JP2009235443A - Method of manufacturing steel with adjusted surface carbon concentration - Google Patents

Method of manufacturing steel with adjusted surface carbon concentration Download PDF

Info

Publication number
JP2009235443A
JP2009235443A JP2008079752A JP2008079752A JP2009235443A JP 2009235443 A JP2009235443 A JP 2009235443A JP 2008079752 A JP2008079752 A JP 2008079752A JP 2008079752 A JP2008079752 A JP 2008079752A JP 2009235443 A JP2009235443 A JP 2009235443A
Authority
JP
Japan
Prior art keywords
gas
carbon concentration
carbon
steel
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008079752A
Other languages
Japanese (ja)
Inventor
Yoshiki Wakimoto
佳季 脇本
Joji Hachisuga
譲二 蜂須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2008079752A priority Critical patent/JP2009235443A/en
Publication of JP2009235443A publication Critical patent/JP2009235443A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing steel with adjusted surface carbon concentration by which the surface carbon concentration of the steel can be easily uniformized. <P>SOLUTION: Carbon concentration adjusting gas containing the predetermined carbon compound gas component is supplied to steel, the equilibrium reaction is established between the carbon in the steel and the carbon concentration adjusting gas. By the establishment of the equilibrium reaction, in a portion where the surface carbon concentration of the steel is saturated, the decarburization reaction is generated in which the carbon compound gas component is generated from the carbon in the steel, and in a non-saturated portion, the carburization reaction is generated in which carbon is supplied into the steel from the carbon compound gas component. By the decarburization reaction and the carburization reaction reversible to each other, the surface carbon concentration of the steel is adjusted. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鋼材の製造方法に関し、中でも、表面炭素濃度が調整された鋼材の製造方法に関し、特に、炭素濃度指標(カーボンポテンシャル)制御による表面炭素濃度が調整された鋼材の製造方法に関する。   The present invention relates to a method for manufacturing a steel material, and more particularly, to a method for manufacturing a steel material whose surface carbon concentration is adjusted, and more particularly to a method for manufacturing a steel material whose surface carbon concentration is adjusted by carbon concentration index (carbon potential) control.

鋼の真空浸炭処理に関して、特許文献1には、「減圧下、ブタンガスを含んだ雰囲気ガス中において、雰囲気ガス中の酸素の量と雰囲気ガスの熱伝導度を測定しながら浸炭を行う真空浸炭装置」が提案されている。   Regarding vacuum carburizing treatment of steel, Patent Document 1 states that “a vacuum carburizing apparatus that performs carburizing while measuring the amount of oxygen in the atmosphere gas and the thermal conductivity of the atmosphere gas in an atmosphere gas containing butane gas under reduced pressure. Is proposed.

同じく、特許文献2には、「被浸炭処理材である鋼材を浸炭ガスが減圧下で供給される浸炭処理雰囲気内で加熱すると共に、浸炭ガスとして都市ガス若しくは天然ガスを使用し、これを減圧下且つ850〜1150℃の温度下で導入工程、拡散保持工程及び排気工程を1サイクルとしこれを複数サイクル繰り返すパルス式手段により導入することによって浸炭処理を行う」真空浸炭方法が提案されている。   Similarly, Patent Document 2 states that “a steel material that is to be carburized is heated in a carburizing atmosphere in which carburizing gas is supplied under reduced pressure, and city gas or natural gas is used as the carburizing gas, and this is reduced in pressure. A vacuum carburizing method is proposed in which the introduction process, the diffusion holding process, and the exhaust process are performed as one cycle at a temperature of 850 to 1150 ° C., and this is introduced by pulsed means that repeats a plurality of cycles.

同じく、特許文献3には、「隣接する浸炭拡散室間で圧力を同一に保持しながら、しかも、不等間隔パルス法を実行できる」真空浸炭方法が提案されている。   Similarly, Patent Document 3 proposes a vacuum carburizing method that “can perform an unequal interval pulse method while maintaining the same pressure between adjacent carburizing diffusion chambers”.

また、特許文献4には、「減圧雰囲気及び浸炭可能温度以上の高温に保持した炉内に浸炭性ガスを導入して炉内のワークに対して拡散処理を実行する。その後、炉内を排気して減圧雰囲気において加熱することにより炉内のワークに対して拡散処理を実行する。拡散処理のうちの少なくとも初期において、脱炭性ガスを炉内に導入して炉内のワークの表面層に脱炭処理を行い、ワークの表面層のセメンタイトを減少または除去する」サイクルを「複数回連続的に繰り返す」真空浸炭方法が提案されている。さらに、特許文献4には、上記真空浸炭方法として、ワークが装入された炉内に、脱炭性ガスである二酸化炭素(CO)と浸炭性ガスであるプロパンガス(C)とを混合した混合ガスを、脱炭期に導入して、表面炭素濃度を調整する方法が提案されている。 Further, Patent Document 4 discloses that “a carburizing gas is introduced into a furnace maintained at a high temperature equal to or lower than a reduced pressure atmosphere and a carburizable temperature, and a diffusion process is performed on a workpiece in the furnace. Then, a diffusion treatment is performed on the workpiece in the furnace by heating in a reduced pressure atmosphere.At least in the initial stage of the diffusion treatment, a decarburizing gas is introduced into the furnace to form a surface layer of the workpiece in the furnace. A vacuum carburizing method has been proposed in which a cycle of “decarburizing treatment to reduce or remove cementite in the surface layer of the workpiece” is repeated “successively repeatedly”. Further, in Patent Document 4, as the vacuum carburizing method, carbon dioxide (CO 2 ) as a decarburizing gas and propane gas (C 3 H 8 ) as a carburizing gas are placed in a furnace in which a workpiece is charged. There has been proposed a method of adjusting the surface carbon concentration by introducing a mixed gas obtained by mixing in a decarburization period.

特開2004−59959号公報JP 2004-59959 A 特開2004−332074号公報JP 2004-332074 A 特開2002−115042号公報JP 2002-115042 A 特開2004−115893号公報JP 2004-115893 A

特許文献1又は2の発明のように、浸炭処理によって、角部を要する鋼製品、例えば、ギヤの表面炭素濃度の調整を図ると、突出している角部の表面炭素濃度は平坦部の表面炭素濃度よりも高くなり、角部と平坦部との間の炭素濃度を均一にすることは困難である。なお、特許文献2の発明のように、パルス式浸炭処理を行っても、角部と平坦部との間の炭素濃度を小さくすることはできるが、均一にすることは困難である。   As in the invention of Patent Document 1 or 2, by adjusting the surface carbon concentration of a steel product that requires corners, for example, gears, by carburizing, the surface carbon concentration of the protruding corners is the surface carbon of the flat part. It becomes higher than the concentration, and it is difficult to make the carbon concentration between the corner portion and the flat portion uniform. In addition, even if it performs pulse type carburizing process like invention of patent document 2, although the carbon concentration between a corner | angular part and a flat part can be made small, it is difficult to make uniform.

特許文献3の不等間隔パルス法によれば、浸炭の進行に合わせて浸炭及び拡散工程時間を調整可能であるが、角部と平坦部間の炭素濃度差を均一にすることは困難である。   According to the unequal interval pulse method of Patent Document 3, it is possible to adjust the carburization and diffusion process time according to the progress of carburization, but it is difficult to make the difference in carbon concentration between the corner and the flat part uniform. .

特許文献4の発明によれば、浸炭性ガスとして用いているプロパンガスが、分解されやすく生成されにくいため、実際には、ワーク中の炭素と可逆反応しないという問題がある。すなわち、プロパンガスが分解され、プロパンガス中の炭素がワークに侵入する浸炭反応のみが生成し、ワーク中の炭素からプロパンガスが生成される脱炭反応が生成しないという問題、又、プロパンガスは、脱炭性ガスとして用いられている二酸化炭素との間で、炭素交換反応を生成しないという問題がある。したがって、この発明によれば、得られる鋼の表面炭素濃度は、処理時間及び鋼表面積に比例してしまい、制御条件を決定することが非常に困難であり、特に、ワークの角部と平坦部の表面炭素濃度を均一化することが非常に困難である。換言すると、この発明によれば、外乱が発生する度に、制御条件を変更する必要がある、ロバスト性の低い工法である。   According to the invention of Patent Document 4, since propane gas used as a carburizing gas is easily decomposed and is not easily generated, there is actually a problem that it does not reversibly react with carbon in the workpiece. That is, the problem that propane gas is decomposed and only a carburization reaction in which carbon in propane gas enters the workpiece is generated, and a decarburization reaction in which propane gas is generated from carbon in the workpiece is not generated. There is a problem that a carbon exchange reaction is not generated with carbon dioxide used as a decarburizing gas. Therefore, according to the present invention, the surface carbon concentration of the obtained steel is proportional to the processing time and the steel surface area, and it is very difficult to determine the control conditions. It is very difficult to make the surface carbon concentration uniform. In other words, according to the present invention, it is a method of low robustness that requires the control conditions to be changed every time a disturbance occurs.

本発明の目的は、鋼材の表面炭素濃度を容易に均一化することができる、表面炭素濃度が調整された鋼材の製造方法を提供することである。   The objective of this invention is providing the manufacturing method of the steel materials by which the surface carbon concentration was adjusted which can make the surface carbon concentration of steel materials uniform easily.

本発明者らの知見によると、従来、角部と平坦部を有する鋼製のワークを真空浸炭すると、角部と平坦部間の表面炭素濃度を均一にすることはできない。それは、表面炭素濃度の均一性がワーク形状に依存してしまうためである。また、炉内にワークをセットする位置による、得られる表面炭素濃度の差も大きい。つまり、従来の真空浸炭法によれば、ワーク形状に依存せずに、炭化水素ガスと鋼間の炭素交換反応を利用した、“カーボンポテンシャル”(以下「CP」という)制御をすることができない(CP制御不能)。   According to the knowledge of the present inventors, conventionally, when a steel workpiece having a corner portion and a flat portion is vacuum carburized, the surface carbon concentration between the corner portion and the flat portion cannot be made uniform. This is because the uniformity of the surface carbon concentration depends on the workpiece shape. Moreover, the difference of the surface carbon concentration obtained by the position which sets a workpiece | work in a furnace is also large. That is, according to the conventional vacuum carburizing method, it is not possible to control “carbon potential” (hereinafter referred to as “CP”) using a carbon exchange reaction between hydrocarbon gas and steel without depending on the workpiece shape. (CP control impossible).

炭化水素ガス、代表的にはアセチレンが、加熱空間、例えば、真空浸炭炉に流入した際、炭化水素ガスが、ワークの表面以外、例えば、炉壁で熱分解すると、炭素と水素になってしまう。炉内へ導入される炭化水素ガスの量が、ワークへ侵入し拡散できる量以上に到達すると、熱分解した炭素が炉壁に吸着し、煤(スーティング)となる。煤、すなわち、外乱が発生すると、制御条件を変更しなければ、表面炭素濃度の均一性を得ることができない。また、煤が発生すると、炉のメンテナンス作業が必要であると共に、減圧装置の寿命を短縮する。このような設備の経時変化は、製品の品質管理にも大きく影響する。よって、安定した操業を継続するためには、煤の発生の防止が重要な課題である。   When hydrocarbon gas, typically acetylene, flows into a heating space, for example, a vacuum carburizing furnace, the hydrocarbon gas becomes carbon and hydrogen when pyrolyzed at the furnace wall other than the surface of the workpiece, for example. . When the amount of hydrocarbon gas introduced into the furnace exceeds the amount that can penetrate and diffuse into the workpiece, the pyrolyzed carbon is adsorbed on the furnace wall and becomes soot. If a soot, that is, a disturbance occurs, the uniformity of the surface carbon concentration cannot be obtained unless the control conditions are changed. In addition, if soot is generated, the maintenance work of the furnace is necessary and the life of the decompression device is shortened. Such changes in equipment over time greatly affect product quality control. Therefore, prevention of soot generation is an important issue in order to continue stable operation.

そこで、本発明者らは、下記の考察に基づいて、鋼の表面炭素濃度を均一にし、又煤の発生を防止できるCP制御方法を探求した。   Therefore, the present inventors sought a CP control method that can make the surface carbon concentration of steel uniform and prevent the occurrence of flaws based on the following consideration.

このCP制御方法によれば、単位時間当たりの浸炭又は脱炭量は、下記の式1に基づいて決まる。   According to this CP control method, the amount of carburization or decarburization per unit time is determined based on the following formula 1.

単位時間当たりの浸炭又は脱炭量(mol・cm・s)∝ガスのカーボンポテンシャルと鋼の表面炭素濃度との差 ・・・(式1) Carburization or decarburization amount per unit time (mol · cm 2 · s) Difference between carbon potential of soot gas and surface carbon concentration of steel (Equation 1)

つまり、単位時間当たりの浸炭又は脱炭量は、ガス/鋼界面における炭素濃度差のみによって決まり、又鋼中の炭素拡散速度は、鋼の物性値に依存する。ガスを用いた浸炭・拡散プロセスにおいて、鋼の表面炭素濃度を調整するためには、ガス中の炭素濃度指標(カーボンポテンシャル(CP))の制御が必須である。例えば、脱炭プロセスは、非定常状態である。そして、同一相内において、CPの高低が存在すると、CP勾配が生じ、炭素の物質移動が起こる。   That is, the amount of carburization or decarburization per unit time is determined only by the carbon concentration difference at the gas / steel interface, and the carbon diffusion rate in the steel depends on the physical property value of the steel. In the carburizing / diffusion process using gas, in order to adjust the surface carbon concentration of steel, it is essential to control the carbon concentration index (carbon potential (CP)) in the gas. For example, the decarburization process is unsteady. In the same phase, if there is a high or low CP, a CP gradient occurs and carbon mass transfer occurs.

また、浸炭工程と脱炭工程を同一炉で実施したとすると、浸炭工程において、ワークとの反応量よりも過剰に供給されたアセチレンなどの浸炭ガス成分が熱分解して、炉内壁などに煤が付着する。ガスのCPは、煤が発生しなければ、ガス分圧(組成)及び温度に依存する。しかし、煤が発生すると、ガスと炉内壁の界面において、炭素濃度ないしCPが平衡値に到達してしまう。このガス−炉内壁界面で平衡したCP値は高いため、反対に、ガスのCPと鋼の表面炭素濃度との差は小さくなり、単位時間当たりの浸炭量又は脱炭量が小さくなってしまう。なお、従来は、このような煤の発生に起因する問題があるために、浸炭と脱炭を同一炉で実施すると、CP制御が困難となり、結局、表面炭素濃度の均一化が困難となっている。   Also, assuming that the carburizing step and the decarburizing step are performed in the same furnace, the carburizing gas component such as acetylene supplied in excess of the reaction amount with the workpiece in the carburizing step is thermally decomposed, so that Adheres. The CP of the gas depends on the gas partial pressure (composition) and temperature unless soot is generated. However, when soot is generated, the carbon concentration or CP reaches the equilibrium value at the interface between the gas and the furnace inner wall. Since the CP value balanced at the gas-furnace inner wall interface is high, on the contrary, the difference between the CP of the gas and the surface carbon concentration of the steel becomes small, and the amount of carburization or decarburization per unit time becomes small. Conventionally, since there is a problem due to the occurrence of such soot, if carburization and decarburization are carried out in the same furnace, CP control becomes difficult, and eventually it becomes difficult to make the surface carbon concentration uniform. Yes.

そこで、本発明者らは、浸炭された鋼の表面炭素濃度を下記のCP制御工程により、制御する方法を考察した。   Therefore, the present inventors considered a method of controlling the surface carbon concentration of the carburized steel by the following CP control process.

[浸炭工程]
CP制御工程を説明する前に、鋼の浸炭について説明する。鋼の浸炭は、例えば、炭化水素ガス、代表的にはアセチレンを用いた場合、下記の浸炭反応に基づいて行われる。
(g)⇔2C(inFe)+H(g) ・・・反応1.
[Carburization process]
Before describing the CP control process, the carburization of steel will be described. When carburizing steel, for example, when hydrocarbon gas, typically acetylene, is used, it is performed based on the following carburizing reaction.
C 2 H 2 (g) ⇔2C (inFe) + H 2 (g)... Reaction 1

浸炭ガス成分として、アセチレンを用いた場合、浸炭反応、すなわち、鋼表面における反応1の正反応の速度が速くなり、一方、脱炭反応、すなわち、鋼表面において反応1の逆反応は起こりにくい。この理由は、アセチレンの熱分解が、浸炭処理が行われる温度以上、例えば、850℃以上で容易に進行するためである。   When acetylene is used as the carburizing gas component, the speed of the carburizing reaction, that is, the normal reaction of reaction 1 on the steel surface is increased, while the decarburization reaction, that is, the reverse reaction of reaction 1 on the steel surface is unlikely to occur. This is because the thermal decomposition of acetylene easily proceeds at a temperature higher than the temperature at which carburization is performed, for example, 850 ° C. or higher.

[CP制御工程]
CP制御工程においては、炭素化合物ガス成分としてCO/CO+COガスを含む炭素濃度調整ガス、又はさらに、H/HOガスを含む炭素濃度調整ガスを用いて、下記のブードワ反応(反応2a)、又は水性化反応(反応2b)を利用して、鋼の表面炭素濃度を制御することができる。
2CO⇔C(inFe)+CO(g) ・・・(反応2a)
CO(g)+H(g)⇔CO(g)+HO(g) ・・・(反応2b)
[CP control process]
In the CP control step, a carbon concentration adjusting gas containing CO / CO + CO 2 gas as a carbon compound gas component or a carbon concentration adjusting gas containing H 2 / H 2 O gas is used, and the following Boudou reaction (reaction 2a) is performed. ), Or an aqueous reaction (reaction 2b), the surface carbon concentration of the steel can be controlled.
2CO⇔C (inFe) + CO 2 (g) (reaction 2a)
CO 2 (g) + H 2 (g) ⇔CO (g) + H 2 O (g) (reaction 2b)

反応2aは、鋼中の炭素とCO/CO+COガスとの間の平衡反応であり、この平衡反応の成立によって、鋼の表面炭素濃度が飽和した部分では該鋼中の炭素からCOガスが発生する脱炭反応が生成し、同飽和していない部分では鋼中にCOから炭素が供給される浸炭反応が生成し、可逆なこれら脱炭反応と浸炭反応によって鋼の表面炭素濃度が調整される。また、反応2aの成立時、COガスとCOの間で鋼中の炭素を介して、炭素交換が発生するということができる。なお、表面炭素濃度は、CO/CO+COガス分圧によって設定することができる。 Reaction 2a is an equilibrium reaction between carbon in the steel and CO / CO + CO 2 gas, and CO gas is generated from the carbon in the steel when the surface carbon concentration of the steel is saturated due to the establishment of this equilibrium reaction. The carburization reaction in which carbon is supplied from the CO into the steel is generated in the part that is not saturated, and the surface carbon concentration of the steel is adjusted by the reversible decarburization reaction and carburization reaction. . In addition, when the reaction 2a is established, it can be said that carbon exchange occurs between the CO gas and CO 2 via carbon in the steel. The surface carbon concentration can be set by the CO / CO + CO 2 gas partial pressure.

反応2bも、鋼中の炭素とCO/CO+COガスとH/HOガスとの間の平衡反応であり、この平衡反応の成立によって、反応2aの場合と同様に、鋼の表面炭素濃度が調整される。 Reaction 2b is also an equilibrium reaction between carbon in steel, CO / CO + CO 2 gas, and H 2 / H 2 O gas. By the establishment of this equilibrium reaction, the surface carbon of the steel is similar to that in reaction 2a. The density is adjusted.

以上のような知見に基づいて、本発明者らは、鋭意研究を進めた結果、本発明を完成するに至ったものである。   Based on the above findings, the present inventors have intensively studied and as a result, have completed the present invention.

本発明は、第1の視点において、鋼材に所定の炭素化合物ガス成分を含む炭素濃度調整ガスを供給して、前記鋼材中の炭素と前記炭素濃度調整ガスとの間で平衡反応を成立させ、前記平衡反応の成立によって、前記鋼材の表面炭素濃度が飽和した部分では該鋼材中の炭素から前記炭素化合物ガス成分が発生する脱炭反応が生成し、同飽和していない部分では該鋼材中に前記炭素化合物ガス成分から炭素が供給される浸炭反応が生成し、相互に可逆な前記脱炭反応及び前記浸炭反応によって前記鋼材の表面炭素濃度が調整される、鋼材の製造方法を提供する。   In the first aspect, the present invention supplies a carbon concentration adjusting gas containing a predetermined carbon compound gas component to a steel material, and establishes an equilibrium reaction between the carbon in the steel material and the carbon concentration adjusting gas, Due to the establishment of the equilibrium reaction, a decarburization reaction in which the carbon compound gas component is generated from the carbon in the steel material is generated in a portion where the surface carbon concentration of the steel material is saturated, and in the steel material in a portion where the carbon compound gas component is not saturated. There is provided a method for producing a steel material in which a carburization reaction in which carbon is supplied from the carbon compound gas component is generated, and a surface carbon concentration of the steel material is adjusted by the reversible decarburization reaction and the carburization reaction.

本発明によれば、鋼材の表面炭素濃度の調整を、外乱に強い可逆な平衡反応、詳細には、相互に可逆な脱炭反応及び浸炭反応を利用して行うことにより、一つの鋼材ロットにおける表面炭素濃度のバラツキ、又は複数の鋼材ロット間での表面炭素濃度のバラツキを容易に均一化することができる。   According to the present invention, the adjustment of the surface carbon concentration of a steel material is performed using a reversible equilibrium reaction that is resistant to disturbances, in particular, utilizing a mutually reversible decarburization reaction and carburization reaction. Variation in surface carbon concentration or variation in surface carbon concentration among a plurality of steel material lots can be easily uniformized.

本発明の好ましい実施の形態によれば、前記炭素化合物ガス成分として、前記平衡反応の成立時、前記鋼材を介して炭素交換な複数成分の炭素化合物ガス、好ましくCO/CO+CO混合ガスを用いる。 According to a preferred embodiment of the present invention, as the carbon compound gas component, a multi-component carbon compound gas, preferably a CO / CO + CO 2 mixed gas that is carbon exchanged via the steel material is used when the equilibrium reaction is established.

本発明によれば、炭素濃度調整ガスとして、実用的には、CO/CO+CO混合ガスを含む安価なRXガス(商標)を用いることができる。 According to the present invention, an inexpensive RX gas (trademark) containing a CO / CO + CO 2 mixed gas can be practically used as the carbon concentration adjusting gas.

本発明の好ましい実施の形態によれば、前記鋼材の表面炭素濃度の調整が真空下(真空ないし減圧下)で行われる。この形態によれば、前記炭素化合物ガス成分として、酸素を含むCO/CO+CO混合ガスを用いても、鋼材の粒界酸化が可及的に防止されて、粒界酸化の発生が表層に止まり、鋼材の強度が所定レベルで維持される。 According to a preferred embodiment of the present invention, the surface carbon concentration of the steel material is adjusted under vacuum (vacuum or reduced pressure). According to this embodiment, even when a CO / CO + CO 2 mixed gas containing oxygen is used as the carbon compound gas component, the grain boundary oxidation of the steel material is prevented as much as possible, and the generation of the grain boundary oxidation stops at the surface layer. The strength of the steel material is maintained at a predetermined level.

本発明の好ましい実施の形態によれば、前記鋼材の表面炭素濃度の調整を、800〜1000℃の温度範囲で行う。   According to a preferred embodiment of the present invention, the surface carbon concentration of the steel material is adjusted in a temperature range of 800 to 1000 ° C.

本発明の好ましい実施の形態によれば、前記平衡反応を利用した表面炭素濃度調整の工程を一回だけ行う。   According to a preferred embodiment of the present invention, the step of adjusting the surface carbon concentration using the equilibrium reaction is performed only once.

本発明の好ましい実施の形態において、鋼材を浸炭する場合の浸炭ガス成分は、アセチレン、プロパン、エチレン及びブタンから選択される一又は複数のガス成分を含む。   In a preferred embodiment of the present invention, the carburizing gas component in the case of carburizing steel includes one or more gas components selected from acetylene, propane, ethylene, and butane.

前記平衡反応を利用した表面炭素濃度調整の工程において、前記炭素化合物ガス成分として、下記の反応を生じる所定の炭化水素、ハロゲン化炭素等を添加してもよい。
CX(g)⇔C(inFe)+X(g)
但し、Xはハロゲン又は水素である。
In the step of adjusting the surface carbon concentration using the equilibrium reaction, a predetermined hydrocarbon, a halogenated carbon or the like that causes the following reaction may be added as the carbon compound gas component.
CX (g) ⇔C (inFe) + X (g)
However, X is a halogen or hydrogen.

本発明の好ましい実施の形態によれば、前記平衡反応を利用した表面炭素濃度調整の工程において、不活性ガス、例えば、N、アルゴンを添加してもよい。 According to a preferred embodiment of the present invention, an inert gas such as N 2 or argon may be added in the step of adjusting the surface carbon concentration using the equilibrium reaction.

本発明の好ましい実施の形態によれば、前記浸炭工程と、前記平衡反応を利用した表面炭素濃度調整工程との間に、前記浸炭により発生した煤を酸化性ガス及び/又は水素ガスにより除去する煤取工程を含む。   According to a preferred embodiment of the present invention, soot generated by the carburization is removed by an oxidizing gas and / or hydrogen gas between the carburizing step and the surface carbon concentration adjusting step using the equilibrium reaction. Includes a scraping process.

本発明の好ましい実施の形態によれば、前記鋼材は角部と平坦部を有し、前記浸炭工程により、前記角部の表面炭素濃度は前記平坦部のそれよりも高くなり、前記平衡反応を利用した表面炭素濃度調整により、前記突部の表面炭素濃度は目標範囲内に調整される。   According to a preferred embodiment of the present invention, the steel material has a corner portion and a flat portion, and the carburization step causes the surface carbon concentration of the corner portion to be higher than that of the flat portion, and the equilibrium reaction is performed. By adjusting the surface carbon concentration used, the surface carbon concentration of the protrusion is adjusted within the target range.

本発明の好ましい実施の形態によれば、前記鋼材は、前記炭素濃度調整ガスが供給される前に浸炭ガス成分によって浸炭され、前記鋼材の前記浸炭と、前記炭素濃度調整ガスの前記供給は、互いに異なる炉室内で行われる。   According to a preferred embodiment of the present invention, the steel material is carburized by a carburizing gas component before the carbon concentration adjusting gas is supplied, and the carburizing of the steel material and the supply of the carbon concentration adjusting gas are performed by: It is performed in different furnace chambers.

本発明の好ましい実施の形態によれば、前記浸炭室及び前記炭素濃度調整室をそれぞれ囲む壁は、前記浸炭ガス成分及び前記炭素濃度調整ガス成分とそれぞれ反応性が低い材料で形成される。   According to a preferred embodiment of the present invention, the walls surrounding the carburizing chamber and the carbon concentration adjusting chamber are formed of materials having low reactivity with the carburizing gas component and the carbon concentration adjusting gas component, respectively.

本発明の好ましい実施の形態によれば、前記浸炭室と前記炭素濃度調整室はバッチ式又は連続式に構成される。   According to a preferred embodiment of the present invention, the carburizing chamber and the carbon concentration adjusting chamber are configured as a batch type or a continuous type.

本発明の好ましい実施の形態によれば、前記平衡反応を利用した表面炭素濃度調整工程において、雰囲気の逐次的CP変化に対応して、炭素化合物ガスの分圧制御を行うため、浸炭室又は炭素濃度調整室に所定のガスを供給するガス流量制御装置、減圧ポンプ及び炉内攪拌ファンの運転をフィードバック制御する。   According to a preferred embodiment of the present invention, in the surface carbon concentration adjusting step using the equilibrium reaction, the partial pressure control of the carbon compound gas is performed in response to the sequential CP change of the atmosphere. Feedback control is performed on the operation of the gas flow rate controller for supplying a predetermined gas to the concentration adjusting chamber, the decompression pump, and the stirring fan in the furnace.

本発明の好ましい実施の形態によれば、高温で非常に高いCP下で浸炭工程を実行した後で、本発明による表面炭素濃度調整が実行する。   According to a preferred embodiment of the present invention, the surface carbon concentration adjustment according to the present invention is performed after performing the carburizing process under a very high CP at a high temperature.

本発明の好ましい実施の形態によれば、不活性ガスを添加することにより、雰囲気に投入する炭素化合物ガス成分のガス量を少なくすることが可能となる。また、不活性ガスを添加することにより、特に、高CP雰囲気を得ることができる。これは、浸炭プロセスにおいて有利である。   According to a preferred embodiment of the present invention, it is possible to reduce the amount of the carbon compound gas component introduced into the atmosphere by adding an inert gas. In addition, a high CP atmosphere can be obtained by adding an inert gas. This is advantageous in the carburizing process.

本発明の好ましい実施の形態によれば、表面炭素濃度調整を、加圧、常圧、減圧から真空下までの広範囲な条件で行う。   According to a preferred embodiment of the present invention, the surface carbon concentration is adjusted under a wide range of conditions from pressurization, normal pressure, reduced pressure to vacuum.

本発明の好ましい実施の形態によれば、浸炭工程と表面炭素濃度調整工程を同一炉で実施した場合、浸炭により炉壁に付着した煤を除去するために、炉壁から炉内へ、酸化性ガス又は水素ガス等の反応性ガスを供給できる構造を有し、加熱により、反応性ガスと煤が反応して、煤が除去される。   According to a preferred embodiment of the present invention, when the carburizing step and the surface carbon concentration adjusting step are carried out in the same furnace, in order to remove the soot adhering to the furnace wall due to carburizing, the furnace wall is oxidized into the furnace. It has a structure capable of supplying a reactive gas such as gas or hydrogen gas, and the reactive gas reacts with soot by heating to remove soot.

本発明の好ましい実施の形態によれば、処理時間を短縮するためには、下記のような炉を有する鋼材製造装置を用いることが好ましい。   According to a preferred embodiment of the present invention, in order to shorten the processing time, it is preferable to use a steel material manufacturing apparatus having a furnace as described below.

図1は、本発明の好ましい実施の形態に係る、浸炭室と表面炭素濃度調整室が同一な場合の鋼材製造装置の説明図である。図2は、本発明の好ましい実施の形態に係る、浸炭室と表面炭素濃度調整室を分離する場合の鋼材製造装置の説明図である。   FIG. 1 is an explanatory view of a steel material manufacturing apparatus when a carburizing chamber and a surface carbon concentration adjusting chamber are the same according to a preferred embodiment of the present invention. FIG. 2 is an explanatory diagram of a steel material manufacturing apparatus when separating a carburizing chamber and a surface carbon concentration adjusting chamber according to a preferred embodiment of the present invention.

図1を参照すると、この製造装置の炉は断熱多重構造であって、炉入口扉1aと、炉壁の外側断熱材2と、炉内への反応ガス流入口3と、炉内を加熱する加熱管4と、炉壁の内側断熱材5と、炉内の圧力を調整する真空ポンプ6と、炉内雰囲気を攪拌するファン7と、真空ポンプ6及びファン7に接続された炉内圧力制御装置8と、ヒータ9と、を有している。   Referring to FIG. 1, the furnace of this manufacturing apparatus has a heat insulation multiple structure, and heats the furnace inlet door 1a, the outer heat insulating material 2 of the furnace wall, the reaction gas inlet 3 into the furnace, and the inside of the furnace. Heating tube 4, inner heat insulating material 5 on the furnace wall, vacuum pump 6 for adjusting the pressure in the furnace, fan 7 for stirring the atmosphere in the furnace, pressure control in the furnace connected to the vacuum pump 6 and the fan 7 A device 8 and a heater 9 are included.

この炉は、浸炭工程と表面炭素濃度調整工程においてバッチ式に利用される。浸炭時、炉内(室内)は減圧雰囲気下において高CPに保持され、これによって浸炭時間が短縮される。表面炭素濃度調整時、炉内(室内)は低CP、例えばCP≒0の雰囲気に保持され、脱炭時間は鋼内部への炭素拡散時間によって決まり、これによって脱炭時間が短縮される。このようにして、処理時間が非常に短縮される。   This furnace is used batchwise in the carburizing step and the surface carbon concentration adjusting step. During carburizing, the interior of the furnace (inside the room) is maintained at a high CP in a reduced pressure atmosphere, thereby reducing the carburizing time. When adjusting the surface carbon concentration, the interior of the furnace (inside the room) is maintained in an atmosphere of low CP, for example, CP≈0, and the decarburization time is determined by the carbon diffusion time into the steel, thereby reducing the decarburization time. In this way, the processing time is greatly shortened.

なお、炉壁は、無機材料から形成することが好ましい。例えば、炉壁は、SiO系、Al系、ZrO系、SiC系、C系、MgO系、Cr系、CaO系、TiO系、及びそれらの複合酸化物で構成されることが好ましい。また、水素、ハロゲン化炭素ガスと実質的に反応しない材料、例えば、SiC、Siで構成されていてもよい。 The furnace wall is preferably formed from an inorganic material. For example, the furnace wall is made of SiO 2 , Al 2 O 3 , ZrO 2 , SiC, C, MgO, Cr 2 O 3 , CaO, Ti 2 O, and complex oxides thereof. Preferably, it is configured. The hydrogen, carbon halide gas is substantially non-reactive with the material, for example, SiC, may be constituted by Si 3 N 4.

図2を参照すると、この製造装置の炉は、図1に示した炉に対して、炉出口扉1bを有する点で異なる以外は、同一の構造を有している。この炉は、ワーク運搬経路を介して複数接続されて用いられ、一方の炉は浸炭工程、他方の炉は表面炭素濃度調整工程に使用される。この炉は、浸炭工程と表面炭素濃度調整工程において連続式に利用される。   Referring to FIG. 2, the furnace of this manufacturing apparatus has the same structure as the furnace shown in FIG. 1 except that it has a furnace outlet door 1b. A plurality of the furnaces are connected and used via a work conveyance path, and one furnace is used for a carburizing process and the other furnace is used for a surface carbon concentration adjusting process. This furnace is used continuously in the carburizing step and the surface carbon concentration adjusting step.

炉内雰囲気(室内雰囲気)については、浸炭工程及び表面炭素濃度調整工程以外は、不活性ガス又は煤と反応する反応性ガスを供給することが好ましい。浸炭用の炉(浸炭室)と、表面炭素濃度調整用の炉の組み合わせは、ワークに必要な物性値を得るための処理時間を短時間にできる組み合わせを選択することが好ましい。その組み合わせの一例を次に説明する。   Regarding the furnace atmosphere (indoor atmosphere), it is preferable to supply an inert gas or a reactive gas that reacts with soot, except for the carburizing step and the surface carbon concentration adjusting step. As a combination of a carburizing furnace (carburizing chamber) and a surface carbon concentration adjusting furnace, it is preferable to select a combination that can shorten a processing time for obtaining a physical property value necessary for a workpiece. An example of the combination will be described next.

図3(A)及び図3(B)は、本発明の好ましい実施の形態に係る浸炭室と表面炭素濃度調整室の連結例を示す図である。   3 (A) and 3 (B) are diagrams showing a connection example of a carburizing chamber and a surface carbon concentration adjusting chamber according to a preferred embodiment of the present invention.

図3(A)を参照すると、一つの浸炭室Cに対して複数の表面炭素濃度調整室Dが連結されると共に、一つの表面炭素濃度調整室Dに対しては一つの浸炭室Cが連結されている。図3(B)を参照すると、複数の浸炭室Cに対して複数の表面炭素濃度調整室Dがそれぞれ連結されている。浸炭室Cと表面炭素濃度調整室D間の搬送経路は、不活性雰囲気に保持される。   Referring to FIG. 3A, a plurality of surface carbon concentration adjusting chambers D are connected to one carburizing chamber C, and one carburizing chamber C is connected to one surface carbon concentration adjusting chamber D. Has been. Referring to FIG. 3B, a plurality of surface carbon concentration adjusting chambers D are connected to a plurality of carburizing chambers C, respectively. The conveyance path between the carburizing chamber C and the surface carbon concentration adjusting chamber D is maintained in an inert atmosphere.

このように、浸炭室Cと表面炭素濃度調整室Dを分離することにより、浸炭室CでCPを過飽和にしても、表面炭素濃度調整室Dではワークの形状に依存せずに鋼の表面炭素濃度を制御することができる。   In this way, by separating the carburizing chamber C and the surface carbon concentration adjusting chamber D, even if the CP is supersaturated in the carburizing chamber C, the surface carbon concentration adjusting chamber D does not depend on the shape of the workpiece, and the surface carbon of the steel. The concentration can be controlled.

上述したような炉内に存在する反応界面について説明する。図4(A)〜図4(C)は、本発明の好ましい実施の形態に係る反応界面の説明図である。図4(A)〜図4(C)を参照して、炉内に存在する反応界面には、炉壁の煤/ガス間に存在する第1の界面と、ガス/鋼(ワーク)間に存在する第2の界面がある。   The reaction interface existing in the furnace as described above will be described. 4 (A) to 4 (C) are explanatory diagrams of a reaction interface according to a preferred embodiment of the present invention. 4A to 4C, the reaction interface existing in the furnace includes a first interface existing between the soot / gas of the furnace wall and a gas / steel (workpiece). There is a second interface present.

図4(A)を参照すると、浸炭初期は、ガスのCPから鋼中炭素濃度までの勾配(CP勾配、濃度勾配)が急であるほど(鋼側が低い)、鋼への炭素流入量は増大する。   Referring to FIG. 4 (A), at the initial stage of carburizing, the more the gradient from the CP of the gas to the carbon concentration in the steel (CP gradient, concentration gradient) becomes steeper (the steel side is lower), the amount of carbon inflow into the steel increases. To do.

図4(C)を参照すると、一方、脱炭期には、浸炭により高くなって鋼表面炭素濃度からガス(気相)のCPまでの勾配が、ガス側が低い勾配、すなわち、下り坂にならなければ、脱炭量は少なくなる。また、鋼の表面炭素濃度は、鋼内部への拡散のために、低下する。この拡散が生じても、脱炭量を維持するためには、ガスのCPを低くすればよい。   Referring to FIG. 4C, on the other hand, during the decarburization period, the gradient from the steel surface carbon concentration to the gas (gas phase) CP increases due to carburization, and the gas side has a low gradient, that is, a downward slope. Otherwise, the amount of decarburization will be reduced. Also, the surface carbon concentration of steel decreases due to diffusion into the steel. Even if this diffusion occurs, in order to maintain the amount of decarburization, the CP of the gas may be lowered.

実操業において、炉壁に煤が析出すると、図4(B)を参照して、第1の界面(炉壁の煤/ガス間)において平衡するCPは、非常に高い状態、すなわち、煤析出領域に位置する。このとき、ガスのCP勾配は、第1から第2の界面に向かって下り坂になってしまい、浸炭量は増大するが、脱炭量は低下してしまう。この状態を解消するためには、炉内に煤との反応性ガスを投入し煤を消失させればよい。   In actual operation, when soot is deposited on the furnace wall, referring to FIG. 4B, the CP equilibrium at the first interface (between the soot / gas on the furnace wall) is in a very high state, that is, soot precipitation. Located in the area. At this time, the CP gradient of the gas becomes a downward slope from the first interface to the second interface, and the carburization amount increases, but the decarburization amount decreases. In order to eliminate this state, a reactive gas with soot may be introduced into the furnace to make the soot disappear.

また、浸炭工程と表面炭素濃度調整工程を同じバッチ式炉で実施して、同一炉内で、浸炭及び拡散を繰り返す限り、炉壁成分と、ガスとの反応によるCP上昇は回避できず、炉内に経時変化を招来する。そこで、好ましくは、浸炭工程と表面炭素濃度調整工程を独立して実施し、表面炭素濃度調整室は、処理時間外は常時不活性雰囲気に保持し、表面炭素濃度調整室の雰囲気を低CPに維持する。   In addition, as long as the carburization process and the surface carbon concentration adjustment process are performed in the same batch furnace and carburization and diffusion are repeated in the same furnace, an increase in CP due to the reaction between the furnace wall components and the gas cannot be avoided. Invite changes over time. Therefore, preferably, the carburizing step and the surface carbon concentration adjusting step are performed independently, and the surface carbon concentration adjusting chamber is always kept in an inert atmosphere outside the processing time, and the atmosphere of the surface carbon concentration adjusting chamber is set to a low CP. maintain.

例えば、浸炭室での浸炭処理後、ワークを雰囲気が予め低CPに維持された表面炭素濃度調整室に移送することにより、表面炭素濃度調整開始当初から、ガス/鋼間のCP差が大きい状態が達成され、過剰炭素部の脱炭量ないし脱炭速度が上昇する。さらに、ガス組成、温度を変えてCPを調整することによって、脱炭量をさらに増大し処理時間が短縮される。このようにして、角部と平坦部を有する鋼材を、セメンタイトの析出と粒界酸化を抑制しながら、均一な炭素濃度に調整することが容易になる。   For example, after the carburizing process in the carburizing chamber, the workpiece is transferred to the surface carbon concentration adjusting chamber in which the atmosphere is previously maintained at a low CP, so that the CP difference between gas / steel is large from the beginning of the surface carbon concentration adjustment. Is achieved, and the amount of decarburization or the decarburization rate of the excess carbon part increases. Further, by adjusting the CP by changing the gas composition and temperature, the amount of decarburization is further increased and the processing time is shortened. In this way, it becomes easy to adjust the steel material having the corners and the flat part to a uniform carbon concentration while suppressing precipitation of cementite and grain boundary oxidation.

以下、本発明の一実施例を説明する。図5は、本発明の一実施例に係る実験装置の構成図である。   An embodiment of the present invention will be described below. FIG. 5 is a configuration diagram of an experimental apparatus according to an embodiment of the present invention.

図5を参照すると、この実験装置は、ワーク(鋼材)Wが挿入される炉心管11aと、炉心管11aを備えた圧力制御式加熱炉11と、炉心管11aの上流側に接続された流量調整弁12と、流量調整弁12の上流側に流量計13と減圧弁14をそれぞれ介して接続されたCOガスタンク15、COガスタンク16及び不活性ガスタンク17と、炉心管11a内に挿入される熱電対18と、炉心管11aの下流側に圧力計19を介して接続されるポンプ20と、炉心管11aの下流側に接続されるガス分析装置21と、圧力計19及びガス分析装置21に接続されたパーソナルコンピュータ(PC)22を有している。 Referring to FIG. 5, this experimental apparatus has a reactor core tube 11a into which a workpiece (steel) W is inserted, a pressure-controlled heating furnace 11 provided with the reactor core tube 11a, and a flow rate connected to the upstream side of the reactor core tube 11a. The control valve 12, the CO gas tank 15, the CO 2 gas tank 16 and the inert gas tank 17 connected to the upstream side of the flow rate adjustment valve 12 through the flow meter 13 and the pressure reducing valve 14, respectively, and the reactor core tube 11 a are inserted. The thermocouple 18, the pump 20 connected to the downstream side of the core tube 11a via the pressure gauge 19, the gas analyzer 21 connected to the downstream side of the core tube 11a, the pressure gauge 19 and the gas analyzer 21 A personal computer (PC) 22 is connected.

CO、CO及び不活性ガスを混合した炭素濃度調整ガスは、流量50〜2000cc/minで、圧力制御式加熱炉11内にセットした炉心管11a内に流入可能である。炉心管11aの加熱温度は、500〜1500℃の間で制御可能である。炉心管11aの管内圧力は、混合ガスを管内に流入中も、約1kPa(減圧)から約100kPa(常圧)程度の間で制御できる。 The carbon concentration adjusting gas obtained by mixing CO, CO 2 and inert gas can flow into the core tube 11a set in the pressure-controlled heating furnace 11 at a flow rate of 50 to 2000 cc / min. The heating temperature of the core tube 11a can be controlled between 500-1500 degreeC. The pressure inside the core tube 11a can be controlled between about 1 kPa (decompression) and about 100 kPa (normal pressure) even while the mixed gas is flowing into the tube.

処理中のワークWの温度は、熱電対18によりリアルタイムに測定した。炉心管11aから流出した生成ガスは、ガス分析装置21、詳細には、ガスクロマトグラフG4000(ジーエルサイエンス社製)により定性及び定量分析し、生成ガスのガス成分及び温度の経時変化を記録した。   The temperature of the workpiece W during processing was measured in real time by the thermocouple 18. The product gas flowing out of the core tube 11a was qualitatively and quantitatively analyzed by a gas analyzer 21, more specifically, gas chromatograph G4000 (manufactured by GL Sciences Inc.), and changes in the gas components and temperature of the product gas with time were recorded.

ガスクロマトグラフィー分析条件は、下記の通りである:
検出器:FID
カラム長:3m
カラム温度:70℃
キャリアガス:N2、120kPa
パージガス:N2、50ml/min
注入量:3ml。
Gas chromatography analysis conditions are as follows:
Detector: FID
Column length: 3m
Column temperature: 70 ° C
Carrier gas: N2, 120 kPa
Purge gas: N2, 50 ml / min
Injection volume: 3 ml.

[実験1]
真空浸炭処理のみを行ったワークW1、真空浸炭処理後に本発明による表面炭素濃度処理を行ったワークW2、真空浸炭処理後に通常のガス浸炭を行ったワークW3の組織を観察すると共にそれらの疲労強度を測定した。上述した以外の実験条件を下記に示す。
[Experiment 1]
Observe the structure of the workpiece W1 that has been subjected only to the vacuum carburizing treatment, the workpiece W2 that has been subjected to the surface carbon concentration treatment according to the present invention after the vacuum carburizing treatment, and the workpiece W3 that has been subjected to the normal gas carburizing treatment after the vacuum carburizing treatment, and their fatigue strength. Was measured. Experimental conditions other than those described above are shown below.

・真空浸炭処理のみを行ったワークW1
・・鋼材:低炭素鋼、初期炭素濃度0.05〜0.2%
・・浸炭ガス:C、CH8、C10
・・管内温度:800〜1050℃
・・管内圧力:1kPa

・真空浸炭処理後に本発明による表面炭素濃度処理を行ったワークW2
・・鋼材:低炭素鋼、初期炭素濃度0.05〜0.2%
・・浸炭については上記のとおり
・・炭素濃度調整ガス:COガス、CO及び不活性ガス、CO/CO+COガス比は、例えば、常圧の場合、0.85以下のCP制御領域(図8(A)参照)に設定する
・・管内温度:800〜1050℃
・・管内圧力:1〜100kPa

・通常のガス浸炭を行ったワークW3
・・低炭素鋼、初期炭素濃度0.05〜0.2%
・・浸炭については上記のとおり
・・浸炭ガス:CH8、C10を原料として生成されるCO,CO混合ガス
・・管内温度:800〜1050℃
・・管内圧力:100kPa
・ Work W1 that has been vacuum carburized only
.. Steel material: Low carbon steel, initial carbon concentration 0.05 to 0.2%
..Carburizing gas: C 2 H 2 , C 3 H 8 , C 4 H 10
..Pipe temperature: 800-1050 ° C
..Pipe pressure: 1 kPa

-Work W2 subjected to surface carbon concentration treatment according to the present invention after vacuum carburizing treatment
.. Steel material: Low carbon steel, initial carbon concentration 0.05 to 0.2%
-As described above for carburizing-Carbon concentration adjustment gas: CO gas, CO 2 and inert gas, CO / CO + CO 2 gas ratio is, for example, a CP control region of 0.85 or less at normal pressure (Fig. 8 (see (A)) ・ ・ In-pipe temperature: 800-1050 ° C.
..In-pipe pressure: 1 to 100 kPa

・ Work W3 with normal gas carburizing
..Low carbon steel, initial carbon concentration 0.05 to 0.2%
・ ・ Carburization as described above ・ ・ Carburizing gas: CO 3 and CO 2 mixed gas produced using C 3 H8 and C 4 H 10 as raw materials ・ In-pipe temperature: 800 to 1050 ° C.
..In-pipe pressure: 100 kPa

図6は、本発明の一実施例に係る実験1の結果を示すグラフである。図6を参照すると、浸炭のみを行ったW1は、粒界酸化がなく疲労強度が最も高かった。本発明による表面炭素濃度調整、すなわち、CO/CO+COガスによるCP制御を行ったW2は、粒界酸化が生じたが、その疲労強度は実用上問題がないレベルであった。通常のガス浸炭を行ったW3は、比較的深層まで粒界酸化が発生し、疲労強度が低下していた。以上より、酸素を含む炭素化合物ガス成分、すなわち、CO/CO+COガスを用いて、鋼材の表面炭素濃度を調整しても、十分な強度が得られることが分かった。 FIG. 6 is a graph showing the results of Experiment 1 according to an example of the present invention. Referring to FIG. 6, W1 subjected only to carburization had the highest fatigue strength with no grain boundary oxidation. In W2, which was subjected to surface carbon concentration adjustment according to the present invention, that is, CP control using CO / CO + CO 2 gas, grain boundary oxidation occurred, but the fatigue strength was at a level that had no problem in practice. In W3 subjected to normal gas carburization, grain boundary oxidation occurred to a relatively deep layer, and the fatigue strength was reduced. From the above, it was found that sufficient strength can be obtained even if the surface carbon concentration of the steel material is adjusted using a carbon compound gas component containing oxygen, that is, CO / CO + CO 2 gas.

[実験2]
SK3(鋼材)とpureFe(純鉄)について、本発明による表面炭素濃度調整を行い、表面炭素濃度の推移を測定した。上述した以外の実験条件を下記に示す。
[Experiment 2]
For SK3 (steel material) and pureFe (pure iron), the surface carbon concentration was adjusted according to the present invention, and the transition of the surface carbon concentration was measured. Experimental conditions other than those described above are shown below.

・・炭素濃度調整ガス:COガス、CO及び不活性ガス、CO/COガス比=
・・管内温度:
・・管内圧力:
.. Carbon concentration adjusting gas: CO gas, CO 2 and inert gas, CO / CO 2 gas ratio =
..Pipe temperature:
..Pipe pressure:

図7は、本発明の一実施例に係る試験2の結果を示すグラフである。図7を参照すると、SK3(鋼材)とpureFeの初期炭素濃度の相違によらず、所定時間経過後、両者の表面炭素濃度は平衡に到達して同一になっている。この結果は、本発明による表面炭素濃度調整は、外乱に対して堅固であり、CP制御、例えば、CO/CO+COガス比を制御することによって、目標とする均一な表面炭素濃度が得られることを示している。 FIG. 7 is a graph showing the results of Test 2 according to an example of the present invention. Referring to FIG. 7, regardless of the difference in the initial carbon concentration between SK3 (steel material) and pureFe, the surface carbon concentration of both reaches the equilibrium and becomes the same after a predetermined time. This result shows that the surface carbon concentration adjustment according to the present invention is robust against disturbance, and the target uniform surface carbon concentration can be obtained by controlling the CP control, for example, the CO / CO + CO 2 gas ratio. Is shown.

[実験3]
次に、減圧(真空)下から常圧(加圧)下までの広範囲な条件下で、COガス分圧、すなわち、CO/CO+COガス比と、管内温度を変えて、本発明による表面炭素濃度調整が可能であるか検証し、特に、セメンタイトの析出が防止されるCOガス分圧−雰囲気温度領域を調べた。
[Experiment 3]
Next, under a wide range of conditions from reduced pressure (vacuum) to normal pressure (pressurization), the CO gas partial pressure, that is, the CO / CO + CO 2 gas ratio and the temperature in the pipe are changed to change the surface carbon according to the present invention. It was verified whether the concentration could be adjusted, and in particular, a CO gas partial pressure-atmosphere temperature region in which precipitation of cementite was prevented was examined.

図8(A)〜図8(C)は、本発明の一実施例に係る実験3の結果を示すグラフであって、図8(A)は炉心管内圧力が常圧(100kpa)、図8(B)は10kpa、図8(C)は1kpaにおける実験結果をそれぞれ示すグラフである。   8 (A) to 8 (C) are graphs showing the results of Experiment 3 according to an example of the present invention. FIG. 8 (A) shows the pressure in the reactor core tube at normal pressure (100 kpa), and FIG. (B) is a graph showing experimental results at 10 kpa, and FIG. 8 (C) is a graph showing experimental results at 1 kpa.

図8(A)〜図8(C)中、ハッチングで示すCP制御領域で、セメンタイトは析出しなかった。しかし、境界線より上方の領域にCOガス分圧及び雰囲気温度が制御されると、セメンタイトが析出した。よって、好ましいCO/CO+COガス比は、例えば、常圧(100kPa)においては、800℃で0.75以下、1000℃で0.85以下となる。 In FIGS. 8A to 8C, cementite did not precipitate in the CP control region indicated by hatching. However, when the CO gas partial pressure and the atmospheric temperature were controlled in the region above the boundary line, cementite precipitated. Therefore, a preferable CO / CO + CO 2 gas ratio is, for example, 0.75 or less at 800 ° C. and 0.85 or less at 1000 ° C. at normal pressure (100 kPa).

以上より、本発明による表面炭素濃度制御は、広範囲な雰囲気条件、例えば、減圧ないし真空下、常圧下、或いは加圧下で、COガス分圧を制御することによって、セメンタイトの生成を抑制することが可能であることがわかった。   As described above, the surface carbon concentration control according to the present invention can suppress the formation of cementite by controlling the CO gas partial pressure under a wide range of atmospheric conditions, for example, reduced pressure, vacuum, normal pressure, or increased pressure. I found it possible.

本発明は、角部を有する鋼製品、例えばギヤ歯を有する鋼部品ないし鋼材の表面炭素濃度の制御に好適に適用される。   The present invention is suitably applied to control of the surface carbon concentration of steel products having corner portions, for example, steel parts or steel materials having gear teeth.

本発明の好ましい実施の形態に係る、浸炭室と表面炭素濃度調整室が同一な場合の鋼材製造装置の説明図である。It is explanatory drawing of the steel material manufacturing apparatus in case the carburizing chamber and the surface carbon concentration adjustment chamber are the same based on preferable embodiment of this invention. 本発明の好ましい実施の形態に係る、浸炭室と表面炭素濃度調整室を分離する場合の鋼材製造装置の説明図である。It is explanatory drawing of the steel material manufacturing apparatus in the case of isolate | separating the carburizing chamber and the surface carbon concentration adjustment chamber based on preferable embodiment of this invention. (A)及び(B)は、本発明の好ましい実施の形態に係る浸炭室と表面炭素濃度調整室の連結例を示す図である。(A) And (B) is a figure which shows the connection example of the carburizing chamber and surface carbon concentration adjustment chamber which concern on preferable embodiment of this invention. (A)〜(C)は、本発明の好ましい実施の形態に係る浸炭又は脱炭における反応界面の説明図である。(A)-(C) are explanatory drawings of the reaction interface in the carburizing or decarburizing which concerns on preferable embodiment of this invention. 本発明の一実施例に係る実験装置の構成図である。It is a block diagram of the experimental apparatus which concerns on one Example of this invention. 本発明の一実施例に係る実験1の結果を示すグラフである。It is a graph which shows the result of the experiment 1 which concerns on one Example of this invention. 本発明の一実施例に係る実験2の結果を示すグラフである。It is a graph which shows the result of the experiment 2 which concerns on one Example of this invention. (A)〜(C)は、本発明の一実施例に係る実験3の結果を示すグラフであって、(A)は炉心管内圧力が常圧(100kPa)、(B)は10kPa、(C)は1kPaにおける実験結果をそれぞれ示すグラフである。(A)-(C) are graphs showing the results of Experiment 3 according to one embodiment of the present invention, where (A) is the pressure in the furnace core tube at normal pressure (100 kPa), (B) is 10 kPa, (C ) Are graphs showing experimental results at 1 kPa, respectively.

符号の説明Explanation of symbols

1a 炉入口扉
1b 炉出口扉
2 外側断熱材
3 反応ガス流入口
4 加熱管
5 内側断熱材
6 真空ポンプ
7 ファン
8 炉内圧力制御装置
9 ヒータ
11a 炉心管
11 圧力制御式加熱炉
12 流量調整弁
13 流量計
14 減圧弁
15 COガスタンク
16 COガスタンク
17 不活性ガスタンク
18 熱電対
19 圧力計
20 ポンプ
21 ガス分析装置
22 パーソナルコンピュータ(PC)
C 浸炭室
D 表面炭素濃度調整室
W,W1,W2,W3 ワーク
DESCRIPTION OF SYMBOLS 1a Furnace entrance door 1b Furnace exit door 2 Outer heat insulating material 3 Reaction gas inflow port 4 Heating pipe 5 Inner heat insulating material 6 Vacuum pump 7 Fan 8 In-furnace pressure control apparatus 9 Heater 11a Furnace core tube 11 Pressure control type heating furnace 12 Flow control valve 13 Flow meter 14 Pressure reducing valve 15 CO gas tank 16 CO 2 gas tank 17 Inert gas tank 18 Thermocouple 19 Pressure gauge 20 Pump 21 Gas analyzer 22 Personal computer (PC)
C Carburizing chamber D Surface carbon concentration adjustment chamber W, W1, W2, W3 Workpiece

Claims (6)

鋼材に所定の炭素化合物ガス成分を含む炭素濃度調整ガスを供給して、
前記鋼材中の炭素と前記炭素濃度調整ガスとの間で平衡反応を成立させ、
前記平衡反応の成立によって、前記鋼材の表面炭素濃度が飽和した部分では該鋼材中の炭素から前記炭素化合物ガス成分が発生する脱炭反応が生成し、同飽和していない部分では該鋼材中に前記炭素化合物ガス成分から炭素が供給される浸炭反応が生成し、
相互に可逆な前記脱炭反応及び前記浸炭反応によって前記鋼材の表面炭素濃度が調整される、
ことを特徴とする鋼材の製造方法。
Supply a carbon concentration adjusting gas containing a predetermined carbon compound gas component to the steel material,
Establishing an equilibrium reaction between the carbon in the steel and the carbon concentration adjusting gas,
Due to the establishment of the equilibrium reaction, a decarburization reaction in which the carbon compound gas component is generated from the carbon in the steel material is generated in a portion where the surface carbon concentration of the steel material is saturated, and in the steel material in a portion where the carbon compound gas component is not saturated. A carburization reaction in which carbon is supplied from the carbon compound gas component is generated,
The surface carbon concentration of the steel material is adjusted by the reversible decarburization reaction and the carburization reaction,
A method for producing a steel material.
前記炭素化合物ガス成分は、前記平衡反応の成立時、前記鋼材を介して炭素交換可能な複数成分の炭素化合物ガスを含むことを特徴とする請求項1記載の鋼材の製造方法。   The method for producing a steel material according to claim 1, wherein the carbon compound gas component includes a multi-component carbon compound gas capable of carbon exchange via the steel material when the equilibrium reaction is established. 前記炭素化合物ガス成分はCO/CO+COガスであり、
前記平衡反応の成立によって下記の可逆反応が生成する、
2CO⇔C(inFe)+CO(g)、
但し「inFe」は前記鋼材中の炭素、「g」はガス、である、
ことを特徴とする請求項2記載の鋼材の製造方法。
The carbon compound gas component is CO / CO + CO 2 gas,
The establishment of the equilibrium reaction produces the following reversible reaction,
2CO⇔C (inFe) + CO 2 (g),
However, “inFe” is carbon in the steel material, and “g” is gas.
The manufacturing method of the steel materials of Claim 2 characterized by the above-mentioned.
前記炭素濃度調整ガスは、前記炭素化合物ガス成分であるCO/CO+COガスと、H/HOガスと、を含み、
前記平衡反応の成立によって、下記の可逆反応が生成する、
2CO⇔C(inFe)+CO(g)、
CO(g)+H(g)⇔CO(g)+HO(g)、
但し「inFe」は前記鋼材表面の炭素、「g」はガス、である、
ことを特徴とする請求項2記載の鋼材の製造方法。
The carbon concentration adjusting gas includes CO / CO + CO 2 gas, which is the carbon compound gas component, and H 2 / H 2 O gas,
The establishment of the equilibrium reaction produces the following reversible reaction,
2CO⇔C (inFe) + CO 2 (g),
CO 2 (g) + H 2 (g) ⇔CO (g) + H 2 O (g),
However, “inFe” is carbon on the surface of the steel material, and “g” is gas.
The manufacturing method of the steel materials of Claim 2 characterized by the above-mentioned.
前記鋼材の表面炭素濃度の調整が真空ないし減圧下で行われることを特徴とする請求項1〜4のいずれか一記載の鋼材の製造方法。   The method for producing a steel material according to any one of claims 1 to 4, wherein the surface carbon concentration of the steel material is adjusted under vacuum or reduced pressure. 前記鋼材は、前記炭素濃度調整ガスが供給される前に浸炭ガス成分によって浸炭され、
前記鋼材の前記浸炭と、前記炭素濃度調整ガスの前記供給は、互いに異なる炉室内で行うことを特徴とする請求項1〜5のいずれか一記載の鋼材の製造方法。
The steel material is carburized by a carburizing gas component before the carbon concentration adjusting gas is supplied,
The method for manufacturing a steel material according to any one of claims 1 to 5, wherein the carburization of the steel material and the supply of the carbon concentration adjusting gas are performed in different furnace chambers.
JP2008079752A 2008-03-26 2008-03-26 Method of manufacturing steel with adjusted surface carbon concentration Pending JP2009235443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008079752A JP2009235443A (en) 2008-03-26 2008-03-26 Method of manufacturing steel with adjusted surface carbon concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008079752A JP2009235443A (en) 2008-03-26 2008-03-26 Method of manufacturing steel with adjusted surface carbon concentration

Publications (1)

Publication Number Publication Date
JP2009235443A true JP2009235443A (en) 2009-10-15

Family

ID=41249763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008079752A Pending JP2009235443A (en) 2008-03-26 2008-03-26 Method of manufacturing steel with adjusted surface carbon concentration

Country Status (1)

Country Link
JP (1) JP2009235443A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016000845A (en) * 2014-06-11 2016-01-07 株式会社Ihi Carburizing apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147506A (en) * 2001-11-09 2003-05-21 Chugai Ro Co Ltd Carburizing method of steel parts
JP2004115893A (en) * 2002-09-27 2004-04-15 Chugai Ro Co Ltd Vacuum carburizing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147506A (en) * 2001-11-09 2003-05-21 Chugai Ro Co Ltd Carburizing method of steel parts
JP2004115893A (en) * 2002-09-27 2004-04-15 Chugai Ro Co Ltd Vacuum carburizing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016000845A (en) * 2014-06-11 2016-01-07 株式会社Ihi Carburizing apparatus

Similar Documents

Publication Publication Date Title
US6903030B2 (en) System and method for heat treating semiconductor
JP5534629B2 (en) Heat treatment method, heat treatment apparatus, and heat treatment system
JP5883727B2 (en) Gas nitriding and gas soft nitriding methods
JPH03215657A (en) Method and device for carbulizing
EP1264915B1 (en) A carburising method and an apparatus therefor
JP5233258B2 (en) Method and apparatus for producing steel material having steel surface with controlled carbon concentration
US20080149226A1 (en) Method of optimizing an oxygen free heat treating process
JPH06172960A (en) Vacuum carburization method
JP6503122B1 (en) Surface hardening treatment apparatus and surface hardening treatment method
JP2009235443A (en) Method of manufacturing steel with adjusted surface carbon concentration
US7276204B2 (en) Carburization treatment method and carburization treatment apparatus
JP4853615B2 (en) Vacuum carburizing quality control method and vacuum carburizing furnace
US9109277B2 (en) Method and apparatus for heat treating a metal
JP5671588B2 (en) Surface hardening processing apparatus and surface hardening processing method
JP6543208B2 (en) Gas carburizing method and gas carburizing apparatus
EP0859067B1 (en) Method and apparatus for controlling the atmosphere in a heat treatment furnace
JP2001214255A (en) Gas-hardening treatment method for metal surface
US20140366993A1 (en) Method of carburizing
US20080149227A1 (en) Method for oxygen free carburization in atmospheric pressure furnaces
JP6543213B2 (en) Surface hardening method and surface hardening apparatus
EP1264914B1 (en) A carburising method and an apparatus therefor
JP2001223213A (en) Method and device for forming oxide layer on semiconductor wafer
JP2009299122A (en) Nitriding-quenching method, heater for nitriding-quenching and nitriding-quenching apparatus
JP2007113045A (en) Quality control method in vacuum carburizing and vacuum carburizing furnace
JPS6250457A (en) Composition variable gaseous n2 carburization treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110224

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120524

A131 Notification of reasons for refusal

Effective date: 20120529

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

A02 Decision of refusal

Effective date: 20120731

Free format text: JAPANESE INTERMEDIATE CODE: A02