WO2019208534A1 - Nitrided steel member, and method and device for producing nitrided steel member - Google Patents

Nitrided steel member, and method and device for producing nitrided steel member Download PDF

Info

Publication number
WO2019208534A1
WO2019208534A1 PCT/JP2019/017127 JP2019017127W WO2019208534A1 WO 2019208534 A1 WO2019208534 A1 WO 2019208534A1 JP 2019017127 W JP2019017127 W JP 2019017127W WO 2019208534 A1 WO2019208534 A1 WO 2019208534A1
Authority
WO
WIPO (PCT)
Prior art keywords
circulation type
processing furnace
type processing
controlled
phase
Prior art date
Application number
PCT/JP2019/017127
Other languages
French (fr)
Japanese (ja)
Inventor
泰 平岡
陽一 渡邊
Original Assignee
パーカー熱処理工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パーカー熱処理工業株式会社 filed Critical パーカー熱処理工業株式会社
Publication of WO2019208534A1 publication Critical patent/WO2019208534A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/04Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated adapted for treating the charge in vacuum or special atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/16Arrangements of air or gas supply devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/18Arrangement of controlling, monitoring, alarm or like devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/30Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for crankshafts; for camshafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like

Definitions

  • the present invention relates to a nitrided steel member and a method and apparatus for producing a nitrided steel member. More specifically, the present invention relates to a nitrided steel member having excellent fatigue resistance useful for gears and crankshafts for automobile transmissions, and a method and apparatus for manufacturing the nitrided steel member.
  • a compound layer that is iron nitride is formed on the surface, and a hardened layer called a diffusion layer is formed inside.
  • the hardened layer is usually made of an alloy nitride such as Si or Cr as a base material component.
  • the atmosphere in the gas nitriding furnace is also It is controlled appropriately.
  • the nitriding potential (K N ) in the gas nitriding furnace is appropriately controlled.
  • the volume fraction (iron nitride type) of the ⁇ 'phase (Fe 4 N) and ⁇ phase (Fe 2-3 N) in the compound layer generated on the surface of the steel material is controlled through the control. It has been proposed to do. Specifically, it is known that fatigue resistance is improved by forming a ⁇ 'phase rather than an ⁇ phase (Yasuhira Hiraoka, Yoichi Watanabe, Yasushi Ishida: Heat treatment, Volume 1, No. 1, 1-2 (Non-Patent Document 1)), a nitrided steel member having improved bending fatigue strength and surface fatigue by forming a ⁇ 'phase has been proposed (Japanese Patent Laid-Open No.
  • Patent Document 1 2013-221203
  • Page 2 Non-Patent Document 2
  • the compound layer contains not a little ⁇ phase, and in fact, it becomes a two-phase state of ⁇ ′ phase and ⁇ phase. Yes.
  • Patent Document 2 Japanese Patent Laid-Open No. 2016-211069 (Patent Document 2)).
  • the ⁇ phase is relatively brittle and the fatigue crack growth rate is fast. Therefore, when the thickness is increased, the fatigue strength may be deteriorated.
  • the reason why the ⁇ phase is easily formed in the region is that the carbon in the matrix phase moves to the surface side by the surface decarburization reaction during the nitriding treatment, but the rate of carbon diffusion in the compound layer is slower than the matrix phase.
  • Patent Document 3 Japanese Patent Laid-Open No. 2017-36509
  • Patent Document 1 cited in this specification is Japanese Patent Application Laid-Open No. 2013-221203
  • Patent Document 2 cited in this specification is Japanese Patent Application Laid-Open No. 2016-211069
  • Patent Documents cited in this Specification are cited.
  • 3 is JP-A-2017-36509.
  • Non-patent document 1 cited in the present specification is “Heat Treatment”, Vol. 55, No. 1, page 1-2 (Yasuhira Hiraoka, Yoichi Watanabe, Yasushi Ishida), and the non-patent document cited in this specification.
  • Reference 2 is “Materials Transactions”, 58, 2017, pp. 993-999 (Y. Hiraoka, I A. Ishida).
  • Non-patent literature 3 cited in this specification is “Nitride and soft nitriding of iron” "Agne Technical Center, 2013, pages 37-49 (Dietary Toke et al.).
  • the present inventor repeated diligent examinations and various experiments, limited the configuration of the processing furnace, and then controlled the temperature and nitriding potential of the nitriding process with high accuracy, thereby making the compound layer mainly composed of a relatively thick ⁇ ′ phase. It was found that a desired amount of ⁇ ′ phase can be maintained even in the region near the interface of the diffusion layer / compound layer, and the increase in ⁇ phase can be suppressed also in the surface layer region of the compound layer.
  • An object of the present invention is to provide a nitrided steel member having significantly improved fatigue resistance, and a production method and a production apparatus for producing such a nitrided steel member.
  • the present invention is a nitrided steel member having a carbon steel or low alloy steel having a carbon content of 0.10% by mass or more as a parent phase and having an iron nitride compound layer formed on a surface thereof, the iron nitride
  • the thickness of the physical compound layer is 13 ⁇ m or more.
  • / (Vb ⁇ + Vb ⁇ ′) is a nitrided steel member having a value of 0.2 or more.
  • Such a nitrided steel member can be manufactured for the first time (provided to the world for the first time) by the method described later, which was invented by the present inventors.
  • the volume ratio ratio Va ⁇ ′ / (Va ⁇ + Va ⁇ ′) of the ⁇ ′ phase in the entire region of the iron nitride compound layer is 0.5 or more
  • the iron nitride It can be considered that the entire compound layer is a compound layer mainly composed of ⁇ ′ phase, and the fatigue strength is remarkably improved by the thickness being 13 ⁇ m or more.
  • the thickness of the iron nitride compound layer is more preferably 20 ⁇ m to 35 ⁇ m or more. If the thickness is 20 ⁇ m, the fatigue strength is further improved. Further, 35 ⁇ m is a preferable value in consideration of productivity. (The thickness of the iron nitride compound layer generally corresponds to the nitriding time. If there is no limitation on the nitriding time, there is no upper limit to the thickness of the iron nitride compound layer.)
  • Vb ⁇ ′ / (Vb ⁇ + Vb ⁇ ′) is more preferably 0.3 or more. In this case, deterioration of fatigue strength due to the presence of the ⁇ phase in the lower quarter region of the iron nitride compound layer is further suppressed.
  • the present invention also provides a nitrided steel member having a parent phase of carbon steel or low alloy steel having a carbon content of 0.10% or more by mass, using a circulation type processing furnace having a guide cylinder and a stirring fan.
  • a circulation type processing furnace having a guide cylinder and a stirring fan.
  • the temperature in the circulation type processing furnace is controlled in the range of 560 ° C. to 600 ° C. in the first stage of processing, and The nitriding potential in the circulation type processing furnace is controlled in the range of 0.15 to 0.4, and in the second stage processing, the temperature in the circulation type processing furnace is controlled in the range of 490 ° C. to 510 ° C.
  • the method for producing a nitrided steel member is characterized in that the nitriding potential in the circulation type processing furnace is controlled in the range of 0.5 to 2.0.
  • the thickness is 13 ⁇ m or more, and Va ⁇ ′ / (Va ⁇ + Va ⁇ ′) when the volume ratios of the ⁇ ′ phase and the ⁇ phase in the entire region of the iron nitride compound layer are Va ⁇ ′ and V ⁇ , respectively.
  • a nitrided steel member having a value of Vb ⁇ ′) of 0.2 or more can be produced.
  • the second stage treatment (treatment in the range of 490 ° C. to 510 ° C.) is continued using the same circulation type processing furnace as the first stage treatment (treatment in the range of 560 ° C. to 600 ° C.). It may be performed using a circulation type processing furnace different from the first stage processing. Depending on the temperature condition setting (elevating / lowering) performance in the circulation type processing furnace, the latter may have better production efficiency. While the material is moved from the first-stage processing circulation processing furnace to the second-stage processing circulation processing furnace, the temperature of the material may be maintained at the temperature condition in the first-stage processing. However, it may be naturally cooled to about room temperature temporarily. In any case, it has been confirmed (in the examples described later) by the present inventors that the method of the present invention is effective.
  • a nitrided steel member having a parent phase of carbon steel or low alloy steel having a carbon content of 0.10% by mass or more using a circulation type processing furnace including a guide cylinder and a stirring fan.
  • the temperature in the circulation type processing furnace is controlled in the range of 560 ° C. to 600 ° C. in the first stage of processing, and The nitriding potential in the circulation type processing furnace is controlled in the range of 0.7 to 3.0, and in the second stage processing, the temperature in the circulation type processing furnace is controlled in the range of 560 ° C. to 600 ° C.
  • the nitriding potential in the circulation type processing furnace is controlled in the range of 0.15 to 0.4, and in the third stage processing, the temperature in the circulation type processing furnace is in the range of 490 ° C. to 510 ° C.
  • Le is a method for producing a nitride steel member characterized by being controlled in the range of 0.5-2.0.
  • a nitrided steel member having a value of Vb ⁇ ′) of 0.2 or more can be produced.
  • the third stage treatment (treatment in the range of 490 ° C. to 510 ° C.) is the same circulation type processing furnace as the first and second stage treatment (treatment in the range of 560 ° C. to 600 ° C.). May be performed subsequently, or may be performed using a circulation type processing furnace different from the first stage and second stage processes. Depending on the temperature condition setting (elevating / lowering) performance in the circulation type processing furnace, the latter may have better production efficiency. While the material is transferred from the first and second stage processing circulation processing furnaces to the third stage processing circulation processing furnace, the temperature of the material in the first and second stage processing is It may be maintained at a temperature condition or may be naturally cooled to about room temperature temporarily. In any case, it has been confirmed (in the examples described later) by the present inventors that the method of the present invention is effective.
  • the present invention further includes a circulation type processing furnace having a guide cylinder and a stirring fan, and in the first stage of processing, the temperature in the circulation type processing furnace is controlled in the range of 560 ° C. to 600 ° C., and The nitriding potential in the circulation type processing furnace is controlled in the range of 0.15 to 0.4, and in the second stage processing, the temperature in the circulation type processing furnace is controlled in the range of 490 ° C. to 510 ° C. And a nitriding potential in the circulation type processing furnace is controlled in the range of 0.5 to 2.0.
  • the present invention includes a circulation type processing furnace having a guide cylinder and a stirring fan, and in the first stage of processing, the temperature in the circulation type processing furnace is controlled in the range of 560 ° C. to 600 ° C., and The nitriding potential in the circulation type processing furnace is controlled in the range of 0.7 to 3.0, and the temperature in the circulation type processing furnace is controlled in the range of 560 ° C. to 600 ° C. in the second stage processing. In addition, the nitriding potential in the circulation type processing furnace is controlled in the range of 0.15 to 0.4, and in the third stage processing, the temperature in the circulation type processing furnace is 490 ° C. to 510 ° C.
  • the nitrided steel member manufacturing apparatus is characterized in that the nitriding potential in the circulation type processing furnace is controlled within a range of 0.5 to 2.0.
  • a nitrided steel member having a value of Vb ⁇ ′) of 0.2 or more can be produced.
  • ammonia gas and ammonia decomposition gas are introduced into the circulation type processing furnace.
  • the manufacturing apparatus in order to control the nitriding potential, a first control for changing the introduction ratio of the ammonia gas and the introduction amount of the ammonia decomposition gas while keeping the total flow rate constant.
  • the second control for changing the introduction amount of the ammonia gas can be selectively performed in a state where the introduction of the ammonia decomposition gas is stopped.
  • the value of the volume ratio ratio Va ⁇ ′ / (Va ⁇ + Va ⁇ ′) of the ⁇ ′ phase in the entire region of the iron nitride compound layer is 0.5 or more. It can be considered that the entire physical compound layer is a compound layer mainly composed of a ⁇ ′ phase, and the fatigue strength is remarkably improved by having a thickness of 13 ⁇ m or more.
  • FIG. 1 is a cross-sectional photomicrograph of a nitrided steel member 100 according to an embodiment of the present invention manufactured by the present inventors.
  • the steel nitride member 100 of the present embodiment includes an iron nitride compound layer 101 as a hardened layer on the surface, and nitrogen is diffused into the parent phase below the iron nitride compound layer 101.
  • the diffusion layer 102 is provided.
  • the parent phase (base material) of this embodiment is S45C having a carbon content of about 0.45% by mass.
  • the iron nitride compound layer 101 of the nitrided steel member 100 in FIG. 1 has a thickness of about 16 ⁇ m from the surface of the nitrided steel member 100.
  • the diffusion layer 102 of the nitrided steel member 100 of FIG. 1 extends from the surface of the nitrided steel member 100 to a depth of about 1000 ⁇ m.
  • the iron nitride compound layer 101 is a layer including an ⁇ phase (Fe 2-3 N) and a ⁇ ′ phase (Fe 4 N).
  • the distribution state of these phases can be analyzed by an EBSD (Electron Back Scatter Diffraction) method. Specifically, it can be determined from the area ratio of the ⁇ ′ phase and the ⁇ phase in the cross section in the depth direction of the iron nitride compound layer 101. (The area ratio is considered to correspond to the volume ratio.) For example, it is possible to determine three cross sections (for three fields of view) in the depth direction having a width of 100 ⁇ m from the average value thereof.
  • FIG. 2 is an analysis result of the EBSD method of the cross section of FIG.
  • the volume ratio of the ⁇ ′ phase in the entire region (the volume ratio of the ⁇ ′ phase and the ⁇ phase in the entire region of the iron nitride compound layer 101 is The value of Va ⁇ ′ / (Va ⁇ + Va ⁇ ′)) when Va ⁇ ′ and Va ⁇ is about 0.70.
  • volume ratio of the ⁇ ′ phase in the lower 1/4 region of the iron nitride compound layer 101 (the volume ratio of the ⁇ ′ phase and the ⁇ phase in the lower 1/4 region of the iron nitride compound layer 101) Vb ⁇ ′ / (Vb ⁇ + Vb ⁇ ′)) where Vb ⁇ ′ and Vb ⁇ are respectively greater than 0.2.
  • the iron nitride compound layer 101 of FIG. 1 is manufactured by a three-stage nitriding process using a circulation type processing furnace (described in detail later) provided with a guide cylinder and a stirring fan (Table 1 (compound layer described later)). Refer to the example of a thickness of 16 ⁇ m).
  • the temperature in the circulation type processing furnace is controlled within a range of 580 ° C., and the nitriding potential in the circulation type processing furnace is controlled to 0.7.
  • the entire thickness of the iron nitride compound layer 101 is adjusted.
  • the nitriding potential in the circulation type processing furnace is controlled to 0.3 while the temperature in the circulation type processing furnace is maintained at 580 ° C.
  • the volume ratio of the ⁇ ′ phase in the entire region of the iron nitride compound layer 101 (the volume ratios of the ⁇ ′ phase and the ⁇ phase in the entire region of the iron nitride compound layer 101 are Va ⁇ ′ and Va ⁇ , respectively.
  • the value of Va ⁇ ′ / (Va ⁇ + Va ⁇ ′)) is adjusted.
  • the temperature in the circulation processing furnace is controlled to 500 ° C., and the nitriding potential in the circulation processing furnace is controlled to 0.7.
  • the volume ratio of the ⁇ ′ phase in the lower 1/4 region of the iron nitride compound layer 101 (the ⁇ ′ phase and the ⁇ phase occupying the lower 1/4 region of the iron nitride compound layer 101).
  • the value of Vb ⁇ ′ / (Vb ⁇ + Vb ⁇ ′)) is adjusted when the volume ratios are Vb ⁇ ′ and Vb ⁇ , respectively.
  • This third stage process is a novel feature in the production method of the present invention.
  • the inventor of the present invention refers to the temperature range in which the ⁇ ′ phase can contain (coexist with) the most carbon (490 to 510 ° C.) (see FIG. 3), and performs renitriding treatment in the temperature range.
  • the present inventors found that the volume ratio of the ⁇ ′ phase can be maintained at 0.2 or more even in the region of the lower quarter of the iron nitride compound layer in which the ⁇ phase was large in the past, It was done. Note that the nitriding potential in this process is 0.5 to 2.0 (described later).
  • FIG. 4 is a cross-sectional micrograph of a nitrided steel member 120 as a comparative example manufactured by a conventional manufacturing method.
  • the steel nitride member 120 of the comparative example also includes an iron nitride compound layer 121 as a hardened layer on the surface, and diffusion in which nitrogen is diffused in the parent phase below the hardened layer 201.
  • a layer 122 is provided.
  • the parent phase (base material) of the comparative example is also S45C having a carbon content of about 0.45% by mass.
  • the iron nitride compound layer 121 of the nitrided steel member 120 in FIG. 4 also has a thickness of about 16 ⁇ m from the surface of the nitrided steel member 120.
  • the diffusion layer 122 of the nitrided steel member 120 in FIG. 4 also extends from the surface of the nitrided steel member 120 to a depth of about 1000 ⁇ m.
  • FIG. 5 is an analysis result of the EBSD method of the cross section of FIG.
  • the volume ratio of the ⁇ ′ phase in the entire region (the volume ratio of the ⁇ ′ phase and the ⁇ phase in the entire region of the iron nitride compound layer 121 is The value of Va ⁇ ′ / (Va ⁇ + Va ⁇ ′)) when Va ⁇ ′ and V ⁇ are about 0.55.
  • the volume ratio of the ⁇ ′ phase in the lower 1/4 region of the iron nitride compound layer 121 (the volume ratio of the ⁇ ′ phase and the ⁇ phase in the lower 1/4 region of the iron nitride compound layer 121) Vb ⁇ ′ / (Vb ⁇ + Vb ⁇ ′)) where Vb ⁇ ′ and Vb ⁇ are respectively smaller than 0.2.
  • the iron nitride compound layer 121 in FIG. 4 is manufactured by a two-stage nitriding process using a circulation type processing furnace (details will be described later) including a guide cylinder and a stirring fan.
  • the temperature in the circulation type processing furnace is controlled within a range of 580 ° C., and the nitriding potential in the circulation type processing furnace is controlled to 0.7.
  • the entire thickness of the iron nitride compound layer 121 is adjusted.
  • the nitriding potential in the circulation type processing furnace is controlled to 0.3 while the temperature in the circulation type processing furnace is maintained at 580 ° C.
  • the volume ratio of the ⁇ ′ phase in the entire region of the iron nitride compound layer 101 (the volume ratios of the ⁇ ′ phase and the ⁇ phase in the entire region of the iron nitride compound layer 101 are Va ⁇ ′ and V ⁇ , respectively.
  • the value of Va ⁇ ′ / (Va ⁇ + Va ⁇ ′)) is adjusted to be 0.5 or more. It is disclosed in Japanese Patent Application Laid-Open No. 2016-211069 (Patent Document 2) that the ( ⁇ ′ phase volume ratio ratio (Va ⁇ ′ / (Va ⁇ + Va ⁇ ′)) is preferably 0.5 or more. )
  • the third stage treatment is not performed. For this reason, the volume ratio of the ⁇ ′ phase in the lower 1/4 region of the iron nitride compound layer 101 (the volume of the ⁇ ′ phase and the ⁇ phase in the lower 1/4 region of the iron nitride compound layer 101).
  • the value of Vb ⁇ ′ / (Vb ⁇ + Vb ⁇ ′)) when the ratios are Vb ⁇ ′ and Vb ⁇ , respectively, is not adjusted (it remains small).
  • test piece (1) embodiment and comparative example
  • the fatigue strength was verified. Specifically, a test piece having the configuration (cross section) shown in FIG. 1 was prepared, and the fatigue limit was measured. As shown in FIG. 6, the shape of the test piece corresponds to an Ono type rotating bending fatigue tester (Shimadzu Corporation, H7 type).
  • the test result (fatigue limit) was 45.4 kgf.
  • a test piece having the configuration (cross section) of FIG. 4 was prepared and the fatigue limit was measured, it was 40.8 kgf. From this result, it can be seen that the fatigue resistance of the nitrided steel member 100 of the embodiment of FIG. 1 is remarkably improved.
  • the nitriding potential in the circulation type processing furnace was set to 1.3, and the thickness of the iron nitride compound layer was set to 20 ⁇ m. Further, the nitriding potential in the circulation type processing furnace was set to 1.3, the processing time was extended to 3 hours, and the thickness of the iron nitride compound layer was set to 25 ⁇ m.
  • the volume ratio of the ⁇ ′ phase in the entire region of the iron nitride compound layer is larger than 0.5, and the lower 1/4 of the iron nitride compound layer
  • the volume ratio of the ⁇ ′ phase in the region was greater than 0.2.
  • the test result was 47.4 kgf when the thickness of the iron nitride compound layer was 20 ⁇ m, and 49.0 kgf when the thickness of the iron nitride compound layer was 25 ⁇ m.
  • the first stage process is not performed, and the second stage process content is changed to reduce the thickness of the iron nitride compound layer.
  • a modification and a comparative example were created. Specifically, as shown in Table 1 below, the first-stage treatment was stopped, the treatment time was extended to 3 hours in the second-stage treatment, and the thickness of the iron nitride compound layer was 13 ⁇ m. (Modification). In addition, the treatment of the first step was stopped, the treatment time was 2 hours in the treatment of the second step, and the thickness of the iron nitride compound layer was 10 ⁇ m (comparative example).
  • the first-stage treatment was stopped, the nitriding potential was 0.25 in the second-stage treatment, the treatment time was 3 hours, and the thickness of the iron nitride compound layer was 6 ⁇ m (comparative example). Further, the first stage treatment was stopped, the nitriding potential was 0.2 in the second stage treatment, the treatment time was 3 hours, and the thickness of the iron nitride compound layer was 2 ⁇ m (comparative example).
  • the volume ratio of the ⁇ ′ phase in the entire region of the iron nitride compound layer is larger than 0.5
  • the volume ratio of the ⁇ ′ phase in the lower quarter region of the nitride compound layer was greater than 0.2.
  • the volume ratio of the ⁇ ′ phase in the entire region of the iron nitride compound layer was 0.5
  • the volume ratio of the ⁇ ′ phase in the lower quarter region of the iron nitride compound layer was greater than 0.2.
  • the first-stage process described as the method for manufacturing the nitrided steel member 100 is a process for adjusting the overall thickness of the iron nitride compound layer, and in general, to increase productivity. In this process, the total thickness of the iron nitride compound layer can be increased in as short a time as possible.
  • the first-stage process can be omitted.
  • the total thickness of the desired iron nitride compound layer is not so thick (in the case of 13 to 16 ⁇ m), as described with reference to Table 1, the first-stage process can be omitted.
  • the total thickness of the desired iron nitride compound layer is thick, it is preferable to perform nitriding with a high nitriding potential as the first stage treatment.
  • the specific range is preferably 0.5 to 3.0, particularly 0.8 to 3.0.
  • the range of the nitriding temperature is preferably controlled to a high temperature range where the nitrided layer grows faster, specifically, 560 ° C. to 600 ° C.
  • the volume ratio of the ⁇ ′ phase in the entire region of the iron nitride compound layer (Va ⁇ ′ / (Va ⁇ + Va ⁇ ′) )) Is a process for setting the value to 0.5 or more. In this process, it is necessary to perform nitriding with a low nitriding potential.
  • the specific range is preferably 0.15 to 0.4.
  • the range of the nitriding temperature is preferably controlled to a high temperature region where the nitrided layer grows faster, specifically, 560 ° C. to 600 ° C., as in the first stage treatment.
  • the range of nitriding potential suitable for a nitriding temperature of 580 ° C. is 0.25 to 0.3, and the nitriding temperature is 560 ° C.
  • the preferred nitriding potential range is 0.3 to 0.4.
  • the third-stage process described as the method for manufacturing the nitrided steel member 100 is the volume ratio ratio (Vb ⁇ ′ / (Vb ⁇ ) of the ⁇ ′ phase in the lower quarter region of the iron nitride compound layer.
  • This is a process for setting the value of + Vb ⁇ ′)) to 0.2 or more.
  • This treatment needs to be carried out in a temperature range of 490 ° C. to 510 ° C. (see FIG. 3) in which the ⁇ ′ phase can contain the most carbon (coexist). Further, even in the temperature range, the volume ratio of the ⁇ ′ phase is lowered at the nitriding potential at which the ⁇ phase is easily formed. For this reason, the range of the nitriding potential needs to be controlled to 0.5 to 2.0.
  • the nitriding potential K N is defined by the following equation (2).
  • K N P NH3 / P H2 3/2 (2)
  • P NH3 is the in-furnace ammonia partial pressure
  • P H2 is the in-furnace hydrogen partial pressure.
  • the nitriding potential K N is well known as an index representing the nitriding ability of the atmosphere in the gas nitriding furnace.
  • the reaction of the formula (3) mainly occurs, and the nitriding reaction of the formula (1) is almost negligible in quantity. Therefore, if the in-furnace ammonia concentration consumed in the reaction of equation (3) or the hydrogen gas concentration generated in the reaction of equation (3) is known, the nitriding potential can be calculated. That is, since hydrogen and nitrogen generated are 1.5 mol and 0.5 mol, respectively, from 1 mol of ammonia, if the in-furnace ammonia concentration is measured, the in-furnace hydrogen concentration can also be known and the nitriding potential can be calculated. Can do. Alternatively, if the in-furnace hydrogen concentration is measured, the in-furnace ammonia concentration can be found, and the nitriding potential can also be calculated.
  • the ammonia gas that has flowed into the gas nitriding furnace is circulated through the furnace and then discharged outside the furnace. That is, in the gas nitriding treatment, fresh (new) ammonia gas is continuously flowed into the furnace with respect to the existing gas in the furnace, so that the existing gas is continuously discharged out of the furnace (extruded at the supply pressure). .
  • FIG. 9 is a schematic view showing a manufacturing apparatus for manufacturing a nitrided steel member according to an embodiment of the present invention.
  • the manufacturing apparatus 1 of the present embodiment includes a circulation type processing furnace 2, and uses only two types of ammonia and ammonia decomposition gas as gases introduced into the circulation type processing furnace 2.
  • the ammonia decomposition gas is a gas called AX gas, and is a mixed gas composed of nitrogen and hydrogen in a ratio of 1: 3.
  • AX gas a gas called AX gas
  • the introduced gas (1) only ammonia gas, (2) only two types of ammonia and ammonia decomposition gas, (3) only two types of ammonia and nitrogen gas, or (4) ammonia and ammonia decomposition gas Only three types of nitrogen gas can be selected.
  • FIG. 10 An example of a cross-sectional structure of the circulation type processing furnace 2 is shown in FIG.
  • a cylinder 202 called a retort is arranged in a furnace wall (also called a bell) 201, and a cylinder 204 called an internal retort is arranged inside thereof.
  • the introduced gas supplied from the gas introduction pipe 205 passes through the space between the two cylinders 202 and 204 by the action of the stirring fan 203 after passing around the object to be processed.
  • Circulate. 206 is a gas hood with a flare
  • 207 is a thermocouple
  • 208 is a lid for cooling work
  • 209 is a fan for cooling work.
  • the circulation type processing furnace 2 is also called a horizontal gas nitriding furnace, and its structure itself is known.
  • the article S to be processed is carbon steel or low alloy steel, for example, a crankshaft or gear that is an automobile part.
  • the processing furnace 2 of the surface hardening processing apparatus 1 of the present embodiment includes a furnace opening / closing lid 7, a stirring fan 8, a stirring fan drive motor 9, and an atmospheric gas concentration detection device 3.
  • a nitriding potential controller 4, a programmable logic controller 30, and an in-furnace gas supply unit 20 are provided.
  • the stirring fan 8 is disposed in the processing furnace 2 and rotates in the processing furnace 2 to stir the atmosphere in the processing furnace 2.
  • the stirring fan drive motor 9 is connected to the stirring fan 8 and rotates the stirring fan 8 at an arbitrary rotation speed.
  • the atmospheric gas concentration detection device 3 includes a sensor that can detect the hydrogen concentration or ammonia concentration in the processing furnace 2 as the atmospheric gas concentration in the furnace.
  • the detection main body of the sensor communicates with the inside of the processing furnace 2 via the atmospheric gas pipe 12.
  • the atmospheric gas pipe 12 is formed by a path that directly communicates the sensor main body of the atmospheric gas concentration detection device 3 and the processing furnace 2, and the in-furnace gas disposal pipe that is connected to the exhaust gas combustion decomposition apparatus 41 on the way. 40 is connected. Thereby, the atmospheric gas is distributed into the gas to be discarded and the gas supplied to the atmospheric gas concentration detection device 3.
  • the atmospheric gas concentration detection device 3 outputs an information signal including the detected concentration to the nitriding potential controller 4 after detecting the atmospheric gas concentration in the furnace.
  • the nitriding potential controller 4 has an in-furnace nitriding potential calculation device 13 and a gas flow rate output adjusting device 30.
  • the programmable logic controller 31 includes a gas introduction amount control device 14 and a parameter setting device 15.
  • the in-furnace nitriding potential calculation device 13 calculates the nitriding potential in the processing furnace 2 based on the hydrogen concentration or ammonia concentration detected by the in-furnace atmospheric gas concentration detection device 3. Specifically, a calculation formula for nitriding potential programmed according to the actual gas introduced into the furnace is incorporated, and the nitriding potential is calculated from the value of the atmospheric gas concentration in the furnace.
  • the parameter setting device 15 is composed of, for example, a touch panel and can set and input the total flow rate of the gas introduced into the furnace, the gas type, the processing temperature, the target nitriding potential, and the like. Each set parameter value that has been set and input is transmitted to the gas flow rate output adjusting means 30.
  • the gas flow rate output adjusting means 30 uses the nitriding potential calculated by the in-furnace nitriding potential calculation device 13 as an output value, a target nitriding potential (set nitriding potential) as a target value, and the ammonia gas and the ammonia decomposition gas. Control is performed with each introduction amount as an input value. More specifically, the first control for changing the introduction ratio of ammonia gas with the total flow rate of the introduction amount of ammonia gas and the introduction amount of ammonia decomposition gas being constant, and ammonia gas in a state where introduction of ammonia decomposition gas is stopped The second control for changing the introduction amount of can be selectively performed. The output value of the gas flow rate output adjusting means 30 is transmitted to the gas introduction amount control means 14.
  • the gas introduction amount control means 14 sends control signals to the first supply amount control device 22 for ammonia gas and the second supply amount control device 26 for ammonia decomposition gas in order to realize the introduction amount of each gas. It has become.
  • the in-furnace introduction gas supply unit 20 of the present embodiment includes a first in-furnace introduction gas supply unit 21 for ammonia gas, a first supply amount control device 22, a first supply valve 23, a first flow meter 24, ,have.
  • the in-furnace introduced gas supply unit 20 of the present embodiment includes a second in-furnace introduced gas supply unit 25 for ammonia decomposition gas (AX gas), a second supply amount control device 26, a second supply valve 27, And a second flow meter 28.
  • AX gas ammonia decomposition gas
  • the ammonia gas and the ammonia decomposition gas are mixed in the furnace introduction gas introduction pipe 29 before entering the processing furnace 2.
  • the first in-furnace introduction gas supply unit 21 is formed by, for example, a tank filled with a first in-furnace introduction gas (ammonia gas in this example).
  • the first supply amount control device 22 is formed by a mass flow controller, and is interposed between the first furnace introduction gas supply unit 21 and the first supply valve 23.
  • the opening degree of the first supply amount control device 22 changes according to a control signal output from the gas introduction amount control means 14.
  • the first supply amount control device 22 detects the supply amount from the first furnace introduction gas supply unit 21 to the first supply valve 23, and sends an information signal including the detected supply amount to the gas introduction control means 14. It is designed to output.
  • the control signal can be used for correction of control by the gas introduction amount control means 14.
  • the first supply valve 23 is formed by an electromagnetic valve that switches between open and closed states according to a control signal output from the gas introduction amount control means 14, and is interposed between the first supply amount control device 22 and the first flow meter 24. It is intervened.
  • the second in-furnace introduction gas supply unit 25 is formed by, for example, a tank filled with the second in-furnace introduction gas (in this example, ammonia decomposition gas).
  • the second supply amount control device 26 is formed by a mass flow controller, and is interposed between the second furnace introduction gas supply unit 25 and the first supply valve 27.
  • the opening degree of the first supply amount control device 26 changes according to the control signal output from the gas introduction amount control means 14.
  • the third supply amount control device 26 detects the supply amount from the second in-furnace introduction gas supply unit 25 to the second supply valve 27 and sends an information signal including the detected supply amount to the gas introduction control means 14. It is designed to output.
  • the control signal can be used for correction of control by the gas introduction amount control means 14.
  • the second supply valve 27 is formed by an electromagnetic valve that switches between open and closed states according to a control signal output from the gas introduction amount control means 14, and is interposed between the second supply amount control device 26 and the second flow meter 28. It is intervened.
  • the article S to be processed is put into the circulation type processing furnace 2, and the circulation type processing furnace 2 is heated to a desired processing temperature. Thereafter, a mixed gas of ammonia gas and ammonia decomposition gas or only ammonia gas is introduced into the processing furnace 2 at a set initial flow rate from the in-furnace introduced gas supply unit 20.
  • This setting initial flow rate can also be set and input in the parameter setting device 15, and is controlled by the first supply amount control device 22 and the second supply amount control device 26 (both are mass flow controllers).
  • the stirring fan drive motor 9 is driven and the stirring fan 8 rotates to stir the atmosphere in the processing furnace 2.
  • the in-furnace nitriding potential calculation device 13 of the nitriding potential controller 4 calculates the in-furnace nitriding potential (because initially there is a very high value (since there is no hydrogen in the furnace), the decomposition of ammonia gas (hydrogen generation). It is determined whether or not the sum of the target nitriding potential and the reference deviation value is below. This reference deviation value can also be set and input in the parameter setting device 15.
  • the nitriding potential controller 4 When it is determined that the calculated value of the in-furnace nitriding potential is less than the sum of the target nitriding potential and the reference deviation value, the nitriding potential controller 4 introduces the introduction amount of the in-furnace introduction gas via the gas introduction amount control means 14. Start controlling.
  • the in-furnace nitriding potential calculation device 13 of the nitriding potential controller 4 calculates the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal.
  • the gas flow rate output adjusting means 30 uses the nitriding potential calculated by the in-furnace nitriding potential calculation device 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and introduces the amount of introduced gas into the furnace. PID control is carried out using as an input value.
  • the PID control the first control for changing the introduction ratio with the total flow rate of the introduction amount of ammonia gas and the introduction amount of ammonia decomposition gas being constant and the introduction of ammonia decomposition gas were stopped. And second control for changing the introduction amount of ammonia gas in the state is selectively performed.
  • each setting parameter value set and input by the parameter setting device 15 is used.
  • this setting parameter value for example, different values are prepared according to the value of the target nitriding potential.
  • the gas flow rate output adjusting means 30 controls the amount of each introduced gas in the furnace as a result of the PID control. Specifically, the gas flow rate output adjusting unit 30 determines the flow rate of each gas, and the output value is transmitted to the gas introduction amount control unit 14.
  • the gas introduction amount control means 14 sends control signals to the first supply amount control device 22 for ammonia gas and the second supply amount control device 26 for ammonia decomposition gas in order to realize the introduction amount of each gas.
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the nitriding treatment can be performed with extremely high quality without forming an ⁇ phase or an oxide film that inhibits decarburization on the surface after the nitriding treatment of the workpiece S.
  • FIGS. 11A and 11B An example in which the first control is employed is shown in FIGS. 11A and 11B.
  • the total flow rate of the introduction amount of ammonia gas and the introduction amount of ammonia decomposition gas is constant at 166 (l / min), and the nitriding potential is highly accurate to 0.16. It is controlled.
  • FIGS. 12A and 12B An example in which the second control is employed is shown in FIGS. 12A and 12B.
  • the introduction of ammonia decomposition gas is stopped, and only the introduction amount of ammonia gas is feedback-controlled in the vicinity of 220 (l / min), so that the nitriding potential becomes 0.16. It is controlled with high accuracy.
  • the first control is preferably performed.
  • the amount of the processed product S inserted into the furnace is large (for example, when the surface area of the processed product S exceeds 7 m 2 ), many decomposition reactions occur in the formula (3). Is difficult to control with high precision. In such a case, it is preferable to shift to the second control and perform nitriding potential control.
  • the ⁇ phase was observed on the A surface installed on the furnace lid side, whereas the C surface installed in the depth direction had two phases of ⁇ phase and ⁇ ′ phase. Moreover, the tendency for the compound layer thickness to become thin was recognized as it went to the depth direction. This is considered to be because the uniformity of the nitriding potential in the furnace is not good.
  • Test pieces having the form shown in FIG. 6 were prepared from S45C steel based on the conditions shown in Table 4 (the compound layer thickness is 23 ⁇ m in common), and the rotary bending fatigue strength test was performed. Specifically, using an Ono type rotating bending fatigue tester (Shimadzu Corporation, H7 type), it was determined whether or not 10 7 rotations could be reached with a test load of 47 kgf and a rotation speed of 3600 rpm.
  • the present invention is also applicable to low alloy steel having a carbon content of 0.1% or more by mass%.
  • SCr440, SCM435, etc. can also be used as a parent phase.
  • Test pieces having the form shown in FIG. 6 were prepared from the SCM435 steel based on the conditions shown in Table 5 (the compound layer had a common thickness of 18 ⁇ m), and the rotary bending fatigue strength test was performed. Specifically, Ono-type rotating bending fatigue tester (Shimadzu Corporation, H7 type) using a test load 55 kgf, the rotational speed as 3600 rpm, it is determined whether it is possible to welcome 10 7 rotation.

Abstract

The present invention is a nitrided steel member in which a carbon steel having a carbon content of 0.10% by mass or more or a low alloy steel makes up a parent phase and an iron nitride compound layer is formed on the surface of the parent phase, the nitrided steel member being characterized in that the thickness of the iron nitride compound layer is 13 μm or more, the Vaγ'/(Vaε+Vaγ') value is 0.5 or more wherein Vaγ' and Vaε respectively represent the volume ratio of a γ' phase and the volume ratio of an ε phase in the entire region of the iron nitride compound layer, and the Vbγ'/(Vbε+Vbγ') value is 0.2 or more wherein Vbγ' and Vbε respectively represent the volume ratio of the γ' phase and the volume ratio of the ε phase in a lowermost region of the iron nitride compound layer when the iron nitride compound layer is divided into four regions in the depth direction.

Description

窒化鋼部材並びに窒化鋼部材の製造方法及び製造装置Nitride steel member and method and apparatus for producing nitride steel member
 本発明は、窒化鋼部材並びに窒化鋼部材の製造方法及び製造装置に関する。さらに詳しくは、自動車の変速機用の歯車やクランクシャフト等に有用な耐疲労性に優れる窒化鋼部材並びに当該窒化鋼部材の製造方法及び製造装置に関する。 The present invention relates to a nitrided steel member and a method and apparatus for producing a nitrided steel member. More specifically, the present invention relates to a nitrided steel member having excellent fatigue resistance useful for gears and crankshafts for automobile transmissions, and a method and apparatus for manufacturing the nitrided steel member.
 鋼材の表面硬化処理の中でも、低熱処理ひずみ処理である窒化処理のニーズは高く、最近では特に、ガス窒化処理の雰囲気制御技術への関心が高まっている。 Among the surface hardening treatments for steel materials, there is a great need for nitriding treatment, which is low heat treatment strain treatment, and in recent years, there has been an increasing interest in atmosphere control technology for gas nitriding treatment.
 ガス窒化処理により得られる基本的な組織構成では、表面において鉄窒化物である化合物層が形成され、内部において拡散層と呼ばれる硬化層が形成される。当該硬化層は、通常、母材成分のSiやCrなどの合金窒化物からなる。 In the basic structure obtained by gas nitriding, a compound layer that is iron nitride is formed on the surface, and a hardened layer called a diffusion layer is formed inside. The hardened layer is usually made of an alloy nitride such as Si or Cr as a base material component.
 これらの2層の各々の厚さ(深さ)及び/または表面の鉄窒化物のタイプ等を制御するために、ガス窒化処理の温度と時間とに加えて、ガス窒化処理炉内の雰囲気も適宜に制御されている。具体的には、ガス窒化炉内の窒化ポテンシャル(KN)が適宜に制御されている。 In order to control the thickness (depth) of each of these two layers and / or the type of surface iron nitride, etc., in addition to the temperature and time of the gas nitriding process, the atmosphere in the gas nitriding furnace is also It is controlled appropriately. Specifically, the nitriding potential (K N ) in the gas nitriding furnace is appropriately controlled.
 例えば、当該制御を介して、鋼材の表面に生成される化合物層中のγ’相(Fe4N)とε相(Fe2-3N)の体積分率(鉄窒化物のタイプ)を制御することが提案されている。具体的には、ε相よりもγ’相を形成することにより、耐疲労性が改善されることが知られており(平岡泰、渡邊陽一、石田暁丈:熱処理、55巻、1号、1-2ページ(非特許文献1))、γ’相の形成により曲げ疲労強度や面疲労を改善した窒化鋼部材が提案されている(特開2013-221203号公報(特許文献1))。更に、化合物層中のγ′相の厚さを厚くするほど、曲げ疲労強度が向上することも知られている(Y.Hiraoka, A.Ishida:Materials Transactions, 58巻、2017年、993-999ページ(非特許文献2))。もっとも、γ’相を多く形成するべくガス窒化処理を行っても、化合物層中には少なからずε相が含まれており、実際にはγ’相とε相との2相状態となっている。 For example, the volume fraction (iron nitride type) of the γ 'phase (Fe 4 N) and ε phase (Fe 2-3 N) in the compound layer generated on the surface of the steel material is controlled through the control. It has been proposed to do. Specifically, it is known that fatigue resistance is improved by forming a γ 'phase rather than an ε phase (Yasuhira Hiraoka, Yoichi Watanabe, Yasushi Ishida: Heat treatment, Volume 1, No. 1, 1-2 (Non-Patent Document 1)), a nitrided steel member having improved bending fatigue strength and surface fatigue by forming a γ 'phase has been proposed (Japanese Patent Laid-Open No. 2013-221203 (Patent Document 1)). Furthermore, it is also known that the bending fatigue strength increases as the thickness of the γ ′ phase in the compound layer increases (Y. Hiraoka, A. Ishida: Materials Transactions, 58, 2017, 993-999). Page (Non-Patent Document 2)). However, even if the gas nitriding treatment is performed to form a large amount of γ ′ phase, the compound layer contains not a little ε phase, and in fact, it becomes a two-phase state of γ ′ phase and ε phase. Yes.
 ここで、比較的厚い化合物層を形成する際には、拡散層と接する内部側の化合物層の領域内にε相が形成され易く、当該領域にγ′相を形成させることは困難であると認識されていた(特開2016-211069号公報(特許文献2))。ε相は比較的脆く、疲労亀裂の成長速度が速い。従って、厚膜化を目指すと、疲労強度が劣化するおそれがあった。当該領域内においてε相が形成され易い理由は、窒化処理中の表面脱炭反応によって母相内の炭素が表面側へ移動するが、母相に比べ化合物層中の炭素拡散の速度が遅いために拡散層/化合物層の界面で炭素が濃化することに起因する(ディータリートケほか:鉄の窒化と軟窒化、アグネ技術センター、2013年、37-49ページ(非特許文献3))。 Here, when a relatively thick compound layer is formed, an ε phase is likely to be formed in the region of the inner compound layer in contact with the diffusion layer, and it is difficult to form a γ ′ phase in the region. (Japanese Patent Laid-Open No. 2016-211069 (Patent Document 2)). The ε phase is relatively brittle and the fatigue crack growth rate is fast. Therefore, when the thickness is increased, the fatigue strength may be deteriorated. The reason why the ε phase is easily formed in the region is that the carbon in the matrix phase moves to the surface side by the surface decarburization reaction during the nitriding treatment, but the rate of carbon diffusion in the compound layer is slower than the matrix phase. This is caused by the concentration of carbon at the interface between the diffusion layer and the compound layer (Dietary Toke et al .: Nitriding and soft nitriding of iron, Agne Technical Center, 2013, pages 37-49 (Non-patent Document 3)).
 また、比較的厚い化合物層を形成する際には、化合物層の表層領域における窒素濃度が高くなるため、当該表層領域においてε相の割合が増加することが知られている。具体的には、化合物層の厚さが17μmを超えると、ε相の割合が増加する(特開2017-36509号公報(特許文献3))。 It is also known that when a relatively thick compound layer is formed, the nitrogen concentration in the surface layer region of the compound layer increases, and thus the ratio of the ε phase increases in the surface layer region. Specifically, when the thickness of the compound layer exceeds 17 μm, the ratio of the ε phase increases (Japanese Patent Laid-Open No. 2017-36509 (Patent Document 3)).
 本明細書が引用する特許文献1は、特開2013-221203号公報であり、本明細書が引用する特許文献2は、特開2016-211069号公報であり、本明細書が引用する特許文献3は、特開2017-36509号公報である。また、本明細書が引用する非特許文献1は、「熱処理」、55巻、1号、1-2ページ(平岡泰、渡邊陽一、石田暁丈)であり、本明細書が引用する非特許文献2は、「Materials Transactions」、58巻、2017年、993-999ページ(Y.Hiraoka, A.Ishida)であり、本明細書が引用する非特許文献3は、「鉄の窒化と軟窒化」、アグネ技術センター、2013年、37-49ページ(ディータリートケほか)である。 Patent Document 1 cited in this specification is Japanese Patent Application Laid-Open No. 2013-221203, Patent Document 2 cited in this specification is Japanese Patent Application Laid-Open No. 2016-211069, and Patent Documents cited in this Specification are cited. 3 is JP-A-2017-36509. Non-patent document 1 cited in the present specification is “Heat Treatment”, Vol. 55, No. 1, page 1-2 (Yasuhira Hiraoka, Yoichi Watanabe, Yasushi Ishida), and the non-patent document cited in this specification. Reference 2 is “Materials Transactions”, 58, 2017, pp. 993-999 (Y. Hiraoka, I A. Ishida). Non-patent literature 3 cited in this specification is “Nitride and soft nitriding of iron” "Agne Technical Center, 2013, pages 37-49 (Dietary Toke et al.).
 前述した様に、化合物層においてγ’相が増えるように制御することで、窒化鋼部材の疲労強度を向上させることが可能であり、γ’相を厚くすることで、さらに疲労強度を向上させることが可能である。しかしながら、γ’相を厚くするべく比較的厚い化合物層を形成するためには、拡散層/化合物層の界面近傍の領域でのε相の形成を抑制し、また、化合物層の表層領域においてもε相の形成を抑制することが必要である。 As described above, it is possible to improve the fatigue strength of the nitrided steel member by controlling the γ ′ phase to increase in the compound layer, and further increase the fatigue strength by increasing the γ ′ phase. It is possible. However, in order to form a relatively thick compound layer in order to make the γ ′ phase thicker, the formation of the ε phase in the region near the diffusion layer / compound layer interface is suppressed, and also in the surface layer region of the compound layer It is necessary to suppress the formation of the ε phase.
 本件発明者は、鋭意の検討及び種々の実験を繰り返し、処理炉の構成を限定した上で窒化処理の温度と窒化ポテンシャルを高精度に制御することよって、比較的厚いγ’相主体の化合物層を形成する場合に、拡散層/化合物層の界面近傍の領域においても所望量のγ’相を維持でき、化合物層の表層領域においてもε相の増大を抑制できることを知見した。 The present inventor repeated diligent examinations and various experiments, limited the configuration of the processing furnace, and then controlled the temperature and nitriding potential of the nitriding process with high accuracy, thereby making the compound layer mainly composed of a relatively thick γ ′ phase. It was found that a desired amount of γ ′ phase can be maintained even in the region near the interface of the diffusion layer / compound layer, and the increase in ε phase can be suppressed also in the surface layer region of the compound layer.
 本発明は、以上の知見に基づいて創案されたものである。本発明の目的は、耐疲労性が顕著に改善された窒化鋼部材、及び、そのような窒化鋼部材を製造するための製造方法及び製造装置を提供することである。 The present invention has been developed based on the above knowledge. An object of the present invention is to provide a nitrided steel member having significantly improved fatigue resistance, and a production method and a production apparatus for producing such a nitrided steel member.
 本発明は、質量%で0.10%以上の炭素量を有する炭素鋼または低合金鋼を母相とし、表面に鉄窒化物化合物層が形成されている窒化鋼部材であって、前記鉄窒化物化合物層の厚さは、13μm以上であり、前記鉄窒化物化合物層の全領域中に占めるγ’相とε相の体積割合をそれぞれVaγ’とVaεとした時、Vaγ’/(Vaε+Vaγ’)の値が0.5以上であり、前記鉄窒化物化合物層の下部1/4の領域中に占めるγ’相とε相の体積割合をそれぞれVbγ’とVbεとした時、Vbγ’/(Vbε+Vbγ’)の値が0.2以上であることを特徴とする窒化鋼部材である。 The present invention is a nitrided steel member having a carbon steel or low alloy steel having a carbon content of 0.10% by mass or more as a parent phase and having an iron nitride compound layer formed on a surface thereof, the iron nitride The thickness of the physical compound layer is 13 μm or more. When the volume ratios of the γ ′ phase and the ε phase in the whole region of the iron nitride compound layer are Vaγ ′ and Vaε, respectively, Vaγ ′ / (Vaε + Vbγ ′) when the value of Vaγ ′) is 0.5 or more and the volume ratios of the γ ′ phase and the ε phase in the lower quarter region of the iron nitride compound layer are Vbγ ′ and Vbε, respectively. / (Vbε + Vbγ ′) is a nitrided steel member having a value of 0.2 or more.
 このような窒化鋼部材は、本件発明者が創案した後述の方法によって、初めて製造可能になった(初めて世の中に提供された)ものである。このような窒化鋼部材においては、鉄窒化物化合物層の全領域中におけるγ’相の体積割合比Vaγ’/(Vaε+Vaγ’)の値が0.5以上であるため、当該鉄窒化物化合物層の全体をγ’相主体の化合物層であると考えることができ、その厚さが13μm以上であることによって、疲労強度が顕著に向上されている。そして、鉄窒化物化合物層の下部1/4の領域中におけるγ’相の体積割合比Vbγ’/(Vbε+Vbγ’)の値が0.2以上に維持されているため、当該領域におけるε相の存在による疲労強度の劣化が顕著に抑制されている。 Such a nitrided steel member can be manufactured for the first time (provided to the world for the first time) by the method described later, which was invented by the present inventors. In such a nitrided steel member, since the volume ratio ratio Vaγ ′ / (Vaε + Vaγ ′) of the γ ′ phase in the entire region of the iron nitride compound layer is 0.5 or more, the iron nitride It can be considered that the entire compound layer is a compound layer mainly composed of γ ′ phase, and the fatigue strength is remarkably improved by the thickness being 13 μm or more. Since the value of the volume ratio Vbγ ′ / (Vbε + Vbγ ′) of the γ ′ phase in the lower 1/4 region of the iron nitride compound layer is maintained at 0.2 or more, ε in the region Deterioration of fatigue strength due to the presence of the phase is remarkably suppressed.
 前記鉄窒化物化合物層の厚さは、20μm~35μm以上であることが更に好ましい。
当該厚さが20μmであれば、疲労強度が更に向上される。また、35μmというのは、生産性を考慮した好適値である。(鉄窒化物化合物層の厚さは、概ね窒化時間に対応する。窒化時間に制限が無ければ、鉄窒化物化合物層の厚さにも上限はない。)
The thickness of the iron nitride compound layer is more preferably 20 μm to 35 μm or more.
If the thickness is 20 μm, the fatigue strength is further improved. Further, 35 μm is a preferable value in consideration of productivity. (The thickness of the iron nitride compound layer generally corresponds to the nitriding time. If there is no limitation on the nitriding time, there is no upper limit to the thickness of the iron nitride compound layer.)
 また、前記Vbγ’/(Vbε+Vbγ’)の値は、0.3以上であることが更に好ましい。この場合、鉄窒化物化合物層の下部1/4の領域におけるε相の存在による疲労強度の劣化が、更に抑制される。 The value of Vbγ ′ / (Vbε + Vbγ ′) is more preferably 0.3 or more. In this case, deterioration of fatigue strength due to the presence of the ε phase in the lower quarter region of the iron nitride compound layer is further suppressed.
 また、本発明は、案内筒と撹拌ファンとを備えた循環型処理炉を用いて、質量%で0.10%以上の炭素量を有する炭素鋼または低合金鋼を母相とする窒化鋼部材を製造する方法であって、少なくとも2段階の窒化処理を有しており、1段目の処理においては、前記循環型処理炉内の温度が560℃~600℃の範囲に制御され、且つ、前記循環型処理炉内の窒化ポテンシャルが0.15~0.4の範囲に制御され、2段目の処理においては、前記循環型処理炉内の温度が490℃~510℃の範囲に制御され、且つ、前記循環型処理炉内の窒化ポテンシャルが0.5~2.0の範囲に制御されることを特徴とする窒化鋼部材の製造方法である。 The present invention also provides a nitrided steel member having a parent phase of carbon steel or low alloy steel having a carbon content of 0.10% or more by mass, using a circulation type processing furnace having a guide cylinder and a stirring fan. In which the temperature in the circulation type processing furnace is controlled in the range of 560 ° C. to 600 ° C. in the first stage of processing, and The nitriding potential in the circulation type processing furnace is controlled in the range of 0.15 to 0.4, and in the second stage processing, the temperature in the circulation type processing furnace is controlled in the range of 490 ° C. to 510 ° C. The method for producing a nitrided steel member is characterized in that the nitriding potential in the circulation type processing furnace is controlled in the range of 0.5 to 2.0.
 当該窒化鋼部材の製造方法によれば、
 質量%で0.10%以上の炭素量を有する炭素鋼または低合金鋼を母相とし、表面に鉄窒化物化合物層が形成されている窒化鋼部材であって、前記鉄窒化物化合物層の厚さは、13μm以上であり、前記鉄窒化物化合物層の全領域中に占めるγ’相とε相の体積割合をそれぞれVaγ’とVεとした時、Vaγ’/(Vaε+Vaγ’)の値が0.5以上であり、前記鉄窒化物化合物層の下部1/4の領域中に占めるγ’相とε相の体積割合をそれぞれVbγ’とVbεとした時、Vbγ’/(Vbε+Vbγ’)の値が0.2以上であることを特徴とする窒化鋼部材
を製造することができる。
According to the method for manufacturing the nitrided steel member,
A nitrided steel member having a carbon steel or low alloy steel having a carbon content of 0.10% by mass or more as a parent phase and having an iron nitride compound layer formed on a surface thereof, the iron nitride compound layer comprising: The thickness is 13 μm or more, and Vaγ ′ / (Vaε + Vaγ ′) when the volume ratios of the γ ′ phase and the ε phase in the entire region of the iron nitride compound layer are Vaγ ′ and Vε, respectively. Vbγ ′ / (Vbε + when the volume ratio of γ ′ phase and ε phase in the lower 1/4 region of the iron nitride compound layer is Vbγ ′ and Vbε respectively. A nitrided steel member having a value of Vbγ ′) of 0.2 or more can be produced.
 ここで、2段目の処理(490℃~510℃の範囲での処理)は、1段目の処理(560℃~600℃の範囲での処理)と同一の循環型処理炉を用いて引き続いて行われてもよいし、1段目の処理とは異なる循環型処理炉を用いて行われてもよい。循環型処理炉における温度条件の設定(昇降)性能によって、後者の方が生産効率が良い場合がある。1段目の処理用の循環型処理炉から2段目の処理用の循環型処理炉まで材料を移動する間、当該材料の温度は、1段目の処理における温度条件に維持されてもよいし、一時的に室温程度にまで自然冷却されてもよい。いずれの場合にも、本発明方法が有効であることが、本件発明者によって(後述の実施例において)確認されている。 Here, the second stage treatment (treatment in the range of 490 ° C. to 510 ° C.) is continued using the same circulation type processing furnace as the first stage treatment (treatment in the range of 560 ° C. to 600 ° C.). It may be performed using a circulation type processing furnace different from the first stage processing. Depending on the temperature condition setting (elevating / lowering) performance in the circulation type processing furnace, the latter may have better production efficiency. While the material is moved from the first-stage processing circulation processing furnace to the second-stage processing circulation processing furnace, the temperature of the material may be maintained at the temperature condition in the first-stage processing. However, it may be naturally cooled to about room temperature temporarily. In any case, it has been confirmed (in the examples described later) by the present inventors that the method of the present invention is effective.
 あるいは、本発明は、案内筒と撹拌ファンとを備えた循環型処理炉を用いて、質量%で0.10%以上の炭素量を有する炭素鋼または低合金鋼を母相とする窒化鋼部材を製造する方法であって、少なくとも3段階の窒化処理を有しており、1段目の処理においては、前記循環型処理炉内の温度が560℃~600℃の範囲に制御され、且つ、前記循環型処理炉内の窒化ポテンシャルが0.7~3.0の範囲に制御され、2段目の処理においては、前記循環型処理炉内の温度が560℃~600℃の範囲に制御され、且つ、前記循環型処理炉内の窒化ポテンシャルが0.15~0.4の範囲に制御され、3段目の処理においては、前記循環型処理炉内の温度が490℃~510℃の範囲に制御され、且つ、前記循環型処理炉内の窒化ポテンシャルが0.5~2.0の範囲に制御されることを特徴とする窒化鋼部材の製造方法である。 Alternatively, according to the present invention, a nitrided steel member having a parent phase of carbon steel or low alloy steel having a carbon content of 0.10% by mass or more using a circulation type processing furnace including a guide cylinder and a stirring fan. In which the temperature in the circulation type processing furnace is controlled in the range of 560 ° C. to 600 ° C. in the first stage of processing, and The nitriding potential in the circulation type processing furnace is controlled in the range of 0.7 to 3.0, and in the second stage processing, the temperature in the circulation type processing furnace is controlled in the range of 560 ° C. to 600 ° C. In addition, the nitriding potential in the circulation type processing furnace is controlled in the range of 0.15 to 0.4, and in the third stage processing, the temperature in the circulation type processing furnace is in the range of 490 ° C. to 510 ° C. And nitriding potency in the circulation type processing furnace. Le is a method for producing a nitride steel member characterized by being controlled in the range of 0.5-2.0.
 当該窒化鋼部材の製造方法によっても、
 質量%で0.10%以上の炭素量を有する炭素鋼または低合金鋼を母相とし、表面に鉄窒化物化合物層が形成されている窒化鋼部材であって、前記鉄窒化物化合物層の厚さは、13μm以上であり、前記鉄窒化物化合物層の全領域中に占めるγ’相とε相の体積割合をそれぞれVaγ’とVεとした時、Vaγ’/(Vaε+Vaγ’)の値が0.5以上であり、前記鉄窒化物化合物層の下部1/4の領域中に占めるγ’相とε相の体積割合をそれぞれVbγ’とVbεとした時、Vbγ’/(Vbε+Vbγ’)の値が0.2以上であることを特徴とする窒化鋼部材
を製造することができる。
Also by the method of manufacturing the nitrided steel member,
A nitrided steel member having a carbon steel or low alloy steel having a carbon content of 0.10% by mass or more as a parent phase and having an iron nitride compound layer formed on a surface thereof, the iron nitride compound layer comprising: The thickness is 13 μm or more, and Vaγ ′ / (Vaε + Vaγ ′) when the volume ratios of the γ ′ phase and the ε phase in the entire region of the iron nitride compound layer are Vaγ ′ and Vε, respectively. Vbγ ′ / (Vbε + when the volume ratio of γ ′ phase and ε phase in the lower 1/4 region of the iron nitride compound layer is Vbγ ′ and Vbε respectively. A nitrided steel member having a value of Vbγ ′) of 0.2 or more can be produced.
 ここで、3段目の処理(490℃~510℃の範囲での処理)は、1段目及び2段目の処理(560℃~600℃の範囲での処理)と同一の循環型処理炉を用いて引き続いて行われてもよいし、1段目及び2段目の処理とは異なる循環型処理炉を用いて行われてもよい。循環型処理炉における温度条件の設定(昇降)性能によって、後者の方が生産効率が良い場合がある。1段目及び2段目の処理用の循環型処理炉から3段目の処理用の循環型処理炉まで材料を移動する間、当該材料の温度は、1段目及び2段目の処理における温度条件に維持されてもよいし、一時的に室温程度にまで自然冷却されてもよい。いずれの場合にも、本発明方法が有効であることが、本件発明者によって(後述の実施例において)確認されている。 Here, the third stage treatment (treatment in the range of 490 ° C. to 510 ° C.) is the same circulation type processing furnace as the first and second stage treatment (treatment in the range of 560 ° C. to 600 ° C.). May be performed subsequently, or may be performed using a circulation type processing furnace different from the first stage and second stage processes. Depending on the temperature condition setting (elevating / lowering) performance in the circulation type processing furnace, the latter may have better production efficiency. While the material is transferred from the first and second stage processing circulation processing furnaces to the third stage processing circulation processing furnace, the temperature of the material in the first and second stage processing is It may be maintained at a temperature condition or may be naturally cooled to about room temperature temporarily. In any case, it has been confirmed (in the examples described later) by the present inventors that the method of the present invention is effective.
 また、本発明は、案内筒と撹拌ファンとを有する循環型処理炉を備え、1段目の処理においては、前記循環型処理炉内の温度が560℃~600℃の範囲に制御され、且つ、前記循環型処理炉内の窒化ポテンシャルが0.15~0.4の範囲に制御され、2段目の処理においては、前記循環型処理炉内の温度が490℃~510℃の範囲に制御され、且つ、前記循環型処理炉内の窒化ポテンシャルが0.5~2.0の範囲に制御されることを特徴とする窒化鋼部材の製造装置である。 The present invention further includes a circulation type processing furnace having a guide cylinder and a stirring fan, and in the first stage of processing, the temperature in the circulation type processing furnace is controlled in the range of 560 ° C. to 600 ° C., and The nitriding potential in the circulation type processing furnace is controlled in the range of 0.15 to 0.4, and in the second stage processing, the temperature in the circulation type processing furnace is controlled in the range of 490 ° C. to 510 ° C. And a nitriding potential in the circulation type processing furnace is controlled in the range of 0.5 to 2.0.
 あるいは、本発明は、案内筒と撹拌ファンとを有する循環型処理炉を備え、1段目の処理においては、前記循環型処理炉内の温度が560℃~600℃の範囲に制御され、且つ、前記循環型処理炉内の窒化ポテンシャルが0.7~3.0の範囲に制御され、2段目の処理においては、前記循環型処理炉内の温度が560℃~600℃の範囲に制御され、且つ、前記循環型処理炉内の窒化ポテンシャルが0.15~0.4の範囲に制御され、3段目の処理においては、前記循環型処理炉内の温度が490℃~510℃の範囲に制御され、且つ、前記循環型処理炉内の窒化ポテンシャルが0.5~2.0の範囲に制御されることを特徴とする窒化鋼部材の製造装置である。 Alternatively, the present invention includes a circulation type processing furnace having a guide cylinder and a stirring fan, and in the first stage of processing, the temperature in the circulation type processing furnace is controlled in the range of 560 ° C. to 600 ° C., and The nitriding potential in the circulation type processing furnace is controlled in the range of 0.7 to 3.0, and the temperature in the circulation type processing furnace is controlled in the range of 560 ° C. to 600 ° C. in the second stage processing. In addition, the nitriding potential in the circulation type processing furnace is controlled in the range of 0.15 to 0.4, and in the third stage processing, the temperature in the circulation type processing furnace is 490 ° C. to 510 ° C. The nitrided steel member manufacturing apparatus is characterized in that the nitriding potential in the circulation type processing furnace is controlled within a range of 0.5 to 2.0.
 これらの窒化鋼部材の製造装置によれば、
 質量%で0.10%以上の炭素量を有する炭素鋼または低合金鋼を母相とし、表面に鉄窒化物化合物層が形成されている窒化鋼部材であって、前記鉄窒化物化合物層の厚さは、13μm以上であり、前記鉄窒化物化合物層の全領域中に占めるγ’相とε相の体積割合をそれぞれVaγ’とVεとした時、Vaγ’/(Vaε+Vaγ’)の値が0.5以上であり、前記鉄窒化物化合物層の下部1/4の領域中に占めるγ’相とε相の体積割合をそれぞれVbγ’とVbεとした時、Vbγ’/(Vbε+Vbγ’)の値が0.2以上であることを特徴とする窒化鋼部材
を製造することができる。
According to the production equipment for these nitrided steel members,
A nitrided steel member having a carbon steel or low alloy steel having a carbon content of 0.10% by mass or more as a parent phase and having an iron nitride compound layer formed on a surface thereof, the iron nitride compound layer comprising: The thickness is 13 μm or more, and Vaγ ′ / (Vaε + Vaγ ′) when the volume ratios of the γ ′ phase and the ε phase in the entire region of the iron nitride compound layer are Vaγ ′ and Vε, respectively. Vbγ ′ / (Vbε + when the volume ratio of γ ′ phase and ε phase in the lower 1/4 region of the iron nitride compound layer is Vbγ ′ and Vbε respectively. A nitrided steel member having a value of Vbγ ′) of 0.2 or more can be produced.
 本発明の窒化鋼部材の製造装置は、例えば、アンモニアガスとアンモニア分解ガスとが前記循環型処理炉内に導入されるようになっている。この場合、当該製造装置は、前記窒化ポテンシャルを制御するために、前記アンモニアガスの導入量と前記アンモニア分解ガスの導入量との総流量を一定として互いの導入比を変更する第1制御と、前記アンモニア分解ガスの導入を停止させた状態で、前記アンモニアガスの導入量を変更する第2制御と、を選択的に実施できるようになっていることが好ましい。 In the apparatus for manufacturing a nitrided steel member of the present invention, for example, ammonia gas and ammonia decomposition gas are introduced into the circulation type processing furnace. In this case, the manufacturing apparatus, in order to control the nitriding potential, a first control for changing the introduction ratio of the ammonia gas and the introduction amount of the ammonia decomposition gas while keeping the total flow rate constant. It is preferable that the second control for changing the introduction amount of the ammonia gas can be selectively performed in a state where the introduction of the ammonia decomposition gas is stopped.
 本発明による窒化鋼部材によれば、鉄窒化物化合物層の全領域中におけるγ’相の体積割合比Vaγ’/(Vaε+Vaγ’)の値が0.5以上であるため、当該鉄窒化物化合物層の全体をγ’相主体の化合物層であると考えることができ、その厚さが13μm以上であることによって、疲労強度が顕著に向上されている。そして、鉄窒化物化合物層の下部1/4の領域中におけるγ’相の体積割合比Vbγ’/(Vbε+Vbγ’)の値が0.2以上に維持されているため、当該領域におけるε相の存在による疲労強度の劣化が顕著に抑制されている。 According to the nitrided steel member of the present invention, the value of the volume ratio ratio Vaγ ′ / (Vaε + Vaγ ′) of the γ ′ phase in the entire region of the iron nitride compound layer is 0.5 or more. It can be considered that the entire physical compound layer is a compound layer mainly composed of a γ ′ phase, and the fatigue strength is remarkably improved by having a thickness of 13 μm or more. Since the value of the volume ratio Vbγ ′ / (Vbε + Vbγ ′) of the γ ′ phase in the lower 1/4 region of the iron nitride compound layer is maintained at 0.2 or more, ε in the region Deterioration of fatigue strength due to the presence of the phase is remarkably suppressed.
本発明の一実施形態による窒化鋼部材の断面顕微鏡写真である。It is a cross-sectional microscope picture of the nitrided steel member by one Embodiment of this invention. EBSD法で解析した図1の窒化鋼部材の断面相分布である。It is a cross-sectional phase distribution of the nitrided steel member of FIG. 1 analyzed by the EBSD method. γ’相が含有できる炭素量と温度との関係を示す図である。It is a figure which shows the relationship between the amount of carbon which a γ 'phase can contain, and temperature. 比較例の断面顕微鏡写真である。It is a cross-sectional microscope picture of a comparative example. EBSD法で解析した図3の窒化鋼部材の断面相分布である。It is a cross-sectional phase distribution of the nitrided steel member of FIG. 3 analyzed by the EBSD method. 小野式回転曲げ疲労試験片の形態を示す図である。It is a figure which shows the form of an Ono type | formula rotation bending fatigue test piece. 疲労限度と化合物層厚さとの関係を示す図である。It is a figure which shows the relationship between a fatigue limit and a compound layer thickness. 疲労限度と下部1/4の領域でのγ’相の体積割合比との関係を示す図である。It is a figure which shows the relationship between a fatigue limit and the volume ratio ratio of (gamma) 'phase in the area | region of lower 1/4. 本発明の一実施形態による窒化鋼部材の製造装置の概略図である。It is the schematic of the manufacturing apparatus of the nitrided steel member by one Embodiment of this invention. 循環型処理炉(横型ガス窒化炉)の概略断面図である。It is a schematic sectional drawing of a circulation type processing furnace (horizontal type gas nitriding furnace). 第1制御の例を示すグラフである。It is a graph which shows the example of the 1st control. 第1制御の例を示すグラフである。It is a graph which shows the example of the 1st control. 第2制御の例を示すグラフである。It is a graph which shows the example of the 2nd control. 第2制御の例を示すグラフである。It is a graph which shows the example of the 2nd control. 炉内に挿入される冶具の例を示す概略図である。It is the schematic which shows the example of the jig inserted in a furnace.
 以下、本発明の好ましい実施形態について説明するが、本発明は以下の実施形態に限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described, but the present invention is not limited to the following embodiments.
(本発明の一実施形態の窒化鋼部材100の構成)
 図1は、本件発明者によって実施に製造された本発明の一実施形態の窒化鋼部材100の断面顕微鏡写真である。図1に示すように、本実施形態の窒化鋼部材100は、表面に硬化層としての鉄窒化物化合物層101を備え、鉄窒化物化合物層101の下部に、母相内に窒素が拡散されている拡散層102を備えている。本実施形態の母相(母材)は、炭素含有量が質量%で0.45%程度であるS45Cである。
(Configuration of nitrided steel member 100 of one embodiment of the present invention)
FIG. 1 is a cross-sectional photomicrograph of a nitrided steel member 100 according to an embodiment of the present invention manufactured by the present inventors. As shown in FIG. 1, the steel nitride member 100 of the present embodiment includes an iron nitride compound layer 101 as a hardened layer on the surface, and nitrogen is diffused into the parent phase below the iron nitride compound layer 101. The diffusion layer 102 is provided. The parent phase (base material) of this embodiment is S45C having a carbon content of about 0.45% by mass.
 図1の窒化鋼部材100の鉄窒化物化合物層101は、窒化鋼部材100の表面から約16μmの厚さを有している。図1の窒化鋼部材100の拡散層102は、窒化鋼部材100の表面から約1000μmの深さまで延在している。 The iron nitride compound layer 101 of the nitrided steel member 100 in FIG. 1 has a thickness of about 16 μm from the surface of the nitrided steel member 100. The diffusion layer 102 of the nitrided steel member 100 of FIG. 1 extends from the surface of the nitrided steel member 100 to a depth of about 1000 μm.
 前述のとおり、鉄窒化物化合物層101は、ε相(Fe2-3N)とγ’相(Fe4N)とを含む層である。これらの相の分布状態は、EBSD(Electron Back Scatter Diffraction)法によって解析することができる。具体的には、鉄窒化物化合物層101の深さ方向断面において、γ’相とε相の面積比率から判定することができる。(当該面積比率が、体積比率に相当すると考えられる。)例えば、幅100μmの深さ方向断面を3断面(3視野分)とって、それらの平均値から判定することができる。 As described above, the iron nitride compound layer 101 is a layer including an ε phase (Fe 2-3 N) and a γ ′ phase (Fe 4 N). The distribution state of these phases can be analyzed by an EBSD (Electron Back Scatter Diffraction) method. Specifically, it can be determined from the area ratio of the γ ′ phase and the ε phase in the cross section in the depth direction of the iron nitride compound layer 101. (The area ratio is considered to correspond to the volume ratio.) For example, it is possible to determine three cross sections (for three fields of view) in the depth direction having a width of 100 μm from the average value thereof.
 図2は、図1の断面のEBSD法の解析結果である。図2の実施形態では、鉄窒化物化合物層101において、全領域中におけるγ’相の体積割合比(鉄窒化物化合物層101の全領域中に占めるγ’相とε相の体積割合をそれぞれVaγ’とVaεとした時のVaγ’/(Vaε+Vaγ’))の値が、0.70程度である。また、鉄窒化物化合物層101の下部1/4の領域中におけるγ’相の体積割合比(鉄窒化物化合物層101の下部1/4の領域中に占めるγ’相とε相の体積割合をそれぞれVbγ’とVbεとした時のVbγ’/(Vbε+Vbγ’))の値が、0.2より大きい。 FIG. 2 is an analysis result of the EBSD method of the cross section of FIG. In the embodiment of FIG. 2, in the iron nitride compound layer 101, the volume ratio of the γ ′ phase in the entire region (the volume ratio of the γ ′ phase and the ε phase in the entire region of the iron nitride compound layer 101 is The value of Vaγ ′ / (Vaε + Vaγ ′)) when Vaγ ′ and Vaε is about 0.70. Further, the volume ratio of the γ ′ phase in the lower 1/4 region of the iron nitride compound layer 101 (the volume ratio of the γ ′ phase and the ε phase in the lower 1/4 region of the iron nitride compound layer 101) Vbγ ′ / (Vbε + Vbγ ′)) where Vbγ ′ and Vbε are respectively greater than 0.2.
(窒化鋼部材100の製造方法)
 図1の鉄窒化物化合物層101は、案内筒と撹拌ファンとを備えた循環型処理炉(詳しくは後述)を用いて、3段階の窒化処理によって製造される(後述する表1(化合物層厚さ16μmの例)参照)。
(Manufacturing method of the nitrided steel member 100)
The iron nitride compound layer 101 of FIG. 1 is manufactured by a three-stage nitriding process using a circulation type processing furnace (described in detail later) provided with a guide cylinder and a stirring fan (Table 1 (compound layer described later)). Refer to the example of a thickness of 16 μm).
 1段目の処理(例えば2時間)においては、循環型処理炉内の温度が580℃の範囲に制御され、循環型処理炉内の窒化ポテンシャルが0.7に制御される。この処理によって、鉄窒化物化合物層101の全体の厚さが調整される。 In the first stage process (for example, 2 hours), the temperature in the circulation type processing furnace is controlled within a range of 580 ° C., and the nitriding potential in the circulation type processing furnace is controlled to 0.7. By this treatment, the entire thickness of the iron nitride compound layer 101 is adjusted.
 2段目の処理(例えば0.5時間)においては、循環型処理炉内の温度は580℃に維持されたまま、循環型処理炉内の窒化ポテンシャルが0.3に制御される。この処理によって、鉄窒化物化合物層101の全領域中におけるγ’相の体積割合比(鉄窒化物化合物層101の全領域中に占めるγ’相とε相の体積割合をそれぞれVaγ’とVaεとした時のVaγ’/(Vaε+Vaγ’))の値が調整される。 In the second stage treatment (for example, 0.5 hour), the nitriding potential in the circulation type processing furnace is controlled to 0.3 while the temperature in the circulation type processing furnace is maintained at 580 ° C. By this treatment, the volume ratio of the γ ′ phase in the entire region of the iron nitride compound layer 101 (the volume ratios of the γ ′ phase and the ε phase in the entire region of the iron nitride compound layer 101 are Vaγ ′ and Vaε, respectively. The value of Vaγ ′ / (Vaε + Vaγ ′)) is adjusted.
 3段目の処理(例えば2時間)においては、循環型処理炉内の温度が500℃に制御され、循環型処理炉内の窒化ポテンシャルが0.7に制御される。この処理によって、鉄窒化物化合物層101の下部1/4の領域中におけるγ’相の体積割合比(鉄窒化物化合物層101の下部1/4の領域中に占めるγ’相とε相の体積割合をそれぞれVbγ’とVbεとした時のVbγ’/(Vbε+Vbγ’))の値が調整される。 In the third stage treatment (for example, 2 hours), the temperature in the circulation processing furnace is controlled to 500 ° C., and the nitriding potential in the circulation processing furnace is controlled to 0.7. By this treatment, the volume ratio of the γ ′ phase in the lower 1/4 region of the iron nitride compound layer 101 (the γ ′ phase and the ε phase occupying the lower 1/4 region of the iron nitride compound layer 101). The value of Vbγ ′ / (Vbε + Vbγ ′)) is adjusted when the volume ratios are Vbγ ′ and Vbε, respectively.
 この3段目の処理こそ、本発明の製造方法における新規な特徴である。本件発明者は、γ’相が最も炭素を含有する(共存する)ことができる温度範囲が490~510℃であることを参考にして(図3参照)、当該温度範囲での再窒化処理を実施してみたところ、従来はε相が多かった鉄窒化物化合物層の下部1/4の領域中においてもγ’相の体積割合比を0.2以上に維持できることを知見し、本発明をなしたのである。なお、この処理における窒化ポテンシャルは、0.5~2.0とされる(後述される)。 This third stage process is a novel feature in the production method of the present invention. The inventor of the present invention refers to the temperature range in which the γ ′ phase can contain (coexist with) the most carbon (490 to 510 ° C.) (see FIG. 3), and performs renitriding treatment in the temperature range. In practice, the present inventors found that the volume ratio of the γ ′ phase can be maintained at 0.2 or more even in the region of the lower quarter of the iron nitride compound layer in which the ε phase was large in the past, It was done. Note that the nitriding potential in this process is 0.5 to 2.0 (described later).
(比較例の窒化鋼部材120の構成)
 一方、図4は、従来の製造方法によって製造された比較例としての窒化鋼部材120の断面顕微鏡写真である。図4に示すように、比較例の窒化鋼部材120も、表面に硬化層としての鉄窒化物化合物層121を備え、当該硬化層201の下部に、母相内に窒素が拡散されている拡散層122を備えている。比較例の母相(母材)も、炭素含有量が質量%で0.45%程度であるS45Cである。
(Configuration of the nitrided steel member 120 of the comparative example)
On the other hand, FIG. 4 is a cross-sectional micrograph of a nitrided steel member 120 as a comparative example manufactured by a conventional manufacturing method. As shown in FIG. 4, the steel nitride member 120 of the comparative example also includes an iron nitride compound layer 121 as a hardened layer on the surface, and diffusion in which nitrogen is diffused in the parent phase below the hardened layer 201. A layer 122 is provided. The parent phase (base material) of the comparative example is also S45C having a carbon content of about 0.45% by mass.
 図4の窒化鋼部材120の鉄窒化物化合物層121も、窒化鋼部材120の表面から約16μmの厚さを有している。図4の窒化鋼部材120の拡散層122も、窒化鋼部材120の表面から約1000μmの深さまで延在している。 The iron nitride compound layer 121 of the nitrided steel member 120 in FIG. 4 also has a thickness of about 16 μm from the surface of the nitrided steel member 120. The diffusion layer 122 of the nitrided steel member 120 in FIG. 4 also extends from the surface of the nitrided steel member 120 to a depth of about 1000 μm.
 図5は、図4の断面のEBSD法の解析結果である。図5の比較例では、鉄窒化物化合物層121において、全領域中におけるγ’相の体積割合比(鉄窒化物化合物層121の全領域中に占めるγ’相とε相の体積割合をそれぞれVaγ’とVεとした時のVaγ’/(Vaε+Vaγ’))の値が、0.55程度である。また、鉄窒化物化合物層121の下部1/4の領域中におけるγ’相の体積割合比(鉄窒化物化合物層121の下部1/4の領域中に占めるγ’相とε相の体積割合をそれぞれVbγ’とVbεとした時のVbγ’/(Vbε+Vbγ’))の値が、0.2より小さい。 FIG. 5 is an analysis result of the EBSD method of the cross section of FIG. In the comparative example of FIG. 5, in the iron nitride compound layer 121, the volume ratio of the γ ′ phase in the entire region (the volume ratio of the γ ′ phase and the ε phase in the entire region of the iron nitride compound layer 121 is The value of Vaγ ′ / (Vaε + Vaγ ′)) when Vaγ ′ and Vε are about 0.55. Further, the volume ratio of the γ ′ phase in the lower 1/4 region of the iron nitride compound layer 121 (the volume ratio of the γ ′ phase and the ε phase in the lower 1/4 region of the iron nitride compound layer 121) Vbγ ′ / (Vbε + Vbγ ′)) where Vbγ ′ and Vbε are respectively smaller than 0.2.
(窒化鋼部材120の製造方法)
 図4の鉄窒化物化合物層121は、案内筒と撹拌ファンとを備えた循環型処理炉(詳しくは後述)を用いて、2段階の窒化処理によって製造される。
(Manufacturing method of the nitrided steel member 120)
The iron nitride compound layer 121 in FIG. 4 is manufactured by a two-stage nitriding process using a circulation type processing furnace (details will be described later) including a guide cylinder and a stirring fan.
 1段目の処理(例えば2時間)においては、循環型処理炉内の温度が580℃の範囲に制御され、循環型処理炉内の窒化ポテンシャルが0.7に制御される。この処理によって、鉄窒化物化合物層121の全体の厚さが調整される。 In the first stage process (for example, 2 hours), the temperature in the circulation type processing furnace is controlled within a range of 580 ° C., and the nitriding potential in the circulation type processing furnace is controlled to 0.7. By this treatment, the entire thickness of the iron nitride compound layer 121 is adjusted.
 2段目の処理(例えば0.5時間)においては、循環型処理炉内の温度は580℃に維持されたまま、循環型処理炉内の窒化ポテンシャルが0.3に制御される。この処理によって、鉄窒化物化合物層101の全領域中におけるγ’相の体積割合比(鉄窒化物化合物層101の全領域中に占めるγ’相とε相の体積割合をそれぞれVaγ’とVεとした時のVaγ’/(Vaε+Vaγ’))の値が0.5以上となるように調整される。(γ’相の体積割合比(Vaγ’/(Vaε+Vaγ’))が0.5以上であることが好ましいことは、特開2016-211069号公報(特許文献2)に開示されている。) In the second stage treatment (for example, 0.5 hour), the nitriding potential in the circulation type processing furnace is controlled to 0.3 while the temperature in the circulation type processing furnace is maintained at 580 ° C. By this treatment, the volume ratio of the γ ′ phase in the entire region of the iron nitride compound layer 101 (the volume ratios of the γ ′ phase and the ε phase in the entire region of the iron nitride compound layer 101 are Vaγ ′ and Vε, respectively. The value of Vaγ ′ / (Vaε + Vaγ ′)) is adjusted to be 0.5 or more. It is disclosed in Japanese Patent Application Laid-Open No. 2016-211069 (Patent Document 2) that the (γ ′ phase volume ratio ratio (Vaγ ′ / (Vaε + Vaγ ′)) is preferably 0.5 or more. )
 窒化鋼部材100の製造方法と異なり、3段目の処理は実施されない。このため、鉄窒化物化合物層101の下部1/4の領域中におけるγ’相の体積割合比(鉄窒化物化合物層101の下部1/4の領域中に占めるγ’相とε相の体積割合をそれぞれVbγ’とVbεとした時のVbγ’/(Vbε+Vbγ’))の値が調整されない(小さい値のままである)。 Unlike the method for manufacturing the nitrided steel member 100, the third stage treatment is not performed. For this reason, the volume ratio of the γ ′ phase in the lower 1/4 region of the iron nitride compound layer 101 (the volume of the γ ′ phase and the ε phase in the lower 1/4 region of the iron nitride compound layer 101). The value of Vbγ ′ / (Vbε + Vbγ ′)) when the ratios are Vbγ ′ and Vbε, respectively, is not adjusted (it remains small).
(試験片による効果の検証(1):実施形態と比較例)
 曲げ疲労試験用の試験片を用いて、疲労強度の向上について検証した。具体的には、図1の構成(断面)を有するような試験片を作成して、疲労限度を測定した。試験片の形態は、図6に示すように、小野式回転曲げ疲労試験機(島津製作所、H7型)に対応するものである。
(Verification of effect by test piece (1): embodiment and comparative example)
Using a test piece for a bending fatigue test, the fatigue strength was verified. Specifically, a test piece having the configuration (cross section) shown in FIG. 1 was prepared, and the fatigue limit was measured. As shown in FIG. 6, the shape of the test piece corresponds to an Ono type rotating bending fatigue tester (Shimadzu Corporation, H7 type).
 試験の結果(疲労限度)は、45.4kgfであった。これに対して、図4の構成(断面)を有するような試験片を作成して、疲労限度を測定したところ、40.8kgfであった。この結果から、図1の実施形態の窒化鋼部材100は、耐疲労性が顕著に改善されていることが分かる。 The test result (fatigue limit) was 45.4 kgf. On the other hand, when a test piece having the configuration (cross section) of FIG. 4 was prepared and the fatigue limit was measured, it was 40.8 kgf. From this result, it can be seen that the fatigue resistance of the nitrided steel member 100 of the embodiment of FIG. 1 is remarkably improved.
(試験片による効果の検証(2):鉄窒化物化合物層の厚さ)
 鉄窒化物化合物層の全領域中におけるγ’相の体積割合比Vaγ’/(Vaε+Vaγ’)の値が0.5以上であれば、当該鉄窒化物化合物層の全体をγ’相主体の化合物層であると考えることができる。従って、鉄窒化物化合物層の厚さが厚い方が、疲労強度は高くなると考えられる。
(Verification of effect by test piece (2): thickness of iron nitride compound layer)
If the volume ratio ratio Vaγ ′ / (Vaε + Vaγ ′) of the γ ′ phase in the entire region of the iron nitride compound layer is 0.5 or more, the entire iron nitride compound layer is mainly composed of the γ ′ phase. It can be considered that this is a compound layer. Therefore, it is considered that the fatigue strength increases as the thickness of the iron nitride compound layer increases.
 前述の鉄窒化物化合物層101の製造方法のうち、1段目の処理内容を変更して、鉄窒化物化合物層の厚さを更に厚くした変形例を作成した。具体的には、以下の表1に示すように、循環型処理炉内の窒化ポテンシャルを1.3として、鉄窒化物化合物層の厚さを20μmとした。また、循環型処理炉内の窒化ポテンシャルを1.3として、処理時間を3時間に延長して、鉄窒化物化合物層の厚さを25μmとした。 In the manufacturing method of the iron nitride compound layer 101 described above, a modification was made by changing the processing content of the first stage and further increasing the thickness of the iron nitride compound layer. Specifically, as shown in Table 1 below, the nitriding potential in the circulation type processing furnace was set to 1.3, and the thickness of the iron nitride compound layer was set to 20 μm. Further, the nitriding potential in the circulation type processing furnace was set to 1.3, the processing time was extended to 3 hours, and the thickness of the iron nitride compound layer was set to 25 μm.
 このような変形例においても、表1に示すように、鉄窒化物化合物層の全領域中におけるγ’相の体積割合比は0.5よりも大きく、鉄窒化物化合物層の下部1/4の領域中におけるγ’相の体積割合比は0.2よりも大きかった。 Also in such a modification, as shown in Table 1, the volume ratio of the γ ′ phase in the entire region of the iron nitride compound layer is larger than 0.5, and the lower 1/4 of the iron nitride compound layer The volume ratio of the γ ′ phase in the region was greater than 0.2.
 そして、各変形例に対応する試験片を作成して、疲労限度を測定した。試験の結果(疲労限度)は、鉄窒化物化合物層の厚さが20μmである時、47.4kgfであり、鉄窒化物化合物層の厚さが25μmである時、49.0kgfであった。これらの結果は、図7にプロットされている。 And the test piece corresponding to each modification was created, and the fatigue limit was measured. The test result (fatigue limit) was 47.4 kgf when the thickness of the iron nitride compound layer was 20 μm, and 49.0 kgf when the thickness of the iron nitride compound layer was 25 μm. These results are plotted in FIG.
 更なる比較のため、鉄窒化物化合物層101の製造方法のうち、1段目の処理を実施しないで、2段目の処理内容を変更して、鉄窒化物化合物層の厚さを薄くした変形例及び比較例を作成した。具体的には、以下の表1に示すように、1段目の処理をやめ、2段目の処理において処理時間を3時間に延長して、鉄窒化物化合物層の厚さを13μmとした(変形例)。また、1段目の処理をやめ、2段目の処理において処理時間を2時間として、鉄窒化物化合物層の厚さを10μmとした(比較例)。また、1段目の処理をやめ、2段目の処理において窒化ポテンシャルを0.25とし、処理時間を3時間として、鉄窒化物化合物層の厚さを6μmとした(比較例)。また、1段目の処理をやめ、2段目の処理において窒化ポテンシャルを0.2とし、処理時間を3時間として、鉄窒化物化合物層の厚さを2μmとした(比較例)。 For further comparison, in the manufacturing method of the iron nitride compound layer 101, the first stage process is not performed, and the second stage process content is changed to reduce the thickness of the iron nitride compound layer. A modification and a comparative example were created. Specifically, as shown in Table 1 below, the first-stage treatment was stopped, the treatment time was extended to 3 hours in the second-stage treatment, and the thickness of the iron nitride compound layer was 13 μm. (Modification). In addition, the treatment of the first step was stopped, the treatment time was 2 hours in the treatment of the second step, and the thickness of the iron nitride compound layer was 10 μm (comparative example). Further, the first-stage treatment was stopped, the nitriding potential was 0.25 in the second-stage treatment, the treatment time was 3 hours, and the thickness of the iron nitride compound layer was 6 μm (comparative example). Further, the first stage treatment was stopped, the nitriding potential was 0.2 in the second stage treatment, the treatment time was 3 hours, and the thickness of the iron nitride compound layer was 2 μm (comparative example).
 鉄窒化物化合物層の厚さを13μmとした変形例においても、表1に示すように、鉄窒化物化合物層の全領域中におけるγ’相の体積割合比は0.5よりも大きく、鉄窒化物化合物層の下部1/4の領域中におけるγ’相の体積割合比は0.2よりも大きかった。 Also in the modified example in which the thickness of the iron nitride compound layer is 13 μm, as shown in Table 1, the volume ratio of the γ ′ phase in the entire region of the iron nitride compound layer is larger than 0.5, The volume ratio of the γ ′ phase in the lower quarter region of the nitride compound layer was greater than 0.2.
 そして、当該変形例に対応する試験片を作成して、疲労限度を測定した。試験の結果(疲労限度)は、43.9kgfであった。この結果も、図7にプロットされている。 Then, a test piece corresponding to the modified example was created and the fatigue limit was measured. The test result (fatigue limit) was 43.9 kgf. This result is also plotted in FIG.
 一方、鉄窒化物化合物層の厚さを2~10μmとした比較例においても、表1に示すように、鉄窒化物化合物層の全領域中におけるγ’相の体積割合比は0.5よりも大きく、鉄窒化物化合物層の下部1/4の領域中におけるγ’相の体積割合比は0.2よりも大きかった。 On the other hand, in the comparative example in which the thickness of the iron nitride compound layer was 2 to 10 μm, as shown in Table 1, the volume ratio of the γ ′ phase in the entire region of the iron nitride compound layer was 0.5 The volume ratio of the γ ′ phase in the lower quarter region of the iron nitride compound layer was greater than 0.2.
 しかしながら、当該比較例に対応する試験片を作成して、疲労限度を測定したところ、試験の結果(疲労限度)は、40.8kgf未満であった。すなわち、鉄窒化物化合物層の厚さが13μm未満の場合、疲労強度の向上という本発明の効果が得られないことが分かる。これらの結果も、図7にプロットされている。 However, when a test piece corresponding to the comparative example was prepared and the fatigue limit was measured, the test result (fatigue limit) was less than 40.8 kgf. That is, it can be seen that when the thickness of the iron nitride compound layer is less than 13 μm, the effect of the present invention of improving fatigue strength cannot be obtained. These results are also plotted in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(試験片による効果の検証(3):下部1/4のγ’相の体積割合比)
 鉄窒化物化合物層の全領域中におけるγ’相の体積割合比が0.5よりも大きいという条件を維持しながら、鉄窒化物化合物層の下部1/4の領域中におけるγ’相の体積割合比を異ならせるべく、3段階の処理内容を以下の表2に示すように変更した。表2に示すいずれの条件によっても、生成された鉄窒化物化合物層の厚さは20μmであった。
(Verification of effect by test piece (3): Volume ratio of γ ′ phase of lower quarter)
While maintaining the condition that the volume ratio of the γ 'phase in the entire region of the iron nitride compound layer is larger than 0.5, the volume of the γ' phase in the lower 1/4 region of the iron nitride compound layer In order to make the ratios different, the contents of the three steps were changed as shown in Table 2 below. Under any of the conditions shown in Table 2, the thickness of the produced iron nitride compound layer was 20 μm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 そして、表2の各条件に対応する試験片を作成して、疲労限度を測定した。試験の結果(疲労限度)は、鉄窒化物化合物層の下部1/4の領域中におけるγ’相の体積割合比(Vbγ’/(Vbε+Vbγ’))を横軸として、図8にプロットされている。 And the test piece corresponding to each condition of Table 2 was created, and the fatigue limit was measured. The results of the test (fatigue limit) are plotted in FIG. 8 with the volume ratio (Vbγ ′ / (Vbε + Vbγ ′)) of the γ ′ phase in the lower quarter region of the iron nitride compound layer as the horizontal axis. Has been.
 図8に示すように、鉄窒化物化合物層の下部1/4の領域中におけるγ’相の体積割合比(Vbγ’/(Vbε+Vbγ’))の値が0.2以上である時に、疲労強度が顕著に向上されることが分かる。 As shown in FIG. 8, when the volume ratio ratio (Vbγ ′ / (Vbε + Vbγ ′)) of the γ ′ phase in the lower quarter region of the iron nitride compound layer is 0.2 or more, It can be seen that the fatigue strength is significantly improved.
(本発明による製造方法の補足)
 窒化鋼部材100の製造方法として説明した1段目の処理は、前述の通り、鉄窒化物化合物層の全体の厚さを調整するための処理であり、一般的には、生産性を上げるべく、できるだけ短時間で鉄窒化物化合物層の全体の厚さを増大できる処理である。
(Supplementary manufacturing method according to the present invention)
As described above, the first-stage process described as the method for manufacturing the nitrided steel member 100 is a process for adjusting the overall thickness of the iron nitride compound layer, and in general, to increase productivity. In this process, the total thickness of the iron nitride compound layer can be increased in as short a time as possible.
 所望する鉄窒化物化合物層の全体の厚さがさほど厚くない場合(13~16μmの場合)には、表1を用いて説明した通り、当該1段目の処理は省略可能である。一方、所望する鉄窒化物化合物層の全体の厚さが厚い場合には、1段目の処理として、高い窒化ポテンシャルで窒化処理を実施することが好ましい。その具体的な範囲としては、0.5~3.0、特には0.8~3.0、が好ましい。また、窒化温度の範囲についても、窒化層がより速く成長する高温域、具体的には560℃~600℃、に制御されることが好ましい。 When the total thickness of the desired iron nitride compound layer is not so thick (in the case of 13 to 16 μm), as described with reference to Table 1, the first-stage process can be omitted. On the other hand, when the total thickness of the desired iron nitride compound layer is thick, it is preferable to perform nitriding with a high nitriding potential as the first stage treatment. The specific range is preferably 0.5 to 3.0, particularly 0.8 to 3.0. Also, the range of the nitriding temperature is preferably controlled to a high temperature range where the nitrided layer grows faster, specifically, 560 ° C. to 600 ° C.
 次に、窒化鋼部材100の製造方法として説明した2段目の処理は、前述の通り、鉄窒化物化合物層の全領域中におけるγ’相の体積割合比(Vaγ’/(Vaε+Vaγ’))の値を0.5以上とするための処理である。この処理では、低い窒化ポテンシャルで窒化処理を実施することが必要である。その具体的な範囲としては、0.15~0.4が好ましい。また、窒化温度の範囲は、1段目の処理と同じく、窒化層がより速く成長する高温域、具体的には560℃~600℃、に制御されることが好ましい。 Next, as described above, the second-stage treatment described as the method for manufacturing the nitrided steel member 100 is performed as described above. The volume ratio of the γ ′ phase in the entire region of the iron nitride compound layer (Vaγ ′ / (Vaε + Vaγ ′) )) Is a process for setting the value to 0.5 or more. In this process, it is necessary to perform nitriding with a low nitriding potential. The specific range is preferably 0.15 to 0.4. Further, the range of the nitriding temperature is preferably controlled to a high temperature region where the nitrided layer grows faster, specifically, 560 ° C. to 600 ° C., as in the first stage treatment.
 当該2段目の処理について、特に好ましい条件の詳細を開示すれば、窒化温度が580℃である場合に好適な窒化ポテンシャルの範囲は、0.25~0.3であり、窒化温度が560℃である場合に好適な窒化ポテンシャルの範囲は、0.3~0.4である。 If details of particularly preferable conditions are disclosed for the second stage treatment, the range of nitriding potential suitable for a nitriding temperature of 580 ° C. is 0.25 to 0.3, and the nitriding temperature is 560 ° C. The preferred nitriding potential range is 0.3 to 0.4.
 そして、窒化鋼部材100の製造方法として説明した3段目の処理は、前述の通り、鉄窒化物化合物層の下部1/4の領域中におけるγ’相の体積割合比(Vbγ’/(Vbε+Vbγ’))の値を0.2以上とするための処理である。この処理は、γ’相が最も炭素を含有する(共存する)ことができる490℃~510℃という温度範囲(図3参照)で実施される必要がある。更に、当該温度範囲であっても、ε相が形成されやすい窒化ポテンシャルでは、γ’相の体積割合が低下してしまう。このため、窒化ポテンシャルの範囲についても、0.5~2.0に制御される必要がある。 Then, as described above, the third-stage process described as the method for manufacturing the nitrided steel member 100 is the volume ratio ratio (Vbγ ′ / (Vbε) of the γ ′ phase in the lower quarter region of the iron nitride compound layer. This is a process for setting the value of + Vbγ ′)) to 0.2 or more. This treatment needs to be carried out in a temperature range of 490 ° C. to 510 ° C. (see FIG. 3) in which the γ ′ phase can contain the most carbon (coexist). Further, even in the temperature range, the volume ratio of the γ ′ phase is lowered at the nitriding potential at which the ε phase is easily formed. For this reason, the range of the nitriding potential needs to be controlled to 0.5 to 2.0.
(窒化鋼部材の製造装置の構成)
 ここで、ガス窒化処理の基本的事項について化学的に説明すれば、ガス窒化処理では、被処理品が配置される処理炉(ガス窒化炉)内において、以下の式(1)で表される窒化反応が発生する。
         NH3→[N]+3/2H2   ・・・(1)
(Configuration of manufacturing equipment for nitrided steel members)
Here, the basic matters of the gas nitriding treatment will be described chemically. In the gas nitriding treatment, the following expression (1) is expressed in the processing furnace (gas nitriding furnace) in which the article to be processed is arranged. Nitriding reaction occurs.
NH 3 → [N] + 3 / 2H 2 (1)
 このとき、窒化ポテンシャルKNは、以下の式(2)で定義される。
         KN=PNH3/PH2 3/2    ・・・(2)
ここで、PNH3は炉内アンモニア分圧であり、PH2は炉内水素分圧である。窒化ポテンシャルKNは、ガス窒化炉内の雰囲気が有する窒化能力を表す指標として周知である。
At this time, the nitriding potential K N is defined by the following equation (2).
K N = P NH3 / P H2 3/2 (2)
Here, P NH3 is the in-furnace ammonia partial pressure, and P H2 is the in-furnace hydrogen partial pressure. The nitriding potential K N is well known as an index representing the nitriding ability of the atmosphere in the gas nitriding furnace.
 一方、ガス窒化処理中の炉内では、当該炉内へ導入されたアンモニアガスの一部が、式(3)の反応にしたがって水素ガスと窒素ガスとに熱分解する。
         NH3→1/2N2+3/2H2   ・・・(3)
On the other hand, in the furnace during the gas nitriding treatment, a part of the ammonia gas introduced into the furnace is thermally decomposed into hydrogen gas and nitrogen gas according to the reaction of the formula (3).
NH 3 → 1 / 2N 2 + 3 / 2H 2 (3)
 炉内では、主に式(3)の反応が生じており、式(1)の窒化反応は量的にはほとんど無視できる。したがって、式(3)の反応で消費された炉内アンモニア濃度または式(3)の反応で発生された水素ガス濃度が分かれば、窒化ポテンシャルを演算することができる。すなわち、発生される水素及び窒素は、アンモニア1モルから、それぞれ1.5モルと0.5モルであるから、炉内アンモニア濃度を測定すれば炉内水素濃度も分かり、窒化ポテンシャルを演算することができる。あるいは、炉内水素濃度を測定すれば、炉内アンモニア濃度が分かり、やはり窒化ポテンシャルを演算することができる。 In the furnace, the reaction of the formula (3) mainly occurs, and the nitriding reaction of the formula (1) is almost negligible in quantity. Therefore, if the in-furnace ammonia concentration consumed in the reaction of equation (3) or the hydrogen gas concentration generated in the reaction of equation (3) is known, the nitriding potential can be calculated. That is, since hydrogen and nitrogen generated are 1.5 mol and 0.5 mol, respectively, from 1 mol of ammonia, if the in-furnace ammonia concentration is measured, the in-furnace hydrogen concentration can also be known and the nitriding potential can be calculated. Can do. Alternatively, if the in-furnace hydrogen concentration is measured, the in-furnace ammonia concentration can be found, and the nitriding potential can also be calculated.
 なお、ガス窒化炉内に流されたアンモニアガスは、炉内を循環した後、炉外へ排出される。すなわち、ガス窒化処理では、炉内の既存ガスに対して、フレッシュ(新た)なアンモニアガスを炉内へ絶えず流入させることにより、当該既存ガスが炉外へ排出され続ける(供給圧で押し出される)。 The ammonia gas that has flowed into the gas nitriding furnace is circulated through the furnace and then discharged outside the furnace. That is, in the gas nitriding treatment, fresh (new) ammonia gas is continuously flowed into the furnace with respect to the existing gas in the furnace, so that the existing gas is continuously discharged out of the furnace (extruded at the supply pressure). .
 ここで、炉内へ導入されるアンモニアガスの流量が少なければ、炉内でのガス滞留時間が長くなるため、分解されるアンモニアガスの量が増加して、当該分解反応によって発生される窒素ガス+水素ガスの量は増加する。一方、炉内へ導入されるアンモニアガスの流量が多ければ、分解されずに炉外へ排出されるアンモニアガスの量が増加して、炉内で発生される窒素ガス+水素ガスの量は減少する。 Here, if the flow rate of ammonia gas introduced into the furnace is small, the gas residence time in the furnace becomes long, so the amount of ammonia gas to be decomposed increases, and the nitrogen gas generated by the decomposition reaction + The amount of hydrogen gas increases. On the other hand, if the flow rate of ammonia gas introduced into the furnace is large, the amount of ammonia gas discharged outside the furnace without being decomposed increases, and the amount of nitrogen gas + hydrogen gas generated in the furnace decreases. To do.
 さて、図9は、本発明の一実施形態による窒化鋼部材を製造するための製造装置を示す概略図である。図9に示すように、本実施形態の製造装置1は、循環型処理炉2を備えており、当該循環型処理炉2内へ導入するガスとして、アンモニアとアンモニア分解ガスの2種類のみを用いている。アンモニア分解ガスとは、AXガスとも呼ばれるガスで、1:3の比率の窒素と水素とからなる混合ガスである。もっとも、導入ガスとしては、(1)アンモニアガスのみ、(2)アンモニアとアンモニア分解ガスの2種類のみ、(3)アンモニアと窒素ガスの2種類のみ、または、(4)アンモニアとアンモニア分解ガスと窒素ガスの3種類のみ、から選択され得る。 Now, FIG. 9 is a schematic view showing a manufacturing apparatus for manufacturing a nitrided steel member according to an embodiment of the present invention. As shown in FIG. 9, the manufacturing apparatus 1 of the present embodiment includes a circulation type processing furnace 2, and uses only two types of ammonia and ammonia decomposition gas as gases introduced into the circulation type processing furnace 2. ing. The ammonia decomposition gas is a gas called AX gas, and is a mixed gas composed of nitrogen and hydrogen in a ratio of 1: 3. However, as the introduced gas, (1) only ammonia gas, (2) only two types of ammonia and ammonia decomposition gas, (3) only two types of ammonia and nitrogen gas, or (4) ammonia and ammonia decomposition gas Only three types of nitrogen gas can be selected.
 循環型処理炉2の断面構造例を、図10に示す。図10において、炉壁(ベルとも呼ばれる)201の中に、レトルトと呼ばれる円筒202が配置され、更にその内側に内部レトルトと呼ばれる円筒204が配置されている。ガス導入管205から供給される導入ガスは、図中の矢印に示されるように、被処理品の周囲を通過した後、攪拌扇203の作用によって2つの円筒202、204間の空間を通過して循環する。206は、フレア付きのガスフードであり、207は、熱電対であり、208は冷却作業用の蓋であり、209は、冷却作業用のファンである。当該循環型処理炉2は、横型ガス窒化炉とも呼ばれており、その構造自体は公知のものである。 An example of a cross-sectional structure of the circulation type processing furnace 2 is shown in FIG. In FIG. 10, a cylinder 202 called a retort is arranged in a furnace wall (also called a bell) 201, and a cylinder 204 called an internal retort is arranged inside thereof. As shown by the arrows in the figure, the introduced gas supplied from the gas introduction pipe 205 passes through the space between the two cylinders 202 and 204 by the action of the stirring fan 203 after passing around the object to be processed. Circulate. 206 is a gas hood with a flare, 207 is a thermocouple, 208 is a lid for cooling work, and 209 is a fan for cooling work. The circulation type processing furnace 2 is also called a horizontal gas nitriding furnace, and its structure itself is known.
 被処理品Sは、炭素鋼または低合金鋼であって、例えば自動車部品であるクランクシャフトやギア等である。 The article S to be processed is carbon steel or low alloy steel, for example, a crankshaft or gear that is an automobile part.
 また、図9に示すように、本実施形態の表面硬化処理装置1の処理炉2には、炉開閉蓋7と、攪拌ファン8と、攪拌ファン駆動モータ9と、雰囲気ガス濃度検出装置3と、窒化ポテンシャル調節計4と、プログラマブルロジックコントローラ30と、炉内導入ガス供給部20と、が設けられている。 As shown in FIG. 9, the processing furnace 2 of the surface hardening processing apparatus 1 of the present embodiment includes a furnace opening / closing lid 7, a stirring fan 8, a stirring fan drive motor 9, and an atmospheric gas concentration detection device 3. A nitriding potential controller 4, a programmable logic controller 30, and an in-furnace gas supply unit 20 are provided.
 攪拌ファン8は、処理炉2内に配置されており、処理炉2内で回転して、処理炉2内の雰囲気を攪拌するようになっている。攪拌ファン駆動モータ9は、攪拌ファン8に連結されており、攪拌ファン8を任意の回転速度で回転させるようになっている。 The stirring fan 8 is disposed in the processing furnace 2 and rotates in the processing furnace 2 to stir the atmosphere in the processing furnace 2. The stirring fan drive motor 9 is connected to the stirring fan 8 and rotates the stirring fan 8 at an arbitrary rotation speed.
 雰囲気ガス濃度検出装置3は、処理炉2内の水素濃度またはアンモニア濃度を炉内雰囲気ガス濃度として検出可能なセンサにより構成されている。当該センサの検出本体部は、雰囲気ガス配管12を介して処理炉2の内部と連通している。雰囲気ガス配管12は、本実施形態においては、雰囲気ガス濃度検出装置3のセンサ本体部と処理炉2とを直接連通させる経路で形成され、途中で排ガス燃焼分解装置41へ繋がる炉内ガス廃棄配管40が接続されている。これにより、雰囲気ガスは、廃棄されるガスと雰囲気ガス濃度検出装置3に供給されるガスとに分配される。 The atmospheric gas concentration detection device 3 includes a sensor that can detect the hydrogen concentration or ammonia concentration in the processing furnace 2 as the atmospheric gas concentration in the furnace. The detection main body of the sensor communicates with the inside of the processing furnace 2 via the atmospheric gas pipe 12. In the present embodiment, the atmospheric gas pipe 12 is formed by a path that directly communicates the sensor main body of the atmospheric gas concentration detection device 3 and the processing furnace 2, and the in-furnace gas disposal pipe that is connected to the exhaust gas combustion decomposition apparatus 41 on the way. 40 is connected. Thereby, the atmospheric gas is distributed into the gas to be discarded and the gas supplied to the atmospheric gas concentration detection device 3.
 また、雰囲気ガス濃度検出装置3は、炉内雰囲気ガス濃度を検出した後、当該検出濃度を含む情報信号を、窒化ポテンシャル調節計4へ出力するようになっている。 The atmospheric gas concentration detection device 3 outputs an information signal including the detected concentration to the nitriding potential controller 4 after detecting the atmospheric gas concentration in the furnace.
 窒化ポテンシャル調節計4は、炉内窒化ポテンシャル演算装置13と、ガス流量出力調整装置30と、を有している。また、プログラマブルロジックコントローラ31は、ガス導入量制御装置14と、パラメータ設定装置15と、を有している。 The nitriding potential controller 4 has an in-furnace nitriding potential calculation device 13 and a gas flow rate output adjusting device 30. The programmable logic controller 31 includes a gas introduction amount control device 14 and a parameter setting device 15.
 炉内窒化ポテンシャル演算装置13は、炉内雰囲気ガス濃度検出装置3によって検出される水素濃度またはアンモニア濃度に基づいて、処理炉2内の窒化ポテンシャルを演算するようになっている。具体的には、実際の炉内導入ガスに応じてプログラムされた窒化ポテンシャルの演算式が組み込まれており、炉内雰囲気ガス濃度の値から窒化ポテンシャルを演算するようになっている。 The in-furnace nitriding potential calculation device 13 calculates the nitriding potential in the processing furnace 2 based on the hydrogen concentration or ammonia concentration detected by the in-furnace atmospheric gas concentration detection device 3. Specifically, a calculation formula for nitriding potential programmed according to the actual gas introduced into the furnace is incorporated, and the nitriding potential is calculated from the value of the atmospheric gas concentration in the furnace.
 パラメータ設定装置15は、例えばタッチパネルからなり、炉内導入ガスの総流量、ガス種、処理温度、目標窒化ポテンシャル、等をそれぞれ設定入力できるようになっている。設定入力された各設定パラメータ値は、ガス流量出力調整手段30へ伝送されるようになっている。 The parameter setting device 15 is composed of, for example, a touch panel and can set and input the total flow rate of the gas introduced into the furnace, the gas type, the processing temperature, the target nitriding potential, and the like. Each set parameter value that has been set and input is transmitted to the gas flow rate output adjusting means 30.
 そして、ガス流量出力調整手段30が、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、アンモニアガスとアンモニア分解ガスの各々の導入量を入力値とした制御を実施するようになっている。より具体的には、アンモニアガスの導入量とアンモニア分解ガスの導入量との総流量を一定として互いの導入比を変更する第1制御と、アンモニア分解ガスの導入を停止させた状態でアンモニアガスの導入量を変更する第2制御と、を選択的に実施できるようになっている。ガス流量出力調整手段30の出力値は、ガス導入量制御手段14へ伝達されるようになっている。 Then, the gas flow rate output adjusting means 30 uses the nitriding potential calculated by the in-furnace nitriding potential calculation device 13 as an output value, a target nitriding potential (set nitriding potential) as a target value, and the ammonia gas and the ammonia decomposition gas. Control is performed with each introduction amount as an input value. More specifically, the first control for changing the introduction ratio of ammonia gas with the total flow rate of the introduction amount of ammonia gas and the introduction amount of ammonia decomposition gas being constant, and ammonia gas in a state where introduction of ammonia decomposition gas is stopped The second control for changing the introduction amount of can be selectively performed. The output value of the gas flow rate output adjusting means 30 is transmitted to the gas introduction amount control means 14.
 ガス導入量制御手段14は、各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22とアンモニア分解ガス用の第2供給量制御装置26とにそれぞれ制御信号を送るようになっている。 The gas introduction amount control means 14 sends control signals to the first supply amount control device 22 for ammonia gas and the second supply amount control device 26 for ammonia decomposition gas in order to realize the introduction amount of each gas. It has become.
 本実施形態の炉内導入ガス供給部20は、アンモニアガス用の第1炉内導入ガス供給部21と、第1供給量制御装置22と、第1供給弁23と、第1流量計24と、を有している。また、本実施形態の炉内導入ガス供給部20は、アンモニア分解ガス(AXガス)用の第2炉内導入ガス供給部25と、第2供給量制御装置26と、第2供給弁27と、第2流量計28と、を有している。 The in-furnace introduction gas supply unit 20 of the present embodiment includes a first in-furnace introduction gas supply unit 21 for ammonia gas, a first supply amount control device 22, a first supply valve 23, a first flow meter 24, ,have. The in-furnace introduced gas supply unit 20 of the present embodiment includes a second in-furnace introduced gas supply unit 25 for ammonia decomposition gas (AX gas), a second supply amount control device 26, a second supply valve 27, And a second flow meter 28.
 本実施形態では、アンモニアガスとアンモニア分解ガスとは、処理炉2内に入る前の炉内導入ガス導入配管29内で混合されるようになっている。 In this embodiment, the ammonia gas and the ammonia decomposition gas are mixed in the furnace introduction gas introduction pipe 29 before entering the processing furnace 2.
 第1炉内導入ガス供給部21は、例えば、第1炉内導入ガス(本例ではアンモニアガス)を充填したタンクにより形成されている。 The first in-furnace introduction gas supply unit 21 is formed by, for example, a tank filled with a first in-furnace introduction gas (ammonia gas in this example).
 第1供給量制御装置22は、マスフローコントローラにより形成されており、第1炉内導入ガス供給部21と第1供給弁23との間に介装されている。第1供給量制御装置22の開度が、ガス導入量制御手段14から出力される制御信号に応じて変化する。また、第1供給量制御装置22は、第1炉内導入ガス供給部21から第1供給弁23への供給量を検出し、この検出した供給量を含む情報信号をガス導入制御手段14へ出力するようになっている。当該制御信号は、ガス導入量制御手段14による制御の補正等に用いられ得る。 The first supply amount control device 22 is formed by a mass flow controller, and is interposed between the first furnace introduction gas supply unit 21 and the first supply valve 23. The opening degree of the first supply amount control device 22 changes according to a control signal output from the gas introduction amount control means 14. The first supply amount control device 22 detects the supply amount from the first furnace introduction gas supply unit 21 to the first supply valve 23, and sends an information signal including the detected supply amount to the gas introduction control means 14. It is designed to output. The control signal can be used for correction of control by the gas introduction amount control means 14.
 第1供給弁23は、ガス導入量制御手段14が出力する制御信号に応じて開閉状態を切り換える電磁弁により形成されており、第1供給量制御装置22と第1流量計24との間に介装されている。 The first supply valve 23 is formed by an electromagnetic valve that switches between open and closed states according to a control signal output from the gas introduction amount control means 14, and is interposed between the first supply amount control device 22 and the first flow meter 24. It is intervened.
 第2炉内導入ガス供給部25は、例えば、第2炉内導入ガス(本例ではアンモニア分解ガス)を充填したタンクにより形成されている。 The second in-furnace introduction gas supply unit 25 is formed by, for example, a tank filled with the second in-furnace introduction gas (in this example, ammonia decomposition gas).
 第2供給量制御装置26は、マスフローコントローラにより形成されており、第2炉内導入ガス供給部25と第1供給弁27との間に介装されている。第1供給量制御装置26の開度が、ガス導入量制御手段14から出力される制御信号に応じて変化する。また、第3供給量制御装置26は、第2炉内導入ガス供給部25から第2供給弁27への供給量を検出し、この検出した供給量を含む情報信号をガス導入制御手段14へ出力するようになっている。当該制御信号は、ガス導入量制御手段14による制御の補正等に用いられ得る。 The second supply amount control device 26 is formed by a mass flow controller, and is interposed between the second furnace introduction gas supply unit 25 and the first supply valve 27. The opening degree of the first supply amount control device 26 changes according to the control signal output from the gas introduction amount control means 14. The third supply amount control device 26 detects the supply amount from the second in-furnace introduction gas supply unit 25 to the second supply valve 27 and sends an information signal including the detected supply amount to the gas introduction control means 14. It is designed to output. The control signal can be used for correction of control by the gas introduction amount control means 14.
 第2供給弁27は、ガス導入量制御手段14が出力する制御信号に応じて開閉状態を切り換える電磁弁により形成されており、第2供給量制御装置26と第2流量計28との間に介装されている。 The second supply valve 27 is formed by an electromagnetic valve that switches between open and closed states according to a control signal output from the gas introduction amount control means 14, and is interposed between the second supply amount control device 26 and the second flow meter 28. It is intervened.
(窒化鋼部材の製造装置の作用(製造方法))
 次に、本実施形態の製造装置1の作用について説明する。まず、循環型処理炉2内に被処理品Sが投入され、循環型処理炉2が所望の処理温度に加熱される。その後、炉内導入ガス供給部20からアンモニアガスとアンモニア分解ガスとの混合ガス、あるいはアンモニアガスのみ、が設定初期流量で処理炉2内へ導入される。この設定初期流量も、パラメータ設定装置15において設定入力可能であり、第1供給量制御装置22及び第2供給量制御装置26(共にマスフローコントローラ)によって制御される。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気を攪拌する。
(Operation of Manufacturing Equipment for Nitride Steel Members (Manufacturing Method))
Next, the operation of the manufacturing apparatus 1 according to this embodiment will be described. First, the article S to be processed is put into the circulation type processing furnace 2, and the circulation type processing furnace 2 is heated to a desired processing temperature. Thereafter, a mixed gas of ammonia gas and ammonia decomposition gas or only ammonia gas is introduced into the processing furnace 2 at a set initial flow rate from the in-furnace introduced gas supply unit 20. This setting initial flow rate can also be set and input in the parameter setting device 15, and is controlled by the first supply amount control device 22 and the second supply amount control device 26 (both are mass flow controllers). Further, the stirring fan drive motor 9 is driven and the stirring fan 8 rotates to stir the atmosphere in the processing furnace 2.
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャルと基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能である。 The in-furnace nitriding potential calculation device 13 of the nitriding potential controller 4 calculates the in-furnace nitriding potential (because initially there is a very high value (since there is no hydrogen in the furnace), the decomposition of ammonia gas (hydrogen generation). It is determined whether or not the sum of the target nitriding potential and the reference deviation value is below. This reference deviation value can also be set and input in the parameter setting device 15.
 炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。 When it is determined that the calculated value of the in-furnace nitriding potential is less than the sum of the target nitriding potential and the reference deviation value, the nitriding potential controller 4 introduces the introduction amount of the in-furnace introduction gas via the gas introduction amount control means 14. Start controlling.
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号に基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、炉内導入ガスの導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニアガスの導入量とアンモニア分解ガスの導入量との総流量を一定として互いの導入比を変更する第1制御と、アンモニア分解ガスの導入を停止させた状態でアンモニアガスの導入量を変更する第2制御と、が選択的に実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、例えば、目標窒化ポテンシャルの値に応じて異なる値が用意されている。 The in-furnace nitriding potential calculation device 13 of the nitriding potential controller 4 calculates the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. The gas flow rate output adjusting means 30 uses the nitriding potential calculated by the in-furnace nitriding potential calculation device 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and introduces the amount of introduced gas into the furnace. PID control is carried out using as an input value. Specifically, in the PID control, the first control for changing the introduction ratio with the total flow rate of the introduction amount of ammonia gas and the introduction amount of ammonia decomposition gas being constant and the introduction of ammonia decomposition gas were stopped. And second control for changing the introduction amount of ammonia gas in the state is selectively performed. In the PID control, each setting parameter value set and input by the parameter setting device 15 is used. For this setting parameter value, for example, different values are prepared according to the value of the target nitriding potential.
 そして、ガス流量出力調整手段30が、PID制御の結果として、炉内導入ガスの各々の導入量を制御する。具体的には、ガス流量出力調整手段30が、各ガスの流量を決定し、当該出力値がガス導入量制御手段14へ伝達される。 And the gas flow rate output adjusting means 30 controls the amount of each introduced gas in the furnace as a result of the PID control. Specifically, the gas flow rate output adjusting unit 30 determines the flow rate of each gas, and the output value is transmitted to the gas introduction amount control unit 14.
 ガス導入量制御手段14は、各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22とアンモニア分解ガス用の第2供給量制御装置26とにそれぞれ制御信号を送る。 The gas introduction amount control means 14 sends control signals to the first supply amount control device 22 for ammonia gas and the second supply amount control device 26 for ammonia decomposition gas in order to realize the introduction amount of each gas.
 以上のような制御により、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの窒化処理後表面にε相や脱炭を阻害する酸化膜を形成させることなく極めて高品質に窒化処理を行うことができる。 With the above control, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, the nitriding treatment can be performed with extremely high quality without forming an ε phase or an oxide film that inhibits decarburization on the surface after the nitriding treatment of the workpiece S.
(第1制御と第2制御との選択について)
 第1制御が採用された例を、図11A及び図11Bに示す。図11A及び図11Bの例では、アンモニアガスの導入量とアンモニア分解ガスの導入量との総流量が、166(l/min)で一定となっており、窒化ポテンシャルが0.16に高精度に制御されている。
(Selection between first control and second control)
An example in which the first control is employed is shown in FIGS. 11A and 11B. In the example of FIGS. 11A and 11B, the total flow rate of the introduction amount of ammonia gas and the introduction amount of ammonia decomposition gas is constant at 166 (l / min), and the nitriding potential is highly accurate to 0.16. It is controlled.
 第2制御が採用された例を、図12A及び図12Bに示す。図12A及び図12Bの例では、アンモニア分解ガスの導入が停止され、アンモニアガスの導入量のみが220(l/min)の近傍で小刻みにフィードバック制御されることで、窒化ポテンシャルが0.16に高精度に制御されている。 An example in which the second control is employed is shown in FIGS. 12A and 12B. In the example of FIGS. 12A and 12B, the introduction of ammonia decomposition gas is stopped, and only the introduction amount of ammonia gas is feedback-controlled in the vicinity of 220 (l / min), so that the nitriding potential becomes 0.16. It is controlled with high accuracy.
 制御の安定性及び処理の安全性という観点からは、第1制御が実施されることが好ましい。しかしながら、被処理品Sの炉内挿入量が多い場合(例えば被処理品Sの表面積が7m2を超える場合)には、(3)式の分解反応が多く生ずるため、第1制御では窒化ポテンシャルを高精度に制御することが難しい。そのような場合には、第2制御に移行して窒化ポテンシャル制御が行われることが好ましい。 From the viewpoint of control stability and process safety, the first control is preferably performed. However, when the amount of the processed product S inserted into the furnace is large (for example, when the surface area of the processed product S exceeds 7 m 2 ), many decomposition reactions occur in the formula (3). Is difficult to control with high precision. In such a case, it is preferable to shift to the second control and perform nitriding potential control.
(案内筒(内部レトルト)の重要性について)
 本件発明者の実験によれば、製造装置1から案内筒5(内部レトルト)を取り除いて窒化処理を実施した場合(比較例)には、被処理品Sの表面にε相やα相が形成されてしまうことが確認された。(比較例においては、案内筒4を取り除いたことに加えて、撹拌扇9とガス導入管29の位置についても、炉内天井中央に移動した。)
(Importance of guide tube (internal retort))
According to the experiments of the present inventors, when the guide tube 5 (internal retort) is removed from the manufacturing apparatus 1 and nitriding is performed (comparative example), an ε phase or an α phase is formed on the surface of the workpiece S. It was confirmed that it would be. (In the comparative example, in addition to removing the guide cylinder 4, the positions of the stirring fan 9 and the gas introduction pipe 29 were also moved to the center of the ceiling in the furnace.)
 具体的には、製造装置1を用いた場合と、比較例の場合とで、(1)処理温度:580℃、窒化ポテンシャル:0.2、処理時間:1.5時間の処理を実施し、その後(2)処理温度:580℃、窒化ポテンシャル:1.5、処理時間:1.5時間の窒化処理を実施し、さらに(2)処理温度:580℃、窒化ポテンシャル:0.3、処理時間:20分の窒化処理を実施し、最後に(4)処理温度:500℃、窒化ポテンシャル:0.7、処理時間:2時間の窒化処理を実施した(合計4段階)。被処理品Sとしては、図13で示される冶具を用いて、A面(炉蓋側)、B面(炉内中央)、C面(炉内奥行側)の中央に、それぞれ、鋼材として、S45C鋼であってφ20×5mmのコイン状の試験片が用いられた。 Specifically, in the case of using the manufacturing apparatus 1 and in the case of the comparative example, (1) the treatment temperature: 580 ° C., the nitriding potential: 0.2, the treatment time: 1.5 hours, Thereafter, (2) nitriding treatment was performed at 580 ° C., nitriding potential: 1.5, processing time: 1.5 hours, and (2) processing temperature: 580 ° C., nitriding potential: 0.3, processing time. Nitriding treatment was performed for 20 minutes, and finally (4) nitriding treatment was performed at a treatment temperature of 500 ° C., a nitriding potential of 0.7, and a treatment time of 2 hours (total of 4 stages). As an article to be processed S, using the jig shown in FIG. 13, as a steel material, respectively, in the center of A side (furnace lid side), B side (center in the furnace), C side (depth side in the furnace), A coin-shaped specimen of S45C steel and φ20 × 5 mm was used.
 窒化処理後の各試験片の表面のX線構造解析をしたところ、以下の表3に示すように、実施例の場合には、いずれの面においても均一な化合物層厚さ、且つγ′相が得られた。 When the X-ray structure analysis of the surface of each test piece after nitriding was performed, as shown in Table 3 below, in the case of the example, the uniform compound layer thickness and the γ ′ phase in any surface was gotten.
 一方、比較例の場合には、炉蓋側へ設置したA面はε相がみられたのに対して、奥行方向へ設置したC面はα相とγ′相の2相になっており、また奥行方向へ行くほど化合物層厚さが薄くなる傾向が認められた。これは、窒化ポテンシャルの炉内均一性が良くないためであると考えられる。 On the other hand, in the case of the comparative example, the ε phase was observed on the A surface installed on the furnace lid side, whereas the C surface installed in the depth direction had two phases of α phase and γ ′ phase. Moreover, the tendency for the compound layer thickness to become thin was recognized as it went to the depth direction. This is considered to be because the uniformity of the nitriding potential in the furnace is not good.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(S45Cを母材とした更なる実施例及び比較例)
 S45C鋼から表4の各条件に基づいてそれぞれ図6に示す形態の試験片を作成し(化合物層の厚さは23μmで共通)、回転曲げ疲労強度の試験を実施した。具体的には、小野式回転曲げ疲労試験機(島津製作所、H7型)を用いて、試験荷重を47kgf、回転数を3600rpmとして、107回転を迎えることができるか否かを判定した。
(Further examples and comparative examples using S45C as a base material)
Test pieces having the form shown in FIG. 6 were prepared from S45C steel based on the conditions shown in Table 4 (the compound layer thickness is 23 μm in common), and the rotary bending fatigue strength test was performed. Specifically, using an Ono type rotating bending fatigue tester (Shimadzu Corporation, H7 type), it was determined whether or not 10 7 rotations could be reached with a test load of 47 kgf and a rotation speed of 3600 rpm.
 その結果、Vaγ’/(Vaε+Vaγ’)>0.5とVbγ’/(Vbε+Vbγ’)>0.2との両方を満たす試験片(表4の最上段の条件)のみが、107回転を迎えることができた。 As a result, only the test piece that satisfies both Vaγ ′ / (Vaε + Vγγ)> 0.5 and Vbγ ′ / (Vbε + Vbγ ′)> 0.2 (the uppermost condition in Table 4) is 10 We were able to reach 7 turns.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 比較例1及び比較例2は、3段目の窒化処理の処理温度が本発明による製造方法の条件を満たしていなかったため、Vbγ’/(Vbε+Vbγ’)>0.2を満たすことができず、結果として実施例と同等の疲労強度を実現することができなかった。比較例3は、2段目の窒化処理がスキップされたため、化合物層全体でのγ’相比率が低く、Vaγ’/(Vaε+Vaγ’)>0.5を満たすことができず、結果として実施例と同等の疲労強度を実現することができなかった。 In Comparative Example 1 and Comparative Example 2, the treatment temperature of the third stage nitriding treatment did not satisfy the conditions of the manufacturing method according to the present invention, and therefore Vbγ ′ / (Vbε + Vbγ ′)> 0.2 could be satisfied. As a result, the fatigue strength equivalent to that of the example could not be realized. In Comparative Example 3, since the second-stage nitriding treatment was skipped, the γ ′ phase ratio in the entire compound layer was low, and Vaγ ′ / (Vaε + Vaγ ′)> 0.5 could not be satisfied. The fatigue strength equivalent to that of the example could not be realized.
(SCM435を母材とした更なる実施例及び比較例)
 本発明は、炭素鋼の他に、炭素含有量が質量%で0.1%以上である低合金鋼にも適用可能である。例えば、SCr440やSCM435等も、母相として利用可能である。
(Further examples and comparative examples using SCM435 as a base material)
In addition to carbon steel, the present invention is also applicable to low alloy steel having a carbon content of 0.1% or more by mass%. For example, SCr440, SCM435, etc. can also be used as a parent phase.
 SCM435鋼から表5の各条件に基づいてそれぞれ図6に示す形態の試験片を作成し(化合物層の厚さは18μmで共通)、回転曲げ疲労強度の試験を実施した。具体的には、小野式回転曲げ疲労試験機(島津製作所、H7型)を用いて、試験荷重を55kgf、回転数を3600rpmとして、107回転を迎えることができるか否かを判定した。 Test pieces having the form shown in FIG. 6 were prepared from the SCM435 steel based on the conditions shown in Table 5 (the compound layer had a common thickness of 18 μm), and the rotary bending fatigue strength test was performed. Specifically, Ono-type rotating bending fatigue tester (Shimadzu Corporation, H7 type) using a test load 55 kgf, the rotational speed as 3600 rpm, it is determined whether it is possible to welcome 10 7 rotation.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 その結果、3段目の処理工程が実施された場合(表5の上段の条件)のみ、Vaγ’/(Vaε+Vaγ’)>0.5とVbγ’/(Vbε+Vbγ’)>0.2との両方を満たし、107回転を迎えることができた。 As a result, Vaγ ′ / (Vaε + Vaγ ′)> 0.5 and Vbγ ′ / (Vbε + Vbγ ′)> 0 only when the third processing step is performed (the upper condition of Table 5). Satisfying both 2 and 10 7 revolutions.
1 窒化鋼部材の製造装置
2 循環型処理炉
3 雰囲気ガス濃度検出装置
4 窒化ポテンシャル調節計
5 内部レトルト
6 レトルト
7 炉開閉蓋
8 攪拌ファン
9 攪拌ファン駆動モータ
12 雰囲気ガス配管
13 炉内窒化ポテンシャル演算装置
14 ガス導入量制御装置
15 パラメータ設定装置(タッチパネル)
20 炉内ガス供給部
21 第1炉内導入ガス供給部
22 第1炉内ガス供給制御装置
23 第1供給弁
25 第2炉内導入ガス供給部
26 第2炉内ガス供給制御装置
27 第2供給弁
29 炉内導入ガス導入配管
30 ガス流量出力調整装置
31 プログラマブルロジックコントローラ
40 炉内ガス廃棄配管
41 排ガス燃焼分解装置
100 一実施形態の窒化鋼部材
101 鉄窒化物化合物層
102 拡散層
120 比較例の窒化鋼部材
121 鉄窒化物化合物層
122 拡散層
201 炉壁またはベル
202 レトルト
203 撹拌扇
204 案内筒(内部レトルト)
205 ガス導入管
206 フレア付きのガス排気またはガスフード
207 熱電対
208 冷却作業用の蓋
209 冷却作業用の送風機
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus of nitrided steel member 2 Circulating type processing furnace 3 Atmospheric gas concentration detection apparatus 4 Nitriding potential controller 5 Internal retort 6 Retort 7 Furnace opening / closing lid 8 Stirring fan 9 Stirring fan drive motor 12 Atmospheric gas piping 13 Nitriding potential calculation in furnace Device 14 Gas introduction amount control device 15 Parameter setting device (touch panel)
20 In-furnace gas supply unit 21 First in-furnace gas supply unit 22 First in-furnace gas supply controller 23 First supply valve 25 Second in-furnace gas supply unit 26 Second in-furnace gas supply controller 27 Second Supply valve 29 Furnace introduction gas introduction pipe 30 Gas flow rate output adjustment device 31 Programmable logic controller 40 Furnace gas disposal pipe 41 Exhaust gas combustion decomposition apparatus 100 Steel nitride member 101 of one embodiment Iron nitride compound layer 102 Diffusion layer 120 Comparative example Nitride steel member 121 Iron nitride compound layer 122 Diffusion layer 201 Furnace wall or bell 202 Retort 203 Stirring fan 204 Guide tube (internal retort)
205 Gas introduction pipe 206 Gas exhaust or gas hood with flare 207 Thermocouple 208 Cooling lid 209 Cooling fan

Claims (8)

  1.  質量%で0.10%以上の炭素量を有する炭素鋼または低合金鋼を母相とし、表面に鉄窒化物化合物層が形成されている窒化鋼部材であって、
     前記鉄窒化物化合物層の厚さは、13μm以上であり、
     前記鉄窒化物化合物層の全領域中に占めるγ’相とε相の体積割合をそれぞれVaγ’とVaεとした時、Vaγ’/(Vaε+Vaγ’)の値が0.5以上であり、
     前記鉄窒化物化合物層の下部1/4の領域中に占めるγ’相とε相の体積割合をそれぞれVbγ’とVbεとした時、Vbγ’/(Vbε+Vbγ’)の値が0.2以上である
    ことを特徴とする窒化鋼部材。
    A nitrided steel member having a carbon steel or low alloy steel having a carbon content of 0.10% by mass or more as a parent phase, and an iron nitride compound layer formed on the surface,
    The iron nitride compound layer has a thickness of 13 μm or more,
    When the volume proportions of the γ ′ phase and the ε phase in the entire region of the iron nitride compound layer are Vaγ ′ and Vaε, respectively, the value of Vaγ ′ / (Vaε + Vaγ ′) is 0.5 or more,
    When the volume ratios of the γ ′ phase and the ε phase in the lower 1/4 region of the iron nitride compound layer are Vbγ ′ and Vbε, respectively, the value of Vbγ ′ / (Vbε + Vbγ ′) is 0.2. A nitrided steel member characterized by the above.
  2.  前記鉄窒化物化合物層の厚さは、20μm~35μm以上である
    ことを特徴とする請求項1に記載の窒化鋼部材。
    The nitrided steel member according to claim 1, wherein the iron nitride compound layer has a thickness of 20 袖 m to 35 袖 m or more.
  3.  前記Vbγ’/(Vbε+Vbγ’)の値が、0.3以上である
    ことを特徴とする請求項1または2に記載の窒化鋼部材。
    3. The nitrided steel member according to claim 1, wherein the value of Vbγ ′ / (Vbε + Vbγ ′) is 0.3 or more.
  4.  案内筒と撹拌ファンとを備えた循環型処理炉を用いて、質量%で0.10%以上の炭素量を有する炭素鋼または低合金鋼を母相とする窒化鋼部材を製造する方法であって、
     少なくとも2段階の窒化処理を有しており、
     1段目の処理においては、前記循環型処理炉内の温度が560℃~600℃の範囲に制御され、且つ、前記循環型処理炉内の窒化ポテンシャルが0.15~0.4の範囲に制御され、
     2段目の処理においては、前記循環型処理炉内の温度が490℃~510℃の範囲に制御され、且つ、前記循環型処理炉内の窒化ポテンシャルが0.5~2.0の範囲に制御される
    ことを特徴とする窒化鋼部材の製造方法。
    A method of manufacturing a nitrided steel member having a carbon steel or low alloy steel having a carbon content of 0.10% by mass or more as a parent phase using a circulation type processing furnace having a guide cylinder and a stirring fan. And
    Has at least two stages of nitriding treatment;
    In the first stage treatment, the temperature in the circulation type processing furnace is controlled in the range of 560 ° C. to 600 ° C., and the nitriding potential in the circulation type processing furnace is in the range of 0.15 to 0.4. Controlled,
    In the second stage treatment, the temperature in the circulation type processing furnace is controlled in the range of 490 ° C. to 510 ° C., and the nitriding potential in the circulation type processing furnace is in the range of 0.5 to 2.0. A method for producing a nitrided steel member, characterized by being controlled.
  5.  案内筒と撹拌ファンとを備えた循環型処理炉を用いて、質量%で0.10%以上の炭素量を有する炭素鋼または低合金鋼を母相とする窒化鋼部材を製造する方法であって、
     少なくとも3段階の窒化処理を有しており、
     1段目の処理においては、前記循環型処理炉内の温度が560℃~600℃の範囲に制御され、且つ、前記循環型処理炉内の窒化ポテンシャルが0.7~3.0の範囲に制御され、
     2段目の処理においては、前記循環型処理炉内の温度が560℃~600℃の範囲に制御され、且つ、前記循環型処理炉内の窒化ポテンシャルが0.15~0.4の範囲に制御され、
     3段目の処理においては、前記循環型処理炉内の温度が490℃~510℃の範囲に制御され、且つ、前記循環型処理炉内の窒化ポテンシャルが0.5~2.0の範囲に制御される
    ことを特徴とする窒化鋼部材の製造方法。
    A method of manufacturing a nitrided steel member having a carbon steel or low alloy steel having a carbon content of 0.10% by mass or more as a parent phase using a circulation type processing furnace having a guide cylinder and a stirring fan. And
    Has at least three stages of nitriding,
    In the first stage treatment, the temperature in the circulation type processing furnace is controlled in the range of 560 ° C. to 600 ° C., and the nitriding potential in the circulation type processing furnace is in the range of 0.7 to 3.0. Controlled,
    In the second stage process, the temperature in the circulation type processing furnace is controlled in the range of 560 ° C. to 600 ° C., and the nitriding potential in the circulation type processing furnace is in the range of 0.15 to 0.4. Controlled,
    In the third stage of processing, the temperature in the circulation type processing furnace is controlled in the range of 490 ° C. to 510 ° C., and the nitriding potential in the circulation type processing furnace is in the range of 0.5 to 2.0. A method for producing a nitrided steel member, characterized by being controlled.
  6.  案内筒と撹拌ファンとを有する循環型処理炉を備え、
     1段目の処理においては、前記循環型処理炉内の温度が560℃~600℃の範囲に制御され、且つ、前記循環型処理炉内の窒化ポテンシャルが0.15~0.4の範囲に制御され、
     2段目の処理においては、前記循環型処理炉内の温度が490℃~510℃の範囲に制御され、且つ、前記循環型処理炉内の窒化ポテンシャルが0.5~2.0の範囲に制御される
    ことを特徴とする窒化鋼部材の製造装置。
    A circulation type processing furnace having a guide cylinder and a stirring fan;
    In the first stage treatment, the temperature in the circulation type processing furnace is controlled in the range of 560 ° C. to 600 ° C., and the nitriding potential in the circulation type processing furnace is in the range of 0.15 to 0.4. Controlled,
    In the second stage treatment, the temperature in the circulation type processing furnace is controlled in the range of 490 ° C. to 510 ° C., and the nitriding potential in the circulation type processing furnace is in the range of 0.5 to 2.0. An apparatus for producing a nitrided steel member, characterized by being controlled.
  7.  案内筒と撹拌ファンとを有する循環型処理炉を備え、
     1段目の処理においては、前記循環型処理炉内の温度が560℃~600℃の範囲に制御され、且つ、前記循環型処理炉内の窒化ポテンシャルが0.7~3.0の範囲に制御され、
     2段目の処理においては、前記循環型処理炉内の温度が560℃~600℃の範囲に制御され、且つ、前記循環型処理炉内の窒化ポテンシャルが0.15~0.4の範囲に制御され、
     3段目の処理においては、前記循環型処理炉内の温度が490℃~510℃の範囲に制御され、且つ、前記循環型処理炉内の窒化ポテンシャルが0.5~2.0の範囲に制御される
    ことを特徴とする窒化鋼部材の製造装置。
    A circulation type processing furnace having a guide cylinder and a stirring fan;
    In the first stage treatment, the temperature in the circulation type processing furnace is controlled in the range of 560 ° C. to 600 ° C., and the nitriding potential in the circulation type processing furnace is in the range of 0.7 to 3.0. Controlled,
    In the second stage process, the temperature in the circulation type processing furnace is controlled in the range of 560 ° C. to 600 ° C., and the nitriding potential in the circulation type processing furnace is in the range of 0.15 to 0.4. Controlled,
    In the third stage of processing, the temperature in the circulation type processing furnace is controlled in the range of 490 ° C. to 510 ° C., and the nitriding potential in the circulation type processing furnace is in the range of 0.5 to 2.0. An apparatus for producing a nitrided steel member, characterized by being controlled.
  8.  アンモニアガスとアンモニア分解ガスとが前記循環型処理炉内に導入されるようになっており、
     当該製造装置は、前記窒化ポテンシャルを制御するために、
     前記アンモニアガスの導入量と前記アンモニア分解ガスの導入量との総流量を一定として互いの導入比を変更する第1制御と、
     前記アンモニア分解ガスの導入を停止させた状態で、前記アンモニアガスの導入量を変更する第2制御と、
    を選択的に実施できるようになっている
    ことを特徴とする請求項6または7のいずれかに記載の窒化鋼部材の製造装置。
    Ammonia gas and ammonia decomposition gas are introduced into the circulation processing furnace,
    In order to control the nitriding potential, the manufacturing apparatus
    A first control for changing a mutual introduction ratio while keeping a total flow rate of the introduction amount of the ammonia gas and the introduction amount of the ammonia decomposition gas constant;
    A second control for changing the introduction amount of the ammonia gas in a state where the introduction of the ammonia decomposition gas is stopped;
    The apparatus for producing a nitrided steel member according to any one of claims 6 and 7, characterized in that can be selectively implemented.
PCT/JP2019/017127 2018-04-26 2019-04-23 Nitrided steel member, and method and device for producing nitrided steel member WO2019208534A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018085305A JP7094540B2 (en) 2018-04-26 2018-04-26 Nitride steel member and manufacturing method and manufacturing equipment for nitrided steel member
JP2018-085305 2018-04-26

Publications (1)

Publication Number Publication Date
WO2019208534A1 true WO2019208534A1 (en) 2019-10-31

Family

ID=68294083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017127 WO2019208534A1 (en) 2018-04-26 2019-04-23 Nitrided steel member, and method and device for producing nitrided steel member

Country Status (2)

Country Link
JP (1) JP7094540B2 (en)
WO (1) WO2019208534A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3839089A4 (en) * 2018-08-17 2021-12-08 Parker Netsushori Kogyo Co., Ltd. Surface hardening treatment device and surface hardening treatment method
WO2022176878A1 (en) * 2021-02-17 2022-08-25 パーカー熱処理工業株式会社 Nitriding method for steel member
WO2022210878A1 (en) * 2021-03-31 2022-10-06 パーカー熱処理工業株式会社 Nitriding treatment method for steel member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202124731A (en) * 2019-10-11 2021-07-01 日商帕卡熱處理工業股份有限公司 Surface hardening apparatus and surface hardening method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016194111A (en) * 2015-03-31 2016-11-17 Dowaサーモテック株式会社 Nitriding treatment method for steel member

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012115135A1 (en) * 2011-02-23 2014-07-07 Dowaサーモテック株式会社 Nitride steel member and manufacturing method thereof
JP5656908B2 (en) * 2012-04-18 2015-01-21 Dowaサーモテック株式会社 Nitride steel member and manufacturing method thereof
JP6636829B2 (en) * 2015-05-12 2020-01-29 パーカー熱処理工業株式会社 Nitrided steel member and method of manufacturing nitrided steel
JP6755106B2 (en) * 2016-03-11 2020-09-16 パーカー熱処理工業株式会社 Nitriding steel member and manufacturing method of nitrided steel member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016194111A (en) * 2015-03-31 2016-11-17 Dowaサーモテック株式会社 Nitriding treatment method for steel member

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
30 August 2011, article DIETER LIEDTKE ET AL: "Passages, NITRIDING AND NITROCARBURIZING ON IRON MATERIALS", pages: 37-39 131-133 - 136-137, XP008185009 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3839089A4 (en) * 2018-08-17 2021-12-08 Parker Netsushori Kogyo Co., Ltd. Surface hardening treatment device and surface hardening treatment method
US11781209B2 (en) 2018-08-17 2023-10-10 Parker Netsushori Kogyo Co., Ltd. Surface hardening treatment device and surface hardening treatment method
WO2022176878A1 (en) * 2021-02-17 2022-08-25 パーカー熱処理工業株式会社 Nitriding method for steel member
EP4296383A4 (en) * 2021-02-17 2023-12-27 Parker Netsushori Kogyo Co., Ltd. Nitriding method for steel member
WO2022210878A1 (en) * 2021-03-31 2022-10-06 パーカー熱処理工業株式会社 Nitriding treatment method for steel member

Also Published As

Publication number Publication date
JP7094540B2 (en) 2022-07-04
JP2021120471A (en) 2021-08-19

Similar Documents

Publication Publication Date Title
WO2019208534A1 (en) Nitrided steel member, and method and device for producing nitrided steel member
JP6636829B2 (en) Nitrided steel member and method of manufacturing nitrided steel
JP2003073799A (en) Surface treatment method for titanium-based material
US11155891B2 (en) Surface hardening treatment device and surface hardening treatment method
CN105593394B (en) The nitridation treatment method of steel member
JP6755106B2 (en) Nitriding steel member and manufacturing method of nitrided steel member
CN104152916A (en) Thermal treatment and plasma nitrocarburizing surface treatment process method for special wear-resistant die steel with ultrahigh heat conductivity for hot stamping
WO2019131602A1 (en) Nitrided steel member, and method and apparatus for producing nitrided steel member
WO2020175453A1 (en) Nitriding steel member, and method and device for manufacturing nitriding steel member
TWI758650B (en) Nitrided Steel Components
JP2010058164A (en) Method of manufacturing die-cast mold
KR20050106534A (en) The method of gas nitriding and oxinitrocarburizing at low temperature and low pressure for ferrous alloys
TWI809714B (en) Nitriding treatment method of steel components
CN106637058B (en) A kind of low temperature gas nitriding process of austenitic stainless steel
WO2016182013A1 (en) Nitride steel member and method for manufacturing nitride steel member
WO2022210878A1 (en) Nitriding treatment method for steel member
JPS63255355A (en) Modifying method by mixed gas penetration
JP2023073674A (en) Surface hardening device and surface hardening method
TWI833179B (en) Nitriding treatment method for steel components
Lord Low Pressure Carburizing in a Vacuum Furnace
Jordan Vacuum gas-nitriding furnace produces precision nitrided parts
JP2021101040A (en) Nitriding treated steel component and manufacturing method of the same
JPH05295515A (en) Surface treatment of valve spring retainer made of titanium alloy
JP2002212703A (en) Method for processing iron-based alloy
JPH10121109A (en) Method for controlling carbon content in metallic sintered body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP