WO2019208741A1 - ポリアミド系3次元プリンタ用材料 - Google Patents

ポリアミド系3次元プリンタ用材料 Download PDF

Info

Publication number
WO2019208741A1
WO2019208741A1 PCT/JP2019/017812 JP2019017812W WO2019208741A1 WO 2019208741 A1 WO2019208741 A1 WO 2019208741A1 JP 2019017812 W JP2019017812 W JP 2019017812W WO 2019208741 A1 WO2019208741 A1 WO 2019208741A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
resin
dimensional printer
filament
resin composition
Prior art date
Application number
PCT/JP2019/017812
Other languages
English (en)
French (fr)
Inventor
亜希子 平野
谷口 浩一郎
隆敏 牟田
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2020515589A priority Critical patent/JP7184079B2/ja
Priority to CN201980028321.3A priority patent/CN112105492A/zh
Priority to EP19793389.8A priority patent/EP3785882A4/en
Publication of WO2019208741A1 publication Critical patent/WO2019208741A1/ja
Priority to US17/078,326 priority patent/US20210040318A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • B29C64/259Interchangeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/90Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to a polyamide-based three-dimensional printer material, a hot-melt laminated three-dimensional printer filament, a resin molded body, a wound body, and a hot-melt laminated three-dimensional printer mounting cartridge.
  • Extrusion thermal lamination deposition systems that is, systems commonly referred to today as three-dimensional printers (3D printers, for example, thermal lamination deposition systems manufactured by Stratasys Incorporated, USA) extrude fluid materials. It is used to construct a three-dimensional object in layers based on a computer-aided design (CAD) model by extruding from a nozzle part provided in the head.
  • CAD computer-aided design
  • FDM method inserts raw materials into the extrusion head as filaments made of thermoplastic resin, and continuously on the XY plane substrate in the chamber from the nozzle part provided in the extrusion head while heating and melting.
  • thermoplastic materials such as acrylonitrile-butadiene-styrene resin and polylactic acid have been suitably used as raw materials for the FDM method from the viewpoint of molding processability and fluidity (Patent Documents 3 to 5). ).
  • Patent Document 6 a material for a hot melt lamination type three-dimensional printer containing 80% by mass or more of a polyamide copolymer having a crystal melting temperature (melting point Tm) of 200 ° C. or less is disclosed (Patent Document 6).
  • Patent Document 6 discloses a technical idea of adjusting the thermal characteristics of a material for a three-dimensional printer by using a resin composition containing a crystalline polyamide resin and an amorphous polyamide resin. Absent.
  • a crystalline polyamide-based resin having a low crystal melting temperature (melting point Tm) such as polyamide 12 is used for modeling because the crystallization speed is slow, and there are relatively few problems of adhesion between layers and warping. There was a problem that the obtained molded body had low rigidity, heat resistance was insufficient, and applicable fields were limited.
  • the object of the present invention is for a polyamide-based three-dimensional printer that has excellent adhesion between layers by blending relatively easily available raw materials, excellent warping, excellent formability, and various characteristics such as surface appearance and heat resistance.
  • Another object of the present invention is to provide a resin molded body, a wound body, and a heat-melting laminated type three-dimensional printer mounting cartridge using the polyamide-based three-dimensional printer material.
  • the resin composition (C) contains a crystalline polyamide resin (A) and an amorphous polyamide resin (B), and the resin composition (C) has a crystallization heat amount of 5 to 60 J in differential scanning calorimetry.
  • a material for a polyamide-based three-dimensional printer, which is / g. ⁇ 2> The polyamide-based three-dimensional printer material according to ⁇ 1>, wherein the resin composition (C) has a crystallization heat amount of 20 to 60 J / g in differential scanning calorimetry.
  • the crystalline polyamide-based resin (A) contains one or more selected from polyamide 6, polyamide 66, polyamide MXD6, polyamide 9T, polyamide 10T and copolymerized polyamide thereof, ⁇ 1> or The material for a polyamide-based three-dimensional printer according to ⁇ 2>.
  • Tg glass transition temperature of the amorphous polyamide resin (B) is 30 ° C.
  • the glass transition temperature (Tg) of the crystalline polyamide resin (A), ⁇ 1> to ⁇ 4> The material for a polyamide-based three-dimensional printer according to any one of 4>.
  • the difference (Tm ⁇ Tc) between the crystal melting temperature (Tm) and the crystallization temperature (Tc) in the differential scanning calorimetry of the resin composition (C) is 30 ° C. to 60 ° C.
  • ⁇ 10> A resin molded article formed by a three-dimensional printer using the filament for a hot melt laminated three-dimensional printer according to ⁇ 9>.
  • ⁇ 11> A wound body of filaments for a heat-melting laminated three-dimensional printer according to ⁇ 9>.
  • ⁇ 12> A hot-melt laminated type three-dimensional printer mounting cartridge in which the wound body according to ⁇ 11> is stored.
  • the present invention it is possible to provide a polyamide-based three-dimensional printer material that has excellent adhesion between layers, little warpage, excellent formability, and excellent properties such as surface appearance and heat resistance. Moreover, since the said various characteristics can be adjusted by mix
  • FIG. 1 is a schematic view showing an example of an embodiment of a resin molded body of the present invention.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the present invention can be implemented with various modifications within the scope of the gist.
  • the polyamide-based three-dimensional printer material of the present invention contains a resin composition (C) described later.
  • the resin composition (C) contains a crystalline polyamide resin (A) described later and an amorphous polyamide resin (B) described later.
  • the crystalline polyamide resin (A) is not particularly limited, but specific examples thereof include the following. That is, polycaproamide (polyamide 6), polyhexamethylene adipamide (polyamide 66), polytetramethylene adipamide (polyamide 46), polyhexamethylene sebamide (polyamide 610), polyhexamethylene dodecamide (polyamide) 612), polyundecamethylene adipamide (polyamide 116), polybis (4-aminocyclohexyl) methane dodecamide (polyamide PACM12), polybis (3-methyl-4aminocyclohexyl) methane dodecamide (polyamide dimethyl PACM12), poly Nonamethylene terephthalamide (Polyamide 9T), Polydecamethylene terephthalamide (Polyamide 10T), Polyundecamethylene terephthalamide (Polyamide 11T), Polyundecamethylene hexahydro Rephthalamide
  • polyamide 6, polyamide 66, polyamide MXD6, polyamide 9T, polyamide 10T and copolymerized polyamide thereof are preferable from the viewpoints of moldability, surface appearance, and chemical resistance.
  • Polyamides are preferred from the viewpoint of higher heat resistance and mechanical strength. 9T and polyamide 10T are more preferable, and polyamide 6 and polyamide 66 are more preferable from the viewpoint of a balance between heat resistance and economy.
  • the crystallization calorie ( ⁇ Hc) measured at a cooling rate of 10 ° C./min in the differential scanning calorimetry of the crystalline polyamide resin (A) is preferably 30 J / g or more and 100 J / g or less.
  • the resin composition (C) is preferably blended with an amorphous polyamide-based resin (B), which will be described later, so that the balance of heat resistance, chemical resistance, mechanical strength and the like can be easily adjusted.
  • the crystallization heat amount of the crystalline polyamide resin (A) is more preferably 40 J / g or more and 80 J / g or less.
  • the crystallization calorie ( ⁇ Hc) was measured from a room temperature to a crystal melting temperature (melting point Tm) + 20 ° C. at a heating rate of 10 ° C./min according to JIS K7122, using a differential scanning calorimeter (DSC). It is a value measured when the temperature is lowered to 30 ° C. at a cooling rate of 10 ° C./min after the temperature is raised to 30 ° C.
  • the crystal melting temperature (melting point Tm) of the crystalline polyamide resin (A) is not particularly limited, but is usually 120 ° C. to 320 ° C.
  • the crystal melting temperature (melting point Tm) is less than 260 ° C., many commercially available printers can be used, and power consumption can be suppressed by setting the modeling temperature low, which is preferable.
  • the crystal melting temperature (melting point Tm) is 260 ° C. or higher because heat resistance is easily secured and resistance in a solder reflow process such as a printed circuit board is easily obtained.
  • the crystal melting temperature (melting point Tm) of the crystalline polyamide resin (A) is more preferably 120 ° C. or higher and lower than 260 ° C., or 260 ° C. or higher and 320 ° C. or lower. It is more preferable that the temperature is any one of not lower than 230 ° C. and not lower than 270 ° C. and not higher than 310 ° C.
  • the amorphous polyamide-based resin (B) is not particularly limited, but the crystallization heat amount measured at a cooling rate of 10 ° C./min in the differential scanning calorimetry is less than 5 J / g. Is preferred. In the present invention, those having a heat of crystallization of 0 J / g are more preferred. As a specific example, a polycondensate containing 30 to 70 mol%, more preferably 40 to 60 mol% of isophthalic acid as the dicarboxylic acid component is preferable.
  • polycondensates include the following. That is, isophthalic acid / polycondensate of ⁇ , ⁇ -linear aliphatic dicarboxylic acid / metaxylylenediamine having 4 to 20 carbon atoms, isophthalic acid / terephthalic acid / hexamethylenediamine polycondensate, isophthalic acid / terephthalic acid / Hexamethylenediamine / bis (3-methyl-4-aminocyclohexyl) methane polycondensate, terephthalic acid / 2,2,4-trimethylhexamethylenediamine / 2,4,4-trimethylhexamethylenediamine polycondensate , Isophthalic acid / bis (3-methyl-4-aminocyclohexyl) methane / ⁇ -laurolactam polycondensate, isophthalic acid / 2,2,4-trimethylhexamethylenediamine / 2,4,4--
  • benzene ring of the terephthalic acid component and / or isophthalic acid component constituting these polycondensates is substituted with an alkyl group or a halogen atom.
  • two or more of these amorphous polyamide resins can be used in combination.
  • a mixture of a polycondensate of (3-methyl-4-aminocyclohexyl) methane and a polycondensate of terephthalic acid / 2,2,4-trimethylhexamethylenediamine / 2,4,4-trimethylhexamethylenediamine is used. .
  • isophthalic acid / ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms / Metaxylylenediamine polycondensate is particularly preferred.
  • the molar ratio of isophthalic acid to the total amount of isophthalic acid and ⁇ , ⁇ -straight chain aliphatic dicarboxylic acid having 4 to 20 carbon atoms is 40 mol from the viewpoint of keeping the heat of crystallization within the above range. % Or more is preferable, and 45 mol% or more is more preferable.
  • the upper limit is preferably 60 mol% or less, and more preferably 55 mol% or less.
  • the glass transition temperature (Tg) of the amorphous polyamide resin (B) in the present invention is not particularly limited, but is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and further preferably 120 ° C. °C or more.
  • the upper limit of the glass transition temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower, further preferably 160 ° C. or lower, and most preferably 145 ° C. or lower, from the viewpoint of suppressing warpage during molding of the resin molded body.
  • the glass transition temperature of the amorphous polyamide-based resin (B) is within this range, by combining with the crystalline polyamide-based resin (A), more excellent heat resistance and formability as the resin composition (C), Since surface appearance can be obtained, it is preferable.
  • the glass transition temperature (Tg) refers to a crystal melting temperature (melting point Tm) + 20 ° C. from room temperature at a heating rate of 10 ° C./min according to JIS K7121, using a differential scanning calorimeter (DSC). It is a value measured when the temperature is raised to 280 ° C. at a heating rate of 10 ° C./min and again lowered to 30 ° C. at a cooling rate of 10 ° C./min.
  • DSC differential scanning calorimeter
  • the glass transition temperature (Tg) of the amorphous polyamide resin (B) in the present invention is preferably 30 ° C. or higher than the glass transition temperature (Tg) of the crystalline polyamide resin (A).
  • a normal crystalline polymer has a correlation of Tg ⁇ (1/2) Tm to (2/3) Tm (K) as an empirical rule (Colorant, 68 [1], P.45 (1995). )reference). That is, it is known that the crystalline polymer alone increases the Tg and at the same time increases the Tm, resulting in a decrease in fluidity and poor moldability.
  • the amorphous polyamide resin (B) having a high Tg is mixed with the crystalline polyamide resin (A), it becomes possible to increase the Tg while maintaining the Tm to some extent as a composition.
  • the glass transition temperature (Tg) of the amorphous polyamide-based resin (B) is 50 ° C. or higher than the glass transition temperature (Tg) of the crystalline polyamide-based resin (A).
  • the relative viscosity of the crystalline polyamide resin (A) and the amorphous polyamide resin (B) used in the present invention is not particularly limited, but the temperature is 25% using 96 mass% concentrated sulfuric acid as a solvent.
  • the relative viscosity measured at a temperature of 1 g / dl at 1 ° C. is preferably in the range of 1.5 to 5.0. If it is this range, since it is excellent in balance, such as take-off property after melt-kneading, mechanical strength, and moldability, it is preferable. For these reasons, the relative viscosity is more preferably in the range of 2.0 to 4.0.
  • the crystalline polyamide resin (A) and the amorphous polyamide resin (B) used in the present invention can be polymerized by a known method, and commercially available products can be used.
  • examples of the polymerization method include the following methods [1] to [6]. Moreover, it can select suitably also in a batch type or a continuous type. [1] A method in which an aqueous solution or a suspension of water of a dicarboxylic acid / diamine salt or a mixture thereof is heated and polymerized while maintaining a molten state (thermal melt polymerization method).
  • [2] A method of increasing the degree of polymerization while maintaining the solid state of the polyamide obtained by the hot melt polymerization method at a temperature below the melting point (hot melt polymerization / solid phase polymerization method).
  • [3] A method in which an aqueous solution or a suspension of water of a dicarboxylic acid / diamine salt or a mixture thereof is heated and the precipitated prepolymer is melted again with an extruder such as a kneader to increase the degree of polymerization (prepolymer / extrusion). Polymerization method).
  • [4] A method in which an aqueous solution or a suspension of water of a dicarboxylic acid / diamine salt or a mixture thereof is heated, and the degree of polymerization is increased while maintaining the solid state of the precipitated prepolymer at a temperature below the melting point of the polyamide ( Prepolymer / solid phase polymerization method).
  • Prepolymer / solid phase polymerization method A method in which the dicarboxylic acid / diamine salt or a mixture thereof is polymerized in one step while maintaining the solid state (one-step solid phase polymerization method).
  • [6] A method of polymerizing by using a dicarboxylic acid halide equivalent to dicarboxylic acid and a diamine (solution method).
  • the resin composition (C) in the present invention contains the crystalline polyamide resin (A) and the amorphous polyamide resin (B).
  • the relationship between Tg and Tm deviates from the above empirical rule. It is possible to confirm that it is the resin composition (C) of the invention.
  • the fact that it is a mixture of a crystalline polyamide resin (A) and an amorphous polyamide resin (B) confirms the structural analysis by a nuclear magnetic resonance apparatus (NMR) and the mixed state of the resin composition with an electron microscope. It is possible to confirm by doing.
  • NMR nuclear magnetic resonance apparatus
  • the heat of crystallization ( ⁇ Hc) measured at a cooling rate of 10 ° C./min in the differential scanning calorimetry of the resin composition (C) is 5 to 60 J / g. If the amount of crystallization heat ( ⁇ Hc) is within this range, it is preferable because of excellent balance between the formability as a material for a three-dimensional printer and the heat resistance of a resin molded article formed using the material.
  • the lower limit of the crystallization heat amount of the resin composition (C) is more preferably 10 J / g or more, further preferably 20 J / g or more, and 35 J / g or more. Is particularly preferred.
  • the upper limit of the crystallization heat amount of the resin composition (C) is more preferably 58 J / g or less, further preferably 55 J / g, and more preferably 50 J / g. It is particularly preferred that it is g or less.
  • the heat of crystal fusion ( ⁇ Hm) measured at a heating rate of 10 ° C./min is 10 J / from the viewpoint of the heat resistance of the molded resin molded body. g or more, preferably 20 J / g or more, and more preferably 30 J / g or more. Further, the heat of crystal fusion ( ⁇ Hm) is preferably 60 J / g or less, more preferably 58 J / g or less, and 55 J / g or less from the viewpoint of formability as a material for a three-dimensional printer. More preferably it is.
  • the crystallization heat quantity when a plurality of crystallization temperatures (Tc) are developed in the temperature lowering process is the total value.
  • the crystallization temperature is preferably one.
  • the heat of crystallization when a plurality of crystal melting heat temperatures (Tm) are expressed in the temperature rising process is a total value.
  • the polyamide-based three-dimensional printer material of the present invention preferably has a crystallization heat amount of less than 10 J / g when the temperature is increased again at a heating rate of 10 ° C./min using a differential scanning calorimeter (DSC). More preferably, it is less than 1 J / g, and still more preferably 0 J / g. That is, the polyamide-based three-dimensional printer material of the present invention does not show a crystallization temperature in the reheating process of 10 ° C./min, that is, the crystallization is sufficiently completed in the cooling process of 10 ° C./min. Is preferred. Thereby, the step of crystallizing by heat treatment after modeling can be omitted. In addition, when crystallization is not completed during modeling, it is preferable to promote crystallization by heat processing.
  • DSC differential scanning calorimeter
  • the crystallization heat amount is preferably adjusted by a mixing mass ratio of the crystalline polyamide resin (A) and the amorphous polyamide resin (B). Specifically, when the total amount of the crystalline polyamide resin (A) and the amorphous polyamide resin (B) is 100 parts by mass, the compounding amount of the crystalline polyamide resin (A) is 99 to 1 mass. Part of the amorphous polyamide-based resin (B) is preferably 1 to 99 parts by mass.
  • the compounding amount of the crystalline polyamide-based resin (A) is more preferably 40 parts by mass or more, further preferably 50 parts by mass or more, and particularly preferably 55 parts by mass or more.
  • the upper limit of the compounding amount of the crystalline polyamide-based resin (A) is more preferably 95 parts by mass or less, still more preferably 90 parts by mass or less, and particularly preferably 85 parts by mass or less.
  • the difference (Tm ⁇ Tc) between the crystal melting temperature (melting point Tm) and the crystallization temperature (Tc) in the differential scanning calorimetry of the resin composition (C) is preferably 30 ° C. to 90 ° C. More preferably, the temperature is 30 ° C to 60 ° C. If the difference (Tm ⁇ Tc) is within this range, the crystallization rate is moderately slow, the adhesion between the layers is ensured when producing a resin molded body with a three-dimensional printer, and the warpage during molding is suppressed, It is preferable because poor appearance of molding, such as stringing, is suppressed and the formability is excellent.
  • the difference (Tm ⁇ Tc) is within this range, the resin molded body molded by the three-dimensional printer is appropriately crystallized, or the crystallization is easily completed by heat treatment after the modeling, and the heat resistance of the resin molded body is increased. It is preferable because it is excellent. Therefore, the difference is more preferably 35 ° C. to 55 ° C., and particularly preferably 38 ° C. to 55 ° C.
  • the crystallization temperature (Tc) was raised from room temperature to the crystal melting temperature (melting point Tm) + 20 ° C. at a heating rate of 10 ° C./min using a differential scanning calorimeter and held at the temperature for 1 minute. It is a value measured when the temperature is lowered to 30 ° C. at a cooling rate of 10 ° C./min.
  • the difference (Tm ⁇ Tc) between the crystal melting temperature (melting point Tm) and the crystallization temperature (Tc) when a plurality of crystal melting temperatures (melting point Tm) and crystallization temperature (Tc) are expressed. Is calculated using the crystal melting temperature (melting point Tm) and the crystallization temperature (Tc) having the largest amount of heat (the amount of heat of crystal melting, the amount of heat of crystallization).
  • the resin composition (C) in the present invention may contain other components to the extent that the effects of the present invention are not impaired.
  • Other components include polymers other than polyamide-based resins, heat-resistant agents, ultraviolet absorbers, light stabilizers, antioxidants, antistatic agents, lubricants, slip agents, crystal nucleating agents, tackifiers, and sealability improvers. , Antifogging agents, mold release agents, plasticizers, pigments, dyes, fragrances, flame retardants, organic particles, inorganic particles and reinforcing materials.
  • polymer other than the polyamide resin examples include, for example, acrylonitrile-butadiene-styrene resin (ABS resin), polylactic acid (PLA resin), polyurethane resin, polyolefin resin, polyester resin, polystyrene resin, and the like.
  • ABS resin acrylonitrile-butadiene-styrene resin
  • PLA resin polylactic acid
  • polyurethane resin polyolefin resin
  • polyester resin polystyrene resin
  • polystyrene resin examples include resins, acrylic resins, polycarbonate resins, polyvinyl chloride resins, silicone resins, various rubbers, and elastomers.
  • organic particles include acrylic resin particles, melamine resin particles, silicone resin particles, polystyrene resin particles, and the like.
  • inorganic particles include silica, alumina, kaolin, titanium dioxide, calcium carbonate, magnesium carbonate, zinc carbonate, calcium stearate, magnesium stearate, zinc stearate and the like.
  • the reinforcing material include inorganic fillers and inorganic fibers.
  • the inorganic filler include calcium carbonate, zinc carbonate, magnesium oxide, calcium silicate, sodium aluminate, calcium aluminate, sodium aluminosilicate, magnesium silicate, potassium titanate, glass balloon, glass flake, glass powder, Silicon carbide, silicon nitride, boron nitride, gypsum, calcined kaolin, zinc oxide, antimony trioxide, zeolite, hydrotalcite, wollastonite, silica, talc, metal powder, alumina, graphite, carbon black, carbon nanotube, etc. It is done.
  • Specific examples of the inorganic fiber include glass cut fiber, glass milled fiber, glass fiber, gypsum whisker, metal fiber, metal whisker, ceramic whisker, carbon fiber, and cellulose nanofiber.
  • the polyamide-based three-dimensional printer material of the present invention is manufactured using a resin composition (C) obtained by mixing the crystalline polyamide-based resin (A) and the amorphous polyamide-based resin (B). .
  • the mixing method of the composition is not particularly limited, and a known method such as a melt kneading apparatus such as a single screw extruder, a multi-screw extruder, a Banbury mixer, a kneader, or a roll mill can be used.
  • a co-directional twin-screw extruder from the viewpoint of dispersibility and miscibility of each component.
  • the polyamide-based three-dimensional printer material is excellent in dispersibility and miscibility because unevenness in the amount of extrusion can be suppressed during filament production, which will be described later, and the accuracy and roundness of the filament diameter can be increased.
  • the melt-kneading apparatus is an extruder, as long as it is an apparatus that can melt-knead the crystalline polyamide-based resin (A) and the amorphous polyamide-based resin (B).
  • Any of Banbury mixers, kneaders, roll mills and the like may be used, but it is preferable to use an extruder from the viewpoint that continuous production is possible and that many types of raw materials can be added in separate feeds. .
  • the ratio (L / D) of the screw length (L) to the screw diameter (D) of the extruder is not particularly limited, but the crystalline polyamide resin (A) and the amorphous From the viewpoint of the dispersibility of the water-soluble polyamide resin (B) with respect to each other, 20 to 80 is preferable, 25 to 70 is more preferable, 30 to 60 is more preferable, and 35 to 50 is particularly preferable.
  • the extruder may be a single-screw extruder, a twin-screw extruder, a multi-screw extruder, or a combination of these two-screw / single-screw composite type extruders. Any of these composite extruders can be used, but the operability and cleaning during operation are easy, and the dispersibility of the crystalline polyamide resin (A) and the amorphous polyamide resin (B) with respect to each other From the point that heat resistance, mechanical characteristics, etc. can improve, a twin screw extruder is preferable.
  • an extrusion having a plurality of screws of two or more axes such as a twin screw extruder, a multi screw extruder, a twin screw / single screw combined type extruder, etc.
  • the screw structure may be either a non-engagement type or an engagement type, but an engagement type is preferred from the viewpoint of good dispersibility.
  • an extrusion having a plurality of screws of two or more axes such as a twin screw extruder, a multi screw extruder, a twin screw / single screw combined type extruder, etc.
  • the rotation direction of each screw may be either the same direction or a different direction.
  • the residence time is preferably 30 to 300 seconds. Furthermore, the retention time is 45 to 250 seconds because the crystalline polyamide resin (A) and the amorphous polyamide resin (B) can be sufficiently kneaded and dispersed, and the decomposition of the polyamide resin can be suppressed. More preferably, it is 60 to 200 seconds, more preferably 60 to 180 seconds.
  • the residence time refers to the time from when the raw material is charged until it is melt-kneaded and taken out as a resin composition.
  • the shear rate is preferably 10 to 1500 seconds- 1 .
  • the shear rate is 30 to 30%. more preferably 1300 sec -1, more preferably from 50 to 1100 sec -1, more preferably more 70 to 1000 seconds -1, particularly preferably 90 to 800 seconds -1, and most preferably 110 to 600 seconds -1.
  • the shear rate is a velocity gradient per unit time.
  • the screw rotation speed of the melt-kneading apparatus is not particularly limited, but is preferably 10 to 500 rpm from the viewpoint of suppressing an increase in the resin temperature due to shearing heat generation. 30 to 350 rpm is more preferable, and 50 to 300 rpm is more preferable.
  • a resin composition having a stable and good color tone can be obtained, so that an inert gas such as nitrogen is introduced or melt-kneaded under reduced pressure conditions. It is preferable.
  • the content of the resin composition (C) in the polyamide-based three-dimensional printer material of the present invention is 50 to 100% by mass from the viewpoint of the balance between the formability and heat resistance, the adhesion between layers, and the like. It is preferably 80 to 100% by mass. More preferably, the polyamide-based three-dimensional printer material of the present invention comprises a resin composition (C).
  • the polyamide-based three-dimensional printer material of the present invention may contain components other than the resin composition (C) to the extent that the effects of the present invention are not impaired.
  • Components other than the resin composition (C) include polymers other than polyamide-based resins, heat-resistant agents, ultraviolet absorbers, light stabilizers, antioxidants, antistatic agents, lubricants, slip agents, crystal nucleating agents, and tackifiers.
  • the water content of the polyamide-based three-dimensional printer material of the present invention is preferably 2.5% by mass or less.
  • the moisture content is more preferably 2.0% by mass or less, further preferably 1.5% by mass or less, and particularly preferably 1.0% by mass or less.
  • the moisture content may be 0.3% by mass or more, or 0.6% by mass or more. If it is this range, since foaming and smoke generation are few at the time of extrusion, and dimensional stability, mechanical strength, etc. are stabilized, it is preferable. This property is measured by the Karl Fischer method.
  • the polyamide-based three-dimensional printer material of the present invention is a packaging material (aluminum bag, vapor deposition film, glass container, etc.) that is dried after manufacturing and also has a moisture-proof property, as will be described later. It is preferable to store in
  • the filament for hot melt lamination type three-dimensional printer of the present invention (hereinafter sometimes simply referred to as “three-dimensional printer filament”) is manufactured using the above-mentioned polyamide-based three-dimensional printer material.
  • the method for producing the filament for a three-dimensional printer of the present invention is not particularly limited, but a method or a resin composition in which the above-mentioned polyamide-based three-dimensional printer material is usually molded by a known molding method such as extrusion molding. The method of making a filament as it is at the time of manufacture of is mentioned.
  • the temperature condition is appropriately adjusted depending on the flow characteristics and molding processability of the resin composition to be used, but is usually 150 to 350 ° C., preferably 170. ⁇ 300 ° C.
  • the diameter of the filament for the three-dimensional printer of the present invention depends on the specifications of the system used for molding the resin molding by the hot melt lamination method, but is usually 1.0 mm or more, preferably 1.5 mm or more, more preferably 1
  • the upper limit is generally 5.0 mm or less, preferably 4.0 mm or less, more preferably 3.5 mm or less, and particularly preferably 3.0 mm or less.
  • the accuracy of the diameter is preferably within an error of ⁇ 5% with respect to an arbitrary measurement point of the filament from the viewpoint of the stability of the raw material supply.
  • the filament for a three-dimensional printer of the present invention preferably has a standard deviation in diameter of 0.07 mm or less, particularly preferably 0.06 mm or less.
  • the filament for a three-dimensional printer of the present invention preferably has a roundness measured by the method described in the section of Examples described later of 0.93 or more, particularly preferably 0.95 or more. .
  • the upper limit of roundness is 1.0.
  • the filament for a three-dimensional printer has a small standard deviation in diameter and high roundness, discharge irregularity during molding is suppressed, and a molded body excellent in appearance and surface properties is stably manufactured. be able to.
  • a filament for a three-dimensional printer that satisfies such standard deviation and roundness can be manufactured relatively easily.
  • the three-dimensional printer filament is stably stored, and the three-dimensional printer filament is stably supplied to the three-dimensional printer.
  • the filament for a three-dimensional printer of the present invention is hermetically packaged as a wound body wound around a bobbin, or the wound body is a cartridge for mounting a three-dimensional printer (hereinafter simply referred to as “cartridge”). Is preferably stored from the viewpoints of long-term storage, stable feeding, protection from environmental factors such as moisture, and prevention of twisting.
  • the cartridge examples include a wound body wound around a bobbin and a structure in which a moisture-proof material or a moisture-absorbing material is used inside and at least a portion other than an orifice portion for feeding out a filament for a three-dimensional printer is sealed.
  • a wound body in which a filament for a three-dimensional printer is wound around a bobbin, or a cartridge including the wound body is installed in or around the three-dimensional printer, and the three-dimensional printer filament is always three-dimensionally formed from the cartridge during molding. Continue to be introduced into the printer.
  • a resin molded body is obtained by molding with a three-dimensional printer using the filament for a three-dimensional printer of the present invention.
  • the molding method using a three-dimensional printer include a hot melt lamination method (FDM method), a powder sintering method, an ink jet method, and an optical modeling method (SLA method).
  • the filament for a three-dimensional printer of the present invention can be suitably used for the hot melt lamination method and the powder sintering method, and is particularly preferably used for the hot melt lamination method.
  • the hot melt lamination method will be described as an example.
  • a three-dimensional printer generally has a chamber, and a raw material supply unit such as a heatable base, an extrusion head installed in a gantry structure, a heating melter, a filament guide, and a filament cartridge installation unit is provided in the chamber. I have. In some three-dimensional printers, an extrusion head and a heating / melting device are integrated.
  • the extrusion head can be arbitrarily moved on the XY plane of the base by being installed in the gantry structure.
  • the base is a platform for constructing the desired 3D object and support material, etc., and it is possible to obtain adhesiveness to the laminate by heating and heat insulation, and to improve the dimensional stability by using the resulting resin molded body as the desired 3D object It is preferable that the specification can be adjusted.
  • adhesive paste may be apply
  • Examples of the sheet having good adhesion to the laminate include a sheet having fine irregularities on the surface, such as an inorganic fiber sheet, and a sheet made of the same kind of resin as the laminate. Note that at least one of the extrusion head and the base is usually movable in the Z-axis direction perpendicular to the XY plane.
  • the filament for a three-dimensional printer is fed out from the raw material supply unit, sent to the extrusion head by a pair of opposed rollers or gears, heated and melted by the extrusion head, and extruded from the tip nozzle.
  • the extrusion head feeds the raw material onto the substrate while moving its position, and deposits the layers.
  • the laminated deposit is taken out from the substrate, and the resin molding can be obtained as a desired three-dimensional object by peeling off the support material or the like as necessary, or by cutting off the excess part. .
  • the means for continuously supplying the raw material to the extrusion head includes a method of feeding and supplying filaments or fibers, a method of supplying powder or liquid from a tank or the like via a quantitative feeder, and plasticizing pellets or granules with an extruder or the like.
  • An example is a method of extruding and supplying the product.
  • the method of feeding and supplying the filament that is, the method of feeding and supplying the filament for the three-dimensional printer of the present invention described above is most preferable.
  • the filament When supplying a filament to a three-dimensional printer, the filament is generally engaged with a driving roll such as a nip roll or a gear roll and supplied to the extrusion head while being pulled.
  • a driving roll such as a nip roll or a gear roll
  • a minute uneven shape is transferred on the surface of the filament, or the frictional resistance with the engaging portion is reduced.
  • an inorganic additive, a spreading agent, a pressure-sensitive adhesive, rubber or the like for increasing the size.
  • the temperature for obtaining fluidity suitable for extrusion is usually about 190 to 300 ° C., which is a temperature that can be set by an ordinary three-dimensional printer.
  • the temperature of the heating extrusion head is usually 290 ° C. or lower, preferably 200 to 280 ° C.
  • the base temperature is usually 120 ° C. or lower to stably produce the resin molded body. be able to.
  • the temperature (discharge temperature) of the molten resin discharged from the extrusion head is preferably 180 ° C. or higher, more preferably 190 ° C. or higher, and on the other hand, preferably 300 ° C. or lower, and 290 ° C. or lower. It is more preferable that the temperature is 280 ° C. or lower. It is preferable for the temperature of the molten resin to be equal to or higher than the lower limit value, since it is preferable for extruding a resin having high heat resistance, and it is possible to discharge at a high speed, which is preferable because the molding efficiency tends to be improved.
  • the temperature of the molten resin is not more than the above upper limit value, it is easy to prevent the occurrence of problems such as thermal decomposition, burning, yellowing, smoke generation, odor, and stickiness of the resin, and generally the molten resin called stringing is stretched thinly. It is also preferable from the viewpoint of preventing a broken piece or a lump of excess resin called “dama” from adhering to the modeled object and deteriorating the appearance.
  • the molten resin discharged from the extrusion head is preferably discharged in the form of a strand having a diameter of 0.01 to 1.0 mm, more preferably 0.02 to 0.5 mm. It is preferable that the molten resin is discharged in such a shape because the CAD model tends to have good reproducibility.
  • the filament for a three-dimensional printer of the present invention has good adhesion between the resin strand discharged first and the resin strand discharged thereon.
  • the filament for a three-dimensional printer of the present invention has a high roundness of the diameter, uneven discharge during molding can be suppressed, and a molded article excellent in appearance and surface properties can be stably produced.
  • the filament for a three-dimensional printer according to the present invention has a small standard deviation in diameter and high roundness, and also has an appropriate crystallization speed and a high breaking strain, so that stringing is suppressed, and the appearance and surface properties. It is possible to stably produce a molded article excellent in the above.
  • the resin When a molded body is made while laminating strand-like resin discharged from an extrusion head by a three-dimensional printer, the resin may adhere to the nozzle portion of the extrusion head, and the adhered resin is colored by heat and becomes black. It may become a foreign object (black spot or black stripe). And, such foreign matters are mixed in the molded body, which may cause problems such as not only deterioration of appearance but also damage of the molded product.
  • the filament for a three-dimensional printer of the present invention is excellent in heat resistance, and even if resin adheres to the nozzle portion, it is difficult to cause coloration due to heat, so that a molded article having an excellent appearance can be stably produced.
  • crystallization may be promoted or completed by heat treatment after shaping, depending on the application to be used.
  • the resin molded body of the present invention is excellent in surface appearance, heat resistance, durability and the like.
  • the resin molded body of the present invention is excellent in surface appearance, heat resistance, durability and the like.
  • the distance between the four corners of the sample and the horizontal plane when the sample was removed from the modeling base and placed on the horizontal plane was measured, and the average value of the obtained values was taken as the amount of warpage.
  • the sample that could be manufactured and the amount of warpage was less than 0.1 mm was designated as “AA”, and the sample that was able to be produced and the amount of warpage was from 0.1 mm to less than 2 mm was designated as “A”.
  • the manufacture was completed but the warp was 2 mm or more, or the warp was large and peeled off from the substrate during the manufacture, the manufacture was not completed and was evaluated as “B”.
  • Interlayer adhesion was evaluated by measuring tensile strength according to JIS K 7161.
  • a dumbbell-shaped sample having a sample length of 75 mm, a width of 10 mm, and a thickness of 5 mm was manufactured according to the manufacturing conditions described in Examples described later.
  • the sample for evaluation was manufactured from the filaments described in Examples and Comparative Examples described later using a three-dimensional printer with the sample length direction as the Z-axis direction (stacking direction).
  • AA when the initial chuck distance is 45 mm, the speed is 50 mm / min, and the tensile strength at 23 ° C. is 10 MPa or more, “A” when the tensile strength is 1 MPa or more and less than 10 MPa, the tensile strength is less than 1 MPa, or The case where a dumbbell-shaped sample which can be tested was not obtained was evaluated as “B”.
  • a cup-shaped resin molded body (three-dimensional structure) having an opening on the upper side as shown in FIG. 1 was manufactured according to the manufacturing conditions described in the examples described later.
  • the sample for evaluation was manufactured from the filaments described in Examples and Comparative Examples described later using a three-dimensional printer with the height direction of the cup-shaped resin molded body as the Z-axis direction (lamination direction).
  • the produced resin molded body was heat-treated at a glass transition temperature (Tg) + 30 ° C. for 12 hours. Thereafter, the resin molded body was allowed to stand with the opening facing upward, and after applying a load of 0.01 MPa from the top for 1 minute at a crystal melting temperature (melting point Tm) -30 ° C. The height of was measured. And the case where the height after applying a load was 95% or more with respect to the height (40 mm) before applying the load was evaluated as “A”, and the case where it was less than 95% was evaluated as “B”.
  • Example 1 ⁇ Production of resin composition (C) and material for polyamide-based three-dimensional printer>
  • the crystalline polyamide resin (A-1) and the amorphous polyamide resin (B-1) were previously dried at 90 ° C. for 24 hours, so that the water content of each raw material was 0.1% by mass or less.
  • 80 parts by mass of the crystalline polyamide-based resin (A-1) and 20 parts by mass of the amorphous polyamide-based resin (B-1) are blended, and the same-direction biaxial kneader ( ⁇ 26 mm) (Labotech Engineering)
  • the kneading conditions were a cylinder set temperature of 250 ° C., a rotation speed of 150 rpm, and a discharge of 15 kg / h.
  • Various evaluations were performed on the obtained three-dimensional printer material, and the results are shown in Table 1.
  • the resin composition (C-1) obtained above was introduced into a same-direction biaxial kneading extruder ( ⁇ 15 mm) to produce a filament.
  • the kneading conditions were as follows: the set temperature was 250 ° C., the discharge rate was 1.0 kg / hr, the resin composition was extruded from a die diameter of 3 mm, taken through a water bath at 40 ° C. and taken up at 5 m / min.
  • the resulting filament had a cross-sectional diameter in the range of 1.65 mm to 1.90 mm.
  • Various evaluations were performed on the obtained filaments, and the results are shown in Table 1.
  • Manufacturing conditions were a printing speed of 60 mm / second, an internal filling rate of 100%, a modeling atmosphere temperature of 40 ° C., a base temperature of 60 ° C., and a discharge temperature of 250 ° C.
  • the molten resin was discharged from the extrusion head in the form of a strand having a diameter of 0.4 mm.
  • the warp, interlayer adhesion and heat resistance of the obtained resin molded body were evaluated. The results are shown in Table 1.
  • Example 2 In Example 1, in the production of the resin composition (C), the compounding amount of the crystalline polyamide resin (A-1) was 65 parts by mass, and the compounding amount of the amorphous polyamide resin (B-1) was 35 masses. Except having changed into the part, manufacture and evaluation of a resin composition, manufacture and evaluation of a filament, and manufacture and evaluation of a resin molding were performed similarly to Example 1. The evaluation results are shown in Table 1.
  • Example 3 In Example 1, in the production of the resin composition (C), the crystalline polyamide resin (A-1) was changed to the crystalline polyamide resin (A-2), and the kneading temperature during production of the resin composition and filaments The resin composition was manufactured and evaluated, the filament was manufactured and evaluated, and the resin molded product was manufactured and evaluated in the same manner as in Example 1 except that the discharge temperature during the manufacturing of the resin molded body was 280 ° C. The evaluation results are shown in Table 1.
  • Example 4 In Example 1, in the production of the resin composition (C), the compounding amount of the crystalline polyamide resin (A-1) was changed to 60 parts by mass, and the amorphous polyamide resin (B-1) was changed to amorphous. The production and evaluation of a resin composition, the manufacture and evaluation of a filament, the manufacture and evaluation of a resin molding, and the same as in Example 1 except that the amount was changed to a conductive polyamide resin (B-2) and the blending amount was 40 parts by mass. Evaluation was performed. The evaluation results are shown in Table 1.
  • Example 5 In Example 2, when the resin molded body was manufactured, the resin composition was manufactured and evaluated in the same manner as in Example 2, except that the modeling atmosphere temperature was changed to 50 ° C. and the base temperature was changed to 90 ° C. Evaluation, production and evaluation of resin moldings were performed. The evaluation results are shown in Table 1.
  • Example 6 In Example 1, in the production of the resin composition (C), the compounding amount of the crystalline polyamide resin (A-1) was changed to 60 parts by mass, and the amorphous polyamide resin (B-1) was changed to amorphous. The production and evaluation of a resin composition, the manufacture and evaluation of a filament, the manufacture and evaluation of a resin molded body, as in Example 1, except that the amount was changed to a conductive polyamide resin (B-3) and the blending amount was 40 parts by mass. Evaluation was performed. The evaluation results are shown in Table 1.
  • Example 1 the crystalline polyamide resin (A-1) was used under the same conditions as in Example 1 except that the resin composition (C) was not used and only the crystalline polyamide resin (A-1) was used as a raw material. Evaluation, production and evaluation of filaments, and production and evaluation of resin molded bodies were performed. In Comparative Example 1, a large warp was generated during the production of the resin molded body, and only about 10% of the modeling was completed. Therefore, evaluation of interlayer adhesion and heat resistance was performed using this modeled article. The evaluation results are shown in Table 1.
  • Example 2 In Example 3, the crystalline polyamide resin (A-2) was used under the same conditions as in Example 1 except that the resin composition (C) was not used and only the crystalline polyamide resin (A-2) was used as a raw material. Evaluation, production and evaluation of filaments, and production and evaluation of resin molded bodies were performed. In Comparative Example 2, since a large warp occurred during the production of the resin molded body, and modeling could be completed only about 10% of the whole, evaluation of interlayer adhesion and heat resistance was performed using this modeled article. The evaluation results are shown in Table 1.
  • Example 3 In Example 1, in the production of the resin composition (C), the compounding amount of the crystalline polyamide resin (A-1) was 35 parts by mass, and the compounding amount of the amorphous polyamide resin (B-1) was 65 parts by mass. Except having changed into the part, manufacture and evaluation of a resin composition, manufacture and evaluation of a filament, and manufacture and evaluation of a resin molding were performed similarly to Example 1. The evaluation results are shown in Table 1.
  • the polyamide-based three-dimensional printer material containing the resin composition (C) having specific thermal characteristics defined in the present invention is excellent in all evaluations of the three-dimensional printer filament and the resin molded body. This can be confirmed (Examples 1 to 6).
  • those not satisfying the elements defined in the present invention can be confirmed to be inferior in any one or more of warpage, interlayer adhesion, and heat resistance in the evaluation of the resin molded body (Comparative Example 1).
  • ⁇ 3 Specifically, when the heat of crystallization ( ⁇ Hc) exceeds the range specified in the present invention, warpage and interlayer adhesion are inferior (Comparative Examples 1 and 2), while the heat of crystallization ( ⁇ Hc) is the present invention. If it is less than the range specified in, warpage and interlayer adhesion are good, but it can be confirmed that the heat resistance is poor (Comparative Example 3).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、樹脂組成物(C)を含有するポリアミド系3次元プリンタ用材料であって、前記樹脂組成物(C)は結晶性ポリアミド系樹脂(A)と非晶性ポリアミド系樹脂(B)を含有し、前記樹脂組成物(C)の示差走査熱量測定における結晶化熱量が5~60J/gである、ポリアミド系3次元プリンタ用材料に関する。

Description

ポリアミド系3次元プリンタ用材料
 本発明は、ポリアミド系3次元プリンタ用材料、熱溶解積層型3次元プリンタ用フィラメント、樹脂成形体、巻回体、及び熱溶解積層型3次元プリンタ装着用カートリッジに関する。
 押出による熱積層堆積システム、即ち今日一般的に3次元プリンタ(3Dプリンタ)と呼称されているシステム(例えば米国のストラタシス・インコーポレイテッド社製の熱積層堆積システム)は、流動性を有する原料を押出ヘッドに備えたノズル部位から押し出してコンピュータ支援設計(CAD)モデルを基にして3次元物体を層状に構築するために用いられている。その中でも熱溶解積層法(FDM法)は、原料を熱可塑性樹脂からなるフィラメントとして押出ヘッドへ挿入し、加熱溶融しながら押出ヘッドに備えたノズル部位からチャンバー内のX-Y平面基盤上に連続的に押し出し、押し出した樹脂を既に堆積している樹脂積層体上に堆積させると共に融着させ、これが冷却するにつれ一体固化する、という簡単なシステムであるため、広く用いられるようになってきている。FDM法では、通常、基盤に対するノズル位置がX-Y平面に垂直方向なZ軸方向に上昇しつつ前記押出工程が繰り返されることによりCADモデルに類似した3次元物体が構築される(特許文献1、2)。
 従来、FDM法の原料としては、一般的にアクリロニトリル-ブタジエン-スチレン系樹脂やポリ乳酸等の熱可塑性樹脂が、成形加工性や流動性の観点から好適に用いられてきた(特許文献3~5)。
 一方で、近年、上記の汎用プラスチックだけでなく、ポリアミド系樹脂など、エンジニアリングプラスチック系のフィラメントも実用化が検討されてきている。これらは、耐熱性や耐薬品性、強度などに優れるため、製品や製造ツールの造形といった産業用途も含めて広く活用の可能性がある。しかし、このようなポリアミド系樹脂のうち、一般的に使用される結晶融解温度(融点Tm)が高い(おおむね200℃を超える)結晶性ポリアミド系樹脂を用いたフィラメントは、結晶化速度が早過ぎるため、層間の接着性が低下したり、結晶化収縮による反りが発生したりするなど造形性が低いものであった。これに対して、結晶融解温度(融点Tm)が200℃以下であるポリアミド共重合体を80質量%以上含有する熱溶解積層型3次元プリンタ用材料が開示されている(特許文献6)。
日本国特表2003-502184号公報 日本国特表2003-534159号公報 日本国特表2010-521339号公報 日本国特開2008-194968号公報 国際公開第2015/037574号 日本国特許6265314号公報
 しかしながら、特許文献6では、特定のポリアミド共重合体が用いられており、実際の運営においては、原料選択が限定されたり、原料が高価であったり、あるいは、所望の特性を有するグレードが入手困難な場合があるなど工業的な生産性が低下するという課題があった。なお、特許文献6には、結晶性ポリアミド系樹脂と非晶性のポリアミド系樹脂とを含有する樹脂組成物を用いることにより3次元プリンタ用材料の熱特性を調整するという技術思想は開示されていない。
 また、ポリアミド12など結晶融解温度(融点Tm)が低い結晶性ポリアミド系樹脂単体では、結晶化速度が遅い為、層間の接着性や反りの問題は比較的少なく造形用に使用されているが、得られる成形体の剛性が低く、耐熱性が不十分であり適用できる分野が限定的であるという課題があった。
 そこで、本発明の目的は、比較的入手し易い原料の配合により層間の接着性に優れ、反りが少なく造形性に優れ、表面外観や耐熱性などの諸特性が良好なポリアミド系3次元プリンタ用材料を提供することにある。
 また、本発明の目的は、当該ポリアミド系3次元プリンタ用材料を用いた樹脂成形体、巻回体、及び熱溶解積層型3次元プリンタ装着用カートリッジを提供することにある。
 本発明者らは、鋭意検討を重ねた結果、結晶性ポリアミド系樹脂と非晶性ポリアミド系樹脂を含有し、特定の熱特性を有する樹脂組成物を用いることにより、前記課題を解消できることを見出し、本発明を完成するに至った。
 すなわち、本発明は下記<1>~<12>に関するものである。
<1>樹脂組成物(C)を含有するポリアミド系3次元プリンタ用材料であって、
 前記樹脂組成物(C)は結晶性ポリアミド系樹脂(A)と非晶性ポリアミド系樹脂(B)を含有し、前記樹脂組成物(C)の示差走査熱量測定における結晶化熱量が5~60J/gである、ポリアミド系3次元プリンタ用材料。
<2>前記樹脂組成物(C)の示差走査熱量測定における結晶化熱量が20~60J/gである、<1>に記載のポリアミド系3次元プリンタ用材料。
<3>前記結晶性ポリアミド系樹脂(A)がポリアミド6、ポリアミド66、ポリアミドMXD6、ポリアミド9T、ポリアミド10Tおよびこれらの共重合ポリアミドから選ばれる1種あるいは2種以上を含有する、<1>又は<2>に記載のポリアミド系3次元プリンタ用材料。
<4>前記非晶性ポリアミド系樹脂(B)の示差走査熱量測定における結晶化熱量が5J/g未満である、<1>~<3>のいずれか1つに記載のポリアミド系3次元プリンタ用材料。
<5>前記非晶性ポリアミド系樹脂(B)のガラス転移温度(Tg)が、前記結晶性ポリアミド系樹脂(A)のガラス転移温度(Tg)よりも30℃以上高い、<1>~<4>のいずれか1つに記載のポリアミド系3次元プリンタ用材料。
<6>前記非晶性ポリアミド系樹脂(B)のガラス転移温度(Tg)が、145℃未満である、<1>~<5>のいずれか1つに記載のポリアミド系3次元プリンタ用材料。
<7>前記樹脂組成物(C)の示差走査熱量測定における結晶融解熱量が10~60J/gである、<1>~<6>のいずれか1つに記載のポリアミド系3次元プリンタ用材料。
<8>前記樹脂組成物(C)の示差走査熱量測定における結晶融解温度(Tm)と結晶化温度(Tc)との差(Tm-Tc)が、30℃~60℃である、<1>~<7>のいずれか1つに記載のポリアミド系3次元プリンタ用材料。
<9><1>~<8>のいずれか1つに記載の3次元プリンタ用材料を含有する、熱溶解積層型3次元プリンタ用フィラメント。
<10><9>に記載の熱溶解積層型3次元プリンタ用フィラメントを用い、3次元プリンタにより成形された、樹脂成形体。
<11><9>に記載の熱溶解積層型3次元プリンタ用フィラメントの巻回体。
<12><11>に記載の巻回体が収納された熱溶解積層型3次元プリンタ装着用カートリッジ。
 本発明によれば、層間の接着性に優れ、反りが少なく造形性に優れ、表面外観や耐熱性などの諸特性が良好なポリアミド系3次元プリンタ用材料を提供できる。また、市販の原料を配合して、上記諸特性を調整することができるため原料選択の自由度や工業的な生産性が向上することが期待できる。
図1は、本発明の樹脂成形体の実施態様の一例を示す概略図である。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で種々変形して実施することができる。
[ポリアミド系3次元プリンタ用材料]
 本発明のポリアミド系3次元プリンタ用材料は、後述する樹脂組成物(C)を含有する。樹脂組成物(C)は、後述する結晶性ポリアミド系樹脂(A)と後述する非晶性ポリアミド系樹脂(B)を含有する。
<結晶性ポリアミド系樹脂(A)>
 ここで、結晶性ポリアミド系樹脂(A)としては、特に限定されるものではないが、具体例としては、以下のようなものが挙げられる。すなわち、ポリカプロアミド(ポリアミド6)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリテトラメチレンアジパミド(ポリアミド46)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリウンデカメチレンアジパミド(ポリアミド116)、ポリビス(4-アミノシクロヘキシル)メタンドデカミド(ポリアミドPACM12)、ポリビス(3-メチル-4アミノシクロヘキシル)メタンドデカミド(ポリアミドジメチルPACM12)、ポリノナメチレンテレフタルアミド(ポリアミド9T)、ポリデカメチレンテレフタルアミド(ポリアミド10T)、ポリウンデカメチレンテレフタルアミド(ポリアミド11T)、ポリウンデカメチレンヘキサヒドロテレフタルアミド(ポリアミド11T(H))、ポリウンデカミド(ポリアミド11)、ポリドデカミド(ポリアミド12)、ポリトリメチルヘキサメチレンテレフタルアミド(ポリアミドTMDT)、ポリヘキサメチレンイソフタルアミド(ポリアミド6I)、ポリヘキサメチレンテレフタル/イソフタルアミド(ポリアミド6T/6I)、ポリメタキシリレンアジパミド(ポリアミドMXD6)及びこれらの共重合物等が挙げられる。該結晶性ポリアミド系樹脂(A)は、1種あるいは2種以上を混合して用いることができる。
 中でも、成形性および表面外観や耐薬品性の観点から、ポリアミド6、ポリアミド66、ポリアミドMXD6、ポリアミド9T、ポリアミド10Tおよびこれらの共重合ポリアミドが好ましく、より高い耐熱性や機械強度の観点では、ポリアミド9T、ポリアミド10Tがより好ましく、耐熱性と経済性のバランスの観点では、ポリアミド6、ポリアミド66がより好ましい。さらにこれらの結晶性ポリアミド系樹脂を、耐衝撃性、成形加工性などの必要特性に応じて混合物として用いることも実用上好適である。
 前記結晶性ポリアミド系樹脂(A)の示差走査熱量測定における冷却速度10℃/分で測定される結晶化熱量(ΔHc)は、30J/g以上、100J/g以下であることが好ましい。該範囲内であれば、後述する非晶性ポリアミド系樹脂(B)との配合により、樹脂組成物(C)としても耐熱性、耐薬品性および機械強度などのバランスを調整し易いため好ましい。これらのことから結晶性ポリアミド系樹脂(A)の結晶化熱量は、40J/g以上、80J/g以下であることがより好ましい。
 ここで、該結晶化熱量(ΔHc)は、示差走査熱量計(DSC)を用い、JIS K7122に準じて、試料約10mgを加熱速度10℃/分で室温から結晶融解温度(融点Tm)+20℃まで昇温し、該温度で1分間保持した後、冷却速度10℃/分で30℃まで降温した時に測定される値である。
 前記結晶性ポリアミド系樹脂(A)の結晶融解温度(融点Tm)は、特に限定されるものではないが、通常、120℃~320℃である。
 該結晶融解温度(融点Tm)が260℃未満であれば、市販されている多くのプリンタを用いることができ、また、造形する温度を低く設定することにより消費電力も抑えることができるため好ましい。一方、該結晶融解温度(融点Tm)が260℃以上であれば、耐熱性が確保され易く、プリント基板等の半田リフロー工程での耐性が得られ易いため好ましい。これらのことから結晶性ポリアミド系樹脂(A)の結晶融解温度(融点Tm)は、120℃以上、260℃未満、あるいは、260℃以上、320℃以下のいずれかであることがより好ましく、160℃以上、230℃未満、あるいは、270℃以上、310℃以下のいずれかであることがさらに好ましい。
<非晶性ポリアミド系樹脂(B)>
 ここで、非晶性ポリアミド系樹脂(B)としては、特に限定されるものではないが、示差走査熱量測定における冷却速度10℃/分で測定される結晶化熱量が5J/g未満であることが好ましい。本発明においては、結晶化熱量が0J/gのものがより好ましい。
 具体例としては、ジカルボン酸成分として、イソフタル酸を30~70モル%、より好ましくは40~60モル%含む重縮合体であることが好ましい。
 このような重縮合体として、以下のようなものが挙げられる。すなわち、イソフタル酸/炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸/メタキシリレンジアミンの重縮合体、イソフタル酸/テレフタル酸/ヘキサメチレンジアミンの重縮合体、イソフタル酸/テレフタル酸/ヘキサメチレンジアミン/ビス(3-メチル-4-アミノシクロヘキシル)メタンの重縮合体、テレフタル酸/2,2,4-トリメチルヘキサメチレンジアミン/2,4,4-トリメチルヘキサメチレンジアミンの重縮合体、イソフタル酸/ビス(3-メチル-4-アミノシクロヘキシル)メタン/ω-ラウロラクタムの重縮合体、イソフタル酸/2,2,4-トリメチルヘキサメチレンジアミン/2,4,4-トリメチルヘキサメチレンジアミンの重縮合体、イソフタル酸/テレフタル酸/2,2,4-トリメチルヘキサメチレンジアミン/2,4,4-トリメチルヘキサメチレンジアミンの重縮合体、イソフタル酸/ビス(3-メチル-4-アミノシクロヘキシル)メタン/ω-ラウロラクタムの重縮合体等が挙げられる。また、これらの重縮合体を構成するテレフタル酸成分及び/又はイソフタル酸成分のベンゼン環が、アルキル基やハロゲン原子で置換されたものも含まれる。さらに、これらの非晶性ポリアミド系樹脂は2種以上併用することもできる。
 好ましくは、イソフタル酸/炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸/メタキシリレンジアミンの重縮合体、イソフタル酸/テレフタル酸/ヘキサメチレンジアミン/ビス(3-メチル-4-アミノシクロヘキシル)メタンの重縮合体、テレフタル酸/2,2,4-トリメチルヘキサメチレンジアミン/2,4,4-トリメチルヘキサメチレンジアミンの重縮合体、又はイソフタル酸/テレフタル酸/ヘキサメチレンジアミン/ビス(3-メチル-4-アミノシクロヘキシル)メタンの重縮合体とテレフタル酸/2,2,4-トリメチルヘキサメチレンジアミン/2,4,4-トリメチルヘキサメチレンジアミンの重縮合体との混合物が用いられる。
 本発明においては、結晶性ポリアミド系樹脂との混和性、ガスバリア性、剛性、耐熱性および低吸水性などの観点から、イソフタル酸/炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸/メタキシリレンジアミンの重縮合体が特に好ましい。
 ここで、イソフタル酸と炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸の合計量に対するイソフタル酸のモル比率は、結晶化熱量を上記範囲内にする観点から、下限は、40モル%以上が好ましく、45モル%以上がより好ましい。一方、上限は、60モル%以下が好ましく、55モル%以下がより好ましい。
 本発明における非晶性ポリアミド系樹脂(B)のガラス転移温度(Tg)は、特に限定されるものではないが、80℃以上であることが好ましく、より好ましくは100℃以上、さらに好ましくは120℃以上である。一方、ガラス転移温度の上限は、樹脂成形体の造形時に反りを抑制する観点から、200℃以下が好ましく、180℃以下がより好ましく、160℃以下がさらに好ましく、145℃以下が最も好ましい。非晶性ポリアミド系樹脂(B)のガラス転移温度が該範囲であると、前記結晶性ポリアミド系樹脂(A)との配合により、樹脂組成物(C)としてより優れた耐熱性や造形性、表面外観を得ることができるため好ましい。
 ここで、該ガラス転移温度(Tg)とは、示差走査熱量計(DSC)を用いJIS K7121に準じて、試料約10mgを加熱速度10℃/分で室温から結晶融解温度(融点Tm)+20℃まで昇温し、該温度で1分間保持した後、冷却速度10℃/分で30℃まで降温し、再度、加熱速度10℃/分で280℃まで昇温した時に測定される値である。
 本発明における非晶性ポリアミド系樹脂(B)のガラス転移温度(Tg)は、前記結晶性ポリアミド系樹脂(A)のガラス転移温度(Tg)よりも30℃以上高いことが好ましい。ここで、通常の結晶性高分子が経験則としてTg≒(1/2)Tm~(2/3)Tm(K)の相関関係がある(色材,68〔1〕,P.45(1995)参照)。すなわち、結晶性高分子単独でTgを高くしようとすると同時にTmも高くなり、結果として流動性が低下し、成形加工性が悪くなることが知られている。ゆえに、結晶性ポリアミド系樹脂(A)にTgが高い非晶性ポリアミド系樹脂(B)を混合すれば、組成物としてTmをある程度保持した状態でTgを高めることが可能となる。これらのことから、非晶性ポリアミド系樹脂(B)のガラス転移温度(Tg)は、結晶性ポリアミド系樹脂(A)のガラス転移温度(Tg)よりも50℃以上高いことがより好ましい。
 本発明に用いる前記結晶性ポリアミド系樹脂(A)及び非晶性ポリアミド系樹脂(B)の相対粘度は、特に限定されるものではないが、溶媒として96質量%濃硫酸を用いて温度が25℃で濃度が1g/dlの条件で測定した相対粘度が、1.5~5.0の範囲であることが好ましい。該範囲であれば、溶融混練後の引き取り性や機械強度および成形加工性などのバランスに優れるため好ましい。これらのことから該相対粘度は、2.0~4.0の範囲がより好ましい。
 本発明に用いる前記結晶性ポリアミド系樹脂(A)及び非晶性ポリアミド系樹脂(B)は、公知の方法で重合可能であり、また、市販品を用いることができる。
 ここで、重合方法としては、以下の〔1〕~〔6〕の方法が例示できる。また、バッチ式でも連続式でも適宜選択することができる。
〔1〕ジカルボン酸・ジアミン塩又はその混合物の水溶液若しくは水の懸濁液を加熱し、溶融状態を維持したまま重合させる方法(熱溶融重合法)。
〔2〕熱溶融重合法で得られたポリアミドを融点以下の温度で固体状態を維持したまま重合度を上昇させる方法(熱溶融重合・固相重合法)。
〔3〕ジカルボン酸・ジアミン塩又はその混合物の水溶液若しくは水の懸濁液を加熱し、析出したプレポリマーを更にニーダーなどの押出機で再び溶融して重合度を上昇させる方法(プレポリマー・押出重合法)。
〔4〕ジカルボン酸・ジアミン塩又は、その混合物の水溶液若しくは水の懸濁液を加熱し、析出したプレポリマーを更にポリアミドの融点以下の温度で固体状態を維持したまま重合度を上昇させる方法(プレポリマー・固相重合法)。
〔5〕ジカルボン酸・ジアミン塩又はその混合物を固体状態に維持したまま、一段で重合させる方法(一段固相重合法)。
〔6〕ジカルボン酸と等価なジカルボン酸ハライドとジアミンとを用いて重合させる方法(溶液法)。
<樹脂組成物(C)>
 本発明における樹脂組成物(C)は、前記結晶性ポリアミド系樹脂(A)と前記非晶性ポリアミド系樹脂(B)を含有する。結晶性ポリアミド系樹脂(A)と非晶性ポリアミド系樹脂(B)の混合物と共重合体(1つの重合体)では、TgとTmの関係が前述した経験則から外れるので、その違いから本発明の樹脂組成物(C)であることを確認することが可能である。また、結晶性ポリアミド系樹脂(A)と非晶性ポリアミド系樹脂(B)の混合物であることは、核磁気共鳴装置(NMR)による構造解析や、樹脂組成物の混合状態を電子顕微鏡で確認すること等で確認することが可能である。
 ここで、前記樹脂組成物(C)の示差走査熱量測定における冷却速度10℃/分で測定される結晶化熱量(ΔHc)は、5~60J/gであることが重要である。結晶化熱量(ΔHc)が該範囲であれば、3次元プリンタ用材料としての造形性や、それを用いて造形された樹脂成形体の耐熱性などのバランスに優れるため好ましい。
 耐熱性の観点から、前記樹脂組成物(C)の結晶化熱量の下限は、10J/g以上であることがより好ましく、20J/g以上であることがさらに好ましく、35J/g以上であることが特に好ましい。一方、造形性(反り抑制)の観点から、前記樹脂組成物(C)の結晶化熱量の上限は、58J/g以下であることがより好ましく、55J/gであることがさらに好ましく、50J/g以下であることが特に好ましい。
 また、前記樹脂組成物(C)の示差走査熱量測定における、昇温速度10℃/分で測定される結晶融解熱量(ΔHm)は、造形された樹脂成形体の耐熱性の観点から、10J/g以上であることが好ましく、20J/g以上であることがより好ましく、30J/g以上であることが更に好ましい。また、当該結晶融解熱量(ΔHm)は、3次元プリンタ用材料としての造形性の観点から、60J/g以下であることが好ましく、58J/g以下であることがより好ましく、55J/g以下であることが更に好ましい。
 なお、示差走査熱量測定において、降温過程において結晶化温度(Tc)が複数発現した場合の結晶化熱量は、合計の値とする。本発明においては、該結晶化温度は1つであることが好ましい。また、昇温過程において結晶融解熱温度(Tm)が複数発現した場合の結晶化熱量は、合計の値とする。
 また、本発明のポリアミド系3次元プリンタ用材料は、示差走査熱量計(DSC)を用い加熱速度10℃/分で再度昇温した場合の結晶化熱量が10J/g未満であることが好ましく、1J/g未満であることがより好ましく、0J/gであることが更に好ましい。すなわち、本発明のポリアミド系3次元プリンタ用材料は、10℃/分の再昇温過程において結晶化温度を示さないこと、つまり10℃/分の降温過程において結晶化が十分完了していることが好ましい。このことにより、造形後の熱処理により結晶化させる工程を省くことができる。なお、造形中に結晶化が完了しない場合は、熱処理により結晶化を促進させることが好ましい。
 本発明において前記結晶化熱量は、結晶性ポリアミド系樹脂(A)と非晶性ポリアミド系樹脂(B)の混合質量比により調整することが好ましい。具体的には、結晶性ポリアミド系樹脂(A)と非晶性ポリアミド系樹脂(B)の合計量を100質量部とした場合、結晶性ポリアミド系樹脂(A)の配合量が99~1質量部で、非晶性ポリアミド系樹脂(B)の配合量が1~99質量部であることが好ましい。結晶性ポリアミド系樹脂(A)の配合量は、40質量部以上であることがより好ましく、50質量部以上であることがさらに好ましく、55質量部以上であることが特に好ましい。一方、結晶性ポリアミド系樹脂(A)の配合量の上限は、95質量部以下がより好ましく、90質量部以下がさらに好ましく、85質量部以下が特に好ましい。
 次に、前記樹脂組成物(C)の示差走査熱量測定における結晶融解温度(融点Tm)と結晶化温度(Tc)との差(Tm-Tc)は、30℃~90℃であることが好ましく、30℃~60℃であることがより好ましい。差(Tm-Tc)が該範囲であれば、適度に結晶化速度が遅く、3次元プリンタで樹脂成形体を作製する際に層間の接着性が確保され、また造形時の反りを抑えつつ、糸ひき等の造形外観不良も抑制され造形性に優れるため好ましい。また、差(Tm-Tc)が該範囲であれば、3次元プリンタで造形した樹脂成形体は適度に結晶化され、あるいは造形後に加熱処理によって結晶化を完了しやすく、樹脂成形体の耐熱性に優れるため好ましい。これらのことから該差は、35℃~55℃であることがさらに好ましく、38℃~55℃であることが特に好ましい。
 ここで、該結晶化温度(Tc)は、示差走査熱量計を用い、加熱速度10℃/分で室温から結晶融解温度(融点Tm)+20℃まで昇温し、該温度で1分間保持した後、冷却速度10℃/分で30℃まで降温した時に測定される値である。なお、示差走査熱量測定において、結晶融解温度(融点Tm)および結晶化温度(Tc)が複数発現した場合の結晶融解温度(融点Tm)と結晶化温度(Tc)との差(Tm-Tc)は、最も大きな熱量(結晶融解熱量、結晶化熱量)を有する結晶融解温度(融点Tm)および結晶化温度(Tc)を用いて計算するものとする。
 本発明における樹脂組成物(C)は、本発明の効果を損なわない程度に他の成分を含んでもよい。他の成分としては、ポリアミド系樹脂以外のポリマー、耐熱剤、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、滑剤、スリップ剤、結晶核剤、粘着性付与剤、シール性改良剤、防曇剤、離型剤、可塑剤、顔料、染料、香料、難燃剤、有機系粒子、無機系粒子および補強材などが挙げられる。
 ここで、ポリアミド系樹脂以外のポリマーの具体例としては、例えば、アクリロニトリル-ブタジエン-スチレン系樹脂(ABS樹脂)、ポリ乳酸(PLA樹脂)、ポリウレタン系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリスチレン系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、ポリ塩化ビニル系樹脂、シリコーン系樹脂および各種ゴム、エラストマー等が挙げられる。
 本発明においては、耐衝撃性や柔軟性を付与する場合に、各種ゴム、エラストマーを用いることが好ましい。
 ここで、有機系粒子の具体例としては、アクリル樹脂粒子、メラミン樹脂粒子、シリコーン樹脂粒子、ポリスチレン樹脂粒子などが挙げられる。
 ここで、無機系粒子の具体例としては、シリカ、アルミナ、カオリン、二酸化チタン、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛などが挙げられる。
 ここで、補強材の具体例としては、無機充填材や無機繊維が挙げられる。
 無機充填材の具体例としては、炭酸カルシウム、炭酸亜鉛、酸化マグネシウム、ケイ酸カルシウム、アルミン酸ナトリウム、アルミン酸カルシウム、アルミノ珪酸ナトリウム、珪酸マグネシウム、チタン酸カリウム、ガラスバルーン、ガラスフレーク、ガラス粉末、炭化ケイ素、窒化ケイ素、窒化ホウ素、石膏、焼成カオリン、酸化亜鉛、三酸化アンチモン、ゼオライト、ハイドロタルサイト、ワラストナイト、シリカ、タルク、金属粉、アルミナ、グラファイト、カーボンブラック、カーボンナノチューブなどが挙げられる。
 無機繊維の具体例としては、ガラスカットファイバー、ガラスミルドファイバー、ガラスファイバー、石膏ウィスカー、金属繊維、金属ウィスカー、セラミックウィスカー、炭素繊維、セルロースナノファイバーなどが挙げられる。
<ポリアミド系3次元プリンタ用材料の製造方法>
 本発明のポリアミド系3次元プリンタ用材料は、上述の結晶性ポリアミド系樹脂(A)と非晶性ポリアミド系樹脂(B)を混合して得られる樹脂組成物(C)を用いて製造される。該組成物の混合方法としては特に制限されるものではないが、公知の方法、例えば単軸押出機、多軸押出機、バンバリーミキサー、ニーダー、ロールミルなどの溶融混練装置を用いることができる。本発明においては、各成分の分散性や混和性などの観点から同方向二軸押出機を用いることが好ましい。ポリアミド系3次元プリンタ用材料が分散性や混和性に優れると、後述するフィラメント製造の際に押出量のムラを抑制でき、フィラメント径の精度や真円度を高めることができるため好ましい。
 本発明のポリアミド系3次元プリンタ用材料の製造において、溶融混練装置とは、結晶性ポリアミド系樹脂(A)と非晶性ポリアミド系樹脂(B)を溶融混練できる装置であれば、押出機、バンバリーミキサー、ニーダー、ロールミルなどのいずれのものでもよいが、連続的な製造が可能であること、多種類の原料を別フィードにて添加することができるという点から、押出機を用いることが好ましい。押出機を用いる場合には、押出機のスクリューの長さ(L)とスクリューの口径(D)の比(L/D)は、特に制限されないが、結晶性ポリアミド系樹脂(A)と非晶性ポリアミド系樹脂(B)の、互いに対する分散性の点から、20~80が好ましく、25~70がより好ましく、30~60がさらに好ましく、35~50が特に好ましい。
 本発明のポリアミド系3次元プリンタ用材料の製造において、押出機としては、単軸押出機、二軸押出機、多軸押出機、または、それらを組み合わせた二軸・単軸複合型押出機のような複合型押出機のいずれも用いることができるが、運転時の操作性や清掃が容易で、結晶性ポリアミド系樹脂(A)と非晶性ポリアミド系樹脂(B)の、互いに対する分散性を向上させることができ、耐熱性や機械特性などが向上するという点から、二軸押出機が好ましい。
 本発明のポリアミド系3次元プリンタ用材料の製造において、溶融混練装置として、二軸押出機、多軸押出機、二軸・単軸複合型押出機などの二軸以上の複数のスクリューを有する押出機を用いる場合には、そのスクリュー構造が、非噛み合い型、噛み合い型のでもいずれでもよいが、分散性が良好であるという点から、噛み合い型が好ましい。
 本発明のポリアミド系3次元プリンタ用材料の製造において、溶融混練装置として、二軸押出機、多軸押出機、二軸・単軸複合型押出機などの二軸以上の複数のスクリューを有する押出機を用いる場合には、それぞれのスクリューの回転方向は、同方向でも異方向でもいずれでもよい。
 本発明のポリアミド系3次元プリンタ用材料の製造において、滞留時間は、30~300秒であることが好ましい。さらに結晶性ポリアミド系樹脂(A)と非晶性ポリアミド系樹脂(B)を十分に混練分散させることができ、ポリアミド系樹脂の分解を抑制できるという点から、滞留時間は、45~250秒がより好ましく、60~200秒がさらに好ましく、60~180秒が特に好ましい。ここで、滞留時間とは、原料を投入してから溶融混練し樹脂組成物として取り出すまでの時間のことをいう。
 本発明のポリアミド系3次元プリンタ用材料の製造において、せん断速度は、10~1500秒-1であることが好ましい。さらに結晶性ポリアミド系樹脂(A)と非晶性ポリアミド系樹脂(B)を十分に混練分散させることができ、安定した良好な色調を有するものが得られるという点から、せん断速度は、30~1300秒-1がより好ましく、50~1100秒-1がさらに好ましく、70~1000秒-1がよりさらに好ましく、90~800秒-1が特に好ましく、110~600秒-1が最も好ましい。ここで、せん断速度とは、単位時間当たりの速度勾配のことである。一般的に、二面間でせん断変形を行う場合のせん断速度は、下記式により求めることができる。
 せん断速度=二面の速度差/二面間の距離
 本発明のポリアミド系3次元プリンタ用材料の製造において、溶融混練装置のスクリュー回転数は、特に制限されないが、せん断発熱による樹脂温度の上昇を抑制できるという点から、10~500rpmであることが好ましく、30~350rpmがより好ましく、50~300rpmがさらに好ましい。
 本発明のポリアミド系3次元プリンタ用材料の製造においては、安定した良好な色調を有する樹脂組成物が得られるという点から、窒素などの不活性ガスの導入、もしくは、減圧条件下で溶融混練することが好ましい。
 また、本発明のポリアミド系3次元プリンタ用材料中の樹脂組成物(C)の含有量は、造形性や耐熱性のバランスや、層間の接着性などの観点から、50~100質量%であることが好ましく、80~100質量%であることがより好ましい。本発明のポリアミド系3次元プリンタ用材料は、樹脂組成物(C)からなることがさらに好ましい。
 本発明のポリアミド系3次元プリンタ用材料は、本発明の効果を損なわない程度に樹脂組成物(C)以外の成分を含んでもよい。樹脂組成物(C)以外の成分としては、ポリアミド系樹脂以外のポリマー、耐熱剤、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、滑剤、スリップ剤、結晶核剤、粘着性付与剤、シール性改良剤、防曇剤、離型剤、可塑剤、顔料、染料、香料、難燃剤、有機系粒子、無機系粒子および補強材等が挙げられる。
 また、本発明のポリアミド系3次元プリンタ用材料の含水率は、2.5質量%以下であることが好ましい。該含水率は、2.0質量%以下がより好ましく、1.5質量%以下がさらに好ましく、1.0質量%以下が特に好ましい。該含水率は、0.3質量%以上でもよく、0.6質量%以上でもよい。該範囲であれば、押出時に発泡や発煙が少なく、また、寸法安定性や機械強度等が安定するため好ましい。該特性は、カールフィッシャー法で測定される。
 このことから、本発明のポリアミド系3次元プリンタ用材料は、後述する3次元プリンタ用フィラメントも同様に、製造後、乾燥され、防湿性を有する包材(アルミ袋、蒸着フィルム、ガラス容器など)で保管することが好ましい。
[熱溶解積層型3次元プリンタ用フィラメント]
<熱溶解積層型3次元プリンタ用フィラメントの製造方法>
 本発明の熱溶解積層型3次元プリンタ用フィラメント(以下、単に「3次元プリンタ用フィラメント」と称することがある。)は、上述のポリアミド系3次元プリンタ用材料を用いて製造される。本発明の3次元プリンタ用フィラメントの製造方法は特に制限されるものではないが、上述のポリアミド系3次元プリンタ用材料を、通常、押出成形等の公知の成形方法により成形する方法や樹脂組成物の製造時にそのままフィラメントとする方法等が挙げられる。例えば、本発明の3次元プリンタ用フィラメントを押出成形により得る場合、その温度条件は、用いる樹脂組成物の流動特性や成形加工性等によって適宜調整されるが、通常150~350℃、好ましくは170~300℃である。
<熱溶解積層型3次元プリンタ用フィラメントの物性等>
 本発明の3次元プリンタ用フィラメントの直径は、熱溶解積層法による樹脂成形体の成形に使用するシステムの仕様に依存するが、通常1.0mm以上、好ましくは1.5mm以上、より好ましくは1.6mm以上、特に好ましくは1.7mm以上であり、一方、上限は通常5.0mm以下、好ましくは4.0mm以下、より好ましくは3.5mm以下、特に好ましくは3.0mm以下である。更に径の精度はフィラメントの任意の測定点に対して±5%以内の誤差に収めることが原料供給の安定性の観点から好ましい。特に、本発明の3次元プリンタ用フィラメントは、径の標準偏差が0.07mm以下であることが好ましく、0.06mm以下であることが特に好ましい。
 また、本発明の3次元プリンタ用フィラメントは、後述する実施例の項に記載の方法で測定される真円度が0.93以上であることが好ましく、0.95以上であることが特に好ましい。真円度の上限は1.0である。
 このように、径の標準偏差が小さく、真円度が高い3次元プリンタ用フィラメントであれば、成形時の吐出ムラが抑制され、外観や表面性状等に優れた成形体を安定して製造することができる。前述のポリアミド系3次元プリンタ用材料を用いることで、このような標準偏差及び真円度を満たす3次元プリンタ用フィラメントを比較的容易に製造することができる。
[熱溶解積層型3次元プリンタ用フィラメントの巻回体及び熱溶解積層型3次元プリンタ装着用カートリッジ]
 本発明の3次元プリンタ用フィラメントを用いて3次元プリンタにより樹脂成形体を製造するにあたり、3次元プリンタ用フィラメントを安定に保存すること、及び、3次元プリンタに3次元プリンタ用フィラメントを安定供給することが求められる。そのために、本発明の3次元プリンタ用フィラメントは、ボビンに巻きとった巻回体として密閉包装されている、又は、巻回体が熱溶解積層型3次元プリンタ装着用カートリッジ(以下、単に「カートリッジ」と称することがある。)に収納されていることが、長期保存、安定した繰り出し、湿気等の環境要因からの保護、捩れ防止等の観点から好ましい。カートリッジとしては、ボビンに巻き取った巻回体の他、内部に防湿材または吸湿材を使用し、少なくとも3次元プリンタ用フィラメントを繰り出すオリフィス部以外が密閉されている構造のものが挙げられる。
 通常、3次元プリンタ用フィラメントをボビンに巻きとった巻回体、又は、巻回体を含むカートリッジは3次元プリンタ内又は周囲に設置され、成形中は常にカートリッジから3次元プリンタ用フィラメントが3次元プリンタに導入され続ける。
[樹脂成形体]
<樹脂成形体の製造方法>
 本発明の樹脂成形体の製造方法においては、本発明の3次元プリンタ用フィラメントを用い、3次元プリンタにより成形することにより樹脂成形体を得る。3次元プリンタによる成形方法としては熱溶解積層法(FDM法)、粉末焼結方式、インクジェット方式、光造形方式(SLA法)などが挙げられる。本発明の3次元プリンタ用フィラメントは、これらの中でも熱溶解積層法や粉末焼結方式に好適に用いることができ、熱溶解積層法に用いることが特に好ましい。以下、熱溶解積層法の場合を例示して説明する。
 3次元プリンタは一般に、チャンバーを有しており、該チャンバー内に、加熱可能な基盤、ガントリー構造に設置された押出ヘッド、加熱溶融器、フィラメントのガイド、フィラメントカートリッジ設置部等の原料供給部を備えている。3次元プリンタの中には押出ヘッドと加熱溶融器とが一体化されているものもある。
 押出ヘッドはガントリー構造に設置されることにより、基盤のX-Y平面上に任意に移動させることができる。基盤は目的の3次元物体や支持材等を構築するプラットフォームであり、加熱保温することで積層物との接着性を得たり、得られる樹脂成形体を所望の3次元物体として寸法安定性を改善したりできる仕様であることが好ましい。また、積層物との接着性を向上させるため、基盤上に粘着性のある糊を塗布したり、積層物との接着性が良好なシート等を貼りつけたりしてもよい。ここで積層物との接着性が良好なシートとしては、無機繊維のシートなど表面に細かな凹凸を有するシートや、積層物と同種の樹脂からなるシートなどが挙げられる。なお、押出ヘッドと基盤とは、通常、少なくとも一方がX-Y平面に垂直なZ軸方向に可動となっている。
 3次元プリンタ用フィラメントは原料供給部から繰り出され、対向する1組のローラー又はギアーにより押出ヘッドへ送り込まれ、押出ヘッドにて加熱溶融され、先端ノズルより押し出される。CADモデルを基にして発信される信号により、押出ヘッドはその位置を移動しながら原料を基盤上に供給して積層堆積させていく。この工程が完了した後、基盤から積層堆積物を取り出し、必要に応じて支持材等を剥離したり、余分な部分を切除したりして所望の3次元物体として樹脂成形体を得ることができる。
 押出ヘッドへ連続的に原料を供給する手段は、フィラメント又はファイバーを繰り出て供給する方法、粉体又は液体をタンク等から定量フィーダを介して供給する方法、ペレット又は顆粒を押出機等で可塑化したものを押し出して供給する方法等が例示できる。これらの中でも、工程の簡便さと供給安定性の観点から、フィラメントを繰り出して供給する方法、即ち、前述の本発明の3次元プリンタ用フィラメントを繰り出して供給する方法が最も好ましい。
 3次元プリンタにフィラメントを供給する場合、ニップロールやギアロール等の駆動ロールにフィラメントを係合させて、引き取りながら押出ヘッドへ供給することが一般的である。ここでフィラメントと駆動ロールとの係合による把持をより強固にすることで原料供給を安定化させるために、フィラメントの表面に微小凹凸形状を転写させておいたり、係合部との摩擦抵抗を大きくするための無機添加剤、展着剤、粘着剤、ゴム等を配合したりすることも好ましい。フィラメントに太さムラがある場合、フィラメントと駆動ロールとの係合による把持が行えず、駆動ロールが空転しフィラメントを押出ヘッドに供給出来なくなる場合がある。
 本発明で用いる樹脂組成物(C)は、押出に適当な流動性を得るための温度が、通常190~300℃程度と、通常の3次元プリンタが設定可能な温度である。本発明の樹脂成形体の製造方法においては、加熱押出ヘッドの温度を通常290℃以下、好ましくは200~280℃とし、また、基盤温度を通常120℃以下として安定的に樹脂成形体を製造することができる。
 押出ヘッドから吐出される溶融樹脂の温度(吐出温度)は180℃以上であることが好ましく、190℃以上であることがより好ましく、一方、300℃以下であることが好ましく、290℃以下であることがより好ましく、280℃以下であることが更に好ましい。溶融樹脂の温度が上記下限値以上であると、耐熱性の高い樹脂を押し出す上で好ましく、また、高速で吐出することが可能となり、造形効率が向上する傾向にあるため好ましい。一方、溶融樹脂の温度が上記上限値以下であると、樹脂の熱分解や焼け、黄変、発煙、臭い、べたつきといった不具合の発生を防ぎやすく、また一般に、糸引きと呼ばれる溶融樹脂が細く伸ばされた破片や、ダマと呼ばれる余分な樹脂が塊状になったものが造形物に付着し、外観を悪化させることを防ぐ観点からも好ましい。
 押出ヘッドから吐出される溶融樹脂は、好ましくは直径0.01~1.0mm、より好ましくは直径0.02~0.5mmのストランド状で吐出される。溶融樹脂がこのような形状で吐出されると、CADモデルの再現性が良好となる傾向にあるために好ましい。
 3次元プリンタ用フィラメントを用いて3次元プリンタにより樹脂成形体を製造するにあたり、押出ヘッドから吐出させたストランド状の樹脂を積層しながら成形体を作る際に、先に吐出させた樹脂のストランドと、その上に吐出させた樹脂ストランドとの接着性が十分でないことや吐出ムラによって、成形物の表面に、凹凸部(スジ等)が生じることがある。成形物の表面にこのような凹凸部が存在すると、外観の悪化だけでなく、成形体が破損しやすい等の問題が生じることがある。
 本発明の3次元プリンタ用フィラメントは、先に吐出させた樹脂のストランドと、その上に吐出させた樹脂ストランドとの接着性が良好である。また本発明の3次元プリンタ用フィラメントは、径の真円度が高いため成形時の吐出ムラが抑制され、外観や表面性状等に優れた成形体を安定して製造することができる。
 3次元プリンタによって押出ヘッドから吐出させたストランド状の樹脂を積層しながら成形体を作る際に、樹脂の吐出を止めた上で次工程の積層箇所にノズルを移動する工程がある。この時、樹脂が途切れずに細い樹脂繊維が生じ、糸を引いたように成形体表面に残ることがある。上記の様な糸引きが発生すると成形体の外観が悪化する等の問題が生じることがある。
 本発明の3次元プリンタ用フィラメントは、径の標準偏差が小さく、真円度が高いことに加え、適度な結晶化速度と、高い破断ひずみを有することから糸引きが抑制され、外観や表面性状等に優れた成形体を安定して製造することができる。
 3次元プリンタによって押出ヘッドから吐出させたストランド状の樹脂を積層しながら成形体を作る際に、押し出しヘッドのノズル部に樹脂が付着することがあり、さらに付着した樹脂が熱によって着色し、黒い異物(黒点や黒条)となることがある。そして、このような異物が成形体中に混入することで、外観の悪化だけでなく、成形物が破損しやすい等の問題が生じることがある。
 本発明の3次元プリンタ用フィラメントは、耐熱性に優れ、ノズル部に樹脂が付着しても熱による着色が生じにくいことから、優れた外観の成形体を安定して製造することができる。
 本発明の樹脂成形体は、使用する用途などに応じて、造形後、熱処理により結晶化を促進あるいは完了させてもよい。
<樹脂成形体の用途>
 本発明の樹脂成形体は、表面外観や耐熱性および耐久性などにも優れたものである。用途については特に制限されるものではないが、文房具;玩具;携帯電話やスマートフォン等のカバー;グリップ等の部品;学校教材、家電製品、OA機器の補修部品、自動車、オートバイ、自転車等の各種パーツ;電機・電子機器用資材、農業用資材、園芸用資材、漁業用資材、土木・建築用資材、医療用品等の用途に好適に用いることができる。
 以下に実施例でさらに詳しく説明するが、これらにより本発明は何ら制限を受けるものではない。なお、本明細書中に表示される種々の測定値および評価は次のようにして行った。
(1)結晶化熱量(ΔHc)および結晶融解熱量(ΔHm)
 (株)パーキンエルマー製の示差走査熱量計、商品名「Pyris1 DSC」を用いて、JIS K7122に準じて、試料約10mgを加熱速度10℃/分で室温から結晶融解温度(融点Tm)+20℃まで昇温し、該温度で1分間保持した後、冷却速度10℃/分で30℃まで降温した時に測定されたサーモグラムから結晶化熱量(ΔHc)(降温過程)および結晶融解熱量(ΔHm)(再昇温過程)を求めた。なお、各値は、少数第二位を四捨五入して記載した。
(2)結晶融解温度(融点Tm)、結晶化温度(Tc)、ガラス転移温度(Tg)
 (株)パーキンエルマー製の示差走査熱量計、商品名「Pyris1 DSC」を用いて、JIS K7121に準じて、試料約10mgを加熱速度10℃/分で室温から結晶融解温度(融点Tm)+20℃まで昇温し、該温度で1分間保持した。その後、冷却速度10℃/分で30℃まで降温し、再度、加熱速度10℃/分で280℃まで昇温した時に測定された各サーモグラムから結晶化温度(Tc)(℃)(降温過程)、結晶融解温度(融点Tm)(℃)(再昇温過程)およびガラス転移温度(Tg)(℃)(再昇温過程)を求めた。なお、各値は、少数第二位を四捨五入して記載した。
(3)3次元プリンタフィラメントの評価
<径の真円度>
 得られたフィラメントを3cm間隔にて10点、ノギスにて長径と短径を計測し、それぞれの測定点における短径/長径の比率を求めた。測定した10点における短径/長径の比率の平均を真円度とした。比率が1.0に近いほどフィラメントの断面形状が真円に近いことを意味する。
(4)樹脂成形体の評価
<反り>
 評価用サンプルとして、サンプル長さ75mm、幅10mm、厚み5mmのダンベル状サンプルを後述する実施例に記載の製造条件に従って製造した。評価用サンプルは、サンプルの厚さ方向をZ軸方向(積層方向)として、3次元プリンタを用いて、後述する実施例及び比較例に記載のフィラメントから、製造した。
 評価用サンプル製造後に、造形基盤から取り外して、水平面に置いた際のサンプルの四隅と水平面との距離を測定し、得られた値の平均値を反り量とした。
 サンプルの製造を完了できかつ反り量が0.1mm未満であったものを「AA」とし、サンプルの製造を完了できかつ反り量が0.1mm以上2mm未満のものを「A」とし、サンプルの製造は完了できたが反りが2mm以上のもの、あるいは反りが大きく製造途中で基盤から剥がれてしまい製造が完了できなかったものを「B」と評価した。
<層間接着性>
 層間接着性は、JIS K 7161に準拠して、引張強度を測定することにより評価した。評価用サンプルとしては、サンプル長さ75mm、幅10mm、厚み5mmのダンベル状サンプルを後述する実施例に記載の製造条件に従って製造した。評価用サンプルは、サンプルの長さ方向をZ軸方向(積層方向)として、3次元プリンタを用いて、後述する実施例及び比較例に記載のフィラメントから製造した。
 初期のチャック間距離45mm、速度50mm/min、23℃での引張強度が10MPa以上であれば「AA」、引張強度が1MPa以上10MPa未満であれば「A」、引張強度が1MPa未満、あるいは、試験可能なダンベル状サンプルが得られなかった場合を「B」と評価した。
<耐熱性>
 評価用サンプルとして、図1に示す、上方に開口部を有するカップ形状の樹脂成形体(3次元造形物)を後述する実施例に記載の製造条件に従って製造した。評価用サンプルは、カップ形状の樹脂成形体の高さ方向を、Z軸方向(積層方向)として、3次元プリンタを用いて、後述する実施例及び比較例に記載のフィラメントから製造した。
 結晶化促進のため、製造した樹脂成形体をガラス転移温度(Tg)+30℃の温度で12時間熱処理した。その後、樹脂成形体を、開口部を上に向けて静置し、結晶融解温度(融点Tm)-30℃の温度下で、上部から0.01MPaの荷重を1分間かけ、荷重をかけた後の高さを測定した。そして、荷重をかけた後の高さが荷重をかける前の高さ(40mm)に対して95%以上の場合を「A」、95%未満の場合を「B」と評価した。
<総合評価>
 樹脂成形体の総合評価を、下記基準に従って行った。
A:反り、層間接着性および耐熱性の評価がすべて「A」あるいは「AA」評価であった。
B:反り、層間接着性および耐熱性の評価のうち、いずれか1つ以上が「B」評価であった。
 実施例、比較例で用いた原料を以下に記載する。
<結晶性ポリアミド系樹脂(A)>
 結晶性ポリアミド系樹脂(A-1);ポリアミド6(東レ(株)製、商品名:アミランCM1021FS、密度:1.13g/cm、Tg:50℃、Tm:222.2℃、Tc:186.6℃、ΔHc:66.1J/g、相対粘度:3.4)
 結晶性ポリアミド系樹脂(A-2);ポリアミド66(東レ(株)製、商品名:アミランCM3001-N、密度:1.13g/cm、Tg:58℃、Tm:264.96℃、Tc:231.23℃、ΔHc:68.2J/g、相対粘度:2.8)
<非晶性ポリアミド系樹脂(B)>
 非晶性ポリアミド系樹脂(B-1);(三菱ガス化学(株)製、商品名:MXナイロン#7501、密度:1.21g/cm、Tg:121.6℃、非晶性(ΔHc:0J/g)、ジアミン成分:メタキシリレンジアミン100モル%、ジカルボン酸成分:アジピン酸50モル%、イソフタル酸50モル%)
 非晶性ポリアミド系樹脂(B-2);(ダイセル・エボニック(株)製、商品名:トロガミドT5000、密度:1.12g/cm、Tg:150℃、非晶性(ΔHc:0J/g)、ジアミン成分:2,2,4-トリメチルヘキサメチレンジアミン100モル%、ジカルボン酸成分:テレフタル酸100モル%)
 非晶性ポリアミド系樹脂(B-3);(デュポン社製、商品名:SelarPA3426、密度:1.19g/cm、Tg:123℃、非晶性(ΔHc:0J/g)、ジアミン成分:ヘキサメチレンジアミン100モル%、ジカルボン酸成分:イソフタル酸70モル%、テレフタル酸30モル%)
(実施例1)
<樹脂組成物(C)、ポリアミド系3次元プリンタ用材料の製造>
 事前に結晶性ポリアミド系樹脂(A-1)及び非晶性ポリアミド系樹脂(B-1)を90℃で24時間乾燥させて各原料の含水率を0.1質量%以下とした。前記結晶性ポリアミド系樹脂(A-1)80質量部と前記非晶性ポリアミド系樹脂(B-1)を20質量部となるように配合し、同方向二軸混練機(Φ26mm)(ラボテックエンジニアリング社製、商品名LTS26-40、L/D=40mm)を用いて樹脂組成物(C-1)を製造し、これをポリアミド系3次元プリンタ用材料とした。混練条件はシリンダー設定温度250℃、回転数150rpm、吐出15kg/hの条件とした。得られた3次元プリンタ用材料について各種評価を行い、結果を表1に示す。
<フィラメントの製造>
 上記で得られた樹脂組成物(C-1)を、同方向二軸混練押出機(φ15mm)に導入し、フィラメントを製造した。混練条件は、設定温度250℃、吐出量1.0kg/hrとした上で、ダイス径3mmから樹脂組成物を押出し、40℃の水槽を経て引取り装置で5m/minで引取った。得られたフィラメントの断面の直径は1.65mmから1.90mmの範囲であった。得られたフィラメントについて各種評価を行い、結果を表1に示す。
<樹脂成形体の製造>
 事前に、製造したフィラメントを90℃で24時間乾燥させて含水率を0.1質量%以下とした。熱溶解積層法による押出積層堆積システムとして、マスポータル社製、商品名:Pharaoh XD20を用い、3次元物体として、各種評価用サンプルの製造を行った。
 製造条件は、プリント速度60mm/秒、内部充填率を100%とし、また、造形雰囲気温度を40℃、基盤温度を60℃とし、吐出温度は250℃で行った。溶融樹脂は、押出ヘッドから直径0.4mmのストランド状に吐出された。得られた樹脂成形体の反り、層間接着性および耐熱性を評価した。結果を表1に示す。
(実施例2)
 実施例1において、樹脂組成物(C)の製造にあたり、結晶性ポリアミド系樹脂(A-1)の配合量を65質量部、非晶性ポリアミド系樹脂(B-1)の配合量を35質量部に変更した以外は実施例1と同様に樹脂組成物の製造と評価、フィラメントの製造と評価、樹脂成形体の製造と評価を行った。評価結果を表1に示す。
(実施例3)
 実施例1において、樹脂組成物(C)の製造にあたり、結晶性ポリアミド系樹脂(A-1)を結晶性ポリアミド系樹脂(A-2)に変更し、樹脂組成物およびフィラメント製造時の混練温度および樹脂成形体製造時の吐出温度を280℃にした以外は実施例1と同様に樹脂組成物の製造と評価、フィラメントの製造と評価、樹脂成形体の製造と評価を行った。評価結果を表1に示す。
(実施例4)
 実施例1において、樹脂組成物(C)の製造にあたり、結晶性ポリアミド系樹脂(A-1)の配合量を60質量部に変更し、非晶性ポリアミド系樹脂(B-1)を非晶性ポリアミド系樹脂(B-2)に変更し、その配合量を40質量部とした以外は実施例1と同様に樹脂組成物の製造と評価、フィラメントの製造と評価、樹脂成形体の製造と評価を行った。評価結果を表1に示す。
(実施例5)
 実施例2において、樹脂成形体の製造をする際に、造形雰囲気温度を50℃、基盤温度を90℃に変更した以外は実施例2と同様に樹脂組成物の製造と評価、フィラメントの製造と評価、樹脂成形体の製造と評価を行った。評価結果を表1に示す。
(実施例6)
 実施例1において、樹脂組成物(C)の製造にあたり、結晶性ポリアミド系樹脂(A-1)の配合量を60質量部に変更し、非晶性ポリアミド系樹脂(B-1)を非晶性ポリアミド系樹脂(B-3)に変更し、その配合量を40質量部とした以外は実施例1と同様に樹脂組成物の製造と評価、フィラメントの製造と評価、樹脂成形体の製造と評価を行った。評価結果を表1に示す。
(比較例1)
 実施例1において、樹脂組成物(C)を用いず、結晶性ポリアミド系樹脂(A-1)のみを原料に用いて実施例1と同様の条件で結晶性ポリアミド系樹脂(A-1)の評価、フィラメントの製造と評価、樹脂成形体の製造と評価を行った。なお、比較例1においては樹脂成形体製造時に大きな反りが発生し造形が全体の1割程度しか完了できなかったため、層間接着性および耐熱性の評価は、この造形物を用いて行った。評価結果を表1に示す。
(比較例2)
 実施例3において、樹脂組成物(C)を用いず、結晶性ポリアミド系樹脂(A-2)のみを原料に用いて実施例1と同様の条件で結晶性ポリアミド系樹脂(A-2)の評価、フィラメントの製造と評価、樹脂成形体の製造と評価を行った。なお、比較例2においては樹脂成形体製造時に大きな反りが発生し造形が全体の1割程度しか完了できなかったため、層間接着性および耐熱性の評価は、この造形物を用いて行った。評価結果を表1に示す。
(比較例3)
 実施例1において、樹脂組成物(C)の製造にあたり、結晶性ポリアミド系樹脂(A-1)の配合量を35質量部、非晶性ポリアミド系樹脂(B-1)の配合量を65質量部に変更した以外は実施例1と同様に樹脂組成物の製造と評価、フィラメントの製造と評価、樹脂成形体の製造と評価を行った。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明で規定した、特定の熱特性を有する樹脂組成物(C)を含有するポリアミド系3次元プリンタ用材料は、3次元プリンタフィラメントと樹脂成形体のすべての評価で優れていることが確認できる(実施例1~6)。
 これに対して、本発明で規定する要素を満足していないものは、樹脂成形体の評価において、反りや層間接着性、耐熱性のいずれか1つ以上が劣ることが確認できる(比較例1~3)。具体的には、結晶化熱量(ΔHc)が本発明で規定する範囲を超えると、反りや層間接着性に劣り(比較例1、比較例2)、一方、結晶化熱量(ΔHc)が本発明で規定する範囲未満であると、反りや層間接着性は良好であるが、耐熱性に劣ることが確認できる(比較例3)。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2018年4月26日出願の日本特許出願(特願2018-85201)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (12)

  1.  樹脂組成物(C)を含有するポリアミド系3次元プリンタ用材料であって、
     前記樹脂組成物(C)は結晶性ポリアミド系樹脂(A)と非晶性ポリアミド系樹脂(B)を含有し、前記樹脂組成物(C)の示差走査熱量測定における結晶化熱量が5~60J/gである、ポリアミド系3次元プリンタ用材料。
  2.  前記樹脂組成物(C)の示差走査熱量測定における結晶化熱量が20~60J/gである、請求項1に記載のポリアミド系3次元プリンタ用材料。
  3.  前記結晶性ポリアミド系樹脂(A)がポリアミド6、ポリアミド66、ポリアミドMXD6、ポリアミド9T、ポリアミド10Tおよびこれらの共重合ポリアミドから選ばれる1種あるいは2種以上を含有する、請求項1又は2に記載のポリアミド系3次元プリンタ用材料。
  4.  前記非晶性ポリアミド系樹脂(B)の示差走査熱量測定における結晶化熱量が5J/g未満である、請求項1~3のいずれか1項に記載のポリアミド系3次元プリンタ用材料。
  5.  前記非晶性ポリアミド系樹脂(B)のガラス転移温度(Tg)が、前記結晶性ポリアミド系樹脂(A)のガラス転移温度(Tg)よりも30℃以上高い、請求項1~4のいずれか1項に記載のポリアミド系3次元プリンタ用材料。
  6.  前記非晶性ポリアミド系樹脂(B)のガラス転移温度(Tg)が、145℃未満である、請求項1~5のいずれか1項に記載のポリアミド系3次元プリンタ用材料。
  7.  前記樹脂組成物(C)の示差走査熱量測定における結晶融解熱量が10~60J/gである、請求項1~6のいずれか1項に記載のポリアミド系3次元プリンタ用材料。
  8.  前記樹脂組成物(C)の示差走査熱量測定における結晶融解温度(Tm)と結晶化温度(Tc)との差(Tm-Tc)が、30℃~60℃である、請求項1~7のいずれか1項に記載のポリアミド系3次元プリンタ用材料。
  9.  請求項1~8のいずれか1項に記載の3次元プリンタ用材料を含有する、熱溶解積層型3次元プリンタ用フィラメント。
  10.  請求項9に記載の熱溶解積層型3次元プリンタ用フィラメントを用い、3次元プリンタにより成形された、樹脂成形体。
  11.  請求項9に記載の熱溶解積層型3次元プリンタ用フィラメントの巻回体。
  12.  請求項11に記載の巻回体が収納された熱溶解積層型3次元プリンタ装着用カートリッジ。
PCT/JP2019/017812 2018-04-26 2019-04-25 ポリアミド系3次元プリンタ用材料 WO2019208741A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020515589A JP7184079B2 (ja) 2018-04-26 2019-04-25 ポリアミド系3次元プリンタ用材料
CN201980028321.3A CN112105492A (zh) 2018-04-26 2019-04-25 聚酰胺系三维打印机用材料
EP19793389.8A EP3785882A4 (en) 2018-04-26 2019-04-25 POLYAMIDE MATERIAL FOR 3D PRINTERS
US17/078,326 US20210040318A1 (en) 2018-04-26 2020-10-23 Polyamide-based 3d printer material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-085201 2018-04-26
JP2018085201 2018-04-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/078,326 Continuation US20210040318A1 (en) 2018-04-26 2020-10-23 Polyamide-based 3d printer material

Publications (1)

Publication Number Publication Date
WO2019208741A1 true WO2019208741A1 (ja) 2019-10-31

Family

ID=68295534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017812 WO2019208741A1 (ja) 2018-04-26 2019-04-25 ポリアミド系3次元プリンタ用材料

Country Status (5)

Country Link
US (1) US20210040318A1 (ja)
EP (1) EP3785882A4 (ja)
JP (1) JP7184079B2 (ja)
CN (1) CN112105492A (ja)
WO (1) WO2019208741A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021231590A1 (en) * 2020-05-14 2021-11-18 Ascend Performance Materials Operations Llc Polyamide formulations for improved noise vibration and harshness
WO2022043345A1 (en) 2020-08-26 2022-03-03 Basf Se Polyamide filaments for use in 3d printing
EP4059697A4 (en) * 2019-11-12 2023-01-11 Mitsubishi Chemical Corporation FILAMENTS FOR THREE-DIMENSIONAL MOLDING

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023183553A1 (en) 2022-03-25 2023-09-28 Solvay Specialty Polymers Usa, Llc Filament containing a biobased polyamide (pa) polymer and its use for additive manufacturing

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502184A (ja) 1999-06-23 2003-01-21 ストラタシス・インコーポレイテッド 高温模型製作装置
JP2003534159A (ja) 2000-05-19 2003-11-18 ネイダーランゼ、オルガニザティー、ボー、トゥーゲパストナトゥールウェテンシャッペルーク、オンダーツォーク、ティーエヌオー 改良されたfdm製品、方法、及び装置
JP2008194968A (ja) 2007-02-14 2008-08-28 Imoto Seisakusho:Kk 高分子材料の直接造形法および直接造形装置
JP2010521339A (ja) 2007-03-14 2010-06-24 ストラタシス,インコーポレイテッド 改質abs材料を用いて3次元オブジェクトを構築する方法
WO2015037574A1 (ja) 2013-09-11 2015-03-19 東レ株式会社 熱融解積層方式三次元造形用素材および熱融解積層方式3dプリント機器用フィラメント
JP2016505409A (ja) * 2012-11-21 2016-02-25 ストラタシス,インコーポレイテッド ポリアミド消耗材料を用いたアディティブマニュファクチュアリング
JP2017502852A (ja) * 2013-11-27 2017-01-26 ストラタシス,インコーポレイテッド 結晶化速度を制御した三次元パーツのプリント法
WO2017153586A1 (en) * 2016-03-11 2017-09-14 Dsm Ip Assets B.V. Fused filament printing
JP6265314B1 (ja) 2016-07-01 2018-01-24 宇部興産株式会社 熱溶解積層型3次元プリンタ用材料及びそれを用いた熱溶解積層型3次元プリンタ用フィラメント
JP2018085201A (ja) 2016-11-22 2018-05-31 株式会社オートネットワーク技術研究所 配線モジュール

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645412B2 (en) * 1999-04-20 2003-11-11 Stratasys, Inc. Process of making a three-dimensional object
ES2429814T3 (es) * 2010-03-12 2013-11-18 Ems-Patent Ag Masa de moldeo de poliamida modificada para resistencia al impacto así como recipiente formado a partir de la misma
CN105504801B (zh) * 2015-12-14 2018-09-21 中广核三角洲(江苏)塑化有限公司 一种用于3d打印的高强度低收缩尼龙材料及其制备方法
JP6402810B1 (ja) * 2016-07-22 2018-10-10 株式会社リコー 立体造形用樹脂粉末、立体造形物の製造装置、及び立体造形物の製造方法
TW201817812A (zh) * 2016-07-29 2018-05-16 巴斯夫歐洲公司 用於雷射燒結粉末之聚醯胺摻合物
TW201821535A (zh) * 2016-07-29 2018-06-16 巴斯夫歐洲公司 用於雷射燒結粉末之包含增強劑的聚醯胺摻合物
JP7088920B2 (ja) * 2016-10-21 2022-06-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 融着フィラメント製造のためのフィラメント組成物及びその使用方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502184A (ja) 1999-06-23 2003-01-21 ストラタシス・インコーポレイテッド 高温模型製作装置
JP2003534159A (ja) 2000-05-19 2003-11-18 ネイダーランゼ、オルガニザティー、ボー、トゥーゲパストナトゥールウェテンシャッペルーク、オンダーツォーク、ティーエヌオー 改良されたfdm製品、方法、及び装置
JP2008194968A (ja) 2007-02-14 2008-08-28 Imoto Seisakusho:Kk 高分子材料の直接造形法および直接造形装置
JP2010521339A (ja) 2007-03-14 2010-06-24 ストラタシス,インコーポレイテッド 改質abs材料を用いて3次元オブジェクトを構築する方法
JP2016505409A (ja) * 2012-11-21 2016-02-25 ストラタシス,インコーポレイテッド ポリアミド消耗材料を用いたアディティブマニュファクチュアリング
WO2015037574A1 (ja) 2013-09-11 2015-03-19 東レ株式会社 熱融解積層方式三次元造形用素材および熱融解積層方式3dプリント機器用フィラメント
JP2017502852A (ja) * 2013-11-27 2017-01-26 ストラタシス,インコーポレイテッド 結晶化速度を制御した三次元パーツのプリント法
WO2017153586A1 (en) * 2016-03-11 2017-09-14 Dsm Ip Assets B.V. Fused filament printing
JP6265314B1 (ja) 2016-07-01 2018-01-24 宇部興産株式会社 熱溶解積層型3次元プリンタ用材料及びそれを用いた熱溶解積層型3次元プリンタ用フィラメント
JP2018085201A (ja) 2016-11-22 2018-05-31 株式会社オートネットワーク技術研究所 配線モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3785882A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4059697A4 (en) * 2019-11-12 2023-01-11 Mitsubishi Chemical Corporation FILAMENTS FOR THREE-DIMENSIONAL MOLDING
WO2021231590A1 (en) * 2020-05-14 2021-11-18 Ascend Performance Materials Operations Llc Polyamide formulations for improved noise vibration and harshness
CN115551919A (zh) * 2020-05-14 2022-12-30 奥升德功能材料运营有限公司 用于改进噪声振动和声振粗糙度的聚酰胺配制剂
WO2022043345A1 (en) 2020-08-26 2022-03-03 Basf Se Polyamide filaments for use in 3d printing

Also Published As

Publication number Publication date
US20210040318A1 (en) 2021-02-11
JPWO2019208741A1 (ja) 2021-04-22
CN112105492A (zh) 2020-12-18
EP3785882A4 (en) 2021-08-25
JP7184079B2 (ja) 2022-12-06
EP3785882A1 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
WO2019208741A1 (ja) ポリアミド系3次元プリンタ用材料
DK2532712T3 (en) polyamide resin
JP7262479B2 (ja) 付加製造組成物
KR20040034605A (ko) 3차원 모델링을 위한 방법 및 재료
JP7088920B2 (ja) 融着フィラメント製造のためのフィラメント組成物及びその使用方法
US20210086492A1 (en) 3d printer material
JP6996666B2 (ja) ポリアミド樹脂組成物の製造方法
WO2019195689A1 (en) Additive manufacturing compositions
JP5400457B2 (ja) ポリアミド樹脂組成物及び成型体
JP5400456B2 (ja) ポリアミド樹脂組成物及びそれからなる成型体
JP6687793B1 (ja) 樹脂組成物及び成形体
JP2011201991A (ja) ガスインジェクション用ポリアミド樹脂組成物
US20220267593A1 (en) Filament for three-dimensional printing
TW202028355A (zh) 聚醯胺樹脂組成物、及其製造方法
WO2022138954A1 (ja) 3次元造形用フィラメント
JP2024070634A (ja) 3次元プリンタ用材料及びこれを用いた樹脂成形体の製造方法
JP2024037465A (ja) 3次元プリンタ用材料、3次元プリンタ用フィラメント及びその巻回体、3次元プリンタ装着用カートリッジ、並びに、樹脂成形体の製造方法
WO2021066102A1 (ja) 3次元造形用フィラメント
WO2021025161A1 (ja) 材料押出方式(me方式)3次元プリンタ用フィラメント、樹脂成型体、巻回体、および、3次元プリンタ装着用カートリッジ
JP2019044027A (ja) ポリアミド9tシート
JP2023143185A (ja) 3次元造形用フィラメント
WO2023183553A1 (en) Filament containing a biobased polyamide (pa) polymer and its use for additive manufacturing
US20220220303A1 (en) Resin composition, film, composite material, moving body, and three-dimensional printing material
JP2022080968A (ja) 結晶性樹脂フィラメントを用いた3次元造形物およびその造形方法
JPH0890557A (ja) 高結晶性ポリシアノアリールエーテルペレットおよびその製造法ならびにその成形法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793389

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515589

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019793389

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019793389

Country of ref document: EP

Effective date: 20201126