WO2022215526A1 - Surface hardening treatment apparatus and surface hardening treatment method - Google Patents

Surface hardening treatment apparatus and surface hardening treatment method Download PDF

Info

Publication number
WO2022215526A1
WO2022215526A1 PCT/JP2022/013509 JP2022013509W WO2022215526A1 WO 2022215526 A1 WO2022215526 A1 WO 2022215526A1 JP 2022013509 W JP2022013509 W JP 2022013509W WO 2022215526 A1 WO2022215526 A1 WO 2022215526A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
gas
nitriding potential
ammonia
amount
Prior art date
Application number
PCT/JP2022/013509
Other languages
French (fr)
Japanese (ja)
Inventor
泰 平岡
Original Assignee
パーカー熱処理工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パーカー熱処理工業株式会社 filed Critical パーカー熱処理工業株式会社
Publication of WO2022215526A1 publication Critical patent/WO2022215526A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces

Definitions

  • the present invention relates to a surface hardening treatment apparatus and a surface hardening treatment method for performing surface hardening treatment, such as nitriding, nitrocarburizing, nitriding and quenching, on metal objects to be treated.
  • Nitriding methods include a gas method, a salt bath method, a plasma method, and the like.
  • the gas method is comprehensively superior when considering quality, environmental friendliness, mass productivity, etc.
  • Distortion caused by carburizing, carbonitriding, or induction hardening accompanied by quenching of mechanical parts can be improved by using gas nitriding (gas nitriding).
  • Nitro-nitriding by gas method accompanied by carburizing is also known as a process similar to gas nitriding.
  • Gas nitriding is a process in which only nitrogen penetrates and diffuses into the workpiece to harden the surface.
  • ammonia gas alone a mixed gas of ammonia gas and nitrogen gas, ammonia gas and ammonia decomposition gas (composed of 75% hydrogen and 25% nitrogen, also called AX gas), or ammonia gas and ammonia
  • a mixed gas of decomposition gas and nitrogen gas is introduced into the processing furnace to perform surface hardening.
  • the basis of atmosphere control in gas nitriding treatment is to control the nitriding potential (K N ) in the furnace.
  • K N nitriding potential
  • the volume fraction of the ⁇ ' phase (Fe 4 N) and the ⁇ phase (Fe 2-3 N) in the compound layer generated on the surface of the steel material can be controlled, It is possible to obtain a wide range of nitridation quality, such as realizing a process that does not generate the compound layer.
  • Patent Document 1 by selecting the ⁇ ' phase and increasing its thickness, the bending fatigue strength and wear resistance are improved, and further high functionality of mechanical parts is realized. .
  • a furnace atmosphere gas concentration measuring sensor is installed to measure the hydrogen concentration or the ammonia concentration in the furnace. be done. Then, the in-furnace nitriding potential is calculated from the measured value of the in-furnace atmosphere gas concentration measuring sensor, compared with the target (set) nitriding potential, and the flow rate of each introduced gas is controlled ("Heat Treatment", Vol. 55, No. 1, pp. 7-11 (Tai Hiraoka, Yoichi Watanabe) (Non-Patent Document 2)).
  • Japanese Patent No. 5629436 Patent Document 2
  • the control mode of controlling the total introduction amount while keeping the flow rate ratio of the gas introduced into the furnace constant is the first control, and the flow rate ratio of the gas introduced into the furnace is changed.
  • the second control is a control mode in which the introduction amount of the gas introduced into the furnace is individually controlled, and an apparatus is disclosed in which both can be performed (only one of them is selectively performed at the same time).
  • Japanese Patent No. 5629436 Patent Document 2 discloses only one specific example of nitriding treatment in which the first control is effective (described in paragraphs 0096 and 0099 of Japanese Patent No.
  • the method of controlling the total amount of gas introduced into the furnace while keeping the flow ratio of the gas introduced into the furnace constant has the advantage that the total amount of gas used can be expected to be suppressed, but it was also found that the control range of the nitriding potential is narrow. ing.
  • the present inventor developed a control method for realizing a wide nitriding potential control range (for example, about 0.05 to 1.3 at 580 ° C.) on the low nitriding potential side, and patented No. 6345320 (Patent Document 3) has been obtained.
  • Patent Document 3 a control method for example, about 0.05 to 1.3 at 580 ° C.
  • the flow rate ratio of the plurality of types of furnace introduction gases is changed while maintaining the total introduction amount of the plurality of types of furnace introduction gases constant.
  • the introduction amounts of the plurality of types of furnace introduced gases are individually controlled.
  • the nitriding potential K N is defined by the following equation (2).
  • KN PNH3 / PH23 / 2 (2) where P NH3 is the reactor ammonia partial pressure and PH2 is the reactor hydrogen partial pressure.
  • the nitriding potential K N is well known as an index representing the nitriding ability of the atmosphere in the gas nitriding furnace.
  • the reaction of formula (3) mainly occurs, and the nitriding reaction of formula (1) can be almost ignored quantitatively. Therefore, if the concentration of in-furnace ammonia consumed in the reaction of formula (3) or the concentration of hydrogen gas generated in the reaction of formula (3) is known, the nitriding potential can be calculated. That is, since the hydrogen and nitrogen generated are 1.5 mol and 0.5 mol, respectively, from 1 mol of ammonia, the hydrogen concentration in the furnace can be obtained by measuring the ammonia concentration in the furnace, and the nitriding potential can be calculated. can be done. Alternatively, if the in-furnace hydrogen concentration is measured, the in-furnace ammonia concentration can be obtained, and the nitriding potential can also be calculated.
  • the ammonia gas flowed into the gas nitriding furnace is discharged outside the furnace after circulating inside the furnace. That is, in the gas nitriding treatment, fresh (new) ammonia gas is constantly flowed into the furnace with respect to the existing gas in the furnace, so that the existing gas continues to be discharged out of the furnace (pushed out by the supply pressure). .
  • the flow rate of ammonia gas introduced into the furnace is small, the gas residence time in the furnace will be long, so the amount of ammonia gas to be decomposed will increase, and the nitrogen gas generated by the decomposition reaction will be + The amount of hydrogen gas increases.
  • the flow rate of ammonia gas introduced into the furnace is large, the amount of ammonia gas discharged outside the furnace without being decomposed increases, and the amount of nitrogen gas + hydrogen gas generated in the furnace decreases. do.
  • the decomposition degree s can be calculated.
  • the in-furnace ammonia concentration corresponding to (1-s)/(1+s) on the right side can also be calculated. That is, the in-furnace hydrogen concentration and the in-furnace ammonia concentration can be known only from the measured value of the hydrogen sensor. Therefore, the nitriding potential can be calculated.
  • the nitriding potential K N can be controlled.
  • the gas composition in the furnace on the right side is composed of undecomposed ammonia gas, nitrogen and hydrogen generated at a ratio of 1:3 by decomposition of ammonia gas, and nitrogen gas on the left side as introduced (not decomposed in the furnace).
  • the only unknown is the degree of decomposition s of ammonia at the in-furnace hydrogen concentration on the right side, that is, 1.5sx/(1+sx). Therefore, as in the case of equation (4), the degree of decomposition s of the ammonia gas introduced into the furnace can be calculated from the measured value of the hydrogen sensor, and the in-furnace ammonia concentration can also be calculated from this. Therefore, the nitriding potential can be calculated.
  • the hydrogen concentration in the furnace and the ammonia concentration in the furnace are determined by using two variables: the degree of decomposition s of the ammonia gas introduced into the furnace and the introduction ratio x of the ammonia gas.
  • the degree of decomposition s of the ammonia gas introduced into the furnace is determined by using two variables: the degree of decomposition s of the ammonia gas introduced into the furnace and the introduction ratio x of the ammonia gas.
  • MFC mass flow controller
  • the ammonia gas introduction ratio x can be continuously read as a digital signal based on the flow rate value. Therefore, the nitriding potential can be calculated by combining the introduction ratio x and the measured value of the hydrogen sensor based on the equation (5).
  • the inventors of the present invention have extensively studied the case of gas nitriding treatment in which a plurality of types of furnace-introduced gases including ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the treatment furnace, and aimed at the nitriding potential in the treatment furnace.
  • a plurality of types of furnace-introduced gases including ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the treatment furnace, and aimed at the nitriding potential in the treatment furnace.
  • the inventor of the present invention has extensively studied the case of gas nitriding treatment in which a plurality of types of furnace-introduced gases including ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the treatment furnace, and found that the nitriding potential in the treatment furnace When controlling to approach the target nitriding potential, it was found that practically sufficient nitriding potential control can be realized by changing the introduction amount of ammonia gas and nitrogen gas while keeping the introduction amount of ammonia decomposition gas constant.
  • An object of the present invention is to provide a surface hardening treatment apparatus capable of realizing practical nitriding potential control in a gas nitriding treatment in which a plurality of types of furnace-introduced gases including ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the treatment furnace. and to provide a surface hardening treatment method.
  • the present invention introduces a plurality of types of furnace-introduced gases including ammonia gas, ammonia decomposition gas, and nitrogen gas into a processing furnace, and performs gas nitriding as surface hardening treatment of an article to be processed placed in the processing furnace.
  • a surface hardening apparatus for performing treatment comprising: an in-furnace atmosphere gas concentration detection device for detecting a hydrogen concentration or an ammonia concentration in the treatment furnace; and a hydrogen concentration or ammonia concentration detected by the in-furnace atmosphere gas concentration detection device.
  • a gas introduction amount control device that brings the gas introduction amount closer to the potential, A surface hardening apparatus characterized by comprising:
  • a relatively wide nitriding potential is obtained by changing the introduction amount of each furnace introduction gas other than the ammonia decomposition gas among a plurality of types of furnace introduction gases while keeping the introduction amount of the ammonia decomposition gas constant. It was confirmed that control (especially relatively low nitriding potential control) could be achieved.
  • the amount of ammonia decomposition gas to be introduced to be maintained constant is determined in advance by conducting a preliminary experiment before operation. This is because the degree of thermal decomposition of ammonia gas is actually affected by the environment inside the furnace used.
  • the gas introduction amount control device sets the amount of ammonia gas introduced into the furnace as A, the amount of ammonia decomposition gas introduced into the furnace as B, and x as a predetermined constant.
  • CN N is an integer equal to or greater than 1 of each of the gases introduced into the furnace other than the ammonia gas and the ammonia cracked gas is assigned to each of the gases introduced into the furnace.
  • C1 c1 ⁇ (A+x ⁇ B)
  • CN cN ⁇ (A+x ⁇ B) It is preferable to control so as to be
  • control of a relatively wide nitriding potential (in particular, control of a relatively low nitriding potential) can be realized when such control conditions are adopted.
  • the value of x does not have to be strictly 0.5, and practically sufficient nitriding potential control can be realized as long as it is in the range of approximately 0.4 to 0.6.
  • the present invention can also be recognized as a surface hardening treatment method. That is, the present invention introduces a plurality of types of furnace-introduced gases including ammonia gas, ammonia decomposition gas, and nitrogen gas into a treatment furnace, and performs surface hardening treatment on an article to be treated placed in the treatment furnace.
  • a surface hardening method for performing gas nitriding comprising: a furnace atmosphere gas concentration detecting step of detecting a hydrogen concentration or an ammonia concentration in the treatment furnace; and a hydrogen concentration or hydrogen concentration detected by the furnace atmosphere gas concentration detecting step.
  • the in-furnace nitriding potential calculation step of calculating the nitridation potential in the treatment furnace based on the ammonia concentration, and the nitridation potential in the treatment furnace and the target nitridation potential calculated by the in-furnace nitridation potential calculation step The nitriding potential in the treatment furnace is changed by changing the introduction amount of each of the plurality of types of furnace introduction gases other than the ammonia decomposition gas while maintaining the introduction amount of the ammonia decomposition gas constant. and a step of controlling the amount of introduced gas to bring the potential closer to a target nitriding potential.
  • a surface hardening apparatus for performing gas nitriding comprising: a furnace atmosphere gas concentration detection device for detecting a hydrogen concentration or an ammonia concentration in the processing furnace; and a hydrogen concentration or hydrogen concentration detected by the furnace atmosphere gas concentration detection device.
  • an in-furnace nitriding potential calculation device for calculating the nitriding potential in the processing furnace based on the ammonia concentration, and the nitriding potential in the processing furnace calculated by the in-furnace nitriding potential calculation device and the target nitriding potential
  • a gas introduction amount control device that brings the nitriding potential in the processing furnace closer to the target nitriding potential by changing the introduction amounts of the ammonia gas and the nitrogen gas while keeping the introduction amount of the ammonia decomposition gas constant.
  • the amount of ammonia gas introduced into the furnace is A
  • the amount of ammonia decomposition gas introduced into the furnace is B
  • x is a predetermined constant
  • the present invention can also be recognized as a surface hardening treatment method. That is, the present invention introduces a plurality of types of furnace-introduced gases including ammonia gas, ammonia decomposition gas, and nitrogen gas into a treatment furnace, and performs surface hardening treatment on an article to be treated placed in the treatment furnace.
  • a surface hardening treatment method for performing gas nitriding comprising: a furnace atmosphere gas concentration detecting step of detecting hydrogen concentration or ammonia concentration in the treatment furnace; and hydrogen concentration or hydrogen concentration detected by the furnace atmosphere gas concentration detection device.
  • the surface hardening treatment method is characterized by:
  • the comparison can be performed. It was confirmed that a wide range of nitriding potential control (especially relatively low nitriding potential control) can be realized.
  • nitriding potential control in particular, relatively low It was confirmed that nitriding potential control
  • FIG. 1 is a schematic diagram showing a surface hardening apparatus according to an embodiment of the present invention
  • FIG. 4 is a graph showing the control of gas introduced into the furnace in Example 1-2.
  • 4 is a graph showing nitriding potential control in Example 1-2.
  • 1 is a table comparing Examples 1-1 to 1-3 with respective comparative examples.
  • 10 is a graph showing the control of gas introduced into the furnace in Example 2-2.
  • 10 is a graph showing nitriding potential control in Example 2-2.
  • FIG. 10 is a table comparing Examples 2-1 to 2-3 with each comparative example;
  • FIG. 10 is a graph showing the control of gas introduced into the furnace in Example 3-2.
  • 10 is a graph showing nitriding potential control in Example 3-2.
  • 3 is a table comparing Examples 3-1 to 3-3 with respective comparative examples.
  • FIG. 1 is a schematic diagram showing a surface hardening apparatus according to one embodiment of the present invention.
  • the surface hardening treatment apparatus 1 of the present embodiment introduces ammonia gas, ammonia decomposition gas, and nitrogen gas into the treatment furnace 2, and treats an article S to be treated placed in the treatment furnace 2.
  • It is a surface hardening apparatus that performs gas nitriding as the surface hardening treatment.
  • Ammonia decomposition gas is also called AX gas, and is a mixed gas consisting of nitrogen and hydrogen at a ratio of 1:3.
  • the article S to be processed is made of metal, and is assumed to be, for example, a steel part or a mold.
  • the processing furnace 2 of the surface hardening apparatus 1 of the present embodiment includes a stirring fan 8, a stirring fan drive motor 9, a furnace temperature measuring device 10, a furnace body heating device 11, An atmospheric gas concentration detector 3, a nitriding potential controller 4, a temperature controller 5, a programmable logic controller 31, a recorder 6, and an in-furnace introduction gas supply unit 20 are provided.
  • the stirring fan 8 is arranged inside the processing furnace 2 and rotates inside the processing furnace 2 to stir the atmosphere inside the processing furnace 2 .
  • the stirring fan drive motor 9 is connected to the stirring fan 8 and rotates the stirring fan 8 at an arbitrary rotational speed.
  • the in-furnace temperature measuring device 10 has a thermocouple and is configured to measure the temperature of the in-furnace gas present in the processing furnace 2 . After measuring the temperature of the furnace gas, the furnace temperature measuring device 10 outputs an information signal (furnace temperature signal) including the measured temperature to the temperature controller 5 and the recorder 6. .
  • the atmospheric gas concentration detection device 3 is composed of a sensor capable of detecting the hydrogen concentration or ammonia concentration in the processing furnace 2 as the furnace atmospheric gas concentration.
  • a detection main body of the sensor communicates with the interior of the processing furnace 2 through an atmospheric gas pipe 12 .
  • the atmospheric gas pipe 12 is formed as a single line path that directly communicates the sensor body of the atmospheric gas concentration detection device 3 and the processing furnace 2 .
  • An on-off valve 17 is provided in the middle of the atmosphere gas pipe 12 , and the on-off valve is controlled by an on-off valve control device 16 .
  • the atmospheric gas concentration detection device 3 After detecting the concentration of the atmosphere gas in the furnace, the atmospheric gas concentration detection device 3 outputs an information signal including the detected concentration to the nitriding potential controller 4 and the recorder 6 .
  • the recorder 6 includes a storage medium such as a CPU and a memory, and measures the temperature in the processing furnace 2 and the concentration of the atmospheric gas in the furnace based on the output signals from the furnace temperature measuring device 10 and the atmospheric gas concentration detecting device 3. are stored in correspondence with the date and time when the surface hardening treatment was performed, for example.
  • a storage medium such as a CPU and a memory
  • the nitriding potential controller 4 has an in-furnace nitriding potential computing device 13 and a gas flow rate output adjusting device 30 .
  • the programmable logic controller 31 also has a gas introduction control device 14 and a parameter setting device 15 .
  • the in-furnace nitriding potential computing device 13 computes the nitriding potential in the processing furnace 2 based on the hydrogen concentration or the ammonia concentration detected by the in-furnace atmospheric gas concentration detecting device 3 . Specifically, a calculation formula for the nitriding potential programmed based on the same idea as formula (5) is incorporated according to the actual gas introduced into the furnace, and the nitriding potential is calculated from the value of the gas concentration in the furnace atmosphere. It is designed to be calculated.
  • the parameter setting device 15 comprises, for example, a touch panel, and sets target nitriding potential, treatment temperature, treatment time, introduction amount of ammonia decomposition gas, predetermined constant x, proportionality coefficient c1, etc. for the same object to be treated. Settings can be entered.
  • Each setting parameter value that has been set and input is transmitted to the gas flow rate output adjusting means 30 .
  • the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculation device 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and selects three types of in-furnace introduced gases.
  • PID control is performed using the introduction amounts of each of ammonia gas and nitrogen gas as input values. More specifically, in the PID control, the nitriding potential in the processing furnace 2 is brought closer to the target nitriding potential by changing the introduction amounts of the ammonia gas and the nitrogen gas while keeping the introduction amount of the ammonia decomposition gas constant. .
  • each setting parameter value transmitted from the parameter setting device 15 is used in the PID control.
  • Candidates for PID control setting parameter values for inputting settings to the parameter setting device 15 are preferably obtained in advance by performing a pilot process.
  • (4) Candidates for setting parameter values can be obtained for different values of the target nitriding potential by the auto-tuning function of the nitriding potential controller 4 itself.
  • UT75A high-performance digital indicator controller manufactured by Yokogawa Electric Co., Ltd., http://www.yokogawa.co.jp/ns/cis/ utup/utadvanced/ns-ut75a-01-ja.htm) etc. are available.
  • Setting parameter values obtained as candidates are recorded in some form, and parameter settings are performed according to the desired processing content. It can be manually entered into device 15 . However, the setting parameter values acquired as candidates are stored in some storage device in a form linked with the target nitriding potential, and are automatically read by the parameter setting device 15 based on the input target nitriding potential value. It may be possible to
  • the gas introduction amount control means 14 sends a control signal to the first supply amount control device 22 for ammonia gas.
  • the in-furnace introduction gas supply unit 20 of the present embodiment includes a first in-furnace introduction gas supply unit 21 for ammonia gas, a first supply amount control device 22, a first supply valve 23, and a first flow meter 24. ,have. Further, the in-furnace introduced gas supply unit 20 of the present embodiment includes a second in-furnace introduced gas supply unit 25 for ammonia decomposition gas (AX gas), a second supply amount control device 26, and a second supply valve 27. , and a second flow meter 28 .
  • AX gas ammonia decomposition gas
  • the in-furnace introduced gas supply unit 20 of the present embodiment includes a third in-furnace introduced gas supply unit 71 for nitrogen gas, a third supply amount control device 72, a third supply valve 73, a third flow meter 74 and .
  • the ammonia gas, the ammonia decomposition gas, and the nitrogen gas are mixed in the furnace introduction gas introduction pipe 29 before entering the processing furnace 2 .
  • the first in-furnace introduction gas supply unit 21 is formed by, for example, a tank filled with the first in-furnace introduction gas (ammonia gas in this example).
  • the first supply amount control device 22 is formed by a mass flow controller (capable of changing the flow rate in small increments within a short period of time), and the first in-furnace introduction gas supply section 21 and the first supply valve 23 interposed in between.
  • the degree of opening of the first supply amount control device 22 changes according to the control signal output from the gas introduction amount control means 14 .
  • the first supply amount control device 22 detects the supply amount from the first in-furnace introduction gas supply unit 21 to the first supply valve 23, and transmits an information signal including the detected supply amount to the gas introduction control means 14. It is designed to output to the controller 6 .
  • the control signal can be used for correction of control by the gas introduction amount control means 14 and the like.
  • the first supply valve 23 is formed by an electromagnetic valve that switches between open and closed states in accordance with a control signal output by the gas introduction amount control means 14 . intervened.
  • the first flowmeter 24 is, for example, a mechanical flowmeter such as a flow-type flowmeter, and is interposed between the first supply valve 23 and the in-furnace introduction gas introduction pipe 29 . Further, the first flow meter 24 detects the amount of gas supplied from the first supply valve 23 to the in-furnace introduction gas introduction pipe 29 . The amount of supply detected by the first flow meter 24 can be used for visual confirmation work by the operator.
  • the second in-furnace introduction gas supply unit 25 is formed, for example, by a tank filled with the second in-furnace introduction gas (ammonia decomposition gas in this example).
  • the second supply amount control device 26 is formed by a mass flow controller (which can change the flow rate in small increments within a short period of time), and the second in-furnace introduction gas supply section 25 and the second supply valve 27 interposed in between.
  • the degree of opening of the second supply amount control device 26 changes according to the control signal output from the gas introduction amount control means 14 .
  • the second supply amount control device 26 detects the supply amount from the second in-furnace introduction gas supply unit 25 to the second supply valve 27, and transmits an information signal including the detected supply amount to the gas introduction control means 14. It is designed to output to the controller 6 .
  • the control signal can be used for correction of control by the gas introduction amount control means 14 and the like.
  • the second supply valve 27 is formed by an electromagnetic valve that switches between open and closed states in response to a control signal output by the gas introduction amount control means 14. intervened.
  • the second flowmeter 28 is, for example, a mechanical flowmeter such as a flow-type flowmeter, and is interposed between the second supply valve 27 and the in-furnace introduction gas introduction pipe 29 .
  • the second flow meter 28 detects the amount of gas supplied from the second supply valve 27 to the in-furnace introduction gas introduction pipe 29 .
  • the amount of supply detected by the second flow meter 28 can be used for visual confirmation work by the operator.
  • the second supply amount control device 26 since the introduction amount of the ammonia decomposition gas is not fluctuated in small increments, the second supply amount control device 26 is omitted, and the flow rate (opening degree) of the second flow meter 28 is controlled by the gas introduction amount control means. It may be manually adjusted to correspond to the control signal output from 14 .
  • the third in-furnace introduction gas supply unit 71 is formed by, for example, a tank filled with the third in-furnace introduction gas (nitrogen gas in this example).
  • the third supply amount control device 72 is formed by a mass flow controller (capable of changing the flow rate in small increments within a short period of time). interposed in between. The degree of opening of the third supply amount control device 72 changes according to the control signal output from the gas introduction amount control means 14 . Further, the third supply amount control device 72 detects the supply amount from the third in-furnace introduction gas supply unit 71 to the third supply valve 73, and transmits an information signal including the detected supply amount to the gas introduction control means 14. It is designed to output to the controller 6 . The control signal can be used for correction of control by the gas introduction amount control means 14 and the like.
  • the third supply valve 73 is formed by an electromagnetic valve that switches between open and closed states in accordance with a control signal output by the gas introduction amount control means 14 . intervened.
  • the third flowmeter 74 is formed of a mechanical flowmeter such as a flow-type flowmeter, and is interposed between the third supply valve 73 and the in-furnace introduction gas introduction pipe 29 .
  • the third flow meter 74 detects the amount of gas supplied from the third supply valve 73 to the in-furnace introduction gas introduction pipe 29 .
  • the amount of supply detected by the third flow meter 74 can be used for visual confirmation work by the operator.
  • FIG. 1 the operation of the surface hardening apparatus 1 of this embodiment will be described with reference to FIGS. 2 and 3.
  • FIG. 1 the article S to be processed is put into the processing furnace 2, and the heating of the processing furnace 2 is started.
  • a pit furnace with a size of ⁇ 700 ⁇ 1000 is used as the processing furnace 2
  • the heating temperature is 570° C.
  • a steel material having a surface area of 8 m 2 is used as the work S to be processed. was taken.
  • ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the processing furnace 2 from the in-furnace introduction gas supply unit 20 at the set initial flow rates.
  • the initial set flow rate of ammonia gas is set to 9.75 [l/min]
  • the initial set flow rate of ammonia decomposition gas is set to 25 [l/min]
  • the set initial flow rate of nitrogen gas is set to 9.75 [l/min].
  • These set initial flow rates can be set and input in the parameter setting device 15 .
  • the stirring fan driving motor 9 is driven to rotate the stirring fan 8, thereby stirring the atmosphere in the processing furnace 2. As shown in FIG.
  • the on-off valve control device 16 keeps the on-off valve 17 closed.
  • a treatment for activating the steel material surface to make it easier for nitrogen to enter may be performed.
  • hydrogen chloride gas, hydrogen cyanide gas, etc. are generated in the furnace. Since these gases can deteriorate the in-furnace atmosphere gas concentration detector (sensor) 3, it is effective to keep the on-off valve 17 closed.
  • the furnace temperature measuring device 10 measures the temperature of the furnace gas and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6 .
  • the nitriding potential controller 4 determines whether the state in the processing furnace 2 is in the middle of temperature rising or in a state (stable state) where the temperature rising has been completed.
  • the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the nitriding potential in the furnace (which is initially a very high value (because there is no hydrogen in the furnace), but the decomposition of the ammonia gas (hydrogen occurrence), and it is determined whether or not the sum of the target nitriding potential (0.6 in this example: see FIG. 3) and the standard deviation value is exceeded.
  • This standard deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
  • the controller 4 starts controlling the introduction amount of the gas introduced into the furnace through the gas introduction amount control means 14 .
  • the opening/closing control device 16 switches the opening/closing valve 17 to the open state.
  • the processing furnace 2 and the atmospheric gas concentration detection device 3 are communicated with each other, and the furnace atmospheric gas concentration detection device 3 detects the hydrogen concentration in the furnace or the ammonia concentration in the furnace.
  • a detected hydrogen concentration signal or ammonia concentration signal is output to the nitriding potential controller 4 and the recorder 6 .
  • the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculation device 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and selects three types of in-furnace introduced gases. PID control is performed using the introduction amounts of ammonia gas and nitrogen gas as input values.
  • each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ according to the value of the target nitriding potential.
  • the gas introduction amount control means 14 controls the introduction amount of ammonia gas and the introduction amount of nitrogen gas as a result of PID control.
  • the gas introduction amount control means 14 controls the first supply amount control device 22 for the ammonia gas and the second supply amount control device 26 for the ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • the third feed rate controller 72 for nitrogen gas controls the first supply amount control device 22 for the ammonia gas and the second supply amount control device 26 for the ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • the in-furnace nitriding potential can be stably controlled near the target nitriding potential as shown in FIG.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min) by feedback control with a sampling time of about several hundred milliseconds. It can be seen that the nitriding potential can be controlled to the target nitriding potential (0.6) with extremely high accuracy from about 5 minutes after the start of the treatment. (In the examples shown in FIGS. 2 and 3, the recording of each gas flow rate and nitriding potential is stopped about 100 minutes after the start of treatment.)
  • Example 1-1 Next, a case where the target nitriding potential is set to 1.0 using the surface hardening apparatus 1 of the present embodiment (Example 1-1) will be described. Also in Example 1-1, a pit furnace having a size of ⁇ 700 ⁇ 1000 is used as the processing furnace 2, the heating temperature is set to 570° C., and a steel material having a surface area of 8 m 2 is used as the work S to be processed. rice field.
  • ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the processing furnace 2 from the in-furnace introduction gas supply unit 20 at the set initial flow rates.
  • the set initial flow rate of the ammonia gas is set to 9 [l/min]
  • the set initial flow rate of the ammonia decomposition gas is set to 20 [l/min]
  • the set initial flow rate of the nitrogen gas is set to 12.7 [l/min].
  • x 0.5
  • the stirring fan driving motor 9 is driven to rotate the stirring fan 8, thereby stirring the atmosphere in the processing furnace 2. As shown in FIG.
  • the on-off valve control device 16 keeps the on-off valve 17 closed.
  • the furnace temperature measuring device 10 measures the temperature of the furnace gas and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6 .
  • the nitriding potential controller 4 determines whether the state in the processing furnace 2 is in the middle of temperature rising or in a state (stable state) where the temperature rising has been completed.
  • the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the nitriding potential in the furnace (which is initially a very high value (because there is no hydrogen in the furnace), but the decomposition of the ammonia gas (hydrogen It is determined whether or not the sum of the target nitriding potential (1.0 in this example) and the standard deviation value is exceeded.
  • This standard deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
  • the controller 4 starts controlling the introduction amount of the gas introduced into the furnace through the gas introduction amount control means 14 .
  • the opening/closing control device 16 switches the opening/closing valve 17 to the open state.
  • the processing furnace 2 and the atmospheric gas concentration detection device 3 are communicated with each other, and the furnace atmospheric gas concentration detection device 3 detects the hydrogen concentration in the furnace or the ammonia concentration in the furnace.
  • a detected hydrogen concentration signal or ammonia concentration signal is output to the nitriding potential controller 4 and the recorder 6 .
  • the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculation device 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and selects three types of in-furnace introduced gases. Of these, PID control is performed using the introduction amounts of ammonia gas and nitrogen gas as input values.
  • each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ according to the value of the target nitriding potential.
  • the gas introduction amount control means 14 controls the introduction amount of ammonia gas and the introduction amount of nitrogen gas as a result of PID control.
  • the gas introduction amount control means 14 controls the first supply amount control device 22 for the ammonia gas and the second supply amount control device 26 for the ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • the third feed rate controller 72 for nitrogen gas controls the introduction amount of ammonia gas and the introduction amount of nitrogen gas as a result of PID control.
  • the in-furnace nitriding potential can be stably controlled near the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of processing, about 5
  • the nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high accuracy from the time point of 10 min (illustration of the graph is omitted).
  • Example 1-3 Next, a case where the target nitriding potential is set to 0.2 using the surface hardening apparatus 1 of the present embodiment (Example 1-3) will be described. Also in Example 1-3, a pit furnace having a size of ⁇ 700 ⁇ 1000 is used as the processing furnace 2, the heating temperature is set to 570° C., and a steel material having a surface area of 8 m 2 is used as the work S to be processed. rice field.
  • ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the processing furnace 2 from the in-furnace introduction gas supply unit 20 at the set initial flow rates.
  • the set initial flow rate of ammonia gas is 2 [l/min]
  • the set initial flow rate of ammonia decomposition gas is 30 [l/min]
  • the set initial flow rate of nitrogen gas is 11.3 [l/min].
  • x 0.5
  • c1 0.67.
  • the on-off valve control device 16 keeps the on-off valve 17 closed.
  • the furnace temperature measuring device 10 measures the temperature of the furnace gas and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6 .
  • the nitriding potential controller 4 determines whether the state in the processing furnace 2 is in the middle of temperature rising or in a state (stable state) where the temperature rising has been completed.
  • the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the nitriding potential in the furnace (which is initially a very high value (because there is no hydrogen in the furnace), but the decomposition of the ammonia gas (hydrogen It is determined whether or not the sum of the target nitriding potential (0.2 in this example) and the reference deviation value is exceeded.
  • This standard deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
  • the controller 4 starts controlling the introduction amount of the gas introduced into the furnace through the gas introduction amount control means 14 .
  • the opening/closing control device 16 switches the opening/closing valve 17 to the open state.
  • the processing furnace 2 and the atmospheric gas concentration detection device 3 are communicated with each other, and the furnace atmospheric gas concentration detection device 3 detects the hydrogen concentration in the furnace or the ammonia concentration in the furnace.
  • a detected hydrogen concentration signal or ammonia concentration signal is output to the nitriding potential controller 4 and the recorder 6 .
  • the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculation device 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and selects three types of in-furnace introduced gases. Of these, PID control is performed using the introduction amounts of ammonia gas and nitrogen gas as input values.
  • each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ according to the value of the target nitriding potential.
  • the gas introduction amount control means 14 controls the introduction amount of ammonia gas and the introduction amount of nitrogen gas as a result of PID control.
  • the gas introduction amount control means 14 controls the first supply amount control device 22 for the ammonia gas and the second supply amount control device 26 for the ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • the third feed rate controller 72 for nitrogen gas controls the first supply amount control device 22 for the ammonia gas and the second supply amount control device 26 for the ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • the in-furnace nitriding potential can be stably controlled near the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and about 15 l/min after the start of processing.
  • the nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min (illustration of the graph is omitted).
  • the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculated the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculator 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and sets each of the ammonia gas and the nitrogen gas. PID control was performed using the amount of introduced as an input value.
  • the nitriding potential in the processing furnace 2 is adjusted to the target. Control was performed to approach the nitriding potential.
  • Example 1-2 a small amount (on the order of 0.1%) of argon gas may additionally be introduced.
  • A be the amount of ammonia gas introduced into the furnace
  • B be the amount of ammonia decomposition gas introduced into the furnace
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and about 15 l/min after the start of processing.
  • the nitriding potential could be controlled to the target nitriding potential (0.6) with extremely high precision from the time point of 10 min.
  • Example 1-2 a small amount (about 0.1%) of argon gas may be additionally introduced while keeping the introduction amount constant.
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and about 15 l/min after the start of processing.
  • the nitriding potential could be controlled to the target nitriding potential (0.6) with extremely high precision from the time point of 10 min.
  • Example 1-2 a very small amount (about 0.1%) of carburizing gas (CO, CO 2 , etc.), which cannot be called nitrocarburizing, may be additionally introduced.
  • A be the amount of ammonia gas introduced into the furnace
  • B be the amount of ammonia decomposition gas introduced into the furnace
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and about 15 l/min after the start of processing.
  • the nitriding potential could be controlled to the target nitriding potential (0.6) with extremely high precision from the time point of 10 min.
  • Example 1-2 a small amount (about 0.1%) of carburizing gas may be additionally introduced while keeping the introduction amount constant.
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and about 15 l/min after the start of processing.
  • the nitriding potential could be controlled to the target nitriding potential (0.6) with extremely high precision from the time point of 10 min.
  • Example 1-1 a small amount (about 0.1%) of argon gas may be additionally introduced.
  • A be the amount of ammonia gas introduced into the furnace
  • B be the amount of ammonia decomposition gas introduced into the furnace
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and about 15 l/min after the start of processing.
  • the nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high precision from the time point of 10 min.
  • Example 1-1 a small amount (about 0.1%) of argon gas may be additionally introduced while keeping the introduction amount constant.
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and about 15 l/min after the start of processing.
  • the nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high precision from the time point of 10 min.
  • Example 1-1 a very small amount (about 0.1%) of carburizing gas (CO, CO 2 , etc.), which cannot be called nitrocarburizing, may be additionally introduced.
  • A be the amount of ammonia gas introduced into the furnace
  • B be the amount of ammonia decomposition gas introduced into the furnace
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and about 15 l/min after the start of processing.
  • the nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high precision from the time point of 10 min.
  • Example 1-1 a small amount (about 0.1%) of carburizing gas may be additionally introduced while keeping the introduction amount constant.
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and about 15 l/min after the start of processing.
  • the nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high precision from the time point of 10 min.
  • a small amount (about 0.1%) of argon gas may be additionally introduced.
  • A be the amount of ammonia gas introduced into the furnace
  • B be the amount of ammonia decomposition gas introduced into the furnace
  • the in-furnace nitriding potential can be stably controlled near the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and about 15 l/min after the start of processing.
  • the nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min.
  • a small amount (about 0.1%) of argon gas may be additionally introduced while keeping the introduction amount constant.
  • the in-furnace nitriding potential can be stably controlled near the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and about 15 l/min after the start of processing.
  • the nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min.
  • a very small amount (approximately 0.1%) of carburizing gas (CO, CO 2 , etc.), which cannot be called nitrocarburizing, may be additionally introduced.
  • A be the amount of ammonia gas introduced into the furnace
  • B be the amount of ammonia decomposition gas introduced into the furnace
  • the in-furnace nitriding potential can be stably controlled near the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and about 15 l/min after the start of processing.
  • the nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min.
  • a small amount (about 0.1%) of carburizing gas may be additionally introduced while keeping the introduction amount constant.
  • the in-furnace nitriding potential can be stably controlled near the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and about 15 l/min after the start of processing.
  • the nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min.
  • ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the processing furnace 2 from the in-furnace introduction gas supply unit 20 at the set initial flow rates.
  • the set initial flow rate of ammonia gas is set to 10.3 [l/min]
  • the set initial flow rate of ammonia decomposition gas is set to 32.5 [l/min]
  • the set initial flow rate of nitrogen gas is set to 10.3 [l/min].
  • These set initial flow rates can be set and input in the parameter setting device 15 .
  • the stirring fan driving motor 9 is driven to rotate the stirring fan 8, thereby stirring the atmosphere in the processing furnace 2. As shown in FIG.
  • the on-off valve control device 16 keeps the on-off valve 17 closed.
  • the furnace temperature measuring device 10 measures the temperature of the furnace gas and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6 .
  • the nitriding potential controller 4 determines whether the state in the processing furnace 2 is in the middle of temperature rising or in a state (stable state) where the temperature rising has been completed.
  • the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the nitriding potential in the furnace (which is initially a very high value (because there is no hydrogen in the furnace), but the decomposition of the ammonia gas (hydrogen occurrence), it is determined whether or not the sum of the target nitriding potential (0.6 in this example: see FIG. 6) and the reference deviation value is exceeded.
  • This standard deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
  • the controller 4 starts controlling the introduction amount of the gas introduced into the furnace through the gas introduction amount control means 14 .
  • the opening/closing control device 16 switches the opening/closing valve 17 to the open state.
  • the processing furnace 2 and the atmospheric gas concentration detection device 3 are communicated with each other, and the furnace atmospheric gas concentration detection device 3 detects the hydrogen concentration in the furnace or the ammonia concentration in the furnace.
  • a detected hydrogen concentration signal or ammonia concentration signal is output to the nitriding potential controller 4 and the recorder 6 .
  • the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculation device 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and selects three types of in-furnace introduced gases. PID control is performed using the introduction amounts of ammonia gas and nitrogen gas as input values.
  • each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ according to the value of the target nitriding potential.
  • the gas introduction amount control means 14 controls the introduction amount of ammonia gas and the introduction amount of nitrogen gas as a result of PID control.
  • the gas introduction amount control means 14 controls the first supply amount control device 22 for the ammonia gas and the second supply amount control device 26 for the ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • the third feed rate controller 72 for nitrogen gas controls the first supply amount control device 22 for the ammonia gas and the second supply amount control device 26 for the ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • the in-furnace nitriding potential can be stably controlled near the target nitriding potential as shown in FIG.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min) by feedback control with a sampling time of about several hundred milliseconds. It can be seen that the nitriding potential can be controlled to the target nitriding potential (0.6) with extremely high accuracy from about 10 minutes after the start of the treatment. (In the examples shown in FIGS. 5 and 6, the recording of each gas flow rate and nitriding potential is stopped about 100 minutes after the start of treatment.)
  • Example 2-1 Next, a case where the target nitriding potential is set to 1.0 using the surface hardening apparatus 1 of the present embodiment (Example 2-1) will be described. Also in Example 2-1, a pit furnace with a size of ⁇ 700 ⁇ 1000 is used as the processing furnace 2, the heating temperature is set at 570° C., and a steel material having a surface area of 8 m 2 is used as the work S to be processed. rice field.
  • ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the processing furnace 2 from the in-furnace introduction gas supply unit 20 at the set initial flow rates.
  • the set initial flow rate of ammonia gas is 12.0 [l/min]
  • the set initial flow rate of ammonia decomposition gas is 24.0 [l/min]
  • the set initial flow rate of nitrogen gas is 6.0 [l/min].
  • These set initial flow rates can be set and input in the parameter setting device 15 .
  • the stirring fan driving motor 9 is driven to rotate the stirring fan 8, thereby stirring the atmosphere in the processing furnace 2. As shown in FIG.
  • the on-off valve control device 16 keeps the on-off valve 17 closed.
  • the furnace temperature measuring device 10 measures the temperature of the furnace gas and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6 .
  • the nitriding potential controller 4 determines whether the state in the processing furnace 2 is in the middle of temperature rising or in a state (stable state) where the temperature rising has been completed.
  • the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the nitriding potential in the furnace (which is initially a very high value (because there is no hydrogen in the furnace), but the decomposition of the ammonia gas (hydrogen It is determined whether or not the sum of the target nitriding potential (1.0 in this example) and the standard deviation value is exceeded.
  • This standard deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
  • the controller 4 starts controlling the introduction amount of the gas introduced into the furnace through the gas introduction amount control means 14 .
  • the opening/closing control device 16 switches the opening/closing valve 17 to the open state.
  • the processing furnace 2 and the atmospheric gas concentration detection device 3 are communicated with each other, and the furnace atmospheric gas concentration detection device 3 detects the hydrogen concentration in the furnace or the ammonia concentration in the furnace.
  • a detected hydrogen concentration signal or ammonia concentration signal is output to the nitriding potential controller 4 and the recorder 6 .
  • the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculation device 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and selects three types of in-furnace introduced gases. Of these, PID control is performed using the introduction amounts of ammonia gas and nitrogen gas as input values.
  • each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ according to the value of the target nitriding potential.
  • the gas introduction amount control means 14 controls the introduction amount of ammonia gas and the introduction amount of nitrogen gas as a result of PID control.
  • the gas introduction amount control means 14 controls the first supply amount control device 22 for the ammonia gas and the second supply amount control device 26 for the ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • the third feed rate controller 72 for nitrogen gas controls the introduction amount of ammonia gas and the introduction amount of nitrogen gas as a result of PID control.
  • the in-furnace nitriding potential can be stably controlled near the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high accuracy from the time point of 10 min (illustration of the graph is omitted).
  • Example 2-3 Next, a case where the target nitriding potential is set to 0.2 using the surface hardening apparatus 1 of the present embodiment (Example 2-3) will be described. Also in Example 2-3, a pit furnace with a size of ⁇ 700 ⁇ 1000 is used as the treatment furnace 2, the heating temperature is set at 570° C., and a steel material having a surface area of 8 m 2 is used as the work S to be treated. rice field.
  • ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the processing furnace 2 from the in-furnace introduction gas supply unit 20 at the set initial flow rates.
  • the set initial flow rate of ammonia gas is 3.0 [l/min]
  • the set initial flow rate of ammonia decomposition gas is 40.0 [l/min]
  • the set initial flow rate of nitrogen gas is 5.7 [l/min].
  • These set initial flow rates can be set and input in the parameter setting device 15 .
  • the stirring fan driving motor 9 is driven to rotate the stirring fan 8, thereby stirring the atmosphere in the processing furnace 2. As shown in FIG.
  • the on-off valve control device 16 keeps the on-off valve 17 closed.
  • the furnace temperature measuring device 10 measures the temperature of the furnace gas and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6 .
  • the nitriding potential controller 4 determines whether the state in the processing furnace 2 is in the middle of temperature rising or in a state (stable state) where the temperature rising has been completed.
  • the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the nitriding potential in the furnace (which is initially a very high value (because there is no hydrogen in the furnace), but the decomposition of the ammonia gas (hydrogen It is determined whether or not the sum of the target nitriding potential (0.2 in this example) and the reference deviation value is exceeded.
  • This standard deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
  • the controller 4 starts controlling the introduction amount of the gas introduced into the furnace through the gas introduction amount control means 14 .
  • the opening/closing control device 16 switches the opening/closing valve 17 to the open state.
  • the processing furnace 2 and the atmospheric gas concentration detection device 3 are communicated with each other, and the furnace atmospheric gas concentration detection device 3 detects the hydrogen concentration in the furnace or the ammonia concentration in the furnace.
  • a detected hydrogen concentration signal or ammonia concentration signal is output to the nitriding potential controller 4 and the recorder 6 .
  • the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculation device 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and selects three types of in-furnace introduced gases. Of these, PID control is performed using the introduction amounts of ammonia gas and nitrogen gas as input values.
  • each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ according to the value of the target nitriding potential.
  • the gas introduction amount control means 14 controls the introduction amount of ammonia gas and the introduction amount of nitrogen gas as a result of PID control.
  • the gas introduction amount control means 14 controls the first supply amount control device 22 for the ammonia gas and the second supply amount control device 26 for the ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • the third feed rate controller 72 for nitrogen gas controls the first supply amount control device 22 for the ammonia gas and the second supply amount control device 26 for the ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • the in-furnace nitriding potential can be stably controlled near the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min (illustration of the graph is omitted).
  • the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculated the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculator 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and sets each of the ammonia gas and the nitrogen gas. PID control was performed using the amount of introduced as an input value.
  • the nitriding potential in the processing furnace 2 is adjusted to the target. Control was performed to approach the nitriding potential.
  • Example 2-2 a small amount (on the order of 0.1%) of argon gas may additionally be introduced.
  • A be the amount of ammonia gas introduced into the furnace
  • B be the amount of ammonia decomposition gas introduced into the furnace
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (0.6) with extremely high precision from the time point of 10 min.
  • Example 2-2 a small amount (about 0.1%) of argon gas may be additionally introduced while keeping the introduction amount constant.
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (0.6) with extremely high precision from the time point of 10 min.
  • Example 2-2 a very small amount (about 0.1%) of carburizing gas (CO, CO 2 , etc.), which cannot be called nitrocarburizing, may be additionally introduced.
  • A be the amount of ammonia gas introduced into the furnace
  • B be the amount of ammonia decomposition gas introduced into the furnace
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (0.6) with extremely high precision from the time point of 10 min.
  • Example 2-2 a small amount (about 0.1%) of carburizing gas may be additionally introduced while keeping the introduction amount constant.
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (0.6) with extremely high precision from the time point of 10 min.
  • Example 2-1 a small amount (about 0.1%) of argon gas may be additionally introduced.
  • A be the amount of ammonia gas introduced into the furnace
  • B be the amount of ammonia decomposition gas introduced into the furnace
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high precision from the time point of 10 min.
  • Example 2-1 a small amount (about 0.1%) of argon gas may be additionally introduced while keeping the introduction amount constant.
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high precision from the time point of 10 min.
  • Example 2-1 a very small amount (about 0.1%) of carburizing gas (CO, CO 2 , etc.) that cannot be called nitrocarburizing may be additionally introduced.
  • A be the amount of ammonia gas introduced into the furnace
  • B be the amount of ammonia decomposition gas introduced into the furnace
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high precision from the time point of 10 min.
  • Example 2-1 a small amount (about 0.1%) of carburizing gas may be additionally introduced while keeping the introduction amount constant.
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high precision from the time point of 10 min.
  • Example 2-3 a small amount (approximately 0.1%) of argon gas may be additionally introduced.
  • A be the amount of ammonia gas introduced into the furnace
  • B be the amount of ammonia decomposition gas introduced into the furnace
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min.
  • Example 2-3 a small amount (approximately 0.1%) of argon gas may be additionally introduced while keeping the introduction amount constant.
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min.
  • Example 2-3 a very small amount (about 0.1%) of carburizing gas (CO, CO 2 , etc.), which cannot be called nitrocarburizing, may be additionally introduced.
  • A be the amount of ammonia gas introduced into the furnace
  • B be the amount of ammonia decomposition gas introduced into the furnace
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min.
  • Example 2-3 a small amount (about 0.1%) of carburizing gas may be additionally introduced while keeping the introduction amount constant.
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min.
  • ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the processing furnace 2 from the in-furnace introduction gas supply unit 20 at the set initial flow rates.
  • the set initial flow rate of ammonia gas is set to 4.0 [l/min]
  • the set initial flow rate of ammonia decomposition gas is set to 20.0 [l/min]
  • the set initial flow rate of nitrogen gas is set to 4.0 [l/min].
  • These set initial flow rates can be set and input in the parameter setting device 15 .
  • the stirring fan driving motor 9 is driven to rotate the stirring fan 8, thereby stirring the atmosphere in the processing furnace 2. As shown in FIG.
  • the on-off valve control device 16 keeps the on-off valve 17 closed.
  • the furnace temperature measuring device 10 measures the temperature of the furnace gas and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6 .
  • the nitriding potential controller 4 determines whether the state in the processing furnace 2 is in the middle of temperature rising or in a state (stable state) where the temperature rising has been completed.
  • the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the nitriding potential in the furnace (which is initially a very high value (because there is no hydrogen in the furnace), but the decomposition of the ammonia gas (hydrogen occurrence), it is determined whether or not the sum of the target nitriding potential (0.6 in this example: see FIG. 9) and the standard deviation value is exceeded.
  • This standard deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
  • the controller 4 starts controlling the introduction amount of the gas introduced into the furnace through the gas introduction amount control means 14 .
  • the opening/closing control device 16 switches the opening/closing valve 17 to the open state.
  • the processing furnace 2 and the atmospheric gas concentration detection device 3 are communicated with each other, and the furnace atmospheric gas concentration detection device 3 detects the hydrogen concentration in the furnace or the ammonia concentration in the furnace.
  • a detected hydrogen concentration signal or ammonia concentration signal is output to the nitriding potential controller 4 and the recorder 6 .
  • the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculation device 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and selects three types of in-furnace introduced gases. PID control is performed using the introduction amounts of ammonia gas and nitrogen gas as input values.
  • each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ according to the value of the target nitriding potential.
  • the gas introduction amount control means 14 controls the introduction amount of ammonia gas and the introduction amount of nitrogen gas as a result of PID control.
  • the gas introduction amount control means 14 controls the first supply amount control device 22 for the ammonia gas and the second supply amount control device 26 for the ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • the third feed rate controller 72 for nitrogen gas controls the first supply amount control device 22 for the ammonia gas and the second supply amount control device 26 for the ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • the in-furnace nitriding potential can be stably controlled near the target nitriding potential as shown in FIG.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min) by feedback control with a sampling time of about several hundred milliseconds. It can be seen that the nitriding potential can be controlled to the target nitriding potential (0.6) with extremely high accuracy from about 10 minutes after the start of the treatment. (In the examples shown in FIGS. 8 and 9, the recording of each gas flow rate and nitriding potential is stopped about 100 minutes after the start of treatment.)
  • Example 3-1 Next, a case where the target nitriding potential is set to 1.0 using the surface hardening apparatus 1 of the present embodiment (Example 3-1) will be described. Also in Example 3-1, a pit furnace with a size of ⁇ 700 ⁇ 1000 is used as the processing furnace 2, the heating temperature is set at 570° C., and a steel material having a surface area of 8 m 2 is used as the work S to be processed. rice field.
  • ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the processing furnace 2 from the in-furnace introduction gas supply unit 20 at the set initial flow rates.
  • the set initial flow rate of ammonia gas is 6.0 [l/min]
  • the set initial flow rate of ammonia decomposition gas is 17.0 [l/min]
  • the set initial flow rate of nitrogen gas is 21.8 [l/min].
  • These set initial flow rates can be set and input in the parameter setting device 15 .
  • the stirring fan driving motor 9 is driven to rotate the stirring fan 8, thereby stirring the atmosphere in the processing furnace 2. As shown in FIG.
  • the on-off valve control device 16 keeps the on-off valve 17 closed.
  • the furnace temperature measuring device 10 measures the temperature of the furnace gas and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6 .
  • the nitriding potential controller 4 determines whether the state in the processing furnace 2 is in the middle of temperature rising or in a state (stable state) where the temperature rising has been completed.
  • the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the nitriding potential in the furnace (which is initially a very high value (because there is no hydrogen in the furnace), but the decomposition of the ammonia gas (hydrogen It is determined whether or not the sum of the target nitriding potential (1.0 in this example) and the standard deviation value is exceeded.
  • This standard deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
  • the controller 4 starts controlling the introduction amount of the gas introduced into the furnace through the gas introduction amount control means 14 .
  • the opening/closing control device 16 switches the opening/closing valve 17 to the open state.
  • the processing furnace 2 and the atmospheric gas concentration detection device 3 are communicated with each other, and the furnace atmospheric gas concentration detection device 3 detects the hydrogen concentration in the furnace or the ammonia concentration in the furnace.
  • a detected hydrogen concentration signal or ammonia concentration signal is output to the nitriding potential controller 4 and the recorder 6 .
  • the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculation device 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and selects three types of in-furnace introduced gases. Of these, PID control is performed using the introduction amounts of ammonia gas and nitrogen gas as input values.
  • each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ according to the value of the target nitriding potential.
  • the gas introduction amount control means 14 controls the introduction amount of ammonia gas and the introduction amount of nitrogen gas as a result of PID control.
  • the gas introduction amount control means 14 controls the first supply amount control device 22 for the ammonia gas and the second supply amount control device 26 for the ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • the third feed rate controller 72 for nitrogen gas controls the introduction amount of ammonia gas and the introduction amount of nitrogen gas as a result of PID control.
  • the in-furnace nitriding potential can be stably controlled near the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high accuracy from the time point of 10 min (illustration of the graph is omitted).
  • Example 3-3 Next, a case where the target nitriding potential is set to 0.2 using the surface hardening apparatus 1 of the present embodiment (Example 3-3) will be described. Also in Example 3-3, a pit furnace having a size of ⁇ 700 ⁇ 1000 is used as the processing furnace 2, the heating temperature is set to 570° C., and a steel material having a surface area of 8 m 2 is used as the work S to be processed. rice field.
  • ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the processing furnace 2 from the in-furnace introduction gas supply unit 20 at the set initial flow rates.
  • the set initial flow rate of ammonia gas is 1.0 [l/min]
  • the set initial flow rate of ammonia decomposition gas is 25.0 [l/min]
  • the set initial flow rate of nitrogen gas is 20.0 [l/min].
  • the stirring fan driving motor 9 is driven to rotate the stirring fan 8, thereby stirring the atmosphere in the processing furnace 2. As shown in FIG.
  • the on-off valve control device 16 keeps the on-off valve 17 closed.
  • the furnace temperature measuring device 10 measures the temperature of the furnace gas and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6 .
  • the nitriding potential controller 4 determines whether the state in the processing furnace 2 is in the middle of temperature rising or in a state (stable state) where the temperature rising has been completed.
  • the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the nitriding potential in the furnace (which is initially a very high value (because there is no hydrogen in the furnace), but the decomposition of the ammonia gas (hydrogen It is determined whether or not the sum of the target nitriding potential (0.2 in this example) and the reference deviation value is exceeded.
  • This standard deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
  • the controller 4 starts controlling the introduction amount of the gas introduced into the furnace through the gas introduction amount control means 14 .
  • the opening/closing control device 16 switches the opening/closing valve 17 to the open state.
  • the processing furnace 2 and the atmospheric gas concentration detection device 3 are communicated with each other, and the furnace atmospheric gas concentration detection device 3 detects the hydrogen concentration in the furnace or the ammonia concentration in the furnace.
  • a detected hydrogen concentration signal or ammonia concentration signal is output to the nitriding potential controller 4 and the recorder 6 .
  • the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculation device 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and selects three types of in-furnace introduced gases. Of these, PID control is performed using the introduction amounts of ammonia gas and nitrogen gas as input values.
  • each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ according to the value of the target nitriding potential.
  • the gas introduction amount control means 14 controls the introduction amount of ammonia gas and the introduction amount of nitrogen gas as a result of PID control.
  • the gas introduction amount control means 14 controls the first supply amount control device 22 for the ammonia gas and the second supply amount control device 26 for the ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • the third feed rate controller 72 for nitrogen gas controls the first supply amount control device 22 for the ammonia gas and the second supply amount control device 26 for the ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas.
  • the in-furnace nitriding potential can be stably controlled near the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min (illustration of the graph is omitted).
  • the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculated the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculator 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and sets each of the ammonia gas and the nitrogen gas. PID control was performed using the amount of introduced as an input value.
  • the nitriding potential in the processing furnace 2 is adjusted to the target. Control was performed to approach the nitriding potential.
  • Example 3-2 a small amount (on the order of 0.1%) of argon gas may additionally be introduced.
  • A be the amount of ammonia gas introduced into the furnace
  • B be the amount of ammonia decomposition gas introduced into the furnace
  • the in-furnace nitriding potential can be stably controlled near the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (0.6) with extremely high precision from the time point of 10 min.
  • Example 3-2 a small amount (about 0.1%) of argon gas may be additionally introduced while keeping the introduction amount constant.
  • the in-furnace nitriding potential can be stably controlled near the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (0.6) with extremely high precision from the time point of 10 min.
  • Example 3-2 a very small amount (about 0.1%) of carburizing gas (CO, CO 2 , etc.), which cannot be called nitrocarburizing, may be additionally introduced.
  • A be the amount of ammonia gas introduced into the furnace
  • B be the amount of ammonia decomposition gas introduced into the furnace
  • the in-furnace nitriding potential can be stably controlled near the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (0.6) with extremely high precision from the time point of 10 min.
  • Example 3-2 a small amount (about 0.1%) of carburizing gas may be additionally introduced while keeping the introduction amount constant.
  • the in-furnace nitriding potential can be stably controlled near the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (0.6) with extremely high precision from the time point of 10 min.
  • Example 3-1 a small amount (about 0.1%) of argon gas may be additionally introduced.
  • A be the amount of ammonia gas introduced into the furnace
  • B be the amount of ammonia decomposition gas introduced into the furnace
  • the in-furnace nitriding potential can be stably controlled near the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high precision from the time point of 10 min.
  • Example 3-1 a small amount (approximately 0.1%) of argon gas may be additionally introduced while keeping the introduction amount constant.
  • the in-furnace nitriding potential can be stably controlled near the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high precision from the time point of 10 min.
  • Example 3-1 a very small amount (about 0.1%) of carburizing gas (CO, CO 2 , etc.), which cannot be called nitrocarburizing, may be additionally introduced.
  • A be the amount of ammonia gas introduced into the furnace
  • B be the amount of ammonia decomposition gas introduced into the furnace
  • the in-furnace nitriding potential can be stably controlled near the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high precision from the time point of 10 min.
  • Example 3-1 a small amount (about 0.1%) of carburizing gas may be additionally introduced while keeping the introduction amount constant.
  • the in-furnace nitriding potential can be stably controlled near the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high precision from the time point of 10 min.
  • Example 3-3 a small amount (about 0.1%) of argon gas may be additionally introduced.
  • A be the amount of ammonia gas introduced into the furnace
  • B be the amount of ammonia decomposition gas introduced into the furnace
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min.
  • Example 3-3 a small amount (approximately 0.1%) of argon gas may be additionally introduced while keeping the introduction amount constant.
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min.
  • Example 3-3 a very small amount (about 0.1%) of carburizing gas (CO, CO 2 , etc.) that cannot be called nitrocarburizing may be additionally introduced.
  • A be the amount of ammonia gas introduced into the furnace
  • B be the amount of ammonia decomposition gas introduced into the furnace
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min.
  • Example 3-3 a small amount (about 0.1%) of carburizing gas may be additionally introduced while keeping the introduction amount constant.
  • the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential.
  • the surface hardening treatment of the workpiece S can be performed with extremely high quality.
  • the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min ( ⁇ 1.5 l/min), and after the start of treatment, about 10
  • the nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min.

Abstract

The present invention is provided with: a furnace atmosphere gas concentration detection device for detecting a hydrogen concentration or an ammonia concentration in a treatment furnace; a furnace nitriding potential calculation device for calculating a nitriding potential in the treatment furnace on the basis of the hydrogen concentration or the ammonia concentration detected by the furnace atmosphere gas concentration detection device; and a gas introduction amount control device for varying the introduction amount of each of a plurality of furnace introduction gases excluding an ammonia decomposition gas in accordance with the calculated nitriding potential in the treatment furnace and a target nitriding potential while keeping the introduction amount of the ammonia decomposition gas at a constant value, thereby bringing the nitriding potential in the treatment furnace close to the target nitriding potential.

Description

表面硬化処理装置及び表面硬化処理方法Surface hardening treatment apparatus and surface hardening treatment method
 本発明は、例えば、窒化、軟窒化、浸窒焼入れ等、金属製の被処理品に対する表面硬化処理を行う表面硬化処理装置及び表面硬化処理方法に関する。 The present invention relates to a surface hardening treatment apparatus and a surface hardening treatment method for performing surface hardening treatment, such as nitriding, nitrocarburizing, nitriding and quenching, on metal objects to be treated.
 鋼等の金属製の被処理品の表面硬化処理の中で、低ひずみ処理である窒化処理のニーズは多い。窒化処理の方法として、ガス法、塩浴法、プラズマ法等がある。 Among the surface hardening treatments for metal objects to be treated, such as steel, there are many needs for nitriding treatment, which is a low-strain treatment. Nitriding methods include a gas method, a salt bath method, a plasma method, and the like.
 これらの方法の中で、ガス法が、品質、環境性、量産性等を考慮した場合に、総合的に優れている。機械部品に対する焼入れを伴う浸炭や浸炭窒化処理または高周波焼入れによるひずみは、ガス法による窒化処理(ガス窒化処理)を用いることで改善される。浸炭を伴うガス法による軟窒化処理(ガス軟窒化処理)も、ガス窒化処理と同種の処理として知られている。 Among these methods, the gas method is comprehensively superior when considering quality, environmental friendliness, mass productivity, etc. Distortion caused by carburizing, carbonitriding, or induction hardening accompanied by quenching of mechanical parts can be improved by using gas nitriding (gas nitriding). Nitro-nitriding by gas method accompanied by carburizing (gas nitro-nitriding) is also known as a process similar to gas nitriding.
 ガス窒化処理は、被処理品に対して窒素のみを浸透拡散させて、表面を硬化させるプロセスである。ガス窒化処理では、アンモニアガス単独、アンモニアガスと窒素ガスとの混合ガス、アンモニアガスとアンモニア分解ガス(75%の水素と25%の窒素からなり、AXガスとも呼ばれる)、または、アンモニアガスとアンモニア分解ガスと窒素ガスとの混合ガス、を処理炉内へ導入して、表面硬化処理を行う。  Gas nitriding is a process in which only nitrogen penetrates and diffuses into the workpiece to harden the surface. In the gas nitriding process, ammonia gas alone, a mixed gas of ammonia gas and nitrogen gas, ammonia gas and ammonia decomposition gas (composed of 75% hydrogen and 25% nitrogen, also called AX gas), or ammonia gas and ammonia A mixed gas of decomposition gas and nitrogen gas is introduced into the processing furnace to perform surface hardening.
 ガス窒化処理及における雰囲気制御の基本は、炉内の窒化ポテンシャル(KN)を制御することにある。窒化ポテンシャル(KN)を制御することによって、鋼材表面に生成される化合物層中のγ’相(Fe4N)とε相(Fe2-3N)との体積分率を制御したり、当該化合物層が生成されない処理を実現したり等、幅広い窒化品質を得ることが可能である。例えば、特開2016―211069(特許文献1)によれば、γ’相の選択とその厚膜化によって、曲げ疲労強度や耐摩耗性が改善され、機械部品のさらなる高機能化が実現される。 The basis of atmosphere control in gas nitriding treatment is to control the nitriding potential (K N ) in the furnace. By controlling the nitriding potential (K N ), the volume fraction of the γ' phase (Fe 4 N) and the ε phase (Fe 2-3 N) in the compound layer generated on the surface of the steel material can be controlled, It is possible to obtain a wide range of nitridation quality, such as realizing a process that does not generate the compound layer. For example, according to Japanese Patent Application Laid-Open No. 2016-211069 (Patent Document 1), by selecting the γ' phase and increasing its thickness, the bending fatigue strength and wear resistance are improved, and further high functionality of mechanical parts is realized. .
 以上のようなガス窒化処理では、被処理品が内部に配置された処理炉内の雰囲気を管理するために、炉内水素濃度あるいは炉内アンモニア濃度を測定する炉内雰囲気ガス濃度測定センサが設置される。そして、当該炉内雰囲気ガス濃度測定センサの測定値から炉内窒化ポテンシャルが演算され、目標(設定)窒化ポテンシャルと比較されて、各導入ガスの流量制御が行われる(「熱処理」、55巻、1号、7~11頁(平岡泰、渡邊陽一)(非特許文献2))。各導入ガスの制御方法については、炉内導入ガスの流量比率を一定に保ちながら合計導入量を制御する方法が周知である(「鉄の窒化と軟窒化」、第2版(2013)、158~163頁(ディータリートケほか、アグネ技術センター)(非特許文献3))。 In the gas nitriding process as described above, in order to control the atmosphere in the processing furnace in which the workpiece is placed, a furnace atmosphere gas concentration measuring sensor is installed to measure the hydrogen concentration or the ammonia concentration in the furnace. be done. Then, the in-furnace nitriding potential is calculated from the measured value of the in-furnace atmosphere gas concentration measuring sensor, compared with the target (set) nitriding potential, and the flow rate of each introduced gas is controlled ("Heat Treatment", Vol. 55, No. 1, pp. 7-11 (Tai Hiraoka, Yoichi Watanabe) (Non-Patent Document 2)). As for the control method of each introduced gas, a method of controlling the total introduced amount while keeping the flow ratio of the gas introduced into the furnace constant is well known (“Nitriding and Nitrocarburizing of Iron”, 2nd edition (2013), 158 163 (Dieteritke et al., Agne Technical Center) (Non-Patent Document 3)).
 特許第5629436号(特許文献2)は、炉内導入ガスの流量比率を一定に保ちながら合計導入量を制御する制御態様を第一の制御とし、炉内導入ガスの流量比率が変化するように炉内導入ガスの導入量を個別に制御する制御態様を第二の制御として、両方を実行可能にした(同時には一方のみが選択的に行われる)装置を開示している。しかしながら、特許第5629436号(特許文献2)は、第一の制御が有効な窒化処理の具体例を1つ開示するのみで(特許第5629436号(特許文献2)の段落0096及び0099の記載:「NH3(アンモニアガス):N2(窒素ガス)=80:20を保持した状態で、アンモニアガス及び窒素ガスの処理炉内への合計導入量を制御することにより」窒化ポテンシャル3.3を精度良く制御)、どういう窒化処理の場合に第二の制御を採用することが有効であるのか何ら開示がなく、また、有効な第二の制御の具体例についても何ら開示がない。 In Japanese Patent No. 5629436 (Patent Document 2), the control mode of controlling the total introduction amount while keeping the flow rate ratio of the gas introduced into the furnace constant is the first control, and the flow rate ratio of the gas introduced into the furnace is changed. The second control is a control mode in which the introduction amount of the gas introduced into the furnace is individually controlled, and an apparatus is disclosed in which both can be performed (only one of them is selectively performed at the same time). However, Japanese Patent No. 5629436 (Patent Document 2) discloses only one specific example of nitriding treatment in which the first control is effective (described in paragraphs 0096 and 0099 of Japanese Patent No. 5629436 (Patent Document 2): "By controlling the total amount of ammonia gas and nitrogen gas introduced into the treatment furnace while maintaining NH 3 (ammonia gas):N 2 (nitrogen gas) = 80:20", the nitriding potential was set to 3.3. Accurate control), there is no disclosure as to what kind of nitriding treatment is effective in adopting the second control, nor is there any disclosure of a specific example of an effective second control.
 また、炉内導入ガスの流量比率を一定に保ちながら合計導入量を制御する方法では、ガスの総使用量の抑制が期待できるという利点がある一方で、窒化ポテンシャルの制御範囲が狭いことも分かっている。この問題に対処する方策として、本件発明者は、低窒化ポテンシャル側において広い窒化ポテンシャル制御範囲(例えば、580℃で約0.05~1.3)を実現するための制御方法を開発し、特許第6345320号(特許文献3)を取得している。特許第6345320号(特許文献3)の制御方法では、複数種類の炉内導入ガスの合計導入量を一定に保ちながら当該複数種類の炉内導入ガスの流量比率を変化させることによって、処理炉内の窒化ポテンシャルを目標窒化ポテンシャルに近づけるべく、当該複数種類の炉内導入ガスの導入量が個別に制御される。 In addition, the method of controlling the total amount of gas introduced into the furnace while keeping the flow ratio of the gas introduced into the furnace constant has the advantage that the total amount of gas used can be expected to be suppressed, but it was also found that the control range of the nitriding potential is narrow. ing. As a measure to deal with this problem, the present inventor developed a control method for realizing a wide nitriding potential control range (for example, about 0.05 to 1.3 at 580 ° C.) on the low nitriding potential side, and patented No. 6345320 (Patent Document 3) has been obtained. In the control method of Japanese Patent No. 6345320 (Patent Document 3), the flow rate ratio of the plurality of types of furnace introduction gases is changed while maintaining the total introduction amount of the plurality of types of furnace introduction gases constant. In order to bring the nitriding potential closer to the target nitriding potential, the introduction amounts of the plurality of types of furnace introduced gases are individually controlled.
(ガス窒化処理の基本的事項)
 ガス窒化処理の基本的事項について化学的に説明すれば、ガス窒化処理では、被処理品が配置される処理炉(ガス窒化炉)内において、以下の式(1)で表される窒化反応が発生する。
         NH3→[N]+3/2H2   ・・・(1)
(Basic Matters of Gas Nitriding)
Chemically explaining the basics of gas nitriding, in gas nitriding, a nitriding reaction represented by the following formula (1) takes place in a processing furnace (gas nitriding furnace) in which an object to be treated is placed. Occur.
NH3 →[N]+3/ 2H2 (1)
 このとき、窒化ポテンシャルKNは、以下の式(2)で定義される。
         KN=PNH3/PH2 3/2    ・・・(2)
ここで、PNH3は炉内アンモニア分圧であり、PH2は炉内水素分圧である。窒化ポテンシャルKNは、ガス窒化炉内の雰囲気が有する窒化能力を表す指標として周知である。
At this time, the nitriding potential K N is defined by the following equation (2).
KN = PNH3 / PH23 / 2 (2)
where P NH3 is the reactor ammonia partial pressure and PH2 is the reactor hydrogen partial pressure. The nitriding potential K N is well known as an index representing the nitriding ability of the atmosphere in the gas nitriding furnace.
 一方、ガス窒化処理中の炉内では、当該炉内へ導入されたアンモニアガスの一部が、式(3)の反応にしたがって水素ガスと窒素ガスとに熱分解する。
         NH3→1/2N2+3/2H2   ・・・(3)
On the other hand, in the furnace during the gas nitriding treatment, part of the ammonia gas introduced into the furnace is thermally decomposed into hydrogen gas and nitrogen gas according to the reaction of formula (3).
NH3 →1/2N2 + 3/ 2H2 (3)
 炉内では、主に式(3)の反応が生じており、式(1)の窒化反応は量的にはほとんど無視できる。したがって、式(3)の反応で消費された炉内アンモニア濃度または式(3)の反応で発生された水素ガス濃度が分かれば、窒化ポテンシャルを演算することができる。すなわち、発生される水素及び窒素は、アンモニア1モルから、それぞれ1.5モルと0.5モルであるから、炉内アンモニア濃度を測定すれば炉内水素濃度も分かり、窒化ポテンシャルを演算することができる。あるいは、炉内水素濃度を測定すれば、炉内アンモニア濃度が分かり、やはり窒化ポテンシャルを演算することができる。 Inside the furnace, the reaction of formula (3) mainly occurs, and the nitriding reaction of formula (1) can be almost ignored quantitatively. Therefore, if the concentration of in-furnace ammonia consumed in the reaction of formula (3) or the concentration of hydrogen gas generated in the reaction of formula (3) is known, the nitriding potential can be calculated. That is, since the hydrogen and nitrogen generated are 1.5 mol and 0.5 mol, respectively, from 1 mol of ammonia, the hydrogen concentration in the furnace can be obtained by measuring the ammonia concentration in the furnace, and the nitriding potential can be calculated. can be done. Alternatively, if the in-furnace hydrogen concentration is measured, the in-furnace ammonia concentration can be obtained, and the nitriding potential can also be calculated.
 なお、ガス窒化炉内に流されたアンモニアガスは、炉内を循環した後、炉外へ排出される。すなわち、ガス窒化処理では、炉内の既存ガスに対して、フレッシュ(新た)なアンモニアガスを炉内へ絶えず流入させることにより、当該既存ガスが炉外へ排出され続ける(供給圧で押し出される)。 The ammonia gas flowed into the gas nitriding furnace is discharged outside the furnace after circulating inside the furnace. That is, in the gas nitriding treatment, fresh (new) ammonia gas is constantly flowed into the furnace with respect to the existing gas in the furnace, so that the existing gas continues to be discharged out of the furnace (pushed out by the supply pressure). .
 ここで、炉内へ導入されるアンモニアガスの流量が少なければ、炉内でのガス滞留時間が長くなるため、分解されるアンモニアガスの量が増加して、当該分解反応によって発生される窒素ガス+水素ガスの量は増加する。一方、炉内へ導入されるアンモニアガスの流量が多ければ、分解されずに炉外へ排出されるアンモニアガスの量が増加して、炉内で発生される窒素ガス+水素ガスの量は減少する。 Here, if the flow rate of ammonia gas introduced into the furnace is small, the gas residence time in the furnace will be long, so the amount of ammonia gas to be decomposed will increase, and the nitrogen gas generated by the decomposition reaction will be + The amount of hydrogen gas increases. On the other hand, if the flow rate of ammonia gas introduced into the furnace is large, the amount of ammonia gas discharged outside the furnace without being decomposed increases, and the amount of nitrogen gas + hydrogen gas generated in the furnace decreases. do.
(流量制御の基本的事項)
 次に、流量制御の基本的事項について、まずは炉内導入ガスをアンモニアガスのみとする場合について説明する。炉内に導入されるアンモニアガスの分解度をs(0<s<1)とした場合、炉内におけるガス反応は、以下の式(4)で表される。
    NH3→(1-s)/(1+s)NH3+0.5s/(1+s)N2+1.5s/(1+s)H2  ・・・(4)
ここで、左辺は炉内導入ガス(アンモニアガスのみ)、右辺は炉内ガス組成であり、未分解のアンモニアガスと、アンモニアガスの分解によって1:3の比率で発生した窒素及び水素と、が存在する。したがって、炉内水素濃度を水素センサで測定する場合、右辺の1.5s/(1+s) が水素センサによる測定値に対応し、当該測定値から炉内に導入されたアンモニアガスの分解度sが演算できる。これにより、右辺の (1-s)/(1+s) に相当する炉内アンモニア濃度も演算できる。つまり、水素センサの測定値のみから炉内水素濃度と炉内アンモニア濃度とを知ることができる。このため、窒化ポテンシャルを演算できる。
(Basic matter of flow rate control)
Next, the basic matter of flow rate control will be described for the case where only ammonia gas is introduced into the furnace. When the degree of decomposition of the ammonia gas introduced into the furnace is s (0<s<1), the gas reaction within the furnace is expressed by the following equation (4).
NH3 →(1−s)/(1+s) NH3 +0.5s/(1+s) N2 +1.5s/( 1 +s)H2 (4)
Here, the left side is the gas introduced into the furnace (only ammonia gas), and the right side is the gas composition in the furnace. exist. Therefore, when measuring the hydrogen concentration in the furnace with a hydrogen sensor, 1.5s/(1+s) on the right side corresponds to the value measured by the hydrogen sensor, and the decomposition degree s can be calculated. As a result, the in-furnace ammonia concentration corresponding to (1-s)/(1+s) on the right side can also be calculated. That is, the in-furnace hydrogen concentration and the in-furnace ammonia concentration can be known only from the measured value of the hydrogen sensor. Therefore, the nitriding potential can be calculated.
 複数の炉内導入ガスを用いる場合でも、窒化ポテンシャルKNの制御が可能である。例えば、アンモニアと窒素との2種類のガスを炉内導入ガスとし、その導入比率をx:y (x、yは既知でx+y=1とする。例えば、x=0.5、y=1-0.5=0.5(NH3:N2=1:1))とした場合の炉内におけるガス反応は、以下の式(5)で表される。
 xNH3+(1-x)N2→x(1-s)/(1+sx)NH3+(0.5sx+1-x)/(1+sx)N2+1.5sx/(1+sx)H2  ・・・(5)
Even when using a plurality of gases introduced into the furnace, the nitriding potential K N can be controlled. For example, two types of gases, ammonia and nitrogen, are introduced into the furnace, and the introduction ratio is x: y (x and y are known and x + y = 1. For example, x = 0.5, y = 1- The gas reaction in the furnace when 0.5=0.5 (NH 3 :N 2 =1:1) is represented by the following equation (5).
xNH3 +(1-x) N2 →x(1-s)/(1+sx) NH3 +(0.5sx+1-x)/(1+sx) N2 +1.5sx/(1+sx) )H2 ( 5 )
 ここで、右辺の炉内ガス組成は、未分解のアンモニアガスと、アンモニアガスの分解によって1:3の比率で発生した窒素及び水素と、導入したままの左辺の窒素ガス(炉内で分解しない)と、である。このとき、xは既知なので(例えばx=0.5)、右辺の炉内水素濃度、つまり1.5sx/(1+sx) において、未知数はアンモニアの分解度sのみである。従って、式(4)の場合と同様に、水素センサの測定値から炉内へ導入されたアンモニアガスの分解度sが演算でき、これにより炉内アンモニア濃度も演算できる。このため、窒化ポテンシャルを演算できる。 Here, the gas composition in the furnace on the right side is composed of undecomposed ammonia gas, nitrogen and hydrogen generated at a ratio of 1:3 by decomposition of ammonia gas, and nitrogen gas on the left side as introduced (not decomposed in the furnace). ) and At this time, since x is known (for example, x=0.5), the only unknown is the degree of decomposition s of ammonia at the in-furnace hydrogen concentration on the right side, that is, 1.5sx/(1+sx). Therefore, as in the case of equation (4), the degree of decomposition s of the ammonia gas introduced into the furnace can be calculated from the measured value of the hydrogen sensor, and the in-furnace ammonia concentration can also be calculated from this. Therefore, the nitriding potential can be calculated.
 炉内導入ガスの流量比率を固定しない場合には、炉内水素濃度と炉内アンモニア濃度とは、炉内に導入されたアンモニアガスの分解度sとアンモニアガスの導入比率xの2つを変数として含む。一般的に、ガス流量を制御する機器としてはマスフローコントローラ(MFC)が用いられるため、その流量値に基づいて、アンモニアガスの導入比率xはデジタル信号として連続的に読み取ることができる。従って、式(5)に基づいて、当該導入比率xと水素センサの測定値とを組み合わせることで、窒化ポテンシャルを演算できる。 When the flow ratio of the gas introduced into the furnace is not fixed, the hydrogen concentration in the furnace and the ammonia concentration in the furnace are determined by using two variables: the degree of decomposition s of the ammonia gas introduced into the furnace and the introduction ratio x of the ammonia gas. Including as Since a mass flow controller (MFC) is generally used as a device for controlling the gas flow rate, the ammonia gas introduction ratio x can be continuously read as a digital signal based on the flow rate value. Therefore, the nitriding potential can be calculated by combining the introduction ratio x and the measured value of the hydrogen sensor based on the equation (5).
特開2016―211069JP 2016-211069 特許第5629436号Patent No. 5629436 特許第6345320号Patent No. 6345320
 本件発明者は、アンモニアガスとアンモニア分解ガスと窒素ガスとを含む複数種類の炉内導入ガスを処理炉内へ導入するガス窒化処理の場合について鋭意検討を重ね、処理炉内の窒化ポテンシャルを目標窒化ポテンシャルに近づける制御の際において、アンモニア分解ガスの導入量を一定に保ちながら前記複数種類の炉内導入ガスのうち前記アンモニア分解ガス以外の各炉内導入ガスの導入量を変化させることによって、実用に足る窒化ポテンシャル制御を実現できることを知見した。 The inventors of the present invention have extensively studied the case of gas nitriding treatment in which a plurality of types of furnace-introduced gases including ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the treatment furnace, and aimed at the nitriding potential in the treatment furnace. During control to approach the nitriding potential, by changing the introduction amount of each of the plurality of types of furnace introduction gases other than the ammonia decomposition gas while maintaining the introduction amount of the ammonia decomposition gas constant, It was found that nitriding potential control sufficient for practical use can be realized.
 また、本件発明者は、アンモニアガスとアンモニア分解ガスと窒素ガスとを含む複数種類の炉内導入ガスを処理炉内へ導入するガス窒化処理の場合について鋭意検討を重ね、処理炉内の窒化ポテンシャルを目標窒化ポテンシャルに近づける制御の際において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス及び窒素ガスの導入量を変化させることによって、実用に足る窒化ポテンシャル制御を実現できることを知見した。 In addition, the inventor of the present invention has extensively studied the case of gas nitriding treatment in which a plurality of types of furnace-introduced gases including ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the treatment furnace, and found that the nitriding potential in the treatment furnace When controlling to approach the target nitriding potential, it was found that practically sufficient nitriding potential control can be realized by changing the introduction amount of ammonia gas and nitrogen gas while keeping the introduction amount of ammonia decomposition gas constant.
 本発明は、以上の知見に基づいて創案されたものである。本発明の目的は、アンモニアガスとアンモニア分解ガスと窒素ガスとを含む複数種類の炉内導入ガスを処理炉内へ導入するガス窒化処理において、実用に足る窒化ポテンシャル制御を実現できる表面硬化処装置及び表面硬化処理方法を提供することである。 The present invention was invented based on the above findings. An object of the present invention is to provide a surface hardening treatment apparatus capable of realizing practical nitriding potential control in a gas nitriding treatment in which a plurality of types of furnace-introduced gases including ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the treatment furnace. and to provide a surface hardening treatment method.
 本発明は、アンモニアガスとアンモニア分解ガスと窒素ガスとを含む複数種類の炉内導入ガスを処理炉内へ導入して、前記処理炉内に配置される被処理品の表面硬化処理としてガス窒化処理を行う表面硬化処理装置であって、前記処理炉内の水素濃度またはアンモニア濃度を検出する炉内雰囲気ガス濃度検出装置と、前記炉内雰囲気ガス濃度検出装置によって検出される水素濃度またはアンモニア濃度に基づいて前記処理炉内の窒化ポテンシャルを演算する炉内窒化ポテンシャル演算装置と、前記炉内窒化ポテンシャル演算装置によって演算される前記処理炉内の窒化ポテンシャルと目標窒化ポテンシャルとに応じて、前記アンモニア分解ガスの導入量を一定に保ちながら前記複数種類の炉内導入ガスのうち前記アンモニア分解ガス以外の各炉内導入ガスの導入量を変化させることによって前記処理炉内の窒化ポテンシャルを前記目標窒化ポテンシャルに近づけるガス導入量制御装置と、
を備えたことを特徴とする表面硬化処理装置である。
The present invention introduces a plurality of types of furnace-introduced gases including ammonia gas, ammonia decomposition gas, and nitrogen gas into a processing furnace, and performs gas nitriding as surface hardening treatment of an article to be processed placed in the processing furnace. A surface hardening apparatus for performing treatment, comprising: an in-furnace atmosphere gas concentration detection device for detecting a hydrogen concentration or an ammonia concentration in the treatment furnace; and a hydrogen concentration or ammonia concentration detected by the in-furnace atmosphere gas concentration detection device. and an in-furnace nitriding potential calculation device for calculating the nitriding potential in the processing furnace based on the nitriding potential in the processing furnace calculated by the in-furnace nitriding potential calculation device and the target nitriding potential, the ammonia The nitriding potential in the treatment furnace is set to the target nitriding potential by changing the introduction amount of each of the plurality of kinds of gases introduced into the furnace, other than the ammonia decomposition gas, while maintaining the introduction amount of the decomposition gas constant. A gas introduction amount control device that brings the gas introduction amount closer to the potential,
A surface hardening apparatus characterized by comprising:
 本発明によれば、アンモニア分解ガスの導入量を一定に保ちながら複数種類の炉内導入ガスのうちアンモニア分解ガス以外の各炉内導入ガスの導入量を変化させることによって、比較的広い窒化ポテンシャル制御(特に、比較的低い窒化ポテンシャル制御)を実現できることが確認された。 According to the present invention, a relatively wide nitriding potential is obtained by changing the introduction amount of each furnace introduction gas other than the ammonia decomposition gas among a plurality of types of furnace introduction gases while keeping the introduction amount of the ammonia decomposition gas constant. It was confirmed that control (especially relatively low nitriding potential control) could be achieved.
 一定に維持されるアンモニア分解ガスの導入量は、操業前に予備実験を行って事前決定されることが望ましい。これは、実際には、アンモニアガスの熱分解度は使用する炉の炉内環境等にも影響されるためである。 It is desirable that the amount of ammonia decomposition gas to be introduced to be maintained constant is determined in advance by conducting a preliminary experiment before operation. This is because the degree of thermal decomposition of ammonia gas is actually affected by the environment inside the furnace used.
 また、前記ガス導入量制御装置は、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数とした時、前記複数種類の炉内導入ガスのうちアンモニアガス及びアンモニア分解ガス以外の各炉内導入ガスの導入量C1、・・・、CN(Nは1以上の整数)を、当該各炉内導入ガスに割り当てた比例係数c1、・・・、cNを用いて、
 C1=c1×(A+x×B)、・・・、CN=cN×(A+x×B)
となるように制御することが好ましい。
Further, the gas introduction amount control device sets the amount of ammonia gas introduced into the furnace as A, the amount of ammonia decomposition gas introduced into the furnace as B, and x as a predetermined constant. , CN (N is an integer equal to or greater than 1) of each of the gases introduced into the furnace other than the ammonia gas and the ammonia cracked gas is assigned to each of the gases introduced into the furnace. , using cN,
C1=c1×(A+x×B), CN=cN×(A+x×B)
It is preferable to control so as to be
 本件発明者による実際の実験により、このような制御条件が採用される場合に、比較的広い窒化ポテンシャルの制御(特に、比較的低い窒化ポテンシャルの制御)を実現できることが確認された。 An actual experiment by the inventor of the present invention confirmed that control of a relatively wide nitriding potential (in particular, control of a relatively low nitriding potential) can be realized when such control conditions are adopted.
 xの値は、例えば0.5である。これは、1モルのアンモニアガスが熱分解して炉内で発生する水素の量が1.5モルであるのに対し、1モルのアンモニア分解ガスが炉内に供給する水素の量が0.75モル(3/4モル)であるから、1.5:0.75=1:0.5なる比を用いて、水素の量に関してアンモニア分解ガスの炉内導入量Bをアンモニアガスの炉内導入量Aに換算する係数であると説明できる。 The value of x is, for example, 0.5. This is because the amount of hydrogen generated in the furnace by thermal decomposition of 1 mol of ammonia gas is 1.5 mol, whereas the amount of hydrogen supplied into the furnace by 1 mol of ammonia decomposition gas is 0.5 mol. Since it is 75 mol (3/4 mol), the ratio of 1.5:0.75 = 1:0.5 is used to divide the amount of ammonia cracking gas introduced into the furnace with respect to the amount of hydrogen into the furnace of ammonia gas. It can be explained that it is a coefficient for conversion to the introduction amount A.
 もっとも、xの値は、厳密に0.5でなくてもよく、概ね0.4~0.6の範囲内であれば、実用に足る窒化ポテンシャル制御を実現できる。 However, the value of x does not have to be strictly 0.5, and practically sufficient nitriding potential control can be realized as long as it is in the range of approximately 0.4 to 0.6.
 また、本発明は、表面硬化処理方法として認識することも可能である。すなわち、本発明は、アンモニアガスとアンモニア分解ガスと窒素ガスとを含む複数種類の炉内導入ガスを処理炉内へ導入して、前記処理炉内に配置される被処理品の表面硬化処理としてガス窒化処理を行う表面硬化処理方法であって、前記処理炉内の水素濃度またはアンモニア濃度を検出する炉内雰囲気ガス濃度検出工程と、前記炉内雰囲気ガス濃度検出工程によって検出される水素濃度またはアンモニア濃度に基づいて前記処理炉内の窒化ポテンシャルを演算する炉内窒化ポテンシャル演算工程と、前記炉内窒化ポテンシャル演算工程によって演算される前記処理炉内の窒化ポテンシャルと目標窒化ポテンシャルとに応じて、前記アンモニア分解ガスの導入量を一定に保ちながら前記複数種類の炉内導入ガスのうち前記アンモニア分解ガス以外の各炉内導入ガスの導入量を変化させることによって前記処理炉内の窒化ポテンシャルを前記目標窒化ポテンシャルに近づけるガス導入量制御工程と、を備えたことを特徴とする表面硬化処理方法である。 The present invention can also be recognized as a surface hardening treatment method. That is, the present invention introduces a plurality of types of furnace-introduced gases including ammonia gas, ammonia decomposition gas, and nitrogen gas into a treatment furnace, and performs surface hardening treatment on an article to be treated placed in the treatment furnace. A surface hardening method for performing gas nitriding, comprising: a furnace atmosphere gas concentration detecting step of detecting a hydrogen concentration or an ammonia concentration in the treatment furnace; and a hydrogen concentration or hydrogen concentration detected by the furnace atmosphere gas concentration detecting step. According to the in-furnace nitriding potential calculation step of calculating the nitridation potential in the treatment furnace based on the ammonia concentration, and the nitridation potential in the treatment furnace and the target nitridation potential calculated by the in-furnace nitridation potential calculation step, The nitriding potential in the treatment furnace is changed by changing the introduction amount of each of the plurality of types of furnace introduction gases other than the ammonia decomposition gas while maintaining the introduction amount of the ammonia decomposition gas constant. and a step of controlling the amount of introduced gas to bring the potential closer to a target nitriding potential.
 また、本発明は、アンモニアガスとアンモニア分解ガスと窒素ガスとを含む複数種類の炉内導入ガスを処理炉内へ導入して、前記処理炉内に配置される被処理品の表面硬化処理としてガス窒化処理を行う表面硬化処理装置であって、前記処理炉内の水素濃度またはアンモニア濃度を検出する炉内雰囲気ガス濃度検出装置と、前記炉内雰囲気ガス濃度検出装置によって検出される水素濃度またはアンモニア濃度に基づいて前記処理炉内の窒化ポテンシャルを演算する炉内窒化ポテンシャル演算装置と、前記炉内窒化ポテンシャル演算装置によって演算される前記処理炉内の窒化ポテンシャルと目標窒化ポテンシャルとに応じて、前記アンモニア分解ガスの導入量を一定に保ちながら前記アンモニアガス及び前記窒素ガスの導入量を変化させることによって前記処理炉内の窒化ポテンシャルを前記目標窒化ポテンシャルに近づけるガス導入量制御装置と、を備えたことを特徴とする表面硬化処理装置である。 Further, according to the present invention, a plurality of types of furnace-introduced gases including ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the processing furnace, and the surface hardening treatment of the article to be processed placed in the processing furnace is performed. A surface hardening apparatus for performing gas nitriding, comprising: a furnace atmosphere gas concentration detection device for detecting a hydrogen concentration or an ammonia concentration in the processing furnace; and a hydrogen concentration or hydrogen concentration detected by the furnace atmosphere gas concentration detection device. According to an in-furnace nitriding potential calculation device for calculating the nitriding potential in the processing furnace based on the ammonia concentration, and the nitriding potential in the processing furnace calculated by the in-furnace nitriding potential calculation device and the target nitriding potential, a gas introduction amount control device that brings the nitriding potential in the processing furnace closer to the target nitriding potential by changing the introduction amounts of the ammonia gas and the nitrogen gas while keeping the introduction amount of the ammonia decomposition gas constant. The surface hardening apparatus is characterized by:
 これは、アンモニア分解ガスの導入量を一定に保ちながら、アンモニアガス及び窒素ガスの導入量を変化させることのみを特徴とし、その他のガスの導入量制御については不問とするものである。これによれば、反応に実質的に関与しない程度の微量なガス(流量比で1%程度以下)を一定量導入する態様を、権利範囲内に明確に含めることができる。例えば、本発明において微量に導入される他のアルゴンガスを一定量導入する態様でも、比較的広い窒化ポテンシャル制御(特に、比較的低い窒化ポテンシャル制御)を実現できる。更には、軟窒化処理とは呼べない程度に微量に導入される浸炭性ガス(COやCO2等)を一定量導入する態様でも、比較的広い窒化ポテンシャル制御(特に、比較的低い窒化ポテンシャル制御)を実現できる。 This is characterized only by changing the introduction amounts of ammonia gas and nitrogen gas while keeping the introduction amount of ammonia decomposition gas constant, and does not care about the introduction amount control of other gases. According to this, it is possible to clearly include within the scope of right the aspect of introducing a certain amount of a very small amount of gas (approximately 1% or less in terms of flow rate) that does not substantially participate in the reaction. For example, relatively wide nitriding potential control (particularly, relatively low nitriding potential control) can be realized even in the mode of introducing a constant amount of other argon gas which is introduced in a small amount in the present invention. Furthermore, even in the mode of introducing a certain amount of carburizing gas (CO, CO 2 , etc.) that is introduced in such a small amount that it cannot be called nitrocarburizing, relatively wide nitriding potential control (especially, relatively low nitriding potential control) ) can be realized.
 この場合、前記ガス導入量制御装置は、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数とした時、前記窒素ガスの導入量C1を、当該窒素ガスに割り当てた比例係数c1を用いて、
 C1=c1×(A+x×B)
となるように制御することが好ましい。
In this case, when the amount of ammonia gas introduced into the furnace is A, the amount of ammonia decomposition gas introduced into the furnace is B, and x is a predetermined constant, the amount of nitrogen gas introduced is C1 using the proportionality coefficient c1 assigned to the nitrogen gas,
C1=c1×(A+x×B)
It is preferable to control so as to be
 また、本発明も、表面硬化処理方法として認識することも可能である。すなわち、本発明は、アンモニアガスとアンモニア分解ガスと窒素ガスとを含む複数種類の炉内導入ガスを処理炉内へ導入して、前記処理炉内に配置される被処理品の表面硬化処理としてガス窒化処理を行う表面硬化処理方法であって、前記処理炉内の水素濃度またはアンモニア濃度を検出する炉内雰囲気ガス濃度検出工程と、前記炉内雰囲気ガス濃度検出装置によって検出される水素濃度またはアンモニア濃度に基づいて前記処理炉内の窒化ポテンシャルを演算する炉内窒化ポテンシャル演算工程と、前記炉内窒化ポテンシャル演算装置によって演算される前記処理炉内の窒化ポテンシャルと目標窒化ポテンシャルとに応じて、前記アンモニア分解ガスの導入量を一定に保ちながら前記アンモニアガス及び前記窒素ガスの導入量を変化させることによって前記処理炉内の窒化ポテンシャルを前記目標窒化ポテンシャルに近づけるガス導入量制御工程と、を備えたことを特徴とする表面硬化処理方法である。 The present invention can also be recognized as a surface hardening treatment method. That is, the present invention introduces a plurality of types of furnace-introduced gases including ammonia gas, ammonia decomposition gas, and nitrogen gas into a treatment furnace, and performs surface hardening treatment on an article to be treated placed in the treatment furnace. A surface hardening treatment method for performing gas nitriding, comprising: a furnace atmosphere gas concentration detecting step of detecting hydrogen concentration or ammonia concentration in the treatment furnace; and hydrogen concentration or hydrogen concentration detected by the furnace atmosphere gas concentration detection device. In accordance with an in-furnace nitriding potential calculation step of calculating the nitriding potential in the processing furnace based on the ammonia concentration, and the nitriding potential in the processing furnace and the target nitriding potential calculated by the in-furnace nitriding potential calculation device, and a gas introduction amount control step of bringing the nitriding potential in the processing furnace closer to the target nitriding potential by changing the introduction amounts of the ammonia gas and the nitrogen gas while keeping the introduction amount of the ammonia decomposition gas constant. The surface hardening treatment method is characterized by:
 本発明の一つの態様によれば、アンモニア分解ガスの導入量を一定に保ちながら複数種類の炉内導入ガスのうちアンモニア分解ガス以外の各炉内導入ガスの導入量を変化させることによって、比較的広い窒化ポテンシャル制御(特に、比較的低い窒化ポテンシャル制御)を実現できることが確認された。 According to one aspect of the present invention, by changing the introduction amount of each furnace introduction gas other than the ammonia decomposition gas among a plurality of types of furnace introduction gases while keeping the introduction amount of the ammonia decomposition gas constant, the comparison can be performed. It was confirmed that a wide range of nitriding potential control (especially relatively low nitriding potential control) can be realized.
 あるいは、本発明のもう一つの態様によれば、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス及び窒素ガスの導入量を変化させることによって、比較的広い窒化ポテンシャル制御(特に、比較的低い窒化ポテンシャル制御)を実現できることが確認された。 Alternatively, according to another aspect of the present invention, relatively wide nitriding potential control (in particular, relatively low It was confirmed that nitriding potential control) can be realized.
本発明の一実施形態による表面硬化処理装置を示す概略図である。1 is a schematic diagram showing a surface hardening apparatus according to an embodiment of the present invention; FIG. 実施例1-2の炉内導入ガス制御を示すグラフである。4 is a graph showing the control of gas introduced into the furnace in Example 1-2. 実施例1-2の窒化ポテンシャル制御を示すグラフである。4 is a graph showing nitriding potential control in Example 1-2. 実施例1-1~実施例1-3と各比較例とを対比する表である。1 is a table comparing Examples 1-1 to 1-3 with respective comparative examples. 実施例2-2の炉内導入ガス制御を示すグラフである。10 is a graph showing the control of gas introduced into the furnace in Example 2-2. 実施例2-2の窒化ポテンシャル制御を示すグラフである。10 is a graph showing nitriding potential control in Example 2-2. 実施例2-1~実施例2-3と各比較例とを対比する表である。FIG. 10 is a table comparing Examples 2-1 to 2-3 with each comparative example; FIG. 実施例3-2の炉内導入ガス制御を示すグラフである。10 is a graph showing the control of gas introduced into the furnace in Example 3-2. 実施例3-2の窒化ポテンシャル制御を示すグラフである。10 is a graph showing nitriding potential control in Example 3-2. 実施例3-1~実施例3-3と各比較例とを対比する表である。3 is a table comparing Examples 3-1 to 3-3 with respective comparative examples.
 以下、本発明の好ましい実施形態について説明するが、本発明は以下の実施形態に限定されるものではない。 Preferred embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments.
(構成)
 図1は、本発明の一実施形態による表面硬化処理装置を示す概略図である。図1に示すように、本実施形態の表面硬化処理装置1は、アンモニアガスとアンモニア分解ガスと窒素ガスとを処理炉2内へ導入して、処理炉2内に配置される被処理品Sの表面硬化処理としてガス窒化処理を行う表面硬化処理装置である。
(Constitution)
FIG. 1 is a schematic diagram showing a surface hardening apparatus according to one embodiment of the present invention. As shown in FIG. 1, the surface hardening treatment apparatus 1 of the present embodiment introduces ammonia gas, ammonia decomposition gas, and nitrogen gas into the treatment furnace 2, and treats an article S to be treated placed in the treatment furnace 2. It is a surface hardening apparatus that performs gas nitriding as the surface hardening treatment.
 アンモニア分解ガスとは、AXガスとも呼ばれるガスで、1:3の比率の窒素と水素とからなる混合ガスである。被処理品Sは、金属製であって、例えば鋼部品や金型等が想定される。 Ammonia decomposition gas is also called AX gas, and is a mixed gas consisting of nitrogen and hydrogen at a ratio of 1:3. The article S to be processed is made of metal, and is assumed to be, for example, a steel part or a mold.
 図1に示すように、本実施形態の表面硬化処理装置1の処理炉2には、攪拌ファン8と、攪拌ファン駆動モータ9と、炉内温度計測装置10と、炉体加熱装置11と、雰囲気ガス濃度検出装置3と、窒化ポテンシャル調節計4と、温度調節計5と、プログラマブルロジックコントローラ31と、記録計6と、炉内導入ガス供給部20と、が設けられている。 As shown in FIG. 1, the processing furnace 2 of the surface hardening apparatus 1 of the present embodiment includes a stirring fan 8, a stirring fan drive motor 9, a furnace temperature measuring device 10, a furnace body heating device 11, An atmospheric gas concentration detector 3, a nitriding potential controller 4, a temperature controller 5, a programmable logic controller 31, a recorder 6, and an in-furnace introduction gas supply unit 20 are provided.
 攪拌ファン8は、処理炉2内に配置されており、処理炉2内で回転して、処理炉2内の雰囲気を攪拌するようになっている。攪拌ファン駆動モータ9は、攪拌ファン8に連結されており、攪拌ファン8を任意の回転速度で回転させるようになっている。 The stirring fan 8 is arranged inside the processing furnace 2 and rotates inside the processing furnace 2 to stir the atmosphere inside the processing furnace 2 . The stirring fan drive motor 9 is connected to the stirring fan 8 and rotates the stirring fan 8 at an arbitrary rotational speed.
 炉内温度計測装置10は、熱電対を備えており、処理炉2内に存在している炉内ガスの温度を計測するように構成されている。また、炉内温度計測装置10は、炉内ガスの温度を計測した後、当該計測温度を含む情報信号(炉内温度信号)を温度調節計5及び記録計6へ出力するようになっている。 The in-furnace temperature measuring device 10 has a thermocouple and is configured to measure the temperature of the in-furnace gas present in the processing furnace 2 . After measuring the temperature of the furnace gas, the furnace temperature measuring device 10 outputs an information signal (furnace temperature signal) including the measured temperature to the temperature controller 5 and the recorder 6. .
 雰囲気ガス濃度検出装置3は、処理炉2内の水素濃度またはアンモニア濃度を炉内雰囲気ガス濃度として検出可能なセンサにより構成されている。当該センサの検出本体部は、雰囲気ガス配管12を介して処理炉2の内部と連通している。雰囲気ガス配管12は、本実施形態においては、雰囲気ガス濃度検出装置3のセンサ本体部と処理炉2とを直接連通させる単線の経路で形成されている。雰囲気ガス配管12の途中には、開閉弁17が設けられており、当該開閉弁は開閉弁制御装置16によって制御されるようになっている。 The atmospheric gas concentration detection device 3 is composed of a sensor capable of detecting the hydrogen concentration or ammonia concentration in the processing furnace 2 as the furnace atmospheric gas concentration. A detection main body of the sensor communicates with the interior of the processing furnace 2 through an atmospheric gas pipe 12 . In the present embodiment, the atmospheric gas pipe 12 is formed as a single line path that directly communicates the sensor body of the atmospheric gas concentration detection device 3 and the processing furnace 2 . An on-off valve 17 is provided in the middle of the atmosphere gas pipe 12 , and the on-off valve is controlled by an on-off valve control device 16 .
 また、雰囲気ガス濃度検出装置3は、炉内雰囲気ガス濃度を検出した後、当該検出濃度を含む情報信号を、窒化ポテンシャル調節計4及び記録計6へ出力するようになっている。 After detecting the concentration of the atmosphere gas in the furnace, the atmospheric gas concentration detection device 3 outputs an information signal including the detected concentration to the nitriding potential controller 4 and the recorder 6 .
 記録計6は、CPUやメモリ等の記憶媒体を含んでおり、炉内温度計測装置10や雰囲気ガス濃度検出装置3からの出力信号に基いて、処理炉2内の温度や炉内雰囲気ガス濃度を、例えば表面硬化処理を行った日時と対応させて、記憶するようになっている。 The recorder 6 includes a storage medium such as a CPU and a memory, and measures the temperature in the processing furnace 2 and the concentration of the atmospheric gas in the furnace based on the output signals from the furnace temperature measuring device 10 and the atmospheric gas concentration detecting device 3. are stored in correspondence with the date and time when the surface hardening treatment was performed, for example.
 窒化ポテンシャル調節計4は、炉内窒化ポテンシャル演算装置13と、ガス流量出力調整装置30と、を有している。また、プログラマブルロジックコントローラ31は、ガス導入制御装置14と、パラメータ設定装置15と、を有している。 The nitriding potential controller 4 has an in-furnace nitriding potential computing device 13 and a gas flow rate output adjusting device 30 . The programmable logic controller 31 also has a gas introduction control device 14 and a parameter setting device 15 .
 炉内窒化ポテンシャル演算装置13は、炉内雰囲気ガス濃度検出装置3によって検出される水素濃度またはアンモニア濃度に基づいて、処理炉2内の窒化ポテンシャルを演算するようになっている。具体的には、実際の炉内導入ガスに応じて式(5)と同様の考え方に基づいてプログラムされた窒化ポテンシャルの演算式が組み込まれており、炉内雰囲気ガス濃度の値から窒化ポテンシャルを演算するようになっている。 The in-furnace nitriding potential computing device 13 computes the nitriding potential in the processing furnace 2 based on the hydrogen concentration or the ammonia concentration detected by the in-furnace atmospheric gas concentration detecting device 3 . Specifically, a calculation formula for the nitriding potential programmed based on the same idea as formula (5) is incorporated according to the actual gas introduced into the furnace, and the nitriding potential is calculated from the value of the gas concentration in the furnace atmosphere. It is designed to be calculated.
 本実施形態では、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数とした時、アンモニアガス及びアンモニア分解ガス以外の炉内導入ガスである窒素ガスの導入量C1を、当該炉内導入ガスに割り当てた比例係数c1を用いて、
 C1=c1×(A+x×B)
となるように制御するようになっている。
In the present embodiment, when the amount of ammonia gas introduced into the furnace is A, the amount of ammonia decomposition gas introduced into the furnace is B, and x is a predetermined constant, the furnace introduction gas other than ammonia gas and ammonia decomposition gas is Using a proportionality coefficient c1 assigned to the introduction amount C1 of a certain nitrogen gas to the gas introduced into the furnace,
C1=c1×(A+x×B)
is controlled so as to be
 そして、パラメータ設定装置15は、例えばタッチパネルからなり、同一の被処理品に対して、目標窒化ポテンシャル、処理温度、処理時間、アンモニア分解ガスの導入量、所定の定数x、比例係数c1、などを設定入力できるようになっている。また、目標窒化ポテンシャルの異なる値毎にPID制御の設定パラメータ値を設定入力することもできるようになっている。具体的には、PID制御の「比例ゲイン」と「積分ゲインまたは積分時間」と「微分ゲインまたは微分時間」とを目標窒化ポテンシャルの異なる値毎に設定入力できるようになっている。設定入力された各設定パラメータ値は、ガス流量出力調整手段30へ伝送されるようになっている。 The parameter setting device 15 comprises, for example, a touch panel, and sets target nitriding potential, treatment temperature, treatment time, introduction amount of ammonia decomposition gas, predetermined constant x, proportionality coefficient c1, etc. for the same object to be treated. Settings can be entered. In addition, it is also possible to set and input setting parameter values for PID control for each different value of the target nitriding potential. Specifically, the "proportional gain", "integral gain or integral time", and "differential gain or derivative time" of PID control can be set and input for each different value of the target nitriding potential. Each setting parameter value that has been set and input is transmitted to the gas flow rate output adjusting means 30 .
 そして、ガス流量出力調整手段30が、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、3種類の炉内導入ガスのうちアンモニアガス及び窒素ガスの各々の導入量を入力値としたPID制御を実施するようになっている。より具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス及び窒素ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づけられる。また、当該PID制御において、パラメータ設定装置15から伝送された各設定パラメータ値が用いられるようになっている。 Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculation device 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and selects three types of in-furnace introduced gases. Of these, PID control is performed using the introduction amounts of each of ammonia gas and nitrogen gas as input values. More specifically, in the PID control, the nitriding potential in the processing furnace 2 is brought closer to the target nitriding potential by changing the introduction amounts of the ammonia gas and the nitrogen gas while keeping the introduction amount of the ammonia decomposition gas constant. . In addition, each setting parameter value transmitted from the parameter setting device 15 is used in the PID control.
 パラメータ設定装置15に対する設定入力作業のためのPID制御の設定パラメータ値の候補は、パイロット処理を実施して予め入手しておくことが好ましい。本実施形態では、(1)処理炉の状態(炉壁や治具の状態)、(2)処理炉の温度条件及び(3)被処理品の状態(タイプ及び個数)が同一であっても、(4)目標窒化ポテンシャルの異なる値毎に、設定パラメータ値の候補を窒化ポテンシャル調節計4自体のオートチューニング機能によって取得しておくことができる。オートチューニング機能を有する窒化ポテンシャル調節計4を構成するためには、横河電気株式会社製のUT75A(高機能形デジタル指示調整計、http://www.yokogawa.co.jp/ns/cis/utup/utadvanced/ns-ut75a-01-ja.htm)等が利用可能である。 Candidates for PID control setting parameter values for inputting settings to the parameter setting device 15 are preferably obtained in advance by performing a pilot process. In this embodiment, even if (1) the state of the processing furnace (the state of the furnace walls and jigs), (2) the temperature conditions of the processing furnace, and (3) the state of the workpiece (type and number) are the same, (4) Candidates for setting parameter values can be obtained for different values of the target nitriding potential by the auto-tuning function of the nitriding potential controller 4 itself. In order to configure the nitriding potential controller 4 having an auto-tuning function, UT75A (high-performance digital indicator controller manufactured by Yokogawa Electric Co., Ltd., http://www.yokogawa.co.jp/ns/cis/ utup/utadvanced/ns-ut75a-01-ja.htm) etc. are available.
 候補として取得された設定パラメータ値(「比例ゲイン」と「積分ゲインまたは積分時間」と「微分ゲインまたは微分時間」の組)は、何らかの形態で記録されて、目的の処理内容に応じてパラメータ設定装置15に手入力され得る。もっとも、候補として取得された設定パラメータ値が目標窒化ポテンシャルと紐付けされた態様で何らかの記憶装置に記憶されて、設定入力された目標窒化ポテンシャルの値に基づいてパラメータ設定装置15によって自動的に読み出されるようになっていてもよい。 Setting parameter values obtained as candidates (sets of "proportional gain", "integral gain or integral time", and "derivative gain or derivative time") are recorded in some form, and parameter settings are performed according to the desired processing content. It can be manually entered into device 15 . However, the setting parameter values acquired as candidates are stored in some storage device in a form linked with the target nitriding potential, and are automatically read by the parameter setting device 15 based on the input target nitriding potential value. It may be possible to
 ガス流量出力調整手段30は、PID制御に先立って、目標窒化ポテンシャルの値に基づいて、一定に維持されるアンモニア分解ガスの導入量と変動されるアンモニアガス及び窒素ガスの導入量の初期値とを決定するようになっている。これらの値の候補は、パイロット処理を実施して予め入手しておくことが好ましく、パラメータ設定装置15によって記憶装置等から自動的に読み出されるか、あるいは、パラメータ設定装置15から手動で入力される。その後、PID制御に従って、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくように、且つ、前述したC1=c1×(A+x×B)なる関係が維持されるように、アンモニアガス及び窒素ガスの導入量(変動する)を決定するようになっている(アンモニア分解ガスの導入量は一定に維持される)。ガス流量出力調整手段30の出力値は、ガス導入量制御手段14へ伝達されるようになっている。 Prior to PID control, the gas flow rate output adjusting means 30 adjusts the initial values of the introduced amount of ammonia cracking gas to be maintained constant and the introduced amounts of ammonia gas and nitrogen gas to be varied based on the value of the target nitriding potential. is designed to determine These value candidates are preferably obtained in advance by performing a pilot process, and are automatically read out from a storage device or the like by the parameter setting device 15, or manually input from the parameter setting device 15. . After that, according to PID control, ammonia gas and nitrogen gas are mixed so that the nitriding potential in the processing furnace 2 approaches the target nitriding potential and the above-mentioned relationship of C1=c1×(A+xxB) is maintained. It is designed to determine the (varying) amount introduced (the amount of ammonia cracking gas introduced is kept constant). The output value of the gas flow rate output adjustment means 30 is transmitted to the gas introduction amount control means 14 .
 ガス導入量制御手段14は、アンモニアガス用の第1供給量制御装置22に制御信号を送るようになっている。 The gas introduction amount control means 14 sends a control signal to the first supply amount control device 22 for ammonia gas.
 本実施形態の炉内導入ガス供給部20は、アンモニアガス用の第1炉内導入ガス供給部21と、第1供給量制御装置22と、第1供給弁23と、第1流量計24と、を有している。また、本実施形態の炉内導入ガス供給部20は、アンモニア分解ガス(AXガス)用の第2炉内導入ガス供給部25と、第2供給量制御装置26と、第2供給弁27と、第2流量計28と、を有している。更に、本実施形態の炉内導入ガス供給部20は、窒素ガス用の第3炉内導入ガス供給部71と、第3供給量制御装置72と、第3供給弁73と、第3流量計74と、を有している。 The in-furnace introduction gas supply unit 20 of the present embodiment includes a first in-furnace introduction gas supply unit 21 for ammonia gas, a first supply amount control device 22, a first supply valve 23, and a first flow meter 24. ,have. Further, the in-furnace introduced gas supply unit 20 of the present embodiment includes a second in-furnace introduced gas supply unit 25 for ammonia decomposition gas (AX gas), a second supply amount control device 26, and a second supply valve 27. , and a second flow meter 28 . Further, the in-furnace introduced gas supply unit 20 of the present embodiment includes a third in-furnace introduced gas supply unit 71 for nitrogen gas, a third supply amount control device 72, a third supply valve 73, a third flow meter 74 and .
 本実施形態では、アンモニアガスとアンモニア分解ガスと窒素ガスとは、処理炉2内に入る前の炉内導入ガス導入配管29内で混合されるようになっている。 In this embodiment, the ammonia gas, the ammonia decomposition gas, and the nitrogen gas are mixed in the furnace introduction gas introduction pipe 29 before entering the processing furnace 2 .
 第1炉内導入ガス供給部21は、例えば、第1炉内導入ガス(本例ではアンモニアガス)を充填したタンクにより形成されている。 The first in-furnace introduction gas supply unit 21 is formed by, for example, a tank filled with the first in-furnace introduction gas (ammonia gas in this example).
 第1供給量制御装置22は、マスフローコントローラ(短時間のうちに小刻みに流量を変更することができる)により形成されており、第1炉内導入ガス供給部21と第1供給弁23との間に介装されている。第1供給量制御装置22の開度が、ガス導入量制御手段14から出力される制御信号に応じて変化する。また、第1供給量制御装置22は、第1炉内導入ガス供給部21から第1供給弁23への供給量を検出し、この検出した供給量を含む情報信号をガス導入制御手段14と調節計6へ出力するようになっている。当該制御信号は、ガス導入量制御手段14による制御の補正等に用いられ得る。 The first supply amount control device 22 is formed by a mass flow controller (capable of changing the flow rate in small increments within a short period of time), and the first in-furnace introduction gas supply section 21 and the first supply valve 23 interposed in between. The degree of opening of the first supply amount control device 22 changes according to the control signal output from the gas introduction amount control means 14 . Further, the first supply amount control device 22 detects the supply amount from the first in-furnace introduction gas supply unit 21 to the first supply valve 23, and transmits an information signal including the detected supply amount to the gas introduction control means 14. It is designed to output to the controller 6 . The control signal can be used for correction of control by the gas introduction amount control means 14 and the like.
 第1供給弁23は、ガス導入量制御手段14が出力する制御信号に応じて開閉状態を切り換える電磁弁により形成されており、第1供給量制御装置22と第1流量計24との間に介装されている。 The first supply valve 23 is formed by an electromagnetic valve that switches between open and closed states in accordance with a control signal output by the gas introduction amount control means 14 . intervened.
 第1流量計24は、例えば、フロー式流量計等の機械的な流量計で形成されており、第1供給弁23と炉内導入ガス導入配管29との間に介装されている。また、第1流量計24は、第1供給弁23から炉内導入ガス導入配管29への供給量を検出する。第1流量計24が検出する供給量は、作業員の目視による確認作業に用いられ得る。 The first flowmeter 24 is, for example, a mechanical flowmeter such as a flow-type flowmeter, and is interposed between the first supply valve 23 and the in-furnace introduction gas introduction pipe 29 . Further, the first flow meter 24 detects the amount of gas supplied from the first supply valve 23 to the in-furnace introduction gas introduction pipe 29 . The amount of supply detected by the first flow meter 24 can be used for visual confirmation work by the operator.
 第2炉内導入ガス供給部25は、例えば、第2炉内導入ガス(本例ではアンモニア分解ガス)を充填したタンクにより形成されている。 The second in-furnace introduction gas supply unit 25 is formed, for example, by a tank filled with the second in-furnace introduction gas (ammonia decomposition gas in this example).
 第2供給量制御装置26は、マスフローコントローラ(短時間のうちに小刻みに流量を変更することができる)により形成されており、第2炉内導入ガス供給部25と第2供給弁27との間に介装されている。第2供給量制御装置26の開度が、ガス導入量制御手段14から出力される制御信号に応じて変化する。また、第2供給量制御装置26は、第2炉内導入ガス供給部25から第2供給弁27への供給量を検出し、この検出した供給量を含む情報信号をガス導入制御手段14と調節計6へ出力するようになっている。当該制御信号は、ガス導入量制御手段14による制御の補正等に用いられ得る。 The second supply amount control device 26 is formed by a mass flow controller (which can change the flow rate in small increments within a short period of time), and the second in-furnace introduction gas supply section 25 and the second supply valve 27 interposed in between. The degree of opening of the second supply amount control device 26 changes according to the control signal output from the gas introduction amount control means 14 . Further, the second supply amount control device 26 detects the supply amount from the second in-furnace introduction gas supply unit 25 to the second supply valve 27, and transmits an information signal including the detected supply amount to the gas introduction control means 14. It is designed to output to the controller 6 . The control signal can be used for correction of control by the gas introduction amount control means 14 and the like.
 第2供給弁27は、ガス導入量制御手段14が出力する制御信号に応じて開閉状態を切り換える電磁弁により形成されており、第2供給量制御装置26と第2流量計28との間に介装されている。 The second supply valve 27 is formed by an electromagnetic valve that switches between open and closed states in response to a control signal output by the gas introduction amount control means 14. intervened.
 第2流量計28は、例えば、フロー式流量計等の機械的な流量計で形成されており、第2供給弁27と炉内導入ガス導入配管29との間に介装されている。また、第2流量計28は、第2供給弁27から炉内導入ガス導入配管29への供給量を検出する。第2流量計28が検出する供給量は、作業員の目視による確認作業に用いられ得る。 The second flowmeter 28 is, for example, a mechanical flowmeter such as a flow-type flowmeter, and is interposed between the second supply valve 27 and the in-furnace introduction gas introduction pipe 29 . The second flow meter 28 detects the amount of gas supplied from the second supply valve 27 to the in-furnace introduction gas introduction pipe 29 . The amount of supply detected by the second flow meter 28 can be used for visual confirmation work by the operator.
 もっとも、本発明においては、アンモニア分解ガスの導入量は小刻みに変動されないため、第2供給量制御装置26が省略されて、第2流量計28の流量(開度)が、ガス導入量制御手段14から出力される制御信号に対応するように、手動で調整されてもよい。 However, in the present invention, since the introduction amount of the ammonia decomposition gas is not fluctuated in small increments, the second supply amount control device 26 is omitted, and the flow rate (opening degree) of the second flow meter 28 is controlled by the gas introduction amount control means. It may be manually adjusted to correspond to the control signal output from 14 .
 第3炉内導入ガス供給部71は、例えば、第3炉内導入ガス(本例では窒素ガス)を充填したタンクにより形成されている。 The third in-furnace introduction gas supply unit 71 is formed by, for example, a tank filled with the third in-furnace introduction gas (nitrogen gas in this example).
 第3供給量制御装置72は、マスフローコントローラ(短時間のうちに小刻みに流量を変更することができる)により形成されており、第3炉内導入ガス供給部71と第3供給弁73との間に介装されている。第3供給量制御装置72の開度が、ガス導入量制御手段14から出力される制御信号に応じて変化する。また、第3供給量制御装置72は、第3炉内導入ガス供給部71から第3供給弁73への供給量を検出し、この検出した供給量を含む情報信号をガス導入制御手段14と調節計6へ出力するようになっている。当該制御信号は、ガス導入量制御手段14による制御の補正等に用いられ得る。 The third supply amount control device 72 is formed by a mass flow controller (capable of changing the flow rate in small increments within a short period of time). interposed in between. The degree of opening of the third supply amount control device 72 changes according to the control signal output from the gas introduction amount control means 14 . Further, the third supply amount control device 72 detects the supply amount from the third in-furnace introduction gas supply unit 71 to the third supply valve 73, and transmits an information signal including the detected supply amount to the gas introduction control means 14. It is designed to output to the controller 6 . The control signal can be used for correction of control by the gas introduction amount control means 14 and the like.
 第3供給弁73は、ガス導入量制御手段14が出力する制御信号に応じて開閉状態を切り換える電磁弁により形成されており、第3供給量制御装置72と第3流量計74との間に介装されている。 The third supply valve 73 is formed by an electromagnetic valve that switches between open and closed states in accordance with a control signal output by the gas introduction amount control means 14 . intervened.
 第3流量計74は、例えば、フロー式流量計等の機械的な流量計で形成されており、第3供給弁73と炉内導入ガス導入配管29との間に介装されている。また、第3流量計74は、第3供給弁73から炉内導入ガス導入配管29への供給量を検出する。第3流量計74が検出する供給量は、作業員の目視による確認作業に用いられ得る。 The third flowmeter 74 is formed of a mechanical flowmeter such as a flow-type flowmeter, and is interposed between the third supply valve 73 and the in-furnace introduction gas introduction pipe 29 . The third flow meter 74 detects the amount of gas supplied from the third supply valve 73 to the in-furnace introduction gas introduction pipe 29 . The amount of supply detected by the third flow meter 74 can be used for visual confirmation work by the operator.
(作用:実施例1-2(実施例1-1は後述する))
 次に、図2及び図3を参照して、本実施形態の表面硬化処理装置1の作用について説明する。まず、処理炉2内に被処理品Sが投入され、処理炉2の加熱が開始される。図2及び図3に示す例では、処理炉2として、φ700×1000のサイズのピット炉が用いられ、加熱温度は570℃とされ、被処理品Sとして、8m2の表面積を有する鋼材が用いられた。
(Action: Example 1-2 (Example 1-1 will be described later))
Next, the operation of the surface hardening apparatus 1 of this embodiment will be described with reference to FIGS. 2 and 3. FIG. First, the article S to be processed is put into the processing furnace 2, and the heating of the processing furnace 2 is started. In the example shown in FIGS. 2 and 3, a pit furnace with a size of φ700×1000 is used as the processing furnace 2, the heating temperature is 570° C., and a steel material having a surface area of 8 m 2 is used as the work S to be processed. was taken.
 処理炉2の加熱中、炉内導入ガス供給部20からアンモニアガスとアンモニア分解ガスと窒素ガスとが設定初期流量で処理炉2内へ導入される。ここでは、図2に示すように、アンモニアガスの設定初期流量が9.75[l/min]とされ、アンモニア分解ガスの設定初期流量が25[l/min]とされ、窒素ガスの設定初期流量が14.8[l/min]とされ、x=0.5とされ、c1=0.67とされた。これらの設定初期流量は、パラメータ設定装置15において設定入力可能である。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気が攪拌される。 During heating of the processing furnace 2, ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the processing furnace 2 from the in-furnace introduction gas supply unit 20 at the set initial flow rates. Here, as shown in FIG. 2, the initial set flow rate of ammonia gas is set to 9.75 [l/min], the initial set flow rate of ammonia decomposition gas is set to 25 [l/min], and the set initial flow rate of nitrogen gas is set to 9.75 [l/min]. The flow rate was set to 14.8 [l/min], x=0.5, and c1=0.67. These set initial flow rates can be set and input in the parameter setting device 15 . Further, the stirring fan driving motor 9 is driven to rotate the stirring fan 8, thereby stirring the atmosphere in the processing furnace 2. As shown in FIG.
 初期状態では、開閉弁制御装置16は、開閉弁17を閉鎖状態としている。一般的に、ガス窒化処理の前処理として、鋼材表面を活性化して窒素を入りやすくする処理が行われることがある。この場合、炉内に塩化水素ガスやシアン化水素ガスなどが発生する。これらのガスは、炉内雰囲気ガス濃度検出装置(センサ)3を劣化させ得るため、開閉弁17を閉鎖状態としておくことが有効である。 In the initial state, the on-off valve control device 16 keeps the on-off valve 17 closed. In general, as a pretreatment for gas nitriding treatment, a treatment for activating the steel material surface to make it easier for nitrogen to enter may be performed. In this case, hydrogen chloride gas, hydrogen cyanide gas, etc. are generated in the furnace. Since these gases can deteriorate the in-furnace atmosphere gas concentration detector (sensor) 3, it is effective to keep the on-off valve 17 closed.
 また、炉内温度計測装置10が炉内ガスの温度を計測し、この計測温度を含む情報信号を窒化ポテンシャル調節計4及び記録計6に出力する。窒化ポテンシャル調節計4は、処理炉2内の状態について、昇温途中であるのか、昇温が完了した状態(安定した状態)であるのか、判定する。 Further, the furnace temperature measuring device 10 measures the temperature of the furnace gas and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6 . The nitriding potential controller 4 determines whether the state in the processing furnace 2 is in the middle of temperature rising or in a state (stable state) where the temperature rising has been completed.
 また、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャル(本例では0.6:図3参照)と基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能であり、例えば0.1である。 Further, the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the nitriding potential in the furnace (which is initially a very high value (because there is no hydrogen in the furnace), but the decomposition of the ammonia gas (hydrogen occurrence), and it is determined whether or not the sum of the target nitriding potential (0.6 in this example: see FIG. 3) and the standard deviation value is exceeded. This standard deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
 昇温が完了した状態であると判定され、且つ、炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和(本例では0.7)を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。これに応じて、開閉制御装置16が開閉弁17を開放状態に切り換える。 When it is determined that the temperature rise is completed and the calculated value of the in-furnace nitriding potential is lower than the sum of the target nitriding potential and the standard deviation value (0.7 in this example), the nitriding potential The controller 4 starts controlling the introduction amount of the gas introduced into the furnace through the gas introduction amount control means 14 . In response to this, the opening/closing control device 16 switches the opening/closing valve 17 to the open state.
 開閉弁17が開放状態に切り換えられると、処理炉2と雰囲気ガス濃度検出装置3とが連通し、炉内雰囲気ガス濃度検出装置3が炉内水素濃度あるいは炉内アンモニア濃度を検出する。検出された水素濃度信号あるいはアンモニア濃度信号が、窒化ポテンシャル調節計4及び記録計6へ出力される。 When the on-off valve 17 is switched to the open state, the processing furnace 2 and the atmospheric gas concentration detection device 3 are communicated with each other, and the furnace atmospheric gas concentration detection device 3 detects the hydrogen concentration in the furnace or the ammonia concentration in the furnace. A detected hydrogen concentration signal or ammonia concentration signal is output to the nitriding potential controller 4 and the recorder 6 .
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号に基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、3種類の炉内導入ガスのうちアンモニアガス及び窒素ガスの各々の導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス及び窒素ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような、且つ、前述したC1=c1×(A+x×B)なる関係が維持されるような制御が実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、目標窒化ポテンシャルの値に応じて異なっていてもよい。 The in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculation device 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and selects three types of in-furnace introduced gases. PID control is performed using the introduction amounts of ammonia gas and nitrogen gas as input values. Specifically, in the PID control, by changing the introduced amounts of the ammonia gas and the nitrogen gas while keeping the introduced amount of the ammonia decomposition gas constant, the nitriding potential in the processing furnace 2 approaches the target nitriding potential. , and control is carried out so that the relationship C1=c1.times.(A+x.times.B) described above is maintained. In the PID control, each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ according to the value of the target nitriding potential.
 そして、ガス導入量制御手段14が、PID制御の結果として、アンモニアガスの導入量及び窒素ガスの導入量を制御する。ガス導入量制御手段14は、決定された各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22、アンモニア分解ガス用の第2供給量制御装置26(一定供給量)、及び、窒素ガス用の第3供給量制御装置72、に制御信号を送る。 Then, the gas introduction amount control means 14 controls the introduction amount of ammonia gas and the introduction amount of nitrogen gas as a result of PID control. The gas introduction amount control means 14 controls the first supply amount control device 22 for the ammonia gas and the second supply amount control device 26 for the ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas. , and the third feed rate controller 72 for nitrogen gas.
 以上のような制御により、図3に示すように、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体例として、図3に示す例によれば、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約5分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.6)に制御できることが分かる。(図2及び図3に示す例では、処理開始後約100分の時点で、各ガス流量及び窒化ポテンシャルの記録が停止されている。) Through the above control, the in-furnace nitriding potential can be stably controlled near the target nitriding potential as shown in FIG. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. As a specific example, according to the example shown in FIG. 3, the amount of ammonia gas introduced is within a fluctuation range of about 3.0 l/min (±1.5 l/min) by feedback control with a sampling time of about several hundred milliseconds. It can be seen that the nitriding potential can be controlled to the target nitriding potential (0.6) with extremely high accuracy from about 5 minutes after the start of the treatment. (In the examples shown in FIGS. 2 and 3, the recording of each gas flow rate and nitriding potential is stopped about 100 minutes after the start of treatment.)
(作用:実施例1-1)
 次に、本実施形態の表面硬化処理装置1を用いて、目標窒化ポテンシャルを1.0とする場合(実施例1-1)について説明する。当該実施例1-1においても、処理炉2として、φ700×1000のサイズのピット炉が用いられ、加熱温度は570℃とされ、被処理品Sとして、8m2の表面積を有する鋼材が用いられた。
(Action: Example 1-1)
Next, a case where the target nitriding potential is set to 1.0 using the surface hardening apparatus 1 of the present embodiment (Example 1-1) will be described. Also in Example 1-1, a pit furnace having a size of φ700×1000 is used as the processing furnace 2, the heating temperature is set to 570° C., and a steel material having a surface area of 8 m 2 is used as the work S to be processed. rice field.
 処理炉2の加熱中、炉内導入ガス供給部20からアンモニアガスとアンモニア分解ガスと窒素ガスとが設定初期流量で処理炉2内へ導入される。ここでは、アンモニアガスの設定初期流量が9[l/min]とされ、アンモニア分解ガスの設定初期流量が20[l/min]とされ、窒素ガスの設定初期流量が12.7[l/min]とされ、x=0.5とされ、c1=0.67とされた。これらの設定初期流量は、パラメータ設定装置15において設定入力可能である。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気が攪拌される。 During heating of the processing furnace 2, ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the processing furnace 2 from the in-furnace introduction gas supply unit 20 at the set initial flow rates. Here, the set initial flow rate of the ammonia gas is set to 9 [l/min], the set initial flow rate of the ammonia decomposition gas is set to 20 [l/min], and the set initial flow rate of the nitrogen gas is set to 12.7 [l/min]. ], x=0.5, and c1=0.67. These set initial flow rates can be set and input in the parameter setting device 15 . Further, the stirring fan driving motor 9 is driven to rotate the stirring fan 8, thereby stirring the atmosphere in the processing furnace 2. As shown in FIG.
 初期状態では、開閉弁制御装置16は、開閉弁17を閉鎖状態としている。 In the initial state, the on-off valve control device 16 keeps the on-off valve 17 closed.
 また、炉内温度計測装置10が炉内ガスの温度を計測し、この計測温度を含む情報信号を窒化ポテンシャル調節計4及び記録計6に出力する。窒化ポテンシャル調節計4は、処理炉2内の状態について、昇温途中であるのか、昇温が完了した状態(安定した状態)であるのか、判定する。 Further, the furnace temperature measuring device 10 measures the temperature of the furnace gas and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6 . The nitriding potential controller 4 determines whether the state in the processing furnace 2 is in the middle of temperature rising or in a state (stable state) where the temperature rising has been completed.
 また、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャル(本例では1.0)と基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能であり、例えば0.1である。 Further, the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the nitriding potential in the furnace (which is initially a very high value (because there is no hydrogen in the furnace), but the decomposition of the ammonia gas (hydrogen It is determined whether or not the sum of the target nitriding potential (1.0 in this example) and the standard deviation value is exceeded. This standard deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
 昇温が完了した状態であると判定され、且つ、炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和(本例では1.1)を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。これに応じて、開閉制御装置16が開閉弁17を開放状態に切り換える。 When it is determined that the temperature rise is completed and the calculated value of the in-furnace nitriding potential is lower than the sum of the target nitriding potential and the reference deviation value (1.1 in this example), the nitriding potential The controller 4 starts controlling the introduction amount of the gas introduced into the furnace through the gas introduction amount control means 14 . In response to this, the opening/closing control device 16 switches the opening/closing valve 17 to the open state.
 開閉弁17が開放状態に切り換えられると、処理炉2と雰囲気ガス濃度検出装置3とが連通し、炉内雰囲気ガス濃度検出装置3が炉内水素濃度あるいは炉内アンモニア濃度を検出する。検出された水素濃度信号あるいはアンモニア濃度信号が、窒化ポテンシャル調節計4及び記録計6へ出力される。 When the on-off valve 17 is switched to the open state, the processing furnace 2 and the atmospheric gas concentration detection device 3 are communicated with each other, and the furnace atmospheric gas concentration detection device 3 detects the hydrogen concentration in the furnace or the ammonia concentration in the furnace. A detected hydrogen concentration signal or ammonia concentration signal is output to the nitriding potential controller 4 and the recorder 6 .
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号に基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、3種類の炉内導入ガスのうちアンモニアガス、窒素ガスの各々の導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス、窒素ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような、且つ、前述したC1=c1×(A+x×B)なる関係が維持されるような制御が実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、目標窒化ポテンシャルの値に応じて異なっていてもよい。 The in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculation device 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and selects three types of in-furnace introduced gases. Of these, PID control is performed using the introduction amounts of ammonia gas and nitrogen gas as input values. Specifically, in the PID control, the introduction amount of the ammonia decomposition gas is kept constant while the introduction amount of the ammonia gas and the nitrogen gas is changed so that the nitriding potential in the processing furnace 2 approaches the target nitriding potential. , and control is carried out so that the relationship C1=c1.times.(A+x.times.B) described above is maintained. In the PID control, each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ according to the value of the target nitriding potential.
 そして、ガス導入量制御手段14が、PID制御の結果として、アンモニアガスの導入量及び窒素ガスの導入量を制御する。ガス導入量制御手段14は、決定された各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22、アンモニア分解ガス用の第2供給量制御装置26(一定供給量)、窒素ガス用の第3供給量制御装置72、に制御信号を送る。 Then, the gas introduction amount control means 14 controls the introduction amount of ammonia gas and the introduction amount of nitrogen gas as a result of PID control. The gas introduction amount control means 14 controls the first supply amount control device 22 for the ammonia gas and the second supply amount control device 26 for the ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas. , the third feed rate controller 72 for nitrogen gas.
 以上のような制御により、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約5分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(1.0)に制御できた(グラフの図示は省略する)。 Through the above control, the in-furnace nitriding potential can be stably controlled near the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of processing, about 5 The nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high accuracy from the time point of 10 min (illustration of the graph is omitted).
(作用:実施例1-3)
 次に、本実施形態の表面硬化処理装置1を用いて、目標窒化ポテンシャルを0.2とする場合(実施例1-3)について説明する。当該実施例1-3においても、処理炉2として、φ700×1000のサイズのピット炉が用いられ、加熱温度は570℃とされ、被処理品Sとして、8m2の表面積を有する鋼材が用いられた。
(Action: Example 1-3)
Next, a case where the target nitriding potential is set to 0.2 using the surface hardening apparatus 1 of the present embodiment (Example 1-3) will be described. Also in Example 1-3, a pit furnace having a size of φ700×1000 is used as the processing furnace 2, the heating temperature is set to 570° C., and a steel material having a surface area of 8 m 2 is used as the work S to be processed. rice field.
 処理炉2の加熱中、炉内導入ガス供給部20からアンモニアガスとアンモニア分解ガスと窒素ガスとが設定初期流量で処理炉2内へ導入される。ここでは、アンモニアガスの設定初期流量が2[l/min]とされ、アンモニア分解ガスの設定初期流量が30[l/min]とされ、窒素ガスの設定初期流量が11.3[l/min]とされ、x=0.5とされ、c1=0.67とされた。これらの設定初期流量は、パラメータ設定装置15において設定入力可能である。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気が攪拌される。 During heating of the processing furnace 2, ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the processing furnace 2 from the in-furnace introduction gas supply unit 20 at the set initial flow rates. Here, the set initial flow rate of ammonia gas is 2 [l/min], the set initial flow rate of ammonia decomposition gas is 30 [l/min], and the set initial flow rate of nitrogen gas is 11.3 [l/min]. ], x=0.5, and c1=0.67. These set initial flow rates can be set and input in the parameter setting device 15 . Further, the stirring fan driving motor 9 is driven to rotate the stirring fan 8, thereby stirring the atmosphere in the processing furnace 2. As shown in FIG.
 初期状態では、開閉弁制御装置16は、開閉弁17を閉鎖状態としている。 In the initial state, the on-off valve control device 16 keeps the on-off valve 17 closed.
 また、炉内温度計測装置10が炉内ガスの温度を計測し、この計測温度を含む情報信号を窒化ポテンシャル調節計4及び記録計6に出力する。窒化ポテンシャル調節計4は、処理炉2内の状態について、昇温途中であるのか、昇温が完了した状態(安定した状態)であるのか、判定する。 Further, the furnace temperature measuring device 10 measures the temperature of the furnace gas and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6 . The nitriding potential controller 4 determines whether the state in the processing furnace 2 is in the middle of temperature rising or in a state (stable state) where the temperature rising has been completed.
 また、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャル(本例では0.2)と基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能であり、例えば0.1である。 Further, the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the nitriding potential in the furnace (which is initially a very high value (because there is no hydrogen in the furnace), but the decomposition of the ammonia gas (hydrogen It is determined whether or not the sum of the target nitriding potential (0.2 in this example) and the reference deviation value is exceeded. This standard deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
 昇温が完了した状態であると判定され、且つ、炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和(本例では0.3)を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。これに応じて、開閉制御装置16が開閉弁17を開放状態に切り換える。 When it is determined that the temperature rise is completed and the calculated value of the in-furnace nitriding potential is lower than the sum of the target nitriding potential and the reference deviation value (0.3 in this example), the nitriding potential The controller 4 starts controlling the introduction amount of the gas introduced into the furnace through the gas introduction amount control means 14 . In response to this, the opening/closing control device 16 switches the opening/closing valve 17 to the open state.
 開閉弁17が開放状態に切り換えられると、処理炉2と雰囲気ガス濃度検出装置3とが連通し、炉内雰囲気ガス濃度検出装置3が炉内水素濃度あるいは炉内アンモニア濃度を検出する。検出された水素濃度信号あるいはアンモニア濃度信号が、窒化ポテンシャル調節計4及び記録計6へ出力される。 When the on-off valve 17 is switched to the open state, the processing furnace 2 and the atmospheric gas concentration detection device 3 are communicated with each other, and the furnace atmospheric gas concentration detection device 3 detects the hydrogen concentration in the furnace or the ammonia concentration in the furnace. A detected hydrogen concentration signal or ammonia concentration signal is output to the nitriding potential controller 4 and the recorder 6 .
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号に基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、3種類の炉内導入ガスのうちアンモニアガス、窒素ガスの各々の導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス、窒素ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような、且つ、前述したC1=c1×(A+x×B)なる関係が維持されるような制御が実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、目標窒化ポテンシャルの値に応じて異なっていてもよい。 The in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculation device 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and selects three types of in-furnace introduced gases. Of these, PID control is performed using the introduction amounts of ammonia gas and nitrogen gas as input values. Specifically, in the PID control, the introduction amount of the ammonia decomposition gas is kept constant while the introduction amount of the ammonia gas and the nitrogen gas is changed so that the nitriding potential in the processing furnace 2 approaches the target nitriding potential. , and control is carried out so that the relationship C1=c1.times.(A+x.times.B) described above is maintained. In the PID control, each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ according to the value of the target nitriding potential.
 そして、ガス導入量制御手段14が、PID制御の結果として、アンモニアガスの導入量及び窒素ガスの導入量を制御する。ガス導入量制御手段14は、決定された各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22、アンモニア分解ガス用の第2供給量制御装置26(一定供給量)、及び、窒素ガス用の第3供給量制御装置72、に制御信号を送る。 Then, the gas introduction amount control means 14 controls the introduction amount of ammonia gas and the introduction amount of nitrogen gas as a result of PID control. The gas introduction amount control means 14 controls the first supply amount control device 22 for the ammonia gas and the second supply amount control device 26 for the ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas. , and the third feed rate controller 72 for nitrogen gas.
 以上のような制御により、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約15分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.2)に制御できた(グラフの図示は省略する)。 Through the above control, the in-furnace nitriding potential can be stably controlled near the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and about 15 l/min after the start of processing. The nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min (illustration of the graph is omitted).
(比較例の説明)
 比較のため、アンモニア分解ガスを導入せずに、アンモニアガスと窒素ガスとの流量比を常に60:40に維持してそれらの合計流量を変動させる、という態様の窒化ポテンシャル制御を行った。
(Description of Comparative Example)
For comparison, nitriding potential control was performed in such a manner that no ammonia decomposition gas was introduced, the flow rate ratio of ammonia gas and nitrogen gas was always maintained at 60:40, and the total flow rate thereof was varied.
 具体的には、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号に基づいて炉内窒化ポテンシャルを演算した。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、アンモニアガス及び窒素ガスの各々の導入量を入力値としたPID制御を実施した。より具体的には、当該PID制御において、アンモニアガスと窒素ガスとの流量比を一定に保ちながらアンモニアガスと窒素ガスとの合計導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような制御が実施された。 Specifically, the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculated the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculator 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and sets each of the ammonia gas and the nitrogen gas. PID control was performed using the amount of introduced as an input value. More specifically, in the PID control, by changing the total introduction amount of ammonia gas and nitrogen gas while keeping the flow rate ratio of ammonia gas and nitrogen gas constant, the nitriding potential in the processing furnace 2 is adjusted to the target. Control was performed to approach the nitriding potential.
 しかしながら、以上のような比較例の制御では、窒化ポテンシャルを安定的に制御することができなかった。 However, it was not possible to stably control the nitriding potential with the control of the comparative example as described above.
(実施例1-1~実施例1-3と比較例との比較)
 以上の結果を纏めた表を、図4として示す。
(Comparison between Examples 1-1 to 1-3 and Comparative Example)
A table summarizing the above results is shown in FIG.
(実施例1-2の更なる変形例)
 実施例1-2において、微量の(0.1%程度の)アルゴンガスが追加的に導入されてもよい。具体的には、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数(本例ではx=0.5)とし、アルゴンガスの導入量C2を、当該炉内導入ガスに割り当てた比例係数c2(例えばc2=0.002)を用いて、
 C2=c2×(A+x×B)
となるように制御してもよい。
(Further modified example of Example 1-2)
In Example 1-2, a small amount (on the order of 0.1%) of argon gas may additionally be introduced. Specifically, let A be the amount of ammonia gas introduced into the furnace, B be the amount of ammonia decomposition gas introduced into the furnace, x be a predetermined constant (x=0.5 in this example), and the amount of argon gas introduced Using a proportionality coefficient c2 (for example, c2 = 0.002) assigned to the gas introduced into the furnace,
C2=c2×(A+x×B)
may be controlled to be
 この場合においても、実施例1-2と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約15分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.6)に制御できた。 Also in this case, as in Example 1-2, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and about 15 l/min after the start of processing. The nitriding potential could be controlled to the target nitriding potential (0.6) with extremely high precision from the time point of 10 min.
 更には、実施例1-2において、微量の(0.1%程度の)アルゴンガスが追加的に導入量を一定に保ちながら導入されてもよい。 Furthermore, in Example 1-2, a small amount (about 0.1%) of argon gas may be additionally introduced while keeping the introduction amount constant.
 この場合においても、実施例1-2と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約15分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.6)に制御できた。 Also in this case, as in Example 1-2, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and about 15 l/min after the start of processing. The nitriding potential could be controlled to the target nitriding potential (0.6) with extremely high precision from the time point of 10 min.
 あるいは、実施例1-2において、軟窒化処理とは呼べない程度の微量の(0.1%程度の)浸炭性ガス(COやCO2等)が追加的に導入されてもよい。具体的には、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数(本例ではx=0.5)とし、浸炭性ガスの導入量C2を、当該炉内導入ガスに割り当てた比例係数c2(例えばc2=0.002)を用いて、
 C2=c2×(A+x×B)
となるように制御してもよい。
Alternatively, in Example 1-2, a very small amount (about 0.1%) of carburizing gas (CO, CO 2 , etc.), which cannot be called nitrocarburizing, may be additionally introduced. Specifically, let A be the amount of ammonia gas introduced into the furnace, B be the amount of ammonia decomposition gas introduced into the furnace, x be a predetermined constant (in this example, x=0.5), and introduce carburizing gas. Using a proportionality coefficient c2 (for example, c2 = 0.002) assigned to the gas introduced into the furnace,
C2=c2×(A+x×B)
may be controlled to be
 この場合においても、実施例1-2と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約15分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.6)に制御できた。 Also in this case, as in Example 1-2, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and about 15 l/min after the start of processing. The nitriding potential could be controlled to the target nitriding potential (0.6) with extremely high precision from the time point of 10 min.
 更には、実施例1-2において、微量の(0.1%程度の)浸炭性ガスが追加的に導入量を一定に保ちながら導入されてもよい。 Furthermore, in Example 1-2, a small amount (about 0.1%) of carburizing gas may be additionally introduced while keeping the introduction amount constant.
 この場合においても、実施例1-2と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約15分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.6)に制御できた。 Also in this case, as in Example 1-2, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and about 15 l/min after the start of processing. The nitriding potential could be controlled to the target nitriding potential (0.6) with extremely high precision from the time point of 10 min.
(実施例1-1の更なる変形例)
 実施例1-1においても、微量の(0.1%程度の)アルゴンガスが追加的に導入されてもよい。具体的には、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数(本例ではx=0.5)とし、アルゴンガスの導入量C2を、当該炉内導入ガスに割り当てた比例係数c2(例えばc2=0.002)を用いて、
 C2=c2×(A+x×B)
となるように制御してもよい。
(Further modification of Example 1-1)
Also in Example 1-1, a small amount (about 0.1%) of argon gas may be additionally introduced. Specifically, let A be the amount of ammonia gas introduced into the furnace, B be the amount of ammonia decomposition gas introduced into the furnace, x be a predetermined constant (x=0.5 in this example), and the amount of argon gas introduced Using a proportionality coefficient c2 (for example, c2 = 0.002) assigned to the gas introduced into the furnace,
C2=c2×(A+x×B)
may be controlled to be
 この場合においても、実施例1-1と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約15分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(1.0)に制御できた。 Also in this case, as in Example 1-1, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and about 15 l/min after the start of processing. The nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high precision from the time point of 10 min.
 更には、実施例1-1において、微量の(0.1%程度の)アルゴンガスが追加的に導入量を一定に保ちながら導入されてもよい。 Furthermore, in Example 1-1, a small amount (about 0.1%) of argon gas may be additionally introduced while keeping the introduction amount constant.
 この場合においても、実施例1-1と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約15分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(1.0)に制御できた。 Also in this case, as in Example 1-1, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and about 15 l/min after the start of processing. The nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high precision from the time point of 10 min.
 あるいは、実施例1-1において、軟窒化処理とは呼べない程度の微量の(0.1%程度の)浸炭性ガス(COやCO2等)が追加的に導入されてもよい。具体的には、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数(本例ではx=0.5)とし、浸炭性ガスの導入量C2を、当該炉内導入ガスに割り当てた比例係数c2(例えばc2=0.002)を用いて、
 C2=c2×(A+x×B)
となるように制御してもよい。
Alternatively, in Example 1-1, a very small amount (about 0.1%) of carburizing gas (CO, CO 2 , etc.), which cannot be called nitrocarburizing, may be additionally introduced. Specifically, let A be the amount of ammonia gas introduced into the furnace, B be the amount of ammonia decomposition gas introduced into the furnace, x be a predetermined constant (in this example, x=0.5), and introduce carburizing gas. Using a proportionality coefficient c2 (for example, c2 = 0.002) assigned to the gas introduced into the furnace,
C2=c2×(A+x×B)
may be controlled to be
 この場合においても、実施例1-1と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約15分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(1.0)に制御できた。 Also in this case, as in Example 1-1, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and about 15 l/min after the start of processing. The nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high precision from the time point of 10 min.
 更には、実施例1-1において、微量の(0.1%程度の)浸炭性ガスが追加的に導入量を一定に保ちながら導入されてもよい。 Furthermore, in Example 1-1, a small amount (about 0.1%) of carburizing gas may be additionally introduced while keeping the introduction amount constant.
 この場合においても、実施例1-1と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約15分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(1.0)に制御できた。 Also in this case, as in Example 1-1, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and about 15 l/min after the start of processing. The nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high precision from the time point of 10 min.
(実施例1-3の更なる変形例)
 実施例1-3においても、微量の(0.1%程度の)アルゴンガスが追加的に導入されてもよい。具体的には、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数(本例ではx=0.5)とし、アルゴンガスの導入量C2を、当該炉内導入ガスに割り当てた比例係数c2(例えばc2=0.002)を用いて、
 C2=c2×(A+x×B)
となるように制御してもよい。
(Further modified example of Example 1-3)
Also in Examples 1-3, a small amount (about 0.1%) of argon gas may be additionally introduced. Specifically, let A be the amount of ammonia gas introduced into the furnace, B be the amount of ammonia decomposition gas introduced into the furnace, x be a predetermined constant (x=0.5 in this example), and the amount of argon gas introduced Using a proportionality coefficient c2 (for example, c2 = 0.002) assigned to the gas introduced into the furnace,
C2=c2×(A+x×B)
may be controlled to be
 この場合においても、実施例1-3と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約15分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.2)に制御できた。 Also in this case, similarly to Example 1-3, the in-furnace nitriding potential can be stably controlled near the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and about 15 l/min after the start of processing. The nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min.
 更には、実施例1-3において、微量の(0.1%程度の)アルゴンガスが追加的に導入量を一定に保ちながら導入されてもよい。 Furthermore, in Examples 1-3, a small amount (about 0.1%) of argon gas may be additionally introduced while keeping the introduction amount constant.
 この場合においても、実施例1-3と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約15分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.2)に制御できた。 Also in this case, similarly to Example 1-3, the in-furnace nitriding potential can be stably controlled near the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and about 15 l/min after the start of processing. The nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min.
 あるいは、実施例1-3において、軟窒化処理とは呼べない程度の微量の(0.1%程度の)浸炭性ガス(COやCO2等)が追加的に導入されてもよい。具体的には、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数(本例ではx=0.5)とし、浸炭性ガスの導入量C2を、当該炉内導入ガスに割り当てた比例係数c2(例えばc2=0.002)を用いて、
 C2=c2×(A+x×B)
となるように制御してもよい。
Alternatively, in Examples 1-3, a very small amount (approximately 0.1%) of carburizing gas (CO, CO 2 , etc.), which cannot be called nitrocarburizing, may be additionally introduced. Specifically, let A be the amount of ammonia gas introduced into the furnace, B be the amount of ammonia decomposition gas introduced into the furnace, x be a predetermined constant (in this example, x=0.5), and introduce carburizing gas. Using a proportionality coefficient c2 (for example, c2 = 0.002) assigned to the gas introduced into the furnace,
C2=c2×(A+x×B)
may be controlled to be
 この場合においても、実施例1-3と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約15分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.2)に制御できた。 Also in this case, similarly to Example 1-3, the in-furnace nitriding potential can be stably controlled near the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and about 15 l/min after the start of processing. The nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min.
 更には、実施例1-3において、微量の(0.1%程度の)浸炭性ガスが追加的に導入量を一定に保ちながら導入されてもよい。 Furthermore, in Examples 1-3, a small amount (about 0.1%) of carburizing gas may be additionally introduced while keeping the introduction amount constant.
 この場合においても、実施例1-3と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約15分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.2)に制御できた。 Also in this case, similarly to Example 1-3, the in-furnace nitriding potential can be stably controlled near the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and about 15 l/min after the start of processing. The nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min.
(作用:実施例2-2(実施例2-1は後述する))
 次に、図5及び図6を参照して、実施例1-1~1-3と比較して窒素ガスの導入量を低減させた場合の本実施形態の表面硬化処理装置1の作用について説明する。この場合も、処理炉2内に被処理品Sが投入され、処理炉2の加熱が開始される。図5及び図6に示す例でも、処理炉2として、φ700×1000のサイズのピット炉が用いられ、加熱温度は570℃とされ、被処理品Sとして、8m2の表面積を有する鋼材が用いられた。
(Action: Example 2-2 (Example 2-1 will be described later))
Next, with reference to FIGS. 5 and 6, the operation of the surface hardening apparatus 1 of this embodiment when the introduction amount of nitrogen gas is reduced compared to Examples 1-1 to 1-3 will be described. do. Also in this case, the article S to be processed is put into the processing furnace 2, and the heating of the processing furnace 2 is started. 5 and 6, a pit furnace with a size of φ700×1000 is used as the processing furnace 2, the heating temperature is set at 570° C., and a steel material having a surface area of 8 m 2 is used as the work S to be processed. was taken.
 処理炉2の加熱中、炉内導入ガス供給部20からアンモニアガスとアンモニア分解ガスと窒素ガスとが設定初期流量で処理炉2内へ導入される。ここでは、図5に示すように、アンモニアガスの設定初期流量が10.3[l/min]とされ、アンモニア分解ガスの設定初期流量が32.5[l/min]とされ、窒素ガスの設定初期流量が6.6[l/min]とされ、x=0.5とされ、c1=0.25とされた。これらの設定初期流量は、パラメータ設定装置15において設定入力可能である。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気が攪拌される。 During heating of the processing furnace 2, ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the processing furnace 2 from the in-furnace introduction gas supply unit 20 at the set initial flow rates. Here, as shown in FIG. 5, the set initial flow rate of ammonia gas is set to 10.3 [l/min], the set initial flow rate of ammonia decomposition gas is set to 32.5 [l/min], and the set initial flow rate of nitrogen gas is set to 10.3 [l/min]. The set initial flow rate was 6.6 [l/min], x=0.5, and c1=0.25. These set initial flow rates can be set and input in the parameter setting device 15 . Further, the stirring fan driving motor 9 is driven to rotate the stirring fan 8, thereby stirring the atmosphere in the processing furnace 2. As shown in FIG.
 初期状態では、開閉弁制御装置16は、開閉弁17を閉鎖状態としている。 In the initial state, the on-off valve control device 16 keeps the on-off valve 17 closed.
 また、炉内温度計測装置10が炉内ガスの温度を計測し、この計測温度を含む情報信号を窒化ポテンシャル調節計4及び記録計6に出力する。窒化ポテンシャル調節計4は、処理炉2内の状態について、昇温途中であるのか、昇温が完了した状態(安定した状態)であるのか、判定する。 Further, the furnace temperature measuring device 10 measures the temperature of the furnace gas and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6 . The nitriding potential controller 4 determines whether the state in the processing furnace 2 is in the middle of temperature rising or in a state (stable state) where the temperature rising has been completed.
 また、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャル(本例では0.6:図6参照)と基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能であり、例えば0.1である。 Further, the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the nitriding potential in the furnace (which is initially a very high value (because there is no hydrogen in the furnace), but the decomposition of the ammonia gas (hydrogen occurrence), it is determined whether or not the sum of the target nitriding potential (0.6 in this example: see FIG. 6) and the reference deviation value is exceeded. This standard deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
 昇温が完了した状態であると判定され、且つ、炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和(本例では0.7)を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。これに応じて、開閉制御装置16が開閉弁17を開放状態に切り換える。 When it is determined that the temperature rise is completed and the calculated value of the in-furnace nitriding potential is lower than the sum of the target nitriding potential and the standard deviation value (0.7 in this example), the nitriding potential The controller 4 starts controlling the introduction amount of the gas introduced into the furnace through the gas introduction amount control means 14 . In response to this, the opening/closing control device 16 switches the opening/closing valve 17 to the open state.
 開閉弁17が開放状態に切り換えられると、処理炉2と雰囲気ガス濃度検出装置3とが連通し、炉内雰囲気ガス濃度検出装置3が炉内水素濃度あるいは炉内アンモニア濃度を検出する。検出された水素濃度信号あるいはアンモニア濃度信号が、窒化ポテンシャル調節計4及び記録計6へ出力される。 When the on-off valve 17 is switched to the open state, the processing furnace 2 and the atmospheric gas concentration detection device 3 are communicated with each other, and the furnace atmospheric gas concentration detection device 3 detects the hydrogen concentration in the furnace or the ammonia concentration in the furnace. A detected hydrogen concentration signal or ammonia concentration signal is output to the nitriding potential controller 4 and the recorder 6 .
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号に基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、3種類の炉内導入ガスのうちアンモニアガス及び窒素ガスの各々の導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス及び窒素ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような、且つ、前述したC1=c1×(A+x×B)なる関係が維持されるような制御が実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、目標窒化ポテンシャルの値に応じて異なっていてもよい。 The in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculation device 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and selects three types of in-furnace introduced gases. PID control is performed using the introduction amounts of ammonia gas and nitrogen gas as input values. Specifically, in the PID control, by changing the introduced amounts of the ammonia gas and the nitrogen gas while keeping the introduced amount of the ammonia decomposition gas constant, the nitriding potential in the processing furnace 2 approaches the target nitriding potential. , and control is carried out so that the relationship C1=c1.times.(A+x.times.B) described above is maintained. In the PID control, each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ according to the value of the target nitriding potential.
 そして、ガス導入量制御手段14が、PID制御の結果として、アンモニアガスの導入量及び窒素ガスの導入量を制御する。ガス導入量制御手段14は、決定された各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22、アンモニア分解ガス用の第2供給量制御装置26(一定供給量)、及び、窒素ガス用の第3供給量制御装置72、に制御信号を送る。 Then, the gas introduction amount control means 14 controls the introduction amount of ammonia gas and the introduction amount of nitrogen gas as a result of PID control. The gas introduction amount control means 14 controls the first supply amount control device 22 for the ammonia gas and the second supply amount control device 26 for the ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas. , and the third feed rate controller 72 for nitrogen gas.
 以上のような制御により、図6に示すように、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体例として、図6に示す例によれば、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.6)に制御できることが分かる。(図5及び図6に示す例では、処理開始後約100分の時点で、各ガス流量及び窒化ポテンシャルの記録が停止されている。) Through the above control, the in-furnace nitriding potential can be stably controlled near the target nitriding potential as shown in FIG. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. As a specific example, according to the example shown in FIG. 6, the amount of ammonia gas introduced is within a fluctuation range of about 3.0 l/min (±1.5 l/min) by feedback control with a sampling time of about several hundred milliseconds. It can be seen that the nitriding potential can be controlled to the target nitriding potential (0.6) with extremely high accuracy from about 10 minutes after the start of the treatment. (In the examples shown in FIGS. 5 and 6, the recording of each gas flow rate and nitriding potential is stopped about 100 minutes after the start of treatment.)
(作用:実施例2-1)
 次に、本実施形態の表面硬化処理装置1を用いて、目標窒化ポテンシャルを1.0とする場合(実施例2-1)について説明する。当該実施例2-1においても、処理炉2として、φ700×1000のサイズのピット炉が用いられ、加熱温度は570℃とされ、被処理品Sとして、8m2の表面積を有する鋼材が用いられた。
(Action: Example 2-1)
Next, a case where the target nitriding potential is set to 1.0 using the surface hardening apparatus 1 of the present embodiment (Example 2-1) will be described. Also in Example 2-1, a pit furnace with a size of φ700×1000 is used as the processing furnace 2, the heating temperature is set at 570° C., and a steel material having a surface area of 8 m 2 is used as the work S to be processed. rice field.
 処理炉2の加熱中、炉内導入ガス供給部20からアンモニアガスとアンモニア分解ガスと窒素ガスとが設定初期流量で処理炉2内へ導入される。ここでは、アンモニアガスの設定初期流量が12.0[l/min]とされ、アンモニア分解ガスの設定初期流量が24.0[l/min]とされ、窒素ガスの設定初期流量が6.0[l/min]とされ、x=0.5とされ、c1=0.25とされた。これらの設定初期流量は、パラメータ設定装置15において設定入力可能である。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気が攪拌される。 During heating of the processing furnace 2, ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the processing furnace 2 from the in-furnace introduction gas supply unit 20 at the set initial flow rates. Here, the set initial flow rate of ammonia gas is 12.0 [l/min], the set initial flow rate of ammonia decomposition gas is 24.0 [l/min], and the set initial flow rate of nitrogen gas is 6.0 [l/min]. [l/min], x=0.5 and c1=0.25. These set initial flow rates can be set and input in the parameter setting device 15 . Further, the stirring fan driving motor 9 is driven to rotate the stirring fan 8, thereby stirring the atmosphere in the processing furnace 2. As shown in FIG.
 初期状態では、開閉弁制御装置16は、開閉弁17を閉鎖状態としている。 In the initial state, the on-off valve control device 16 keeps the on-off valve 17 closed.
 また、炉内温度計測装置10が炉内ガスの温度を計測し、この計測温度を含む情報信号を窒化ポテンシャル調節計4及び記録計6に出力する。窒化ポテンシャル調節計4は、処理炉2内の状態について、昇温途中であるのか、昇温が完了した状態(安定した状態)であるのか、判定する。 Further, the furnace temperature measuring device 10 measures the temperature of the furnace gas and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6 . The nitriding potential controller 4 determines whether the state in the processing furnace 2 is in the middle of temperature rising or in a state (stable state) where the temperature rising has been completed.
 また、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャル(本例では1.0)と基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能であり、例えば0.1である。 Further, the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the nitriding potential in the furnace (which is initially a very high value (because there is no hydrogen in the furnace), but the decomposition of the ammonia gas (hydrogen It is determined whether or not the sum of the target nitriding potential (1.0 in this example) and the standard deviation value is exceeded. This standard deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
 昇温が完了した状態であると判定され、且つ、炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和(本例では1.1)を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。これに応じて、開閉制御装置16が開閉弁17を開放状態に切り換える。 When it is determined that the temperature rise is completed and the calculated value of the in-furnace nitriding potential is lower than the sum of the target nitriding potential and the reference deviation value (1.1 in this example), the nitriding potential The controller 4 starts controlling the introduction amount of the gas introduced into the furnace through the gas introduction amount control means 14 . In response to this, the opening/closing control device 16 switches the opening/closing valve 17 to the open state.
 開閉弁17が開放状態に切り換えられると、処理炉2と雰囲気ガス濃度検出装置3とが連通し、炉内雰囲気ガス濃度検出装置3が炉内水素濃度あるいは炉内アンモニア濃度を検出する。検出された水素濃度信号あるいはアンモニア濃度信号が、窒化ポテンシャル調節計4及び記録計6へ出力される。 When the on-off valve 17 is switched to the open state, the processing furnace 2 and the atmospheric gas concentration detection device 3 are communicated with each other, and the furnace atmospheric gas concentration detection device 3 detects the hydrogen concentration in the furnace or the ammonia concentration in the furnace. A detected hydrogen concentration signal or ammonia concentration signal is output to the nitriding potential controller 4 and the recorder 6 .
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号に基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、3種類の炉内導入ガスのうちアンモニアガス、窒素ガスの各々の導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス、窒素ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような、且つ、前述したC1=c1×(A+x×B)なる関係が維持されるような制御が実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、目標窒化ポテンシャルの値に応じて異なっていてもよい。 The in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculation device 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and selects three types of in-furnace introduced gases. Of these, PID control is performed using the introduction amounts of ammonia gas and nitrogen gas as input values. Specifically, in the PID control, the introduction amount of the ammonia decomposition gas is kept constant while the introduction amount of the ammonia gas and the nitrogen gas is changed so that the nitriding potential in the processing furnace 2 approaches the target nitriding potential. , and control is carried out so that the relationship C1=c1.times.(A+x.times.B) described above is maintained. In the PID control, each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ according to the value of the target nitriding potential.
 そして、ガス導入量制御手段14が、PID制御の結果として、アンモニアガスの導入量及び窒素ガスの導入量を制御する。ガス導入量制御手段14は、決定された各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22、アンモニア分解ガス用の第2供給量制御装置26(一定供給量)、窒素ガス用の第3供給量制御装置72、に制御信号を送る。 Then, the gas introduction amount control means 14 controls the introduction amount of ammonia gas and the introduction amount of nitrogen gas as a result of PID control. The gas introduction amount control means 14 controls the first supply amount control device 22 for the ammonia gas and the second supply amount control device 26 for the ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas. , the third feed rate controller 72 for nitrogen gas.
 以上のような制御により、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(1.0)に制御できた(グラフの図示は省略する)。 Through the above control, the in-furnace nitriding potential can be stably controlled near the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high accuracy from the time point of 10 min (illustration of the graph is omitted).
(作用:実施例2-3)
 次に、本実施形態の表面硬化処理装置1を用いて、目標窒化ポテンシャルを0.2とする場合(実施例2-3)について説明する。当該実施例2-3においても、処理炉2として、φ700×1000のサイズのピット炉が用いられ、加熱温度は570℃とされ、被処理品Sとして、8m2の表面積を有する鋼材が用いられた。
(Action: Example 2-3)
Next, a case where the target nitriding potential is set to 0.2 using the surface hardening apparatus 1 of the present embodiment (Example 2-3) will be described. Also in Example 2-3, a pit furnace with a size of φ700×1000 is used as the treatment furnace 2, the heating temperature is set at 570° C., and a steel material having a surface area of 8 m 2 is used as the work S to be treated. rice field.
 処理炉2の加熱中、炉内導入ガス供給部20からアンモニアガスとアンモニア分解ガスと窒素ガスとが設定初期流量で処理炉2内へ導入される。ここでは、アンモニアガスの設定初期流量が3.0[l/min]とされ、アンモニア分解ガスの設定初期流量が40.0[l/min]とされ、窒素ガスの設定初期流量が5.7[l/min]とされ、x=0.5とされ、c1=0.25とされた。これらの設定初期流量は、パラメータ設定装置15において設定入力可能である。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気が攪拌される。 During heating of the processing furnace 2, ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the processing furnace 2 from the in-furnace introduction gas supply unit 20 at the set initial flow rates. Here, the set initial flow rate of ammonia gas is 3.0 [l/min], the set initial flow rate of ammonia decomposition gas is 40.0 [l/min], and the set initial flow rate of nitrogen gas is 5.7 [l/min]. [l/min], x=0.5 and c1=0.25. These set initial flow rates can be set and input in the parameter setting device 15 . Further, the stirring fan driving motor 9 is driven to rotate the stirring fan 8, thereby stirring the atmosphere in the processing furnace 2. As shown in FIG.
 初期状態では、開閉弁制御装置16は、開閉弁17を閉鎖状態としている。 In the initial state, the on-off valve control device 16 keeps the on-off valve 17 closed.
 また、炉内温度計測装置10が炉内ガスの温度を計測し、この計測温度を含む情報信号を窒化ポテンシャル調節計4及び記録計6に出力する。窒化ポテンシャル調節計4は、処理炉2内の状態について、昇温途中であるのか、昇温が完了した状態(安定した状態)であるのか、判定する。 Further, the furnace temperature measuring device 10 measures the temperature of the furnace gas and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6 . The nitriding potential controller 4 determines whether the state in the processing furnace 2 is in the middle of temperature rising or in a state (stable state) where the temperature rising has been completed.
 また、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャル(本例では0.2)と基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能であり、例えば0.1である。 Further, the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the nitriding potential in the furnace (which is initially a very high value (because there is no hydrogen in the furnace), but the decomposition of the ammonia gas (hydrogen It is determined whether or not the sum of the target nitriding potential (0.2 in this example) and the reference deviation value is exceeded. This standard deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
 昇温が完了した状態であると判定され、且つ、炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和(本例では0.3)を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。これに応じて、開閉制御装置16が開閉弁17を開放状態に切り換える。 When it is determined that the temperature rise is completed and the calculated value of the in-furnace nitriding potential is lower than the sum of the target nitriding potential and the reference deviation value (0.3 in this example), the nitriding potential The controller 4 starts controlling the introduction amount of the gas introduced into the furnace through the gas introduction amount control means 14 . In response to this, the opening/closing control device 16 switches the opening/closing valve 17 to the open state.
 開閉弁17が開放状態に切り換えられると、処理炉2と雰囲気ガス濃度検出装置3とが連通し、炉内雰囲気ガス濃度検出装置3が炉内水素濃度あるいは炉内アンモニア濃度を検出する。検出された水素濃度信号あるいはアンモニア濃度信号が、窒化ポテンシャル調節計4及び記録計6へ出力される。 When the on-off valve 17 is switched to the open state, the processing furnace 2 and the atmospheric gas concentration detection device 3 are communicated with each other, and the furnace atmospheric gas concentration detection device 3 detects the hydrogen concentration in the furnace or the ammonia concentration in the furnace. A detected hydrogen concentration signal or ammonia concentration signal is output to the nitriding potential controller 4 and the recorder 6 .
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号に基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、3種類の炉内導入ガスのうちアンモニアガス、窒素ガスの各々の導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス、窒素ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような、且つ、前述したC1=c1×(A+x×B)なる関係が維持されるような制御が実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、目標窒化ポテンシャルの値に応じて異なっていてもよい。 The in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculation device 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and selects three types of in-furnace introduced gases. Of these, PID control is performed using the introduction amounts of ammonia gas and nitrogen gas as input values. Specifically, in the PID control, the introduction amount of the ammonia decomposition gas is kept constant while the introduction amount of the ammonia gas and the nitrogen gas is changed so that the nitriding potential in the processing furnace 2 approaches the target nitriding potential. , and control is carried out so that the relationship C1=c1.times.(A+x.times.B) described above is maintained. In the PID control, each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ according to the value of the target nitriding potential.
 そして、ガス導入量制御手段14が、PID制御の結果として、アンモニアガスの導入量及び窒素ガスの導入量を制御する。ガス導入量制御手段14は、決定された各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22、アンモニア分解ガス用の第2供給量制御装置26(一定供給量)、及び、窒素ガス用の第3供給量制御装置72、に制御信号を送る。 Then, the gas introduction amount control means 14 controls the introduction amount of ammonia gas and the introduction amount of nitrogen gas as a result of PID control. The gas introduction amount control means 14 controls the first supply amount control device 22 for the ammonia gas and the second supply amount control device 26 for the ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas. , and the third feed rate controller 72 for nitrogen gas.
 以上のような制御により、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.2)に制御できた(グラフの図示は省略する)。 Through the above control, the in-furnace nitriding potential can be stably controlled near the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min (illustration of the graph is omitted).
(比較例の説明)
 比較のため、アンモニア分解ガスを導入せずに、アンモニアガスと窒素ガスとの流量比を常に80:20に維持してそれらの合計流量を変動させる、という態様の窒化ポテンシャル制御を行った。
(Description of Comparative Example)
For comparison, nitriding potential control was performed in such a manner that no ammonia decomposition gas was introduced, the flow rate ratio of ammonia gas and nitrogen gas was always maintained at 80:20, and the total flow rate thereof was varied.
 具体的には、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号に基づいて炉内窒化ポテンシャルを演算した。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、アンモニアガス及び窒素ガスの各々の導入量を入力値としたPID制御を実施した。より具体的には、当該PID制御において、アンモニアガスと窒素ガスとの流量比を一定に保ちながらアンモニアガスと窒素ガスとの合計導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような制御が実施された。 Specifically, the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculated the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculator 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and sets each of the ammonia gas and the nitrogen gas. PID control was performed using the amount of introduced as an input value. More specifically, in the PID control, by changing the total introduction amount of ammonia gas and nitrogen gas while keeping the flow rate ratio of ammonia gas and nitrogen gas constant, the nitriding potential in the processing furnace 2 is adjusted to the target. Control was performed to approach the nitriding potential.
 しかしながら、以上のような比較例の制御では、窒化ポテンシャルを安定的に制御することができなかった。 However, it was not possible to stably control the nitriding potential with the control of the comparative example as described above.
(実施例2-1~実施例2-3と比較例との比較)
 以上の結果を纏めた表を、図7として示す。
(Comparison between Examples 2-1 to 2-3 and Comparative Examples)
A table summarizing the above results is shown in FIG.
(実施例2-2の更なる変形例)
 実施例2-2において、微量の(0.1%程度の)アルゴンガスが追加的に導入されてもよい。具体的には、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数(本例ではx=0.5)とし、アルゴンガスの導入量C2を、当該炉内導入ガスに割り当てた比例係数c2(例えばc2=0.002)を用いて、
 C2=c2×(A+x×B)
となるように制御してもよい。
(Further modified example of Example 2-2)
In Example 2-2, a small amount (on the order of 0.1%) of argon gas may additionally be introduced. Specifically, let A be the amount of ammonia gas introduced into the furnace, B be the amount of ammonia decomposition gas introduced into the furnace, x be a predetermined constant (x=0.5 in this example), and the amount of argon gas introduced Using a proportionality coefficient c2 (for example, c2 = 0.002) assigned to the gas introduced into the furnace,
C2=c2×(A+x×B)
may be controlled to be
 この場合においても、実施例2-2と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.6)に制御できた。 Also in this case, as in Example 2-2, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (0.6) with extremely high precision from the time point of 10 min.
 更には、実施例2-2において、微量の(0.1%程度の)アルゴンガスが追加的に導入量を一定に保ちながら導入されてもよい。 Furthermore, in Example 2-2, a small amount (about 0.1%) of argon gas may be additionally introduced while keeping the introduction amount constant.
 この場合においても、実施例2-2と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.6)に制御できた。 Also in this case, as in Example 2-2, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (0.6) with extremely high precision from the time point of 10 min.
 あるいは、実施例2-2において、軟窒化処理とは呼べない程度の微量の(0.1%程度の)浸炭性ガス(COやCO2等)が追加的に導入されてもよい。具体的には、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数(本例ではx=0.5)とし、浸炭性ガスの導入量C2を、当該炉内導入ガスに割り当てた比例係数c2(例えばc2=0.002)を用いて、
 C2=c2×(A+x×B)
となるように制御してもよい。
Alternatively, in Example 2-2, a very small amount (about 0.1%) of carburizing gas (CO, CO 2 , etc.), which cannot be called nitrocarburizing, may be additionally introduced. Specifically, let A be the amount of ammonia gas introduced into the furnace, B be the amount of ammonia decomposition gas introduced into the furnace, x be a predetermined constant (in this example, x=0.5), and introduce carburizing gas. Using a proportionality coefficient c2 (for example, c2 = 0.002) assigned to the gas introduced into the furnace,
C2=c2×(A+x×B)
may be controlled to be
 この場合においても、実施例2-2と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.6)に制御できた。 Also in this case, as in Example 2-2, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (0.6) with extremely high precision from the time point of 10 min.
 更には、実施例2-2において、微量の(0.1%程度の)浸炭性ガスが追加的に導入量を一定に保ちながら導入されてもよい。 Furthermore, in Example 2-2, a small amount (about 0.1%) of carburizing gas may be additionally introduced while keeping the introduction amount constant.
 この場合においても、実施例2-2と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.6)に制御できた。 Also in this case, as in Example 2-2, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (0.6) with extremely high precision from the time point of 10 min.
(実施例2-1の更なる変形例)
 実施例2-1においても、微量の(0.1%程度の)アルゴンガスが追加的に導入されてもよい。具体的には、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数(本例ではx=0.5)とし、アルゴンガスの導入量C2を、当該炉内導入ガスに割り当てた比例係数c2(例えばc2=0.002)を用いて、
 C2=c2×(A+x×B)
となるように制御してもよい。
(Further modification of Example 2-1)
Also in Example 2-1, a small amount (about 0.1%) of argon gas may be additionally introduced. Specifically, let A be the amount of ammonia gas introduced into the furnace, B be the amount of ammonia decomposition gas introduced into the furnace, x be a predetermined constant (x=0.5 in this example), and the amount of argon gas introduced Using a proportionality coefficient c2 (for example, c2 = 0.002) assigned to the gas introduced into the furnace,
C2=c2×(A+x×B)
may be controlled to be
 この場合においても、実施例2-1と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(1.0)に制御できた。 Also in this case, as in Example 2-1, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high precision from the time point of 10 min.
 更には、実施例2-1において、微量の(0.1%程度の)アルゴンガスが追加的に導入量を一定に保ちながら導入されてもよい。 Furthermore, in Example 2-1, a small amount (about 0.1%) of argon gas may be additionally introduced while keeping the introduction amount constant.
 この場合においても、実施例2-1と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(1.0)に制御できた。 Also in this case, as in Example 2-1, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high precision from the time point of 10 min.
 あるいは、実施例2-1において、軟窒化処理とは呼べない程度の微量の(0.1%程度の)浸炭性ガス(COやCO2等)が追加的に導入されてもよい。具体的には、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数(本例ではx=0.5)とし、浸炭性ガスの導入量C2を、当該炉内導入ガスに割り当てた比例係数c2(例えばc2=0.002)を用いて、
 C2=c2×(A+x×B)
となるように制御してもよい。
Alternatively, in Example 2-1, a very small amount (about 0.1%) of carburizing gas (CO, CO 2 , etc.) that cannot be called nitrocarburizing may be additionally introduced. Specifically, let A be the amount of ammonia gas introduced into the furnace, B be the amount of ammonia decomposition gas introduced into the furnace, x be a predetermined constant (in this example, x=0.5), and introduce carburizing gas. Using a proportionality coefficient c2 (for example, c2 = 0.002) assigned to the gas introduced into the furnace,
C2=c2×(A+x×B)
may be controlled to be
 この場合においても、実施例2-1と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(1.0)に制御できた。 Also in this case, as in Example 2-1, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high precision from the time point of 10 min.
 更には、実施例2-1において、微量の(0.1%程度の)浸炭性ガスが追加的に導入量を一定に保ちながら導入されてもよい。 Furthermore, in Example 2-1, a small amount (about 0.1%) of carburizing gas may be additionally introduced while keeping the introduction amount constant.
 この場合においても、実施例2-1と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(1.0)に制御できた。 Also in this case, as in Example 2-1, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high precision from the time point of 10 min.
(実施例2-3の更なる変形例)
 実施例2-3においても、微量の(0.1%程度の)アルゴンガスが追加的に導入されてもよい。具体的には、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数(本例ではx=0.5)とし、アルゴンガスの導入量C2を、当該炉内導入ガスに割り当てた比例係数c2(例えばc2=0.002)を用いて、
 C2=c2×(A+x×B)
となるように制御してもよい。
(Further modification of Example 2-3)
Also in Example 2-3, a small amount (approximately 0.1%) of argon gas may be additionally introduced. Specifically, let A be the amount of ammonia gas introduced into the furnace, B be the amount of ammonia decomposition gas introduced into the furnace, x be a predetermined constant (x=0.5 in this example), and the amount of argon gas introduced Using a proportionality coefficient c2 (for example, c2 = 0.002) assigned to the gas introduced into the furnace,
C2=c2×(A+x×B)
may be controlled to be
 この場合においても、実施例2-3と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.2)に制御できた。 Also in this case, as in Example 2-3, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min.
 更には、実施例2-3において、微量の(0.1%程度の)アルゴンガスが追加的に導入量を一定に保ちながら導入されてもよい。 Furthermore, in Example 2-3, a small amount (approximately 0.1%) of argon gas may be additionally introduced while keeping the introduction amount constant.
 この場合においても、実施例2-3と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.2)に制御できた。 Also in this case, as in Example 2-3, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min.
 あるいは、実施例2-3において、軟窒化処理とは呼べない程度の微量の(0.1%程度の)浸炭性ガス(COやCO2等)が追加的に導入されてもよい。具体的には、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数(本例ではx=0.5)とし、浸炭性ガスの導入量C2を、当該炉内導入ガスに割り当てた比例係数c2(例えばc2=0.002を用いて、
 C2=c2×(A+x×B)
となるように制御してもよい。
Alternatively, in Example 2-3, a very small amount (about 0.1%) of carburizing gas (CO, CO 2 , etc.), which cannot be called nitrocarburizing, may be additionally introduced. Specifically, let A be the amount of ammonia gas introduced into the furnace, B be the amount of ammonia decomposition gas introduced into the furnace, x be a predetermined constant (in this example, x=0.5), and introduce carburizing gas. Using a proportionality coefficient c2 (for example, c2 = 0.002) that assigns the amount C2 to the gas introduced into the furnace,
C2=c2×(A+x×B)
may be controlled to be
 この場合においても、実施例2-3と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.2)に制御できた。 Also in this case, as in Example 2-3, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min.
 更には、実施例2-3において、微量の(0.1%程度の)浸炭性ガスが追加的に導入量を一定に保ちながら導入されてもよい。 Furthermore, in Example 2-3, a small amount (about 0.1%) of carburizing gas may be additionally introduced while keeping the introduction amount constant.
 この場合においても、実施例2-3と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.2)に制御できた。 Also in this case, as in Example 2-3, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min.
(作用:実施例3-2(実施例3-1は後述する))
 次に、図8及び図9を参照して、実施例1-1~1-3と比較して窒素ガスの導入量を増大させた場合の本実施形態の表面硬化処理装置1の作用について説明する。この場合も、処理炉2内に被処理品Sが投入され、処理炉2の加熱が開始される。図8及び図9に示す例でも、処理炉2として、φ700×1000のサイズのピット炉が用いられ、加熱温度は570℃とされ、被処理品Sとして、8m2の表面積を有する鋼材が用いられた。
(Action: Example 3-2 (Example 3-1 will be described later))
Next, with reference to FIGS. 8 and 9, the operation of the surface hardening apparatus 1 of this embodiment when the introduction amount of nitrogen gas is increased compared to Examples 1-1 to 1-3 will be described. do. Also in this case, the article S to be processed is put into the processing furnace 2, and the heating of the processing furnace 2 is started. In the examples shown in FIGS. 8 and 9 as well, a pit furnace with a size of φ700×1000 is used as the processing furnace 2, the heating temperature is set at 570° C., and a steel material having a surface area of 8 m 2 is used as the workpiece S. was taken.
 処理炉2の加熱中、炉内導入ガス供給部20からアンモニアガスとアンモニア分解ガスと窒素ガスとが設定初期流量で処理炉2内へ導入される。ここでは、図8に示すように、アンモニアガスの設定初期流量が4.0[l/min]とされ、アンモニア分解ガスの設定初期流量が20.0[l/min]とされ、窒素ガスの設定初期流量が21.0[l/min]とされ、x=0.5とされ、c1=1.5とされた。これらの設定初期流量は、パラメータ設定装置15において設定入力可能である。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気が攪拌される。 During heating of the processing furnace 2, ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the processing furnace 2 from the in-furnace introduction gas supply unit 20 at the set initial flow rates. Here, as shown in FIG. 8, the set initial flow rate of ammonia gas is set to 4.0 [l/min], the set initial flow rate of ammonia decomposition gas is set to 20.0 [l/min], and the set initial flow rate of nitrogen gas is set to 4.0 [l/min]. The set initial flow rate was set to 21.0 [l/min], x=0.5, and c1=1.5. These set initial flow rates can be set and input in the parameter setting device 15 . Further, the stirring fan driving motor 9 is driven to rotate the stirring fan 8, thereby stirring the atmosphere in the processing furnace 2. As shown in FIG.
 初期状態では、開閉弁制御装置16は、開閉弁17を閉鎖状態としている。 In the initial state, the on-off valve control device 16 keeps the on-off valve 17 closed.
 また、炉内温度計測装置10が炉内ガスの温度を計測し、この計測温度を含む情報信号を窒化ポテンシャル調節計4及び記録計6に出力する。窒化ポテンシャル調節計4は、処理炉2内の状態について、昇温途中であるのか、昇温が完了した状態(安定した状態)であるのか、判定する。 Further, the furnace temperature measuring device 10 measures the temperature of the furnace gas and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6 . The nitriding potential controller 4 determines whether the state in the processing furnace 2 is in the middle of temperature rising or in a state (stable state) where the temperature rising has been completed.
 また、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャル(本例では0.6:図9参照)と基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能であり、例えば0.1である。 Further, the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the nitriding potential in the furnace (which is initially a very high value (because there is no hydrogen in the furnace), but the decomposition of the ammonia gas (hydrogen occurrence), it is determined whether or not the sum of the target nitriding potential (0.6 in this example: see FIG. 9) and the standard deviation value is exceeded. This standard deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
 昇温が完了した状態であると判定され、且つ、炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和(本例では0.7)を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。これに応じて、開閉制御装置16が開閉弁17を開放状態に切り換える。 When it is determined that the temperature rise is completed and the calculated value of the in-furnace nitriding potential is lower than the sum of the target nitriding potential and the standard deviation value (0.7 in this example), the nitriding potential The controller 4 starts controlling the introduction amount of the gas introduced into the furnace through the gas introduction amount control means 14 . In response to this, the opening/closing control device 16 switches the opening/closing valve 17 to the open state.
 開閉弁17が開放状態に切り換えられると、処理炉2と雰囲気ガス濃度検出装置3とが連通し、炉内雰囲気ガス濃度検出装置3が炉内水素濃度あるいは炉内アンモニア濃度を検出する。検出された水素濃度信号あるいはアンモニア濃度信号が、窒化ポテンシャル調節計4及び記録計6へ出力される。 When the on-off valve 17 is switched to the open state, the processing furnace 2 and the atmospheric gas concentration detection device 3 are communicated with each other, and the furnace atmospheric gas concentration detection device 3 detects the hydrogen concentration in the furnace or the ammonia concentration in the furnace. A detected hydrogen concentration signal or ammonia concentration signal is output to the nitriding potential controller 4 and the recorder 6 .
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号に基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、3種類の炉内導入ガスのうちアンモニアガス及び窒素ガスの各々の導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス及び窒素ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような、且つ、前述したC1=c1×(A+x×B)なる関係が維持されるような制御が実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、目標窒化ポテンシャルの値に応じて異なっていてもよい。 The in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculation device 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and selects three types of in-furnace introduced gases. PID control is performed using the introduction amounts of ammonia gas and nitrogen gas as input values. Specifically, in the PID control, by changing the introduced amounts of the ammonia gas and the nitrogen gas while keeping the introduced amount of the ammonia decomposition gas constant, the nitriding potential in the processing furnace 2 approaches the target nitriding potential. , and control is carried out so that the relationship C1=c1.times.(A+x.times.B) described above is maintained. In the PID control, each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ according to the value of the target nitriding potential.
 そして、ガス導入量制御手段14が、PID制御の結果として、アンモニアガスの導入量及び窒素ガスの導入量を制御する。ガス導入量制御手段14は、決定された各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22、アンモニア分解ガス用の第2供給量制御装置26(一定供給量)、及び、窒素ガス用の第3供給量制御装置72、に制御信号を送る。 Then, the gas introduction amount control means 14 controls the introduction amount of ammonia gas and the introduction amount of nitrogen gas as a result of PID control. The gas introduction amount control means 14 controls the first supply amount control device 22 for the ammonia gas and the second supply amount control device 26 for the ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas. , and the third feed rate controller 72 for nitrogen gas.
 以上のような制御により、図9に示すように、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体例として、図9に示す例によれば、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.6)に制御できることが分かる。(図8及び図9に示す例では、処理開始後約100分の時点で、各ガス流量及び窒化ポテンシャルの記録が停止されている。) Through the above control, the in-furnace nitriding potential can be stably controlled near the target nitriding potential as shown in FIG. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. As a specific example, according to the example shown in FIG. 9, the amount of ammonia gas introduced is within a fluctuation range of about 3.0 l/min (±1.5 l/min) by feedback control with a sampling time of about several hundred milliseconds. It can be seen that the nitriding potential can be controlled to the target nitriding potential (0.6) with extremely high accuracy from about 10 minutes after the start of the treatment. (In the examples shown in FIGS. 8 and 9, the recording of each gas flow rate and nitriding potential is stopped about 100 minutes after the start of treatment.)
(作用:実施例3-1)
 次に、本実施形態の表面硬化処理装置1を用いて、目標窒化ポテンシャルを1.0とする場合(実施例3-1)について説明する。当該実施例3-1においても、処理炉2として、φ700×1000のサイズのピット炉が用いられ、加熱温度は570℃とされ、被処理品Sとして、8m2の表面積を有する鋼材が用いられた。
(Action: Example 3-1)
Next, a case where the target nitriding potential is set to 1.0 using the surface hardening apparatus 1 of the present embodiment (Example 3-1) will be described. Also in Example 3-1, a pit furnace with a size of φ700×1000 is used as the processing furnace 2, the heating temperature is set at 570° C., and a steel material having a surface area of 8 m 2 is used as the work S to be processed. rice field.
 処理炉2の加熱中、炉内導入ガス供給部20からアンモニアガスとアンモニア分解ガスと窒素ガスとが設定初期流量で処理炉2内へ導入される。ここでは、アンモニアガスの設定初期流量が6.0[l/min]とされ、アンモニア分解ガスの設定初期流量が17.0[l/min]とされ、窒素ガスの設定初期流量が21.8[l/min]とされ、x=0.5とされ、c1=1.5とされた。これらの設定初期流量は、パラメータ設定装置15において設定入力可能である。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気が攪拌される。 During heating of the processing furnace 2, ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the processing furnace 2 from the in-furnace introduction gas supply unit 20 at the set initial flow rates. Here, the set initial flow rate of ammonia gas is 6.0 [l/min], the set initial flow rate of ammonia decomposition gas is 17.0 [l/min], and the set initial flow rate of nitrogen gas is 21.8 [l/min]. [l/min], x=0.5 and c1=1.5. These set initial flow rates can be set and input in the parameter setting device 15 . Further, the stirring fan driving motor 9 is driven to rotate the stirring fan 8, thereby stirring the atmosphere in the processing furnace 2. As shown in FIG.
 初期状態では、開閉弁制御装置16は、開閉弁17を閉鎖状態としている。 In the initial state, the on-off valve control device 16 keeps the on-off valve 17 closed.
 また、炉内温度計測装置10が炉内ガスの温度を計測し、この計測温度を含む情報信号を窒化ポテンシャル調節計4及び記録計6に出力する。窒化ポテンシャル調節計4は、処理炉2内の状態について、昇温途中であるのか、昇温が完了した状態(安定した状態)であるのか、判定する。 Further, the furnace temperature measuring device 10 measures the temperature of the furnace gas and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6 . The nitriding potential controller 4 determines whether the state in the processing furnace 2 is in the middle of temperature rising or in a state (stable state) where the temperature rising has been completed.
 また、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャル(本例では1.0)と基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能であり、例えば0.1である。 Further, the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the nitriding potential in the furnace (which is initially a very high value (because there is no hydrogen in the furnace), but the decomposition of the ammonia gas (hydrogen It is determined whether or not the sum of the target nitriding potential (1.0 in this example) and the standard deviation value is exceeded. This standard deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
 昇温が完了した状態であると判定され、且つ、炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和(本例では1.1)を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。これに応じて、開閉制御装置16が開閉弁17を開放状態に切り換える。 When it is determined that the temperature rise is completed and the calculated value of the in-furnace nitriding potential is lower than the sum of the target nitriding potential and the reference deviation value (1.1 in this example), the nitriding potential The controller 4 starts controlling the introduction amount of the gas introduced into the furnace through the gas introduction amount control means 14 . In response to this, the opening/closing control device 16 switches the opening/closing valve 17 to the open state.
 開閉弁17が開放状態に切り換えられると、処理炉2と雰囲気ガス濃度検出装置3とが連通し、炉内雰囲気ガス濃度検出装置3が炉内水素濃度あるいは炉内アンモニア濃度を検出する。検出された水素濃度信号あるいはアンモニア濃度信号が、窒化ポテンシャル調節計4及び記録計6へ出力される。 When the on-off valve 17 is switched to the open state, the processing furnace 2 and the atmospheric gas concentration detection device 3 are communicated with each other, and the furnace atmospheric gas concentration detection device 3 detects the hydrogen concentration in the furnace or the ammonia concentration in the furnace. A detected hydrogen concentration signal or ammonia concentration signal is output to the nitriding potential controller 4 and the recorder 6 .
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号に基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、3種類の炉内導入ガスのうちアンモニアガス、窒素ガスの各々の導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス、窒素ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような、且つ、前述したC1=c1×(A+x×B)なる関係が維持されるような制御が実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、目標窒化ポテンシャルの値に応じて異なっていてもよい。 The in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculation device 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and selects three types of in-furnace introduced gases. Of these, PID control is performed using the introduction amounts of ammonia gas and nitrogen gas as input values. Specifically, in the PID control, the introduction amount of the ammonia decomposition gas is kept constant while the introduction amount of the ammonia gas and the nitrogen gas is changed so that the nitriding potential in the processing furnace 2 approaches the target nitriding potential. , and control is carried out so that the relationship C1=c1.times.(A+x.times.B) described above is maintained. In the PID control, each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ according to the value of the target nitriding potential.
 そして、ガス導入量制御手段14が、PID制御の結果として、アンモニアガスの導入量及び窒素ガスの導入量を制御する。ガス導入量制御手段14は、決定された各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22、アンモニア分解ガス用の第2供給量制御装置26(一定供給量)、窒素ガス用の第3供給量制御装置72、に制御信号を送る。 Then, the gas introduction amount control means 14 controls the introduction amount of ammonia gas and the introduction amount of nitrogen gas as a result of PID control. The gas introduction amount control means 14 controls the first supply amount control device 22 for the ammonia gas and the second supply amount control device 26 for the ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas. , the third feed rate controller 72 for nitrogen gas.
 以上のような制御により、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(1.0)に制御できた(グラフの図示は省略する)。 Through the above control, the in-furnace nitriding potential can be stably controlled near the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high accuracy from the time point of 10 min (illustration of the graph is omitted).
(作用:実施例3-3)
 次に、本実施形態の表面硬化処理装置1を用いて、目標窒化ポテンシャルを0.2とする場合(実施例3-3)について説明する。当該実施例3-3においても、処理炉2として、φ700×1000のサイズのピット炉が用いられ、加熱温度は570℃とされ、被処理品Sとして、8m2の表面積を有する鋼材が用いられた。
(Action: Example 3-3)
Next, a case where the target nitriding potential is set to 0.2 using the surface hardening apparatus 1 of the present embodiment (Example 3-3) will be described. Also in Example 3-3, a pit furnace having a size of φ700×1000 is used as the processing furnace 2, the heating temperature is set to 570° C., and a steel material having a surface area of 8 m 2 is used as the work S to be processed. rice field.
 処理炉2の加熱中、炉内導入ガス供給部20からアンモニアガスとアンモニア分解ガスと窒素ガスとが設定初期流量で処理炉2内へ導入される。ここでは、アンモニアガスの設定初期流量が1.0[l/min]とされ、アンモニア分解ガスの設定初期流量が25.0[l/min]とされ、窒素ガスの設定初期流量が20.0[l/min]とされ、x=0.5とされ、c1=1.5とされた。これらの設定初期流量は、パラメータ設定装置15において設定入力可能である。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気が攪拌される。 During heating of the processing furnace 2, ammonia gas, ammonia decomposition gas, and nitrogen gas are introduced into the processing furnace 2 from the in-furnace introduction gas supply unit 20 at the set initial flow rates. Here, the set initial flow rate of ammonia gas is 1.0 [l/min], the set initial flow rate of ammonia decomposition gas is 25.0 [l/min], and the set initial flow rate of nitrogen gas is 20.0 [l/min]. [l/min], x=0.5 and c1=1.5. These set initial flow rates can be set and input in the parameter setting device 15 . Further, the stirring fan driving motor 9 is driven to rotate the stirring fan 8, thereby stirring the atmosphere in the processing furnace 2. As shown in FIG.
 初期状態では、開閉弁制御装置16は、開閉弁17を閉鎖状態としている。 In the initial state, the on-off valve control device 16 keeps the on-off valve 17 closed.
 また、炉内温度計測装置10が炉内ガスの温度を計測し、この計測温度を含む情報信号を窒化ポテンシャル調節計4及び記録計6に出力する。窒化ポテンシャル調節計4は、処理炉2内の状態について、昇温途中であるのか、昇温が完了した状態(安定した状態)であるのか、判定する。 Further, the furnace temperature measuring device 10 measures the temperature of the furnace gas and outputs an information signal including the measured temperature to the nitriding potential controller 4 and the recorder 6 . The nitriding potential controller 4 determines whether the state in the processing furnace 2 is in the middle of temperature rising or in a state (stable state) where the temperature rising has been completed.
 また、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャル(本例では0.2)と基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能であり、例えば0.1である。 Further, the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the nitriding potential in the furnace (which is initially a very high value (because there is no hydrogen in the furnace), but the decomposition of the ammonia gas (hydrogen It is determined whether or not the sum of the target nitriding potential (0.2 in this example) and the reference deviation value is exceeded. This standard deviation value can also be set and input in the parameter setting device 15, and is, for example, 0.1.
 昇温が完了した状態であると判定され、且つ、炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和(本例では0.3)を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。これに応じて、開閉制御装置16が開閉弁17を開放状態に切り換える。 When it is determined that the temperature rise is completed and the calculated value of the in-furnace nitriding potential is lower than the sum of the target nitriding potential and the reference deviation value (0.3 in this example), the nitriding potential The controller 4 starts controlling the introduction amount of the gas introduced into the furnace through the gas introduction amount control means 14 . In response to this, the opening/closing control device 16 switches the opening/closing valve 17 to the open state.
 開閉弁17が開放状態に切り換えられると、処理炉2と雰囲気ガス濃度検出装置3とが連通し、炉内雰囲気ガス濃度検出装置3が炉内水素濃度あるいは炉内アンモニア濃度を検出する。検出された水素濃度信号あるいはアンモニア濃度信号が、窒化ポテンシャル調節計4及び記録計6へ出力される。 When the on-off valve 17 is switched to the open state, the processing furnace 2 and the atmospheric gas concentration detection device 3 are communicated with each other, and the furnace atmospheric gas concentration detection device 3 detects the hydrogen concentration in the furnace or the ammonia concentration in the furnace. A detected hydrogen concentration signal or ammonia concentration signal is output to the nitriding potential controller 4 and the recorder 6 .
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号に基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、3種類の炉内導入ガスのうちアンモニアガス、窒素ガスの各々の導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニア分解ガスの導入量を一定に保ちながらアンモニアガス、窒素ガスの導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような、且つ、前述したC1=c1×(A+x×B)なる関係が維持されるような制御が実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、目標窒化ポテンシャルの値に応じて異なっていてもよい。 The in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculation device 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and selects three types of in-furnace introduced gases. Of these, PID control is performed using the introduction amounts of ammonia gas and nitrogen gas as input values. Specifically, in the PID control, the introduction amount of the ammonia decomposition gas is kept constant while the introduction amount of the ammonia gas and the nitrogen gas is changed so that the nitriding potential in the processing furnace 2 approaches the target nitriding potential. , and control is carried out so that the relationship C1=c1.times.(A+x.times.B) described above is maintained. In the PID control, each setting parameter value set and input by the parameter setting device 15 is used. This setting parameter value may differ according to the value of the target nitriding potential.
 そして、ガス導入量制御手段14が、PID制御の結果として、アンモニアガスの導入量及び窒素ガスの導入量を制御する。ガス導入量制御手段14は、決定された各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22、アンモニア分解ガス用の第2供給量制御装置26(一定供給量)、及び、窒素ガス用の第3供給量制御装置72、に制御信号を送る。 Then, the gas introduction amount control means 14 controls the introduction amount of ammonia gas and the introduction amount of nitrogen gas as a result of PID control. The gas introduction amount control means 14 controls the first supply amount control device 22 for the ammonia gas and the second supply amount control device 26 for the ammonia decomposition gas (constant supply amount) in order to realize the determined introduction amount of each gas. , and the third feed rate controller 72 for nitrogen gas.
 以上のような制御により、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.2)に制御できた(グラフの図示は省略する)。 Through the above control, the in-furnace nitriding potential can be stably controlled near the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min (illustration of the graph is omitted).
(比較例の説明)
 比較のため、アンモニア分解ガスを導入せずに、アンモニアガスと窒素ガスとの流量比を常に40:60に維持してそれらの合計流量を変動させる、という態様の窒化ポテンシャル制御を行った。
(Description of Comparative Example)
For comparison, nitriding potential control was performed in such a manner that no ammonia cracking gas was introduced, the flow rate ratio of ammonia gas and nitrogen gas was always maintained at 40:60, and the total flow rate thereof was varied.
 具体的には、窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号に基づいて炉内窒化ポテンシャルを演算した。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、アンモニアガス及び窒素ガスの各々の導入量を入力値としたPID制御を実施した。より具体的には、当該PID制御において、アンモニアガスと窒素ガスとの流量比を一定に保ちながらアンモニアガスと窒素ガスとの合計導入量を変化させることによって、処理炉2内の窒化ポテンシャルが目標窒化ポテンシャルに近づくような制御が実施された。 Specifically, the in-furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculated the in-furnace nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculator 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and sets each of the ammonia gas and the nitrogen gas. PID control was performed using the amount of introduced as an input value. More specifically, in the PID control, by changing the total introduction amount of ammonia gas and nitrogen gas while keeping the flow rate ratio of ammonia gas and nitrogen gas constant, the nitriding potential in the processing furnace 2 is adjusted to the target. Control was performed to approach the nitriding potential.
 しかしながら、以上のような比較例の制御では、窒化ポテンシャルを安定的に制御することができなかった。 However, it was not possible to stably control the nitriding potential with the control of the comparative example as described above.
(実施例3-1~実施例3-3と比較例との比較)
 以上の結果を纏めた表を、図10として示す。
(Comparison between Examples 3-1 to 3-3 and Comparative Example)
A table summarizing the above results is shown in FIG.
(実施例3-2の更なる変形例)
 実施例3-2において、微量の(0.1%程度の)アルゴンガスが追加的に導入されてもよい。具体的には、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数(本例ではx=0.5)とし、アルゴンガスの導入量C2を、当該炉内導入ガスに割り当てた比例係数c2(例えばc2=0.002)を用いて、
 C2=c2×(A+x×B)
となるように制御してもよい。
(Further modification of Example 3-2)
In Example 3-2, a small amount (on the order of 0.1%) of argon gas may additionally be introduced. Specifically, let A be the amount of ammonia gas introduced into the furnace, B be the amount of ammonia decomposition gas introduced into the furnace, x be a predetermined constant (x=0.5 in this example), and the amount of argon gas introduced Using a proportionality coefficient c2 (for example, c2 = 0.002) assigned to the gas introduced into the furnace,
C2=c2×(A+x×B)
may be controlled to be
 この場合においても、実施例3-2と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.6)に制御できた。 Also in this case, as in Example 3-2, the in-furnace nitriding potential can be stably controlled near the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (0.6) with extremely high precision from the time point of 10 min.
 更には、実施例3-2において、微量の(0.1%程度の)アルゴンガスが追加的に導入量を一定に保ちながら導入されてもよい。 Furthermore, in Example 3-2, a small amount (about 0.1%) of argon gas may be additionally introduced while keeping the introduction amount constant.
 この場合においても、実施例3-2と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.6)に制御できた。 Also in this case, as in Example 3-2, the in-furnace nitriding potential can be stably controlled near the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (0.6) with extremely high precision from the time point of 10 min.
 あるいは、実施例3-2において、軟窒化処理とは呼べない程度の微量の(0.1%程度の)浸炭性ガス(COやCO2等)が追加的に導入されてもよい。具体的には、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数(本例ではx=0.5)とし、浸炭性ガスの導入量C2を、当該炉内導入ガスに割り当てた比例係数c2(例えばc2=0.002)を用いて、
 C2=c2×(A+x×B)
となるように制御してもよい。
Alternatively, in Example 3-2, a very small amount (about 0.1%) of carburizing gas (CO, CO 2 , etc.), which cannot be called nitrocarburizing, may be additionally introduced. Specifically, let A be the amount of ammonia gas introduced into the furnace, B be the amount of ammonia decomposition gas introduced into the furnace, x be a predetermined constant (in this example, x=0.5), and introduce carburizing gas. Using a proportionality coefficient c2 (for example, c2 = 0.002) assigned to the gas introduced into the furnace,
C2=c2×(A+x×B)
may be controlled to be
 この場合においても、実施例3-2と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.6)に制御できた。 Also in this case, as in Example 3-2, the in-furnace nitriding potential can be stably controlled near the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (0.6) with extremely high precision from the time point of 10 min.
 更には、実施例3-2において、微量の(0.1%程度の)浸炭性ガスが追加的に導入量を一定に保ちながら導入されてもよい。 Furthermore, in Example 3-2, a small amount (about 0.1%) of carburizing gas may be additionally introduced while keeping the introduction amount constant.
 この場合においても、実施例3-2と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.6)に制御できた。 Also in this case, as in Example 3-2, the in-furnace nitriding potential can be stably controlled near the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (0.6) with extremely high precision from the time point of 10 min.
(実施例3-1の更なる変形例)
 実施例3-1においても、微量の(0.1%程度の)アルゴンガスが追加的に導入されてもよい。具体的には、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数(本例ではx=0.5)とし、アルゴンガスの導入量C2を、当該炉内導入ガスに割り当てた比例係数c2(例えばc2=0.002)を用いて、
 C2=c2×(A+x×B)
となるように制御してもよい。
(Further modification of Example 3-1)
Also in Example 3-1, a small amount (about 0.1%) of argon gas may be additionally introduced. Specifically, let A be the amount of ammonia gas introduced into the furnace, B be the amount of ammonia decomposition gas introduced into the furnace, x be a predetermined constant (x=0.5 in this example), and the amount of argon gas introduced Using a proportionality coefficient c2 (for example, c2 = 0.002) assigned to the gas introduced into the furnace,
C2=c2×(A+x×B)
may be controlled to be
 この場合においても、実施例3-1と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(1.0)に制御できた。 Also in this case, as in Example 3-1, the in-furnace nitriding potential can be stably controlled near the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high precision from the time point of 10 min.
 更には、実施例3-1において、微量の(0.1%程度の)アルゴンガスが追加的に導入量を一定に保ちながら導入されてもよい。 Furthermore, in Example 3-1, a small amount (approximately 0.1%) of argon gas may be additionally introduced while keeping the introduction amount constant.
 この場合においても、実施例3-1と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(1.0)に制御できた。 Also in this case, as in Example 3-1, the in-furnace nitriding potential can be stably controlled near the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high precision from the time point of 10 min.
 あるいは、実施例3-1において、軟窒化処理とは呼べない程度の微量の(0.1%程度の)浸炭性ガス(COやCO2等)が追加的に導入されてもよい。具体的には、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数(本例ではx=0.5)とし、浸炭性ガスの導入量C2を、当該炉内導入ガスに割り当てた比例係数c2(例えばc2=0.002)を用いて、
 C2=c2×(A+x×B)
となるように制御してもよい。
Alternatively, in Example 3-1, a very small amount (about 0.1%) of carburizing gas (CO, CO 2 , etc.), which cannot be called nitrocarburizing, may be additionally introduced. Specifically, let A be the amount of ammonia gas introduced into the furnace, B be the amount of ammonia decomposition gas introduced into the furnace, x be a predetermined constant (in this example, x=0.5), and introduce carburizing gas. Using a proportionality coefficient c2 (for example, c2 = 0.002) assigned to the gas introduced into the furnace,
C2=c2×(A+x×B)
may be controlled to be
 この場合においても、実施例3-1と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(1.0)に制御できた。 Also in this case, as in Example 3-1, the in-furnace nitriding potential can be stably controlled near the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high precision from the time point of 10 min.
 更には、実施例3-1において、微量の(0.1%程度の)浸炭性ガスが追加的に導入量を一定に保ちながら導入されてもよい。 Furthermore, in Example 3-1, a small amount (about 0.1%) of carburizing gas may be additionally introduced while keeping the introduction amount constant.
 この場合においても、実施例3-1と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(1.0)に制御できた。 Also in this case, as in Example 3-1, the in-furnace nitriding potential can be stably controlled near the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (1.0) with extremely high precision from the time point of 10 min.
(実施例3-3の更なる変形例)
 実施例3-3においても、微量の(0.1%程度の)アルゴンガスが追加的に導入されてもよい。具体的には、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数(本例ではx=0.5)とし、アルゴンガスの導入量C2を、当該炉内導入ガスに割り当てた比例係数c2(例えばc2=0.002)を用いて、
 C2=c2×(A+x×B)
となるように制御してもよい。
(Further modification of Example 3-3)
Also in Example 3-3, a small amount (about 0.1%) of argon gas may be additionally introduced. Specifically, let A be the amount of ammonia gas introduced into the furnace, B be the amount of ammonia decomposition gas introduced into the furnace, x be a predetermined constant (x=0.5 in this example), and the amount of argon gas introduced Using a proportionality coefficient c2 (for example, c2 = 0.002) assigned to the gas introduced into the furnace,
C2=c2×(A+x×B)
may be controlled to be
 この場合においても、実施例3-3と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.2)に制御できた。 Also in this case, as in Example 3-3, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min.
 更には、実施例3-3において、微量の(0.1%程度の)アルゴンガスが追加的に導入量を一定に保ちながら導入されてもよい。 Furthermore, in Example 3-3, a small amount (approximately 0.1%) of argon gas may be additionally introduced while keeping the introduction amount constant.
 この場合においても、実施例3-3と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.2)に制御できた。 Also in this case, as in Example 3-3, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min.
 あるいは、実施例3-3において、軟窒化処理とは呼べない程度の微量の(0.1%程度の)浸炭性ガス(COやCO2等)が追加的に導入されてもよい。具体的には、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数(本例ではx=0.5)とし、浸炭性ガスの導入量C2を、当該炉内導入ガスに割り当てた比例係数c2(例えばc2=0.002)を用いて、
 C2=c2×(A+x×B)
となるように制御してもよい。
Alternatively, in Example 3-3, a very small amount (about 0.1%) of carburizing gas (CO, CO 2 , etc.) that cannot be called nitrocarburizing may be additionally introduced. Specifically, let A be the amount of ammonia gas introduced into the furnace, B be the amount of ammonia decomposition gas introduced into the furnace, x be a predetermined constant (in this example, x=0.5), and introduce carburizing gas. Using a proportionality coefficient c2 (for example, c2 = 0.002) assigned to the gas introduced into the furnace,
C2=c2×(A+x×B)
may be controlled to be
 この場合においても、実施例3-3と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.2)に制御できた。 Also in this case, as in Example 3-3, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min.
 更には、実施例3-3において、微量の(0.1%程度の)浸炭性ガスが追加的に導入量を一定に保ちながら導入されてもよい。 Furthermore, in Example 3-3, a small amount (about 0.1%) of carburizing gas may be additionally introduced while keeping the introduction amount constant.
 この場合においても、実施例3-3と同様、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの表面硬化処理を極めて高品質に行うことができる。具体的には、サンプリング時間数百ミリ秒程度のフィードバック制御によって、アンモニアガスの導入量は3.0l/min(±1.5l/min)程度の変動幅内で増減され、処理開始後約10分の時点から窒化ポテンシャルを極めて高精度に目標窒化ポテンシャル(0.2)に制御できた。 Also in this case, as in Example 3-3, the in-furnace nitriding potential can be stably controlled in the vicinity of the target nitriding potential. As a result, the surface hardening treatment of the workpiece S can be performed with extremely high quality. Specifically, by feedback control with a sampling time of about several hundred milliseconds, the amount of ammonia gas introduced is increased or decreased within a fluctuation range of about 3.0 l/min (±1.5 l/min), and after the start of treatment, about 10 The nitriding potential could be controlled to the target nitriding potential (0.2) with extremely high accuracy from the time point of 10 min.
1 表面硬化処理装置
2 処理炉
3 雰囲気ガス濃度検出装置
4 窒化ポテンシャル調節計
5 温度調節計
6 記録計
8 攪拌ファン
9 攪拌ファン駆動モータ
10 炉内温度計測装置
11 炉内加熱装置
13 窒化ポテンシャル演算装置
14 ガス導入量制御装置
15 パラメータ設定装置(タッチパネル)
16 開閉弁制御装置
17 開閉弁
20 炉内ガス供給部
21 第1炉内導入ガス供給部
22 第1炉内ガス供給制御装置
23 第1供給弁
24 第1流量計
25 第2炉内導入ガス供給部
26 第2炉内ガス供給制御装置
27 第2供給弁
28 第2流量計
29 炉内導入ガス導入配管
30 ガス流量出力調整装置
31 プログラマブルロジックコントローラ
40 炉内ガス廃棄配管
41 排ガス燃焼分解装置
71 第3炉内導入ガス供給部
72 第3炉内ガス供給制御装置
73 第3供給弁
74 第3流量計
Reference Signs List 1 surface hardening treatment device 2 treatment furnace 3 atmosphere gas concentration detector 4 nitriding potential controller 5 temperature controller 6 recorder 8 stirring fan 9 stirring fan drive motor 10 furnace temperature measuring device 11 furnace heating device 13 nitriding potential arithmetic device 14 gas introduction amount control device 15 parameter setting device (touch panel)
16 On-off valve controller 17 On-off valve 20 Furnace gas supply unit 21 First in-furnace gas supply unit 22 First in-furnace gas supply controller 23 First supply valve 24 First flow meter 25 Second in-furnace gas supply Part 26 Second Furnace Gas Supply Control Device 27 Second Supply Valve 28 Second Flow Meter 29 Furnace Introduction Gas Introduction Pipe 30 Gas Flow Output Adjusting Device 31 Programmable Logic Controller 40 Furnace Gas Waste Pipe 41 Exhaust Gas Combustion Decomposition Device 71 3rd Furnace Introduction Gas Supply Unit 72 3rd Furnace Gas Supply Controller 73 3rd Supply Valve 74 3rd Flow Meter

Claims (8)

  1.  アンモニアガスとアンモニア分解ガスと窒素ガスとを含む複数種類の炉内導入ガスを処理炉内へ導入して、前記処理炉内に配置される被処理品の表面硬化処理としてガス窒化処理を行う表面硬化処理装置であって、
     前記処理炉内の水素濃度またはアンモニア濃度を検出する炉内雰囲気ガス濃度検出装置と、
     前記炉内雰囲気ガス濃度検出装置によって検出される水素濃度またはアンモニア濃度に基づいて前記処理炉内の窒化ポテンシャルを演算する炉内窒化ポテンシャル演算装置と、
     前記炉内窒化ポテンシャル演算装置によって演算される前記処理炉内の窒化ポテンシャルと目標窒化ポテンシャルとに応じて、前記アンモニア分解ガスの導入量を一定に保ちながら前記複数種類の炉内導入ガスのうち前記アンモニア分解ガス以外の各炉内導入ガスの導入量を変化させることによって前記処理炉内の窒化ポテンシャルを前記目標窒化ポテンシャルに近づけるガス導入量制御装置と、
    を備えたことを特徴とする表面硬化処理装置。
    A plurality of types of furnace-introduced gases including ammonia gas, ammonia-decomposed gas, and nitrogen gas are introduced into the processing furnace to perform gas nitriding treatment as surface hardening treatment of the article to be treated placed in the processing furnace. A curing treatment device,
    an in-furnace atmosphere gas concentration detection device for detecting the hydrogen concentration or the ammonia concentration in the processing furnace;
    an in-furnace nitriding potential computing device for computing a nitriding potential in the processing furnace based on the hydrogen concentration or the ammonia concentration detected by the in-furnace atmosphere gas concentration detecting device;
    According to the nitriding potential and the target nitriding potential in the treatment furnace calculated by the in-furnace nitriding potential calculating device, while maintaining the introduction amount of the ammonia decomposition gas constant, a gas introduction amount control device for bringing the nitriding potential in the processing furnace closer to the target nitriding potential by changing the introduction amount of each of the gases introduced into the furnace other than the ammonia decomposition gas;
    A surface hardening apparatus comprising:
  2.  前記ガス導入量制御装置は、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数とした時、前記複数種類の炉内導入ガスのうちアンモニアガス及びアンモニア分解ガス以外の各炉内導入ガスの導入量C1、・・・、CN(Nは1以上の整数)を、当該各炉内導入ガスに割り当てた比例係数c1、・・・、cNを用いて、
     C1=c1×(A+x×B)、・・・、CN=cN×(A+x×B)
    となるように制御する
    ことを特徴とする請求項1に記載の表面硬化処理装置。
    In the gas introduction amount control device, when A is the amount of ammonia gas introduced into the furnace, B is the amount of ammonia decomposition gas introduced into the furnace, and x is a predetermined constant, Proportional coefficients c1, . using cN,
    C1=c1×(A+x×B), CN=cN×(A+x×B)
    2. The surface hardening apparatus according to claim 1, wherein the control is performed so that
  3.  前記所定の定数xは、0.4~0.6である
    ことを特徴とする請求項2に記載の表面硬化装置。
    3. The surface hardening apparatus according to claim 2, wherein said predetermined constant x is 0.4 to 0.6.
  4.  前記所定の定数xは、0.5である
    ことを特徴とする請求項3に記載の表面硬化装置。
    4. The surface hardening apparatus according to claim 3, wherein said predetermined constant x is 0.5.
  5.  アンモニアガスとアンモニア分解ガスと窒素ガスとを含む複数種類の炉内導入ガスを処理炉内へ導入して、前記処理炉内に配置される被処理品の表面硬化処理としてガス窒化処理を行う表面硬化処理方法であって、
     前記処理炉内の水素濃度またはアンモニア濃度を検出する炉内雰囲気ガス濃度検出工程と、
     前記炉内雰囲気ガス濃度検出装置によって検出される水素濃度またはアンモニア濃度に基づいて前記処理炉内の窒化ポテンシャルを演算する炉内窒化ポテンシャル演算工程と、
     前記炉内窒化ポテンシャル演算装置によって演算される前記処理炉内の窒化ポテンシャルと目標窒化ポテンシャルとに応じて、前記アンモニア分解ガスの導入量を一定に保ちながら前記複数種類の炉内導入ガスのうち前記アンモニア分解ガス以外の各炉内導入ガスの導入量を変化させることによって前記処理炉内の窒化ポテンシャルを前記目標窒化ポテンシャルに近づけるガス導入量制御工程と、
    を備えたことを特徴とする表面硬化処理方法。
    A plurality of types of furnace-introduced gases including ammonia gas, ammonia-decomposed gas, and nitrogen gas are introduced into the processing furnace to perform gas nitriding treatment as surface hardening treatment of the article to be treated placed in the processing furnace. A curing treatment method,
    a furnace atmosphere gas concentration detecting step of detecting the hydrogen concentration or the ammonia concentration in the processing furnace;
    an in-furnace nitriding potential calculation step of calculating a nitriding potential in the processing furnace based on the hydrogen concentration or the ammonia concentration detected by the in-furnace atmosphere gas concentration detection device;
    According to the nitriding potential and the target nitriding potential in the treatment furnace calculated by the in-furnace nitriding potential calculating device, while maintaining the introduction amount of the ammonia decomposition gas constant, a gas introduction amount control step for bringing the nitriding potential in the processing furnace closer to the target nitriding potential by changing the introduction amount of each of the gases introduced into the furnace other than the ammonia decomposition gas;
    A surface hardening treatment method comprising:
  6.  アンモニアガスとアンモニア分解ガスと窒素ガスとを含む複数種類の炉内導入ガスを処理炉内へ導入して、前記処理炉内に配置される被処理品の表面硬化処理としてガス窒化処理を行う表面硬化処理装置であって、
     前記処理炉内の水素濃度またはアンモニア濃度を検出する炉内雰囲気ガス濃度検出装置と、
     前記炉内雰囲気ガス濃度検出装置によって検出される水素濃度またはアンモニア濃度に基づいて前記処理炉内の窒化ポテンシャルを演算する炉内窒化ポテンシャル演算装置と、
     前記炉内窒化ポテンシャル演算装置によって演算される前記処理炉内の窒化ポテンシャルと目標窒化ポテンシャルとに応じて、前記アンモニア分解ガスの導入量を一定に保ちながら前記アンモニアガス及び前記窒素ガスの導入量を変化させることによって前記処理炉内の窒化ポテンシャルを前記目標窒化ポテンシャルに近づけるガス導入量制御装置と、
    を備えたことを特徴とする表面硬化処理装置。
    A surface subjected to gas nitriding as a surface hardening treatment of an article to be treated placed in the treatment furnace by introducing a plurality of types of furnace introduced gases including ammonia gas, ammonia decomposition gas, and nitrogen gas into the treatment furnace. A curing treatment device,
    an in-furnace atmosphere gas concentration detection device for detecting the hydrogen concentration or the ammonia concentration in the processing furnace;
    an in-furnace nitriding potential computing device for computing a nitriding potential in the processing furnace based on the hydrogen concentration or the ammonia concentration detected by the in-furnace atmosphere gas concentration detecting device;
    According to the nitriding potential and the target nitriding potential in the treatment furnace calculated by the in-furnace nitriding potential calculation device, the introduction amount of the ammonia gas and the nitrogen gas is adjusted while keeping the introduction amount of the ammonia decomposition gas constant. a gas introduction amount control device that changes the nitriding potential in the processing furnace to approach the target nitriding potential;
    A surface hardening apparatus comprising:
  7.  前記ガス導入量制御装置は、アンモニアガスの炉内導入量をAとし、アンモニア分解ガスの炉内導入量をBとし、xを所定の定数とした時、前記窒素ガスの導入量C1を、当該浸炭性ガスに割り当てた比例係数c1を用いて、
     C1=c1×(A+x×B)
    となるように制御する
    ことを特徴とする請求項6に記載の表面硬化処理装置。
    When the amount of ammonia gas introduced into the furnace is A, the amount of ammonia decomposition gas introduced into the furnace is B, and x is a predetermined constant, the gas introduction amount control device sets the introduction amount C1 of the nitrogen gas to the relevant Using the proportionality coefficient c1 assigned to the carburizing gas,
    C1=c1×(A+x×B)
    7. The surface hardening apparatus according to claim 6, wherein the control is performed so that
  8.  アンモニアガスとアンモニア分解ガスと窒素ガスとを含む複数種類の炉内導入ガスを処理炉内へ導入して、前記処理炉内に配置される被処理品の表面硬化処理としてガス窒化処理を行う表面硬化処理方法であって、
     前記処理炉内の水素濃度またはアンモニア濃度を検出する炉内雰囲気ガス濃度検出工程と、
     前記炉内雰囲気ガス濃度検出装置によって検出される水素濃度またはアンモニア濃度に基づいて前記処理炉内の窒化ポテンシャルを演算する炉内窒化ポテンシャル演算工程と、
     前記炉内窒化ポテンシャル演算装置によって演算される前記処理炉内の窒化ポテンシャルと目標窒化ポテンシャルとに応じて、前記アンモニア分解ガスの導入量を一定に保ちながら前記アンモニアガス及び前記窒素ガスの導入量を変化させることによって前記処理炉内の窒化ポテンシャルを前記目標窒化ポテンシャルに近づけるガス導入量制御工程と、
    を備えたことを特徴とする表面硬化処理方法。
    A plurality of types of furnace-introduced gases including ammonia gas, ammonia-decomposed gas, and nitrogen gas are introduced into the processing furnace to perform gas nitriding treatment as surface hardening treatment of the article to be treated placed in the processing furnace. A curing treatment method,
    a furnace atmosphere gas concentration detecting step of detecting the hydrogen concentration or the ammonia concentration in the processing furnace;
    an in-furnace nitriding potential calculation step of calculating a nitriding potential in the processing furnace based on the hydrogen concentration or the ammonia concentration detected by the in-furnace atmosphere gas concentration detection device;
    According to the nitriding potential and the target nitriding potential in the treatment furnace calculated by the in-furnace nitriding potential calculator, the introduced amounts of the ammonia gas and the nitrogen gas are adjusted while keeping the introduced amount of the ammonia decomposition gas constant. a gas introduction amount control step of changing the nitriding potential in the processing furnace to approach the target nitriding potential;
    A surface hardening treatment method comprising:
PCT/JP2022/013509 2021-04-09 2022-03-23 Surface hardening treatment apparatus and surface hardening treatment method WO2022215526A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-066247 2021-04-09
JP2021066247 2021-04-09

Publications (1)

Publication Number Publication Date
WO2022215526A1 true WO2022215526A1 (en) 2022-10-13

Family

ID=83545363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013509 WO2022215526A1 (en) 2021-04-09 2022-03-23 Surface hardening treatment apparatus and surface hardening treatment method

Country Status (2)

Country Link
TW (1) TW202302886A (en)
WO (1) WO2022215526A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6503122B1 (en) * 2018-08-17 2019-04-17 パーカー熱処理工業株式会社 Surface hardening treatment apparatus and surface hardening treatment method
WO2020090999A1 (en) * 2018-11-02 2020-05-07 パーカー熱処理工業株式会社 Nitrided steel member, and method and apparatus for producing nitrided steel member
WO2020175453A1 (en) * 2019-02-26 2020-09-03 パーカー熱処理工業株式会社 Nitriding steel member, and method and device for manufacturing nitriding steel member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6503122B1 (en) * 2018-08-17 2019-04-17 パーカー熱処理工業株式会社 Surface hardening treatment apparatus and surface hardening treatment method
WO2020090999A1 (en) * 2018-11-02 2020-05-07 パーカー熱処理工業株式会社 Nitrided steel member, and method and apparatus for producing nitrided steel member
WO2020175453A1 (en) * 2019-02-26 2020-09-03 パーカー熱処理工業株式会社 Nitriding steel member, and method and device for manufacturing nitriding steel member

Also Published As

Publication number Publication date
TW202302886A (en) 2023-01-16

Similar Documents

Publication Publication Date Title
JP6345320B1 (en) Surface hardening processing apparatus and surface hardening processing method
KR102655059B1 (en) Surface hardening treatment device and surface hardening treatment method
JP5883727B2 (en) Gas nitriding and gas soft nitriding methods
JP2011026627A (en) Apparatus and method for surface hardening treatment
US4175986A (en) Inert carrier gas heat treating control process
JP7094540B2 (en) Nitride steel member and manufacturing method and manufacturing equipment for nitrided steel member
WO2022215526A1 (en) Surface hardening treatment apparatus and surface hardening treatment method
JP6576209B2 (en) Nitriding processing apparatus and nitriding processing method
WO2021070938A1 (en) Surface hardening apparatus and surface hardening method
WO2020175453A1 (en) Nitriding steel member, and method and device for manufacturing nitriding steel member
JPS63199859A (en) Automatic heat-treating device for steel
TWI758650B (en) Nitrided Steel Components
JP6724201B2 (en) Nitriding apparatus and nitriding method
JPS6372821A (en) Treatment of metal
JP7451950B2 (en) Surface treatment method for metal materials
JP2023028533A (en) Nitrided steel member, and manufacturing method of nitrided steel member
EP1966396A2 (en) Method for oxygen free carburization in atmospheric pressure furnaces
JPS5896866A (en) Controlling method for quantity of carburization in vaccum carburization treatment
JP2009235443A (en) Method of manufacturing steel with adjusted surface carbon concentration
UA92102C2 (en) Method for production of iron-carbon alloys in frolovs metallurgical unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784511

Country of ref document: EP

Kind code of ref document: A1