WO2020175453A1 - Nitriding steel member, and method and device for manufacturing nitriding steel member - Google Patents

Nitriding steel member, and method and device for manufacturing nitriding steel member Download PDF

Info

Publication number
WO2020175453A1
WO2020175453A1 PCT/JP2020/007395 JP2020007395W WO2020175453A1 WO 2020175453 A1 WO2020175453 A1 WO 2020175453A1 JP 2020007395 W JP2020007395 W JP 2020007395W WO 2020175453 A1 WO2020175453 A1 WO 2020175453A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
steel member
compound layer
nitride compound
furnace
Prior art date
Application number
PCT/JP2020/007395
Other languages
French (fr)
Japanese (ja)
Inventor
泰 平岡
Original Assignee
パーカー熱処理工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パーカー熱処理工業株式会社 filed Critical パーカー熱処理工業株式会社
Publication of WO2020175453A1 publication Critical patent/WO2020175453A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/30Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for crankshafts; for camshafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/06Crankshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties

Definitions

  • Nitride steel member and method and device for manufacturing nitrided steel member Nitride steel member and method and device for manufacturing nitrided steel member
  • the present invention relates to a nitrided steel member, and a method and an apparatus for manufacturing the nitrided steel member. More specifically, the present invention relates to a nitrided steel member having excellent wear resistance, which is useful for gears for automobile transmissions, crankshafts, and the like, and a manufacturing method and a manufacturing device for the nitrided steel member.
  • the nitriding treatment which is a low heat treatment strain treatment, is high in number, and recently, the atmosphere control technology of the gas nitriding treatment has been particularly interested.
  • a compound layer which is an iron nitride is formed on the surface and a hardened layer called a diffusion layer is formed inside.
  • the hardened layer is usually made of an alloy nitride such as 3 or 0 ", which is a base material component.
  • Non-Patent Document 1 it is known that the fatigue resistance is improved by forming the phase' rather than the phase.
  • Patent Document 1 a nitrided steel member having improved bending fatigue strength and surface fatigue by forming a ⁇ phase is also provided.
  • Patent Document 1 ⁇ 2020/175453 2 ⁇ (: 170? 2020/007395
  • Non-Patent Document 2 As a nitriding method for forming a compound layer containing a large amount of s phase on the surface, a soft nitriding treatment is known, which is performed by mixing a small amount of carburizing gas into an ammonia atmosphere.
  • the nitriding treatment when the nitriding treatment is performed at a temperature higher than the eutectoid transformation point (about 590°C) of the Fe_N binary alloy, a compound layer is formed on the surface, and if it is then rapidly cooled, nitrogen is formed below it. A hardened layer containing the contained martensitic structure is formed.
  • the nitriding treatment in this temperature range is called an nitriding treatment (A u s t e n i t i c N i t r i d i n g) in distinction from the conventional nitriding process (N i t r i d i n g).
  • STKM- 13C mechanical structure carbon steel pipe defined in JIS G 3445
  • nitriding treatment at 640°C for 90 m in
  • further nitriding treatment at 660°C for 40 min
  • Subsequent reheating at 9Om in at 280°C cures the near surface surface to 800-900 HV.
  • Non-Patent Document 3 The compound layer on the surface at this time is reported to be in the s phase.
  • Patent Document 1 Japanese Patent Laid-Open No. 201 3-22 1 203
  • Patent Document 2 JP 201 4-25 1 61 Publication
  • Non-Patent Document 1 Yasushi Hiraoka, Yoichi Watanabe, Akitake Ishida: Heat Treatment, Volume 55, No. 1, 1 _ 2 ⁇ 2020/175 453 3 (: 170? 2020 /007395
  • Non-Patent Document 2 Dietary Toke et al.: Nitriding and nitrocarburizing of iron, Agne Technology Center —, 2 0 1 3 years, page 8 4
  • Non-Patent Document 3 Kawai _ Ki, Toru Kidate: Summary of the 81st Spring Lecture Meeting of Japan Heat Treatment Technology Association, pp. 2 9-30
  • Friction loss in mechanical parts, such as camshafts, piston rings, crankshafts, etc., inside automobile engines is as high as 10% or more.
  • Surface treatment such as nitriding has already been applied to some mechanical parts, but further reduction of friction loss is desired.
  • Non-Patent Document 3 since the nitriding temperature is 700°C, which is relatively high, the hardness of the base material and the diffusion layer may be reduced.
  • the compound layer formed by the soft nitriding treatment has insufficient surface hardness (see the comparative example in Fig. 11 described later) and has insufficient abrasion resistance (see Table 1 described below). See comparative example).
  • the inventors of the present invention have conducted sufficient studies and various experiments, and have maintained a sufficient hardness by controlling the temperature and nitriding potential of the nitriding treatment with high accuracy while limiting the configuration of the treatment furnace. Manufacturing of nitrided steel members with improved wear resistance ⁇ 2020/175 453 4 ⁇ (: 170? 2020 /007395
  • the present invention was created based on the above findings.
  • the purpose of the present invention is
  • a nitride steel member having improved wear resistance in the surface layer region and a manufacturing method and manufacturing apparatus for manufacturing such a nitrided steel member.
  • the present invention is a nitrided steel member having a carbon steel or low alloy steel as a mother phase, comprising a nitride compound layer on the surface, and a hardened layer having an austenite structure under the nitride compound layer.
  • a diffusion layer in which nitrogen is diffused in the matrix is provided below the hardened layer, and the nitride compound layer has a phase distribution in the order of £ phase, a′ phase, and £ phase.
  • the volume ratio of the phase' in the nitride compound layer is 20% or more, and the nitride compound layer is 5 to 5% from the surface of the nitrided steel member.
  • a nitrided steel member having a thickness of 50 having a thickness of 50.
  • the nitride compound layer on the surface has a phase distribution of the order of £ phase, ⁇ phase, and £ phase, and has a thickness of 50! Since the volume ratio of the phase' in the nitride compound layer is 20% or more (such a structure was first realized by the nitriding method described later), it has sufficient hardness as a nitrided steel member. It is possible to improve wear resistance while providing
  • the upper limit of 50 for the thickness of the nitride compound layer is because that value is the maximum thickness confirmed by the inventor of the present application up to the time of filing of the present application (see Using the mold treatment furnace, adopt the nitrogen treatment conditions of 350 (3 steels as mother phase, treatment temperature: 640° ⁇ , nitriding potential: 0.6, treatment time: 2 hours). Has been confirmed to be obtained by).
  • the lower limit of 5 is set as a condition for forming the nitride compound layer on the entire surface of the nitrided steel member (there is no case where the nitride compound layer is not locally formed). It has a value.
  • the present invention is a nitrided steel member having a carbon steel or a low alloy steel as a parent phase, comprising a nitride compound layer on the surface, and a hardening having an austenitic structure under the nitride compound layer. A layer, and nitrogen spreads in the matrix below the hardened layer. ⁇ 2020/175 453 5 ⁇ (: 170? 2020 /007395
  • the nitride compound layer has a phase distribution of A′ phase and £ phase, and the volume ratio of the A′ phase in the nitride compound layer is 30% or more.
  • the nitride compound layer is 5 to 5 from the surface of the nitrided steel member.
  • a nitrided steel member having a thickness of 30 A nitrided steel member having a thickness of 30.
  • the nitride compound layer on the surface has a phase distribution in the order of A′ phase and £ phase, and Due to the volume ratio of the A'phase in the nitride compound layer being 30% or more (such a structure was first realized by the nitriding method described later), sufficient hardness as a nitrided steel member was obtained. It is possible to improve wear resistance while providing
  • the thickness of the nitride compound layer is set as a condition for forming the nitride compound layer on the entire surface of the nitrided steel member (the nitride compound layer may not be locally formed). , 5 are the lower limits.
  • carbon steel having a carbon content of not less than 0.1% in mass% can be used as the parent phase.
  • the present invention can also be recognized as a method for manufacturing a nitrided steel member. That is, the present invention is a method for producing a nitrided steel member having a carbon steel or a low alloy steel as a mother phase, using a circulation type processing furnace equipped with a guide cylinder and a stirring fan, wherein during the nitriding processing, The temperature range in the circulation-type treatment furnace is controlled to 610 ° to 660 ° ⁇ , and at the time of the nitriding treatment, the nitriding potential in the circulation-type treatment furnace is 0.
  • the method for producing a nitrided steel member is characterized in that the nitriding treatment is controlled within the range of .6, the nitriding treatment is followed by rapid cooling, and then reheating treatment. ⁇ 2020/175 453 6 ⁇ (: 170? 2020 /007395
  • a diffusion layer in which nitrogen is diffused in the parent phase is provided below the layer, and the nitride compound layer has a phase distribution in the order of £ phase, a′ phase, and £ phase.
  • the volume ratio of phase in the layer is 20% or more, and the nitride compound layer has a thickness of 5 to 50 from the surface of the nitrided steel member.
  • a diffusion layer in which nitrogen is diffused in the parent phase is provided below the layer, and the nitride compound layer has a phase distribution in the order of ′′ phase and £ phase.
  • the volume ratio of the ′′ phase is 30% or more, and the nitride compound layer has a thickness of 50° to 300°! from the surface of the nitrided steel member.
  • the present invention can also be recognized as an apparatus for manufacturing a nitrided steel member. That is, the present invention comprises a recycling processing furnace having a stirring fan and the guide tube, at the time of nitriding treatment, the temperature range of the recycling process furnace, controlled 6 1 0 ° ⁇ _ ⁇ 6 6 0 ° ⁇
  • a nitrided steel member is introduced such that ammonia gas and ammonia decomposition gas are introduced into the circulation type treatment furnace in order to control the nitriding potential in the circulation type treatment furnace.
  • the nitriding potential in the circulation-type treatment furnace is such that the amount of ammonia decomposition gas introduced into the furnace is constant and the amount of ammonia gas introduced into the furnace is changed. It is a device for manufacturing nitrided steel members, which is controlled to a target nitriding potential in the range of to 0.6. ⁇ 2020/175 453 7 ⁇ (: 170? 2020/007395
  • a diffusion layer in which nitrogen is diffused in the parent phase is provided below the layer, and the nitride compound layer has a phase distribution in the order of £ phase, a′ phase, and £ phase.
  • the volume ratio of phase in the layer is 20% or more, and the nitride compound layer has a thickness of 5 to 50 from the surface of the nitrided steel member.
  • a diffusion layer in which nitrogen is diffused in the parent phase is provided below the layer, and the nitride compound layer has a phase distribution in the order of ′′ phase and £ phase.
  • the volume ratio of the ′′ phase is 30% or more, and the nitride compound layer has a thickness of 50° to 300°! from the surface of the nitrided steel member.
  • the nitrided steel member of the present invention it is possible to improve wear resistance while providing sufficient hardness as the nitrided steel member.
  • a nitrided steel member having sufficient hardness and wear resistance can be manufactured.
  • a nitrided steel member having sufficient hardness and wear resistance can be manufactured.
  • FIG. 1 A cross-sectional micrograph of a nitrided steel member according to a first embodiment of the present invention.
  • Fig. 2 is a diagram showing an analysis result of the nitrided steel member of Fig. 1 by the Mitsumi three-port method. ⁇ 2020/175 453 8 ⁇ (: 170? 2020 /007395
  • FIG. 3 is a cross-sectional photomicrograph of the nitrided steel member according to the first embodiment of the present invention before being reheated.
  • Fig. 4 is a diagram showing the results of analysis of the nitrided steel member of Fig. 3 by the Mitsumi three-port method.
  • FIG. 5 A cross-sectional micrograph of a nitrided steel member according to a second embodiment of the present invention.
  • Fig. 6 is a diagram showing the results of analysis of the nitrided steel member of Fig. 5 by the Mitsumi three-port method.
  • FIG. 7 A cross-sectional micrograph of a nitrided steel member according to a second embodiment of the present invention before being reheated.
  • Fig. 8 is a diagram showing the results of analysis of the nitrided steel member of Fig. 7 by the Mitsumi three-neck method.
  • FIG. 9 A cross-sectional micrograph of a nitrided steel member as a comparative example.
  • Fig. 10 is a diagram showing an analysis result of the nitrided steel member of Fig. 9 by the Mitsumi three-port method.
  • FIG. 11 A graph showing the measurement results of hardness.
  • FIG. 12 is a schematic view of an apparatus for manufacturing a nitrided steel member according to an embodiment of the present invention.
  • FIG. 13 is a schematic cross-sectional view of a circulation type processing furnace (horizontal gas nitriding furnace).
  • FIG. 14 is a graph showing an example of gas introduction control.
  • FIG. 148 is a graph showing an example of gas introduction control.
  • FIG. 15 is a perspective view of a test piece used for a friction and wear test.
  • FIG. 16 A perspective view of a 3 V tester used for a friction and wear test.
  • FIG. 1 is a cross-sectional micrograph of a nitrided steel member 110 according to the first embodiment of the present invention.
  • the nitrided steel member 1100 of the present embodiment has a nitride compound layer 1111 formed on the surface thereof, and will be described below below the nitride compound layer 1111.
  • a hardened layer 1 12 having such an austenite structure is provided, and a diffusion layer 1 13 in which nitrogen is diffused in a matrix is provided below the hardened layer 1 12.
  • the matrix phase (matrix) of this embodiment is carbon steel having a carbon content of 0.45% by mass. ⁇ 2020/175 453 9 ⁇ (: 170? 2020 /007395
  • Fig. 1 the lower part of the nitride compound layer 1 11 and the hardened layer 1 12 appear black because they were strongly corroded by the corrosive liquid for observing the structure. Also visible above the surface is the polishing plate, not the constituent elements of the nitrided steel member.
  • the phase distribution of the nitrided steel member 110 is It can be analyzed by using together with X-ray diffraction. Specifically, as shown in Figure 2, By the 0 method, from the surface side, £ phase, The crystalline phase) and the £ phase are distributed in the order. Then, by using X-ray diffraction together, the curing layer 1 1 2 is dried. It is confirmed that the crystalline phase is the talent-stainite phase (a phase).
  • the nitride compound layer 1 11 has a thickness of about 30 from the surface of the nitrided steel member 1 10, which is 5 The thickness is within the range of ⁇ 50.
  • the surface phase is several 111 thick.
  • the volume ratio of the phase' in the nitride compound layer 1 1 1 is
  • Nitride compound layer 1 1 It can be measured based on the number of counts of'phase' and £ phase in it. Alternatively, it may be calculated by image analysis from the obtained image of FIG. In the case of the nitride compound layer 1 11 of the present embodiment, it is 41%.
  • the hardened layer 1 12 was expected to be transformed into a martensite structure by the reheating treatment.
  • the result was that most of the stratum 1 12 was the talent-phase (phase a). Therefore, the present inventor believes that the hardened layer 1 12 is strictly a mixed structure of talent and martensite.
  • the possibility that more than one type of microstructure such as a bainite structure or brownite structure may be included is not excluded.
  • the nitrided steel member 110 of the present embodiment was processed by using a circulation type processing furnace described later, processing temperature: 640°°, nitriding potential: 0.4, processing time: 2 hours. Nitrogen treatment was performed under the conditions, followed by rapid cooling, and further treatment temperature: 250 ° ⁇ , treatment time: ⁇ 2020/175 453 10 ⁇ (: 170? 2020 /007395
  • It can be manufactured by being reheated under the processing condition of 2 hours.
  • the nitrided steel member 110 as described above has a sufficient hardness for practical use because the volume ratio of the phase' in the nitride compound layer 1 11 is 41% (20% or more). (See Example 1_30 in FIG. 11 below) and wear resistance is also improved (see Example 1_30 in Table 1 below).
  • FIG. 3 For reference, a cross-sectional micrograph of the nitrided steel member 110 before reheating is shown in Fig. 3.
  • FIG. 4 is a diagram showing an analysis result of the nitrided steel member 160 of FIG. 3 by the Mimi 30 method.
  • FIG. 5 is a cross-sectional photomicrograph of the nitrided steel member 120 according to the second embodiment of the present invention.
  • the nitrided steel member 120 of the present embodiment has a nitride compound layer 1 21 formed on the surface thereof, which will be described below below the nitride compound layer 1 21.
  • the hardened layer 1 2 2 having such an austenite structure is provided, and the diffusion layer 1 2 3 in which nitrogen is diffused in the matrix is provided below the hardened layer 1 2 2.
  • the matrix phase (matrix) of the present embodiment is carbon steel having a carbon content of 0.45% by mass.
  • the lower part of the nitride compound layer 1 2 1 and the hardened layer 1 2 2 appear black because they are strongly corroded by the corrosive liquid for observing the structure. Further, what is visible above the surface is the polishing plate, not the constituent elements of the nitrided steel member.
  • the phase distribution of the nitrided steel member 120 can be analyzed by using the Mimi 30 method and X-ray diffraction in combination. Specifically, as shown in Figure 6, By the 0 method, the phase The crystalline phase) and the £ phase are distributed in this order. Then, the X-ray diffraction is also used, so that the dried crystal phase of the hardened layer 1 2 2 is stable. ⁇ 2020/175 453 1 1 ⁇ (: 170? 2020/007395
  • phase a It is confirmed that it is a night phase (phase a).
  • the nitride compound layer 1 2 1 has a thickness of about 1 2 from the surface of the nitrided steel member 1 2 0. The thickness is within the range. The surface phase is several 111 thick.
  • the volume ratio of the phase' in the nitride compound layer 1 2 1 is
  • nitride compound layer It can be measured based on the number of counts of'phase' and £ phase in it. Alternatively, it may be calculated by image analysis from the obtained image of FIG. In the case of the nitride compound layer 1 2 1 of this embodiment, it is 5 2%.
  • the hardened layer 122 was expected to be transformed into a martensite structure by the reheating treatment. However, the results of Mimi 30 shown in Fig. 6 and the X-ray diffraction method described above were used. It was confirmed by crystal structure analysis that in the hardened layer 122, a large amount of talented regions partially remained. However, depending on the steel material size after nitriding treatment, cooling conditions, and reheating conditions, the possibility of including multiple types of microstructures such as a bainite structure and brownite structure cannot be ruled out.
  • the nitrided steel member 120 of the present embodiment was treated by using a circulation type treatment furnace described later, treatment temperature: 640°°, nitriding potential: 0.2, treatment time: 2 hours. After being subjected to the nitriding treatment under the conditions, it is rapidly cooled, and then it is reheated under the treatment conditions of the treatment temperature: 250 ° C. and the treatment time: 2 hours, whereby it can be produced.
  • the nitrided steel member 120 as described above has sufficient hardness for practical use because the volume ratio of the ⁇ phase in the nitride compound layer 1 21 is 52% (30% or more). (See Example 2 _ 12 in Figure 11 below) and wear resistance is also improved (see Example 2-12 in Table 1 below).
  • FIG. 7 For reference, a cross-sectional micrograph of the nitrided steel member 120 before reheating is shown in Fig. 7.
  • FIG. 8 is a diagram showing an analysis result of the nitrided steel member 170 shown in FIG. 7 by the Mimi 30 method.
  • FIG. 9 is a cross-sectional micrograph of a nitrided steel member 300 of Comparative Example.
  • the nitrided steel member 300 of the comparative example has a nitride compound layer 3001 formed on the surface thereof, and nitrogen is present in the matrix below the nitride compound layer 301. It has a diffusion layer 303 that is diffused.
  • the parent phase (base material) of the comparative example is also carbon steel having a carbon content of 0.45% by mass.
  • the surface side of the compound layer obtained by the conventional general nitriding treatment is porous.
  • the upper part of the nitride compound layer 301 appears black because there are many fine voids in this region. Further, what is seen above the surface is the polishing plate, not the constituent elements of the nitrided steel member.
  • the phase distribution of the nitrided steel member 300 can also be analyzed by using the Mimi 30 method and X-ray diffraction in combination. Specifically, as shown in FIG. By the 0 method, it can be seen that most of the nitride compound layer 301 is in the phase.
  • the nitride compound layer 3001 has a thickness of about 17 from the surface of the nitrided steel member 300.
  • the nitrided steel member 300 of the comparative example was processed using a circulation type processing furnace described below, with a processing temperature of 5800°, a nitriding potential of 2.5, and a processing time of 2 hours. After the soft nitriding process is performed (atmosphere gas is ammonia, nitrogen gas and carbon dioxide gas), it can be rapidly cooled to be manufactured. It has been confirmed that the nitride compound layer 301 of the comparative example does not cure even if it is subjected to the reheating treatment (probably because the temperature during the soft nitriding treatment is relatively low).
  • nitrided steel member 300 As described above, most of the nitride compound layer 3001 is the ⁇ phase, and conventionally, this hard phase was used to improve the wear resistance.
  • the surface hardness was insufficient as compared with the compound layer formed by the nitriding treatment of the present invention (see the comparative example in Fig. 11 described later), which adversely affects the wear resistance and the wear resistance. Abrasion is also insufficient (see Comparative Example in Table 1 below). ⁇ 2020/175 453 13 ⁇ (: 170? 2020 /007395
  • voids which appear black in Fig. 9 are formed on the surface side of the nitride compound layer 3001. To be done. Since the void (porous) can be the starting point of crack initiation, its presence is not preferable.
  • Figure 11 is a graph showing the results of hardness measurement.
  • the nitride compound layer was used.
  • the hardness in the vicinity of the surface is slightly lower than 8 0 0 1 to 1 V, which is not sufficient. ..
  • the hardness decreases toward the inside, but the hardness near the surface is sufficiently high.
  • the hardness in the vicinity of the surface has a 6 0 0 1 - about 1 V, not sufficient.
  • the thickness of the nitride compound layer 1 11 of the nitrided steel member 110 according to the first embodiment generally, the thicker the thickness, the larger the allowable wear amount, and therefore the more preferable.
  • the thickness of 11 was 50 (see Example 1_50 in Table 1 below). Therefore, the maximum value of the thickness of the nitride compound layer 1 11 which can be recognized by those skilled in the art as solving the problem of the present invention is set to 50
  • the inventors of the present invention have confirmed that the thickness of the nitride compound layer 1 11 tends to increase when the nitriding potential during the nitriding treatment is high.
  • the thickness of the nitride compound layer 1 21 of the nitrided steel member 120 of the second embodiment generally, it can be said that the thicker the thickness, the larger the allowable wear amount, which is preferable.
  • the present inventor has a tendency that the carbon compound steel generally used for gears has a low carbon content (specifically, for example, 3 15 (3 steel), the nitride compound layer 1 2 1 tends to be thick. . confirmed direction and, specifically, 3 1 5 (3 steel processing temperature: 6 5 0 ° ⁇ , nitriding potential:. 0 2, treatment time: to nitriding treatment for 2 hours, and quenched
  • the treatment temperature was 250° C. and the treatment time was 2 hours
  • the nitride compound layer 1 21 had a thickness of 30 (see Examples 2 to 30 in Table 1 below). Therefore, the maximum value of the thickness of the nitride compound layer 1 11 which can be recognized by those skilled in the art as solving the problem of the present invention is set to 30
  • the present inventor has confirmed that the thickness of the nitride compound layer 1 2 1 also tends to increase when the nitriding potential during the nitriding treatment is high.
  • the inventor of the present invention has confirmed that a larger volume ratio of phases in the nitride compound layer 1 1 1 is preferable for increasing hardness.
  • the minimum value concretely, 3500 steel is treated at a treatment temperature of 6400°, a nitriding potential of 0.6, and a treatment time of 2 hours.
  • the volume ratio of the ⁇ phase in the nitride compound layer 11 was 20% (Example 1_ in Table 1 below). See 50). Therefore, the minimum value of the volume ratio of the phase in the nitride compound layer 1 11 which can be recognized by those skilled in the art as solving the problem of the present invention is set to 20%.
  • the present inventor has confirmed that the larger the volume ratio of the ⁇ phase in the nitride compound layer 1 21 is, the better it is to increase the hardness.
  • the nitriding potential% is defined by the following equation (2).
  • the nitriding potential is known as an index showing the nitriding ability of the atmosphere in the gas nitriding furnace.
  • the nitriding potential can be calculated. That is, the hydrogen and nitrogen generated are 1.5 mol and 0.5 mol, respectively, from 1 mol of ammonia. Therefore, measuring the ammonia concentration in the furnace also reveals the hydrogen concentration in the furnace, and It can be calculated. Alternatively, if the hydrogen concentration in the furnace is measured, the ammonia concentration in the furnace can be known, and the nitriding potential can also be calculated.
  • the ammonia gas flown in the gas nitriding furnace is circulated in the furnace and then discharged to the outside of the furnace. That is, in the gas nitriding process, the fresh (new) ammonia gas constantly flows into the furnace with respect to the existing gas in the furnace, so that the existing gas is continuously discharged outside the furnace (pushed out by the supply pressure). ..
  • Fig. 12 is a schematic diagram showing a manufacturing apparatus for manufacturing a nitrided steel member according to an embodiment of the present invention.
  • the manufacturing apparatus 1 of the present embodiment is provided with a circulation type treatment furnace 2, and only two types of gas, ammonia and ammonia decomposition gas, are introduced into the circulation type treatment furnace 2. I am using.
  • Ammonia decomposition gas also called 8X gas, is a mixed gas consisting of nitrogen and hydrogen in a ratio of 1:3.
  • FIG. 13 shows an example of a cross-sectional structure of the circulation type processing furnace 2.
  • a cylinder 20 2 called a retort is arranged in a furnace wall (also called a bell) 201, and a cylinder 20 4 called an inner retort is arranged inside the cylinder.
  • a furnace wall also called a bell
  • the introduction gas supplied from the gas introduction pipe 205 passes through the periphery of the object to be treated as shown by the arrow in the figure, and then the two stirring cylinders 2 0 2 and 2 2 are operated by the stirring fan 2 0 3. It circulates through the space between 0 and 4.
  • Reference numeral 206 is a gas hood with flare, 207 is a thermocouple, 208 is a lid for cooling work, and 209 is a fan for cooling work.
  • the circulation type processing furnace 2 is also called a horizontal gas nitriding furnace, and its structure itself is known.
  • the object to be treated 3 is carbon steel or low alloy steel, and is, for example, a crankshaft, a gear or the like which is an automobile part.
  • the processing furnace 2 of the surface hardening processing apparatus 1 of the present embodiment includes a furnace opening/closing lid 7, a stirring fan 8, a stirring fan drive motor 9, and an atmosphere gas concentration.
  • a detector 3, a nitriding potential controller 4, a programmable logic controller 31 and an in-furnace introduced gas supply unit 20 are provided.
  • the stirring fan 8 is arranged in the processing furnace 2 and rotates in the processing furnace 2 to stir the atmosphere in the processing furnace 2.
  • the stirring fan drive motor 9 is connected to the stirring fan 8 so as to rotate the stirring fan 8 at an arbitrary rotation speed.
  • the atmosphere gas concentration detecting device 3 is composed of a sensor capable of detecting the hydrogen concentration or the ammonia concentration in the processing furnace 2 as the atmosphere gas concentration in the furnace.
  • the main body of detection of the sensor communicates with the inside of the processing furnace 2 through an atmospheric gas pipe 12.
  • the atmospheric gas pipe 12 is formed in a path that directly connects the sensor main body of the atmospheric gas concentration detection device 3 and the processing furnace 2, and is connected to the exhaust gas combustion decomposition device 41 on the way. Furnace gas disposal pipe 40 is connected. As a result, the atmospheric gas is distributed between the discarded gas and the gas supplied to the atmospheric gas concentration detection device 3.
  • the atmospheric gas concentration detecting device 3 is configured to detect the atmospheric gas concentration in the furnace and then output an information signal including the detected concentration to the nitriding potential controller 4.
  • the nitriding potential controller 4 includes an in-furnace nitriding potential computing device 13 ⁇ 2020/175 453 18 ⁇ (: 170? 2020 /007395
  • the programmable logic controller 31 has a gas introduction amount control device 14 and a parameter setting device 15.
  • the in-furnace nitriding potential calculation device 13 is configured to calculate the nitriding potential in the processing furnace 2 based on the hydrogen concentration or the ammonia concentration detected by the in-furnace atmosphere gas concentration detection device 3. .. Specifically, a formula for calculating the nitriding potential programmed according to the actual gas introduced in the furnace is incorporated, and the nitriding potential is calculated from the value of the atmospheric gas concentration in the furnace.
  • the parameter setting device 15 is composed of, for example, a touch panel, and can set and input the total flow rate of gas introduced into the furnace, the gas type, the processing temperature, the target nitriding potential, and the like. Each setting parameter value input by setting is transmitted to the gas flow rate output adjusting device 30.
  • the gas flow rate output adjusting device 30 is connected to the in-reactor nitriding potential calculating device 1
  • Control is performed with the nitriding potential calculated in step 3 as the output value, the target nitriding potential (set nitriding potential) as the target value, and the input amounts of ammonia gas and ammonia decomposition gas as input values. It has become. More specifically, it is possible to control the amount of ammonia decomposition gas introduced into the furnace to be constant and to change the amount of ammonia gas introduced into the furnace.
  • the output value of the gas flow rate output adjusting device 30 is transmitted to the gas introduction amount control device 14.
  • the gas introduction amount control device 14 includes a first supply amount control device 2 2 for ammonia gas and a second supply amount control device 26 for ammonia decomposition gas so as to realize the introduction amount of each gas. Each is designed to send a control signal.
  • the in-furnace introduced gas supply unit 20 of the present embodiment includes a first in-reactor introduced gas supply unit 21 for ammonia gas, a first supply amount control device 2 2 and a first supply valve 2 3 And a first flow meter.
  • the in-reactor introduction gas supply unit 20 of the present embodiment includes a second in-reactor introduction gas supply unit 25 for ammonia decomposition gas (eight gas), ⁇ 2020/175 453 19 ⁇ (: 170? 2020 /007395
  • It has a supply amount control device 26, a second supply valve 27, and a second flow meter.
  • the ammonia gas and the ammonia decomposition gas are adapted to be mixed in the furnace introduction gas introduction pipe 29 before entering the processing furnace 2.
  • the first-reactor-introduced-gas supply unit 21 is formed of, for example, a tank filled with the first-reactor-introduced gas (in this example, ammonia gas).
  • the first supply amount control device 22 is formed by a mass flow controller and is interposed between the first in-reactor introduced gas supply part 21 and the first supply valve 23.
  • the opening degree of the first supply amount control device 22 changes according to the control signal output from the gas introduction amount control device 14. Further, the first supply amount control device 22 detects the supply amount from the first in-furnace introduced gas supply part 21 to the first supply valve 23, and outputs an information signal including the detected supply amount to the gas introduction amount. It is designed to output to the control unit 14.
  • the control signal can be used for correction of the control by the gas introduction amount control device 14 or the like.
  • the first supply valve 23 is formed by a solenoid valve that switches between open and closed states in accordance with a control signal output from the gas introduction amount control device 14 and is connected to the first supply amount control device 2 2 and the first flow rate. It is installed between the instrument and the instrument.
  • the second-reactor-introduced-gas supply unit 25 is formed by, for example, a tank filled with the second-reactor-introduced gas (in the present example, an ammonia decomposition gas).
  • the second supply amount control device 26 is formed by a mass flow controller and is interposed between the second in-furnace introduced gas supply part 25 and the second supply valve 27.
  • the opening degree of the second supply amount control device 26 changes according to the control signal output from the gas introduction amount control device 14. Further, the second supply amount control device 26 detects the supply amount from the second in-furnace introduced gas supply unit 25 to the second supply valve 27, and outputs an information signal including the detected supply amount to the gas introduction amount. It is designed to output to the control unit 14.
  • the control signal can be used for correction of the control by the gas introduction amount control device 14 or the like.
  • the second supply valve 27 is formed by a solenoid valve that switches between open and closed states in accordance with a control signal output by the gas introduction amount control device 14 and the second supply amount control device 2 ⁇ 0 2020/175453 20 ?01/1?2020/007395
  • the article to be treated 3 is put into the circulation type processing furnace 2 and the circulation type processing furnace 2 is heated to a desired processing temperature.
  • a mixed gas of ammonia gas and ammonia decomposition gas or only ammonia gas is introduced into the processing furnace 2 from the in-furnace introduction gas supply unit 20 at a set initial flow rate.
  • This set initial flow rate can also be set and input in the parameter setting device 15 and is controlled by the first supply amount control device 2 2 and the second supply amount control device 2 6 (both mass flow controllers).
  • the stirring fan drive motor 9 is driven to rotate the stirring fan 8 to stir the atmosphere in the processing furnace 2.
  • the in-reactor nitriding potential calculator 13 of the nitriding potential controller 4 calculates the in-reactor nitriding potential (it is an extremely high value at the beginning (because there is no hydrogen in the furnace), the Decrease as the decomposition (hydrogen generation) progresses), and determine whether it is below the sum of the target nitriding potential and the standard deviation value.
  • This reference deviation value can also be set and input in the parameter setting device 15.
  • the nitriding potential controller 4 causes the in-reactor amount control device 1 Control of the amount of introduced gas is started.
  • the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting device 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculating device 13 as an output value, sets the target nitriding potential (set nitriding potential) as the target value, and introduces it into the furnace. Perform I 0 control with the input amount of gas. Specifically, in the I port control, control is performed so that the amount of ammonia decomposition gas introduced into the reactor is constant and the amount of ammonia gas introduced into the reactor is changed. Concerned ⁇ 2020/175 453 21 ⁇ (: 170? 2020 /007395
  • each set parameter value set and input by the parameter setting device 15 is used.
  • this setting parameter value for example, different values are prepared depending on the value of the target nitriding potential.
  • the gas flow rate output control device 30 controls the introduction amount of each of the in-reactor introduced gas as a result of the I port control. Specifically, the gas flow rate output adjusting device 30 determines the flow rate of each gas, and the output value is transmitted to the gas introduction amount control device 14.
  • the gas introduction amount control device 14 includes a first supply amount control device 2 2 for ammonia gas and a second supply amount control device 26 for ammonia decomposition gas in order to realize the introduction amount of each gas. To each of the control signals.
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the amount of ammonia decomposed gas introduced into the furnace is constant, and feedback control is performed in small increments in the vicinity of the amount of ammonia gas introduced into the furnace of 40 ( ⁇ / ⁇ ! ⁇ 11).
  • the nitriding potential is controlled to 0.17 with high accuracy.
  • the manufacturing apparatus 1 can also perform the cooling step after the nitrification treatment.
  • the workpiece 3 is removed from the furnace while the heating temperature is maintained after the nitrification treatment in the manufacturing apparatus 1. It is necessary to transfer to a rapid cooling device (eg oil tank) and then to quench.
  • a rapid cooling device eg oil tank
  • Friction and wear as shown in Fig. 16 was carried out on 345 ⁇ steel (test piece) having the shape ( ⁇ 25 X80101 size) as shown in Fig. 15 under the conditions shown in Table 1 below.
  • the abrasion resistance was evaluated using a tester (Ovitimol, Germany: vibration friction wear tester 3 V 4).
  • a ball of silicon nitride of ⁇ 10 (hardness: about 16001 to 1) is used, and it is used under the condition of dry type (room temperature 25 ° (:, humidity 30%, no lubricant)). Then, reciprocal sliding is repeated while applying a load of 10 (amplitude 1, 501 to 12,
  • 401 is an oscillation block head plate
  • 4023 is a torsion sensor
  • 402 is a test piece fixture
  • 4033 is the upper specimen holder and 404 is the vertical load axis.
  • Example 1_30 in Table 1 corresponds to the nitrided steel member 110 of the first embodiment described with reference to FIGS. 1 and 2.
  • the circulation treatment furnace 2 was used to perform the nitriding treatment under the treatment conditions of treatment temperature: 640°, nitriding potential: 0.4, treatment time: 2 hours. After that, it was rapidly cooled, and then it was reheated under the treatment conditions of treatment temperature: 250 ° ⁇ , treatment time: 2 hours (manufacturing phase: 3 4 5 (3 steel)).
  • phase distribution of the nitride compound layer is in the order of £ phase, ⁇ phase, and £ phase, and the thickness of the nitride compound layer is about 300! From the surface of the nitrided steel member. * ⁇
  • the volume ratio of the' phase was 41%.
  • Example 1_36 is a nitrided steel member manufactured by changing the nitriding potential during nitrification treatment to 0.5 in comparison with Example 1_30.
  • phase distribution of the nitride compound layer is in the order of £ phase, ⁇ phase, and £ phase, and the thickness of the nitride compound layer is approximately 360° from the surface of the nitrided steel member. * ⁇
  • the volume ratio of the' phase was 33%.
  • nitrided steel members of Examples 1 to 36 as described above also provided a sufficient hardness distribution as generally indicated by the black triangle points in Fig. 11 and, as shown in Table 1, It was confirmed to provide low maximum wear (sufficient friction wear properties).
  • Example 1_40 is a nitrided steel member produced by changing the nitriding potential at the time of nitrification treatment to 0.6 in comparison with Example 1_30.
  • phase distribution of the nitride compound layer is in the order of £ phase, ⁇ phase, £ phase, and the thickness of the nitride compound layer is about 4001 from the surface of the nitrided steel member. * ⁇
  • the volume ratio of the' phase was 24%.
  • Example 1-50 was produced by changing the matrix phase to 350 (3 steel) and the nitriding potential during nitrification treatment to 0.6 compared to Example 1-30. It is a nitrided steel member.
  • phase distribution of the nitride compound layer is in the order of £ phase, ⁇ phase, and £ phase, and the thickness of the nitride compound layer is about 500! From the surface of the nitrided steel member. * ⁇
  • the volume ratio of the ‘phase’ was 20%.
  • nitrided steel members of Examples 1 to 50 described above also provided a sufficient hardness distribution as generally indicated by the black triangle points in Fig. 11 and, as shown in Table 1, It was confirmed to provide low maximum wear (sufficient friction wear properties).
  • Example 1_15 is a nitrided steel member produced by changing the nitriding temperature during the nitriding treatment to 6200° as compared with Example 1_30.
  • the phase distribution of the nitride compound layer is in the order of'phase' and £ phase, and the thickness of the nitride compound layer is about 15 from the surface of the nitrided steel member.
  • the volume ratio was 37%.
  • nitrided steel members of Examples 1 to 15 like this also provided a sufficient hardness distribution as indicated by the white circles in Fig. 11 and had a low hardness as shown in Table 1. It was confirmed to provide maximum wear (sufficient friction wear characteristics).
  • Example 1 — 30 Example 1 — 36, and Example 1 — 40
  • the state before the reheating treatment was respectively Reference Example 1 _ 3 0, Reference Example 1 _ 3 6, Reference Example 1 _ 4
  • the hardness and the maximum wear amount were evaluated as 0.
  • Example 2-12 in Table 1 corresponds to the nitrided steel member 120 of the second embodiment described with reference to FIGS. 5 and 6.
  • the Example 2 _ 1 2 was subjected to a nitriding treatment using the above-mentioned circulation type treatment furnace 2 under the treatment conditions of treatment temperature: 640° ⁇ , nitriding potential: 0.2, treatment time: 2 hours. After that, it was rapidly cooled, and then it was reheated under the treatment conditions of treatment temperature: 250 ° ⁇ , treatment time: 2 hours (manufacturing phase: 3 4 5 (3 steel)).
  • the phase distribution of the nitride compound layer is in the order of'phase' and £ phase, and the thickness of the nitride compound layer is about 12 from the surface of the nitrided steel member.
  • the volume ratio of was 52%.
  • Example 2_7 is a nitrided steel member manufactured by changing the nitriding potential at the time of nitrification treatment to 0.18 as compared with Example 2-12.
  • the phase distribution of the nitride compound layer is in the order of'phase' and £ phase, and the thickness of the nitride compound layer is about 7 from the surface of the nitrided steel member.
  • the volume ratio was 60%.
  • the nitrided steel members of Examples 2 to 7 also provided a sufficient hardness distribution as generally indicated by the white circles in Fig. 11 and had a low maximum maximum as shown in Table 1. It was confirmed to provide the amount of wear (sufficient friction and wear characteristics).
  • Example 2 _ 16 is a nitrided steel member manufactured by changing the nitriding temperature at the time of nitrification treatment to 6 3 ⁇ ° ⁇ and the nitriding potential to 0.25 in comparison with Example 2 _ 1 2. is there.
  • phase distribution of the nitride compound layer is in the order of'phase' and £ phase, and the thickness of the nitride compound layer is about 16 from the surface of the nitrided steel member. of ⁇ 2020/175 453 26 ⁇ (: 170? 2020/007395
  • the volume ratio was 45%.
  • Such a nitrided steel member of Example 2 _ 16 also provided a sufficient hardness distribution as generally indicated by the white circles in Fig. 11 and had a low hardness as shown in Table 1. It was confirmed to provide maximum wear (sufficient friction wear characteristics).
  • Example 2-30 is different from Example 2-12 in that the matrix phase is changed to 3 15 (3 steel, and the nitriding temperature at the time of the nitriding treatment is 650°° and the nitriding potential is 0°. It is a nitrided steel member manufactured by changing to .2.
  • the phase distribution of the nitride compound layer is in the order of A'phase and £ phase, and the thickness of the nitride compound layer is about 30 from the surface of the nitrided steel member.
  • the volume ratio of was 30%.
  • the nitrided steel members of Examples 2-30 also provided a sufficient hardness distribution as indicated by the white circles in Fig. 11 and had a low hardness as shown in Table 1. It was confirmed to provide maximum wear (sufficient friction wear characteristics).

Abstract

The present invention is a nitriding steel member in which a matrix phase is composed of a carbon steel or a low-alloy steel, the nitriding steel member being characterized in that a nitride compound layer is provided on the surface, a hardened layer having an austenite structure is provided below the nitride compound layer, and a diffused layer in which nitrogen is diffused in the matrix phase is provided below the hardened layer, wherein the nitride compound layer has a phase distribution in which an ε phase, a γ' phase and an ε phase are arranged in this order, the volume ratio of the γ' phase in the nitride compound layer is 20% or more, and the nitride compound layer has a thickness of 5 to 50 μm from the surface of the nitriding steel member.

Description

\¥02020/175453 1 ?€1/^2020/007395 \¥02020/175453 1 ?€1/^2020/007395
明 細 書 Specification
発明の名称 : Title of invention:
窒化鋼部材並びに窒化鋼部材の製造方法及び製造装置 Nitride steel member and method and device for manufacturing nitrided steel member
技術分野 Technical field
[0001 ] 本発明は、 窒化鋼部材並びに窒化鋼部材の製造方法及び製造装置に関する 。 さらに詳しくは、 自動車用の変速機用の歯車やクランクシャフト等に有用 な耐摩耗性に優れる窒化鋼部材並びに当該窒化鋼部材の製造方法及び製造装 置に関する。 The present invention relates to a nitrided steel member, and a method and an apparatus for manufacturing the nitrided steel member. More specifically, the present invention relates to a nitrided steel member having excellent wear resistance, which is useful for gears for automobile transmissions, crankshafts, and the like, and a manufacturing method and a manufacturing device for the nitrided steel member.
背景技術 Background technology
[0002] 鋼材の表面硬化処理の中でも、 低熱処理ひずみ処理である窒化処理の二一 ズは高く、 最近では特に、 ガス窒化処理の雰囲気制御技術への関心が高まつ ている。 Among the surface hardening treatments for steel materials, the nitriding treatment, which is a low heat treatment strain treatment, is high in number, and recently, the atmosphere control technology of the gas nitriding treatment has been particularly interested.
[0003] ガス窒化処理により得られる基本的な組織構成では、 表面において鉄窒化 物である化合物層が形成され、 内部において拡散層と呼ばれる硬化層が形成 される。 当該硬化層は、 通常、 母材成分の 3 丨や 0 「などの合金窒化物から なる。 [0003] In the basic structure constitution obtained by the gas nitriding treatment, a compound layer which is an iron nitride is formed on the surface and a hardened layer called a diffusion layer is formed inside. The hardened layer is usually made of an alloy nitride such as 3 or 0 ", which is a base material component.
[0004] これらの 2層の各々の厚さ (深さ) 及び/または表面の鉄窒化物のタイプ 等を制御するために、 ガス窒化処理の温度と時間とに加えて、 ガス窒化処理 炉内の雰囲気も適宜に制御されている。 具体的には、 ガス窒化炉内の窒化ポ テンシャル (<„) が適宜に制御されている。 [0004] In order to control the thickness (depth) of each of these two layers and/or the type of surface iron nitride, etc., in addition to the temperature and time of gas nitriding treatment, The atmosphere is also controlled appropriately. Specifically, the nitriding potential (<<) in the gas nitriding furnace is appropriately controlled.
[0005] そして、 当該制御を介して、 鋼材の表面に生成される化合物層中のァ’ 相 ( 6 41\1) と £相 ( 6 2-31\1) の体積分率 (鉄窒化物のタイプ) が制御され ている。 [0005] Then, through the control, the volume fraction (iron) of the phase' (6 4 1\1) and £ phase (6 2-3 1\1) in the compound layer generated on the surface of the steel material (iron Nitride type) is controlled.
[0006] 例えば、 £相よりもァ’ 相を形成することにより、 耐疲労性が改善される ことが知られている (非特許文献 1) 。 [0006] For example, it is known that the fatigue resistance is improved by forming the phase' rather than the phase (Non-Patent Document 1).
[0007] 更に、 · ^ 相の形成により曲げ疲労強度や面疲労を改善した窒化鋼部材も 提供されている (特許文献 1) 。 〇 2020/175453 2 卩(:170? 2020 /007395 [0007] Furthermore, a nitrided steel member having improved bending fatigue strength and surface fatigue by forming a ^ phase is also provided (Patent Document 1). 〇 2020/175453 2 卩(: 170? 2020/007395
[0008] あるいは、 本発明が着目する耐摩耗性については、 s相を多くすることで 改善されることが報告されている (非特許文献 2) 。 そして、 s相を多く含 む化合物層を表面に形成させる窒化法として、 少量の浸炭性ガスをアンモニ ア雰囲気に混合させて実施される軟窒化処理が知られている。 [0008] Alternatively, it has been reported that the wear resistance of the present invention is improved by increasing the s phase (Non-Patent Document 2). Then, as a nitriding method for forming a compound layer containing a large amount of s phase on the surface, a soft nitriding treatment is known, which is performed by mixing a small amount of carburizing gas into an ammonia atmosphere.
[0009] 一方、 F e_N二元合金の共析変態点 (約 590°C) 以上の温度で窒化処 理を行うと、 表面には化合物層が形成され、 その後急冷すればその下部には 窒素含有マルテンサイ ト組織を含む硬化層が形成される。 当該温度域での窒 化処理は、 従来の窒化処理 (N i t r i d i n g) と区別して、 浸窒処理 ( A u s t e n i t i c N i t r i d i n g) と呼ばれている。 [0009] On the other hand, when the nitriding treatment is performed at a temperature higher than the eutectoid transformation point (about 590°C) of the Fe_N binary alloy, a compound layer is formed on the surface, and if it is then rapidly cooled, nitrogen is formed below it. A hardened layer containing the contained martensitic structure is formed. The nitriding treatment in this temperature range is called an nitriding treatment (A u s t e n i t i c N i t r i d i n g) in distinction from the conventional nitriding process (N i t r i d i n g).
[0010] しかし、 当該浸窒処理では、 表面近傍の組織 (表面の化合物層は除く) の オーステナイ トが安定化され、 その後に急冷されても大部分のオーステナイ 卜が残留する。 このため、 熱処理後のひずみは、 窒化処理と同程度である。 加えて、 この安定化された才ーステナイ トは、 250〜 300°Cの温度にま で再加熱されることで、 硬質なマルテンサイ ト組織へと変態される。 [0010] However, in the nitriding treatment, the austenite of the structure near the surface (excluding the compound layer on the surface) is stabilized, and most of the austenite remains even if the structure is rapidly cooled thereafter. Therefore, the strain after heat treatment is almost the same as that of nitriding treatment. In addition, this stabilized talent is transformed into a hard martensitic structure by reheating it to a temperature of 250-300 ° C.
[0011] 例えば、 STKM- 1 3C (J I S G 3445に規程される機械構造 炭素鋼鋼管) を 640°Cで 90m i n浸窒処理し、 更に 660 °Cで 40 m i n浸窒処理してから急冷し、 その後 280°Cで 9 Om i n再加熱処理するこ とにより、 表面近傍の才ーステナイ トは 800〜 900 HVまで硬化される [0011] For example, STKM- 13C (mechanical structure carbon steel pipe defined in JIS G 3445) is subjected to nitriding treatment at 640°C for 90 m in, and further nitriding treatment at 660°C for 40 min, followed by rapid cooling, Subsequent reheating at 9Om in at 280°C cures the near surface surface to 800-900 HV.
[0012] 更に、 700°Cで J I S-S PCC (冷間圧延鋼板の一種) を浸窒処理し ても、 表面に化合物層が形成され、 その後の急冷でその下部に窒素マルテン サイ ト組織の硬化層が形成される (非特許文献 3) 。 この時の表面の化合物 層は、 s相であると報告されている。 先行技術文献 [0012] Furthermore, even if JI SS PCC (a type of cold-rolled steel sheet) was subjected to nitriding treatment at 700 ° C, a compound layer was formed on the surface, and subsequent quenching hardened the nitrogen martensite structure underneath. A layer is formed (Non-Patent Document 3). The compound layer on the surface at this time is reported to be in the s phase. Prior art documents
特許文献 Patent literature
[0013] 特許文献 1 :特開 201 3— 22 1 203号公報 [0013] Patent Document 1: Japanese Patent Laid-Open No. 201 3-22 1 203
特許文献 2 :特開 201 4— 25 1 6 1号公報 Patent Document 2: JP 201 4-25 1 61 Publication
非特許文献 1 :平岡泰、 渡邊陽一、 石田暁丈:熱処理、 55巻、 1号、 1 _ 2 〇 2020/175453 3 卩(:170? 2020 /007395 Non-Patent Document 1: Yasushi Hiraoka, Yoichi Watanabe, Akitake Ishida: Heat Treatment, Volume 55, No. 1, 1 _ 2 〇 2020/175 453 3 (: 170? 2020 /007395
ぺージ Page
非特許文献 2 :ディータリートケほか:鉄の窒化と軟窒化、 アグネ技術センタ —、 2 0 1 3年、 8 4ページ Non-Patent Document 2: Dietary Toke et al.: Nitriding and nitrocarburizing of iron, Agne Technology Center —, 2 0 1 3 years, page 8 4
非特許文献 3 :河田 _喜、 木立徹: 日本熱処理技術協会、 第 8 1回春季講演大 会概要集、 2 9— 3 0ページ Non-Patent Document 3: Kawai _ Ki, Toru Kidate: Summary of the 81st Spring Lecture Meeting of Japan Heat Treatment Technology Association, pp. 2 9-30
発明の概要 Summary of the invention
発明が解決しようとする課題 Problems to be Solved by the Invention
[0014] 機械部品、 例えば自動車用のエンジン内部のカムシャフト、 ピストンリン グ、 クランクシャフト等、 における摩擦損失は、 1 0 %以上にもなる。 一部 の機械部品には、 既に窒化処理等の表面処理が適用されているが、 さらなる 摩擦損失の低減が望まれている。 [0014] Friction loss in mechanical parts, such as camshafts, piston rings, crankshafts, etc., inside automobile engines is as high as 10% or more. Surface treatment such as nitriding has already been applied to some mechanical parts, but further reduction of friction loss is desired.
[0015] 鋼部品の摩耗損失を低減するための一つの方策として、 鋼部品の 「硬さ」 を増加させることが考えられる。 前述のように、 浸窒処理及び急冷後に再加 熱処理を行うことによって、 表面化合物層の硬さを高められることが知られ ている。 [0015] As one measure for reducing the wear loss of steel parts, increasing the "hardness" of steel parts can be considered. As described above, it is known that the hardness of the surface compound layer can be increased by performing the reheating treatment after the nitriding treatment and the rapid cooling.
[0016] しかしながら、 非特許文献 3に開示された処理では、 窒化温度が 7 0 0 °〇 であって比較的高いため、 母材や拡散層の硬度が低下してしまう懸念がある [0016] However, in the treatment disclosed in Non-Patent Document 3, since the nitriding temperature is 700°C, which is relatively high, the hardness of the base material and the diffusion layer may be reduced.
[0017] 更に、 特許文献 2に開示された処理について再現実験を試みたが、 当該文 献に記載されているような硬化組織 (具体的にはァ’ 相内に 相が析出し た混相) を再現することはできなかった (当該文献の記述内容に何らかの誤 りがあると推測される) 。 [0017] Furthermore, a reproduction experiment was attempted on the treatment disclosed in Patent Document 2, and a hardening structure as described in the document (specifically, a mixed phase in which a phase was precipitated in the phase') Could not be reproduced (it is speculated that there is something wrong with the description in the document).
[0018] 一方、 軟窒化処理によって形成される化合物層は、 表面硬度が不十分であ り (後述の図 1 1の比較例参照) 、 耐摩耗性も不十分である (後述の表 1の 比較例参照) 。 [0018] On the other hand, the compound layer formed by the soft nitriding treatment has insufficient surface hardness (see the comparative example in Fig. 11 described later) and has insufficient abrasion resistance (see Table 1 described below). See comparative example).
[0019] 本件発明者は、 鋭意の検討及び種々の実験を繰り返し、 処理炉の構成を限 定した上で窒化処理の温度及び窒化ポテンシャルを高精度に制御することに よって、 十分な硬度を維持しつつ耐摩耗性が改善された窒化鋼部材を製造で 〇 2020/175453 4 卩(:170? 2020 /007395 [0019] The inventors of the present invention have conducted sufficient studies and various experiments, and have maintained a sufficient hardness by controlling the temperature and nitriding potential of the nitriding treatment with high accuracy while limiting the configuration of the treatment furnace. Manufacturing of nitrided steel members with improved wear resistance 〇 2020/175 453 4 卩 (: 170? 2020 /007395
きることを知見した。 I knew that I could do it.
[0020] 本発明は、 以上の知見に基づいて創案されたものである。 本発明の目的は [0020] The present invention was created based on the above findings. The purpose of the present invention is
、 表層領域の耐摩耗性が改善された窒化鋼部材、 及び、 そのような窒化鋼部 材を製造するための製造方法及び製造装置を提供することである。 A nitride steel member having improved wear resistance in the surface layer region, and a manufacturing method and manufacturing apparatus for manufacturing such a nitrided steel member.
課題を解決するための手段 Means for solving the problem
[0021 ] 本発明は、 炭素鋼または低合金鋼を母相とする窒化鋼部材であって、 表面 に、 窒化化合物層を備え、 前記窒化化合物層の下部に、 オーステナイ ト組織 を有する硬化層を備え、 前記硬化層の下部に、 前記母相内に窒素が拡散され ている拡散層を備え、 前記窒化化合物層は、 £相、 ァ’ 相、 £相の順番の相 分布を有しており、 前記窒化化合物層中のァ’ 相の体積比率は、 2 0 %以上 であり、 前記窒化化合物層は、 当該窒化鋼部材の表面から 5 〜 [0021] The present invention is a nitrided steel member having a carbon steel or low alloy steel as a mother phase, comprising a nitride compound layer on the surface, and a hardened layer having an austenite structure under the nitride compound layer. A diffusion layer in which nitrogen is diffused in the matrix is provided below the hardened layer, and the nitride compound layer has a phase distribution in the order of £ phase, a′ phase, and £ phase. The volume ratio of the phase' in the nitride compound layer is 20% or more, and the nitride compound layer is 5 to 5% from the surface of the nitrided steel member.
5 0 の厚さを有していることを特徴とする窒化鋼部材である。 A nitrided steel member having a thickness of 50.
[0022] 本発明によれば、 表面の窒化化合物層が £相、 · ^ 相、 £相の順番の相分 布を有し、 且つ、 5 〇!〜 5 0 〇!の厚さを有し、 窒化化合物層中のァ’ 相 の体積比率が 2 0 %以上であることにより (このような構成は、 後述される 窒化方法によって初めて実現されたものである) 、 窒化鋼部材として十分な 硬度を提供しつつ、 耐摩耗性を改善することができる。 According to the present invention, the nitride compound layer on the surface has a phase distribution of the order of £ phase, ·^ phase, and £ phase, and has a thickness of 50! Since the volume ratio of the phase' in the nitride compound layer is 20% or more (such a structure was first realized by the nitriding method described later), it has sufficient hardness as a nitrided steel member. It is possible to improve wear resistance while providing
[0023] なお、 窒化化合物層の厚さについて 5 0 を上限値としたのは、 その値 が本願出願時までに本件発明者によって確認された最大厚さであるからであ る (後述の循環型処理炉を用いて、 3 5 0(3鋼を母相として、 処理温度: 6 4 0 °〇、 窒化ポテンシャル: 0 . 6、 処理時間: 2時間、 という浸窒処理条 件を採用することによって得られることが確認されている) 。 [0023] The upper limit of 50 for the thickness of the nitride compound layer is because that value is the maximum thickness confirmed by the inventor of the present application up to the time of filing of the present application (see Using the mold treatment furnace, adopt the nitrogen treatment conditions of 350 (3 steels as mother phase, treatment temperature: 640° 〇, nitriding potential: 0.6, treatment time: 2 hours). Has been confirmed to be obtained by).
[0024] 更に、 窒化化合物層の厚さについて、 窒化化合物層が窒化鋼部材の表面全 体に形成される (窒化化合物層が局所的に形成されない場合がない) ための 条件として、 5 を下限値としている。 [0024] Furthermore, regarding the thickness of the nitride compound layer, the lower limit of 5 is set as a condition for forming the nitride compound layer on the entire surface of the nitrided steel member (there is no case where the nitride compound layer is not locally formed). It has a value.
[0025] また、 本発明は、 炭素鋼または低合金鋼を母相とする窒化鋼部材であって 、 表面に、 窒化化合物層を備え、 前記窒化化合物層の下部に、 オーステナイ 卜組織を有する硬化層を備え、 前記硬化層の下部に、 前記母相内に窒素が拡 〇 2020/175453 5 卩(:170? 2020 /007395 [0025] Further, the present invention is a nitrided steel member having a carbon steel or a low alloy steel as a parent phase, comprising a nitride compound layer on the surface, and a hardening having an austenitic structure under the nitride compound layer. A layer, and nitrogen spreads in the matrix below the hardened layer. 〇 2020/175 453 5 卩 (: 170? 2020 /007395
散されている拡散層を備え、 前記窒化化合物層は、 ア’ 相、 £相の順番の相 分布を有しており、 前記窒化化合物層中のア’ 相の体積比率は、 3 0 %以上 であり、 前記窒化化合物層は、 当該窒化鋼部材の表面から 5 〜 The nitride compound layer has a phase distribution of A′ phase and £ phase, and the volume ratio of the A′ phase in the nitride compound layer is 30% or more. The nitride compound layer is 5 to 5 from the surface of the nitrided steel member.
3 0 の厚さを有していることを特徴とする窒化鋼部材である。 A nitrided steel member having a thickness of 30.
[0026] 本発明によれば、 表面の窒化化合物層がア’ 相、 £相の順番の相分布を有 し、 且つ、
Figure imgf000007_0001
窒化化合物層中のア’ 相の体積 比率が 3 0 %以上であることにより (このような構成は、 後述される窒化方 法によって初めて実現されたものである) 、 窒化鋼部材として十分な硬度を 提供しつつ、 耐摩耗性を改善することができる。
According to the present invention, the nitride compound layer on the surface has a phase distribution in the order of A′ phase and £ phase, and
Figure imgf000007_0001
Due to the volume ratio of the A'phase in the nitride compound layer being 30% or more (such a structure was first realized by the nitriding method described later), sufficient hardness as a nitrided steel member was obtained. It is possible to improve wear resistance while providing
[0027] 本発明においても、 窒化化合物層の厚さについて 3 0 を上限値として いるが、 これは、 その値が本願出願時までに本件発明者によって確認された 最大厚さであるからである (後述の循環型処理炉を用いて、 3 1 5(3を母相 として、 処理温度: 6 5 0 °〇、 窒化ポテンシャル = 0 . 2、 処理時間: 2時 間、 という浸窒処理条件を採用することによって得られることが確認されて いる) 。 Also in the present invention, the upper limit value of 30 is set for the thickness of the nitride compound layer, because this value is the maximum thickness confirmed by the present inventors by the time of filing of the present application. (Using the circulation type treatment furnace described later, 3 15 (with 3 as the mother phase, treatment temperature: 6500 ° 〇, nitriding potential = 0.2, treatment time: 2 hours) It has been confirmed that it can be obtained by adopting).
[0028] 更に、 本発明においても、 窒化化合物層の厚さについて、 窒化化合物層が 窒化鋼部材の表面全体に形成される (窒化化合物層が局所的に形成されない 場合がない) ための条件として、 5 を下限値としている。 Further, also in the present invention, the thickness of the nitride compound layer is set as a condition for forming the nitride compound layer on the entire surface of the nitrided steel member (the nitride compound layer may not be locally formed). , 5 are the lower limits.
[0029] 以上の各発明において、 例えば、 炭素含有量が質量%で〇. 1 %以上である 炭素鋼を母相とすることができる。 [0029] In each of the above inventions, for example, carbon steel having a carbon content of not less than 0.1% in mass% can be used as the parent phase.
[0030] また、 本発明は、 窒化鋼部材の製造方法として認識することも可能である 。 すなわち、 本発明は、 案内筒と撹拌ファンとを備えた循環型処理炉を用い て、 炭素鋼または低合金鋼を母相とする窒化鋼部材を製造する方法であって 、 窒化処理時において、 前記循環型処理炉内の温度範囲が、 6 1 0 °〇〜6 6 0 °〇に制御され、 前記窒化処理時において、 前記循環型処理炉内の窒化ポテ ンシャルが、 〇. 1 5〜〇. 6の範囲に制御され、 前記窒化処理後、 急冷さ れ、 更に再加熱処理がなされることを特徴とする窒化鋼部材の製造方法であ る。 〇 2020/175453 6 卩(:170? 2020 /007395 The present invention can also be recognized as a method for manufacturing a nitrided steel member. That is, the present invention is a method for producing a nitrided steel member having a carbon steel or a low alloy steel as a mother phase, using a circulation type processing furnace equipped with a guide cylinder and a stirring fan, wherein during the nitriding processing, The temperature range in the circulation-type treatment furnace is controlled to 610 ° to 660 ° 〇, and at the time of the nitriding treatment, the nitriding potential in the circulation-type treatment furnace is 0. The method for producing a nitrided steel member is characterized in that the nitriding treatment is controlled within the range of .6, the nitriding treatment is followed by rapid cooling, and then reheating treatment. 〇 2020/175 453 6 卩 (: 170? 2020 /007395
[0031 ] 本発明の窒化鋼部材の製造方法によれば、 [0031] According to the method for manufacturing a nitrided steel member of the present invention,
炭素鋼または低合金鋼を母相とする窒化鋼部材であって、 表面に、 窒化化 合物層を備え、 前記窒化化合物層の下部に、 オーステナイ ト組織を有する硬 化層を備え、 前記硬化層の下部に、 前記母相内に窒素が拡散されている拡散 層を備え、 前記窒化化合物層は、 £相、 ァ’ 相、 £相の順番の相分布を有し ており、 前記窒化化合物層中のァ’ 相の体積比率は、 2 0 %以上であり、 前 記窒化化合物層は、 当該窒化鋼部材の表面から 5 〜 5〇 の 厚さを有していることを特徴とする窒化鋼部材 A nitrided steel member having a carbon steel or low alloy steel as a matrix phase, the surface of which is provided with a nitride compound layer, the nitride compound layer having a hardened layer having an austenite structure below the hardened layer. A diffusion layer in which nitrogen is diffused in the parent phase is provided below the layer, and the nitride compound layer has a phase distribution in the order of £ phase, a′ phase, and £ phase. The volume ratio of phase in the layer is 20% or more, and the nitride compound layer has a thickness of 5 to 50 from the surface of the nitrided steel member. Steel member
を製造することができる。 Can be manufactured.
[0032] あるいは、 本発明の窒化鋼部材の製造方法によれば、 [0032] Alternatively, according to the method for manufacturing a nitrided steel member of the present invention,
炭素鋼または低合金鋼を母相とする窒化鋼部材であって、 表面に、 窒化化 合物層を備え、 前記窒化化合物層の下部に、 オーステナイ ト組織を有する硬 化層を備え、 前記硬化層の下部に、 前記母相内に窒素が拡散されている拡散 層を備え、 前記窒化化合物層は、 ァ’ 相、 £相の順番の相分布を有しており 、 前記窒化化合物層中のァ’ 相の体積比率は、 3 0 %以上であり、 前記窒化 化合物層は、 当該窒化鋼部材の表面から 5 〇!〜 3 0 〇!の厚さを有してい ることを特徴とする窒化鋼部材 A nitrided steel member having a carbon steel or low alloy steel as a matrix phase, the surface of which is provided with a nitride compound layer, the nitride compound layer having a hardened layer having an austenite structure below the hardened layer. A diffusion layer in which nitrogen is diffused in the parent phase is provided below the layer, and the nitride compound layer has a phase distribution in the order of ′′ phase and £ phase. The volume ratio of the ′′ phase is 30% or more, and the nitride compound layer has a thickness of 50° to 300°! from the surface of the nitrided steel member. Steel member
を製造することができる。 Can be manufactured.
[0033] また、 本発明は、 窒化鋼部材の製造装置として認識することも可能である 。 すなわち、 本発明は、 案内筒と撹拌ファンとを有する循環型処理炉を備え 、 窒化処理時において、 前記循環型処理炉内の温度範囲が、 6 1 0 °〇〜6 6 0 °〇に制御され、 前記窒化処理時において、 前記循環型処理炉内の窒化ポテ ンシャルを制御するために、 アンモニアガスとアンモニア分解ガスとが前記 循環型処理炉内に導入されるようになっている窒化鋼部材の製造装置であっ て、 前記循環型処理炉内の窒化ポテンシャルは、 前記アンモニア分解ガスの 炉内導入量を一定とし且つ前記アンモニアガスの炉内導入量を変化させるこ とで、 〇. 1 5〜〇. 6の範囲の目標の窒化ポテンシャルに制御されるよう になっていることを特徴とする窒化鋼部材の製造装置である。 〇 2020/175453 7 卩(:170? 2020 /007395 Further, the present invention can also be recognized as an apparatus for manufacturing a nitrided steel member. That is, the present invention comprises a recycling processing furnace having a stirring fan and the guide tube, at the time of nitriding treatment, the temperature range of the recycling process furnace, controlled 6 1 0 ° 〇_~6 6 0 ° 〇 In the nitriding treatment, a nitrided steel member is introduced such that ammonia gas and ammonia decomposition gas are introduced into the circulation type treatment furnace in order to control the nitriding potential in the circulation type treatment furnace. The nitriding potential in the circulation-type treatment furnace is such that the amount of ammonia decomposition gas introduced into the furnace is constant and the amount of ammonia gas introduced into the furnace is changed. It is a device for manufacturing nitrided steel members, which is controlled to a target nitriding potential in the range of to 0.6. 〇 2020/175 453 7 卩(: 170? 2020/007395
[0034] 本発明の窒化鋼部材の製造装置によれば、 [0034] According to the apparatus for manufacturing a nitrided steel member of the present invention,
炭素鋼または低合金鋼を母相とする窒化鋼部材であって、 表面に、 窒化化 合物層を備え、 前記窒化化合物層の下部に、 オーステナイ ト組織を有する硬 化層を備え、 前記硬化層の下部に、 前記母相内に窒素が拡散されている拡散 層を備え、 前記窒化化合物層は、 £相、 ァ’ 相、 £相の順番の相分布を有し ており、 前記窒化化合物層中のァ’ 相の体積比率は、 2 0 %以上であり、 前 記窒化化合物層は、 当該窒化鋼部材の表面から 5 〜 5〇 の 厚さを有していることを特徴とする窒化鋼部材 A nitrided steel member having a carbon steel or low alloy steel as a matrix phase, the surface of which is provided with a nitride compound layer, the nitride compound layer having a hardened layer having an austenite structure below the hardened layer. A diffusion layer in which nitrogen is diffused in the parent phase is provided below the layer, and the nitride compound layer has a phase distribution in the order of £ phase, a′ phase, and £ phase. The volume ratio of phase in the layer is 20% or more, and the nitride compound layer has a thickness of 5 to 50 from the surface of the nitrided steel member. Steel member
を製造することができる。 Can be manufactured.
[0035] あるいは、 本発明の窒化鋼部材の製造装置によれば、 [0035] Alternatively, according to the nitrided steel member manufacturing apparatus of the present invention,
炭素鋼または低合金鋼を母相とする窒化鋼部材であって、 表面に、 窒化化 合物層を備え、 前記窒化化合物層の下部に、 オーステナイ ト組織を有する硬 化層を備え、 前記硬化層の下部に、 前記母相内に窒素が拡散されている拡散 層を備え、 前記窒化化合物層は、 ァ’ 相、 £相の順番の相分布を有しており 、 前記窒化化合物層中のァ’ 相の体積比率は、 3 0 %以上であり、 前記窒化 化合物層は、 当該窒化鋼部材の表面から 5 〇!〜 3 0 〇!の厚さを有してい ることを特徴とする窒化鋼部材 A nitrided steel member having a carbon steel or low alloy steel as a matrix phase, the surface of which is provided with a nitride compound layer, the nitride compound layer having a hardened layer having an austenite structure below the hardened layer. A diffusion layer in which nitrogen is diffused in the parent phase is provided below the layer, and the nitride compound layer has a phase distribution in the order of ′′ phase and £ phase. The volume ratio of the ′′ phase is 30% or more, and the nitride compound layer has a thickness of 50° to 300°! from the surface of the nitrided steel member. Steel member
を製造することができる。 Can be manufactured.
発明の効果 Effect of the invention
[0036] 本発明の窒化鋼部材によれば、 窒化鋼部材として十分な硬度を提供しつつ 、 耐摩耗性を改善することができる。 [0036] According to the nitrided steel member of the present invention, it is possible to improve wear resistance while providing sufficient hardness as the nitrided steel member.
[0037] また、 本発明の窒化鋼部材の製造方法によれば、 十分な硬度及び耐摩耗性 を有する窒化鋼部材を製造することができる。 [0037] According to the method for manufacturing a nitrided steel member of the present invention, a nitrided steel member having sufficient hardness and wear resistance can be manufactured.
[0038] また、 本発明の窒化鋼部材の製造装置によれば、 十分な硬度及び耐摩耗性 を有する窒化鋼部材を製造することができる。 [0038] Further, according to the apparatus for manufacturing a nitrided steel member of the present invention, a nitrided steel member having sufficient hardness and wear resistance can be manufactured.
図面の簡単な説明 Brief description of the drawings
[0039] [図 1]本発明の第 1実施形態による窒化鋼部材の断面顕微鏡写真である。 [0039] [Fig. 1] A cross-sectional micrograph of a nitrided steel member according to a first embodiment of the present invention.
[図 2]図 1の窒化鋼部材の巳巳 3口法による解析結果を示す図である。 〇 2020/175453 8 卩(:170? 2020 /007395 [Fig. 2] Fig. 2 is a diagram showing an analysis result of the nitrided steel member of Fig. 1 by the Mitsumi three-port method. 〇 2020/175 453 8 卩 (: 170? 2020 /007395
[図 3]本発明の第 1実施形態の窒化鋼部材の再加熱処理前の状態の断面顕微鏡 写真である。 FIG. 3 is a cross-sectional photomicrograph of the nitrided steel member according to the first embodiment of the present invention before being reheated.
[図 4]図 3の窒化鋼部材の巳巳 3口法による解析結果を示す図である。 [Fig. 4] Fig. 4 is a diagram showing the results of analysis of the nitrided steel member of Fig. 3 by the Mitsumi three-port method.
[図 5]本発明の第 2実施形態による窒化鋼部材の断面顕微鏡写真である。 [FIG. 5] A cross-sectional micrograph of a nitrided steel member according to a second embodiment of the present invention.
[図 6]図 5の窒化鋼部材の巳巳 3口法による解析結果を示す図である。 [Fig. 6] Fig. 6 is a diagram showing the results of analysis of the nitrided steel member of Fig. 5 by the Mitsumi three-port method.
[図 7]本発明の第 2実施形態の窒化鋼部材の再加熱処理前の状態の断面顕微鏡 写真である。 [FIG. 7] A cross-sectional micrograph of a nitrided steel member according to a second embodiment of the present invention before being reheated.
[図 8]図 7の窒化鋼部材の巳巳 3口法による解析結果を示す図である。 [Fig. 8] Fig. 8 is a diagram showing the results of analysis of the nitrided steel member of Fig. 7 by the Mitsumi three-neck method.
[図 9]比較例としての窒化鋼部材の断面顕微鏡写真である。 [FIG. 9] A cross-sectional micrograph of a nitrided steel member as a comparative example.
[図 10]図 9の窒化鋼部材の巳巳 3口法による解析結果を示す図である。 [Fig. 10] Fig. 10 is a diagram showing an analysis result of the nitrided steel member of Fig. 9 by the Mitsumi three-port method.
[図 1 1]硬さの測定結果を示すグラフである。 [Fig. 11] A graph showing the measurement results of hardness.
[図 12]本発明の一実施形態による窒化鋼部材の製造装置の概略図である。 FIG. 12 is a schematic view of an apparatus for manufacturing a nitrided steel member according to an embodiment of the present invention.
[図 13]循環型処理炉 (横型ガス窒化炉) の概略断面図である。 FIG. 13 is a schematic cross-sectional view of a circulation type processing furnace (horizontal gas nitriding furnace).
[図 14八]ガス導入制御の一例を示すグラフである。 FIG. 14 is a graph showing an example of gas introduction control.
[図 148]ガス導入制御の一例を示すグラフである。 FIG. 148 is a graph showing an example of gas introduction control.
[図 15]摩擦摩耗試験に用いた試験片の斜視図である。 FIG. 15 is a perspective view of a test piece used for a friction and wear test.
[図 16]摩擦摩耗試験に用いた 3 V試験機の斜視図である。 [Fig. 16] A perspective view of a 3 V tester used for a friction and wear test.
発明を実施するための形態 MODE FOR CARRYING OUT THE INVENTION
[0040] 以下、 本発明の好ましい実施形態について説明するが、 本発明は以下の実 施形態に限定されるものではない。 [0040] Hereinafter, preferred embodiments of the present invention will be described, but the present invention is not limited to the following embodiments.
[0041] (窒化鋼部材の第 1実施形態の構成、 製法及び効果) [0041] (Structure, manufacturing method, and effect of first embodiment of nitrided steel member)
図 1は、 本発明の第 1実施形態の窒化鋼部材 1 1 0の断面顕微鏡写真であ る。 図 1 に示すように、 本実施形態の窒化鋼部材 1 1 〇は、 表面に、 窒化化 合物層 1 1 1が形成されており、 当該窒化化合物層 1 1 1の下方に、 後述す るようなオーステナイ ト組織を有する硬化層 1 1 2を備え、 当該硬化層 1 1 2の下方に、 母相内に窒素が拡散されている拡散層 1 1 3を備えている。 本 実施形態の母相 (母材) は、 炭素含有量が質量%で〇. 4 5 %である炭素鋼 である。 〇 2020/175453 9 卩(:170? 2020 /007395 FIG. 1 is a cross-sectional micrograph of a nitrided steel member 110 according to the first embodiment of the present invention. As shown in FIG. 1, the nitrided steel member 1100 of the present embodiment has a nitride compound layer 1111 formed on the surface thereof, and will be described below below the nitride compound layer 1111. A hardened layer 1 12 having such an austenite structure is provided, and a diffusion layer 1 13 in which nitrogen is diffused in a matrix is provided below the hardened layer 1 12. The matrix phase (matrix) of this embodiment is carbon steel having a carbon content of 0.45% by mass. 〇 2020/175 453 9 卩 (: 170? 2020 /007395
[0042] 図 1 において、 窒化化合物層 1 1 1の下部や硬化層 1 1 2が黒く見えてい るのは、 組織観察用の腐食液によって強く腐食されたためである。 また、 表 面の更に上方に見えているのは、 研磨用の板であり、 窒化鋼部材の構成要素 ではない。 [0042] In Fig. 1, the lower part of the nitride compound layer 1 11 and the hardened layer 1 12 appear black because they were strongly corroded by the corrosive liquid for observing the structure. Also visible above the surface is the polishing plate, not the constituent elements of the nitrided steel member.
[0043] 窒化鋼部材 1 1 0の相分布は、
Figure imgf000011_0001
X線回折とを併用することに よって解析され得る。 具体的には、 図 2に示すように、
Figure imgf000011_0002
0法によって 、 表面側から £相、 ァ’ 相
Figure imgf000011_0003
結晶相) 、 £相の順番の相分布が分かる 。 そして、 X線回折が併用されることで、 硬化層 1 1 2の干
Figure imgf000011_0004
結晶相が才 —ステナイ ト相 (ァ相) であることが確認される。
[0043] The phase distribution of the nitrided steel member 110 is
Figure imgf000011_0001
It can be analyzed by using together with X-ray diffraction. Specifically, as shown in Figure 2,
Figure imgf000011_0002
By the 0 method, from the surface side, £ phase,
Figure imgf000011_0003
The crystalline phase) and the £ phase are distributed in the order. Then, by using X-ray diffraction together, the curing layer 1 1 2 is dried.
Figure imgf000011_0004
It is confirmed that the crystalline phase is the talent-stainite phase (a phase).
[0044] 窒化化合物層 1 1 1は、 窒化鋼部材 1 1 0の表面から約 3 0 の厚さを 有しており、 これは 5
Figure imgf000011_0005
~ 5 0 の範囲内の厚さである。 表面の £相は 、 数 111の厚さである。
[0044] The nitride compound layer 1 11 has a thickness of about 30 from the surface of the nitrided steel member 1 10, which is 5
Figure imgf000011_0005
The thickness is within the range of ~50. The surface phase is several 111 thick.
[0045] また、 窒化化合物層 1 1 1中のァ’ 相の体積比率は、
Figure imgf000011_0006
[0045] Further, the volume ratio of the phase' in the nitride compound layer 1 1 1 is
Figure imgf000011_0006
による分析範囲 (窒化化合物層 1 1
Figure imgf000011_0007
中に占めるァ’ 相 と £相のカウント数に基づいて測定され得る。 あるいは、 得られた図 2の画 像から、 画像解析によって計算してもよい。 本実施形態の窒化化合物層 1 1 1の場合、 4 1 %である。
Analysis range (Nitride compound layer 1 1
Figure imgf000011_0007
It can be measured based on the number of counts of'phase' and £ phase in it. Alternatively, it may be calculated by image analysis from the obtained image of FIG. In the case of the nitride compound layer 1 11 of the present embodiment, it is 41%.
[0046] 硬化層 1 1 2は、 再加熱処理によってマルテンサイ ト組織に変態している と予想されたが、 本件発明者が前述のような X線回折法による結晶構造解析 を適用したところ、 硬化層 1 1 2の大部分が才ーステナイ ト相 (ァ相) であ るとの結果であった。 従って、 本件発明者は、 硬化層 1 1 2について、 厳密 には才ーステナイ トとマルテンサイ トとの混合組織ではないか、 と考えてい る。 もっとも、 浸窒処理後の鋼材サイズや冷却条件や再加熱条件により、 ベ イナイ ト組織やブラウナイ ト組織等、 更に複数種類の微細組織を含む可能性 も排除されない。 [0046] The hardened layer 1 12 was expected to be transformed into a martensite structure by the reheating treatment. However, when the present inventor applied the crystal structure analysis by the X-ray diffraction method as described above, The result was that most of the stratum 1 12 was the talent-phase (phase a). Therefore, the present inventor believes that the hardened layer 1 12 is strictly a mixed structure of talent and martensite. However, depending on the steel material size after nitriding treatment, cooling conditions, and reheating conditions, the possibility that more than one type of microstructure such as a bainite structure or brownite structure may be included is not excluded.
[0047] 本実施形態の窒化鋼部材 1 1 0は、 後述の循環型処理炉を用いて、 処理温 度: 6 4 0 °〇、 窒化ポテンシャル: 0 . 4、 処理時間: 2時間、 という処理 条件で浸窒処理された後、 急冷され、 更に処理温度: 2 5 0 °〇、 処理時間: 〇 2020/175453 10 卩(:170? 2020 /007395 The nitrided steel member 110 of the present embodiment was processed by using a circulation type processing furnace described later, processing temperature: 640°°, nitriding potential: 0.4, processing time: 2 hours. Nitrogen treatment was performed under the conditions, followed by rapid cooling, and further treatment temperature: 250 ° 〇, treatment time: 〇 2020/175 453 10 卩 (: 170? 2020 /007395
2時間、 という処理条件で再加熱されることで、 製造され得る。 It can be manufactured by being reheated under the processing condition of 2 hours.
[0048] 以上のような窒化鋼部材 1 1 0は、 窒化化合物層 1 1 1中のァ’ 相の体積 比率が 4 1 % (2 0 %以上) であることにより、 実用に足る十分な硬度を提 供できると共に (後述の図 1 1の実施例 1 _ 3 0参照) 、 耐摩耗性も改善さ れている (後述の表 1の実施例 1 _ 3 0参照) 。 [0048] The nitrided steel member 110 as described above has a sufficient hardness for practical use because the volume ratio of the phase' in the nitride compound layer 1 11 is 41% (20% or more). (See Example 1_30 in FIG. 11 below) and wear resistance is also improved (see Example 1_30 in Table 1 below).
[0049] 参考のため、 窒化鋼部材 1 1 0の再加熱処理前の状態の断面顕微鏡写真を 図 3に示す。 [0049] For reference, a cross-sectional micrograph of the nitrided steel member 110 before reheating is shown in Fig. 3.
また、 図 4は、 図 3の窒化鋼部材 1 6 0の巳巳 3 0法による解析結果を示す 図である。 Further, FIG. 4 is a diagram showing an analysis result of the nitrided steel member 160 of FIG. 3 by the Mimi 30 method.
[0050] 図 3及び図 4に示すように、 再加熱処理前の状態では、 窒化化合物層 1 1 [0050] As shown in FIGS. 3 and 4, in the state before the reheating treatment, the nitride compound layer 1 1
1 に相当する領域 1 6 1の大部分が £相である。 このため、 十分な硬さが得 られない (後述の図 1 1の参考例 1参照) 。 Most of the region 1 61 corresponding to 1 is the £ phase. For this reason, sufficient hardness cannot be obtained (see Reference Example 1 in Figure 11 below).
[0051 ] (窒化鋼部材の第 2実施形態の構成、 製法及び効果) (Structure, Manufacturing Method, and Effect of Second Embodiment of Nitrided Steel Member)
図 5は、 本発明の第 2実施形態の窒化鋼部材 1 2 0の断面顕微鏡写真であ る。 図 5に示すように、 本実施形態の窒化鋼部材 1 2 0は、 表面に、 窒化化 合物層 1 2 1が形成されており、 当該窒化化合物層 1 2 1の下方に、 後述す るようなオーステナイ ト組織を有する硬化層 1 2 2を備え、 当該硬化層 1 2 2の下方に、 母相内に窒素が拡散されている拡散層 1 2 3を備えている。 本 実施形態の母相 (母材) は、 炭素含有量が質量%で〇. 4 5 %である炭素鋼 である。 FIG. 5 is a cross-sectional photomicrograph of the nitrided steel member 120 according to the second embodiment of the present invention. As shown in FIG. 5, the nitrided steel member 120 of the present embodiment has a nitride compound layer 1 21 formed on the surface thereof, which will be described below below the nitride compound layer 1 21. The hardened layer 1 2 2 having such an austenite structure is provided, and the diffusion layer 1 2 3 in which nitrogen is diffused in the matrix is provided below the hardened layer 1 2 2. The matrix phase (matrix) of the present embodiment is carbon steel having a carbon content of 0.45% by mass.
[0052] 図 5においても、 窒化化合物層 1 2 1の下部や硬化層 1 2 2が黒く見えて いるのは、 組織観察用の腐食液によって強く腐食されたためである。 また、 表面の更に上方に見えているのは、 研磨用の板であり、 窒化鋼部材の構成要 素ではない。 Also in FIG. 5, the lower part of the nitride compound layer 1 2 1 and the hardened layer 1 2 2 appear black because they are strongly corroded by the corrosive liquid for observing the structure. Further, what is visible above the surface is the polishing plate, not the constituent elements of the nitrided steel member.
[0053] 窒化鋼部材 1 2 0の相分布は、 巳巳3 0法と X線回折とを併用することに よって解析され得る。 具体的には、 図 6に示すように、
Figure imgf000012_0001
0法によって 、 表面側からァ’ 相
Figure imgf000012_0002
結晶相) 、 £相の順番の相分布が分かる。 そし て、 X線回折が併用されることで、 硬化層 1 2 2の干〇〇結晶相が才ーステ 〇 2020/175453 1 1 卩(:170? 2020 /007395
[0053] The phase distribution of the nitrided steel member 120 can be analyzed by using the Mimi 30 method and X-ray diffraction in combination. Specifically, as shown in Figure 6,
Figure imgf000012_0001
By the 0 method, the phase
Figure imgf000012_0002
The crystalline phase) and the £ phase are distributed in this order. Then, the X-ray diffraction is also used, so that the dried crystal phase of the hardened layer 1 2 2 is stable. 〇 2020/175 453 1 1 卩(: 170? 2020/007395
ナイ ト相 (ァ相) であることが確認される。 It is confirmed that it is a night phase (phase a).
[0054] 窒化化合物層 1 2 1は、 窒化鋼部材 1 2 0の表面から約 1 2 の厚さを 有しており、 これは
Figure imgf000013_0001
の範囲内の厚さである。 表面のァ’ 相 は、 数 111の厚さである。
[0054] The nitride compound layer 1 2 1 has a thickness of about 1 2 from the surface of the nitrided steel member 1 2 0.
Figure imgf000013_0001
The thickness is within the range. The surface phase is several 111 thick.
[0055] また、 窒化化合物層 1 2 1中のァ’ 相の体積比率は、
Figure imgf000013_0002
[0055] Further, the volume ratio of the phase' in the nitride compound layer 1 2 1 is
Figure imgf000013_0002
による分析範囲 (窒化化合物層
Figure imgf000013_0003
中に占めるァ’ 相 と £相のカウント数に基づいて測定され得る。 あるいは、 得られた図 2の画 像から、 画像解析によって計算してもよい。 本実施形態の窒化化合物層 1 2 1の場合、 5 2 %である。
Analysis range by (nitride compound layer
Figure imgf000013_0003
It can be measured based on the number of counts of'phase' and £ phase in it. Alternatively, it may be calculated by image analysis from the obtained image of FIG. In the case of the nitride compound layer 1 2 1 of this embodiment, it is 5 2%.
[0056] 硬化層 1 2 2は、 再加熱処理によってマルテンサイ ト組織に変態している と予想されたが、 図 6に示す巳巳 3 0の結果と前述のような X線回折法によ る結晶構造解析とにより、 硬化層 1 2 2においては、 部分的に多くの才ース テナイ トが残っていることが確認された。 もっとも、 浸窒処理後の鋼材サイ ズや冷却条件や再加熱条件により、 ベイナイ ト組織やブラウナイ ト組織等、 更に複数種類の微細組織を含む可能性も排除されない。 [0056] The hardened layer 122 was expected to be transformed into a martensite structure by the reheating treatment. However, the results of Mimi 30 shown in Fig. 6 and the X-ray diffraction method described above were used. It was confirmed by crystal structure analysis that in the hardened layer 122, a large amount of talented regions partially remained. However, depending on the steel material size after nitriding treatment, cooling conditions, and reheating conditions, the possibility of including multiple types of microstructures such as a bainite structure and brownite structure cannot be ruled out.
[0057] 本実施形態の窒化鋼部材 1 2 0は、 後述の循環型処理炉を用いて、 処理温 度: 6 4 0 °〇、 窒化ポテンシャル: 0 . 2、 処理時間: 2時間、 という処理 条件で浸窒処理された後、 急冷され、 更に処理温度: 2 5 0 °〇、 処理時間: 2時間、 という処理条件で再加熱されることで、 製造され得る。 The nitrided steel member 120 of the present embodiment was treated by using a circulation type treatment furnace described later, treatment temperature: 640°°, nitriding potential: 0.2, treatment time: 2 hours. After being subjected to the nitriding treatment under the conditions, it is rapidly cooled, and then it is reheated under the treatment conditions of the treatment temperature: 250 ° C. and the treatment time: 2 hours, whereby it can be produced.
[0058] 以上のような窒化鋼部材 1 2 0は、 窒化化合物層 1 2 1中の· ^ 相の体積 比率が 5 2 % (3 0 %以上) であることにより、 実用に足る十分な硬度を提 供できると共に (後述の図 1 1の実施例 2 _ 1 2参照) 、 耐摩耗性も改善さ れている (後述の表 1の実施例 2 - 1 2参照) 。 [0058] The nitrided steel member 120 as described above has sufficient hardness for practical use because the volume ratio of the ^ phase in the nitride compound layer 1 21 is 52% (30% or more). (See Example 2 _ 12 in Figure 11 below) and wear resistance is also improved (see Example 2-12 in Table 1 below).
[0059] 参考のため、 窒化鋼部材 1 2 0の再加熱処理前の状態の断面顕微鏡写真を 図 7に示す。 [0059] For reference, a cross-sectional micrograph of the nitrided steel member 120 before reheating is shown in Fig. 7.
また、 図 8は、 図 7の窒化鋼部材 1 7 0の巳巳 3 0法による解析結果を示す 図である。 Further, FIG. 8 is a diagram showing an analysis result of the nitrided steel member 170 shown in FIG. 7 by the Mimi 30 method.
[0060] 図 7及び図 8に示すように、 再加熱処理前の状態では、 窒化化合物層 1 2 〇 2020/175453 12 卩(:170? 2020 /007395 [0060] As shown in Figs. 7 and 8, in the state before the reheating treatment, the nitride compound layer 1 2 〇 2020/175 453 12 boxes (: 170? 2020 /007395
1 に相当する領域 1 7 1の大部分が £相である。 このため、 十分な硬さが得 られない。 Most of the region 1 71 corresponding to 1 is the £ phase. Therefore, sufficient hardness cannot be obtained.
[0061 ] (窒化鋼部材の比較例) [0061] (Comparative example of nitrided steel members)
図 9は、 比較例の窒化鋼部材 3 0 0の断面顕微鏡写真である。 図 9に示す ように、 比較例の窒化鋼部材 3 0 0は、 表面に、 窒化化合物層 3 0 1が形成 されており、 当該窒化化合物層 3 0 1の下方に、 母相内に窒素が拡散されて いる拡散層 3 0 3を備えている。 比較例の母相 (母材) も、 炭素含有量が質 量%で〇. 4 5 %である炭素鋼である。 FIG. 9 is a cross-sectional micrograph of a nitrided steel member 300 of Comparative Example. As shown in FIG. 9, the nitrided steel member 300 of the comparative example has a nitride compound layer 3001 formed on the surface thereof, and nitrogen is present in the matrix below the nitride compound layer 301. It has a diffusion layer 303 that is diffused. The parent phase (base material) of the comparative example is also carbon steel having a carbon content of 0.45% by mass.
[0062] 従来の一般的な窒化処理で得られる化合物層の表面側は多孔質である。 図 The surface side of the compound layer obtained by the conventional general nitriding treatment is porous. Figure
9において、 窒化化合物層 3 0 1の上部が黒く見えているのは、 この領域に 多数の微細なボイ ドが存在しているからである。 また、 表面の更に上方に見 えているのは、 研磨用の板であり、 窒化鋼部材の構成要素ではない。 In Fig. 9, the upper part of the nitride compound layer 301 appears black because there are many fine voids in this region. Further, what is seen above the surface is the polishing plate, not the constituent elements of the nitrided steel member.
[0063] 窒化鋼部材 3 0 0の相分布も、 巳巳3 0法と X線回折とを併用することに よって解析され得る。 具体的には、 図 1 0に示すように、
Figure imgf000014_0001
0法によっ て、 窒化化合物層 3 0 1の大部分が £相であることが分かる。
[0063] The phase distribution of the nitrided steel member 300 can also be analyzed by using the Mimi 30 method and X-ray diffraction in combination. Specifically, as shown in FIG.
Figure imgf000014_0001
By the 0 method, it can be seen that most of the nitride compound layer 301 is in the phase.
[0064] 窒化化合物層 3 0 1は、 窒化鋼部材 3 0 0の表面から約 1 7 の厚さを 有している。 The nitride compound layer 3001 has a thickness of about 17 from the surface of the nitrided steel member 300.
[0065] 当該比較例の窒化鋼部材 3 0 0は、 後述の循環型処理炉を用いて、 処理温 度: 5 8 0 °〇、 窒化ポテンシャル 2 . 5、 処理時間: 2時間、 という処理条 件で軟窒化処理された後 (雰囲気ガスは、 アンモニア、 窒素ガス及び炭酸ガ ス) 、 急冷されることで、 製造され得る。 なお、 当該比較例の窒化化合物層 3 0 1は、 再加熱処理を施しても硬化しないことが確認されている (軟窒化 処理時の温度が比較的低いためであると考えられる) 。 [0065] The nitrided steel member 300 of the comparative example was processed using a circulation type processing furnace described below, with a processing temperature of 5800°, a nitriding potential of 2.5, and a processing time of 2 hours. After the soft nitriding process is performed (atmosphere gas is ammonia, nitrogen gas and carbon dioxide gas), it can be rapidly cooled to be manufactured. It has been confirmed that the nitride compound layer 301 of the comparative example does not cure even if it is subjected to the reheating treatment (probably because the temperature during the soft nitriding treatment is relatively low).
[0066] 以上のような窒化鋼部材 3 0 0は、 窒化化合物層 3 0 1の大部分が ^相で あり、 従来はこの硬い £相を利用して耐摩耗性を向上させていた。 しかし、 本発明の浸窒処理による £化合物層と比べると表面硬度が不十分であり (後 述の図 1 1の比較例参照) 、 そのことが耐摩耗性にも不利に影響して、 耐摩 耗性も不十分である (後述の表 1の比較例参照) 。 〇 2020/175453 13 卩(:170? 2020 /007395 In the nitrided steel member 300 as described above, most of the nitride compound layer 3001 is the ^ phase, and conventionally, this hard phase was used to improve the wear resistance. However, the surface hardness was insufficient as compared with the compound layer formed by the nitriding treatment of the present invention (see the comparative example in Fig. 11 described later), which adversely affects the wear resistance and the wear resistance. Abrasion is also insufficient (see Comparative Example in Table 1 below). 〇 2020/175 453 13 卩 (: 170? 2020 /007395
[0067] 更に、 比較例の窒化鋼部材 3 0 0については、 窒化化合物層 3 0 1の表面 側に多くのボイ ド (図 9において黒く見えている) が形成されてしまうとい う欠点も指摘される。 当該ボイ ド (ポーラス) は、 亀裂発生の起点となり得 るため、 その存在は好ましくない。 [0067] Furthermore, regarding the nitrided steel member 300 of the comparative example, it was pointed out that a lot of voids (which appear black in Fig. 9) are formed on the surface side of the nitride compound layer 3001. To be done. Since the void (porous) can be the starting point of crack initiation, its presence is not preferable.
[0068] (硬度の評価) (Evaluation of hardness)
図 1 1は、 硬さの測定結果を示すグラフである。 第 1実施形態の窒化鋼部 材 1 1 〇 (実施例 1 _ 3 0) 、 第 2実施形態の窒化鋼部材 1 2 0 (実施例 2 - 1 2) , 参考例の窒化鋼部材 1 6 0 (参考例 1 _ 3 0) 、 及び、 比較例の 窒化鋼部材 3 0 0の各々について、 表面から所定深さでの硬さを測定した結 果がプロッ トされている。 Figure 11 is a graph showing the results of hardness measurement. Nitrided steel part 1 1 〇 (Example 1 _ 30) of the first embodiment, Nitrided steel member 1 2 0 of the second embodiment (Example 2-1 2), Nitrided steel member 1 60 of the reference example (Reference Example 1_30), and for each of the nitrided steel members 300 of Comparative Example, the results obtained by measuring the hardness at a predetermined depth from the surface are plotted.
[0069] 第 1実施形態の窒化鋼部材 1 1 0 (実施例 1 _ 3 0) では、 窒化化合物層 [0069] In the nitrided steel member 110 (Example 1_30) of the first embodiment, the nitride compound layer was used.
1 1 1の厚さ全体 (3 0 ) に亙って、 1 0 0 0 1·! V以上という高い硬さ が得られている。 特に、 心部側の £相に対応する部分の硬さが大きくなって いる。 Throughout the entire thickness of 1 1 (3 0 ), a high hardness of 1 0 0 0 1! V or higher is obtained. In particular, the hardness of the portion corresponding to the phase on the core side is large.
[0070] これに対して、 参考例の窒化鋼部材 1 6 0 (参考例 1 _ 3 0) では、 表面 付近での硬さが 8 0 0 1~1 Vを少し下回っており、 十分ではない。 [0070] On the other hand, in the nitrided steel member 160 of the reference example (Reference example 1_30), the hardness in the vicinity of the surface is slightly lower than 8 0 0 1 to 1 V, which is not sufficient. ..
[0071 ] 第 2実施形態の窒化鋼部材 1 2 0 (実施例 2 _ 1 2) では、 内部に向かっ て硬さは低下しているが、 表面付近での硬さは十分に高い。 [0071] In the nitrided steel member 120 (Example 2_12) of the second embodiment, the hardness decreases toward the inside, but the hardness near the surface is sufficiently high.
[0072] その他、 比較例の窒化鋼部材 3 0 0では、 表面付近での硬さが 6 0 0 1~1 V 程度となっており、 十分ではない。 [0072] More, in the nitride steel member 3 0 0 Comparative Example, the hardness in the vicinity of the surface has a 6 0 0 1 - about 1 V, not sufficient.
[0073] (第 1実施形態の窒化鋼部材 1 1 0の窒化化合物層 1 1 1の厚さ) (Thickness of Nitride Compound Layer 1 11 of Nitride Steel Member 110 of First Embodiment)
第 1実施形態の窒化鋼部材 1 1 〇の窒化化合物層 1 1 1の厚さは、 一般的 には、 より厚い方が摩耗許容量が大きくなるため好ましいと言える。 It can be said that, as for the thickness of the nitride compound layer 1 11 of the nitrided steel member 110 according to the first embodiment, generally, the thicker the thickness, the larger the allowable wear amount, and therefore the more preferable.
[0074] 本件発明者は、 一般的にシャフト類に使われる炭素鋼で炭素量の多い (具 体的には例えば 3 5〇〇鋼) 場合に、 窒化化合物層 1 1 1が厚くなり易いと いう傾向を確認した。 そして、 具体的に、 3 5 0(3鋼を、 処理温度 = 6 4 0 °〇、 窒化ポテンシャル: 0 . 6、 処理時間: 2時間で浸窒処理し、 急冷して 、 処理温度: 2 5 0 °〇、 処理時間: 2時間で再加熱した時、 窒化化合物層 1 〇 2020/175453 14 卩(:170? 2020 /007395 The inventor of the present invention has found that the nitride compound layer 1 11 tends to be thick when the carbon steel generally used for shafts has a large amount of carbon (specifically, for example, 3500 steel). I confirmed the tendency. Then, specifically, 350 (3 steels, treatment temperature = 640 ° 〇, nitriding potential: 0.6, treatment time: 2 hours, nitrification treatment, quenching, treatment temperature: 25 0 ° 〇, Treatment time: When reheated for 2 hours, nitride compound layer 1 〇 2020/175 453 14 卩 (: 170? 2020 /007395
1 1の厚みは 5〇 であった (後述の表 1の実施例 1 _ 5 0参照) 。 従っ て、 当業者が本発明の課題を解決できると認識し得る窒化化合物層 1 1 1の 厚さの最大値を、 5 0 |^|とした。 The thickness of 11 was 50 (see Example 1_50 in Table 1 below). Therefore, the maximum value of the thickness of the nitride compound layer 1 11 which can be recognized by those skilled in the art as solving the problem of the present invention is set to 50 |^|.
[0075] その他、 本件発明者は、 窒化化合物層 1 1 1の厚さについて、 浸窒処理時 の窒化ポテンシャルが高い場合に厚くなるという傾向を確認している。 [0075] In addition, the inventors of the present invention have confirmed that the thickness of the nitride compound layer 1 11 tends to increase when the nitriding potential during the nitriding treatment is high.
[0076] (第 2実施形態の窒化鋼部材 1 2 0の窒化化合物層 1 2 1の厚さ) (Thickness of Nitride Compound Layer 1 21 of Nitride Steel Member 120 of Second Embodiment)
第 2実施形態の窒化鋼部材 1 2 0の窒化化合物層 1 2 1の厚さも、 一般的 には、 より厚い方が摩耗許容量が大きくなるため好ましいと言える。 Regarding the thickness of the nitride compound layer 1 21 of the nitrided steel member 120 of the second embodiment, generally, it can be said that the thicker the thickness, the larger the allowable wear amount, which is preferable.
[0077] 本件発明者は、 一般的に歯車に使われる炭素鋼で炭素量が低い (具体的に は例えば 3 1 5(3鋼) 場合に、 窒化化合物層 1 2 1が厚くなり易いという傾 向を確認した。 そして、 具体的に、 3 1 5(3鋼を、 処理温度: 6 5 0 °〇、 窒 化ポテンシャル: 0 . 2、 処理時間: 2時間で浸窒処理し、 急冷して、 処理 温度: 2 5 0 °〇、 処理時間: 2時間で再加熱した時、 窒化化合物層 1 2 1の 厚みは 3 0 であった (後述の表 1の実施例 2— 3 0参照) 。 従って、 当 業者が本発明の課題を解決できると認識し得る窒化化合物層 1 1 1の厚さの 最大値を、 3 0 |^|とした。 [0077] The present inventor has a tendency that the carbon compound steel generally used for gears has a low carbon content (specifically, for example, 3 15 (3 steel), the nitride compound layer 1 2 1 tends to be thick. . confirmed direction and, specifically, 3 1 5 (3 steel processing temperature: 6 5 0 ° 〇, nitriding potential:. 0 2, treatment time: to nitriding treatment for 2 hours, and quenched When the treatment temperature was 250° C. and the treatment time was 2 hours, the nitride compound layer 1 21 had a thickness of 30 (see Examples 2 to 30 in Table 1 below). Therefore, the maximum value of the thickness of the nitride compound layer 1 11 which can be recognized by those skilled in the art as solving the problem of the present invention is set to 30 |^|.
[0078] その他、 本件発明者は、 窒化化合物層 1 2 1の厚さについても、 浸窒処理 時の窒化ポテンシャルが高い場合に厚くなるという傾向を確認している。 In addition, the present inventor has confirmed that the thickness of the nitride compound layer 1 2 1 also tends to increase when the nitriding potential during the nitriding treatment is high.
[0079] (第 1実施形態の窒化鋼部材 1 1 0の窒化化合物層 1 1 1中の· ^ 相の体積 比率) [0079] (Volume ratio of ^ phase in nitride compound layer 1 11 of nitrided steel member 110 of the first embodiment)
本件発明者は、 窒化化合物層 1 1 1中のァ’ 相の体積比率について、 より 大きい方が硬さを高めるためには好ましいことを確認している。 最小値につ いては、 具体的に、 3 5〇〇鋼を、 処理温度: 6 4 0 °〇、 窒化ポテンシャル : 0 . 6、 処理時間: 2時間で浸窒処理し、 急冷して、 処理温度: 2 5 0 °〇 、 処理時間: 2時間で再加熱した時、 窒化化合物層 1 1 1中の· ^ 相の体積 比率は 2 0 %であった (後述の表 1の実施例 1 _ 5 0参照) 。 従って、 当業 者が本発明の課題を解決できると認識し得る窒化化合物層 1 1 1中のァ’ 相 の体積比率の最小値を、 2 0 %とした。 〇 2020/175453 15 卩(:170? 2020 /007395 The inventor of the present invention has confirmed that a larger volume ratio of phases in the nitride compound layer 1 1 1 is preferable for increasing hardness. Regarding the minimum value, concretely, 3500 steel is treated at a treatment temperature of 6400°, a nitriding potential of 0.6, and a treatment time of 2 hours. When reheated at a temperature of 250° C. for a treatment time of 2 hours, the volume ratio of the ^ phase in the nitride compound layer 11 was 20% (Example 1_ in Table 1 below). See 50). Therefore, the minimum value of the volume ratio of the phase in the nitride compound layer 1 11 which can be recognized by those skilled in the art as solving the problem of the present invention is set to 20%. 〇 2020/175 453 15 卩(: 170? 2020/007395
[0080] (第 2実施形態の窒化鋼部材 1 2 0の窒化化合物層 1 2 1中の· ^ 相の体積 比率) [0080] (Volume ratio of ^ phase in nitride compound layer 1 21 of nitrided steel member 120 of Second Embodiment)
本件発明者は、 窒化化合物層 1 2 1中の· ^ 相の体積比率についても、 よ り大きい方が硬さを高めるためには好ましいことを確認している。 最小値に ついては、 具体的に、 3 1 5〇鋼を、 処理温度: 6 5 0 °〇、 窒化ポテンシャ ル: 0 . 2、 処理時間: 2時間で浸窒処理し、 急冷して、 処理温度 = 2 5 0 °〇、 処理時間: 2時間で再加熱した時、 窒化化合物層 1 2 1中の· ^ 相の体 積比率は 3 0 %であった (後述の表 1の実施例 2 _ 3 0参照) 。 従って、 当 業者が本発明の課題を解決できると認識し得る窒化化合物層 1 2 1中の· ^ 相の体積比率の最小値を、 3 0 %とした。 The present inventor has confirmed that the larger the volume ratio of the ^ phase in the nitride compound layer 1 21 is, the better it is to increase the hardness. As for the minimum value, concretely, 3150 steel is treated at a treatment temperature of 6500°, a nitriding potential of 0.2, a treatment time of 2 hours, and subjected to nitrification treatment, followed by rapid cooling, and treatment temperature. = 2500° 〇, treatment time: When reheated for 2 hours, the volume fraction of · ^ phase in the nitride compound layer 1 21 was 30% (Example 2 _ in Table 1 below). See 30). Therefore, the minimum value of the volume ratio of the ^ phase in the nitride compound layer 1 21 which can be recognized by those skilled in the art as solving the problem of the present invention was set to 30%.
[0081 ] (窒化鋼部材の製造装置の構成) (Configuration of Nitriding Steel Member Manufacturing Apparatus)
続いて、 窒化鋼部材の製造装置について説明する。 まず、 ガス窒化処理の 基本的事項について化学的に説明すれば、 ガス窒化処理では、 被処理品が配 置される処理炉 (ガス窒化炉) 内において、 以下の式 (1) で表される窒化 反応が発生する。 Next, an apparatus for manufacturing a nitrided steel member will be described. First, the basic items of the gas nitriding process will be described chemically. In the gas nitriding process, the following equation (1) is used in the processing furnace (gas nitriding furnace) where the article to be processed is placed. Nitriding reaction occurs.
3®[1\1]+3/2¾ - ( 1) 3 ® [1\1]+3/2¾-(1)
[0082] このとき、 窒化ポテンシャル%は、 以下の式 (2) で定義される。 At this time, the nitriding potential% is defined by the following equation (2).
%= 3 /2% = 3/2
ここで、 卩 は炉内アンモニア分圧であり、 は炉内水素分圧である。 窒化ポ テンシャル は、 ガス窒化炉内の雰囲気が有する窒化能力を表す指標として周 知である。 Here, is the partial pressure of ammonia in the furnace, and is the partial pressure of hydrogen in the furnace. The nitriding potential is known as an index showing the nitriding ability of the atmosphere in the gas nitriding furnace.
[0083] 一方、 ガス窒化処理中の炉内では、 当該炉内へ導入されたアンモニアガス の一部が、 式 (3) の反応にしたがって水素ガスと窒素ガスとに熱分解する ®1 /21\12+3/2¾ - (3) On the other hand, in the furnace during the gas nitriding treatment, a part of the ammonia gas introduced into the furnace is thermally decomposed into hydrogen gas and nitrogen gas according to the reaction of equation (3). \1 2 +3/2¾-(3)
[0084] 炉内では、 主に式 (3) の反応が生じており、 式 (1) の窒化反応は量的 にはほとんど無視できる。 したがって、 式 (3) の反応で消費された炉内ア ンモニア濃度または式 (3) の反応で発生された水素ガス濃度が分かれば、 〇 2020/175453 16 卩(:170? 2020 /007395 [0084] The reaction of the formula (3) mainly occurs in the furnace, and the nitriding reaction of the formula (1) can be almost neglected quantitatively. Therefore, if the concentration of ammonia in the furnace consumed in the reaction of equation (3) or the concentration of hydrogen gas generated in the reaction of equation (3) is known, 〇 2020/175 453 16 卩(: 170? 2020/007395
窒化ポテンシャルを演算することができる。 すなわち、 発生される水素及び 窒素は、 アンモニア 1モルから、 それぞれ 1 . 5モルと〇. 5モルであるか ら、 炉内アンモニア濃度を測定すれば炉内水素濃度も分かり、 窒化ポテンシ ャルを演算することができる。 あるいは、 炉内水素濃度を測定すれば、 炉内 アンモニア濃度が分かり、 やはり窒化ポテンシャルを演算することができる The nitriding potential can be calculated. That is, the hydrogen and nitrogen generated are 1.5 mol and 0.5 mol, respectively, from 1 mol of ammonia. Therefore, measuring the ammonia concentration in the furnace also reveals the hydrogen concentration in the furnace, and It can be calculated. Alternatively, if the hydrogen concentration in the furnace is measured, the ammonia concentration in the furnace can be known, and the nitriding potential can also be calculated.
[0085] なお、 ガス窒化炉内に流されたアンモニアガスは、 炉内を循環した後、 炉 外へ排出される。 すなわち、 ガス窒化処理では、 炉内の既存ガスに対して、 フレッシュ (新た) なアンモニアガスを炉内へ絶えず流入させることにより 、 当該既存ガスが炉外へ排出され続ける (供給圧で押し出される) 。 [0085] The ammonia gas flown in the gas nitriding furnace is circulated in the furnace and then discharged to the outside of the furnace. That is, in the gas nitriding process, the fresh (new) ammonia gas constantly flows into the furnace with respect to the existing gas in the furnace, so that the existing gas is continuously discharged outside the furnace (pushed out by the supply pressure). ..
[0086] ここで、 炉内へ導入されるアンモニアガスの流量が少なければ、 炉内での ガス滞留時間が長くなるため、 分解されるアンモニアガスの量が増加して、 当該分解反応によって発生される窒素ガス十水素ガスの量は増加する。 一方 、 炉内へ導入されるアンモニアガスの流量が多ければ、 分解されずに炉外へ 排出されるアンモニアガスの量が増加して、 炉内で発生される窒素ガス十水 素ガスの量は減少する。 [0086] Here, if the flow rate of the ammonia gas introduced into the furnace is small, the gas residence time in the furnace becomes long, so that the amount of decomposed ammonia gas increases and the decomposition reaction is generated. The amount of nitrogen gas and deuterium gas is increased. On the other hand, if the flow rate of ammonia gas introduced into the furnace is large, the amount of ammonia gas that is not decomposed and is discharged to the outside of the furnace increases, and the amount of nitrogen gas and deuterium gas generated in the furnace increases. Decrease.
[0087] さて、 図 1 2は、 本発明の一実施形態による窒化鋼部材を製造するための 製造装置を示す概略図である。 図 1 2に示すように、 本実施形態の製造装置 1は、 循環型処理炉 2を備えており、 当該循環型処理炉 2内へ導入するガス として、 アンモニアとアンモニア分解ガスの 2種類のみを用いている。 アン モニア分解ガスとは、 八 Xガスとも呼ばれるガスで、 1 : 3の比率の窒素と 水素とからなる混合ガスである。 もっとも、 導入ガスとしては、 (1) アン モニアガスのみ、 (2) アンモニアとアンモニア分解ガスの 2種類のみ、 ( 3) アンモニアと窒素ガスの 2種類のみ、 または、 (4) アンモニアとアン モニア分解ガスと窒素ガスの 3種類のみ、 から選択され得る。 [0087] Now, Fig. 12 is a schematic diagram showing a manufacturing apparatus for manufacturing a nitrided steel member according to an embodiment of the present invention. As shown in FIG. 12, the manufacturing apparatus 1 of the present embodiment is provided with a circulation type treatment furnace 2, and only two types of gas, ammonia and ammonia decomposition gas, are introduced into the circulation type treatment furnace 2. I am using. Ammonia decomposition gas, also called 8X gas, is a mixed gas consisting of nitrogen and hydrogen in a ratio of 1:3. However, as the introduced gas, (1) only ammonia gas, (2) only two types of ammonia and ammonia decomposition gas, (3) only two types of ammonia and nitrogen gas, or (4) ammonia and ammonia decomposition gas And only three types of nitrogen gas can be selected from.
[0088] 循環型処理炉 2の断面構造例を、 図 1 3に示す。 図 1 3において、 炉壁 ( ベルとも呼ばれる) 2 0 1の中に、 レトルトと呼ばれる円筒 2 0 2が配置さ れ、 更にその内側に内部レトルトと呼ばれる円筒 2 0 4が配置されている。 〇 2020/175453 17 卩(:170? 2020 /007395 FIG. 13 shows an example of a cross-sectional structure of the circulation type processing furnace 2. In Fig. 13, a cylinder 20 2 called a retort is arranged in a furnace wall (also called a bell) 201, and a cylinder 20 4 called an inner retort is arranged inside the cylinder. 〇 2020/175 453 17 卩(: 170? 2020/007395
ガス導入管 2 0 5から供給される導入ガスは、 図中の矢印に示されるように 、 被処理品の周囲を通過した後、 攪拌扇 2 0 3の作用によって 2つの円筒 2 0 2、 2 0 4間の空間を通過して循環する。 2 0 6は、 フレア付きのガスフ —ドであり、 2 0 7は、 熱電対であり、 2 0 8は冷却作業用の蓋であり、 2 0 9は、 冷却作業用のファンである。 当該循環型処理炉 2は、 横型ガス窒化 炉とも呼ばれており、 その構造自体は公知のものである。 The introduction gas supplied from the gas introduction pipe 205 passes through the periphery of the object to be treated as shown by the arrow in the figure, and then the two stirring cylinders 2 0 2 and 2 2 are operated by the stirring fan 2 0 3. It circulates through the space between 0 and 4. Reference numeral 206 is a gas hood with flare, 207 is a thermocouple, 208 is a lid for cooling work, and 209 is a fan for cooling work. The circulation type processing furnace 2 is also called a horizontal gas nitriding furnace, and its structure itself is known.
[0089] 被処理品 3は、 炭素鋼または低合金鋼であって、 例えば自動車部品である クランクシャフトやギア等である。 The object to be treated 3 is carbon steel or low alloy steel, and is, for example, a crankshaft, a gear or the like which is an automobile part.
[0090] また、 図 1 2に示すように、 本実施形態の表面硬化処理装置 1の処理炉 2 には、 炉開閉蓋 7と、 攪拌ファン 8と、 攪拌ファン駆動モータ 9と、 雰囲気 ガス濃度検出装置 3と、 窒化ポテンシャル調節計 4と、 プログラマブルロジ ックコントローラ 3 1 と、 炉内導入ガス供給部 2 0と、 が設けられている。 Further, as shown in FIG. 12, the processing furnace 2 of the surface hardening processing apparatus 1 of the present embodiment includes a furnace opening/closing lid 7, a stirring fan 8, a stirring fan drive motor 9, and an atmosphere gas concentration. A detector 3, a nitriding potential controller 4, a programmable logic controller 31 and an in-furnace introduced gas supply unit 20 are provided.
[0091 ] 攪拌ファン 8は、 処理炉 2内に配置されており、 処理炉 2内で回転して、 処理炉 2内の雰囲気を攪拌するようになっている。 攪拌ファン駆動モータ 9 は、 攪拌ファン 8に連結されており、 攪拌ファン 8を任意の回転速度で回転 させるようになっている。 The stirring fan 8 is arranged in the processing furnace 2 and rotates in the processing furnace 2 to stir the atmosphere in the processing furnace 2. The stirring fan drive motor 9 is connected to the stirring fan 8 so as to rotate the stirring fan 8 at an arbitrary rotation speed.
[0092] 雰囲気ガス濃度検出装置 3は、 処理炉 2内の水素濃度またはアンモニア濃 度を炉内雰囲気ガス濃度として検出可能なセンサにより構成されている。 当 該センサの検出本体部は、 雰囲気ガス配管 1 2を介して処理炉 2の内部と連 通している。 雰囲気ガス配管 1 2は、 本実施形態においては、 雰囲気ガス濃 度検出装置 3のセンサ本体部と処理炉 2とを直接連通させる経路で形成され 、 途中で排ガス燃焼分解装置 4 1へ繫がる炉内ガス廃棄配管 4 0が接続され ている。 これにより、 雰囲気ガスは、 廃棄されるガスと雰囲気ガス濃度検出 装置 3に供給されるガスとに分配される。 The atmosphere gas concentration detecting device 3 is composed of a sensor capable of detecting the hydrogen concentration or the ammonia concentration in the processing furnace 2 as the atmosphere gas concentration in the furnace. The main body of detection of the sensor communicates with the inside of the processing furnace 2 through an atmospheric gas pipe 12. In the present embodiment, the atmospheric gas pipe 12 is formed in a path that directly connects the sensor main body of the atmospheric gas concentration detection device 3 and the processing furnace 2, and is connected to the exhaust gas combustion decomposition device 41 on the way. Furnace gas disposal pipe 40 is connected. As a result, the atmospheric gas is distributed between the discarded gas and the gas supplied to the atmospheric gas concentration detection device 3.
[0093] また、 雰囲気ガス濃度検出装置 3は、 炉内雰囲気ガス濃度を検出した後、 当該検出濃度を含む情報信号を、 窒化ポテンシャル調節計 4へ出力するよう になっている。 Further, the atmospheric gas concentration detecting device 3 is configured to detect the atmospheric gas concentration in the furnace and then output an information signal including the detected concentration to the nitriding potential controller 4.
[0094] 窒化ポテンシャル調節計 4は、 炉内窒化ポテンシャル演算装置 1 3と、 ガ 〇 2020/175453 18 卩(:170? 2020 /007395 [0094] The nitriding potential controller 4 includes an in-furnace nitriding potential computing device 13 〇 2020/175 453 18 卩 (: 170? 2020 /007395
ス流量出力調整装置 3 0と、 を有している。 また、 プログラマブルロジック コントローラ 3 1は、 ガス導入量制御装置 1 4と、 パラメータ設定装置 1 5 と、 を有している。 And a flow rate output adjusting device 30. In addition, the programmable logic controller 31 has a gas introduction amount control device 14 and a parameter setting device 15.
[0095] 炉内窒化ポテンシャル演算装置 1 3は、 炉内雰囲気ガス濃度検出装置 3に よって検出される水素濃度またはアンモニア濃度に基づいて、 処理炉 2内の 窒化ポテンシャルを演算するようになっている。 具体的には、 実際の炉内導 入ガスに応じてプログラムされた窒化ポテンシャルの演算式が組み込まれて おり、 炉内雰囲気ガス濃度の値から窒化ポテンシャルを演算するようになっ ている。 [0095] The in-furnace nitriding potential calculation device 13 is configured to calculate the nitriding potential in the processing furnace 2 based on the hydrogen concentration or the ammonia concentration detected by the in-furnace atmosphere gas concentration detection device 3. .. Specifically, a formula for calculating the nitriding potential programmed according to the actual gas introduced in the furnace is incorporated, and the nitriding potential is calculated from the value of the atmospheric gas concentration in the furnace.
[0096] パラメータ設定装置 1 5は、 例えばタッチパネルからなり、 炉内導入ガス の総流量、 ガス種、 処理温度、 目標窒化ポテンシャル、 等をそれぞれ設定入 力できるようになっている。 設定入力された各設定パラメータ値は、 ガス流 量出力調整装置 3 0へ伝送されるようになっている。 [0096] The parameter setting device 15 is composed of, for example, a touch panel, and can set and input the total flow rate of gas introduced into the furnace, the gas type, the processing temperature, the target nitriding potential, and the like. Each setting parameter value input by setting is transmitted to the gas flow rate output adjusting device 30.
[0097] そして、 ガス流量出力調整装置 3 0が、 炉内窒化ポテンシャル演算装置 1 [0097] Then, the gas flow rate output adjusting device 30 is connected to the in-reactor nitriding potential calculating device 1
3によって演算された窒化ポテンシャルを出力値とし、 目標窒化ポテンシャ ル (設定された窒化ポテンシャル) を目標値とし、 アンモニアガスとアンモ ニア分解ガスの各々の導入量を入力値とした制御を実施するようになってい る。 より具体的には、 アンモニア分解ガスの炉内導入量を一定とし且つアン モニアガスの炉内導入量を変化させる制御を実施できるようになっている。 ガス流量出力調整装置 3 0の出力値は、 ガス導入量制御装置 1 4へ伝達され るようになっている。 Control is performed with the nitriding potential calculated in step 3 as the output value, the target nitriding potential (set nitriding potential) as the target value, and the input amounts of ammonia gas and ammonia decomposition gas as input values. It has become. More specifically, it is possible to control the amount of ammonia decomposition gas introduced into the furnace to be constant and to change the amount of ammonia gas introduced into the furnace. The output value of the gas flow rate output adjusting device 30 is transmitted to the gas introduction amount control device 14.
[0098] ガス導入量制御装置 1 4は、 各ガスの導入量を実現するべく、 アンモニア ガス用の第 1供給量制御装置 2 2とアンモニア分解ガス用の第 2供給量制御 装置 2 6とにそれぞれ制御信号を送るようになっている。 [0098] The gas introduction amount control device 14 includes a first supply amount control device 2 2 for ammonia gas and a second supply amount control device 26 for ammonia decomposition gas so as to realize the introduction amount of each gas. Each is designed to send a control signal.
[0099] 本実施形態の炉内導入ガス供給部 2 0は、 アンモニアガス用の第 1炉内導 入ガス供給部 2 1 と、 第 1供給量制御装置 2 2と、 第 1供給弁 2 3と、 第 1 流量計と、 を有している。 また、 本実施形態の炉内導入ガス供給部 2 0は、 アンモニア分解ガス (八乂ガス) 用の第 2炉内導入ガス供給部 2 5と、 第 2 〇 2020/175453 19 卩(:170? 2020 /007395 The in-furnace introduced gas supply unit 20 of the present embodiment includes a first in-reactor introduced gas supply unit 21 for ammonia gas, a first supply amount control device 2 2 and a first supply valve 2 3 And a first flow meter. In addition, the in-reactor introduction gas supply unit 20 of the present embodiment includes a second in-reactor introduction gas supply unit 25 for ammonia decomposition gas (eight gas), 〇 2020/175 453 19 卩 (: 170? 2020 /007395
供給量制御装置 2 6と、 第 2供給弁 2 7と、 第 2流量計と、 を有している。 It has a supply amount control device 26, a second supply valve 27, and a second flow meter.
[0100] 本実施形態では、 アンモニアガスとアンモニア分解ガスとは、 処理炉 2内 に入る前の炉内導入ガス導入配管 2 9内で混合されるようになっている。 [0100] In the present embodiment, the ammonia gas and the ammonia decomposition gas are adapted to be mixed in the furnace introduction gas introduction pipe 29 before entering the processing furnace 2.
[0101 ] 第 1炉内導入ガス供給部 2 1は、 例えば、 第 1炉内導入ガス (本例ではア ンモニアガス) を充填したタンクにより形成されている。 [0101] The first-reactor-introduced-gas supply unit 21 is formed of, for example, a tank filled with the first-reactor-introduced gas (in this example, ammonia gas).
[0102] 第 1供給量制御装置 2 2は、 マスフローコントローラにより形成されてお り、 第 1炉内導入ガス供給部 2 1 と第 1供給弁 2 3との間に介装されている 。 第 1供給量制御装置 2 2の開度が、 ガス導入量制御装置 1 4から出力され る制御信号に応じて変化する。 また、 第 1供給量制御装置 2 2は、 第 1炉内 導入ガス供給部 2 1から第 1供給弁 2 3への供給量を検出し、 この検出した 供給量を含む情報信号をガス導入量制御装置 1 4へ出力するようになってい る。 当該制御信号は、 ガス導入量制御装置 1 4による制御の補正等に用いら れ得る。 [0102] The first supply amount control device 22 is formed by a mass flow controller and is interposed between the first in-reactor introduced gas supply part 21 and the first supply valve 23. The opening degree of the first supply amount control device 22 changes according to the control signal output from the gas introduction amount control device 14. Further, the first supply amount control device 22 detects the supply amount from the first in-furnace introduced gas supply part 21 to the first supply valve 23, and outputs an information signal including the detected supply amount to the gas introduction amount. It is designed to output to the control unit 14. The control signal can be used for correction of the control by the gas introduction amount control device 14 or the like.
[0103] 第 1供給弁 2 3は、 ガス導入量制御装置 1 4が出力する制御信号に応じて 開閉状態を切り換える電磁弁により形成されており、 第 1供給量制御装置 2 2と第 1流量計との間に介装されている。 [0103] The first supply valve 23 is formed by a solenoid valve that switches between open and closed states in accordance with a control signal output from the gas introduction amount control device 14 and is connected to the first supply amount control device 2 2 and the first flow rate. It is installed between the instrument and the instrument.
[0104] 第 2炉内導入ガス供給部 2 5は、 例えば、 第 2炉内導入ガス (本例ではア ンモニア分解ガス) を充填したタンクにより形成されている。 [0104] The second-reactor-introduced-gas supply unit 25 is formed by, for example, a tank filled with the second-reactor-introduced gas (in the present example, an ammonia decomposition gas).
[0105] 第 2供給量制御装置 2 6は、 マスフローコントローラにより形成されてお り、 第 2炉内導入ガス供給部 2 5と第 2供給弁 2 7との間に介装されている 。 第 2供給量制御装置 2 6の開度が、 ガス導入量制御装置 1 4から出力され る制御信号に応じて変化する。 また、 第 2供給量制御装置 2 6は、 第 2炉内 導入ガス供給部 2 5から第 2供給弁 2 7への供給量を検出し、 この検出した 供給量を含む情報信号をガス導入量制御装置 1 4へ出力するようになってい る。 当該制御信号は、 ガス導入量制御装置 1 4による制御の補正等に用いら れ得る。 [0105] The second supply amount control device 26 is formed by a mass flow controller and is interposed between the second in-furnace introduced gas supply part 25 and the second supply valve 27. The opening degree of the second supply amount control device 26 changes according to the control signal output from the gas introduction amount control device 14. Further, the second supply amount control device 26 detects the supply amount from the second in-furnace introduced gas supply unit 25 to the second supply valve 27, and outputs an information signal including the detected supply amount to the gas introduction amount. It is designed to output to the control unit 14. The control signal can be used for correction of the control by the gas introduction amount control device 14 or the like.
[0106] 第 2供給弁 2 7は、 ガス導入量制御装置 1 4が出力する制御信号に応じて 開閉状態を切り換える電磁弁により形成されており、 第 2供給量制御装置 2 \¥0 2020/175453 20 ?01/1?2020/007395 [0106] The second supply valve 27 is formed by a solenoid valve that switches between open and closed states in accordance with a control signal output by the gas introduction amount control device 14 and the second supply amount control device 2 \\0 2020/175453 20 ?01/1?2020/007395
6と第 2流量計との間に介装されている。 It is installed between 6 and the second flow meter.
[0107] (窒化鋼部材の製造装置の作用 (製造方法) ) [Operation of Nitride Steel Member Manufacturing Apparatus (Manufacturing Method)]
次に、 本実施形態の製造装置 1の作用について説明する。 まず、 循環型処 理炉 2内に被処理品 3が投入され、 循環型処理炉 2が所望の処理温度に加熱 される。 その後、 炉内導入ガス供給部 2 0からアンモニアガスとアンモニア 分解ガスとの混合ガス、 あるいはアンモニアガスのみ、 が設定初期流量で処 理炉 2内へ導入される。 この設定初期流量も、 パラメータ設定装置 1 5にお いて設定入力可能であり、 第 1供給量制御装置 2 2及び第 2供給量制御装置 2 6 (共にマスフローコントローラ) によって制御される。 また、 攪拌ファ ン駆動モータ 9が駆動されて攪拌ファン 8が回転し、 処理炉 2内の雰囲気を 攪拌する。 Next, the operation of the manufacturing apparatus 1 of this embodiment will be described. First, the article to be treated 3 is put into the circulation type processing furnace 2 and the circulation type processing furnace 2 is heated to a desired processing temperature. After that, a mixed gas of ammonia gas and ammonia decomposition gas or only ammonia gas is introduced into the processing furnace 2 from the in-furnace introduction gas supply unit 20 at a set initial flow rate. This set initial flow rate can also be set and input in the parameter setting device 15 and is controlled by the first supply amount control device 2 2 and the second supply amount control device 2 6 (both mass flow controllers). Further, the stirring fan drive motor 9 is driven to rotate the stirring fan 8 to stir the atmosphere in the processing furnace 2.
[0108] 窒化ポテンシャル調節計 4の炉内窒化ポテンシャル演算装置 1 3は、 炉内 の窒化ポテンシャルを演算し (最初は極めて高い値である (炉内に水素が存 在しないため) がアンモニアガスの分解 (水素発生) が進行するにつれて低 下してくる) 、 目標窒化ポテンシャルと基準偏差値との和を下回ったか否か を判定する。 この基準偏差値も、 パラメータ設定装置 1 5において設定入力 可能である。 [0108] The in-reactor nitriding potential calculator 13 of the nitriding potential controller 4 calculates the in-reactor nitriding potential (it is an extremely high value at the beginning (because there is no hydrogen in the furnace), the Decrease as the decomposition (hydrogen generation) progresses), and determine whether it is below the sum of the target nitriding potential and the standard deviation value. This reference deviation value can also be set and input in the parameter setting device 15.
[0109] 炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との 和を下回ったと判定されると、 窒化ポテンシャル調節計 4は、 ガス導入量制 御装置 1 4を介して、 炉内導入ガスの導入量の制御を開始する。 [0109] When it is determined that the calculated value of the in-reactor nitriding potential is less than the sum of the target nitriding potential and the standard deviation value, the nitriding potential controller 4 causes the in-reactor amount control device 1 Control of the amount of introduced gas is started.
[01 10] 窒化ポテンシャル調節計 4の炉内窒化ポテンシャル演算装置 1 3は、 入力 される水素濃度信号またはアンモニア濃度信号に基づいて炉内窒化ポテンシ ャルを演算する。 そして、 ガス流量出力調整装置 3 0は、 炉内窒化ポテンシ ャル演算装置 1 3によって演算された窒化ポテンシャルを出力値とし、 目標 窒化ポテンシャル (設定された窒化ポテンシャル) を目標値とし、 炉内導入 ガスの導入量を入力値とした I 0制御を実施する。 具体的には、 当該 I 口制御において、 アンモニア分解ガスの炉内導入量を一定とし且つアンモニ アガスの炉内導入量を変化させる制御を実施するようになっている。 当該 〇 2020/175453 21 卩(:170? 2020 /007395 The in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting device 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculating device 13 as an output value, sets the target nitriding potential (set nitriding potential) as the target value, and introduces it into the furnace. Perform I 0 control with the input amount of gas. Specifically, in the I port control, control is performed so that the amount of ammonia decomposition gas introduced into the reactor is constant and the amount of ammonia gas introduced into the reactor is changed. Concerned 〇 2020/175 453 21 卩 (: 170? 2020 /007395
I 口制御においては、 パラメータ設定装置 1 5にて設定入力された各設定パ ラメータ値が用いられる。 この設定パラメータ値は、 例えば、 目標窒化ポテ ンシャルの値に応じて異なる値が用意されている。 In the I port control, each set parameter value set and input by the parameter setting device 15 is used. For this setting parameter value, for example, different values are prepared depending on the value of the target nitriding potential.
[01 1 1 ] そして、 ガス流量出力調整装置 3 0が、 I 口制御の結果として、 炉内導 入ガスの各々の導入量を制御する。 具体的には、 ガス流量出力調整装置 3 0 が、 各ガスの流量を決定し、 当該出力値がガス導入量制御装置 1 4へ伝達さ れる。 Then, the gas flow rate output control device 30 controls the introduction amount of each of the in-reactor introduced gas as a result of the I port control. Specifically, the gas flow rate output adjusting device 30 determines the flow rate of each gas, and the output value is transmitted to the gas introduction amount control device 14.
[01 12] ガス導入量制御装置 1 4は、 各ガスの導入量を実現するべく、 アンモニア ガス用の第 1供給量制御装置 2 2とアンモニア分解ガス用の第 2供給量制御 装置 2 6とにそれぞれ制御信号を送る。 [01 12] The gas introduction amount control device 14 includes a first supply amount control device 2 2 for ammonia gas and a second supply amount control device 26 for ammonia decomposition gas in order to realize the introduction amount of each gas. To each of the control signals.
[01 13] 以上のような制御により、 炉内窒化ポテンシャルを目標窒化ポテンシャル の近傍に安定的に制御することができる。 これにより、 被処理品 3の浸窒処 理を極めて高品質に行うことができる。 [0113] By the control as described above, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, it is possible to perform the nitrification treatment of the article to be treated 3 with extremely high quality.
[01 14] 以上のような制御の一例を、 図 1 4八及び図 1 4巳に示す。 アンモニア分 解ガスの炉内導入量が一定であり、 アンモニアガスの炉内導入量が 4 0 (丨 /〇! 丨 11) の近傍で小刻みにフイードバック制御されている。 この結果、 窒 化ポテンシャルが〇. 1 7に高精度に制御されている。 An example of the above-described control is shown in FIGS. The amount of ammonia decomposed gas introduced into the furnace is constant, and feedback control is performed in small increments in the vicinity of the amount of ammonia gas introduced into the furnace of 40 (丨/〇!丨11). As a result, the nitriding potential is controlled to 0.17 with high accuracy.
[01 15] 更に、 被処理品 3の材料種類や形状によっては、 当該製造装置 1 において 浸窒処理後の冷却工程をも実施することが可能である。 しかし、 当該製造装 置 1の冷却速度では処理後に十分な硬さが得られない場合は、 当該製造装置 1での浸窒処理後、 加熱温度を保持した状態で、 被処理品 3を炉外の急冷装 置 (例えば油槽) へ搬送し、 その後に急冷することが必要である。 あるいは 、 製造装置 1 において冷却した後の被処理品 3を製造装置 1から取り出して 、 急冷装置を備えた別の加熱炉において加熱温度まで再度昇温し、 その後に 急冷することが必要である。 [0115] Furthermore, depending on the material type and shape of the article to be treated 3, the manufacturing apparatus 1 can also perform the cooling step after the nitrification treatment. However, if sufficient hardness cannot be obtained after the treatment at the cooling rate of the manufacturing apparatus 1, the workpiece 3 is removed from the furnace while the heating temperature is maintained after the nitrification treatment in the manufacturing apparatus 1. It is necessary to transfer to a rapid cooling device (eg oil tank) and then to quench. Alternatively, it is necessary to take out the article to be treated 3 after cooling in the manufacturing apparatus 1 from the manufacturing apparatus 1, raise the temperature again to the heating temperature in another heating furnace equipped with a quenching apparatus, and then quench the material.
[01 16] 本件発明者の検討によれば、 1 . 0 %以上の窒素で安定化した才ーステナ イ ト組織は、 冷却速度が遅いとブラウナイ ト (フェライ ト相とァ’ 相の層状 組織) となり、 硬さや疲労強度の低下を招く懸念がある。 従って、 ガス冷却 〇 2020/175453 22 卩(:170? 2020 /007395 [01 16] According to the study by the present inventor, a talented structure stabilized with 1.0% or more of nitrogen is a brownite (a layered structure of a ferrite phase and a'phase) when the cooling rate is slow. Therefore, there is a concern that hardness and fatigue strength may be reduced. Therefore, gas cooling 〇 2020/175 453 22 卩 (: 170? 2020 /007395
や空冷を採用する場合には、 部品毎にその冷却速度を最適化することが重要 である。 一方、 油冷を採用する場合には、 一般的な部品であれば才ーステナ イ ト組織を保持することが十分に可能である。 When adopting air cooling or air cooling, it is important to optimize the cooling rate for each component. On the other hand, when oil cooling is adopted, it is possible to maintain the talented tissue with ordinary parts.
[0117] (案内筒 (内部レトルト) の重要性について) [0117] (About the importance of the guide tube (internal retort))
また、 本件発明者の実験によれば、 製造装置 1から案内筒 5 (内部レトル 卜) を取り除いて窒化処理を実施した場合には、 窒化ポテンシャルの炉内均 —性が低下して、 処理の均一性が低下することが確認された。 Further, according to the experiments conducted by the inventors of the present invention, when the guide tube 5 (internal retort) was removed from the manufacturing apparatus 1 to carry out the nitriding treatment, the in-furnace uniformity of the nitriding potential was lowered and the treatment It was confirmed that the uniformity was reduced.
[0118] (硬度及び疲労強度の検証) [0118] (Verification of hardness and fatigue strength)
図 1 5に示すような形状 (¢ 25 X80101サイズ) の 345〇鋼 (試験片 ) を対象にして、 後記する表 1 に示す各条件で処理を行って、 図 1 6に示す ような摩擦摩耗試験機 (ドイツのォプチモール社製:振動摩擦摩耗試験機 3 V 4) を用いて耐摩耗性を評価した。 Friction and wear as shown in Fig. 16 was carried out on 345 〇 steel (test piece) having the shape (¢ 25 X80101 size) as shown in Fig. 15 under the conditions shown in Table 1 below. The abrasion resistance was evaluated using a tester (Ovitimol, Germany: vibration friction wear tester 3 V 4).
[0119] 摺動子として、 ¢ 1 0の窒化珪素 (硬さ :約 1 6001~1 ) のボールが用 いられ、 乾式 (室温 25°(:、 湿度 30%、 潤滑油なし) の条件下で、 1 〇 の負荷荷重を与えながら、 往復摺動が繰り返され (振幅 1 、 501~12、[0119] As a slider, a ball of silicon nitride of ¢10 (hardness: about 16001 to 1) is used, and it is used under the condition of dry type (room temperature 25 ° (:, humidity 30%, no lubricant)). Then, reciprocal sliding is repeated while applying a load of 10 (amplitude 1, 501 to 12,
1 〇分) 、 最大摩耗量 (摺動方向に垂直な断面で測定) が測定された。 10 minutes), and the maximum wear amount (measured in a cross section perpendicular to the sliding direction) was measured.
[0120] 図 1 6において、 401は、 オシレーシヨンブロックヘッ ドプレートであ り、 4023は、 ねじれセンサであり、 402匕は、 試験片固定具であり、 [0120] In Fig. 16, 401 is an oscillation block head plate, 4023 is a torsion sensor, 402 is a test piece fixture,
4033は、 上部試験片ホルダであり、 404は、 垂直荷重軸である。 4033 is the upper specimen holder and 404 is the vertical load axis.
[0121] [表 1] [0121] [Table 1]
Figure imgf000024_0001
Figure imgf000024_0001
[0122] (実施例 1 _30) 〇 2020/175453 23 卩(:170? 2020 /007395 [0122] (Example 1_30) 〇 2020/175 453 23 卩 (: 170? 2020 /007395
表 1 における実施例 1 _ 3 0が、 図 1及び図 2を用いて説明した第 1実施 形態の窒化鋼部材 1 1 〇に相当している。 当該実施例 1 _ 3 0は、 前述の循 環型処理炉 2を用いて、 処理温度: 6 4 0 °〇、 窒化ポテンシャル: 0 . 4、 処理時間: 2時間、 という処理条件で浸窒処理された後、 急冷され、 更に処 理温度: 2 5 0 °〇、 処理時間: 2時間、 という処理条件で再加熱されること で、 製造された (母相は 3 4 5(3鋼) 。 Example 1_30 in Table 1 corresponds to the nitrided steel member 110 of the first embodiment described with reference to FIGS. 1 and 2. In Example 1_30, the circulation treatment furnace 2 was used to perform the nitriding treatment under the treatment conditions of treatment temperature: 640°, nitriding potential: 0.4, treatment time: 2 hours. After that, it was rapidly cooled, and then it was reheated under the treatment conditions of treatment temperature: 250 ° 〇, treatment time: 2 hours (manufacturing phase: 3 4 5 (3 steel)).
[0123] 窒化化合物層の相分布は、 £相、 · ^ 相、 £相の順番であり、 窒化化合物 層の厚さは、 窒化鋼部材の表面から約 3 0 〇!であり、 窒化化合物層中の* ^[0123] The phase distribution of the nitride compound layer is in the order of £ phase, ^ phase, and £ phase, and the thickness of the nitride compound layer is about 300! From the surface of the nitrided steel member. * ^
’ 相の体積比率は、 4 1 %であった。 The volume ratio of the' phase was 41%.
[0124] このような実施例 1 _ 3 0の窒化鋼部材は、 図 1 1 に黒三角点で示された ような十分な硬度分布を提供し、 且つ、 表 1 に示されたような低い最大摩耗 量 (十分な摩擦摩耗特性) を提供することが確認された。 [0124] The nitrided steel members of Examples 1 _ 30 as described above provided a sufficient hardness distribution as shown by the black triangle points in Fig. 11 and had a low hardness as shown in Table 1. It was confirmed to provide maximum wear (sufficient friction wear characteristics).
[0125] (実施例 1 - 3 6) [0125] (Examples 1 to 36)
実施例 1 _ 3 6は、 実施例 1 _ 3 0に対して浸窒処理時の窒化ポテンシャ ルを 0 . 5に変更することによって製造された窒化鋼部材である。 Example 1_36 is a nitrided steel member manufactured by changing the nitriding potential during nitrification treatment to 0.5 in comparison with Example 1_30.
[0126] 窒化化合物層の相分布は、 £相、 · ^ 相、 £相の順番であり、 窒化化合物 層の厚さは、 窒化鋼部材の表面から約 3 6 〇!であり、 窒化化合物層中の* ^[0126] The phase distribution of the nitride compound layer is in the order of £ phase, ·^ phase, and £ phase, and the thickness of the nitride compound layer is approximately 360° from the surface of the nitrided steel member. * ^
’ 相の体積比率は、 3 3 %であった。 The volume ratio of the' phase was 33%.
[0127] このような実施例 1 —3 6の窒化鋼部材も、 概ね図 1 1 に黒三角点で示さ れたような十分な硬度分布を提供し、 且つ、 表 1 に示されたような低い最大 摩耗量 (十分な摩擦摩耗特性) を提供することが確認された。 [0127] The nitrided steel members of Examples 1 to 36 as described above also provided a sufficient hardness distribution as generally indicated by the black triangle points in Fig. 11 and, as shown in Table 1, It was confirmed to provide low maximum wear (sufficient friction wear properties).
[0128] (実施例 1 - 4 0) [0128] (Examples 1 to 40)
実施例 1 _ 4 0は、 実施例 1 _ 3 0に対して浸窒処理時の窒化ポテンシャ ルを 0 . 6に変更することによって製造された窒化鋼部材である。 Example 1_40 is a nitrided steel member produced by changing the nitriding potential at the time of nitrification treatment to 0.6 in comparison with Example 1_30.
[0129] 窒化化合物層の相分布は、 £相、 · ^ 相、 £相の順番であり、 窒化化合物 層の厚さは、 窒化鋼部材の表面から約 4 0 01であり、 窒化化合物層中の* ^[0129] The phase distribution of the nitride compound layer is in the order of £ phase, ·^ phase, £ phase, and the thickness of the nitride compound layer is about 4001 from the surface of the nitrided steel member. * ^
’ 相の体積比率は、 2 4 %であった。 The volume ratio of the' phase was 24%.
[0130] このような実施例 1 —4 0の窒化鋼部材も、 概ね図 1 1 に黒三角点で示さ 〇 2020/175453 24 卩(:170? 2020 /007395 [0130] The nitrided steel members of Examples 1 to 40 as described above are also generally shown in Fig. 11 by black triangle points. 〇 2020/175 453 24 卩 (: 170? 2020 /007395
れたような十分な硬度分布を提供し、 且つ、 表 1 に示されたような低い最大 摩耗量 (十分な摩擦摩耗特性) を提供することが確認された。 It was confirmed that it provides a sufficient hardness distribution as described above and also provides a low maximum wear amount (sufficient friction and wear characteristics) as shown in Table 1.
[0131 ] (実施例 1 - 5 0) [0131] (Examples 1 to 50)
実施例 1 —5 0は、 実施例 1 —3 0に対して、 母相を 3 5 0(3鋼に変更し 、 更に浸窒処理時の窒化ポテンシャルを〇. 6に変更することによって製造 された窒化鋼部材である。 Example 1-50 was produced by changing the matrix phase to 350 (3 steel) and the nitriding potential during nitrification treatment to 0.6 compared to Example 1-30. It is a nitrided steel member.
[0132] 窒化化合物層の相分布は、 £相、 · ^ 相、 £相の順番であり、 窒化化合物 層の厚さは、 窒化鋼部材の表面から約 5 0 〇!であり、 窒化化合物層中の* ^[0132] The phase distribution of the nitride compound layer is in the order of £ phase, ^ phase, and £ phase, and the thickness of the nitride compound layer is about 500! From the surface of the nitrided steel member. * ^
’ 相の体積比率は、 2 0 %であった。 The volume ratio of the ‘phase’ was 20%.
[0133] このような実施例 1 —5 0の窒化鋼部材も、 概ね図 1 1 に黒三角点で示さ れたような十分な硬度分布を提供し、 且つ、 表 1 に示されたような低い最大 摩耗量 (十分な摩擦摩耗特性) を提供することが確認された。 [0133] The nitrided steel members of Examples 1 to 50 described above also provided a sufficient hardness distribution as generally indicated by the black triangle points in Fig. 11 and, as shown in Table 1, It was confirmed to provide low maximum wear (sufficient friction wear properties).
[0134] (実施例 1 - 1 5) [0134] (Examples 1 to 15)
実施例 1 _ 1 5は、 実施例 1 _ 3 0に対して、 浸窒処理時の窒化温度を 6 2 0 °〇に変更することによって製造された窒化鋼部材である。 Example 1_15 is a nitrided steel member produced by changing the nitriding temperature during the nitriding treatment to 6200° as compared with Example 1_30.
[0135] 窒化化合物層の相分布は、 ァ’ 相、 £相の順番であり、 窒化化合物層の厚 さは、 窒化鋼部材の表面から約 1 5 であり、 窒化化合物層中のァ’ 相の 体積比率は、 3 7 %であった。 [0135] The phase distribution of the nitride compound layer is in the order of'phase' and £ phase, and the thickness of the nitride compound layer is about 15 from the surface of the nitrided steel member. The volume ratio was 37%.
[0136] このような実施例 1 _ 1 5の窒化鋼部材も、 概ね図 1 1 に白丸点で示され たような十分な硬度分布を提供し、 且つ、 表 1 に示されたような低い最大摩 耗量 (十分な摩擦摩耗特性) を提供することが確認された。 [0136] The nitrided steel members of Examples 1 to 15 like this also provided a sufficient hardness distribution as indicated by the white circles in Fig. 11 and had a low hardness as shown in Table 1. It was confirmed to provide maximum wear (sufficient friction wear characteristics).
[0137] (参考例 1 _ 3 0、 参考例 1 _ 3 6、 参考例 1 _ 4 0) [0137] (Reference example 1 _ 30, Reference example 1 _ 36, Reference example 1 _ 40)
実施例 1 —3 0、 実施例 1 —3 6、 実施例 1 —4 0について、 それぞれ、 再加熱処理前の状態を参考例 1 _ 3 0、 参考例 1 _ 3 6、 参考例 1 _ 4 0と して、 硬度及び最大摩耗量が評価された。 Regarding Example 1 — 30, Example 1 — 36, and Example 1 — 40, the state before the reheating treatment was respectively Reference Example 1 _ 3 0, Reference Example 1 _ 3 6, Reference Example 1 _ 4 The hardness and the maximum wear amount were evaluated as 0.
[0138] その結果、 硬度については、 図 1 1 に白三角点で示されたような不十分な 硬度分布であることが分かり、 摩擦摩耗特性についても、 表 1 に示されたよ うな比較的高い最大摩耗量であった。 〇 2020/175453 25 卩(:170? 2020 /007395 [0138] As a result, it was found that the hardness had an insufficient hardness distribution as shown by the white triangles in Fig. 11, and the friction and wear characteristics were relatively high as shown in Table 1. It was the maximum amount of wear. 〇 2020/175 453 25 卩 (: 170? 2020 /007395
[0139] (実施例 2 - 1 2) [0139] (Example 2-12)
表 1 における実施例 2— 1 2が、 図 5及び図 6を用いて説明した第 2実施 形態の窒化鋼部材 1 2 0に相当している。 当該実施例 2 _ 1 2は、 前述の循 環型処理炉 2を用いて、 処理温度: 6 4 0 °〇、 窒化ポテンシャル: 0 . 2、 処理時間: 2時間、 という処理条件で浸窒処理された後、 急冷され、 更に処 理温度: 2 5 0 °〇、 処理時間: 2時間、 という処理条件で再加熱されること で、 製造された (母相は 3 4 5(3鋼) 。 Example 2-12 in Table 1 corresponds to the nitrided steel member 120 of the second embodiment described with reference to FIGS. 5 and 6. The Example 2 _ 1 2 was subjected to a nitriding treatment using the above-mentioned circulation type treatment furnace 2 under the treatment conditions of treatment temperature: 640° 〇, nitriding potential: 0.2, treatment time: 2 hours. After that, it was rapidly cooled, and then it was reheated under the treatment conditions of treatment temperature: 250 ° 〇, treatment time: 2 hours (manufacturing phase: 3 4 5 (3 steel)).
[0140] 窒化化合物層の相分布は、 ァ’ 相、 £相の順番であり、 窒化化合物層の厚 さは、 窒化鋼部材の表面から約 1 2 であり、 窒化化合物層中のァ’ 相の 体積比率は、 5 2 %であった。 [0140] The phase distribution of the nitride compound layer is in the order of'phase' and £ phase, and the thickness of the nitride compound layer is about 12 from the surface of the nitrided steel member. The volume ratio of was 52%.
[0141 ] このような実施例 2 - 1 2の窒化鋼部材は、 図 1 1 に白丸点で示されたよ うな十分な硬度分布を提供し、 且つ、 表 1 に示されたような低い最大摩耗量 (十分な摩擦摩耗特性) を提供することが確認された。 [0141] The nitrided steel members of Examples 2-12 as described above provided a sufficient hardness distribution as indicated by white circles in Fig. 11 and had a low maximum wear as shown in Table 1. It was confirmed to provide a quantity (sufficient friction and wear properties).
[0142] (実施例 2 - 7) [0142] (Examples 2-7)
実施例 2 _ 7は、 実施例 2 - 1 2に対して浸窒処理時の窒化ポテンシャル を 0 . 1 8に変更することによって製造された窒化鋼部材である。 Example 2_7 is a nitrided steel member manufactured by changing the nitriding potential at the time of nitrification treatment to 0.18 as compared with Example 2-12.
[0143] 窒化化合物層の相分布は、 ァ’ 相、 £相の順番であり、 窒化化合物層の厚 さは、 窒化鋼部材の表面から約 7 であり、 窒化化合物層中のァ’ 相の体 積比率は、 6 0 %であった。 [0143] The phase distribution of the nitride compound layer is in the order of'phase' and £ phase, and the thickness of the nitride compound layer is about 7 from the surface of the nitrided steel member. The volume ratio was 60%.
[0144] このような実施例 2 - 7の窒化鋼部材も、 概ね図 1 1 に白丸点で示された ような十分な硬度分布を提供し、 且つ、 表 1 に示されたような低い最大摩耗 量 (十分な摩擦摩耗特性) を提供することが確認された。 [0144] The nitrided steel members of Examples 2 to 7 also provided a sufficient hardness distribution as generally indicated by the white circles in Fig. 11 and had a low maximum maximum as shown in Table 1. It was confirmed to provide the amount of wear (sufficient friction and wear characteristics).
[0145] (実施例 2 - 1 6) [0145] (Examples 2-16)
実施例 2 _ 1 6は、 実施例 2 _ 1 2に対して浸窒処理時の窒化温度を 6 3 〇°〇、 窒化ポテンシャルを〇. 2 5に変更することによって製造された窒化 鋼部材である。 Example 2 _ 16 is a nitrided steel member manufactured by changing the nitriding temperature at the time of nitrification treatment to 6 3 〇 ° 〇 and the nitriding potential to 0.25 in comparison with Example 2 _ 1 2. is there.
[0146] 窒化化合物層の相分布は、 ァ’ 相、 £相の順番であり、 窒化化合物層の厚 さは、 窒化鋼部材の表面から約 1 6 であり、 窒化化合物層中のァ’ 相の 〇 2020/175453 26 卩(:170? 2020 /007395 [0146] The phase distribution of the nitride compound layer is in the order of'phase' and £ phase, and the thickness of the nitride compound layer is about 16 from the surface of the nitrided steel member. of 〇 2020/175 453 26 卩(: 170? 2020/007395
体積比率は、 4 5 %であった。 The volume ratio was 45%.
[0147] このような実施例 2 _ 1 6の窒化鋼部材も、 概ね図 1 1 に白丸点で示され たような十分な硬度分布を提供し、 且つ、 表 1 に示されたような低い最大摩 耗量 (十分な摩擦摩耗特性) を提供することが確認された。 [0147] Such a nitrided steel member of Example 2 _ 16 also provided a sufficient hardness distribution as generally indicated by the white circles in Fig. 11 and had a low hardness as shown in Table 1. It was confirmed to provide maximum wear (sufficient friction wear characteristics).
[0148] (実施例 2 - 3 0) [0148] (Examples 2 to 30)
実施例 2— 3 0は、 実施例 2— 1 2に対して、 母相を 3 1 5(3鋼に変更し 、 更に浸窒処理時の窒化温度を 6 5 0 °〇、 窒化ポテンシャルを〇. 2に変更 することによって製造された窒化鋼部材である。 Example 2-30 is different from Example 2-12 in that the matrix phase is changed to 3 15 (3 steel, and the nitriding temperature at the time of the nitriding treatment is 650°° and the nitriding potential is 0°. It is a nitrided steel member manufactured by changing to .2.
[0149] 窒化化合物層の相分布は、 ア’ 相、 £相の順番であり、 窒化化合物層の厚 さは、 窒化鋼部材の表面から約 3〇 であり、 窒化化合物層中のア’ 相の 体積比率は、 3 0 %であった。 [0149] The phase distribution of the nitride compound layer is in the order of A'phase and £ phase, and the thickness of the nitride compound layer is about 30 from the surface of the nitrided steel member. The volume ratio of was 30%.
[0150] このような実施例 2— 3 0の窒化鋼部材も、 概ね図 1 1 に白丸点で示され たような十分な硬度分布を提供し、 且つ、 表 1 に示されたような低い最大摩 耗量 (十分な摩擦摩耗特性) を提供することが確認された。 [0150] The nitrided steel members of Examples 2-30 also provided a sufficient hardness distribution as indicated by the white circles in Fig. 11 and had a low hardness as shown in Table 1. It was confirmed to provide maximum wear (sufficient friction wear characteristics).
符号の説明 Explanation of symbols
[0151 ] 1 窒化鋼部材の製造装置 (表面硬化装置) [0151] 1 Nitriding steel member manufacturing equipment (surface hardening equipment)
2 循環型処理炉 2 Circulation type processing furnace
3 雰囲気ガス濃度検出装置 3 Atmosphere gas concentration detector
4 窒化ポテンシャル調節計 4 Nitriding potential controller
5 内部レトルト 5 Internal retort
6 レトルト 6 Retort
7 炉開閉蓋 7 furnace lid
8 攪拌ファン 8 stirring fan
9 攪拌ファン駆動モータ 9 Stirring fan drive motor
1 2 雰囲気ガス配管 1 2 Atmosphere gas piping
1 3 炉内窒化ポテンシャル演算装置 1 3 In-furnace nitriding potential calculator
1 4 ガス導入量制御装置 1 4 Gas introduction amount control device
1 5 パラメータ設定装置 (タッチパネル) /175453 27 卩(:170? 2020 /007395 0 炉内導入ガス供給部1 5 Parameter setting device (touch panel) /175453 27 卩 (: 170? 2020 /007395 0 Reactor gas introduction part
1 第 1炉内導入ガス供給部 1 Introduced gas supply unit in the 1st reactor
2 第 1供給量制御装置 2 First supply control device
3 第 1供給弁3 First supply valve
5 第 2炉内導入ガス供給部5 Introduced gas supply part in No. 2 reactor
6 第 2供給量制御装置6 Second supply control device
7 第 2供給弁7 Second supply valve
9 炉内導入ガス導入配管9 Furnace gas introduction piping
0 ガス流量出力調整装置0 Gas flow rate output adjustment device
1 プログラマブルロジックコントロ フ1 Programmable logic controller
0 炉内ガス廃棄配管0 Furnace gas waste piping
1 排ガス燃焼分解装置1 Exhaust gas combustion decomposition device
1 0 窒化鋼部材 (第 1実施形態)10 Nitride steel member (first embodiment)
1 1 窒化化合物層1 1 Nitride compound layer
1 2 硬化層1 2 Hardened layer
1 3 拡散層1 3 diffusion layer
20 窒化鋼部材 (第 2実施形態)20 Nitride steel member (second embodiment)
2 1 窒化化合物層2 1 Nitride compound layer
22 硬化層22 Hardened layer
23 拡散層23 Diffusion layer
60 窒化鋼部材 (参考例 1)60 Nitride steel member (Reference example 1)
6 1 窒化化合物層に対応する領域6 1 Area corresponding to nitride compound layer
70 窒化鋼部材 (参考例 2)70 Nitride steel member (Reference example 2)
7 1 窒化化合物層に対応する領域 7 1 Area corresponding to nitride compound layer
00 窒化鋼部材 (比較例)00 Nitride steel member (comparative example)
01 窒化化合物層01 Nitride compound layer
03 拡散層03 Diffusion layer
01 炉壁またはべル /175453 28 卩(:170? 2020 /007395 02 レトルト01 Furnace wall or bell /175453 28 卩 (: 170? 2020 /007395 02 Retort
03 撹拌扇 03 Stirring fan
04 案内筒 (内部レトルト)04 Guide tube (internal retort)
05 ガス導入管 05 Gas introduction pipe
06 フレア付きのガスフード06 Gas hood with flare
07 熱電対07 Thermocouple
08 冷却作業用の蓋08 Lid for cooling work
09 冷却作業用の送風機 09 Blower for cooling work

Claims

\¥0 2020/175453 29 卩(:17 2020 /007395 請求の範囲 \¥0 2020/175 453 29 卩(: 17 2020/007395 Claims
[請求項 1 ] 炭素鋼または低合金鋼を母相とする窒化鋼部材であって、 [Claim 1] A nitrided steel member having a matrix phase of carbon steel or low alloy steel,
表面に、 窒化化合物層を備え、 Provided with a nitride compound layer on the surface,
前記窒化化合物層の下部に、 オーステナイ ト組織を有する硬化層を 備え、 A hardened layer having an austenite structure is provided below the nitride compound layer,
前記硬化層の下部に、 前記母相内に窒素が拡散されている拡散層を 備え、 A diffusion layer in which nitrogen is diffused in the matrix is provided below the hardened layer,
前記窒化化合物層は、 £相、 ア’ 相、 £相の順番の相分布を有して おり、 The nitride compound layer has a phase distribution in the order of £ phase, A′ phase, and £ phase.
前記窒化化合物層中のア’ 相の体積比率は、 2 0 %以上であり、 前記窒化化合物層は、 当該窒化鋼部材の表面から 5 〇1〜5
Figure imgf000031_0001
の厚さを有していることを特徴とする窒化鋼部材。
The volume ratio of the a'phase in the nitride compound layer is 20% or more, and the nitride compound layer is 5 0 1 to 5 from the surface of the nitrided steel member.
Figure imgf000031_0001
A nitrided steel member having the following thickness.
[請求項 2] 炭素鋼または低合金鋼を母相とする窒化鋼部材であって、 [Claim 2] A nitrided steel member having carbon steel or a low alloy steel as a matrix phase,
表面に、 窒化化合物層を備え、 Provided with a nitride compound layer on the surface,
前記窒化化合物層の下部に、 オーステナイ ト組織を有する硬化層を 備え、 A hardened layer having an austenite structure is provided below the nitride compound layer,
前記硬化層の下部に、 前記母相内に窒素が拡散されている拡散層を 備え、 A diffusion layer in which nitrogen is diffused in the matrix is provided below the hardened layer,
前記窒化化合物層は、 ア’ 相、 £相の順番の相分布を有しており、 前記窒化化合物層中のア’ 相の体積比率は、 3 0 %以上あり、 前記窒化化合物層は、 当該窒化鋼部材の表面から 5 〇1〜3 0 〇1 の厚さを有していることを特徴とする窒化鋼部材。 The nitride compound layer has a phase distribution of A′ phase and £ phase in this order, the volume ratio of the A′ phase in the nitride compound layer is 30% or more, and the nitride compound layer is A nitrided steel member having a thickness of 511 to 301 from the surface of the nitrided steel member.
[請求項 3] 炭素含有量が質量%で〇. 1 %以上である炭素鋼を母相としている ことを特徴とする請求項 1 または 2に記載の窒化鋼部材。 [Claim 3] The nitrided steel member according to claim 1 or 2, wherein a carbon steel having a carbon content of 0.1% by mass or more is used as a matrix phase.
[請求項 4] 案内筒と撹拌ファンとを備えた循環型処理炉を用いて、 炭素鋼また は低合金鋼を母相とする窒化鋼部材を製造する方法であって、 窒化処理時において、 前記循環型処理炉内の温度範囲が、 6 1 0 °[Claim 4] A method for producing a nitrided steel member having a carbon steel or a low alloy steel as a matrix phase by using a circulation type processing furnace equipped with a guide cylinder and a stirring fan, the method comprising: The temperature range in the circulation type processing furnace is 610 °
〜 6 6 0 °0に制御され、 〇 2020/175453 30 卩(:170? 2020 /007395 Controlled to ~660°0, 〇 2020/175 453 30 boxes (: 170? 2020 /007395
前記窒化処理時において、 前記循環型処理炉内の窒化ポテンシャル が、 〇. 1 5〜〇. 6の範囲に制御され、 At the time of the nitriding treatment, the nitriding potential in the circulation type treatment furnace is controlled in the range of 0.15 to 0.6.
前記窒化処理後、 急冷され、 更に再加熱処理がなされる After the nitriding treatment, it is quenched and then reheated.
ことを特徴とする窒化鋼部材の製造方法。 A method for manufacturing a nitrided steel member, comprising:
[請求項 5] 案内筒と撹拌ファンとを有する循環型処理炉を備え、 [Claim 5] A circulation type processing furnace having a guide cylinder and a stirring fan is provided,
窒化処理時において、 前記循環型処理炉内の温度範囲が、 6 1 0 °〇 〜 6 6 0 °〇に制御され、 During nitriding, the temperature range of the recycling treatment furnace is controlled to 6 1 0 ° 〇 ~ 6 6 0 ° 〇,
前記窒化処理時において、 前記循環型処理炉内の窒化ポテンシャル を制御するために、 アンモニアガスとアンモニア分解ガスとが前記循 環型処理炉内に導入されるようになっている窒化鋼部材の製造装置で あって、 Manufacture of a nitrided steel member in which ammonia gas and ammonia decomposition gas are introduced into the circulating treatment furnace in order to control the nitriding potential in the circulating treatment furnace during the nitriding treatment. A device,
前記循環型処理炉内の窒化ポテンシャルは、 前記アンモニア分解ガ スの炉内導入量を一定とし且つ前記アンモニアガスの炉内導入量を変 化させることで、 〇. 1 5〜〇. 6の範囲の目標の窒化ポテンシャル に制御されるようになっている The nitriding potential in the circulation type treatment furnace is in the range of 0.15 to 0.6 when the amount of ammonia decomposition gas introduced into the furnace is constant and the amount of ammonia gas introduced into the furnace is changed. Is controlled to the target nitriding potential of
ことを特徴とする窒化鋼部材の製造装置。 An apparatus for manufacturing a nitrided steel member characterized by the above.
PCT/JP2020/007395 2019-02-26 2020-02-25 Nitriding steel member, and method and device for manufacturing nitriding steel member WO2020175453A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019032684A JP2022068375A (en) 2019-02-26 2019-02-26 Nitrided steel member, and method and device for manufacturing nitrided steel member
JP2019-032684 2019-02-26

Publications (1)

Publication Number Publication Date
WO2020175453A1 true WO2020175453A1 (en) 2020-09-03

Family

ID=72239963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007395 WO2020175453A1 (en) 2019-02-26 2020-02-25 Nitriding steel member, and method and device for manufacturing nitriding steel member

Country Status (3)

Country Link
JP (1) JP2022068375A (en)
TW (1) TW202100757A (en)
WO (1) WO2020175453A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215526A1 (en) * 2021-04-09 2022-10-13 パーカー熱処理工業株式会社 Surface hardening treatment apparatus and surface hardening treatment method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022125513A (en) * 2021-02-17 2022-08-29 パーカー熱処理工業株式会社 Method for nitriding steel member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035900A1 (en) * 2010-09-14 2012-03-22 日本パーカライジング株式会社 Iron steel member having nitrogen compound layer, and process for production thereof
JP2014047410A (en) * 2012-09-03 2014-03-17 Yuki-Koushuha Co Ltd Iron-based alloy material and method of producing the same
WO2015136917A1 (en) * 2014-03-13 2015-09-17 新日鐵住金株式会社 Nitriding method, and nitrided component manufacturing method
WO2019131602A1 (en) * 2017-12-27 2019-07-04 パーカー熱処理工業株式会社 Nitrided steel member, and method and apparatus for producing nitrided steel member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035900A1 (en) * 2010-09-14 2012-03-22 日本パーカライジング株式会社 Iron steel member having nitrogen compound layer, and process for production thereof
JP2014047410A (en) * 2012-09-03 2014-03-17 Yuki-Koushuha Co Ltd Iron-based alloy material and method of producing the same
WO2015136917A1 (en) * 2014-03-13 2015-09-17 新日鐵住金株式会社 Nitriding method, and nitrided component manufacturing method
WO2019131602A1 (en) * 2017-12-27 2019-07-04 パーカー熱処理工業株式会社 Nitrided steel member, and method and apparatus for producing nitrided steel member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215526A1 (en) * 2021-04-09 2022-10-13 パーカー熱処理工業株式会社 Surface hardening treatment apparatus and surface hardening treatment method

Also Published As

Publication number Publication date
JP2022068375A (en) 2022-05-10
TW202100757A (en) 2021-01-01

Similar Documents

Publication Publication Date Title
JP5241455B2 (en) Carbonitriding member and method for producing carbonitriding member
US11155891B2 (en) Surface hardening treatment device and surface hardening treatment method
WO2020175453A1 (en) Nitriding steel member, and method and device for manufacturing nitriding steel member
JP2016211069A (en) Nitrided steel member and manufacturing method of nitrided steel member
WO2019208534A1 (en) Nitrided steel member, and method and device for producing nitrided steel member
WO2019131602A1 (en) Nitrided steel member, and method and apparatus for producing nitrided steel member
WO2015034446A1 (en) Process of and apparatus for hardening steel surface
JP6503122B1 (en) Surface hardening treatment apparatus and surface hardening treatment method
Vilela Costa et al. Bending fatigue in low-pressure carbonitriding of steel alloys with boron and niobium additions
Wang et al. Gaseous carbonitriding of high carbon chromium bearing steel: correlation between composition, microstructure and stability
WO2020090999A1 (en) Nitrided steel member, and method and apparatus for producing nitrided steel member
Amini et al. Measuring wear-resistance of AISI 1.7225 steel under various heat treatments: Hydraulic spool valve
Winter et al. Gas Nitriding and Gas Nitrocarburizing of Steels
Ramesh et al. Effect of surface condition on the torsional fatigue behaviour of 20MnCr5 steel
WO2016182013A1 (en) Nitride steel member and method for manufacturing nitride steel member
Bellas et al. Effect of carbonitriding in a salt bath by a QPQ scheme on stainless steel 321 microstructure and service properties
Dial et al. The gas carburization of linear cellular alloys as a novel alloy development tool
Fuller Introduction to Carburizing and Carbonitriding
Taweejun et al. Effect of Multi-Cycle Nitrocarburizing on the Microstructure and Surface Hardness of Low-Carbon Steel
Thammachot et al. Effects of Nitrocarburization on the Surface Morphology and Tribology of SKH51 High-Speed Tool Steel
JP4858071B2 (en) Steel surface treatment method and surface-treated steel material
Todo et al. Development of application technology for vacuum carburizing
Díaz-Villaseñor et al. Use of the Hollomon-Jaffe Tempering Parameter to Optimize the Microhardness in a Medium Carbon Low Alloy Cr–Mo Steel
Sabri Experimental study of pack carburizing of carbon Steel
Arslan et al. Comparison of Different Thermochemical Treatments on Surface Properties of Impax Supreme Tool Steel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20763668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP