone, and those who were injected with modified mitochondria. Tumor size was calculated by measuring the length and width of the tumor using Cal iper and then applying it to the equation (1). The change of each group was analyzed using the value measured twice a week (FIG. 76). Tumor size increased significantly over time in the mitochondria-treated group, whereas in mice treated with mitochondria, the size of the tumors changed over time. In the mitochondria loaded with the p53 protein than the group administered, it was confirmed that the increase in tumor size was significantly lower (FIG.
  • the cells were homogenized using a syringe (syr inge) to break the cells, and then the mitochondria were obtained by continuous centrifugation.
  • the mitochondria was prepared by quantifying the mitochondrial protein concentration by the BCA assay.
  • the amount of ATP in mitochondria was determined using Cel ITi ter-Glo luminescence kit (Promega, Madi son, WI).
  • the prepared mitochondria were mixed in 100 ul of PBS, and then prepared in 96 wel l plates, and compared with 100 ul of PBS containing no mitochondria as a control. After adding 100 fd of the test solution included in the ki t in the same manner and reacted in a stirrer for 2 minutes to mix well, after 10 minutes at room temperature to measure the amount of ATP using a Luminescence micropl ite reader. Compared with the control group, it was confirmed that ATP was increased when mitochondria were included, and the function of mitochondria was confirmed (FIG. 78).
  • Example 24 Example 24.
  • JC-1 dye molecular probes, cat no.1743159
  • the prepared mitochondria were mixed in 50 M PBS, and then prepared in 96 wel l plates, and were prepared in the PBS (50 fd) group without the mitochondria and CCCP (R & D systems, CAS 555-60-2) treated group as controls.
  • CCCP the mitochondria's Ionophore, inhibits mitochondria's function by depolarizing the mitochondrial membrane potential (Membrane potent ial).
  • CCCP group is 50 It was reacted with the mitochondria separated by 10 minutes at room temperature.
  • the absorbance was measured using a property having a spectrum different according to the concentration generated by the change in the membrane potential. At low concentrations, it is present as a monomer and has green fluorescence. At high concentrations, dyes aggregate (J-aggregate) to give red fluorescence. The membrane potential of mitochondria was analyzed by calculating the ratio of green absorbance to red absorbance. After the reaction, the mitochondrial membrane potential was measured using a fluorescent microplate reader (Monomer: Ex 485 / Em 530, J-aggregate: Ex 535 / Em 590). The results are shown in FIG.
  • Example 25 Confirmation of Mitochondrial Damage Isolated by Confirmation of mROS Production Mi toSOX capable of analyzing mitochondrial free radicals in the separated mitochondria to confirm the damage of mitochondria of 5
  • red indi cator C lnvi trogen, cat no. M36008) dyes were used.
  • the prepared mitochondria were mixed in PBS 50 and then prepared in 96 wel l plates, and compared with PBS 50 M without mitochondria as a control.
  • Mi toSOX red dye was mixed with PBS 50 to a concentration of 10 pM and placed in a 96-wel l plate (final concentration 5
  • a fusion protein Dog-Sark or 101-Mill Escherichia coli
  • the ubiquitin protein is inserted between the mitochondrial outer membrane protein and the target protein to obtain a free target protein.
  • the recombinant fusion protein 1X170-13 ⁇ 4153 was reacted with] o > 1 enzyme at 371: for 1 hour.
  • Fusion protein obtained in the above example (1: (170- (0000 ⁇ 3-1] 6 53 or 1 ⁇ 170-)). It was observed whether the active protein dissociated by the ubiquitin cleavage enzyme present in the cell when entering the cell bound to the mitochondria.
  • MDA-MB-231 cells were disrupted and separated into mitochondrial and cytosolic fluids, respectively, using differentiated gravity.
  • SDS-PA® electrophoresis and Western blot analysis showed that for fusion proteins containing ubiquitin, mitochondrial outer membrane protein, linker protein, and GFP protein dissociated with ubiquitin were mostly detected in the cytosol.
  • the ubiquitin-free fusion protein most of the GFP protein in the mitochondrial outer membrane protein and the linker protein was detected in the mitochondrial fraction (FIG. 83).
  • mitochondrial outer membrane protein-linker-ubiquitin-activated protein bound to the mitochondria was cleaved from the ubiquitin and active protein linkages when injected into the cell, and the dissociated active protein was released to the cytoplasm.
  • mitochondria could be used as a delivery medium (del ivery vehi cle).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Microbiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)
  • Epidemiology (AREA)
  • Neurology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Mycology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명의 일구체예인 표적 타겟팅 단백질에 의해 개질된 미토콘드리아는 효과적으로 표적에 전달될 수 있다. 또한, 개질된 미토콘드리아에 결합된 목적 단백질이 세포 내로 전달되면 다양한 활성을 나타낼 수 있다. 이러한 개질된 미토콘드리아는 암 조직을 효과적으로 사멸시킬 수 있으므로 항암제로도 활용이 가능하다. 그뿐 아니라, 개질된 미토콘드리아에 적재된 목적 단백질에 따라 다양한 활성을 나타내므로, 개질된 미토콘드리아는 다양한 질환 치료에 활용될 수 있다. 또한, 본 발명의 일 구체예인 목적 단백질을 포함하는 융합 단백질 및 표적 타겟팅 단백질을 포함하는 융합 단백질은 미토콘드리아를 개질하기 위하여 사용될 수 있다. 또한, 상기 융합 단백질로 개질된 미토콘드리아는 표적 세포 내에서 다양한 효과를 나타낸다.

Description

2019/209051 1»(:1^1{2019/005020 명세서
개질된 미토콘드리아 및 이의 용도
기술분야
본 발명은 미토콘드리아를 개질시킬 수 있는 융합 단백질, 상기 융합 단 백질에 의해 개질된 미토콘드리아 및 이를 유효성분으로 포함하는 약학조성물을 제공한다. 배경기술
미토콘드리아는 세포 내 에너지 공급원인 아데노신 트라이포스페이트 ( 의 합성 및 조절에 관여하는 진핵세포의 세포 소기관이다. 미토콘드리아는 생체 내 다양한 대사 경로, 예를 들어, 세포 신호처리, 세포 분화, 세포사멸 뿐 만 아니라, 세포주기 및 세포성장의 제어와 연관이 있다. 미토콘드리아는 자신 의 유전체를 보유하고 있으며, 세포의 에너지 대사에 중추적 역할을 하는 소기관 이다. 미토콘드리아는 전자 전달 및 산화적 인산화 과정을 통해 에너지를 생산하 며, 세포사멸 신호 전달 경로에 관여하는등 중요한 역할을 한다.
미토콘드리아의 기능 저하에 의한 에너지 생산 감소는 다양한 질병을 유 발하는 것으로 보고된 바 있다. 미토콘드리아 유전체 및 단백체의 변이에 따라 전자전달연쇄반응의 기능이 저하될 경우, 생산 감소, 활성산소 과다 생성, 칼슘 조절 기능의 저하 등이 일어나게 된다. 이러한 경우 미토콘드리아의 막 투 과성에 변화가 일어나 세포사멸의 기능이 비정상적으로 일어나게 되고 이에 따른 암 및 난치성 질환이 야기될 수 있다.
이와 같이 미토콘드리아 기능 이상에 의해 발생하는 인간 질병으로는 미 토콘드리아 관련 유전병
Figure imgf000003_0001
당뇨병(¾136此1 ? 2001), 심장질환 (¾ 301 0 2002), 파킨슨병이나 알츠하이머병 등과 같은 노인성 치매(:니:1 ¥1 2006), 그리고 각종 암의 발생 ᆻ, 2005)과 암전이(13 1¾ 3 1(, 2008) 등 이 보고된 바 있다. 또한, 20◦여종 이상의 다양한 암에서 공통적으로 발견되는 특징은 세포사멸(크 야에 ) 기능의 손상, 염증반응의 증가, 그리고 비정상적인 대사 작용의 증가로 이루어졌다. 이러한 모든 과정들은 미토콘드리아의 기능과 밀접한관계를 가지고 있어 암과미토콘드리아의 상관관계가주목을 받고 있다. 한편, 정상세포의 경우는 전자전달계 과정을 통하여 글루코즈 한 분자당 36개의 ATP를 생산하지만 암세포의 경우는 정상세포와는 달리 충분한 산소 조건 하에서도 해당작용 (aerobic glycolysi s)을 통해 글루코즈 한 분자당 2개의 ATP를 생산하는 것으로 알려져 있다. 이와 같이 암세포가 정상세포와 달리, 에너지 측 면에서 비효율적인 해당 과정을 이용하는 이유는 빠른 세포 증식을 위해 필요한 아미노산, 지질, 핵산 등을 생산하기 위한 것으로 알려져 있다. 이러한 이유로 암세포는 정상 세포에 비해 산소 요구량이 적으며 많은 양의 젖산이 생산되는 것 으로 알려져 있다.
따라서, 암세포 내에서 일어나는 비정상적인 대사에 의한 암 미세환경의 조성 변화, 기능에 이상이 생긴 미토콘드리아에 의한 세포사멸의 억제와 염증반 응의 증가 및 암세포 내의 정상적이지 않은 대사반응은 암 증식에 있어 매우 중 요한 역할을 한다. 그러므로 이러한 특징을 이용하여 대사관련 항암제를 개발하 는 것은 기존 항암제의 부작용과 경제성 문제를 해결할 수 있는 좋은 방안이 될 수 있을 것이다.
세포내 존재하는 미토콘드리아를 분리하여 체외에서 세포에 처리하거나 체내에 주입할 경우 미토콘드리아는 세포안으로 들어가는 현상이 알려져 있다. 그러나, 이러한 현상을 이용하여 세포로부터 분리된 정상적인 미토콘드리아를 체 내에 주입하여 미토콘드리아 기능 이상으로 인해 발생하는 질환들에 대한 치료를 하거나, 특히, 미토콘드리아를 전달체로 이용하여 특정 단백질을 세포에 효과적 으로 전달함으로써 질환들을 치료할 가능성이 있는데 이에 대해서는 아직 보고된 바 없다. 기술적 과제
본 발명의 목적은 다양한 약리 효과를 나타낼 수 있는 단백질을 효과적으 로 세포 내로 전달할 수 있는 수단으로 미토콘드리아가 이용될 수 있다는 점을 보임으로써, 효과적인 단백질 전달 시스템을 제공하는 것을 목적으로 한다. 또 한, 약물을 효과적으로 전달하기 위한 재조합 단백질을 제공하며, 이를 이용하여 제작된 개질된 미토콘드리아를 제공하는 것을 목적으로 한다. 또한, 개질된 미토 콘드리아를 유효 성분으로 포함하는 약학 조성물을 제공하는 것을 목적으로 한 2019/209051 1»(:1^1{2019/005020 다. 과제 해결 수단
상기 과제를 해결하기 위하여, 외래 단백질이 미토콘드리아의 외막에 결 합된 개질된 미토콘드리아를 제공한다. 또한, 상기 개질된 미토콘드리아를 제조 하기 위하여, 미토콘드리아 외막 앵커링 펩티드 및 약리 목적 단백질을 포함하는 융합 단백질을 제공한다 . 또한 , 항체 또는 이의 단편 및 미토콘드리아 외막 앵커 링 펩티드를 포함하는 융합 단백질을 제공한다. 발명의 효과
외래 단백질이 결합된 미토콘드리아를 인체에 투여할 경우, 외래 단백질 이 효과적으로 세포 내로 전달될 수 있다. 또한, 세포 내로 전달된 약리 활성 단 백질에 의해 세포의 손상된 기능을 복구할 수 있다. 뿐만 아니라, 약리활성 단백 질을 포함하는 외래 단백질이 결합된 미토콘드리아가 세포 내로 전달될 경우, 세 포 내에서 약리활성 단백질은 미토콘드리아로부터 해리되어 유용한 역할을 기대 할 수 있다. 아울러, 항체 단편을 포함하는 개질된 미토콘드리아는 타겟되는 세 포에 효과적으로 전달될 수 있다. 특히, 암 조직의 표면에 존재하는 단백질을 타 겟으로 하는 항체의 단편이 미토콘드리아의 표면에 결합된 경우, 암세포 내로 개 질된 미토콘드리아가 효과적으로 전달될 수 있다. 따라서, 개질된 미토콘드리아 의 도입에 의해, 세포의 손상된 전자전달계가 회복될 뿐 아니라, 개질된 미토콘 드리아에 결합되어 있는 약리 활성 단백질에 의해 다양한 질병을 예방 또는 치료 할 수 있다. 도면의 간단한설명
도 1은 1뀨쇼 53 제조하는 방법을 도식화한 것이다.
도 2는 ?肝1加-1]6 53 벡터를 제조하는 방법을 도식화한 것이다.
도 3은 대장균에서 예-?53 단백질의 발현을 나타낸 것이다.
도 4는 ?肝11(:-1'(170-1]6 53 벡터를 제조하는 방법을 도식화한 것이다. 도 5는 대장균에서 1(170-1]6 53 단백질의 발현을 나타낸 것이다.
도 6은 ?肝1101X170-(000 )3-1]8 53 벡터를 제조하는 방법을 도식화한 2019/209051 1»(:1^1{2019/005020 것이다.
도 7은 대장균에서 1(170-((光0¾)3-118 53 단백질의 발현을 나타낸 것이 다.
도 8은 ? 11(:-1'0¾170-(0000幻31353 벡터를 제조하는 방법을 나타낸 것이 다.
다.
Figure imgf000006_0002
도 13은 형질전환된 (å0에서 ?53-1 (:/바3 단백질의 발현을 나타낸 것이 다- 도 14는 湖개 幻크 크크단백질을 정제한 후 이를 확인한 것이다. 도 15는 정제된 !'湖70-((¾00幻3 53 단백질을 나타낸 것이다.
도 16은 1湖70-(000¾)3-1]6 53 단백질을 정제한 후 이를 확인한 것이다. 도 17은 정제된 10170-(0{^5)3^-?53 단백질을 나타낸 것이다.
도 18은 1 -?53 단백질을 정제한후 이를 확인한 것이다.
도 19는 정제된 113153 단백질을 나타낸 것이다.
도 20은예 -피¾17 단백질을 정제한후 이를 확인한 것이다.
도 21은 정제된 1]8 53 -湖 단백질을 나타낸 것이다.
도 22는 쇼 - 幻에근표 벡터를 제조하는 방법을 나타낸 것이다.
도 23은 ?財110!'(170-(00003)3-1]6-아 2,6표 벡터를 제조하는 방법을 나 타낸 것이다.
도 24는 대장균에서 11170-(000¾)3-1]6-(뇨 2 68 단백질의 발현을 나타 낸 것이다.
Figure imgf000006_0001
벡터를 제조하는 방법을 나타낸 것이 다.
도 26은 대장균에서 1]8-아 2,68 - 1X17 단백질의 발현을 나타낸 것이다. 도 27은 1'(170-(000¾)3-1]6-& 2,68 단백질의 정제 결과를 나타낸 것이 다.
도 28은 정제된 1'(170-(0000幻3-仰-아 2,68 단백질을 나타낸 것이다. 2019/209051 1»(:1^1{2019/005020 도 29는 狀 벡터를 제조하는 방법을 나타낸 것이다.
도 30은 ?£1110^70-((^5)3^-1¾1? 벡터를 제조하는 방법을 나타낸 것이다.
도 31은 대장균에서 1'湖70-(0000幻3-仰-狀0:) 단백질의 발현을 나타낸 것 이다.
도 32는 10170-((^8)3^-1¾1?단백질의 정제 결과를 나타낸 것이다. 도 33은 정제된 !'( 70-((推00幻3-예-1¾( 단백질을나타낸 것이다.
도 34는 쇼구표 벡터를 제조하는 방법을나타낸 것이다.
도 35는 ?附1101'(170-(00003)3-1]6-的¾ 벡터를 제조하는 방법을 나타낸 것이다.
도 36은 대장균에서
Figure imgf000007_0001
단백질의 발현을 나타낸 것 이다.
도 37은 1'0¾170-(000&3)3-仰- 표 단백질의 정제 결과를 나타낸 것이다. 도 38은 정제된
Figure imgf000007_0002
단백질을 나타낸 것이다.
도 39는 UB-GFP-T0M7단백질을 정제한후 이를 확인한 것이다.
도 40은 정제된 1]6 13-1'«7단백질을나타낸 것이다.
것이다.
Figure imgf000007_0003
타낸 것이 다.
도 44는 대장균에서 仰- 1쌔世1?2-1'(17단백질의 발현을 나타낸 것이다. 도 45는 1£ -3산 1世요2 - 111711%/바3 벡터를 제조하는 방법을 나타낸 것 이다.
도 46은 형질전환된 抑 0에서 %1쌔世묘2-1117-—(:/먀3 단백질의 발현을 나 타낸 것이다.
Figure imgf000007_0004
도 51은 1£ -3산今¾1此-1:(171 /바3 벡터를 제조하는 방법을 나타낸 것이 다.
도 52는 형질전환된 CH0에서 scFvMEL-T0M7-myc/His 단백질의 발현을 나타 낸 것이다.
도 53은 pCMV-scFvPD-Ll-T0M7-myc/His 벡터를 제조하는 방법을 나타낸 것 이다.
도 54는 형질전환된 CH0에서 scFvPD-Ll-T0M7-myc/His단백질의 발현을 나 타낸 것이다.
도 55는 형광 단백질이 미토콘드리아 외막에 결합되었는지를 확인한 도면 이다. 이때 미토콘드리아는 MitoTracker CMXRos로 염색을 하여 붉은색을 나타내 고 T0M70-UB-GFP는 초록색을 나타낸다. 두가지가 겹치는 부분은 노랑색을 나타낸 다. 이때, 55a의 배율은 200배이며, 55b의 배율은 600배이다.
도 56은 웨스턴블롯 분석법을 이용한 외래 미토콘드리아 외막에 결합한 재조합 단백질 T0M70-(GGGGS)3-UB-p53과 UB-p53_T0M7을 확인한 결과를 나타낸 것 이다.
도 57은 외래 미토콘드리아의 분리 후, 미토콘드리아를 세포 내로 주입 후 미토콘드리아의 농도에 따른 세포 내 주입 정도를 형광현미경을 이용하여 관 찰한 결과를나타낸 것이다.
도 58은 정상 미토콘드리아가 피부암 세포의 증식에 미치는 영향을 확인 한 것이다.
도 59는 정상 미토콘드리아가 피부암 세포의 활성산소종 (R0S) 생성 억제 에 미치는 영향을 확인한 것이다.
도 60은 정상미토콘드리아가 약제 내성에 미치는 영향을 확인한 것이다. 도 61은 정상 미토콘드리아가 세포 내 항산화 유전자 발현에 미치는 영향 을나타낸 것이다.
도 62는 정상 미토콘드리아가 암세포 전이 (metastasis)에 관여하는 유전 자발현에 미치는 영향을나타낸 것이다.
도 63은 외래 미토콘드리아 외막에 재조합 단백질 p53의 탑재 및 세포 내 주입 확인 방법을도식화한 것이다.
도 64는 외래 미토콘드리아 외막에 재조합 단백질 p53이 탑재된 것과 p53 이 세포 내로주입된 것을 확인한 것이다. 이때 배율은 200배이다. 도 65는 외래 미토콘드리아 외막에 재조합 단백질 p53이 탑재된 것과 p53 이 세포 내로주입된 것을 확인한 것이다. 이때 배율은 600배이다.
도 66은 위암세포주를 이용한 세포 내 주입된 P53이 탑재된 개질된 미토 콘드리아의 세포사멸 능력 확인 방법을도식화한 것이다.
도 67a는 TUNEL assay를 통한 위암세포 내 주입된 p53이 탑재된 개질된 미토콘드리아의 세포사멸 능력을 확인한 것이다. 이때 배율은 600배이다.
도 67b는 형광 측정을 통한 위암세포 내 주입된 p53이 탑재된 개질된 미 토콘드리아의 세포사멸 능력을 확인한 것이다.
도 68은 MDA-MB-231 cel l에서 RKIP이 탑재된 개질된 미토콘드리아에 의한 암세포 전이 억제 효과를 확인한 것이다.
도 69는 암세포 표적용 단쇄가변역역 (ScFv, single chain var iable fragment ) 항체가세포내에서 발현된 것을 확인한 것이다.
도 70은 면역세포화학법 ( immunocytochemi stry, ICC) 실험법을 이용한 암 세포 표적용 단쇄가변영역 (scFV, single chain variable fragment ) 항체의 발현 및 세포 내에 존재하는 미토콘드리아와 결합된 것을 확인한 것이다. 이때 배율은 200배이다.
도 기은 면역세포화학법 실험법을 이용한 암세포 표적용 단쇄가변영역 (scFv, single chain var iable fragment ) 항체의 발현 및 세포 내에 존재하는 미 토콘드리아와결합된 것을 확인한 것이다. 이때 배율은 600배이다.
도 72는 암세포 표적용 단쇄가변영역 항체가 결합된 미토콘드리아가 위암 세포주에 주입되는효과를 비교한것이다.
도 73은 개질된 미토콘드리아를 이용한 동물 실험 스케줄을 도식화한 것 이다.
도 74는종양조직이 육안상증가한 것을 관찰한사진이다.
도 75는 미토콘드리아 및 개질된 미토콘드리아를 투여 후 마우스의 체중 의 변화를 확인한 것이다.
도 76은 미토콘드리아 및 개질된 미토콘드리아를 투여 후 종양 사이즈를 확인한 것이다.
도 77은 T0M-UB-p53 단백질을 탑재한 개질된 미토콘드리아가 A431 세포의 증식 억제에 효과적임을 확인한 것이다. 도 78은분리된 미토콘드리아의 기능을 ATP함량으로 확인한 것이다. 도 79는 분리된 미토콘드리아의 기능을 막 전위 (Membrane potent i al )로 확인한 것이다.
도 80은 분리된 미토콘드리아의 손상 정도를 미토콘드리아 ROS mROS product ion)를측정하여 확인한 것이다.
도 81a는 미토콘드리아 외막에 존재하는 단백질의 구조와 T0M70, T0M20 또는 0M45의 N말단 영역의 아미노산서열을나타낸 것이다.
도 81b는 T0M5, T0M7, Fi sl , VAMP1B, Cytb5, BCL-2 또는 BCL-X의 C 말단 영역의 아미노산서열을나타낸 것이다.
도 82는 외막 앵커링 펩티드와 유비퀴틴 사이에 링커의 존재 유무에 따라 목적 단백질의 해리 여부를 확인한 것이다.
도 83은 개질된 미토콘드리아에 결합된 목적 단백질이 세포 내에서 미토 콘드리아로부터 떨어져 나옴을 확인한 것이다. 발명의 실시를위한최선의 형태
이하, 본 발명에 대하여 상세히 설명하도록 한다.
본 발명의 일 측면은 외래 단백질이 미토콘드리아의 외막에 결합된 개질 된 미토콘드리아를 제공한다.
상기 미토콘드리아는 포유동물로부터 수득된 것일 수 있으며, 인간으로부 터 수득된 것일 수 있다. 구체적으로, 상기 미토콘드리아는 세포 또는 조직으로 부터 분리된 것일 수 있다. 예를 들어, 상기 미토콘드리아는 체세포, 생식세포 또는 줄기세포로부터 수득된 것일 수 있다. 또한, 상기 미토콘드리아는 미토콘드 리아의 생물학적 활성이 정상인 세포로부터 수득된 정상적인 미토콘드리아일 수 있다. 또한, 상기 미토콘드리아는 체외에서 배양된 것일 수 있다.
또한, 상기 미토콘드리아는 자가 (autologous ), 동종 (al logenic) 또는 이 종 (xenogeni c)으로부터 수득된 것일 수 있다. 구체적으로, 자가 미토콘드리아는 동일 개체의 조직 또는 세포로부터 수득된 미토콘드리아를 의미한다. 또한, 동종 미토콘드리아는 개체와 같은 종에 속하면서 대립유전자에 대해서는 다른 유전자 형을 가지는 개체로부터 수득된 미토콘드리아를 의미한다. 또한, 이종 미토콘드 리아는 개체와다른종에 속하는 개체로부터 수득된 미토콘드리아를 의미한다. 2019/209051 1»(:1^1{2019/005020 구체적으로, 상기 체세포는 근육세포, 간세포, 신경세포, 섬유아세포, 상 피세포, 지방세포, 골세포, 백혈구, 림프구, 혈소판 또는 점막세포일 수 있다. 또한, 상기 생식세포는 감수분열과 체세포 분열을 하는 세포로서 정자또는 난자 일 수 있다. 또한, 상기 줄기세포는 중간엽줄기세포, 성체줄기세포, 역분화줄기 세포, 배아줄기세포, 골수줄기세포, 신경줄기세포, 윤부줄기세포 및 조직 유래 줄기세포로 구성된 군으로부터 선택되는 어느 하나일 수 있다. 이때, 상기 중간 엽줄기세포는 탯줄, 제대혈, 골수, 지방, 근육, 신경, 피부, 양막 및 태반으로 구성된 군으로부터 선택되는 어느하나일 수 있다.
한편, 상기 미토콘드리아를 특정 세포로부터 분리하는 경우에는, 예를 들 어, 특정 버퍼 용액을 사용하거나 전위차 및 자기장을 이용하는 등 공지된 다양 한방법을통해 미토콘드리아를 분리할수 있다.
본 명세서에서 사용된 용어인 "외래 단백질' |은 세포 내외에서 기능할 수 있는 목적 단백질을 포함하는 것인 단백질을 의미한다. 이때, 외래 단백질은 미 토콘드리아에 존재하지 않는 단백질로서, 재조합 단백질 일 수 있다. 구체적으 로, 외래 단백질은.미토콘드리아 앵커링 펩티드 및 목적 단백질을 포함할 수 있 다. 또한, 외래 단백질은 미토콘드리아 앵커링 펩티드 및 목적 단백질을 포함하 는 재조합 융합 단백질 일 수 있다. 이때, 상기 외래 단백질은 미토콘드리아 앵 커링 펩티드를 포함할 수 있다. 바람직하게는 상기 미토콘드리아 앵커링 펩티드 는 미토콘드리아 외막에 위치할 수 있는 펩티드일 수 있다. 따라서, 상기 외래 단백질은 미토콘드리아 앵커링 펩티드에 의해 미토콘드리아의 외막에 결합될 수 있다. 상기 미토콘드리아 앵커링 펩티드는 미토콘드리아의 막 단백질에 존재하는 단백질의 말단 영역 또는 0 말단 영역을 포함하는 펩티드 일 수 있으며, 상기 미토콘드리아의 외막 단백질에 존재하는 단백질의 말단 영역 또는 0 말단 영역 은 미토콘드리아의 외막에 위치하는 것일 수 있다. 이때, 앵커링 펩티드는 미토 콘드리아시그널 서열을더 포함할수 있다.
상기 미토콘드리아의 막 단백질에 존재하는 단백질의 일 구체예로는 1'0¾120 , 10170 , (145, (15 , 1X16 , !? , 1X122 , ,
Figure imgf000011_0001
구성된 군에서 선택되는 어느 하나일 수 있다. 특히, 상기 미토콘드리아 앵커링 펩티드가 10120 , 1X170 및 (145로 구성된 군에서 선택되는 어느 하나에서 유래한 경우에는, 10120 , 10170 또는 (145의 말단 영역을 포함할 수 있다. 상기 미토 콘드리아 앵커링 펩티드의 일 구체예로는 서열번호 75로 표시되는 효모 유래의 T0M70 이거나, 서열번호 76으로 표시되는 인간 유래의 T0M70 일 수 있다. 또 다 른 구체예로는 서열번호 77로 표시되는 효모 유래의 T0M20이거나, 서열번호 78로 표시되는 인간 유래의 T0M20 일 수 있다. 또 다른 구체예로는 서열번호 79로 표 시되는효모유래의 0M45 일 수 있다.
또한, 상기 미토콘드리아 앵커링 펩티드가 T0M5, T0M6, T0M7, T0M22 , Fi sl, Bcl-2, Bcl-x 및 VAMP1B로 구성된 군에서 선택되는 어느 하나에서 유래한 경우에는, T0M5, T0M6, T0M7, T0M22, Fi sl , Be卜 2, Bcl-x 및 VAMP1B로 구성된 군 에서 선택되는 어느 하나의 C 말단 영역을 포함할 수 있다. 상기 미토콘드리아 앵커링 펩티드의 일 구체예로는 서열번호 80으로 표시되는 효모 유래의 T0M5 이 거나, 서열번호 81로 표시되는 인간 유래의 T0M5 일 수 있다. 또 다른 구체예로 는 서열번호 82로 표시되는 효모 유래의 T0M7이거나, 서열번호 S3으로 표시되는 인간유래의 T0M7 일 수 있다. 또 다른 구체예로는서열번호 84로 표시되는 효모 유래의 T0M22이거나, 서열번호 85로 표시되는 인간 유래의 T0M22 일 수 있다. 또 다른 구체예로는 서열번호 86으로 표시되는 효모 유래의 Fi sl이거나, 서열번호 87로 표시되는 인간유래의 Fi sl 일 수 있다. 또 다른구체예로는서열번호 88로 표시되는 인간유래의 Bel-2 alpha 일 수 있다. 또 다른 구체예로는서열번호 89 로 표시되는 효모 유래의 VAMP1이거나, 서열번호 90으로 표시되는 인간 유래의 VAMP1 일 수 있다.
이때, 외래 단백질에 포함된 세포 내외에서 기능할 수 있는 목적 단백질 은 세포 내에서 활성을 나타내는 활성 단백질, 세포 내에 존재하는 단백질, 및 세포막에 존재하는 리셉터 또는 리간드에 결합능이 있는 단백질로 이루어진 군에 서 선택되는 어느하나일 수 있다.
상기 활성 단백질 또는 세포 내에 존재하는 단백질의 일 구체예로는 p53, 그랜자임 B(GranzymeB) , Bax, Bak, PDCD5 , E2F, AP-l(Jun/Fos) , EGR-1 ,
Ret inoblastoma(RB) , phosphatase and tensin homo log (PTEN) , E-cadher in, Neurof ibromin-2(NF-2) , poly[ADP_r ibose] synthase l(PARP-l) , BRCA-1 , BRCA-2 , Adenomatous polyposis col i (APC) , Tumor necrosi s factor receptor-associ ated factor (TRAF) , RAF kinase inhibi tory protein(RKIP) , pl6, KLF-10, LKB1 , LHX6 , C-RASSF, DKK-3PD1, 0ct3/4, Sox2, Kl f4, 및 c_Myc으로 이루어진 군에서 선택되 는 어느 하나 일 수 있다. 목적 단백질이 상기 군에서 선택될 경우에는, 상기 목 적 단백질은 T0M20 , T0M70또는 0M45의 N 말단 영역을 포함하는 앵커링 펩티드에 결합될 수 있다.
이러한융합단백질은 하기의 순서로 결합된 것일 수 있다:
N 말단- TOM20, T0M70또는 0M45의 N 말단 영역을 포함하는 앵커링 펩티드
-목적 단백질 -C말단.
또한, 상기 외래 단백질은 미토콘드리아 앵커링 펩티드와목적 단백질 사 이에 진핵세포 내 단백질 분해 효소에 인식되는 아미노산서열 또는 유비퀴틴 또 는 이의 단편을 더 포함할 수 있다. 상기 진핵세포 내 단백질 분해 효소는 진핵 세포 내에 존재하는 단백질을 분해하는 효소를 의미한다. 이때, 외래 단백질은 상기 단백질을 분해하는 효소에 의해 인식되는 아미노산 서열을 포함하기 때문 에, 미토콘드리아 외막에 결합된 외래 단백질은 세포 내에서 앵커링 펩티드와목 적 단백질로분리될 수 있다.
이때, 상기 유비퀴틴 단편은 서열번호 기의 아미노산 서열의 C 말단 Gly- Gly을 포함하며, C 말단으로부터 연속된 3 내지 75개의 아미노산을 포함할 수 있 다. 또한, 상기 외래 단백질은 목적 단백질과 유비퀴틴 또는 이의 단편 사이에 링커를 더 포함하는 것일 수 있다. 이때, 링커는 1개 내지 150개의 아미노산으로 구성되거나, 10개 내지 100개의 아미노산으로 구성되거나, 20개 내지 50개의 아 미노산으로 구성된 것일 수 있으나, 이에 한정되는 것은 아니다. 상기 링커는 20 개의 아미노산중에서 적절히 선택되어 이루어 질 수 있으며 , 바람직하게는 글리 신 및/또는 세린으로 이루어질 수 있다. 상기 링커의 일 구체예로는 글리신과 세 린으로 구성된 5개 내지 50개의 아미노산 일 수 있다. 상기 링커의 일 구체예로 는 (G4S)n으로서, n은 1 내지 10의 정수이며, n은 1, 2, 3, 4, 5, 6, 7, 8, 9, 또 는 10일 수 있다.
또한, 상기 세포막에 존재하는 리셉터 또는 리간드에 결합능이 있는 단백 질은 종양 세포 표면에 존재하는 리셉터 또는 리간드일 수 있다. 이때, 상기 종 양 세포 표면에 존재하는 리셉터 또는 리간드는 CD19, CD20, melanoma ant igen E(MAGE) , NY-ES0-1, carcinoembryonic ant igen(CEA) , mucin 1 cel l surface associated(MUC-l) , prostat i c acid phosphatase (PAP) , prostate speci f i c ant i gen (PSA) , survivin, tyrosine related protein l(tyrpl) , tyrosine related protein l(tyrp2) , Brachyury, Mesothel in, Epidermal growth factor receptor (EGFR) , human epidermal growth factor receptor 2(HER-2) , ERBB2, Wi lms tumor protein(WTl) , FAP, EpCAM, 卵 -Ll, ACPP, CPT1A, IFNG, CD274, F0LR1 , EPCAM, ICAM2, NCAM1 , LRRC4, UNC5H2 LILRB2, CEACAM, Nec t in-3 및 이의 조합으로 구성된 군에서 선택되는 어느 하나 일 수 있으나, 이에 한정되는 것은 아니다.
뿐만 아니라, 상기 세포막에 존재하는 리셉터 또는 리간드에 결합능이 있 는 단백질은 상기 군에서 선택되는 어느 하나에 결합하는 항체 또는 이의 단편일 수 있다. 특히, 항체의 단편은 항체와 동일한 항원결정영역 (CDR)을 가지는 단편 을의미한다. 구체적으로, Fab, scFv, F(ab' )2또는이의 조합일 수 있다.
이러한 경우, 상기 목적 단백질은 T0M5, T0M6, T0M7, T0M22, Fi sl , Be卜 2 Bcl-x 및 VAMP1B로 구성된 군에서 선택되는 어느 하나의 C 말단 영역을 포함 하는 앵커링 펩티드와 결합될 수 있으며, 이러한 외래 단백질은 하기의 순서로 결합된 것일 수 있다:
N 말단-목적 단백질- T0M5, T0M6, T0M7, T0M22, Fi sl, Bcl-2, Bcl-x 및
VAMP1B로 구성된 군에서 선택되는 어느 하나의 C 말단 영역을 포함하는 앵커링 펩티드 -C말단.
또한, 상기 외래 단백질은 목적 단백질과 T0M5, T0M6, T0M7, T0M22, Fi sl, Bcl-2, Bcl-x 및 VAMP1B로 구성된 군에서 선택되는 어느 하나의 C 말단 영 역 사이에 링커를 더 포함할수 있다. 이때, 링커는상술한 바와 같다. 이때, 목 적 단백질, 활성 단백질, 세포 내에 존재하는 단백질 및 세포막에 존재하는 리셉 터 또는 리간드에 결합능이 있는 단백질 등은상술한바와 같다.
상기 목적 단백질의 일 구체예는 특정 세포를 타겟팅 하는 항체 또는 이 의 단편이 T0M5, T0M6 , T0M7, T0M22, Fi sl , Be卜 2, Bcl-x 및 VAMP1B로 구성된 군 에서 선택되는 어느 하나의 C 말단 영역을 포함하는 앵커링 펩티드에 결합된 형 태일 수 있다. 이러한목적 단백질이 결합된 개질된 미토콘드리아는 특정 타겟이 쉽게 도입될 수 있으므로, 미토콘드리아를 효율적으로 특정 세포에 들어가게 할 수 있다.
개질된 미토콘드리아의 일 구체예로는 하나 이상의 목적 단백질이 결합된 형태일 수 있다. 구체적으로, p53을 포함하는 목적 단백질과 항- HER「2 항체 또는 이의 단편을 포함하는 목적 단백질이 결합된 형태를 가질 수 있다. 이러한 개질 된 미토콘드리아는 HER-2를 발현하는 암 세포에 효과적으로 미토콘드리아를 전달 할수 있다. 또한, 상기 개질된 미토콘드리아에 결합된 p53에 의해 암 세포를 효 과적으로사멸시킬 수 있다.
개질된 미토콘드리아의 목적에 따라, 하나 이상의 활성 단백질을 포함한 목적 단백질을 제작하여 미토콘드리아에 결합시킬 수 있다. 또한, 타겟이 되는 세포에 따라세포를 타겟팅 하는목적 단백질은다양하게 제작될 수 있다.
본 발명의 또 다른 측면으로 상술한 개질된 미토콘드리아를 유효성분으로 포함하는 약학조성물을 제공한다. 이때, 약학조성물의 용도는 암 예방또는 치 료를 위한 것일 수 있다. 이때, 상기 암은 위암, 간암, 폐암, 대장암, 유방암, 전립선암, 난소암, 췌장암, 자궁경부암, 갑상선암, 후두암, 급성 골수성 백혈병, 뇌종양, 신경모세포종, 망막 모세포종, 두경부암, 침샘암 및 림프종으로 구성된 군에서 선택되는 어느하나일 수 있다.
구체적으로, 활성 단백질이 p53과 같이 종양 세포를 살해하거나 증식을 억제시키는 단백질이 미토콘드리아에 결합될 경우, p53이 결합된 개질된 미토콘 드리아는 항암제로사용될 수 있다. 또한, 암세포의 전이를 억제할 수 있는 RKIP 과 같은 단백질이 미토콘드리아에 결합될 경우, RKIP이 결합된 개질된 미토콘드 리아는 종양 전이 억제제로사용될 수 있다. 암세포의 증식을 억제하거나 암세포 내의 인산화 반응을 제어하거나 암세포의 전이를 억제하는 단백질들인 그랜자임 B(GranzymeB) , Bax, Bak, PDCD5 , E2F, AP-l(Jun/Fos) , EGR-1 , Ret inoblastoma(RB) , phosphatase and tensin homo log (PTEN) , E-cadher in, Neurof ibromin-2(NF-2) , poly[ADP_r ibose] synthase l(PARP-l) , BRCA-1, BRCA-2 , Adenomatous polyposi s col i (APC) , Tumor necrosi s factor receptor-associated factor(TRAF) , pl6, KLF-10, LKB1 , LHX6 , C-RASSF, DKK-3卵 1 및 이의 조합으로 구성된 군으로부터 선택되는 어느 하나가 미토콘드리아에 결합된 경우, 상기 활 성 단백질이 결합된 개질된 미토콘드리아는항암제로사용될 수 있다.
또한, 상기ᅭ약학 조성물에 대하여 , 미토콘드리아는 0.1 促/M 내지 500 fig/ , 0.2 jug/m見 내지 450 jug/ ml.또는 0.5
Figure imgf000015_0001
400 //g/mt의 농도로 포함 될 수 있으나, 이에 제한되는 것은 아니다. 상기 범위로 미토콘드리아를 포함함 으로써, 투여 시 미토콘드리아 용량 조절이 용이하고, 환자의 병증 개선 정도가 향상될 수 있다. 이때, 미토콘드리아의 용량은 상기 분리된 미토콘드리아의 막 단백질을 정량함으로써, 미토콘드리아를 정량할 수 있다. 구체적으로, 상기 분리 된 미토콘드리아를 브래드포드 분석법 (bradford protein assay)을 통해 정량할 수 있다 (James D. McCul ly가저술한논문 (J Vi s Exp. 2014; (91): 51682. ) .
또한 상기 약학 조성물에 대하여, 미토콘드리아에 결합하는 활성 단백질 은 0.1 //g/m요 내지 500 iig/ ini , 0.2 g/mi 내지 450 fig/ ml 또는 0.5 fig/ mi, 내지 400 /ig/m요의 농도로 포함될 수 있으나, 이에 제한되는 것은 아니다. 상기 범위로 활성 단백질을 포함함으로써, 투여 시 활성 단백질 용량 조절이 용이하고, 환자 의 병증 개선 정도가향상될 수 있다.
또한 상기 약학 조성물에 대하여, 미토콘드리아를 특정 세포에 전달할 수 있게 하는 타겟팅 단백질은 0.1 ng/mi 내지 500
Figure imgf000016_0001
0.2 fig/ml 내지 450 ng/ mi 또는 0.5 [ig/mi 내지 400 //g/m£의 농도로 포함될 수 있으나 이에 제한되는 것 은 아니다. 상기 범위로 타겟팅 단백질을 포함함으로써, 투여 시 타겟팅 단백질 용량조절이 용이하고, 환자의 병증 개선 정도가향상될 수 있다.
특히, 본 발명에 따른 상기 약학 조성물은, 투여할 개체의 체중을 기준으 로 1회 0/01 rag/kg 내지 5 mg/kg, 0.1 mg/kg 내지 4 rag/kg또는 0.25 rag/kg 내지 2.5 mg/kg 양의 미토콘드리아를 투여할 수 있으나 이에 제한되는 것은 아니다. 즉, 상기 약학조성물이 암조직이 존재하는 개체의 체중을 기준으로 상기 범위의 함량으로 개질된 미토콘드리아가투여되는 것이 세포 활성 측면에서 가장 바람직 하다. 또한, 상기 약학조성물은 1 내지 10회, 3 내지 8회 또는 5 내지 6회 투여 할수 있으며, 바람직하게는 5회 투여할수 있다. 이때, 투여 간격은 1 내지 7일 또는 2 내지 5일 간격으로 할 수 있으며, 바람직하게는 3일 간격으로 투여할 수 있다.
또한, 본 발명에 따른 약학조성물은 암에 걸릴 수 있거나, 암을 앓고 있 는 인간 또는 다른 포유동물에 대하여 투여될 수 있다. 또한, 상기 약학 조성물 은 정맥 투여될 수 있는 주사제일 수 있고 또는 국소적으로 투여될 수 있는주사 제일 수 있으며, 바람직하게는주사용 제제일 수 있다.
따라서, 본 발명에 따른 약학 조성물은 주사제 처방의 유통에 따른 제품 안정성을 확보하기 위하여 , 주사제로 사용 가능한산수용액 또는 인산염 등의 완 충용액을 사용하여 pH를 조절함으로써, 물리적으로나 화학적으로 매우 안정한주 2019/209051 1»(:1^1{2019/005020 사제로 제조될 수 있다.
구체적으로 , 본 발명의 약학 조성물은 주사용수를 포함할 수 있다 . 상기 주사용수는 고형주사제의 용해나 수용성 주사제를 희석하기 위하여 만들어진 증 류수로서, 글루코스 주사, 자일리톨 주사, 만니톨 주사, 프룩토스 주사, 생리 식염수, 덱스트란 40 주사, 덱스트란 70 주사, 아미노산 주사, 링거액, 락트산_ 링거액 또는 3.5 내지 7.5 범위의 인산염 완충용액 또는 인산이수소나트륨-구 연산완충용액 등 일 수 있다.
또한, 본 발명의 약학 조성물은 안정화제 또는 용해보조제를 포함할 수 있다. 예를 들어, 안정화제는 나트륨 피로설파이
Figure imgf000017_0001
틸렌 디아민테트라아세트산(
Figure imgf000017_0002
수 있고, 용해 보조제는 염산, 아세트산, 수산화나트륨, 탄산수소나트륨, 탄산나트륨 또는 수산 화칼륨일 수 있다.
또한, 본 발명은 전술한 약학 조성물을 개체의 정맥에 투여하는 단계를 포함하는 암의 예방 또는 치료 방법을 제공할 수 있다. 여기서 개체는 포유동물 일 수 있으며, 바람직하게는 인간일 수 있다.
본 발명의 일 측면은 활성 단백질을 포함하는 목적 단백질 및/또는 표적 타케팅 단백질을 포함하는 목적 단백질과 분리된 미토콘드리아를 혼합하는 단계 를포함하는 개질된 미토콘드리아를 제조하는 방법을 제공한다.
이때, 목적 단백질 및 미토콘드리아는 적절한 비율로 혼합될 수 있다. 예 를 들어 중량비를 기준으로 목적 단백질 : 미토콘드리아가 1 : 100 내지 100 : 1 의 비율로 혼합될 수 있다. 구체적으로, 상기 비율은 1 : 10 , 1 : 5 , 1 : 4, 1 : 3 , 1 : 2또는 1 : 1로 혼합될 수 있다. 또한, 10 : 1 , 5 : 1, 4 : 1, 3 : 1 또 는 2 : 1 일 수 있다.
본 발명의 또 다른 측면으로, 상술한 목적 단백질을 코딩하는 폴리뉴클레 오티드를 진핵세포에 주입하여 형질전환된 세포로부터 개질된 미토콘드리아를 제 조하는 방법을 제공한다. 구체적으로, 상술한 폴리뉴클레오티드를 원핵세포, 또 는 유비퀴틴 분해효소또는 진핵세포 내 단백질 분해 효소가 없는 진핵세포에 형 질전환 시키는 단계; 및 융합 단백질을 수득하는 단계를 포함하는 상술한 융합 단백질을 제조하는 방법을 제공한다. 이러한 제조 방법은 상기 목적 단백질이 진 핵세포내에 단백질 분해 효소에 인식되는 아미노산 서열 또는 유비퀴틴 또는 이 의 단편을포함하지 않는 경우에 적합하다.
본 발명의 또 다른 측면으로, 목적 단백질을 원핵세포 또는 원핵세포 추 출물을 이용하여 제조할 수 있다 . 또한 , 유비퀴틴 분해효소또는 단백질 분해 효 소가 없는 진핵세포 또는 진핵세포 세포추출물을 이용하여 개질된 미토콘드리아 를 제조하는 방법을 제공한다.
본 발명의 또 다른 측면으로 외래 단백질 전달 수단으로서 미토콘드리아 의 용도를 제공한다. 구체적으로, 개질된 미토콘드리아는 세포 내외에서 기능할 수 있는 목적 단백질을 포함하는 외래 단백질의 세포 내외 전달수단으로서 이용 될 수 있다. 미토콘드리는 효과적으로 세포에 도입될 수 있으며, 이러한 경우 세 포에 전달을 원하는 외래 단백질을 효과적으로 세포 내로 전달할 수 있다. 이러 한 경우 미토콘드리아는 효과적인 단백질 전달 시스템으로 이용될 수 있다. 목적 단백질은상술한바와 같다.
본 발명의 또 다른 일 측면은 미토콘드리아 외막 앵커링 펩티드 및 목적 단백질을 포함하는 융합 단백질을 제공한다. 이때, 목적 단백질은 상술한 바와 같다.
본 명세서에서 사용된 용어 ”미토콘드리아 외막 앵커링 펩티드 n는 미토콘 드리아의 외막에 존재하는 단백질의 N 말단또는 C 말단일 수 있다. 상기 미토콘 드리아 외막 앵커링 펩티드는 미토콘드리아의 외막에 특이적으로 위치하게 하는 아미노산서열을 가질 수 있다. 이때, 미토콘드리아 외막 앵커링 펩티드는 본 발 명에서 개시된 융합 단백질이 미토콘드리아의 외막에 부착되어 있을 수 있도록 한다. 이때, 상기 미토콘드리아외막 앵커링 펩티드는 미토콘드리아 외막 타겟팅 펩티드와동일한 의미로사용될 수 있다.
그뿐 아니라, 미토콘드리아 외막 앵커링 펩티드는 본 발명에서 개시된 융 합 단백질이 미토콘드리아의 내부로 들어가지 않도록 한다 . 미토콘드리아 외막에 존재하는 TOKtranslocase of the outer membrane) complex는 아미노 말단에 미 토콘드리아 표적 시퀀스와 단일 외막 앵커링 (anchor ing) 도메인을 가지고 있으며 카르복시 말단의 대부분은 세포질에 노출되어 있는 구조를 가지고 있을 수 있다 (도 81a) . 미토콘드리아 외막에 존재하는 T0M(translocase of the outer membrane) complex는 카르복실 말단에 미토콘드리아 표적 시퀀스와 단일 외막 앵 커링 (anchor ing) 도메인을 가지고 있으며 아미노 말단의 대부분은 세포질에 노출 2019/209051 1»(:1^1{2019/005020 되어 있는 구조를 가지고 있을 수도 있다 (도 811)). 또한, 상기 미토콘드리아의 외막에 존재하는 단백질은 진핵 세포 내에 존재하는 미토콘드리아에 존재하는 단 백질에서 선택될 수 있다. 예를 들어, 효모, 동물세포, 또는 인간 세포 내에 존 재하는 미토콘드리아외막에 존재하는단백질에서 선택될 수 있다.
이때, 미토콘드리아 외막에 존재하는 단백질의 일 구체예는 1X120,
10170, ■, 1015, 1016,
Figure imgf000019_0001
此1_2, ¾卜 X및 V· 이루어 진 군에서 선택되는 어느 하나에서 선택되는 단백질 또는 이의 단편일 수 있다. 이때, 미토콘드리아 외막 앵커링 펩티드는 1'0¾120, 1X170, (145, 1015, 1016, 1017, 1(122, , 301-2, Bc\-c 및 —내에서 선택되는 어느 하나의 단백질의 단편일 수 있다. 이때, 상기 외막 앵커링 펩티드는 미토콘드리아 외막에 위치하 는 ,代 如, 1X170, 湖45, 1015, 1(·, 1017, 1X122, , 卜 2, 反卜 X 및
Figure imgf000019_0002
폴리펩타드 일 수 있다.
특히, 미토콘드리아 외막 앵커링 펩티드가 목적 단백질의 N말단에 융합 될 경우에는, 미토콘드리아 외막 앵커링 펩티드는 10120, 1X170, (145로 구성되 는 군에서 선택되는 단백질의 말단서열을 포함할 수 있다. 바람직하게는 1X120, 湖개, 0145로 구성되는 군에서 선택되는 단백질의 N말단서열일 수 있다. 상기 미토콘드리아외막 앵커링 펩티드의 구체예는상술한바와 같다.
또한, 미토콘드리아 외막 앵커링 펩티드가 목적 단백질의 0 말단에 융합 될 경우에는, 외막 타겟팅 단백질은 1X15, 1X16, 1X17, 쪄요 , 此卜 2,
Figure imgf000019_0003
구성된 군에서 선택되는 단백질의 말단서열을 포함할 수 있 다. 바람직하게는 1015, 1X16, 1X17, 11122, , 卜 2, 卜 X, 및 내로 구성된 군에서 선택되는 단백질의 0 말단서열일 수 있다. 상기 미토콘드리아 외 막 앵커링 펩티드의 구체예는상술한바와 같다.
본 명세서에서 사용된 용어 ’’활성 단백질’’은 생리 활성을 나타내는 단백 질 일 수 있다. 이러한 활성 단백질의 일 구체예는 손상된 암세포에 존재하는 기 능이 저하된 단백질이거나 변형된 단백질 일 수 있다. 활성 단백질의 일 구체예 는 세포의 활성을 증진시키는 단백질 일 수 있다. 이러한 활성 단백질의 구체예 는상술한바와 같다. '
융합 단백질은 미토콘드리아 외막 타겟팅 단백질 및 목적 단백질이 말 단으로부터 0 말단으로 결합된 것일 수 있다. 이때, 미토콘드리아 외막 타겟팅 단백질 및 목적 단백질 사이에 유비퀴틴 프로테아제 특이 절단 부위 (Glycin- Glycin)를 지니는 유비퀴틴 또는 이의 단편을 더 포함할 수 있다. 이때, 유비퀴 틴 프로테아제에 의한 절단을 용이하게 하기 위하여 미토콘드리아 외막 타겟팅 단백질 및 유비퀴틴 단백질 사이에 친수성 및 극성 아미노산인 세린 (Ser ine) , 글 리신 (Glycine) 및 트레오닌 (Threonine)이 포함된 링커를 더 포함할수 있다. 본 명세서에서 사용된 용어 "유비퀴틴”은 예로도 불리우는 단백질 분해 과정에 참여하는 단백질을 의미한다. 유비퀴틴의 일 구체예는 인체내에 존재하는 유비퀴틴 혹은 효모에서 존재하는 유비퀴틴일 수 있다. 인체내에 존재하는 유비 퀴틴은 76개의 아미노산으로 이루어져 있다. 이때, 유비퀴틴은 성숙형으로 이용 될 수 있다. 본 명세서에서 사용된 용어 ’’성숙형 (mature form) "이란 시그널 펩티 드 (signal pept ide)가제거된 형태의 단백질을 의미할수 있다.
또한, 유비퀴틴 프로테아제 혹은 UBP(ubiqui t in-speci f ic protease)라고 불리우는 효소는 진핵 세포 내에 자연적으로 존재하며 세포 내에서 유비퀴틴의 C 말단 아미노산 글리신-글리신 부위를 절단하여 목성 단백질의 자연해리를 유도할 수 있다.
이때, 유비퀴틴의 단편은 유비퀴틴의 C 말단의 Gly-Gly 아미노산을 포함 하며, C 말단으로부터 연속적으로 3 내지 75개의 아미노산을 포함할수 있다. 구 체적으로, 유비퀴틴의 단편의 일 구체예는 Arg-Gly-Gly일 수 있으며, Leu-Arg- Gly-Gly 일 수 있으며 , Arg-Leu-Arg-Gly-Gly일 수 있으며 , Leu-Ar g-Leu-Ar g-G 1 y- Gly일 수 있다. 또한, 유비퀴틴의 단편은 서열번호 기의 아미노산 서열을 가질 수 있다.
상기 미토콘드리아 외막 타겟팅 단백질 및 목적 단백질을 포함하는 융합 단백질을 미토콘드리아 활성을 개질시키는 융합 단백질이라고 지칭할 수 있다. 이러한융합단백질는 하기의 구조중 어느하나를 가질 수 있다:
<구조식 1>
N말단-미토콘드리아외막 앵커링 펩티드-목적 단백질 -C말단
<구조식 2 ñ
N 말단-미토콘드리아 외막 앵커링 펩티드-유비퀴틴 또는 이의 단편-목적 단백질 -C말단
<구조식 3 ñ N 말단-미토콘드리아 외막 타겟팅 펩티드-링커 1-유비퀴틴 또는 이의 단 편 _목적 단백질 -c말단
<구조식 4>
N 말단-미토콘드리아 외막 앵커링 펩티드-유비퀴틴 또는 이의 단편-링커 2-목적 단백질 -C말단
<구조식 5 ñ
N 말단-미토콘드리아 외막 앵커링 펩티드-링커 1-유비퀴틴 또는 이의 단 편-링커 2 -목적 단백질 -C말단
상기 구조식 1 내지 5에 있어서, 상기 외막 앵커링 펩티드는 TOM20 , T0M70, 0M45로 구성되는 군에서 선택되는 단백질의 말단서열일 수 있으며, 상기 목적 단백질은 p53, 그랜자임 B(GranzymeB) , Bax, Bak, PDCD5, E2F, AP- KJun/Fos) , EGR-1, Ret inoblastoma(RB) , phosphatase and tens in homo log (PTEN) , E-cadher in, Neurof ibromin-2(NF-2) , poly[ADP-r ibose] synthase l(PARP-l) , BRCA-1 , BRCA-2 , Adenomatous polyposi s col i (APC) , Tumor necrosi s factor receptor-associated factor(TRAF) , RAF kinase inhibi tory protein(RKIP) , pl6, KLF-10, LKB1, LHX6 , C-RASSF 및 DKK-3卵 1으로 이루어진 군 에서 선택되는 어느 하나일 수 있다.
이때, 링커 1 또는 2는 각각 1 내지 100개, 1 내지 80개, 1 내지 50개, 1 내지 30개의 아미노산으로 구성된 폴리펩티드일 수 있으며, 바람직하게는 세린, 글리신 또는 트레오닌이 단독 또는 조합으로 1 내지 30개로 구성된 폴리펩타이드 일 수 있다. 또한 상기 링커 1 또는 2는 각각 5 내지 15개의 아미노산으로 구성 된 폴리펩티드일 수 있으며 바람직하게는 세린, 글리신 또는 트레오닌이 단독 또 는 조합으로 5 내지 15개로 구성된 폴리펩타이드 일 수 있다. 링커의 일 구체예 는 (GGGGS)3(서열번호 70)일 수 있다.
<구조식 6 ñ
N말단-목적 단백질-미토콘드리아외막 앵커링 펩티드 -C 말단
<구조식 7 ñ
N 말단-목적 단백질-유비퀴틴 또는 이의 단편-미토콘드리아 외막 앵커링 펩티드 -C말단
<구조식 8 ñ N 말단-목적 단백질-링커 1-유비퀴틴 또는 이의 단편-미토콘드리아 외막 앵커링 펩티드 -C말단
á구조식 9 ñ
N 말단-목적 단백질-유비퀴틴 또는 이의 단편-링커 2 -미토콘드리아 외막 앵커링 펩티드 -C말단
<구조식 10 ñ
N 말단-목적 단백질-링커 1-유비퀴틴 또는 이의 단편-링커 2 -미토콘드리 아외막타겟팅 펩티드 -C말단
상기 구조식 6 내지 10에 있어서, 상기 외막 앵커링 펩티드는 T0M5, T0M6, T0M7, T0M22, Fisl, Be 1-2, Bcl-X, 및 VAMP1B로 구성되는 군에서 선택되는 단백질의 말단 서열일 수 있으며, 상기 목적 단백질은 p53, 그랜자임 B(GranzymeB) , Bax, Bak, PDCD5 , E2F, AP-l(Jun/Fos) , EGR-1, Ret inoblastoma(RB) , phosphatase and tens in homo log (PTEN) , E-cadher in, Neurof ibromin-2(NF-2) , poly[ADP_r ibose] synthase l(PARP-l) , BRCA-1, BRCA-2 , Adenomatous polyposis coli(APC), Tumor necrosis factor receptor-associated factor(TRAF), RAF kinase inhibitory protein(RKIP) , pl6, KLF-10, LKB1, LHX6, C-RASSF, DKK-3PD1, 0ct3/4, Sox2, Klf4, 및 c-Myc으로 이루어진 군에서 선택되 는 어느 하나일 수 있다. 이때, 상기 링커 1또는 2는상술한바와 같다.
본 발명의 일 측면은 상기 미토콘드리아 외막 앵커링 펩티드 및 목적 단 백질이 포함된 융합단백질을코딩하는폴리뉴클레오티드를 제공한다.
또한, 본 발명의 일 측면은 상기 목적 단백질이 포함된 융합 단백질을 코 딩하는폴리뉴클레오티드를 적재한 벡터를 제공한다.
또한, 본 발명의 일 측면은 상기 목적 단백질이 포함된 융합 단백질을 코 딩하는폴리뉴클레오티드를 적재한 벡터가도입된 숙주 세포를 제공한다.
본 발명의 일 측면은 표적 타겟팅 단백질 및 미토콘드리아 외막 타겟팅 단백질을포함하는융합단백질을 제공한다.
이때, 상기 표적 타겟팅 단백질과 미토콘드리아 외막 앵커링 펩티드는 N 말단으로부터 C 말단으로 결합된 것일 수 있다. 이때, 상기 미토콘드리아 외막 앵커링 펩티드는 T0M20, T0M70, 0M45, T0M5, T0M6, T0M7, T0M22, Fisl, Bcl-2, Bcl-x및 VAMP1B로구성된 군에서 선택되는 어느하나일 수 있다. 본 명세서에서 사용된 용어 "표적”은 개질된 미토콘드리아가 전달되어야 하는 장소를 의미한다. 표적의 일 구체예는 암 세포일 수 있다. 구체적으로, 표 적의 일 구체예는 암 세포 표면에 존재하는 바이오마커일 수 있다 . 구체적으로, 상기 표적은 종양관련항원 (TAA)일 수 있다. 이때, 상기 종양관련항원은 CD19, CD20 , melanoma ant igen E(MAGE) , NY-ES0-1, carcinoembryonic ant igen(CEA) , mucin 1 cel l surface assoc i at ed(MUC-l) , prostat i c acid phosphatase (PAP) , prostate speci f ic ant i gen (PSA) , survivin, tyrosine related protein l(tyrpl) , tyrosine related protein l(tyrp2) , Brachyury, Mesothel in, Epidermal growth factor receptor (EGFR) , human epidermal growth factor receptor 2(HER-2) , ERBB2, Wi lms tumor protein(WTl) , FAP, EpCAM, PD-L1, ACPP, CPT1A, IFNG, CD274, F0LR1 , EPCAM, ICAM2 , NCAM1, LRRC4, UNC5H2 LILRB2, 期 ACAM, Nect in-3 및 이의 조합으로 구성된 군으로부터 선택되는 어느 하나일 수 있다.
본 명세서에서 사용된 용어 ’’표적 타겟팅 단백질”은 상술한 표적에 결합 할 수 있는 단백질 서열 일 수 있다. 이때, 표적 타겟팅 단백질의 일 구체예는 암 세포 표면에 존재하는 바이오마커에 결합하는 단백질일 수 있다. 이때, 암 세 포 표면에 존재하는 바이오마커의 일 구체예는 ICAM2, NCAM1 , LRRC4, UNC5H2 LILRB2, CEACAM, Nect in-3 일 수 있으나, 이에 한정되는 것은 아니다. 이때, 상 기 표적 타겟팅 단백질은상술한외래 단백질에 포함될 수 있다.
상기 표적 타겟팅 단백질의 일 실시예는 항체 또는 이의 단편일 수 있다. 특히, 상기 종양관련항원에 특이적으로 결합하는 항체 또는 이의 단편일 수 있 다. 또한, 상기 항체의 단편은 Fab, Fab’, scFv 및 F(ab)2로 이루어진 군에서 선 택되는 어느하나일 수 있다.
상기 표적 타겟팅 단백질의 일 구체예로는 상피성장인자수용체인에 결합 할수 있는 scFvHER일 수 있다. 또 다른 구체예로는 흑색종에 타겟팅 할수 있는 scFvMEL 일 수 있다. 또 다른 구체예로는 암세포 표면에 과발현되어 있는 PD-L1 에 결합할수 있는 scFvPD-Ll 일 수 있다. 또 다른구체예로는 암세포 표면에 과 발현되어 있는 PDL-1에 결합할수 있는 PD-1 일 수 있다.
본 발명의 일 측면은 표적 타겟팅 단백질 및 미토콘드리아 외막 타겟팅 단백질 사이에 유비퀴틴 또는 이의 단편을 더 포함하는 것일 수 있다. 상기 미토 콘드리아 표적 타겟팅 단백질 및 목적 단백질을 포함하는 융합 단백질을 미토콘 드리아 활성을 개질시키는 융합 단백질이라고 지칭할 수 있다. 이러한융합 단백 질은하기의 구조중 어느 하나를가잘수 있다:
<구조식 11 ñ
N말단-표적 타겟팅 단백질-미토콘드리아외막 앵커링 펩티드 -C 말단
<구조식 12>
N 말단-표적 타겟팅 단백질-유비퀴틴 또는 이의 단편-미토콘드리아 외막 앵커링 펩티드 -c말단
á구조식 13 ñ
N 말단-표적 타겟팅 단백질-링커 1-유비퀴틴 또는 이의 단편-미토콘드리 아외막 앵커링 펩티드 -C 말단
<구조식 14 ñ
N 말단-표적 타겟팅 단백질-유비퀴틴 또는 이의 단편-링커 2 -미토콘드리 아외막 앵커링 펩티드 -c말단
<구조식 15>
N 말단-표적 타겟팅 단백질-링커 1-유비퀴틴 또는 이의 단편-링커 2 -미토 콘드리아외막타겟팅 펩티드 -C말단
상기 구조식 11 내지 15에 있어서, 상기 외막 앵커링 펩티드는 T0M5, T0M6, T0M7, T0M22, Fisl, Bcl-2, Be卜 X, 및 VAMP1B로 구성되는 군에서 선택되는 단백질의 말단 서열일 수 있으며, 상기 표적 타겟팅 단백질은 종양관련항원인 CD19, CD20, melanoma antigen E(MAGE) , NY-ES0-1, carcinoembryonic ant igen(CEA) , mucin 1 cell surface associated(MUC-l) , prostatic acid phosphatase(PAP) , prostate specific anti gen (PSA) , survivin, tyrosine related protein l(tyrpl) , tyrosine related protein l(tyrp2) , Brachyury, Mesothel in, Epidermal growth factor receptor (EGFR) , human epidermal growth factor receptor 2(HER-2) , ERBB2, Wilms tumor protein(WTl) , FAP, EpCAM, PD- Ll, ACPP, CPT1A, IFNG, 抑 274, F0LR1, EPCAM, ICAM2, NCAM1, LRRC4, UNC5H2 LILRB2, CEACAM, Nectin-3 및 이의 조합으로 구성된 군으로부터 선택되는 어느 하나일 수 있다. 뿐만 아니라, 상기 표적 타겟팅 단백질은 종양관련항원에 특이 적으로 결합하는 항체 또는 이의 단편일 수 있다. 이때, 상기 링커 1 또는 2 및 2019/209051 1»(:1^1{2019/005020 단백질 분해 효소에 의해 인식되는 아미노산서열은 상술한 바와 같다.
<구조식 16>
말단-미토콘드리아 외막 앵커링 펩티드-표적 타겟팅 단백질- 0 말단
<구조식 17 ñ
^ 말단-미토콘드리아 외막 앵커링 펩티드-유비퀴틴 또는 이의 단편-표적 타겟팅 단백질- 0 말단
<구조식 18 ñ
말단-미토콘드리아 외막 앵커링 펩티드-링커 1 -유비퀴틴 또는 이의 단 편-표적 타겟팅 단백질 말단
<구조식 19 ñ
말단-미토콘드리아 외막 앵커링 펩티드-유비퀴틴 또는 이의 단편-링커 2 -표적 타겟팅 단백질- 0 말단
<구조식 20>
^ 말단-미토콘드리아 외막 앵커링 펩티드-링커 1 -유비퀴틴 또는 이의 단 편-링커 2 -표적 타겟팅 단백질- 0 말단
상기 구조식 16 내지 20에 있어서, 상기 외막 앵커링 펩티드는 1(120 , 1X170 및 (145로 구성된 군에서 선택되는 어느 하나 일 수 있다. 또한, 상기 표 적 타겟팅 단백질, 유비퀴틴 또는 이의 단편, 상기 링커 1 또는 2은 상술한 바와 같다.
본 발명의 일 측면은 상기 표적 타겟팅 단백질이 포함된 융합 단백질을 코딩하는 폴리뉴클레오티드를 제공한다 .
또한, 본 발명의 일 측면은 상기 표적 타겟팅 단백질이 포함된 융합 단백 질을 코딩하는 폴리뉴클레오티드를 적재한 벡터를 제공한다.
또한, 본 발명의 일 측면은 상기 표적 타겟팅 단백질이 포함된 융합 단백 질을 코딩하는 폴리뉴클레오티드를 적재한 벡터가 도입된 숙주 세포를 제공한다. 이때, 상기 숙주 세포는 원핵세포 또는 진핵세포일 수 있다. 이때, 바람직하게 상기 진핵세포는 유비퀴틴을 분해하는 효소가 제거된 균주 일 수 있다.
또한, 본 발명의 일 측면은 상기 융합 단백질을 코딩하는 폴리뉴클레오티 드를 진핵세포에 주입하여 형질전환된 세포로부터 개질된 미토콘드리아를 제조하 는 방법을 제공한다. 발명의 실시를 위한 형태 이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
I. 미토콘드리아 외막 앵커링 펩티드, 링커, 유비퀴틴 및 목적 단백질을 포함한융합 단백질의 제조 실시예 1. p53을포함한융합단백질 제조
실시예 1.1. p53유전자의 중폭
인간 유래 p53을 재조합 단백질로 발현시키기 위하여, 인간 유래 상피 세포로부터 총 RNA를 추출하여 이로부터 cDNA를 합성하였다. 구체적으로, 인간 유래 진피 섬유아세포 (human dermal fibroblast cell)를 10% 혈청 배지에서 5% 이산화탄소, 37 °C 조건하에서 배양하였다 (1x106 cells). 이후, 배양액을 제거하고 세포에 PBS 완충액을 첨가하여 2회 세척하고, 0.5 ml의 RNA 추출액 (Trizol reagent , Thermo Fisher Scientific)을 직접 가하였다. RNA 추출물이 가해진 혼합물을 10분간 상온에서 방치한 후 0.1 ml의 클로로포름을 첨가하여 15초간 교반한 뒤, 약 12,000 xg로 10분간 원심분리 하였다. 다음으로, 분리된 상층액을 취하여 동일 부피의 이소프로필알콜을 첨가하고, 12,000 xg로 10분간 다시 원심분리하였다. 이후, 액체를 제거하고, 75% 에탄올로 1회 세척을 하고상온에서 RNA를 건조시켰다.
RNAase가 없는 정제 증류수를 약 50 를 가하여 분광광도계를 이용하여 RNA의 정량 및 순도를 측정하였다. cDNA를 합성하기 위해 정제된 총 RNA 2 에 oligo dT와 결합 반응을 70°C에서 5분간 진행시켰다. 그후, 10X 역전사반응 완충용액, 10 mM dNTP, RNAse 저해제 및 M-MLV 역전사효소 (Enzynomics, Korea)를 가하여 cDNA 합성반응을 42°C에서 60분간 수행하였다. 이후, 72°C에서 5분간 가열하여 역전사효소를 불활성화시킨 다음, RNase H를 첨가하여 단일가닥의 쇼를 제거하고, 이를 p53유전자의 중합효소 연쇄반응의 주형으로사용하였다. 2019/209051 1»(:1^1{2019/005020 인간 유래 진피 섬유아세포로부터 시그널 펩타이드 서열이 제거된 ?53의 유전자를 얻기 위하여 아미노 말단 글루탐산을 시작으로 암호화하는 프라이머 0¾)53)와 카르복실 말단을 암호화하는 프라이머여?53)를 합성한 다음, 상기에서 제조된 0 쇼를 주형으로 하여 ᄄ1?을 수행하였다. 각 프라이머의 서열은 아래 표 1에 기재한 바와 같다.
【표 1]
Figure imgf000027_0003
°0 40초, 58 °0 30초, 72 °0 1분의 증폭 반응을 40주기로 수행하였다. 반응 후에 증폭된 약 1.2 1出1)의 쇼 절편을 1%아가로스겔에서 전기 영동하여 분리한 다음,
Figure imgf000027_0001
이용하여 삽입하였다. 이렇게 얻어진 들을 염기서열 분석한 결과, 인간 유래 p53 단백질을 암호화하는 00 를 수득하였음을 확인하였다. 수득된 ?53 유전자를 /^)53 라고 명명하였으며 이의 염기서열은 서열번호 3의 염기 서열과 같다(도
1). 실시예 1.2. p53대장균발현 벡터 제조
Figure imgf000027_0002
유비퀴틴이 융합된 형태의 ?53 단백질을 제조하기 위하여 아래와 같은 발현벡터를 제조하였다. 유비퀴틴 유전자를 얻기 위하여 61]6 프라이머와 121® 프라이머를 제조하였다. 각 프라이머의 서열은 아래 표 2에 기재한 바와 같다.
【표 2]
Figure imgf000027_0004
2019/209051 1»(:1^1{2019/005020 0.2 他, IX
Figure imgf000028_0001
및 1 111^†;의 01?*1^1116 크다 중합효소를 섞었다. 그 후, 중합효소 연쇄 반응 장치에서 95 °0 40초, 58ᄃ 30초, 72 °0 1분의 증폭 반응을 25 주기로 수행하여 유비퀴틴(仰) 유전자를 수득하였다. 증폭된 유비퀴틴 유전자를 제한효소 仰 과
Figure imgf000028_0002
로 절단하고, 플라스미드 쇼 53을 제한효소
Figure imgf000028_0003
절단하였다. 그 후,
2% 아가로스겔에 전기영동하여 각각 약 210 1)와 1 , 200 !)의
Figure imgf000028_0004
단편을 얻은 후에 제한효소 쌔 과 ¾이으로 절단된
Figure imgf000028_0005
벡터에 140 연결효소를 이용하여 삽입하여 플라스미드
Figure imgf000028_0006
얻었다(도 2). 이때, 예 53은 서열번호 6의 염기 서열로 표시하였다.
플라스미드 ?牌1¾-116 53을 사용하여 대장균 此21(炯3) 균주를 형질전환시켰다. 그 후, 형질전환된 균주를 항생제 앰피실린이 첨가된 1^111· -
Figure imgf000028_0007
고체배지에서 배양 후, 여기에서 수득된 콜로니들을 1止 액상 배지에서 37 °0 조건으로 배양하였다. 그 후, 세포밀도가 에600에서 약 0.2 흡광도에 도달하는 시점에, 최종 1 농도가 되게 1的名를 첨가한 후 약 4시간 더 진탕 배양을 실시하였다.
대장균 세포의 일부를 원심 분리하여 수득한 다음, 세포를 파쇄한 후 -폴리아크릴아마이드 전기영동을 실시하였다. 도 3에 나타난 바와 같이, 약 60 크기의 유비퀴틴이 융합된 형태의 ?53 단백질이 발현되었음을 확인하였다. 이때, 도 3의 레인 은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 1附(}를 첨가한 뒤 4시간 후에 대장균 파쇄 후 원심분리한 침전물을 나타낸 것이고, 레인 2는 대장균 파쇄 후 원심분리한상등액을 나타낸 것이다.
실시예 1.2.2. ?£111(:-1(170-1恨- 53제조
미토콘드리아 외막에 결합하는 1X170과 유비퀴틴이 융합된 형태의 ?53 단백질을 제조하기 위하여, 에개과 유비퀴틴이 융합된 형태의 ?53룰 발현시킬 수 있는 발현벡터를 제조하였다. 1X170과 유비퀴틴 유전자를 얻기 위하여 61X1170 프라이머, 1'0¾170-쇼3 프라이머, 1X1701®-$ 프라이머와 12예 3 프라이머를 제조하였다. 각 프라이머의 서열은 아래 표 3에 기재한 바와 같다.
【표 3] 2019/209051 1»(:1^1{2019/005020
Figure imgf000029_0006
湖개 유전자를 얻기 위해 0.2 (170 프라이머 와 0.2 1X1170^3 프라이머를 ( 0.2
Figure imgf000029_0001
중합효소 반응 완충용액( 근!!, ^쇼) 및 1 11 1;의 01?1^1116 크다 · 중합효소를 섞었다. 그 후, 중합효소 연쇄 반응 장치에서 95 °0 40초, 58 °0 30초, 72 °0 1분의 증폭 반응을 25주기로 수행하여 1X170 유전자를 수득하였다. 증폭된 단편을 - 1(170이라 하였다. 상기 실시예 1.2.1.에서 얻은 플라스미드 ?몌加-예 53을 주형으로 하여 0.2 01
Figure imgf000029_0002
프라이머와 0.2 요예 프라이머를 넣고 (3^1? 0.2 , IX 0!?1^1116 크 0 중합효소 반응 완충용액( 해, 1¾쇼) 및 1 11 1;의 (:111:)1^1116 크 桃 중합효소를 섞었다 . 그 후 , 중합효소 연쇄 반응 장치에서 95 °0 40초, 58 °0 30초, 72 °0 1분의 증폭 반응을 25주기로 수행하여 유전자를수득하였다. 증폭된
Figure imgf000029_0003
단편을 01®라하였다.
증폭된 0 腦개과(: -仰를 주형으로 하여 0.2碑01 0170 프라이머, 0.2 01 요 드프라이머를(¾1? 0.2虛,
Figure imgf000029_0004
중합효소 반응 완충용액( 1;대용 , 요) 및 1 (피 의 01?1^1116 1840 중합효소를 섞었다. 그 후, 중합효소 연쇄 반응 장치에서 95 °0 40초, 58 °0 30초, 72 °0 1분의 증폭 반응을 25주기로 수행하여 증폭된 1X170이 융합된 유비퀴틴 유전자 1'(炯70-예를 수득하였다.
증폭된 ^개-예 유전자를 제한효소 쌔 과
Figure imgf000029_0005
절단하고, 플라스미드 쇼 53를 3 11와 ¾이으로 절단하여 2% 아가로스겔 전기영동하여 각각 330 1>와 1,500 1)의 단편을 얻었다. 그 후에 제한효소 쌔 과 ]:으로 절단된 ^110 벡터에 141)^ 연결효소를 이용하여 삽입하여 플라스미드 ?附11(:-1'(170-仰 53를 얻었다(도 4). 이때, 1(170-1]6 53은 서열번호 11의 염기 서열로표시하였다. 2019/209051 1»(:1^1{2019/005020 플라스미드 ?附11(:-1'(170-애1353을 사용하여 대장균 此21(炯3) 균주를 형질전환시켰다. 그 후, 형질전환된 균주를 항생제 앰피실린이 첨가된 !· -
Figure imgf000030_0001
고체배지에서 배양 후, 여기에서 수득된 콜로니들을 1고 액상 배지에서 37 °0 진탕배양기에서 배양하였다. 그 후, 세포밀도가抑600에서 약 0.2 흡광도에 도달하는 시점에 최종 1 농도가되게 117(;를 첨가한후 약 4시간 더 진탕배양을실시하였다.
대장균 세포의 일부를 원심 분리하여 수득한 다음, 세포를 파쇄한 후 況) 폴리아크릴아마이드 전기영동을 실시하였다. 도 5에 나타난 바와 같이, 약 62 壯 크기의 1X170과 유비퀴틴이 융합된 형태의 ^53 단백질이 발현되었음을 확인하였다. 이때, 레인 은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 1 ^를 첨가한 뒤 4시간 후에 대장균 파쇄 후 원심분리한 상등액을 나타낸 것이다.
실시예 1.2.3. ?£1110^70-((56008)3-1]6-?53제조
미토콘드리아 외막에 결합하는 1:(炯70, 링커((推0¾0000300003(서열번호 70))와 유비퀴틴이 융합된 형태의 ?53 단백질을 제조하기 위하여 1X170, 링커, 그리고 유비퀴틴이 융합된 형태의 ?53룰 발현시킬 수 있는 발현벡터를 제조하였다. 1X170에 결합된 링커 유전자를 얻기·위하여
Figure imgf000030_0002
프라이머, 매 프라이머와 ?53(1101') 프라이머를 제조하였다. 각 프라이머의 서열은 아래 표 4에 기재한바와 같다.
【표 4]
Figure imgf000030_0005
상기 실시예 1.2.2.에서 얻은 플라스미드 ?附11(:-1'(170-1]6 53을 주형으로 하여 0.2 01 61'01«70프라이머와 0.2卵101 10170(03^3프라이머를 넣고 (11^0? 0.2 ,
Figure imgf000030_0003
중합효소 반응 완충용액(111 1;1'0용611,
113쑈) 및 1 1111^의
Figure imgf000030_0004
중합효소를 섞었다. 그 후, 중합효소 연쇄 반응 장치에서 95 40초, 58 °0 30초, 72 1분의 증폭 반응을 25주기로 2019/209051 1»(:1^1{2019/005020 수행하여 유전자 1X170과 링커가 결합된 유전자 10¾170 3를 수득하였다. 또한, 상기 실시예 1.2.1.에서 얻은 플라스미드 ?肝1的-1]3 53를 주형으로 하여 0.2 犯 예 프라이머와 0.2 01 ?53(110 프라이머를 (^1? 0.2 油, IX 중합효소 반응 완충용액(111 1;1'0요01, 113쇼) 및 1 111^1:의
Figure imgf000031_0001
중합효소를 섞었다.
그 후, 중합효소 연쇄 반응 장치에서
Figure imgf000031_0002
40초, 58 °0 30초, 72 °0 1분의 증폭 반응을 25주기로 수행하여 유전자 유비퀴틴이 융합된 ?53인 冊 53을 수득하였다. 증폭된 1湖70 3 유전자를 제한효소 쌔61과
Figure imgf000031_0003
절단하고, 증폭된 예 크 유전자를요크미 과 ¾01으로 절단하여 2% 아가로스겔 전기영동하여 각각 100 ^와 1,500 1)의
Figure imgf000031_0005
단편을 수득하였다. 그 후에 제한효소
Figure imgf000031_0004
과 3 1으로 절단된 pKmc벡터에 140 연결효소를 이용하여 삽입하여 플라스미드 ?射11(:-1'(170-(( 3)3-예 53룰 얻었다(도 6). 이때, ᄆ개 ᅣ 幻 대 크크은 서열번호 15의 염기 서열로 표시하였다.
플라스미드 ?牌11(:-1'湖70-(00003)3-1]6 53을 사용하여 대장균 此21(炯3) 균주를 형질전환시켰다. 그 후, 형질전환된 균주를 항생제 앰피실린이 첨가된
Figure imgf000031_0007
고체배지에서 배양 후, 여기에서 수득된 콜로니들을
Figure imgf000031_0006
액상 배지에서 37ᄃ 조건으로 배양하였다. 그 후, 세포밀도가 (©600에서 약 0.2 흡광도에 도달하는 시점에 최종 1—농도가 되게 1 ^를 첨가한후 약 4시간더 진탕배양을실시하였다.
대장균 세포의 일부를 원심 분리하여 수득한 다음, 세포를 파쇄한 후 抑 폴리아크릴아마이드 전기영동을 실시하였다. 도 7에 나타난 바와 같이, 약 62 크크기의 1(170, 링커, 그리고 유비퀴틴이 융합된 형태의 ?53 단백질이 발현되었음을 확인하였다. 이때, 레인 은 단백질 분자량마커를 나타낸 것이고, 레인 1은 117(}를 첨가한 뒤 4시간 후에 대장균 파쇄 후 원심분리한 침전물을 나타낸 것이고, 레인 2는 대장균 파쇄 후 원심분리한상등액을 나타낸 것이다 실시예 1.2.4. ?£1110^70-(00(508)3-?53제조
미토콘드리아 외막에 결합하는 7X170과 링커((^ 00003(}000幻가 융합된 형태의 단백질을 제조하기 위하여, 쪄개과 링커가 융합된 형태의 ?53룰 발현시킬 수 있는 발현벡터를 제조하였다. 1X170과 링커가 융합된 53 유전자를 얻기 위하여 프라이머犯½)3?53)를 제조하였다. 각 프라이머의 서열은 아래 표 2019/209051 1»(:1^1{2019/005020
5에 기재한 바와 같다.
【표 5】
Figure imgf000032_0008
실시예 1.2.2.에서 얻은 플라스미드 ?附11(:-1'(170-1]6 53를 주형으로 하여 0.2 牌 예개 프라이머와 0.2 10170(03^ 프라이머를 (11 0.2 , IX 대 크다 중합효소 반응 완중용액(111 1:1'0용611, ( 쇼) 및 1 11 1;의 01?1^1116 크다 중합효소를 섞었다. 그 후, 중합효소 연쇄 반응 장치에서 95 °0 40초,
Figure imgf000032_0001
30초, 72 1분의 증폭 반응을 25주기로 수행하여 유전자 1X170을수득하였다. 증폭된 단편을 湖개 크라하였다.
실시예 1.2.1.에서 얻은 플라스미드 ?牌1加- 1¾ 53를 주형으로 하여 0.2 8(03?53 프라이머와 0.2
Figure imgf000032_0003
?53(1101') 프라이머를 (11 ? 0.21
Figure imgf000032_0002
01131^1116 크다 0· 중합효소 반응 완충용액(1]1\^1;1'0용611, 113요) 및 1 11 1:의 此이: 1 0· 중합효소를 섞었다. 그 후, 중합효소 연쇄 반응 장치에서 95 °0 40초, 58 °0 30초, 72 °0 1분의 증폭 반응을 25주기로 수행하였다. 증폭된
Figure imgf000032_0004
단편을 3 53이라 하였다.
증폭된 단편 !1170 3을 쌔 과 831내1으로 절단하고, 0 단편 03 -
?53을 제한효소
Figure imgf000032_0005
¾이으로 절단하였다. 그 후, 2% 아가로스겔에서 전기영동하여 각각 약 150 ^ 와 1300 1)의 0 단편을 얻은 후에 제한효소 仰 과 게으로 절단된
Figure imgf000032_0006
벡터에 140 연결효소를 이용하여 삽입하여 플라스미드 ?附11(: (170-(00治3)3 53을 얻었다(도 8). 이때, 1X170-((推어 )3- ?53은서열번호 17의 염기 서열로표시하였다.
플라스미드 ?附11(:-1'(170-(00¥3)3 53을 사용하여 대장균 此21(예3) 균주를 형질전환시켰다. 그 후, 형질전환된 균주를 항생제 엠피실린이 첨가된 1 3내6 1 出) 고체배지에서 배양 후, 여기에서 수득된 콜로니들을 1 액상 배지에서 37 °0 진탕배양기에서 배양하여 세포밀도가湖600에서 약 0.2 흡광도에 도달하는 시점에 최종 1 농도가
Figure imgf000032_0007
첨가한 후 약 4시간 더 진탕 배양을실시하였다.
대장균 세포의 일부를 원심 분리하여 수득한 다음, 세포를 파쇄한 후 2019/209051 1»(:1^1{2019/005020 將 -폴리아크릴아마이드 전기영동을 실시하였다. 도 9에 나타난 바와 같이, 약 60 壯 크기의 10170이 융합된 형태의 ^53 단백질이 발현되었음을 확인하였다. 이때, 레인 은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 1 (^를 첨가한 뒤 4시간 후에 대장균 파쇄 후 원심분리한 침전물을 나타낸 것이고, 레인 2는 대장균 파쇄 후 원심분리한 상등액을 나타낸 것이다.
실시예 1.2.5. ?£11的-1恨1)53-10(17
유비퀴틴, 미토콘드리아 외막에 결합하는 1(17이 융합된 형태의 ?53 단백질을 제조하기 위하여 유비퀴틴, ?53 그리고 1(1의 순서로 융합된 형태의 ?53룰 발현시킬 수 있는 발현벡터를 제조하였다. 湖과 유비퀴틴이 융합된 ?53 유전자를 얻기 위하여 ?53(1101') 프라이머와 0¾17 프라이머와 (볘7 프라이머를 제조하였다. 각 프라이머의 서열은 아래 표 6에 기재한 바와 같다.
【표 6】
Figure imgf000033_0006
실시예 1.2.1.에서 얻은 플라스미드 ?메¾-仰 53을 주형으로 하여 0.2 1)11101 산® 프라이머와 0.2
Figure imgf000033_0002
?53(110!') 프라이머를 (^1? 0.2 油
Figure imgf000033_0001
중합효소 반응 완중용액 ( !! , 1¾쇼) 및 1 11 1:의 중합효소를 섞었다. 그 후, 중합효소 연쇄 반응 장치에서 95
Figure imgf000033_0003
72 1분의 증폭 반응을 25 주기로 수행하여 유전자 116 53을 수득하였다. 또한 상기에서 제조된 를 주형으로 주형으로 하여 0.2 01 )0X17 프라이머와 0.2 1패01 1그0¾!7 프라이머를
Figure imgf000033_0004
0.2 , IX此01 6 ^ 0 중합효소 반응 완충용액 ( 용 , 쇼) 및 1 111^1;의 에 胎 크다 중합효소를 섞었다.
그 후, 중합효소 연쇄 반응 장치에서 95 °0 40초, 58 °0
Figure imgf000033_0005
1분의 증폭 반응을 40주기로 수행하여 유전자 예을 수득하였다. 증폭된 0 단편 服_ ?53을 제한효소 과 ¾1이으로 절단하고, 증폭된 1017 유전자를 ¾1 과 3 1으로 절단하여 2% 아가로스겔 전기영동하여 각각 약 1,500 ^와 150 1)의 2019/209051 1»(:1^1{2019/005020 쇼 단편을 얻은 후에 제한효소 ¾01으로 절단된 ?附1加 벡터에 14 연결효소를 이용하여 삽입하여 플라스미드 ?肝1的-116 53 - 1X117을 얻었다(도 10). 이때, 예 53 - 1(17은 서열번호 21의 염기 서열로 표시하였다.
플라스미드 ?牌1加- -?53-1'湖7을 사용하여 대장균 此21(예3) 균주를 형질전환시켰다. 그 후, 형질전환된 균주를 항생제 앰피실린이 첨가된 ^ 13- 묘 引 고체배지에서 배양 후, 여기에서 수득된 콜로니들을 18 액상 배지에서 37 °0 조건으로 배양하였다. 그 후, 세포밀도가 抑600에서 약 0.2 흡광도에 도달하는 시점에 최종 0.5 농도가 되게 117(^를 첨가한 후 약 4시간 더’진탕 배양을 실시하였다.
대장균 세포의 일부를 원심 분리하여 수득한 다음, 세포를 파쇄한 후 此 -폴리아크릴아마이드 전기영동을 실시하였다. 도 11에 나타난 바와 같이, 약 60 1 3크기의 유비퀴틴과 1X17이 융합된 형태의 ¹3 단백질이 발현되었음을 확인하였다. 이때, 레인 은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 11 (}를 첨가한 뒤 4시간 후에 대장균 파쇄 후 원심분리한 침전물을 나타낸 것이고, 레인 2는 대장균 파쇄 후 원심분리한 상등액을 나타낸 것이다.
실시예 1.2.6. 1) 53_1吹(:/미3제작
?53을 발현시킬 수 있는 동물세포용 발현벡터를 제조하였다. ?53 유전자를 얻기 위하여 1¾53 프라이머를 제조하였다. 각 프라이머의 서열은 아래 표 7에 기재한 바와 같다.
【표 7]
Figure imgf000034_0002
실시예 1.2. 1.에서 얻은 플라스미드 ?肝-1]6 53룰 주형으로 하여 0.2 碑01 1¾)53 프라이머와 0.2 01 ?53(1101') 프라이머를
Figure imgf000034_0001
0.2 油, IX (:1113 1116 크다 중합효소 반응 완충용액( , 1¾쇼) 및 1 111 1:의 011)1^1116 크다 중합효소를 섞었다. 그 후, 중합효소 연쇄 반응 장치에서 95 °0 40초, 58 30초, 72 °0 1분의 증폭 반응을 25 주기로 수행하여 유전자 ?53을 수득하였다.
증폭된 ?53 유전자를 제한효소 此0 과 ¾1이으로 절단하여 2% 아가로스겔 2019/209051 1»(:1^1{2019/005020 전기영동하여 약 1,抑 0 !)의 0 단편을 얻은 후에 제한효소 0 과 ¾이으로 절단된 ^桃3.1-1 (:/바3 요 벡터에 140 연결효소를 이용하여 삽입하여 플라스미드 1£ 53-1¾ /미3를 얻었다 (도 12) . 이때, ?53- (:/바3는 서열번호 23의 염기 서열로표시하였다.
플라스미드 !£ 53-1 (:/ 3을 사용하여 동물세포 抑 0에 형질주입시키고, 세포를 파쇄한 후 폴리아크릴아마이드 전기영동을 실시하였고 81111-0^0 항체를 이용하여 웨스턴 블롯으로 나타낸 것이다. 도 13에 나타난 바와 같이, 약 55 壯 크기의 ¹3 단백질이 발현되었음을 확인하였다. 이때, 레인 은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 동물세포期 0에 형질주입시키고, 세포를 파쇄한 후 -폴리아크릴아마이드 전기영동을 실시한 후 2^ \ -0^0 항체를 이용하여 웨스턴 블롯으로 확인한 것이다. 실시예 1.3. ?53이 포함된용합단백질 분리 및 정제
실시예 1.3.1. 대장균 유래 재조합 쪄¾170-(_3)3갱53 단백질 분리 및 정제
재조합 10¾170-(0000幻3 53 단백질을 발현하는 대장균 此21(則:3) 생산 균주를 액상배지에 접종하고 '37°0 조건에서 배양하였다. 그 후, 흡광도가
(©600에서 0.4에 도달할 때 0.5 117(}를 첨가하여 4시간 동안 추가 진탕 배양하여 1X170-(0005)3^53단백질을 발현시켰다.
배양 종료 후 원심분리를 이용하여 세포를 회수하고, 회수된 세포는 묘를 이용하여 1회 세척한 다음 ?68 용액을 이용하여 세포를 현탁시키고, 현탁된 세포는 소니케이터를 이용하여 파쇄공정을 수행하였다. 파쇄된 세포는 고속 원심분리기를 이용하여 원심분리 한 후 불용성 분획을 회수하고, 회수된 불용성 분획은 50 虛 트리스, 100 에틸렌다이아민테트라아세트산犯 시 8.0 용액을 이용하여 3회 세척하였다. 그 후, 6 구아니딘, 100 소듐포스페이트, 10 트리스 8.0 용액에 녹여 0.45 _ 필터를 이용해 필터한 후 미리 패킹된 니켈 크로마토그래피 컬럼에 로딩하여 1차 정제를 수행하였다.
1:(170-(000¾)3 53 단백질이 포함된 용액을 로딩 후에 우레아, 50 소듐포스페이트, 500 이, 10 이미다졸, 8.0 용액을 이용하여 결합하지 않는 불순물이 검출되지 않을 때까지 세척용액을 흘려주고, 8 M우레아, 50 mM소둠포스페이트, 500 mM NaCl , 500 mM 이미다졸, pH 8.0 용액을 이용하되, 이미다졸 농도를 50 mM, 100 mM, 250 mM, 500 mM로 변화를 주어 단백질을 용출하였다 (도 14) . 이때, 도 14의 레인 은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 니켈 친화크로마토그래피 로딩 샘플을 나타낸 것이다. 레인
2는 니켈 친화수지에 결합하지 않은 것을 나타낸 것이다. 레인 3 내지 4는 8M UREA/ 50mM Na-phosphate/500mM NaCl/50mM Imidazole 용액으로 용출한 결과를 나타낸 것이다. 레인 5 내지 7은 8M UREA/ 50mM Na-phosphate/500mM NaCl/100mM Imidazole 용액으로 용출한 결과를 나타낸 것이다. 레인 8 내지 9는 8M UREA/ 50mM Na-phosphat e/ 500mM NaCl/250mM Imidazole 용액으로 용출한 결과를 나타낸 것이다. 레인 10 내지 11은 8M UREA/ 50mM Na-phosphat e/ 500mM NaCl/500mM Imidazole용액으로용출한 결과를 나타낸 것이다.
니켈 크로마토그래피에서 회수한 용출용액을 삼투압의 원리를 이용하여 PBS로 용액교환을 하였다. 용액교환이 완료된 용출용액을 원심분리기를 이용하여 상등액을 회수하고, 회수된 용출용액의 단백량을 단백질 정량법으로 측정하고
SDS-PAGE를 이용하여 확인하였다. 도 15에 나타낸 바와 같이, 확인이 끝난
T0M70-(GGGGS)3-p53 단백질은 액체질소로 급랭하여 -80°C 초저온 냉동고에 보관하였다. 이때, 레인 M은 단백질 분자량마커를 나타낸 것이고, 레인 1은 PBS 완충용액에 투삭후수득한 T0M70-(GGGGS)3-p53단백질을나타낸 것이다.
실시예 1.3.2. 대장균유래 T0M70-(GGGGS)3-UB-p53단백질 분리 및 정제
T0M70-(GGGGS)3-UB-p53 재조합 단백질을 발현하는 대장균을 사용하여, 실시예 1.3.1.의 방법과 동일한 과정으로 T0M70-(GGGGS)3-UB-p53 단백질을 분리 및 정제하였다. 그 결과 T0M70-(GGGGS)3-UB-p53 단백질을 용출하였다 (도 16) . 이때, 도 16의 레인 M은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 니켈 친화크로마토그래피 로딩 샘플을 나타낸 것이다. 레인 2는 니켈 친화수지에 결합하지 않은 것을 나타낸 것이다. 레인 3은 8M UREA/50mM Na-phosphat e/500mM NaCl/50mM Imidazole 용액으로 용출한 결과를 나타낸 것이다. 레인 4 내지 7은 8M UREA/50mM Na-phosphat e/ 500mM NaCl/lOOmM Imidazole 용액으로 용출한 결과를 나타낸 것이다. 레인 8 내지 11은 8M UREA/50mM Na-phosphat e/500mM NaCl/250mM Imidazole용액으로용줄한결과를 나타낸 것이다.
회수된 용출용액의 단백량을 단백질 정량법으로 측정하고 況 S-PAGE를 이용하여 확인하였다. 도 17에 나타난 바와 같이, 확인이 끝난 T0M70-(GGGGS)3- UB-p53 단백질은 액체질소로 급랭하여 -80°C 초저온 냉동고에 보관하였다. 이때, 도 17의 레인 M은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 PBS 완충 용액에 투석 후수득한 T0M70-(GGGGS)3-UB-p53단백질을나타낸 것이다.
실시예 1.3.3. 대장균유래 재조합 UB-p53단백질 분리 및 정제
유비퀴틴이 융합된 성숙형 UB-p53 단백질을 발현하는 BL2KDE3) 생산 균주를 LB 액상배지에 접종하고 37 °C 진탕 배양기에서 배양하여 흡광도가 0D600에서 0.4에 도달할 때 0.5 mM IPTG를 첨가하여 4시간 동안 추가 진탕 배양하여 유비퀴틴이 융합된 성숙형 UB-p53단백질을 발현시켰다.
그 후, 실시예 1.3.1.의 방법과 동일한 과정으로 UB-p53 단백질을 분리 및 정제하였다. 그 결과 UB-p53 단백질을 용출하였다 (도 18) . 이때, 도 18의 레인 은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 니켈 친화크로마토그래피 로딩 샘들을 나타낸 것이다. 레인 2는 니켈 친화수지에 결합하지 않은 것을 나타낸 것이다. 레인 3은 8M UREA/50mM Na-phosphate/500mM NaCl/50mM Imidazole 용액으로 용출한 결과를 나타낸 것이다. 레인 4 내지 6은 8M UREA/ 50mM Na-phosphat e/ 500mM NaCl/lOOmM Imidazole 용액으로 용출한 결과를 나타낸 것이다. 레인 7 내지 9은 8M UREA/50mM Na-phosphat e/ 500mM NaCl/250mM Imidazole 용액으로 용출한 결과를 나타낸 것이다. 레인 10 내지 11은 8M
UREA/ 50mM Na-phosphat e/ 500mM NaCl/500mM Imidazole 용액으로 용출한 결과를 나타낸 것이다.
회수된 용출용액의 단백량을 단백질 정량법으로 측정하고 SDS-PAGE를 이용하여 확인하였다. 도 19에 나타난 바와 같이, 확인이 끝난 UB-p53 단백질을 액체질소로 급랭하여 -80°C 초저온 냉동고에 보관하였다. 이때, 도 19의 레인
M은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 PBS 완충용액에 투석한후의 UB-p53단백질을나타낸 것이다.
실시예 1.3.4. 대장균유래 UB-p53-T0M7단백질 분리 및 정제
유비퀴틴이 융합된 성숙형 UB-P53-T0M7 단백질을 발현하는 대장균 BL2KDE3) 생산 균주를 LB 액상배지에 접종하고 37 °C 조건에서 배양하여 흡광도가 0D600에서 0.4에 도달할 때 0.5 mM IPTG를 첨가하여 4시간 동안 추가 진탕배양하여 유비퀴틴이 융합된 성숙형 UB-p53-T0M7단백질을 발현시켰다.
그 후, 실시예 1.3.1.의 방법과 동일한 과정으로 UB-P53-T0M7 단백질을 분리 및 정제하였다. 그 결과 UB-P53-T0M7 단백질을 용출하였다 (도 20) . 이때, 도 20의 레인 M은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 니켈 친화크로마토그래피 로딩 샘플을 나타낸 것이다. 레인 2는 니켈 친화수지에 결합하지 않은 것을 나타낸 것이다. 레인 3은 8M UREA/50mM Na-phosphate/500mM NaCl/lOmM Imidazole 용액으로 용출한 결과를 나타낸 것이다. 레인 4는 8M UREA/ 50mM Na-phosphat e/ 500mM NaCl/50mM Imidazole 용액으로 용출한 결과를 나타낸 것이다. 레인 5 내지 7은 8M UREA/50mM Na-phosphat e/500mM NaCl/100mM
Imidazole 용액으로 용출한 결과를 나타낸 것이다. 레인 8 내지 9은 8M
UREA/50mM Na-phosphat e/500mM NaCl/250mM Imidazole 용액으로 용출한 결과를 나타낸 것이다. 레인 10 내지 11은 8M UREA/50mM Na-phosphat e/500mM NaCl/500mM Imidazole용액으로용출한결과를 나타낸 것이다.
회수된 용출용액의 단백량을 단백질 정량법으로 측정하고 況 S-PAGE를 이용하여 확인하였다. 도 21에 나타난 바와 같이, 확인이 끝난 UB-p53 단백질은 액체질소로 급랭하여 -80°C 초저온 넁동고에 보관하였다. 이때, 도 21의 레인
M은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 PBS완충용액에 투석한후의 UB-P53-T0M7단백질을나타낸 것이다. 실시예 2. GranzymeB를포함한융합단백질의 제조
실시예 2.1. GranzymeB유전자의 증폭
인간 유래 GranzymeB를 재조합 단백질로 발현시키기 위하여, 인간 유래 자연살해세포로부터 총 쇼를 추출하여 이로부터 cDNA를 합성하였다. 구체적으로, 인간 유래 자연살해세포 (human natural ki l ler cel l )를 10% 혈청 배지에서 5% 이산화탄소, 37 °C 조건하에서 배양하였다 (1x106 cel l ) . 이후, 실시예 1.1.과 동일한 방법으로 RNA를 수득한 후, 이를 Granzyme B 유전자의 중합효소 연쇄반응의 주형으로사용하였다.
인간 유래 자연살해세포로부터 시그널 펩타이드 서열이 제거된 GranzymeB의 유전자를 얻기 위하여 아미노 말단 이소류신을 시작으로 암호화하는 2019/209051 1»(:1^1{2019/005020
1202® 프라이머와 카르복실 말단을 암호화하는
Figure imgf000039_0001
프라이머를 합성한 다음, 상기에서 제조된 0에요를 주형으로 하여 ᄄ요을 수행하였다. 각 프라이머의 서열은 아래 표 8에 기재한 바와 같다.
【표 8】
Figure imgf000039_0012
상기에서 제조된
Figure imgf000039_0002
주형으로 하여 0.2
Figure imgf000039_0003
1202 프라이머와 0.2
1)11101 2!\16(1101') 프라이머를 (11 ? 0.21^, IX 에 크다 0 중합효소 반응 완충용액 ( 해, 113/0 및 11111 의
Figure imgf000039_0004
중합효소를 섞었다. 그 후, 중합효소 연쇄 반응 장치에서 95 40초, 58 °0 30초, 72 °0 1분의 증폭 반응을 40주기로 수행하였다. 반응 후에 증폭된 약 700 !)의 절편을 1% 아가로스겔에서 전기 영동하여 분리한 다음,
Figure imgf000039_0005
6337(1 01116용3, 1¾쇼) 벡터에
140 연결효소를 이용하여 삽입하였다. 이렇게 얻어진 ■들을 염기서열 분석한 결과, 인간 유래
Figure imgf000039_0007
단백질을 암호화하는
Figure imgf000039_0006
수득하였음을 확인하였다. 수득된 ( 크 근요 유전자를 쇼 - (뇨3112,68 라고 명명하였으며, 아 2,66유전자는 서열번호 26의 염기서열로 표시하였다 (도 22). 실시예 2.2.아 幻에요단백질발현벡터제조
실시예 2.2.1. ?£1110^70-(00(508)3-1]6^3112^6제조
미토콘드리아 외막에 결합하는 1X170,
Figure imgf000039_0008
유비퀴틴이 융합된 형태의
Figure imgf000039_0009
단백질을 제조하기 위하여 1X1170, 링커, 그리고 유비퀴틴이 융합된 형태의 (뇨크 : 요를 발현시킬 수 있는 발현벡터를 제조하였다.
실시예 2.1.에서 얻은 플라스미드 쇼 -아 : 근요 유전자를 제한효소 3(:11와 ¾이으로 절단하여 2% 아가로스겔 전기영동하여 약 700
Figure imgf000039_0010
단편을 얻은 후에 제한효소
Figure imgf000039_0011
¾이으로 절단된 ?附11(:-1'(170-(00003)3-1]6- 53) 벡터에 14 연결효소를 이용하여 삽입하여 플라스미드 ?£1110-10170-((^5)3 - 1]6-아 2 63를 얻었다 (서열번호 27) (도 23). 2019/209051 1»(:1^1{2019/005020 플라스미드 ?牌11(:-1'(170-(0000幻3-1]6-(뇨3112,68를 사용하여 대장균 21( 3) 균주를 형질전환시켰다. 그 후, 형질전환된 균주를 항생제 엠피실린이 첨가된
Figure imgf000040_0001
고체배지에서 배양 후, 여기에서 수득된 콜로니들을 18 액상 배지에서 37 °0 진탕배양기에서 배양하여 세포밀도가 抑600에서 약 0.2 흡광도에 도달하는 시점에, 최종 0.5 농도가 되게 1^(}를 첨가한후 약 4시간 더 진탕배양을실시하였다.
대장균 세포의 일부를 원심 분리하여 수득한 다음, 세포를 파쇄한 후 드 -폴리아크릴아마이드 전기영동을 실시하였다. 도 24에 나타난 바와 같이, 약 35吐切크기의피개, 링커, 그리고 유비퀴틴이 융합된 형태의아 268 단백질이 발현되었음을 확인하였다. 이때, 도 24의 레인 은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 1的1}를 첨가한 뒤 4시간 후에 대장균 파쇄 후 원심분리한 침전물을 나타낸 것이고, 레인 2는 대장균 파쇄 후 원심분리한 상등액을 나타낸 것이다.
실시예 2.2.2. ?肝1加-쌔-아 幻 68-,1ᅵ(17제조
유비퀴틴과 미토콘드리아 외막에 결합하는 1X17이 융합된 형태의 아 !근요 단백질을 제조하기 위하여 유비퀴틴,
Figure imgf000040_0002
1X17의 순서로 융합된 형태의아크 : 요단백질을 발현시킬 수 있는 발현벡터를 제조하였다. 실시예 2. 1.에서 얻은 플라스미드
Figure imgf000040_0003
유전자를 제한효소 3 11와 재 으로 절단하여 2% 아가로스겔 전기영동하여 약 700 5? 0 단편을 얻은 후에 제한효소 3크(:11와 ¾1이으로 절단된 ?附1加-예_ 53) - 1X17 벡터에 140 연결효소를 이용하여 삽입하여 플라스미드 ?射1加-예-아크 근표 - 1X17을 얻었다(도 25). 이때, 1]3-아해2,6표 - 10¾17은 서열번호 28의 염기 서열로 표시하였다.
플라스미드 ?附1加-예-아크 : 1117을 사용하여 대장균 此21(況3) 균주를 형질전환시켰다. 그 후, 형질전환된 균주를 항생제 엠피실린이 첨가된 ^ 13^13111(16) 고체배지에서 배양 후, 여기에서 수득된 콜로니들을 1 액상 배지에서 37 V 조건에서 배양하여 세포밀도가 0況00에서 약 0.2 흡광도에 도달하는 시점에 최종 0.5 농도가 되게 1^(}를 첨가한 후 약 4시간 더 진탕 배양을실시하였다.
대장균 세포의 일부를 원심 분리하여 수득한 다음, 세포를 파쇄한 후 忍將 -폴리아크릴아마이드에서 전기영동을 실시하였다. 도 26에 나타난 바와 같이, 약 35 壯 크기의 유비퀴틴과 1X17이 융합된 형태의
Figure imgf000041_0001
단백질이 발현되었음을 확인하였다. 이때, 도 26의 레인 은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 1的 를 첨가한 뒤 4시간 후에 대장균 파쇄 후 원심분리한 침전물을 나타낸 것이고, 레인 2는 대장균 파쇄 후 원심분리한 상등액을 나타낸 것이다. 실시예 2.3. 대장균 유래 재조합 T0M70-(GGGGS)3-UB-GranzymeB 단백질의 분리 및 정제
실시예 1.3.1.의 방법과 동일한 과정으로 T0M70- ( GGGGS ) 3-UB-Gr anzymeB 단백질을 분리 및 정제하였다. 그 결과 T0M70-(GGGGS)3-UB-GranzymeB 단백질을 용출하였다 (도 27) . 이때, 도 27의 레인 은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 니켈 친화크로마토그래피 로딩 샘플을 나타낸 것이다. 레인 2는 니켈 친화수지에 결합하지 않은 것을 나타낸 것이다. 레인 3 내지 4는 8M UREA/50mM Na-phosphate/500mM NaCl/50mM Imidazole 용액으로 용출한 결과를 나타낸 것이다. 레인 5 내지 7은 8M UREA/50mM Na-phosphate/500mM NaCl/100mM Imidazole 용액으로 용출한 결과를 나타낸 것이다. 레인 8 내지 9은 8M UREA/50mM Na-phosphate/500mM NaCl/250mM Imidazole 용액으로 용출한 결과를 나타낸 것이다.
회수된 용출용액의 단백량을 단백질 정량법으로 측정하고 SDS-PA湖를 이용하여 확인하였다. 도 28에 나타난 바와 같이 , 확인아끝난 T0M70-(GGGGS)3- UB-Gr anzymeB 단백질을 액체질소로 급랭하여 _80°C 초저온 냉동고에 보관하였다. 이때, 도 28의 레인 M은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 PBS 완충용액에 투석한후의 TOM70- ( GGGGS ) 3-UB-Gr anzymeB단백질을 나타낸 것이다. 실시예 3. RKIP을포함한융합단백질의 제조
실시예 3.1. RKIP유전자의 증폭
인간 유래 RKIP(Raf Kinase Inhibi tory Protein) 유전자를 재조합 단백질로 발현시키기 위하여, 인간 유래 상피 세포로부터 총 RNA를 추출하여 이로부터 cDNA를 합성하였다. 인간 유래 진피 섬유아세포 (human dermal fibroblast cell)를 10% 혈청 배지에서 5% 이산화탄소 37 °C 조건하에서 배양하였다 (1x106 cell). 이후, 실시예 1.1.과 동일한 방법으로 RNA를 수득한 후, 이를 RKIP유전자의 중합효소 연쇄반응의 주형으로 사용하였다.
인간 유래 진피 섬유아세포로부터 시그널 펩타이드 서열이 제거된 RKIP의 유전자를 얻기 위하여 아미노 말단 프롤린을 시작으로 암호화하는 T2RKIP 프라이머와 카르복실 말단을 암호화하는 XRKIP(noT) 프라이머를 합성한 다음, 상기에서 제조된 cDNA를 주형으로 하여 PCR을 수행하였다. 각 프라이머의 서열은 아래 표 9에 기재한 바와 같다.
【표 9】
Figure imgf000042_0006
상기에서 제조된 주형으로 주형으로 하여 0.2 卵01 121^1? 프라이머와 0.2 ¾¾1130101') 프라이머를
Figure imgf000042_0001
IX 에만 促 크다 중합효소 반응 완충용액 ( !; 요에, 쇼) 및 1 111^1;의 01?1^1116
Figure imgf000042_0002
중합효소를 섞었다. 그 후, 중합효소 연쇄 반응 장치에서 95 40초, 58 °0 30초, 1분의 증폭 반응을 40주기로 수행하였다. 반응 후에 증폭된 약 560 !)의 절편을 1%아가로스겔에서 전기 영동하여 분리한 다음,
Figure imgf000042_0003
시 벡터에 4 연결효소를 이용하여 삽입하였다. 이렇게 얻어진
Figure imgf000042_0004
염기서열 분석한 결과, 인간 유래 1¾1? 단백질을 암호화하는 0 를 수득하였음을 확인하였다. 수득된 1¾1 유전자를 쇼-將 라고 명명하였으며 (도 29), 의 염기서열은 서열번호 31의 염기 서열로 표시하였다. 실시예 3.2. 況正단백질 발현 벡터 제조
실시예 3.2.1. ?附11(;-<11(170-( 3)3-服-1¾正제조
미토콘드리아 외막에 결합하는 1X170,
Figure imgf000042_0005
유비퀴틴이 융합된 형태의 1¾ 단백질을 제조하기 위하여 1X170, 링커, 그리고 유비퀴틴이 융합된 형태의 을 발현시킬 수 있는 발현벡터를 제조하였다.
실시예 3.1.에서 얻은 플라스미드 敗 유전자를 제한효소 33(:11와 2019/209051 1»(:1^1{2019/005020
¾1이으로 절단하여 2% 아가로스겔에서 전기영동하여 약 56아피 0 단편을 얻은 후에 제한효소 3(:1 1와 이으로 절단된 ?附11(:-1'(170-(0000幻3-1]6- 53)벡터에 40· 연결효소를 이용하여 삽입하여 플라스미드 ?肝11-1'(170-(0000幻3-1®- 照正을 얻었다(도 30). 이때, 1'(170-(000 )3-대-1¾113은 서열번호 32의 염기 서열로 표시하였다.
플라스미드 ?附11(:-1'(170-(000 )3-仰-將11)을 사용하여 대장균 此21(此3) 균주를 형질전환시켰다. 그 후, 형질전환된 균주를 항생제 엠피실린이 첨가된
Figure imgf000043_0001
배지에서 배양 후, 여기에서 수득된 콜로니들을 1고 액상 배지에서 37 °0 진탕배양기에서 배양하여 세포밀도가 0^00에서 약 0.2 흡광도에 도달하는 시점에 최종 0.5 농도가 되게 1的 를 첨가한 후 약 4시간 더 진탕 배양을 실시하였다.
대장균 세포의 일부를 원심 분리하여 수득한 다음, 세포를 파쇄한 후 將 -폴리아크릴아마이드에서 전기영동을 실시하였다. 도 31에 나타난 바와 같이, 약 33« 크기의 1(볘70 , 링커, 그리고 유비퀴틴이 융합된 형태의 단백질이 발현되었음을 확인하였다. 이때, 도 31의 레인 은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 1 名를 첨가한 뒤 4시간 후에 대장균 파쇄 후 원심분리한 침전물을 나타낸 것이고, 레인 2는 대장균 파쇄 후 원심분리한 상등액을 나타낸 것이다. 실시예 3.3. 대장균유래 재조합 1(170-(0推03)3-仰-1¾1?단백질 분리 및 정제
재조합 湖개 幻ᅡ예-服正을 발현하는 대장균 此21(況3) 생산 균주를 1玉 액상배지에 접종하고 37 °0 조건에서 배양하여 흡광도가 0예00에서 0.3에 도달할 때 냉장고에 넣어 배양액의 온도를 낮추고 배양기 온도를 181:로 변경 후, 0.5 1的 를 첨가하여 하루 동안 추가 진탕 배양하여 1X170- ((^$)3-1®-^^ 단백질을 발현시켰다.
그 후, 실시예 1.3. 1.의 방법과 동일한 과정으로 !1170-(0000幻3- -1¾1? 단백질을 분리 및 정제하였다. 그 결과 1(170-(0000 3-예-1¾1? 단백질을 용출하였다(도 32). 이때, 도 32의 레인 ¾1은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 니켈 친화크로마토그래피 로딩 샘플을 나타낸 것이다. 레인 2는 니켈 친화수지에 결합하지 않은 것을 나타낸 것이다. 레인 3은 50mM Na- phosphate/500mM NaCl/lOmM Imidazole로 용출한 결과를 나타낸 것이다. 레인 4 내지 6은 50mM Na-phosphat e/ 500mM NaCl/50mM Imidazole로 용출한 결과를 나타낸 것이다. 레인 7 내지 8은 50mM Na-phosphat e/ 500mM NaCl/lOOmM Imidazole로 용출한 결과를 나타낸 것이다. 레인 9 내지 10은 50mM Na-phosphat e/ 500mM NaCl/175mM Imidazole로 용출한 결과를 나타낸 것이다. 레인 11 내지 13은 50mM Na-phosphat e/ 500mM NaCl/250mM Imidazole로 용출한 결과를 나타낸 것이다. 레인 14 내지 16은 50mM Na-phosphat e/ 500mM NaCl/500mM Imidazole로 용출한 결과를 나타낸 것이다.
회수된 용출용액의 단백량을 단백질 정량법으로 측정하고 況 S-PAGE를 이용하여 확인하였다. 도 33에 나타난 바와 같이, 확인이 끝난 TOM70-(GGGGS)3- UB-RKIP 단백질은 액체질소로 급랭하여 -80 °C 초저온 냉동고에 보관하였다. 이때, 도 33의 레인 M은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 PBS 완충용액에 투석한후의 T0M70-(GGGGS)3-UB-RKIP단백질을 나타낸 것이다. 실시예 4. PTEN을포함한융합단백질의 제조
실시예 4.1. PTEN유전자의 중폭
인간 유래 PTEN (Phosphatase and Tens in homolog)을 재조합 단백질로 발현시키기 위하여, 인간 유래 상피 세포로부터 총 RNA를 추출하여 이로부터 cDNA를 합성하였다. 섬유아세포 (human dermal f ibroblast cel l )를 10% 혈청 배지에서 5% 이산화탄소 37 °C 조건하에서 배양하였다 (1x106 cel l ) . 이후, 실시예 1.1.과 동일한 방법으로 RNA를 수득한 후, 이를 PTEN 유전자의 중합효소 연쇄반응의 주형으로사용하였다.
인간 유래 진피 섬유아세포로부터 시그널 펩타이드 서열이 제거된 PTEN의 유전자를 얻기 위하여 아미노 말단 트레오닌을 시작으로 암호화하는 T2PTEN 프라이머와 카르복실 말단을 암호화하는 XPTEN(noT) 프라이머를 합성한 다음, 상기에서 제조된 cDNA를 주형으로 하여 PCR을 수행하였다. 각프라이머의 서열은 아래 표 10에 기재한바와같다.
【표 10】 2019/209051 1»(:1^1{2019/005020
Figure imgf000045_0010
상기에서 제조된 00■를 주형으로 주형으로 하여 0.2 01 12 例 프라이머와 0.2 01 페 프라이머를 (1 ? 0.2液, IX此01먀½6 ^ I) 중합효소 반응 완충용액( !!, ^쇼) 및 1 111111;의 00?1^1116 크다 중합효소를 섞었다. 그 후, 중합효소 연쇄 반응 장치에서 95 °0 40초, 58 X: 30초, 72 °0 1분의 증폭 반응을 40주기로 수행하였다. 반응 후에 증폭된 약 1,200 !)의 쇼 절편을 1%아가로스겔에서 전기 영동하여 분리한 다음,
Figure imgf000045_0001
此시 벡터에 14 연결효소를 이용하여 삽입하였다. 이렇게 얻어진 요들을 염기서열 분석한 결과, 인간 유래 1¾ 단백질을 암호화하는
Figure imgf000045_0002
수득하였음을 확인하였다. 수득된 犯 유전자를
Figure imgf000045_0004
명명하였으며(도 34),
Figure imgf000045_0003
염기서열은서열번호 35의 염기 서열과 같다. 실시예 4.2. _단백질발현벡터 제조
Figure imgf000045_0005
미토콘드리아 외막에 결합하는 10170, 링커((}00光00003000光)와 유비퀴틴이 융합된 형태의
Figure imgf000045_0006
단백질을 제조하기 위하여 1X170, 링커와, 그리고 유비퀴틴이 융합된 형태의 的¾ 유전자를 발현시킬 수 있는. 발현벡터를 제조하였다.
실시예 4.1.에서 얻은 플라스미드
Figure imgf000045_0007
유전자를 제한효소 와
¾이으로 절단하여 2% 아가로스겔 전기영동하여 약 1,200 ?
Figure imgf000045_0008
단편을 얻은 후에 제한효소 와 이으로 절단된 ^110-10170 -( 00(^3) 3-113-( ?53) 벡터에 140 연결효소를 이용하여 삽입하여 플라스미드 ?附11(:-1'(170-(00003)3-1]6- 犯을 얻었다(도 35). 이때, 1'0!«70-(000 )3-예- ¾은 서열번호 36의 염기 서열로 표시하였다.
플라스미드 ?£111(:-1'(170-(0000幻3-예-1>犯을 사용하여 대장균 此21(孤3) 균주를 형질전환시켰다. 그 후, 형질전환된 균주를 항생제 앰피실린이 첨가된
Figure imgf000045_0009
배지에서 배양 후, 여기에서 수득된 콜로니들을 [고 액상 배지에서 조건에서 배양하여 세포밀도가 0_0에서 약 0.2 흡광도에 도달하는 시점에 최종 0.5 농도가 되게 111(}를 첨가한 후 약 4시간 더 진탕 배양을실시하였다.
대장균 세포의 일부를 원심 분리하여 수득한 다음, 세포를 파쇄한 후 으 -폴리아크릴아마이드 전기영동을 실시하였다. 도 36에 나타난 바와 같이, 약 73 壯 크기의 1X170, 링커와 유비퀴틴이 융합된 형태의 단백질이 발현되었음을 확인하였다. 이때, 도 36의 레인 은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 1 를 첨가한 뒤 4시간 후에 대장균 파쇄 후 원심분리한 침전물을 나타낸 것이고, 레인 2는 대장균 파쇄 후 원심분리한 상등액을 나타낸 것이다. 실사예 4.3. 대장균 유래 재조합 T0M70-(GGGGS)3-UB-PTEN 단백질 분리 및 정제
실시예 1 .3. 1.의 방법과 동일한 과정으로 T0M70- ( GGGGS ) 3-UB-PTEN 단백질을 분리 및 정제하였다. 그 결과 T0M70-(GGGGS)3-UB-PTEN 단백질을 용출하였다 (도 37) . 이때, 도 37의 레인 은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 니켈 친화크로마토그래피 로딩 샘플을 나타낸 것이다. 레인 2는 니켈 친화수지에 결합하지 않은 것을 나타낸 것이다. 레인 3은 8M UREA/50mM Na-phosphat e/ 500mM NaCl /lOmM Imi dazo l e 용액으로 용출한 결과를 나타낸 것이다. 레인 4는 8M UREA/ 50mM Na-phosphat e/ 500mM NaCl /50mM Imi dazo l e 용액으로 용출한 결과를 나타낸 것이다. 레인 5 내지 8은 8M UREA/50mM Na- phosphat e/500mM NaCl /100mM Imi dazo l e 용액으로 용출한 결과를 나타낸 것이다. 레인 9 내지 10은 8M UREA/ 50mM Na-phosphat e/ 500mM NaCl /250mM Imi dazo l e 용액으로 용출한 결과를 나타낸 것이다. 레인 11은 8M UREA/50mM Na- phosphat e/500mM NaCl /500mM Imi dazol e용액으로 용출한 결과를 나타낸 것이다. 회수된 용출용액의 단백량을 단백질 정량법으로 측정하고 SDS-PAGE를 이용하여 확인하였다. 도 38에 나타난 바와 같이, 확인이 끝난 TOM70-(GGGGS)3- UB-PTEN단백질은 액체질소로 급랭하여 -8CTC 초저온 냉동고에 보관하였다. 이때, 도 38의 레인 M은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 PBS 완충용액에 투석한후의 T0M70-(GGGGS)3-UB-PTEN단백질을 나타낸 것이다. 2019/209051 1»(:1^1{2019/005020
실시예 5. 미토콘드리아 외막 단백질, 유비퀴틴 및
Figure imgf000047_0001
포함한 융합 단백질의 제조
실시예 5.1. 대장균유래 재조합
Figure imgf000047_0002
단백질분리 및정제 유비퀴틴이 융합된 성숙형 ? - 1X17 단백질을 발현하는 대장균 此21(예3) 생산 균주를 1 액상배지에 접종하고 37 V 조건에서 배양하여 흡광도가 0예00에서 0.3에 도달할 때 냉장고에 넣어 배양액의 온도를 낮추고 배양기 온도를 1810로 변경 후 0.5 1 ^를_ 첨가하여 하루 동안 추가 진탕 배양하여 유비퀴틴이 융합된
Figure imgf000047_0003
단백질을 발현시켰다.
배양 종료 후 원심분리를 이용하여 세포를 회수하고, 회수된 세포는 를 이용하여 1회 세척한 다음 50 소듐포스페이트, 500 이, 10 1 이미다졸, 8.0 용액을 이용하여 세포를 현탁시키고, 현탁된 세포는 소니케이터를 이용하여 파쇄공정을 수행하였다. 파쇄된 세포는 고속 원심분리기를 이용하여 원심분리 한 후 상등액을 회수하고, 회수된 상등액은 0.45 _ 필터를 이용하여 필터한 후 미리 패킹된 니켈 크로마토그래피 컬럼에 로딩하여 1차정제를수행하였다.
유비퀴틴이 융합된 성숙형 매 ?!5 - 1X17 단백질이 포함된 파쇄 용액을 로딩 후 50 소듐포스페이트, 500 他(:1, 20 이미다졸, 8.0 용액을 이용하여 결합하지 않는 불순물이 검출되지 않을 때까지 세척용액을 흘려주고 50 소듐포스페이트, 500 加이, 500 이미다졸, 如 8.0 용액을 이용하여 농도구배에 따라 단백질을 용출하였다(도 39). 이때, 도 39의 레인 은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 니켈 친화크로마토그래피 로딩 샘플을 나타낸 것이다. 레인 2는 니켈친화수지에 결합하지 않은 것을 나타낸 것이다. 레인 3은 50 他-曲 如 6/500 此(:1/20 1 ( 2016로용출한 결과를 나타낸 것이다. 레인 4는 50 - 애 6/500 1/55 산크 로 용출한
Figure imgf000047_0004
¾(:1/65 11 ( 2016로 용출한 결과를 나타낸 것이다. 레인 7은 50 他- phosphate/500mM 01/70 11 ( 2016로 용줄한 결과를 나타낸 것이다. 레인 8은 50 - 6/500 (31/75 산크 로 용출한 결과를 나타낸 것이다. 2019/209051 1»(:1^1{2019/005020 레인 9는 50 - / (1/80 1미1( 2016로 용줄한 결과를 나타낸 것이다. 레인 10은 50 1)11031)11 6/500 (〕1/85 선크 로 용출한 결과를 나타낸 것이다. 레인 11은 50 ^1 031)11 6/500 01/90
111^(13201근로 용출한 결과를 나타낸 것이다. 레인
Figure imgf000048_0001
(^1/95 크 로 용출한 결과를 나타낸 것이다. 레인 13은 50 -
Figure imgf000048_0004
확인된 최종 113 13-1'(17 단백질은 액체질소에 급랭하여 -801: 초저온 냉동고에 보관하였다. 이때, 도 40의 레인 은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 융합 단백질 분획물을 혼합한 후 50
Figure imgf000048_0002
용액에 투석한후수득한단백질을나타낸 것이다.
실시예 5.2. 대장균 유래 재조합
Figure imgf000048_0003
단백질 분리 및 정제
재조합 단백질 腦개 쌔 !3를 발현하는 대장균 此21(關3) 생산 균주를 1止 액상배지에 접종하고 37 °0 조건에서 배양하여 흡광도가 湖 600에서 0.3에 도달할 때 냉장고에 넣어 배양액의 온도를 낮추고 배양기 온도를 18 로 변경 후 0.5 1的石를 첨가하여 하루 동안 추가 진탕 배양하여 재조합 단백질 1예70-(0000幻3-1]6-0?13를 발현시켰다.
배양 종료 후 원심분리를 이용하여 세포를 회수하고, 회수된 세포는 를 이용하여 1회 세척한 다음 50 소듐포스페이트, 500 加(:1, 10 이미다졸, 8.0 용액을 이용하여 세포를 현탁시키고, 현탁된 세포는 소니케이터를 이용하여 파쇄공정을 수행하였다. 파쇄된 세포는 고속 원심분리기를 이용하여 원심분리 한 후 상등액을 회수하고, 회수된 상등액은 0.45 !M 필터를 이용하여 필터한 후 미리 패킹된 니켈 크로마토그래피 컬럼에 로딩하여 1차정제를수행하였다.
재조합 단백질 !'(170-(0000幻3-1]6 1)가 포함된 파쇄 용액을 니켈수지가 담긴 칼럼에 로딩 후 50 소둠포스페이트, 500 他(:1, 20 이미다졸, 2019/209051 1»(:1^1{2019/005020
8.0 용액을 이용하여 결합하지 않는 불순물이 검출되지 않을 때까지 세척용액을 흘려주고 50 소둠포스페이트, 500 他이, 500 이미다졸, 8.0 용액을 이용하되, 이미다졸 농도를 50 , 100 虛, 250 , 500 로 변화를 주어 단백질을 용출하였다 (도 41) . 이때, 도 41의 레인 은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 니켈 크로마토그래피 로딩 샘플을 나타낸 것이다. 레인 2는 니켈 크로마토그래피에 결합하지 않은 것을 나타낸 것이다. 레인 3은 50
Figure imgf000049_0004
니켈 크로마토그래피에서 회수한 용출용액을 삼투압의 원리를 이용하여 완충용액으로 용액교환을 하였다. 용액교환 후 회수한 최종 단백질 10¾170- ((光00幻3-1]6 ?13를 단백질 정량 및
Figure imgf000049_0001
이용하여 확인하였다. 도 42에 나타난 바와 같이 확인이 끝난 10170- (0(^5 )3^^ 단백질은 액체질소에 급랭하여 -8010 초저온 냉동고에 보관하였다. 이때, 도 42의 레인 은 단백질 분자량마커를 나타낸 것이고, 레인 1은 요드완충용액에 투석 후 수득한 10170- ((^3)3-1®^?단백질을나타낸 것이다.
II . 미토콘드리아 외막 타겟팅 단백질 및 표적 타겟팅 단백질을 포함한 융합단백질의 제조
Figure imgf000049_0002
포함한융합단백질의 제조
실시예 6.1. ^1 抑:1{2유전자의 합성
인간 유래 1 1?2를 재조합 단백질로 발현시키기 위하여, 洋)바이오닉스에 요근 합성을 의뢰하여 수득된 .3신 1世1?2 유전자를 1)1X57- 1 묘2라고 명명하였으며
Figure imgf000049_0003
염기서열은 서열번호 37의 염기 서열과 같다. 2019/209051 1»(:1^1{2019/005020 실시예 6.2. 1 四敗단백질 발현 백터 제조
Figure imgf000050_0001
융합된 형태의 1 抑;1?2 단백질을 제조하기 위하여 유비퀴틴, 1X17이 융합된 형태의 %1 묘2 유전자를 발현시킬 수 있는 발현벡터를 제조하였다.
상기 실시예 6.1.에서 얻은 플라스미드 !)狀57-%1 抑요2 유전자를 제한효소 3 11와 ¾01으로 절단하여 2%아가로스겔 전기영동하여 약 750 5? 단편을 얻은 후에 제한효소 33(:11와 ¾이으로 절단된 ?附1加- 1]8- 53) - 1X17 벡터에 141) 연결효소를 이용하여 삽입하여 플라스미드 ?附1的- 113-%1 }世1?2- 1X17을 얻었다(도 39).
Figure imgf000050_0002
서열번호 38의 염기 서열로 표시하였다.
플라스미드 ?射1加- 1¾-% 他요2-1117을 사용하여 대장균 此21(예3) 균주를 형질전환시켰다. 그 후, 형질전환된 균주를 항생제 엠피실린이 첨가된
Figure imgf000050_0003
액상 배지에서 37 °0 조건에서 배양하여 세포밀도가 孤■에서 약 0.2 흡광도에 도달하는 시점에 최종 1 농도가 되게 1 (}를 첨가한 후 약 4시간 더 진탕 배양을실시하였다.
대장균 세포의 일부를 원심 분리하여 수득한 다음, 세포를 파쇄한 후 으此 -폴리아크릴아마이드에서 전기영동을 실시하였다. 도 44에 나타난 바와 같이, 약 35 壯 크기의 유비퀴틴과 1X17이 융합된 형태의 3산 묘2 단백질이 발현되었음을 확인하였다. 이때, 도 44의 레인 은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 1 (;를 첨가한 뒤 4시간 후에 대장균 파쇄 후 원심분리한 침전물을 나타낸 것이고, 레인 2는 대장균 파쇄 후 원심분리한 상등액을 나타낸 것이다.
실시예 6.2.2. 산今抑:敗 - 1ᅵ(17-^(;/바3제조
미토콘드리아 외막에 결합하는 腦 이 융합된 형태의 % 묘2 단백질을 제조하기 위하여 1X17이 융합된 형태의
Figure imgf000050_0004
발현시킬 수 있는 동물세포용 발현벡터를 제조하였다. 1X17과 유전자를 얻기 위하여
Figure imgf000050_0005
프라이머와 에가미付) 프라이머를 제조하였다. 각 프라이머의 서열은 아래 표 11에 기재한바와같다. 2019/209051 1»(:1^1{2019/005020
【표 11]
Figure imgf000051_0011
실시예 6.2.1.에서
Figure imgf000051_0001
주형으로 하여 0.2 01 프라이머 他1?2)와 0.2 01 프라이머 00117(1101'))를
Figure imgf000051_0002
0.2 ,
Figure imgf000051_0003
중합효소 반응 완충용액( 해, 1¾쇼) 및 1 111^1;의 01151'11116 184 0· 중합효소를 섞었다. 그 후, 중합효소 연쇄 반응 장치에서 95 °0 40초, 58 °0 30초, 72 °0 1분의 증폭 반응을 25주기로 수행하여 유전자 %1 1世요2 - 1X17을 수득하였다. 증폭된
Figure imgf000051_0004
유전자를 제한효소 成1과 ¾1 으로 절단하여 1% 아가로스겔 전기영동하여 각각 약 850 1)의 0 단편을 얻은 후에 제한효소 £0恨1과 ¾1이으로 절단된 볘½3.1-11 (:/먀3쇼 벡터에 40· 연결효소를 이용하여 삽입하여 플라스미드 1£ -3산 抑1?2-1'01«7-111%/먀3을 얻었다(
Figure imgf000051_0005
서열번호 41의 염기 서열로 표시하였다. 플라스미드
Figure imgf000051_0006
사용하여 동물세포 抑 0에 형질주입시키고, 세포를 파쇄한 후 將 -폴리아크릴아마이드 전기영동을 실시하였고 3^ 1-0^0 항체를 이용하여 웨스턴 블롯으로 나타낸 것이다. 도 46에 나타난 바와 같이, 약 35
Figure imgf000051_0007
크기의 1X17이 융합된 형태의
Figure imgf000051_0008
단백질이 발현되었음을 확인하였다. 이때, 도 46의 레인 은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 동물세포 抑 0에 형질주입시키고, 세포를 파쇄한 후 此 -폴리아크릴아마이드 전기영동을 실시하여
Figure imgf000051_0009
항체를 이용하여 웨스턴 블롯으로 확인한 것이다. 실시예 6.3. 대장균유래 재조합迎 션쌔湖 {2-1(17단백질분리 및 정제 실시예 1.3.1.의 방법과 동일한 과정으로
Figure imgf000051_0010
단백질을 분리 및 정제하였다. 그 결과 매- 抑!? ä? 단백질을 용출하였다(도 47). 이때, 도 47의 레인 ¾1은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 니켈 친화크로마토그래피 로딩 샘플을 나타낸 것이다. 레인 2는 니켈 친화수지에 2019/209051 1»(:1^1{2019/005020 결합하지 않은 것을 나타낸 것이다. 레인 3은 81 11則: 501·他-曲애曲 6/5001 01/10 11 (132016로 용출한 결과를 나타낸 것이다. 레인 4 내지 5는 81¾
Figure imgf000052_0001
이용하여 확인하였다. 도 48에 나타난 바와 같이, 확인이 끝난 - 他요요 - 1X17 단백질을 액체질소로 급랭하여 -801 초저온 냉동고에 보관하였다. 이때, 도 48의 레인 ¾1은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 므 완충용액에 투석한후의 118- 1 四묘2 - 단백질을나타낸 것이다. 포함한융합단백질의 제조
Figure imgf000052_0002
유전자의 합성
Figure imgf000052_0003
재조합 단백질로 발현시키기 위하여, (주)바이오닉스에 유전자 합성을 의뢰하여 수득된
Figure imgf000052_0004
유전자를 !)狀57-3산 ¾1 라고 명명하였으며,
Figure imgf000052_0005
염기서열은 서열번호 42·의 염기 서열과 같다. 실시예 7.2.
Figure imgf000052_0006
단백질 발현 벡터 제조
실시예 7.2.1. ?£11加- 1恨-的1 ¾1此-1(17제조
유비퀴틴, 미토콘드리아 외막에 결합하는 1X17이 융합된 형태의
Figure imgf000052_0007
단백질을 제조하기 위하여 유비퀴틴, 1X17이 융합된 형태의 1今¾1 를 발현시킬 수 있는 발현벡터를 제조하였다.
실시예 7. 1.에서 얻은 플라스미드 !)11:57-%1 ¾1此 유전자를 제한효소 3^11와 ¾이으로 절단하여 2% 아가로스겔에서 전기영동하여 약 750 ^ 단편을 얻은 후에 제한효소
Figure imgf000052_0008
¾1이으로 절단된 ?肝1的- 1]6-(?53)-1:(17 벡터에 140 연결효소를 이용하여 삽입하여 플라스미드 ?附1加-服-3산今1\1此- 2019/209051 1»(:1^1{2019/005020
1X17을 얻었다(도 49). 이때,
Figure imgf000053_0001
서열번호 43의 염기 서열로 표시하였다.
플라스미드 ?附1加-116-%1 此 - ?을 사용하여 대장균此21(孤3) 균주를 형질전환시켰다. 그 후, 형질전환된 균주를 항생제 엠피실린이 첨가된 ^13- 표 내) 고체배지에서 배양 후, 여기에서 수득된 콜로니들을 1出 액상 배지에서 37 진탕배양기에서 배양하여 세포밀도가 孤600에서 약 0.2 흡광도에 도달하는 시점에 최종 1 농도가 되게 1 ¾를 첨가한 후 약 4시간 더 진탕 배양을실시하였다.
대장균 세포의 일부를 원심 분리하여 수득한 다음, 세포를 파쇄한 후 此 -폴리아크릴아마이드 전기영동을 실시하였다. 도 50에 나타난 바와 같이, 약 351江)3크기의 유비퀴틴과 1X17이 융합된 형태의
Figure imgf000053_0002
단백질이 발현되었음을 확인하였다. 이때, 도 50의 레인 ¾1은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 1 (}를 첨가한 뒤 4시간 후에 대장균 파쇄 후 원심분리한 침전물을 나타낸 것이고, 레인 2는 대장균 파쇄 후원심분리한상등액을나타낸 것이다.
실시예 7.2.2. ]) 1\卜3。17\쌔£1-110¾17-1 (:/103제조
미토콘드리아 외막에 결합하는 1X17이 융합된 형태의
Figure imgf000053_0003
단백질을 제조하기 위하여 1X17이 융합된 형태의 % ¾1 를 발현시킬 수 있는 동물세포용 발현벡터를 제조하였다. 1X17과 ¾1此 유전자를 얻기 위하여 프라이머 0 산^«此)를 제조하였다. 각 프라이머의 서열은 아래 표 12에 기재한 바와같다.
【표 12]
Figure imgf000053_0010
실시예 6.2.1.에서 얻은 플라스미드 ?射1的- 1]6-%1 ¾1此-1'湖7을 주형으로 하여 0.2 01
Figure imgf000053_0005
프라이머와 0.2
Figure imgf000053_0006
프라이머를
Figure imgf000053_0004
0.2 , IX 쇼0:11131^1116 크다 0· 중합효소 반응 완충용
Figure imgf000053_0007
( 요) 및 1 1111 의 01?1^1116 크다 0· 중합효소를 섞었다. 그 후, 중합효소 연쇄 반응 장치에서 95 °0
Figure imgf000053_0008
30초, 72 °0 1분의 증폭 반응을 25주기로 수행하여 3산^ 此 (17을 수득하였다. 증폭된
Figure imgf000053_0009
유전자를 제한효소 加0 과 2019/209051 1»(:1^1{2019/005020
¾101으로 절단하여 1% 아가로스겔 전기영동하여 각각 약 850 1)의 0· 단편을 얻은 후에 제한효소 0 과 ¾1이으로 절단된 1^炯쇼3.1-1 (:/바3 쇼 벡터에 40 연결효소를 이용하여 삽입하여 플라스미드 1)幻\1¥-%1 1 1-1'[17-111 / 3을 얻었다(도 51). 이때, %1 ¾1此-1'0¾17-1四(:/바3은 서열번호 45의 염기 서열로 표시하였다.
플라스미드
Figure imgf000054_0001
사용하여 동물세포 抑 0에 형질주입시키고, 세포를 파쇄한 후 況) 폴리아크릴아마이드 전기영동을 실시하였고 항체를 이용하여 웨스턴 블롯으로 나타낸 것이다. 도
52에 나타난 바와 같이, 약 35 1^)3크기의 1X17이 융합된 형태의
Figure imgf000054_0002
단백질이 발현되었음을 확인하였다. 이때, 도 52의 레인 ¾1은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 동물세포抑 0에 형질주입시키고, 세포를 파쇄한 후 的 -폴리아크릴아마이드 전기영동을 실시하여
Figure imgf000054_0003
항체를 이용하여 웨스턴 블롯으로 확인한 것이다. 단백질의 제조
Figure imgf000054_0008
단백질로 발현시키기 위하여,
(주)바이오닉스에 용 근 합성을 의뢰하여 수득된
Figure imgf000054_0004
유전자를 1)X57 - %1今?1)-
1그 라고 명명하였으며 이의 염기서열은서열번호 46의 염기 서열과 같다.
Figure imgf000054_0005
미토콘드리아 외막에 결합하는 1117이 융합된 형태의
Figure imgf000054_0006
단백질을 제조하기 위하여 1(17이 융합된 형태의 1今?1> 1를 발현시킬 수 있는 동물세포용 발현벡터를 제조하였다.
Figure imgf000054_0007
제한효소 此0別과 ¾1이으로 절단하여 1% 아가로스겔에서 전기영동하여 약 760 1)의 0 단편을 얻은 후에 제한효소 此0먀과 ¾ 으로 절단된 !£ -( ¾1此)-1117-1四(:/바3벡터에 140 연결효소를 이용하여 삽입하여 플라스미드 1£ -%1^¾-1그-1'(17-1 (:/ 3을 얻었다(도 53). 이때, 1^別)-나-1'(1717(:/ 3은서열번호 47의 염기 서열로 표시하였다. 플라스미드 pCMV-scFvPD-Ll-T0M7-myc/Hi s을 사용하여 동물세포 CH0에 형질주입시키고, 세포를 파쇄한 후 SDS-폴리아크릴아마이드 전기영동을 실시하였고 ant i-c-myc 항체를 이용하여 웨스턴 블롯으로 나타낸 것이다. 도 54에 나타난 바와 같이, 약 35 kDa크기의 T0M7이 융합된 형태의 scFvPD-Ll 단백질이 발현되었음을 확인하였다. 이때, 도 54의 레인 은 단백질 분자량 마커를 나타낸 것이고, 레인 1은 동물세포抑0에 형질주입시키고, 세포를 파쇄한 후 SDS-폴리아크릴아마이드 전기영동을 실시하여 ant i-c-myc 항체를 이용하여 웨스턴 블롯으로 확인한 것이다. III . 융합단백질이 결합된 개질된 미토콘드리아의 제조 실시예 9. 개질된 미토콘드리아의 제조
미토콘드리아 외막 결합부위와 융합된 형광단백질이 미토콘드리아의 외막에 결합하는지 여부를 확인하기 위하여 다음과 같은 실험을 진행하였다. 먼저 미토콘드리아는 탯줄유래 중간엽줄기세포 (UC-MSC)로부터 미토콘드리아를 원심분리 방법으로 분리하였다. 그 후에 Mi toTr acker CMXRos Red로 염색하였다. 상기에서 대장균으로부터 정제된 재조합 단백질 T0M70-(GGGGS)3-UB-GFP와 혼합하여 상온에서 약 30여분 인큐베이션하였다.
그 후 원심분리하여 반응하지 않은 단백질을 제거하고 PBS 완충용액으로 2회 세척하였다. 이후 형광 현미경을 이용하여 미토콘드리아에 결합된 형태의 형광단백질을 관찰하였다. 대조군으로는 미토콘드리아 외막결합부위를 포함하지 않은 정제된 GFP 단백질을 사용하였다. 그 결과 미토콘드리아 외막 결합부위와 융합된 형광단백질 (TOM70-(GGGGS)3-UB-GFP)은 탯줄유래 중간엽줄기세포 (UC-MSC) 미토콘드리아와 동일한 장소에 위치하고 있음을 확인할 수 있었다 (도 55a, 도 55b) . 실시예 10. 외래 미토콘드리아외막에 재조합단백질 ¹3결합능력 확인 탯줄유래 중간엽줄기세포로부터 원심분리 방법을 이용하여 분리된 미토콘드리아는 정제된 재조합 단백질
Figure imgf000055_0001
또는 仰ᄀ353_ 1X17과 혼합하여 1 : 1 비율로 41:에서 1시간 반응 조건으로 결합시켰다. 대조군으로는 단백질과 혼합하지 않은 미토콘드리아를 사용하였다. 미토콘드리아와 p53 간의 결합능력은 웨스턴 블롯 (western blot ) 실험 방법을 통해 확인하였다 (도 56) .
먼저 미토콘드리아와 p53 단백질의 결합 후, 13,000 대미에서 10분간 원심 분리하여 미토콘드리아 혹은 p53이 결합된 미토콘드리아를 침전물의 형태로 얻었다. 2회 PBS 세척 과정을 통해 미토콘드리아와 결합하지 않은 단백질을 제거하였고, 세척된 침전물은 단백질 전기 영동 (SDS-PA抑) 후 웨스톤 블롯 (Western Blot )을 수행하였다. 1차 항체로 rabbi t ant i_p53 항체를 사용하였고, 2차 항체로는 ant i-rabbi t IgG HRP 을 사용하였다. 단백질을 결합하지 않은 미토콘드리아 단독인 대조군과 비교해 T0M70-(GGGGS)3-UB-p53 또는 UB-p53-T0M7과 결합한 미토콘드리아아 실험군에서 예상되는 분자량인 크기 60kDa와동일한위치에서 밴드를 확인하였다 (도 56) .
IV. 활성단백질이 결합된 개질된 미토콘드리아의 활성 확인 실시예 11. 외래 미토콘드리아의 분리 및 세포내 주입
탯줄유래 중간엽줄기세포 (UC-MSC)로부터 미토콘드리아를 원심분리 방법을 이용하여 분리하였다. 분리된 미토콘드리아는 Mi totracker CMX요에로 염색하였고, BCA 정량법으로 분리한 미토콘드리아의 농도 및 총 양을 확인하여 Oug, lug, 5ug, 10ug, 50ug, lOOug의 미토콘드리아를 원심분리 방법을 이용하여 위암 세포주인
SNU-484 세포 내로 주입하였다. 실험 결과 세포 내로 주입되는 미토콘드리아의 정도는 미토콘드리아 양에 농도의존적임을 형광현미경으로 확인하였다 (도 57) . 실시예 12. 정상미토콘드리아가암세포에 미치는 영향확인
정상세포에서 유래된 미토콘드리아가 암세포의 증식과 R0S 생성에 어떤 영향을 미치는지 알아보기 위하여 다음과 같은 실험을 수행하였다. 먼저, 미토콘드리아 공여세포로 간세포 (WRL-68) , 섬유아세포 (f ibroblast ) , 탯줄유래 중간엽줄기세포 (UC-MSC)를 선정하였다. 상기 세포 세포로부터 원심분리 분획 방법으로 각각 미토콘드리아를 분리하였다. 미토콘드리아 수용세포로서 사용된 암세포는 피부표피암세포인 A431 세포주를 사용하였다. 이때, 원심력을 이용하여 피부표피암세포 내로 미토콘드리아를 농도별로 미토콘드리아를 전달하였다 (특허 10-2017-0151526참조) .
도입 후, 24, 48, 72 시간 후에 피부표피암세포 증식과 활성산소 (R0S) 생성을 관찰하였다. 그 결과 다양한 유래의 정상세포로부터 얻어진 미토콘드리아를 암세포에 주입한 경우에 농도 의존적으로암세포의 증식을 억제하는 효과가 있음을 확인할 수 있었고 또한 암세포 내 R0S 생산을 정상 미토콘드리아농도 의존적으로 억제하는 것을 확인할수 있었다 (도 58 및 도 59) . 실시예 13. 정상미토콘드리아가 약물내성에 미치는 영향확인
정상세포에서 유래된 미토콘드리아가 암세포 내로 주입될 경우 암세포의 특징인 약제내성, 항산화유전자 발현 여부, 암전이 (metastasi s)에 어떠한 영향을 미치는지를 다음과 같은 방법으로 조사하였다. 먼저, 미토콘드리아 공여세포로 정상 간세포 (WRL-68)를 설정하고 이 세포로부터 원심분리 분획 방법으로 미토콘드리아를 분리하여 사용하였다. 미토콘드리아 수용세포로서 사용된 암세포로는 간암세포주인 HepG2 세포를 사용하였다. 원심력을 이용하여 간암세포 내로 농도별로 미토콘드리아를 전달한 후, 항암제인 Doxorubicin에 대한 약제 내성을 관찰한 결과 미토콘드리아를 받은 암세포주의 경우 더 높은 약물 민감도를 나타내었음을 확인하였다 (도 60) . 실시예 14. 정상미토콘드리아가항산화효과에 미치는 영향확인
정상세포에서 분리한 미토콘드리아를 농도별로 간암 세포주인 HepG2 세포에 주입함에 따라 암세포 내 항산화 단백질인 효소 catalase와 S0D- 2 (super oxide di smutase-2) 유전자의 발현이 증가하는 것을 확인하였다 (도 61) . 실시예 15. 정상미토콘드리아가암세포 전이에 미치는 영향확인
전이와 관련하여 EMKEpi thel i al to mesenchymal transi t ion)에 관여하는 유전자중 하나인 a-smooth muscle act in(a-SMA) 유전자의 발현 여부를 확인 하였다. 이때, 미토콘드리아를 받은 간암세포의 경우 그렇지 않은 간암세포에 비해 미토콘드리아 농도 의존적으로 a-SMA 단백질의 발현이 현저하게 감소가 되어 있음을 알 수 있었다. 이와는 반대로 세포부착 단백질 중 하나인 E- ca此 er in 단백질의 경우는 미토콘드리아 농도 의존적으로 증가함을 알 수 있었다(도 62). 이러한 암전이에 관여하는 것으로 알려진 단백질들의 변화는 암세포 내로 주입된 정상 미토콘드리아에 의해 이루어지는 것으로써 암세포의 전이(met ast as i s) 에도 영향을주는 것을 확인할수 있었다. 실시예 16. 외래 미토콘드리아 외막에 재조합 단백질 p53 탑재 및 세포 내 주입 확인
탯줄유래 중간엽줄기세포로부터 미토콘드리아를 원심분리 방법으로 분리한 후에 Mi totracker CMX Ros로 염색하였고, 정제된 재조합 단백질 T0M70- (GGGGS)3-UB-p53 또는 UB-p53-T0M7과 혼합하여 1 : 1 비율로 4°C에서 1시간 반응 조건으로 incubat ion 한 뒤 원심 분리하여 반응하지 않은 단백질을 제거한 뒤 완충용액 PBS로 2회 세척한 후 p53 단백질이 결합된 형태의 미토콘드리아를 원심분리 방법으로 위암세포주 SNU-484 세포 내로 주입하였다(도 63). 이때 대조군으로는 미토콘드리아를 사용하지 않은 그룹과 미토콘드리아 단독으로 사용한 그룹으로 설정하였다. 하루 배양 뒤, 면역세포화학법(Immunocytochemi stry, ICC)을 이용하여 세포 내 주입된 외래 미토콘드리아에 탑재된 p53단백질을 형광현미경으로관찰하였다 .
1차 항체로는 rabbi t ant i-p53 항체를 사용하였고, 2차 항체로는 Goat ant i -rabbi t IgG Alexa Fluor 488을 사용하였다. 그 결과 외래 미토콘드리아(붉은색 염색)에 탑재된 T0M70-(GGGGS)3-UB-p53(녹색염색) 또는 UB- p53-T0M7(녹색염색) 단백질은 세포 내 주입 시 외래 미토콘드리아와 함께 주입된 세포 내 세포질에 위치함을 확인하였다(도 64, 200배율 및 도 65, 400배율). 이로써 재조합 단백질은 미토콘드리아를 매개로 하여 세포 내로 주입이 용이함을 알수 있었다. 실시예 17. 암세포주에서 p53탑재된 미토콘드리아의 활성 확인
실시예 17.1. 위암세포주를 이용한 세포 내 주입된 p53 탑재 외래 미토콘드리아의 세포사멸 능력 확인
탯줄유래 중간엽줄기세포로부터 원심분리 방법을 이용하여 분리된 미토콘드리아는 대장균으로부터 정제된 재조합 단백질 T0M70-(GGGGS)3-UB-p53 또는 UB-p53-T0M7과 혼합하여 1 : 1 비율로 4°C에서 1시간 반응 조건으로 결합시켰다. 대조군으로는 T0M70을 포함하지 않는 UB-p53 단백질과 유비퀴틴 (ubiqui t in)을 포함하지 않는 T0M70-(GGGGS)3-p53을 사용하였다. 결합하지 않은 단백질은 원심분리 및 PBS 세척 과정으로 제거하였고, 단백질이 결합된 미토콘드리아는 p53 유전자의 변이로 인해 p53능력이 결여된 위암세포주 SNU-484에 원심 분리하여 주입되었다 (도 66) . 하루 배양 뒤, 4% 파라포름알데하이드 (Paraformaldehyde)로 1시간 고정화 (Fixat ion)한 다음, permeabi l i zat ion solut ion(0.1% Tr i ton-X-100이 포함된 0.1% sodium ci trate 버퍼, pH 7.4)을 이용하여 세포의 투과화를 유도하고 TUNEL solut iondn si tu cel l death detect ion ki t , TMR RED, Roche)으로 37°C에서 한시간반응시켰다.
TUNEL 분석법에서 핵산의 단편화 (DNA fragment at ion)가 일어난 부분은 붉은색으로 염색이 되며, 이는 세포사멸 (apoptosi s)이 일어남을 나타내는 것이다. 대조군과 비교하여 T0M70-(GGGGS)3-ub-p53 또는 p53_T0M7이 결합된 미토콘드리아가 주입된 세포에서는 대조군과는 달리 붉은색으로 염색된 부분이 다량으로 확인되었으며, 이는 T0M70-(GGGGS)3-UB-p53 또는 UB-p53_T0M7이 결합된 미토콘드리아에 의해 세포사멸이 일어남을 나타낸 것이다. 특히 T0M70-(GGGGS)3- UB-p53 형태의 단백질이 결합된 미토콘드리아에서 더 많은 세포사멸이 일어남을 확인할수 있었다 (도 67a) . 실시예 17.2. 루시퍼라제가 결합된 p53 탑재 외래 미토콘드리아의 세포사멸 능력 확인
상기 실시예 5.2.에서 얻은 미토콘드리아에 결합된 형태의 T0M70- (GGGGS)3-UB-p53 단백질이 수용 세포 내로 전달이 된 후에 수용세포 내에서 전달된 T0M70-(GGGGS)3-UB-p53 단백질의 생물학적 활성이 유지되는지 여부를 확인하기 위하여 리포터 유전자를 이용한 세포기반 분석을 수행하였다. p53 단백질은 전사인자 (transcr ipt ion factor)이므로 p53 전사인자가 결합할 수 있는 염기서열 RRRCWWGYYY (여기서 요은 G또는 A를 나타내며 , W는 A또는 T를 나타내며, '{는 C 또는 를 나타낸다)이 6번 반복되는 유전자를 다음과 같은 서열로 합성을 하였다. P53-promter-S의 염기서열은 다음과 같고 (5’-GGG CAT GCT CGG GCA TGC CCG GGC ATG CTC GGG CAT GCC CGG GCA TGC TCG GGC ATG CCC-3’) (서열번호 91), P53-promter-AS의 염기서열은 다음과 같다 (5’-GGG CAT GCC CGA GCA TGC CCG GGC ATG CCC GAG CAT GCC CGG GCA TGC CCG AGC ATG CCC-3,) (서열번호 92) .
합성한 유전자 P53-promter-S 5ug 과 합성한 유전자 P53-promter_AS 5ug을 70°C에서 20분간 incubation 하여 이중나선 유전자의 합성을 촉진시킨 뒤에 polynucleotide T4 kinase 효소를 이용하여 인산화 반응을 유도하였다. 인산화가 유도된 이중나선 유전자는 제한효소 Sma I으로 절단된 pGL3 vector에 삽입을 하여 p53 전사인자가 결합할수 있는 염기서열 (RRRCWWGYYY)이 6번 반복된 유전자를 리포터 유전자인 루시퍼레이즈에 결합시킨 플라스미드 p6xp53-Luc를 완성하였다. 플라스미드 p6xp53-Luc와 베타갈락토시데이즈 발현벡터인 플라스미드 pRSVb-gal을 인간 신장세포인 HEK293 세포에 리포펙타민 방법으로 형질전환시켰다.
이후, 6시간 뒤에 미토콘드리아 10ug 과 T0M70-(GGGGS)3-UB-p53 단백질 5ug, 10ug, 20ug을 각각 결합시킨 결합물을 HEK293 세포에 처리하였다. 이때 대조군으로는 PBS 또는 p53 단백질이 결합된 10 의 미토콘드리아를 각각 사용하여 처리하였다. 이렇게 처리한 세포를 18시간동안 배양한 후에 루시퍼레이즈 활성을 측정하여 분석하였으며 이때 형질전환의 효율성을 보정하기 위하여 베타갈락토시데이즈의 활성을 측정하여 얻어진 값으로 나누어진 루시퍼레이즈 값을보정 루시퍼레이즈 값으로 결정하였다.
미토콘드리아 10 ug과 T0M70-(GGGGS)3-UB-p53 단백질 5 ug, 10 ug및 20 ug을 각각 결합시킨 결합물을 처리한 세포에서 루시퍼레이즈 값이 증가하였음을 확인할 수 있어 세포 내로 들어간 P53 단백질이 활성을 나타내고 있음을 확인할 수 있었다 (도 67b) . 실시예 18. 세포 내 주입된 RKIP 탑재 외래 미토콘드리아의 암세포주 전이성 감소능력 확인
탯줄유래 중간엽줄기세포로부터 원심분리 방법을 이용하여 분리된 미토콘드리아는 정제된 재조합 단백질 T0M70-(GGGGS)3-UB-RKIP과 혼합하여 1 : 1 비율로 4°C에서 1시간 반응 조건으로 결합시켰다. 단백질이 결합된 미토콘드리아는 RKIP 단백질이 저하되어 전이 능력이 높아졌다고 알려진 유방암세포주 MDA-MB-231에 원심 분리하여 주입되었다.
암세포의 전이성 (metastasi s)의 능력을 확인하기 위해 transwel l plate를 이용한 세포침투분석법 (cel l invasion assay)를 진행하였다. 8 y m pore 크기의 transwel l upper-chamber에 matr igel을 30분간 37°C에서 코팅하였다. 시험군으로 미토콘드리아 단독으로 주입된 MDA-MB-231 세포와 RKIP 단백질이 결합된 미토콘드리아가 주입된 MDA-MB-231 세포를 사용하였다. 각 세포를 1x105 세포수를 혈청이 없는 배지가 들어 있는 transwel l upper chamber에 넣어주고, lower -chamber에는 10%의 우혈청이 포함된 배지를 넣어 주었다. 37°C에서 12시간 동안 배양 후, 4% 파라포름알데하이드 (Paraformaldehyde)로 1시간 고정화 (Fixat ion)한 다음 1% 크리스탈 바이올렛 (crystal violet )을 이용하여 matr igel을통과한세포를 염색하였다.
현미경으로 관찰 결과 upper-chamber의 아래 membrane에서 보라색으로 염색된 세포가 관찰되었고, 이는 세포의 전이 (metastasi s)가 일어난 과정이라고 할 수 있다. 아무것도 처리하지 않은 대조군에 비해 미토콘드리아를 단독처리한 경우, 그리고 RKIP이 결합된 미토콘드리아를 처리한 실험군에서 보라색으로 염색된 세포의 수가 감소됨을 확인하였다. 무작위로 네 부분을 선택한 다음 염색된 세포의 수를측정하여 도표로 나타내었다 (도 68) . IV. 표적 타겟팅 단백질이 결합된 개질된 미토콘드리아의 전달율확인 실시예 19. 암세포 표적용 단쇄가변영역 (ScFv, single chain variable fragment) 항체의 세포내 발현 확인 및 세포내 미토콘드리아와의 결합확인
pCMV-ScFv-HER2-T0M7 또는 pCMV-ScFv_MEL-T0M7 또는 pCMV-ScFv-抑- L1- T0M7 를동물세포에서 발현시키기 위해 해당 쇼를 Lipofectamine LTX and PLUS 또는 Lipofectamine 2000을 사용하여 CH0 세포에 형질주입 (Transfect ion) 하였다. 대조군으로 GFP-T0M7 쇼를 사용하였다. 세포 내에서 발현되어 동일 세포 내의 미토콘드리아에 결합하는지 확인하기 위해 형질주입 (Transfect ion)된 세포로부터 원심분리 방법을 이용하여 세포질 (cytosol ) 및 미토콘드리아를 분리하였고, BCA assay를 이용해 동일한 단백양을 맞추어 준 다음 PAGE 전기 영동 후 웨스톤 블롯 (Western Blot )으로 결과를 관찰하였다. 1차 항체로는 monoclonal c-myc ant i body를사용하였고, 2차항체로는 Ant i -mouse IgG HRP을사용하였다.
ScFv-HER2-T0M7 또는 ScFv-MEL-T0M7 단백질들이 예상되는 35kDa의 크기에서 밴드를 확인하였고, 모두 미토콘드리아층에서 확인되는 것으로 보아 형질주입 되어 발현된 단백질들이 T0M7에 의해 세포 내 미토콘드리아와의 결합함을 예상할수 있었다 (도 69) .
다음으로는 세포 내 발현된 표적용 단백질과 동일 세포 내 미토콘드리아와의 결합을 확인하기 위해 면역세포화학법 ( immunocytochemi stry, ICC) 실험법을 이용하여 세포 내 발현된 ScFv-HER2-T0M7, ScFv-MEL-T0M7 또는 ScFv-卵 -L1-T0M7 단백질을 형광현미경으로 관찰하였다. 1차 항체로는 monoclonal c-myc ant ibody를 사용하였고, 2차 항체로는 Goat ant i -mouse IgG Alexa Fluor 488을 사용하였다. 세포 내 미토콘드리아는 Mi totracker CMX Ros로 염색하였다. 결과적으로 발현된 ScFv-HER2-T0M7, ScFv_MEL-T0M7 또는 ScFv-卵 -L1-T0M7 단백질들은 미토콘드리아와 colocal izat ion 되어 세포 내에 있는 미토콘드리아와 결합하고 있을 확인하였다 (도 70 및 도 71) . 실시예 20. 암세포 표적용 단쇄가변영역 항체가 결합된 미토콘드리아의 분리 및 위암세포주에서의 미토콘드리아주입 비교
pCMV-ScFv-HER2-T0M7 또는 pCMV-ScFv-抑- L1-T0M7가 형질주입 (Transfect ion)된 CH0 cel l 로부터 미토콘드리아를 분리하였다. 대조군으로는 형질 전환되지 않은 CH0 세포의 ·미토콘드리아를 분리하여 사용하였다. 각각으로부터 분리된 미토콘드리아는 Mi totracker CMX Ros로 염색되었다. 동일한 미토콘드리아의 양을 위암세포주인 SNU-484에 처리한 다음 다음날 형광현미경을 이용하여 세포 내 주입된 미토콘드리아의 정도를 비교 확인하였다. 대조군에 비해 ScFv-HER2-T0M7 또는 ScFv-PD-Ll-T0M7 가 결합된 미토콘드리아가 대조군으로부터 얻은 미토콘드리아에 비해 암세포에 더 많이 주입됨을 확인할 수 있었다 (도 72) . 따라서 표적용 단백질이 결합된 미토콘드리아는 미토콘드리아 단독으로 사용할 때 암세포 내로 주입이 더 용이함을 알수 있었다. 2019/209051 1»(:1^1{2019/005020
VI . 활성단백질이 결합된개질된미토콘드리아의
Figure imgf000063_0001
확인 실시예 21.표해 대代모델제작 (,-484)및 시험 물질투여
실시예 21.1. 암세포준비
실험 당일, 위암세포주 3^-484 세포주는 마우스 한 마리당 5 X 106
061 1 £가 되게 준비하였다. 세포의 배지를 제거한 뒤 요드 를 첨가하여 세포를 세척하였다.
Figure imgf000063_0002
용액을 이용하여 세포를 떼어낸 뒤, 50 1111 1;1止6에 넣고 묘완충용액으로 2회 세척을 한 후 요으 20 을 넣어 세포수와 생존도를 측정하였다. 측정된 세포수를 기준으로 하여, 마리당 5 X 106 1 13이 되도록 세포수를 맞주어 그룹 별로 나누어 준비하였다. 마리당 이식되는 볼륨은 100 111^ 동량으로 맞추어 주었다. 대조군으로서는 암세포 단독그룹으로서 100 나 으로 준비하였다. 실시예 21.2. 시험 물질준비
상기와 같이 제대혈 중간엽줄기세포로부터 분리된 미토콘드리아는 이식을 위해 단백질 농도를 기반으로 마리당 50 11 §에 맞추어 준비하였다. 미토콘드리아 단독 투여 그룹의 경우 미토콘드리아를 암세포가 섞여있는 100 1^의 표으와 잘 혼합하여 준비하였다. 개질된 미토콘드리아 그룹의 경우 암세포와 혼합하기 전, 에펜도르프 튜브에 준비된 미토콘드리아의 양과 1 : 1의 비율이 되는 농도로 11170-(0000幻3-仰 53 단백질을 같이 혼합하여, 상온에서 1시간 동안 두었다. 반응시간이 끝난 뒤, 10 분 동안 20 ,000 용의 원심분리 후 상등액을 제거하고 단백질이 결합한 미토콘드리아 (^+1:(170-(00003)3-1]61)53) 펠렛을 수득하였다. 묘 완충용액을 이용하여 2회 세척을 한 후 ?53 단백질이 결합된 미토콘드리아
Figure imgf000063_0003
암세포가 섞여 있는 100 此의 요와 잘혼합하여 준비하였다. 실시예 21.3. 시험동물준비 및시험물질 이식
그룹별로 준비된 이식 시료는 표와 동량의 용이 이를 넣고, 세포와 가볍게 섞어주어 마리 당 200 此의 시험물질을 준비하였다. 이때 모든 조작은 ice에서 진행하였다. 모델 제작을 위해, Balb/c nude mouse(Female, 7주령)을 라온바이오로부터 구입하였고, 암세포 이식을 위해 i sof lurane으로 흡입 마취시킨 후, 알코올 솜으로 우측 등 부위(동물 기준)를 소독하였다. 그 후 주사액이 들어간 1 mL 주사기를 이용하여 실험동물의 우측 등부위의 피하에 200 ML 투여하였다. 투여 후 동물의 무게 및 종양의 크기를 주당 2회 측정하였으며, 결과분석은 3주까지 관찰하며 진행하였다(도 73). 실시예 21.4. 종양형성 확인
종양의 볼륨은 종양의 장축 및 단축길이를 측정한 후, 아래의 식에 적용하여 계산하였다.
<수학식 1>
장축 X단축 X단축 X 0.5 =종양 volume(mT3) 실시예 21.5. 생리적, 형태적 변화관찰
항암 후보물질 투여에 의한 마우스의 생리적, 형태적 변화를 관찰하기 위하여 암세포와 시험물질 투여시점부터 주 2회 체중 및 tumor si ze를 측정하여 변화를 관찰하였다(도 74).
마우스의 무게는 저울을 이용하여 측정하였으며, 주 2회 측정한 값을 이용하여 그룹별 변화를 분석하였다(도 75). 3주 동안의 몸무게의 변화는 미토콘드리아를 주입하지 않은 그룹, 미토콘드리아 단독으로 투여한 그룹, 개질된 미토콘드리아를 주입한 그룹 간에 큰 차이가 없었음을 확인하였다. 종양의 사이즈는 Cal iper를 이용하여 종양의 장축(length) 및 단축(width) 길이를 측정한 후, 상기 수학식 1의 식에 적용하여 계산하였다. 주 2회 측정한 값을 이용하여 그룹별 변화를 분석하였다(도 76). 종양의 크기는 미토콘드리아를 처리하지 않은 그룹에서 시간이 지남에 따라 큰 폭으로 증가되는 반면에 미토콘드리아와 함께 투여한 마우스의 경우에는 종양의 크기가 시간이 지남에 따라 둥화되는 것을 알 수 있었으며, 미토콘드리아 단독으로 투여한 그룹보다 p53 단백질이 탑재된 미토콘드리아의 경우 종양의 크기 증가가 현저히 낮아졌음을 확인할수 있었다(도 76). 실시예 22. 개질된 미토콘드리아의 피부암세포중식 억제 효과확인 상기에서 수득한 P53이 결합된 미토콘드리아를 피부암 세포종인 A431 세포에 원심분리 방법으로 전달 시킨 후 A431 세포의 증식을 관찰하였다. 이때 대조군으로는 생리식염수를 사용하였고 , 대조시험군으로는 p53 단백질이 융합되지 않은 미토콘드리아 동량을 사용하였다 . 대조군과 미토콘드리아만을 사용한 경우에 비해서 세포자살 유도 단백질인 p53 단백질을 탑재시킨 미토콘드리아가 A431 세포의 증식을 현저하게 억제할 수 있음을 확인하였다 (도 76) .
V. 분리된 미토콘드리아의 활성 확인 실시예 23. 분리된 미토콘드리아기능확인: ATP content
탯줄 유래 줄기세포 (UC-MSCs)로부터 세포 내 미토콘드리아를 분리하기 위해 주사기 (syr inge)를 이용하여 균질화를 시켜 세포를 깨준 뒤, 연속적인 원심분리를 통해 미토콘드리아를 수득하였다 . 분리한 미토콘드리아의 기능 ( funct ion)을 확인하기 위해, 분리된 미토콘드리아를 BCA assay를 통해 미토콘드리아 단백질 농도를 정량화하여 5 )jg의 미토콘드리아를 준비하였다.
Cel ITi ter-Glo luminescence ki t (Promega, Madi son, WI )를 이용하여 미토콘드리아내 ATP의 양을 확인하였다.
준비된 미토콘드리아는 PBS 100 ul에 섞어준 뒤 96 wel l plate에 준비하고, 대조군으로서 미토콘드리아가 포함되지 않은 PBS 100 ul으로 비교하였다. ki t에 포함된 테스트용액을 동일하게 100 fd 추가하여 2분간 교반기에서 반응시켜 잘 섞어준 뒤, 상온에서 10분간 반응시킨 뒤 Luminescence micropl ate reader를 이용하여 ATP 양을 측정하였다. 대조군과 비교하여 미토콘드리아가 포함되었을 때 ATP 가 증가함을 확인하였고, 미토콘드리아의 기능을 확인할수 있었다 (도 78) . 실시예 24. 분리된 미토콘드리아기능확인: 막전위 (Membrane potential) 분리된 미토콘드리아의 막 전위를 확인하기 위해, JC-1 dye (molecular probes , cat no.1743159) 염료를 사용하였다. 준비된 미토콘드리아는 PBS 50 M에 섞어준 뒤 96 wel l plate에 준비하고, 대조군으로서 미토콘드리아가 포함되지 않은 PBS(50 fd) 군과 CCCP(R&D systems , CAS 555-60-2) 처리 군으로 준비하였다. 미토콘도리아의 Ionophore인 CCCP는 미토콘드리아의 막전위 (Membrane potent ial )를 탈분극 (depolar i zat ion)시킴으로써 미토콘드리아의 기능을 저해한다. CCCP군은 50
Figure imgf000066_0001
로 분리된 미토콘드리아와 10분간실온에서 반응시켰다.
그 후 동일하게 JC-1 염료 (2 y M)와 반응시킨 뒤, 막 전위의 변화에 따라 발생하는 농도에 따라 다른 스펙트럼을 가지는 성질을 이용하여 흡광도를 측정하였다. 저농도에서는 monomer로 존재하며 녹색 형광을 띄고, 높은 농도에서는 염료가 응집 (J-aggregate)되어 붉은색 형광을 나타낸다. 미토콘드리아의 막 전위는 붉은색 흡광도에 대한 녹색흡광도의 비율로 계산하여 분석하였다. 반응이 끝난 후, 형광 Microplate reader기를 이용하여 미토콘드리아 막 전위를 측정 하였다 (Monomer : Ex 485 / Em 530, J-aggregate: Ex 535 / Em 590) . 그 결과는도 79에 나타내었다. 실시예 25. mROS생성 확인을통해 분리된 미토콘드리아손상정도확인 상기와 같이 준비된 5 |jg의 미토콘드리아의 손상 (damage) 여부를 확인하기 위해, 분리된 미토콘드리아 내 미토콘드리아성 활성 산소를 분석할 수 있는 Mi toSOX red indi catorC lnvi trogen, cat no. M36008) 염료를 사용하였다. 준비된 미토콘드리아는 PBS 50 에 섞어준 뒤 96 wel l plate에 준비하고, 대조군으로서 미토콘드리아가 포함되지 않은 PBS 50 M로 비교하였다. Mi toSOX red 염료는 PBS 50 에 섞어 10 pM 농도가 되게 하고 96-wel l plate에 넣어준 뒤 (최종 농도 5 |JM 37°C , C02 인큐베이터에서 20 분간 반응시켰다. 반응이 끝난 후, Microplate reader 기를 이용하여 미토콘드리아 내 R0S 양을 측정하였다 (Ex 510/ Em 580) . 그 결과는도 80에 나타내었다.
VI . 세포 외 및 세포 내에서 미토콘드리아 외막단백질에 결합된 목적 2019/209051 1»(:1^1{2019/005020 단백질의 해리 확인 실시예 26. 세포 외에서 미토콘드리아 외막단백질에 결합된 목적 단백질의 해리 확인
미토콘드리아와 결합된 활성단백질이 세포 내에 주입이 되었을 때 유리된 형태의 목적 단백질을 얻기 위하여 미토콘드리아 외막단백질과 목적 단백질 사이에 유비퀴틴 단백질을 삽입한 형태의 융합 단백질( 개-쌔 크크 또는 101- 미을 대장균으로부터 제조하였다. 유비퀴틴 서열이 유비퀴틴 절단효소인 라에 의해 절단이 되는지 여부를 확인하기 위하여 재조합 융합 단백질 1X170- 1¾153을 ]º>1효소와 371:에서 1시간동안 반응을시켰다.
그 후,
Figure imgf000067_0001
전기영동을 하여 분석을 한 결과 라에 의해 융합 단백질로부터 유비퀴틴 단백질의 해리가 전혀 일어나지 않음을 확인하였다. 이는 구조상 미토콘드리아 외막 단백질의 간섭현상이라고 판단이 되어 미토콘드리아 외막 단백질과유비퀴틴 단백질 사이에 아미노산 글리신과세린으로 구성된 링커 단백질을 삽입하여 새로운 융합 단백질
Figure imgf000067_0002
또는 1X170-
Figure imgf000067_0003
대장균으로부터 정제하여 얻은 후 상기와 같이 \]8?1 효소와 37公에서 1시간 동안 반응을 시켰다. 그 결과 예상대로 볘 효소에 의해 유비퀴틴의 3’ 말단이 예라에 의해 절단이 되어 ¹3 단백질만이 해리된 것을 503^0£ 전기영동을통해 확인할수 있었다(도 82). 실시예 26. 세포 내에서 미토콘드리아 외막단백질에 결합된 목적 단백질의 해리 확인
상기 실시예에서 얻은 융합 단백질(1:(170-(0000幻3-1]6 53 또는 1X170-
Figure imgf000067_0004
미토콘드리아와 결합된 상태로 세포 내에 들어 갔을 때 세포 내에 존재하는 유비퀴틴 절단효소에 의해 활성단백질이 해리되는지 여부를 관찰하였다. 먼저 제대혈 중간엽세포로부터 얻은 미토콘드리아와 융합 단백질 1X170-(00003)3-116^?? 를 마이크로 튜브에서 1시간 반응하여 결합 시킨 후에 결합하지 않은 융합 단백질을 원심분리로 제거한 후 완충용액
Figure imgf000067_0005
2회 세척하였다. 이 때 대조군으로는 유비퀴틴이 제거된 융합 단백질 X170- ((光能幻 !5)을사용하였다. 이후 미토콘드리아와 결합된 단백질을 원심분리 방법으로 유방암세포주인 MDA-MB-231 세포에 주입하였다. 하루 뒤에 MDA-MB-231 세포를 파쇄하여 차별화된 중력을 이용하여 미토콘드리아 부분과 세포질액 부분으로 각각분획하였다. SDS- PA湖 전기영동과 웨스턴 블랏 분석으로 분석한 결과 유비퀴틴이 포함된 융합 단백질의 경우에는 미토콘드리아 외막단백질, 링커단백질, 그리고 유비퀴틴과 해리된 상태의 GFP 단백질이 대부분 세포질액 (cytosol ) 부분에서 검출이 되었음을 알 수 있었고, 유비퀴틴이 제거된 융합 단백질의 경우에는 미토콘드리아 외막단백질과 링커단백질이 결합된 상태의 GFP 단백질이 대부분 미토콘드리아분획 부분에서 검출이 되었음을 알수 있었다 (도 83) .
이로써 미토콘드리아에 결합된 미토콘드리아 외막단백질-링커-유비퀴틴- 활성단백질은 세포 내로 주입이 될 경우 유비퀴틴과 활성단백질 연결부위가 절단이 되어 해리된 활성단백질이 세포질에 유리됨을 알 수 있었고, 이를 통해 유용 단백질을 세포 내로 효과적으로 전달하는 방법 중 하나로 미토콘드리아를 전달 매개체 (del ivery vehi cle)로사용할수 있음을 확인할수 있었다.

Claims

2019/209051 1»(:1^1{2019/005020 특허청구범위
1. 외래 단백질이 미토콘드리아의 외막에 결합된 개질된 미토콘드리아.
2. 제 1항에 있어서,
상기 미토콘드리아는 세포 또는 조직으로부터 분리된 것인, 개질된 미토 콘드리아.
3. 제 2항에 있어서,
상기 세포는 체세포, 생식세포, 줄기세포 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나인 것인, 개질된 미토콘드리아.
4. 제 1항에 있어서,
상기 외래 단백질은 세포 내외에서 기능할 수 있는 목적 단백질을 포함하 는 것인, 개질된 미토콘드리아.
5. 제 1항에 있어서,
상기 외래 단백질은 미토콘드리아 앵커링 펩티드를 포함하는 것인, 개질 된 미토콘드리아.
6. 제 5항에 있어서,
상기 외래 단백질은 미토콘드리아 앵커링 펩티드에 의해 미토콘드리아의 외막에 결합된 것인, 개질된 미토콘드리아.
7. 제 6항에 있어서,
상기 미토콘 리아 앵커링 펩티드는 미토콘드리아의 막 단백질에 존재하 는 단백질의 말단 영역 또는 0 말단 영역을 포함하는 것인, 개질된 미토콘드리 아.
8. 제 7항에 있어서, 상기 미토콘드리아의 막 단백질에 존재하는 단백질의 N 말단 영역 또는 C 말단 영역은 미토콘드리아의 외막에 위치하는 것을 특징으로 하는 것인, 개질된 미토콘드리아.
9. 제 7항에 있어서,
상기 미토콘드리아의 막 단백질에 존재하는 단백질은 T0M20, T0M70, 0M45, T0M5, T0M6, T0M7, T0M22, Fi sl, Be卜 2, Be卜 x 및 VAMP1B로 구성된 군에서 선택되는 어느하나인 것인, 개질된 미토콘드리아.
10. 제 7항에 있어서,
상기 앵커링 펩티드는 TOM20, T0M70 및 0M45로 구성된 군에서 선택되는 어느 하나의 N말단 영역을포함하는 것인, 개질된 미토콘드리아.
11. 제 7항에 있어서,
상기 미토콘드리아 앵커링 펩티드는 T0M5, T0M6, T0M7, T0M22, Fi sl, Bel-2, Bcl-x 및 VAMP1B로 구성된 군에서 선택되는 어느 하나의 C 말단 영역을 포함하는 것인, 개질된 미토콘드리아.
12. 제 1항에 있어서,
상기 외래 단백질은 미토콘드리아 앵커링 펩티드 및 세포 내외에서 기능 할수 있는목적 단백질을포함하는융합단백질인 것인, 개질된 미토콘드리아.
13. 제 12항에 있어서,
상기 목적 단백질은 세포 내에서 활성을 나타내는 활성 단백질, 세포 내 에 존재하는 단백질, 및 세포막에 존재하는 리셉터 또는 리간드에 결합능이 있는 단백질로 이루어진 군에서 선택되는 어느하나인 것인, 개질된 미토콘드리아.
14. 제 13항에 있어서,
상기 목적 단백질은 p53, 그랜자임 B(GranzymeB) , Bax, Bak, PDCD5 , E2F, AP-l(Jun/Fos) , EGR-1 , Ret inoblastoma(RB) , phosphatase and tensin homolog(PTEN) , E-cadher in, Neurof ibromin-2(NF-2) , poly[ADP-r ibose] synthase l(PARP-l) , BRCA-1 , BRCA-2 , Adenomatous polyposi s col i (APC) , Tumor necrosi s factor receptor-associated factor (TRAF) , RAF kinase inhibi tory protein(RKIP) , pl6 , KLF-10, LKB1, LHX6 , C-RASSF, DKK-3抑 1 , 0ct3/4, Sox2, Kl f4, 및 c-Myc으로 이루어진 군에서 선택되는 어느 하나인 것인, 개질된 미토콘 드리아.
15. 제 12항에 있어서,
상기 외래 단백질은 목적 단백질이 1X120, 1X170 또는 45의 말단 영 역과 결합된 것인, 개질된 미토콘드리아.
16. 제 15항에 있어서,
상기 외래 단백질은 하기의 순서로 결합된 것인, 개질된 미토콘드리아: 말단- 1X120, 개또는 (145의 말단 영역-목적 단백질- 0말단.
17. 제 16항에 있어서,
상기 외래 단백질은 앵커링 펩티드와 목적 단백질 사이에 진핵세포 내 단 백질 분해 효소에 인식되는 아미노산 서열 또는 유비퀴틴 또는 이의 단편을 더 포함하는 것인, 개질된 미토콘드리아.
18. 제 17항에 있어서,
상기 유비퀴틴 단편은 서열번호 기의 아미노산 서열의 0 말단 이 - ( 을 포함하며, 0 말단으로부터 연속된 3 내지 75개의 아미노산을 포함하는 것인, 개 질된 미토콘드리아.
19. 제 17항에 있어서,
상기 외래 단백질은 목적 단백질과 유비퀴틴 또는 이의 단편 사이에 링커 를더 포함하는 것인, 개질된 미토콘드리아.
20. 제 19항에 있어서, 상기 링커는 1개 내지 150개의 아미노산으로 구성된 것인, 개질된 미토콘 드리아.
21. 제 20항에 있어서,
상기 링커는 글리신과 세린으로 구성된 5개 내지 50개의 아미노산으로 구 성된 것인, 개질된 미토콘드리아.
22. 제 21항에 있어서,
상기 링커는 (G4S)n로서, n은 1 내지 10의 정수인 것인, 개질된 미토콘드 리아.
23. 제 13항에 있어서,
상기 세포막에 존재하는 리셉터 또는 리간드에 결합능이 있는 단백질은 종양세포표면에 존재하는 리셉터 또는 리간드인 것인, 개질된 미토콘드리아.
24. 제 23항에 있어서,
상기 종양 세포 표면에 존재하는 리셉터 또는 리간드는 CD19, CD20, melanoma antigen E(MAGE) , NY-ES0-1 , care inoembr yon ic antigen(CEA) , mucin 1 cell surface associated(MUC-l) , prostatic acid phosphatase (PAP) , prostate specific anti gen (PSA) , survivin, tyrosine related protein l(tyrpl) , tyrosine related protein l(tyrp2), Brachyury, Mesothel in, Epidermal growth factor receptor (EGFR) , human epidermal growth factor receptor 2(HER-2) , ERBB2, Wilms tumor protein(WTl) , FAP, EpCAM, 卵 _L1, ACPP, CPT1A, IFNG, 抑 274, F0LR1, EPCAM, ICAM2, NCAM1, LRRC4, UNC5H2 LILRB2, CEACAM, Nectin-3 및 이의 조합으로 구성된 군에서 선택되는 어느 하나인 것인, 개질된 미토콘드리 아.
25. 제 12항에 있어서,
상기 외래 단백질은 1(15, 1X16, 1X17, 1X122, , 801-2, 801^ 및 로 구성된 군에서 선택되는 어느 하나의 0말단 영역과 결합된 것인, 개질 2019/209051 1»(:1^1{2019/005020 된 미토콘드리아.
26. . 제 25항에 있어서,
상기 외래 단백질은 하기의 순서로 결합된 것인, 개질된 미토콘드리아: 말단-목적 단백질- 1115, 에 1(17, 1(1122 , , 卜 2, 此卜 X 및 ¥ 3내로 구성된 군에서 선택되는 어느 하나의 0 말단 영역- 0 말단.
27. 제 26항에 있어서,
상기 외래 단백질은 목적 단백질과 1X15 , 1(16 , 1'«7, 1X122 , , 卜 2 ,
Figure imgf000073_0001
구성된 군에서 선택되는 어느 하나의 (: 말단 영역 사이에 링커를 더 포함하는 것인, 개질된 미토콘드리아.
28. 제 27항에 있어서,
상기 링커는 1개 내지 150개의 아미노산으로 구성된 것인, 개질된 미토콘 드리아.
29. 제 28항에 있어서,
상기 링커는 글리신과 세린으로 구성된 5개 내지 50개의 아미노산으로 구 성된 것인, 개질된 미토콘드리아.
30. 제 21항에 있어서,
상기 링커는 ½4幻11로서, II은 1 내지 10의 정수인 것인, 개질된 미토콘드 리아.
31. 제 1항 내지 제 30항 중 어느 한 항에 따른 개질된 미토콘드리아를 유효성 분으로 포함하는 약학 조성물.
32. 제 31항에 있어서,
상기 약학 조성물은 암 예방또는 치료를 위한 것인, 약학 조성물.
33. 제 32항에 있어서,
상기 암은 위암, 간암, 폐암, 대장암, 유방암, 전립선암, 난소암, 췌장 암, 자궁경부암, 갑상선암, 후두암, 급상골수성 백혈병, 뇌종양, 신경모세포종, 망막 모세포종, 두경부암, 침샘암 및 림프종으로 구성된 군에서 선택되는 어느 하나인, 약학조성물.
34. 세포 내외에서 기능할 수 있는 목적 단백질을 포함하는 외래 단백질의 세 포 내외 전달수단으로서 개질된 미토콘드리아의 용도.
35. 제 34항에 있어서,
상기 외래 단백질은 미토콘드리아 외막 앵커링 펩티드를 포함하여, 외막 앵커링 펩티드에 의해 미토콘드리아의 외막에 결합하여 세포 내외로 전달되는 것 인, 개질된 미토콘드리아의 용도.
36. 미토콘드리아 외막 앵커링 펩티드 및 세포 내외에서 기능할 수 있는 목적 단백질을포함하는융합단백질.
37. 제 36항에 있어서,
상기 미토콘드리아 외막 앵커링 펩티드는 미토콘드리아 외막에 존재하는 단백질의 N말단또는 C말단서열을포함하는 것인, 융합단백질.
38. 제 36항에 있어서,
상기 미토콘드리아 외막 앵커링 펩티드는 T0M20, T0M70, 0M45, T0M5, T0M6, T0M7, T0M22, Fi sl , Be卜 2, Bcl-x 및 VAMP1B로 구성된 군에서 선택되는 어 느 하나인 것인, 융합단백질.
39. 제 36항에 있어서,
상기 목적 단백질은 p53, 그랜자임 B(GranzymeB) , Bax, Bak, PDCD5 , E2F, AP-l(Jun/Fos) , EGR-1 , Ret inoblastoma(RB) , phosphatase and tensin homo log (PTEN) , E-cadher in, Neurof ibromin-2(NF-2) , poly[ADP-r ibose] synthase l(PARP-l) , BRCA-1 , BRCA-2, Adenomatous polyposi s col i (APC) , Tumor necrosi s factor receptor-associated factor (TRAF) , RAF kinase inhibitory protein(RKIP) , pl6, KLF-10, LKB1, LHX6 , C-RASSF, DKK-3PD1 , 0ct3/4, Sox2 , Kl f4, 및 c-Myc으로 이루어진 군에서 선택되는 어느하나인 것인, 융합단백질.
40. 제 36항에 있어서,
상기 미토콘드리아 외막 앵커링 펩티드가 T0M20, T0M70 또는 0M45일 경 우, 미토콘드리아 외막 앵커링 펩티드 및 목적 단백질이 N 말단으로부터 C 말단 으로 결합된 것인, 융합단백질.
41. 제 36항에 있어서,
상기 미토콘드리아 외막 앵커링 펩티드가 T0M5, T0M6, T0M7, T0M22, Fi sl , Bcl-2, Bcl-x 및 VAMP1B로 구성된 군에서 선택되는 어느 하나일 경우, 목 적 단백질 및 미토콘드리아외막 앵커링 펩티드가 N 말단으로부터 C 말단으로 결 합된 것인, 융합단백질.
42. 제 36항에 있어서,
미토콘드리아 외막 앵커링 펩티드 및 목적 단백질 사이에 유비퀴틴 또는 이의 단편을 더 포함하는 것인, 융합단백질.
43. 제 36항에 있어서,
미토콘드리아 외막 앵커링 펩티드 및 목적 단백질 사이에 진핵세포 내 단 백질 분해 효소에 인식되는 아미노산서열을더 포함하는 것인, 융합 단백질.
44. 제 36항 내지 제 43항 중 어느 한 항에 따른 융합 단백질을 코딩하는 폴리 뉴클레오티드.
45. 제 44항의 폴리뉴클레오티드를 원핵세포, 또는 유비퀴틴 분해효소 또는 진 핵세포 내 단백질 분해 효소가 없는 진핵세포에 형질전환시키는단계; 및
융합 단백질을 수득하는 단계를 포함하는 제 36항 내지 제 43항의 어느 한 2019/209051 1»(:1^1{2019/005020 항의 융합 단백질을 제조하는 방법.
46. 세포막에 존재하는 리셉터 또는 리간드에 결합능이 있는 표적 타겟팅 단 백질 및 미토콘드리아 외막 앵커링 펩티드를 포함하는 융합 단백질.
47. 제 46항에 있어서,
상기 미토콘드리아 외막 앵커링 펩티드는 1015 ,
Figure imgf000076_0001
關? , 1X122 , , 601-2 , 1- 및 ¥삐8으로 구성된 군에서 선택되는 어느 하나인 것인, 융합 단백질 .
48. 제 46항에 있어서,
세포막에 존재하는 리셉터 또는 리간드에 결합능이 있는 상기 표적 타겟 팅 단백질과 미토콘드리아 외막 앵커링 펩티드는 말단으로부터 0 말단으로 결 합된 것인, 융합 단백질.
49. 제 48항에 있어서,
세포막에 존재하는 리셉터 또는 리간드에 결합능이 있는 상기 표적 타겟 팅 단백질은 항체 또는 이의 단편인 것인, 융합 단백질.
50. 제 49항에 있어서,
상기 항체의 단편은 此,
Figure imgf000076_0002
이루어진 군에서 선택되는 어 느 하나인 것인, 융합 단백질.
51. 제 46항 내지 제 50항 중 어느 한 항에 따른 융합 단백질을 코딩하는 폴리 뉴클레오티드.
52. 제 36항 내지 제 43항 중 어느 한 항의 융합 단백질 및/또는 제 46항 내지 제 50항 중 어느 한 항의 융합 단백질과 분리된 미토콘드리아를 혼합하는 단계를 포함하는 개질된 미토콘드리아를 제조하는 방법. 2019/209051 1»(:1/10公019/005020
53. 제 36항 내지 제 41항 중 어느 한 항의 융합 단백질 및/또는 제 46항 내지 제 50항 중 어느 한 항의 융합 단백질을 코딩하는 폴리뉴클레오티드를 진핵세포에 주입하여 형질전환된 세포로부터 개질된 미토콘드리아를 제조하는 방법.
PCT/KR2019/005020 2018-04-26 2019-04-25 개질된 미토콘드리아 및 이의 용도 WO2019209051A1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US17/049,301 US20210238249A1 (en) 2018-04-26 2019-04-25 Modified mitochondria and use thereof
JP2020559381A JP2021521819A (ja) 2018-04-26 2019-04-25 改変されたミトコンドリアおよびその使用
SG11202009787VA SG11202009787VA (en) 2018-04-26 2019-04-25 Modified mitochondria and use thereof
CA3097108A CA3097108A1 (en) 2018-04-26 2019-04-25 Modified mitochondria and use thereof
AU2019257834A AU2019257834A1 (en) 2018-04-26 2019-04-25 Modified mitochondria and use thereof
BR112020021826-0A BR112020021826A2 (pt) 2018-04-26 2019-04-25 mitocôndrias modificadas e uso das mesmas
EP19791949.1A EP3786177A4 (en) 2018-04-26 2019-04-25 MODIFIED MITOCHONDRIA AND USE THEREOF
CN201980028175.4A CN112020553A (zh) 2018-04-26 2019-04-25 修饰的线粒体及其应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0048486 2018-04-26
KR20180048486 2018-04-26

Publications (1)

Publication Number Publication Date
WO2019209051A1 true WO2019209051A1 (ko) 2019-10-31

Family

ID=68295600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005020 WO2019209051A1 (ko) 2018-04-26 2019-04-25 개질된 미토콘드리아 및 이의 용도

Country Status (10)

Country Link
US (1) US20210238249A1 (ko)
EP (1) EP3786177A4 (ko)
JP (2) JP2021521819A (ko)
KR (3) KR102126199B1 (ko)
CN (1) CN112020553A (ko)
AU (1) AU2019257834A1 (ko)
BR (1) BR112020021826A2 (ko)
CA (1) CA3097108A1 (ko)
SG (1) SG11202009787VA (ko)
WO (1) WO2019209051A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020163856A1 (en) * 2019-02-10 2020-08-13 The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone Modified mitochondrion and methods of use thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102290596B1 (ko) * 2020-09-10 2021-08-19 주식회사 파이안바이오테크놀로지 분리된 미토콘드리아를 포함하는 주사용 조성물 및 이의 용도
KR102273163B1 (ko) 2020-09-10 2021-07-05 주식회사 파이안바이오테크놀로지 혈소판 유래 미토콘드리아의 수득 방법 및 이의 용도
EP4233882A4 (en) 2020-10-22 2023-11-15 Paean Biotechnology Inc. MITOCHONDRIAS COMPRISING AN ANTI-CANCER DRUG AND ASSOCIATED USE
EP4251738A1 (en) * 2020-11-30 2023-10-04 The University of North Carolina at Chapel Hill Engineered cells functionalized with immune checkpoint molecules and uses thereof
CN113122497B (zh) * 2021-04-26 2023-08-11 重庆理工大学 工程化线粒体及其制备方法
KR20230015832A (ko) * 2021-07-23 2023-01-31 차의과학대학교 산학협력단 분리된 미토콘드리아를 유효성분으로 포함하는 아셔만 증후군 예방 또는 치료용 약학 조성물
KR102665782B1 (ko) 2022-03-29 2024-05-14 주식회사 파이안바이오테크놀로지 동결 및 동결건조된 미토콘드리아 및 이의 용도
CN115779097B (zh) * 2022-11-09 2024-01-30 四川大学 基于工程化线粒体的肿瘤抗原递送系统及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050084864A1 (en) * 2002-03-13 2005-04-21 Axaron Bioscience Ag Novel method for detecting and analyzing protein interactions in vivo
WO2013026015A1 (en) * 2011-08-18 2013-02-21 Dana-Farber Cancer Institute, Inc. Muc1 ligand traps for use in treating cancers
CN104357470B (zh) * 2014-11-14 2017-02-15 四川大学华西第二医院 一种HtrA2融合基因及其应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10107677A1 (de) 2001-02-19 2002-09-05 Ipk Inst Fuer Pflanzengenetik Verfahren zur Erzeugung und Transformation von Mitochondrien-Konglomeraten
JP2004041067A (ja) 2002-07-11 2004-02-12 Japan Science & Technology Corp タンパク質をミトコンドリアへ輸送する方法
US7271001B2 (en) * 2004-12-10 2007-09-18 The Research Foundation Of State University Of New York Method for mitochondrial targeting of p53
JP2006238831A (ja) 2005-03-04 2006-09-14 Iwate Univ ミトコンドリアの機能改変方法
CA2678572C (en) * 2007-02-16 2012-10-30 University Of Florida Research Foundation Inc. Mitochondrial targeting and import of a virus to deliver a nucleic acid
US9540421B2 (en) * 2012-08-31 2017-01-10 University-Industry Cooperation Group Of Kyung Hee University Mitochondria targeting peptide
CN104630149B (zh) 2013-11-08 2018-08-21 中国科学院广州生物医药与健康研究院 外源线粒体导入到哺乳动物细胞中的方法
EP2992892A1 (en) 2014-09-05 2016-03-09 Universität zu Köln Fusion protein for use in the treatment of mitochondrial diseases
JP7185527B2 (ja) * 2016-01-15 2022-12-07 ザ チルドレンズ メディカル センター コーポレーション ミトコンドリアおよび組み合わされたミトコンドリア剤の治療的使用
US11491234B2 (en) * 2017-11-09 2022-11-08 University Of Washington Mitochondrial localization signals in human tafazzin and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050084864A1 (en) * 2002-03-13 2005-04-21 Axaron Bioscience Ag Novel method for detecting and analyzing protein interactions in vivo
WO2013026015A1 (en) * 2011-08-18 2013-02-21 Dana-Farber Cancer Institute, Inc. Muc1 ligand traps for use in treating cancers
CN104357470B (zh) * 2014-11-14 2017-02-15 四川大学华西第二医院 一种HtrA2融合基因及其应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE NCBI 10 October 2017 (2017-10-10), XP004446139 *
MOSSALAM, M.: "Direct Induction of Apoptosis Using an Optimal Mitochondrially Targeted p53", MOLECULAR PHARMACEUTICS, vol. 9, no. 5, 1 March 2012 (2012-03-01), pages 1449 - 1458 1450, 1451, 1456, XP055402201 *
NGUYEN, MAI ET AL.: "Targeting of Bcl-2 to the mitochondrial outer membrane by a COOH-terminal signal anchor sequence", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 268, no. 34, 5 December 1993 (1993-12-05), pages 25265 - 25268, XP055648317 *
PARK, SUNGWOO ET AQL.: "Targeting by AutophaGy proteins (TAG): targeting of IFNG-inducible GTPases to membranes by the LC3 conjugation system of autophagy", AUTOPHAGY, vol. 12, no. 7, 12 May 2016 (2016-05-12) - 2 July 2016 (2016-07-02), pages 1153 - 1167, XP055648351 *
See also references of EP3786177A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020163856A1 (en) * 2019-02-10 2020-08-13 The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone Modified mitochondrion and methods of use thereof

Also Published As

Publication number Publication date
EP3786177A1 (en) 2021-03-03
KR20230074076A (ko) 2023-05-26
SG11202009787VA (en) 2020-11-27
JP2021521819A (ja) 2021-08-30
KR102533834B1 (ko) 2023-05-19
CA3097108A1 (en) 2019-10-31
KR20190124656A (ko) 2019-11-05
EP3786177A4 (en) 2022-01-26
US20210238249A1 (en) 2021-08-05
JP2023099118A (ja) 2023-07-11
KR20200077476A (ko) 2020-06-30
BR112020021826A2 (pt) 2021-02-23
CN112020553A (zh) 2020-12-01
AU2019257834A1 (en) 2020-10-08
KR102126199B1 (ko) 2020-06-24

Similar Documents

Publication Publication Date Title
WO2019209051A1 (ko) 개질된 미토콘드리아 및 이의 용도
KR101263212B1 (ko) 신규한 세포막 투과성 펩타이드 및 그의 용도
EP1991560B1 (en) Peptide having cell membrane penetrating activity
JP4697982B2 (ja) モジュラートランスフェクション系
Johansson et al. The soluble form of the tumor suppressor Lrig1 potently inhibits in vivo glioma growth irrespective of EGF receptor status
JP7398518B2 (ja) 臨床のための、改変されたNK-92 haNK003細胞
JP2017502076A5 (ko)
CN109913422A (zh) 一种包含肿瘤抗原识别受体的免疫细胞及其应用
Xu et al. Frizzled-7 promoter is highly active in tumors and promoter-driven Shiga-like toxin I inhibits hepatocellular carcinoma growth
CN107446024B (zh) 一种可拮抗ddx3蛋白rna结合活性的多肽dip-13及其应用
CN114796525B (zh) 细胞周期调控蛋白抑制剂在肿瘤治疗中的应用
JP2022513125A (ja) インターロイキン21タンパク質(il21)変異体およびその適用
Weigel et al. Design and evaluation of a peptide-based immunotoxin for breast cancer therapeutics
CN116249557A (zh) 包含抗癌药物的线粒体及其应用
Wang et al. Construction of human LRIG1-TAT fusions and TAT-mediated LRIG1 protein delivery
CN106701904B (zh) Acsl4基因和表达产物在胃癌诊断与治疗中的应用
KR102671551B1 (ko) 전구약물 전환 효소를 포함하는 개질된 미토콘드리아 및 이의 용도
TWI419901B (zh) 利用腦衰蛋白反應媒介蛋白-1(crmp-1)及其片段治療癌症之組合物及方法
JP5852731B2 (ja) 高増殖性疾患治療のための医薬組成物
KR20230133454A (ko) 전구약물 전환 효소를 포함하는 개질된 미토콘드리아 및 이의 용도
CN116284321A (zh) 一种细胞穿透肽及其应用
WO2014178680A1 (ko) Hsp 발현 억제 펩티드 및 이를 포함하는 조성물
WO2011079431A1 (zh) 具有端粒酶抑制活性的融合蛋白、其制备方法和用途
Weigel et al. Design and evaluation of a peptide-based immunotoxin for breast cancer
JP2020019715A (ja) 抗腫瘍ペプチドおよびその利用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791949

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019257834

Country of ref document: AU

Date of ref document: 20190425

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3097108

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020559381

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020021826

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2019791949

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019791949

Country of ref document: EP

Effective date: 20201126

ENP Entry into the national phase

Ref document number: 112020021826

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201023