JP2001214255A - Gas-hardening treatment method for metal surface - Google Patents

Gas-hardening treatment method for metal surface

Info

Publication number
JP2001214255A
JP2001214255A JP2000022569A JP2000022569A JP2001214255A JP 2001214255 A JP2001214255 A JP 2001214255A JP 2000022569 A JP2000022569 A JP 2000022569A JP 2000022569 A JP2000022569 A JP 2000022569A JP 2001214255 A JP2001214255 A JP 2001214255A
Authority
JP
Japan
Prior art keywords
gas
carburizing
furnace
concentration
heating chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000022569A
Other languages
Japanese (ja)
Other versions
JP3428936B2 (en
Inventor
Kazuyoshi Kawada
一喜 河田
Hatsuo Sato
初男 佐藤
Shigeta Asai
茂太 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oriental Engineering Co Ltd
Original Assignee
Oriental Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oriental Engineering Co Ltd filed Critical Oriental Engineering Co Ltd
Priority to JP2000022569A priority Critical patent/JP3428936B2/en
Publication of JP2001214255A publication Critical patent/JP2001214255A/en
Application granted granted Critical
Publication of JP3428936B2 publication Critical patent/JP3428936B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas-hardening treatment method for a metal surface, which is excellent in control of carbon potential in comparison with a conventional gas carburizing method, fast in the carburizing speed and by which dispersion in carburizing can be made small. SOLUTION: The total amount per unit time of the gas generated in a heating chamber 1 of a carburizing furnace is controlled to be 0.05 to 1.5 times of the inner volume of the heating chamber. Then, at least 50% of the amount of CO contained in the whole generated gas is supplied by the decomposition gas of methanol, and the residual portion is supplied by the reaction of either gas or liquid containing C and H and either gas or liquid containing O. Thereby, carburizing is carried out at 730 to 1,100 deg.C while keeping the concentration of gaseous CO in the whole gas at 28 to 40% in the heating chamber 1 of the carburizing furnace.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属表面のガス硬
化処理方法、例えば鋼部品のガス浸炭およびガス浸炭窒
化法の改良に係り、雰囲気安定性および制御性がよく、
浸炭特性に優れ且つ経済性にも優れた金属表面のガス硬
化処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas hardening treatment method for a metal surface, for example, to a gas carburizing and gas carbonitriding method for steel parts, which has good atmosphere stability and controllability.
The present invention relates to a gas hardening method for a metal surface which is excellent in carburizing characteristics and economical.

【0002】[0002]

【従来の技術】従来の代表的な金属表面のガス硬化処理
方法の一つであるガス浸炭法としては、変成炉式浸炭法
と滴注式浸炭法と炭化水素ガスと酸化性ガスを炉内に直
接導入する直接ガス浸炭法とがある。変成炉式浸炭法
は、炭化水素ガスと空気とを一定の割合で混合し、10
00〜1100℃に加熱された変成炉内に導入し、変成
炉内のニッケル触媒に接触させてキャリヤーガスを製造
する。次いでそのキャリヤーガスを、浸炭炉内容積の約
6〜10倍(時間あたり)の流量で浸炭炉内に供給す
る。浸炭炉内においては、このキャリヤーガス以外に、
所定のカーボンポテンシャルにするため炭化水素ガスが
エンリッチされる。このような変成炉式浸炭法は、変成
炉を使っているためキャリヤーガスの組成が一定してお
り、雰囲気制御が安定して行える利点がある。
2. Description of the Related Art A conventional gas carburizing method, which is one of typical gas hardening methods for metal surfaces, includes a carburizing method of a shift furnace type, a carburizing method of a dropping type, and a method of using a hydrocarbon gas and an oxidizing gas in a furnace. And direct gas carburizing method. In the shift carburizing method, hydrocarbon gas and air are mixed at a certain ratio, and
The carrier gas is introduced into a shift furnace heated to 00 to 1100 ° C. and brought into contact with a nickel catalyst in the shift furnace to produce a carrier gas. Then, the carrier gas is supplied into the carburizing furnace at a flow rate of about 6 to 10 times (per hour) the internal volume of the carburizing furnace. In the carburizing furnace, besides this carrier gas,
The hydrocarbon gas is enriched to a predetermined carbon potential. Such a shift furnace type carburizing method has an advantage that since the shift furnace is used, the composition of the carrier gas is constant and the atmosphere can be stably controlled.

【0003】滴注式浸炭法は、浸炭温度に加熱された浸
炭炉に有機液剤たとえばメタノールを直接滴注する。す
ると、 CH3OH→CO+2H2 のように分解されてCOガスと水素ガスが生成される。
この分解生成ガスは、変成炉式におけるキャリヤーガス
に相当するものであり、これにCH4,C38,C410
等の炭化水素を添加したり、遊離炭素を発生する有機液
剤を事前混合するか又は別に滴注して、ヱンリッチ作用
をもたせ浸炭雰囲気を形成する。この場合も、炉内に滴
注する有機液剤量は、炉内容積の1.8〜4倍(時間あ
たり)のガス量を生成するだけ必要とする。
[0003] In the dropping type carburizing method, an organic liquid agent such as methanol is directly dropped into a carburizing furnace heated to a carburizing temperature. Then, it is decomposed as CH 3 OH → CO + 2H 2 to generate CO gas and hydrogen gas.
This decomposition product gas corresponds to a carrier gas in the shift furnace type, and is added to CH 4 , C 3 H 8 , C 4 H 10
Or a premixed or separately added organic liquid which generates free carbon to form a carburizing atmosphere with an enrichment effect. Also in this case, the amount of the organic liquid to be dropped into the furnace needs only to generate a gas amount of 1.8 to 4 times (per hour) of the inside volume of the furnace.

【0004】このような滴注式浸炭法は、変成炉が必
要でない。キャリヤーガスの組成が一定しているため
安定して雰囲気制御が行える。有機液剤としてメタノ
ールを使うとキャリヤーガス中のCO濃度が約33%と
高いため、浸炭速度が速く、また品物形状による浸炭深
さの違いが出にくい等の利点がある。直接ガス浸炭法
は、炭化水素ガスと酸化性ガスを直接浸炭炉内に導入し
浸炭する方法で、 CH4,C38,C410のどれか一つと空気を用いる
方法と CH4,C38,C410のどれか一つとCO2あるい
はO2を用いる方法とがある。
[0004] Such a dropping-type carburizing method does not require a shift furnace. The atmosphere can be stably controlled because the carrier gas composition is constant. The use of methanol as an organic liquid agent has advantages such as a high carburization rate because the CO concentration in the carrier gas is as high as about 33%, and a difference in carburization depth due to the shape of the product. The direct gas carburizing method is a method in which a hydrocarbon gas and an oxidizing gas are directly introduced into a carburizing furnace and carburized. A method using any one of CH 4 , C 3 H 8 , C 4 H 10 and air and a method using CH 4 , C 3 H 8 , C 4 H 10 and a method using CO 2 or O 2 .

【0005】このような直接ガス浸炭法は,のどち
らも、変成炉を必要とせず、炉内に供給するガス量が浸
炭炉内容積の0.05〜1.5倍(時間あたり)と少な
いため使用ガスの実質効率が高く経済的であるという利
点がある。
[0005] Both of these direct gas carburizing methods do not require a shift furnace, and the amount of gas supplied into the furnace is as small as 0.05 to 1.5 times (per hour) the internal volume of the carburizing furnace. Therefore, there is an advantage that the gas used is highly efficient and economical.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の金属表面のガス硬化処理方法である変成炉式浸炭
法,滴注式浸炭法,直接ガス浸炭法には、上述の利点と
共に、以下のような問題点がある。変成炉式浸炭法は、
(1)浸炭炉以外に変成炉が必要であるため、管理上の
項目が増えるとともにランニングコストも上がる。
(2)キャリヤーガスを浸炭炉内容積の約6〜10倍
(時間あたり)流す必要があるため、使用ガスの実質効
率はきわめて低く不経済である。(3)CH4,C
38,C410などの炭化水素と空気とにより変成され
たキャリヤーガス中のCO濃度は、約20〜24.5%
と低いため浸炭速度が遅く、また品物形状による浸炭深
さの違いがでやすい。
However, the above-mentioned conventional gas hardening methods for metal surfaces, such as the conversion furnace type carburizing method, the drip pouring type carburizing method, and the direct gas carburizing method, have the following advantages together with the above-mentioned advantages. Problems. The shift furnace type carburizing method is
(1) Since a metamorphic furnace other than the carburizing furnace is required, the number of items to be managed increases and the running cost also increases.
(2) Since the carrier gas needs to flow about 6 to 10 times (per hour) the internal volume of the carburizing furnace, the actual efficiency of the used gas is extremely low and uneconomical. (3) CH 4 , C
The CO concentration in the carrier gas converted by a hydrocarbon such as 3 H 8 , C 4 H 10 and air is about 20 to 24.5%.
Therefore, the carburizing speed is slow, and the carburizing depth tends to differ depending on the shape of the product.

【0007】滴注式浸炭法は、時間あたり炉内容積の
1.8〜4倍のガス生成を必要としており、変成炉式浸
炭法ほどではないがやはり有機液剤の使用量が多いた
め、使用ガスの実質効率が低く不経済である。そこで、
この滴注式浸炭法における有機液剤の供給量を減らせば
欠点が克服できるように考えられる。しかし、実際にメ
タノールの供給量を浸炭炉内容積の1倍以下(時間あた
り)のガス生成に相当する量に減らして浸炭したとき、
炉内ガス成分中のCO濃度が28%以下になる場合があ
る。CO濃度がこのように下がれば浸炭速度および浸炭
特性が悪くなる。
[0007] The drip-injection type carburizing method requires 1.8 to 4 times the gas volume per hour of the furnace inner volume, and although the amount of the organic liquid agent used is not as large as that of the shift furnace type carburizing method, it is used. The real efficiency of gas is low and uneconomical. Therefore,
It is considered that the drawback can be overcome by reducing the supply amount of the organic liquid agent in the drop injection type carburizing method. However, when the amount of methanol actually supplied was reduced to less than one time (per hour) the amount of gas generated in the carburizing furnace and carburized,
The CO concentration in the furnace gas component may be 28% or less. If the CO concentration is reduced in this manner, the carburizing speed and the carburizing characteristics deteriorate.

【0008】直接ガス浸炭法では、CH4,C38
410のどれか一つと空気を用いる直接ガス浸炭法の
場合は、使用ガス量が少ないため経済的ではあるが、こ
の方法で使用するガスは変成炉式浸炭法で使用するガス
と同じであるため、浸炭炉内で生成されるガス中のCO
濃度が約20〜24.5%と低く、したがって浸炭速度
が遅く、また品物形状による浸炭深さの違いがでやす
い。
In the direct gas carburizing method, CH 4 , C 3 H 8 ,
The direct gas carburizing method using any one of C 4 H 10 and air is economical because the amount of gas used is small, but the gas used in this method is the same as the gas used in the shift furnace type carburizing method. Therefore, CO in the gas generated in the carburizing furnace
Since the concentration is as low as about 20 to 24.5%, the carburizing speed is low, and the carburizing depth tends to differ depending on the shape of the product.

【0009】一方、CH4,C38,C410のどれか
一つとCO2あるいはO2を用いる直接ガス浸炭法の場合
は、同じく使用ガス量が少ないため経済的ではあるが、
例えばC410とCO2を用いた場合の反応は以下のよう
になる。 C410十4CO2→ 8CO(61.5%)+5H
2 (38.5%) 理論計算上、COガスの成分比率は61.5%になるは
ずであるが、特公平6−051904号によると実際操
業時においては、扉パッキン部からの空気の侵入、炉作
動により起こる負圧時の空気侵入等によりCO濃度は約
40%になるとされている。また、炭化水素ガスのエン
リッチの量、浸炭処理時間、品物の表面積の大小によっ
てもCO濃度は変化することは明らかである。
On the other hand, the direct gas carburizing method using any one of CH 4 , C 3 H 8 , and C 4 H 10 and CO 2 or O 2 is economical because the amount of gas used is also small.
For example, the reaction when C 4 H 10 and CO 2 are used is as follows. C 4 H 10 ten 4CO 2 → 8CO (61.5%) + 5H
2 (38.5%) According to theoretical calculation, the component ratio of CO gas should be 61.5%. However, according to Japanese Patent Publication No. 6-051904, at the time of actual operation, intrusion of air from the door packing part The CO concentration is said to be about 40% due to air intrusion at the time of negative pressure caused by furnace operation. It is also clear that the CO concentration changes depending on the amount of enrichment of the hydrocarbon gas, the carburizing time, and the surface area of the product.

【0010】このように直接ガス浸炭法は、(1)CO
濃度が一定にならない、(2)CO系の浸炭反応以外に
炭化水素ガスによる直接浸炭反応があるためカーボンポ
テンシャルの制御が困難で経験にたよらざるをえない、
(3)スーティングが生じやすい。さらに、(4)長時
間浸炭の場合、CO濃度が40%を越え理論計算値6
1.5%になるにしたがい、浸炭した後の処理品の粒界
酸化の深さが大きくなるという問題がある。
As described above, the direct gas carburizing method comprises the steps of (1) CO
The concentration does not become constant. (2) Since there is a direct carburization reaction with hydrocarbon gas other than the CO-based carburization reaction, it is difficult to control the carbon potential, and it is necessary to rely on experience.
(3) Suiting is likely to occur. (4) In the case of carburization for a long time, the CO concentration exceeds 40% and the theoretical calculated value 6
As the content becomes 1.5%, there is a problem that the depth of grain boundary oxidation of the treated product after carburizing increases.

【0011】そこで、本発明は、このような従来技術の
未解決の問題点に着目してなされたものであり、従来よ
り大幅に原料ガス使用量が削減できて、排出CO2量も
大幅に削減できる省資源、省エネルギーの且つ環境的に
も優れた金属表面のガス硬化処理方法を提供することを
目的とする。また、本発明は、従来のガス浸炭法に比べ
て雰囲気安定性に優れ、そのことによりカーボンポテン
シャルの制御性にも優れ、且つまた、従来のガス浸炭法
に比べて、浸炭速度が速く、浸炭バラツキも少なくでき
るガスを用いた金属表面のガス硬化処理方法を提供する
ことを目的とする。
Accordingly, the present invention has been made in view of such unresolved problems of the prior art, and it is possible to greatly reduce the amount of raw material gas used and to greatly reduce the amount of emitted CO 2 as compared with the conventional art. It is an object of the present invention to provide a gas hardening treatment method for a metal surface which is resource-saving, energy-saving and environmentally excellent, which can be reduced. In addition, the present invention has a superior atmosphere stability compared with the conventional gas carburizing method, thereby having excellent controllability of the carbon potential, and has a higher carburizing speed and a higher carburizing rate than the conventional gas carburizing method. It is an object of the present invention to provide a gas hardening method for a metal surface using a gas that can reduce variation.

【0012】さらに、本発明は、少なくとも前室を真空
パージできる浸炭炉の使用により、安全で且つ安定した
浸炭処理が可能であり、フレームカーテンがないため環
境的にも優れた金属表面のガス硬化処理方法を提供する
ことを目的とする。
Furthermore, the present invention provides a safe and stable carburizing treatment by using a carburizing furnace capable of vacuum-purging at least the front chamber, and has an environmentally excellent gas hardening of a metal surface because there is no frame curtain. It is an object to provide a processing method.

【0013】[0013]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1に係る本発明の金属表面のガス硬化処理
方法は、浸炭炉内で発生する総ガス量が時間当たり浸炭
炉内容積の0.05〜1.5倍であって、当該発生総ガ
ス中のCO量の50%以上をメタノールの分解ガスによ
り供給するとともに、残部をCとHとを含むガスまたは
液体のいずれかとOを含むガスまたは液体のいずれかと
の反応により供給することにより、浸炭炉内における総
ガス中のCO濃度を28〜40%に保持して730〜1
100℃の温度で浸炭することを特徴とする。
According to a first aspect of the present invention, there is provided a method for gas-curing a metal surface, comprising the steps of: The product is 0.05 to 1.5 times the product, and 50% or more of the CO amount in the generated total gas is supplied by the decomposition gas of methanol, and the remainder is mixed with a gas or liquid containing C and H. By supplying the gas by reaction with either a gas or a liquid containing O, the CO concentration in the total gas in the carburizing furnace is kept at 28 to 40% and 730 to 1
It is characterized by carburizing at a temperature of 100 ° C.

【0014】また、請求項2に係る本発明の金属表面の
ガス硬化処理方法は、上記請求項1記載の炉内ガス中
に、更にNとHを含むガスまたは液体のいずれかを、浸
炭炉内ガス体積の0.5〜15%添加しつつ650〜1
100℃の温度において浸炭窒化することを特徴とす
る。さらに、請求項3に係る本発明の金属表面のガス硬
化処理方法は、上記請求項1または2に係る発明である
金属表面のガス硬化処理方法において、浸炭炉または浸
炭窒化炉は、加熱室以外に1つ以上の真空パージ室を備
えたものを用いることを特徴とする。
According to a second aspect of the present invention, there is provided a gas hardening treatment method for a metal surface according to the first aspect of the present invention, wherein the gas in the furnace further comprises a gas or a liquid containing N and H. 650-1 while adding 0.5-15% of internal gas volume
It is characterized by carbonitriding at a temperature of 100 ° C. Furthermore, a gas hardening treatment method for a metal surface according to the present invention according to claim 3 is the gas hardening treatment method for a metal surface according to the first or second invention, wherein the carburizing furnace or the carbonitriding furnace is other than a heating chamber. Characterized by using one provided with one or more vacuum purge chambers.

【0015】本発明の金属表面のガス硬化処理方法にあ
っては、メタノールは浸炭炉内でつぎのように分解す
る。 CH3OH→CO(33.3%)+2H2 (66.7
%) すなわち、メタノールは33.3%のCOと66.7%
のH2を、浸炭炉内で安定して発生させることができ
る。しかし、当該炉内発生ガスの量が炉内容積の1倍
(時間あたり)以下になるようにメタノールの流量を減
らすと、炉内CO濃度が28%未満になることがある。
これは、エンリッチした炭化水素ガスによる希釈等によ
るためである。このようなCO濃度の減少を補うため
に、前記メタノール以外に、CとHを含むガスあるいは
液体と、Oを含むガスあるいは液体とを供給して炉内で
反応させることによりCO濃度を28%以上に維持する
ものである。
In the gas curing method for a metal surface according to the present invention, methanol is decomposed in a carburizing furnace as follows. CH 3 OH → CO (33.3%) + 2H 2 (66.7)
%) That is, methanol is 33.3% of CO and 66.7%
H 2 can be generated stably in a carburizing furnace. However, if the flow rate of methanol is reduced so that the amount of the generated gas in the furnace is not more than one time (per hour) of the furnace volume, the CO concentration in the furnace may be less than 28%.
This is due to dilution with an enriched hydrocarbon gas or the like. In order to compensate for such a decrease in CO concentration, a gas or liquid containing C and H and a gas or liquid containing O are supplied and reacted in the furnace in addition to the methanol to reduce the CO concentration to 28%. The above is maintained.

【0016】本発明の金属表面のガス硬化処理方法にあ
っては、浸炭温度または浸炭窒化温度に加熱された炉内
へのメタノールの注入方法は滴注とは限らず、ガス状の
メタノールを注入しても良い。本発明におけるCとHを
含むガスまたは液体としては、例えばCH4,C38
410,C78等がある。また、Oを含むガスまたは
液体としては、例えばO2,CO2,H2O等がある。そ
れらによる反応の一例を以下に示す。
In the gas hardening method for a metal surface according to the present invention, the method of injecting methanol into a furnace heated to a carburizing temperature or a carbonitriding temperature is not limited to dropping, but injecting gaseous methanol. You may. As the gas or liquid containing C and H in the present invention, for example, CH 4 , C 3 H 8 ,
It is C 4 H 10, C 7 H 8 and the like. Examples of the gas or liquid containing O include O 2 , CO 2 , and H 2 O. An example of the reaction resulting therefrom is shown below.

【0017】2C38+3O2→6CO(42.9%)
+8H2(57.1%) C38+3CO2→6CO(60%)+H2(40%) C78+7H2O→7CO(38.9%)+11H2
(61.1%) たとえばC38とCO2を添加することにより、このよ
うな反応を利用して、少ない流量のメタノールから生成
された炉内雰囲気中の低いCO濃度を、高いCO濃度へ
と変化させることができる。
2C 3 H 8 + 3O 2 → 6CO (42.9%)
+ 8H 2 (57.1%) C 3 H 8 + 3CO 2 → 6CO (60%) + H 2 (40%) C 7 H 8 + 7H 2 O → 7CO (38.9%) + 11H 2 O
(61.1%) For example, by adding C 3 H 8 and CO 2 , such a reaction is used to reduce the low CO concentration in the furnace atmosphere generated from a small flow rate of methanol to the high CO concentration. Can be changed to

【0018】その場合、メタノールとC38+CO2
流量は、予め計算によって所定のCO濃度になるように
調整すればよい。ただしその場合、炉内に発生する総ガ
ス中のCO濃度の50%以上をメタノールにより供給
し、残りの50%未満をC38とCO2との反応により
供給するように流量調整をする。以下、本発明における
処理温度,浸炭炉及び浸炭窒化炉内発生総ガス量,原料
ガスとCO濃度,炉,炉内雰囲気制御等の条件及び限定
理由について順に説明する。 (処理温度):本発明における処理温度は、浸炭処理の
場合は730〜1100℃が適当であり、浸炭窒化処理
の場合は650〜1100℃が適当である。浸炭処理の
場合、730℃未満の処理温度ではスーテイングが起こ
りやすく、一方、1100℃を超えると結晶粒の粗大化
が起こるため、浸炭処理温度は730〜1100℃の範
囲とする。浸炭窒化処理の場合は、鋼中へのNの浸透に
よりA1変態点が下がるため、650〜1100℃の処
理温度が適当である。650℃未満の処理温度ではスー
ティングが起こりやすく、一方、1100℃を超えると
結晶粒の粗大化が起こりやすい。 (炉内発生総ガス量):浸炭または浸炭窒化炉内で発生
する総ガス量が、炉内容積の0.05倍/時間未満の場
合は、品物の表面積の大小により雰囲気ガス成分が安
定しづらく、また、扉開閉時の前室N2による炉内雰
囲気の希釈からの回復に時間がかかりすぎるという問題
がある。一方、炉内で発生する総ガス量が、炉内容積の
1.5倍/時間より大きい場合は、省資源、省エネル
ギーの観点から好ましくないし、さらには、炉内に残
留炭化水素が多くなり、カーボンポテンシャルの制御性
が悪くなる。
In this case, the flow rates of methanol and C 3 H 8 + CO 2 may be adjusted in advance to a predetermined CO concentration by calculation. However, in that case, the flow rate is adjusted so that 50% or more of the CO concentration in the total gas generated in the furnace is supplied by methanol, and the remaining less than 50% is supplied by the reaction between C 3 H 8 and CO 2. . Hereinafter, the processing temperature, the total amount of gas generated in the carburizing furnace and the carbonitriding furnace, the raw material gas and CO concentration, the conditions of the furnace and the furnace atmosphere control, and the reasons for limitation will be described in order. (Treatment temperature): The treatment temperature in the present invention is suitably 730 to 1100 ° C in the case of carburizing treatment, and 650 to 1100 ° C in the case of carbonitriding treatment. In the case of carburizing treatment, at a treatment temperature of less than 730 ° C., sooting is likely to occur, while when it exceeds 1100 ° C., crystal grains become coarse, so the carburizing treatment temperature is in the range of 730 to 1100 ° C. In the case of carbonitriding, since the A 1 transformation point is lowered by infiltration of N into steel, a treatment temperature of 650 to 1100 ° C. is appropriate. If the processing temperature is lower than 650 ° C., sooting tends to occur, while if it exceeds 1100 ° C., crystal grains are likely to be coarsened. (Total gas volume generated in the furnace): When the total gas volume generated in the carburizing or carbonitriding furnace is less than 0.05 times the furnace volume / hour, the atmosphere gas components become stable due to the surface area of the product. difficult, and there is a problem that the time to recover from the dilution of the furnace atmosphere by front chamber N 2 during door closing too much. On the other hand, when the total gas amount generated in the furnace is larger than 1.5 times the furnace volume / hour, it is not preferable from the viewpoint of resource saving and energy saving, and furthermore, residual hydrocarbons increase in the furnace, The controllability of the carbon potential deteriorates.

【0019】そのため、炉内で発生する総ガス量は、炉
内容積の0.05〜1.5倍/時間が好ましい。 (原料ガスとCO濃度):原料ガスとしては、浸炭処理
の場合はメタノールとCとHを含むガス又は液体とOを
含むガス又は液体とを用いる。この場合、CとHを含む
ガス又は液体の例としては、CH4,C38,C410
78等がある。また、Oを含むガス又は液体の例とし
ては、O2,CO2,H2O等がある。
Therefore, the total amount of gas generated in the furnace is preferably 0.05 to 1.5 times / hour of the furnace volume. (Raw material gas and CO concentration): As the raw material gas, in the case of carburizing treatment, a gas or liquid containing methanol, C and H, and a gas or liquid containing O are used. In this case, examples of the gas or liquid containing C and H include CH 4 , C 3 H 8 , C 4 H 10 ,
C 7 H 8 and the like. Examples of the gas or liquid containing O include O 2 , CO 2 , and H 2 O.

【0020】浸炭窒化処理の場合は、浸炭処理の場合の
原料ガスに、NH3、C37NO等を加えればよい。そ
の時の供給比については、浸炭処理の場合は次のように
なる。すなわち、浸炭炉内で発生する総ガス中のCO量
の50%以上をメタノールにより供給し、残りの50%
未満をCとHを含むガス又は液体と、Oを含むガス又は
液体との反応により供給する。これにより、浸炭処理炉
内における総ガス中のCO濃度を28〜40%にする。
当該CO濃度が28%未満の場合は、浸炭速度が遅く、
また、単体、ロット内の浸炭深さのバラツキが生じやす
い。一方、CO濃度が40%を超える場合は、処理品の
粒界酸化層が深くなる。
In the case of carbonitriding, NH 3 , C 3 H 7 NO, etc. may be added to the source gas in the case of carburizing. The supply ratio at that time is as follows in the case of carburizing treatment. That is, 50% or more of the total amount of CO in the total gas generated in the carburizing furnace is supplied by methanol, and the remaining 50%
Less than is supplied by a reaction between a gas or liquid containing C and H and a gas or liquid containing O. Thereby, the CO concentration in the total gas in the carburizing furnace is set to 28 to 40%.
When the CO concentration is less than 28%, the carburizing speed is low,
In addition, the carburization depth of a single substance or a lot tends to vary. On the other hand, when the CO concentration exceeds 40%, the grain boundary oxide layer of the processed product becomes deep.

【0021】そこで、浸炭速度が速く、浸炭深さのバラ
ツキが小さく、粒界酸化層の浅い浸炭雰囲気としては、
その総ガス中のCO濃度は、28〜40%が適当であ
る。 (浸炭炉及び浸炭窒化炉):本発明に係るガス浸炭及び
ガス浸炭窒化処理を実施する炉の型式としては、従来の
ガス浸炭処理法で使用しているビット型、バッチ型、連
続型の全ての型式がそのまま適用可能である。
Therefore, the carburizing speed is high, the variation in carburizing depth is small, and the carburizing atmosphere with a shallow grain boundary oxide layer is as follows.
An appropriate CO concentration in the total gas is 28 to 40%. (Carburizing Furnace and Carbonitriding Furnace): The types of furnaces for performing gas carburizing and gas carbonitriding according to the present invention include bit types, batch types, and continuous types used in conventional gas carburizing methods. Is applicable as it is.

【0022】ただ、従来のフレームカーテン式バッチ炉
を用いる場合、品物の出し入れの際に空気の吸い込みに
より爆発の危険があるときは、その品物の出し入れの時
だけ炉内容積の1.5倍以上(時間あたり)のガスを流
してやれば問題ない。しかし、バッチ型炉、トレープッ
シャー型連続炉等のようなフレームカーテンを使ってい
る従来炉を用いるよりは、加熱室以外に1つ以上の真空
パージ室を備えた本発明の請求項3に係る炉を用いた方
が、安全で、しかも雰囲気の安定性が高く、ガス消費量
も少なくて済む利点がある。 (炉内雰囲気制御):本発明に係るガス浸炭及びガス浸
炭室化による金属表面のガス硬化処理方法は、COガス
が安定して生成され且つその濃度がほぼ一定に保たれて
いるため、従来のガス浸炭法と同様に、雰囲気中のO2
濃度を酸素センサーにより分析制御するか、雰囲気中の
CO2濃度を赤外線CO2分析計により分析制御すること
によりカーボンポテンシャルを制御できる。
However, when a conventional frame curtain type batch furnace is used, if there is a danger of explosion due to the inhalation of air when the goods are taken in and out, the furnace volume is 1.5 times or more only when the goods are taken in and out. There is no problem if gas is flowed (per hour). However, according to claim 3 of the present invention, one or more vacuum purging chambers are provided in addition to the heating chamber, rather than using a conventional furnace using a frame curtain such as a batch type furnace, a tray pusher type continuous furnace, or the like. The use of a furnace is advantageous in that it is safer, has a higher atmosphere stability, and requires less gas consumption. (Atmosphere control in furnace): In the gas hardening method for metal surface by gas carburizing and gas carburizing chamber according to the present invention, CO gas is generated stably and its concentration is kept almost constant. O 2 in the atmosphere as in the gas carburizing method of
The carbon potential can be controlled by controlling the concentration with an oxygen sensor or controlling the concentration of CO 2 in the atmosphere with an infrared CO 2 analyzer.

【0023】また、より精密にカーボンポテンシャルを
制御するには、雰囲気中のCOとO 2の両成分を分析
し、演算制御することによりカーボンポテンシャルを制
御するか、または雰囲気中のCOとCO2の両成分を分
析し、演算制御することによりカーボンポテンシャルを
制御するのがよい。
Further, the carbon potential can be more precisely determined.
To control CO and O in the atmosphere TwoAnalyze both components of
Control and control the carbon potential
CO or CO in the atmosphereTwoOf both components
Analysis and arithmetic control to reduce the carbon potential
It is better to control.

【0024】[0024]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。図1は、本発明の金属表面のガス
硬化処理方法を実施する装置の一例を示す、ガス浸炭炉
の概略図である。この炉は、バッチ式の炉本体を構成す
る加熱室1の前に、前室2を備えている。その前室2は
ローラテーブル3を境に上下2段に分かれており、下段
には焼入れ油槽4が設置されている。上段の真空パージ
室5は、入口に昇降シリンダCy1で開閉される入口真
空扉6が設置され、出口には昇降シリンダCy2で開閉
される出口真空扉7が設置されている。また、真空パー
ジ室5内には、昇降シリンダCy3でローラテーブル3
の一部と共に昇降駆動されるエレベータ8が設置されて
いる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view of a gas carburizing furnace showing an example of an apparatus for performing the method for gas-curing a metal surface according to the present invention. This furnace includes a front chamber 2 in front of a heating chamber 1 constituting a batch type furnace main body. The front chamber 2 is divided into upper and lower stages with a roller table 3 as a boundary, and a quenching oil tank 4 is installed in a lower stage. The upper vacuum purge chamber 5 is provided with an inlet vacuum door 6 that is opened and closed by an elevating cylinder Cy1 at the inlet, and an outlet vacuum door 7 that is opened and closed by an elevating cylinder Cy2 at the outlet. In the vacuum purge chamber 5, the roller table 3 is moved by the lifting cylinder Cy3.
The elevator 8 is installed which is driven up and down together with a part of the elevator.

【0025】加熱室1には、前室2の出口に対向させて
出入口が設けられ、昇降シリンダCy4で駆動される断
熱扉11により開閉されるようになっている。また、加
熱室1内に、図示されない加熱源,熱電対と共に、攪拌
用ファン12が設置されている。図中の符号13は排気
口である。なお、炉内駆動チェーン14は、前室2の内
部から加熱室1の内部までワークWを搬送したり、逆に
搬出もできる。
The heating chamber 1 is provided with an inlet / outlet facing the outlet of the front chamber 2 and is opened / closed by a heat insulating door 11 driven by a lifting / lowering cylinder Cy4. A stirring fan 12 is installed in the heating chamber 1 together with a heating source and a thermocouple (not shown). Reference numeral 13 in the figure is an exhaust port. The in-furnace drive chain 14 can transport the work W from the inside of the front chamber 2 to the inside of the heating chamber 1 and can also carry it out.

【0026】いま、加熱室1の内容積が1.8m3 、グ
ロス400kg処理できる図1の真空パージ室付浸炭炉
を使用して、ワークW(直径15mm,長さ20mmの
SCM415材,グロス400kg)を浸炭処理した場
合について説明する。初めに、真空パージ室5の入口真
空扉6だけを開口させ、出口真空扉7及び加熱室1の断
熱扉11は閉じておく。その状態で、バスケットに収納
したワークWを真空パージ室5内に送り入口真空扉6を
閉じる。次に、真空ポンプにより真空パージ室5内の空
気を排気し、窒素で復圧する。窒素復圧後、出口真空扉
7及び加熱室1の断熱扉11を開口させ、炉内駆動チェ
ーン14を利用してワークWを浸炭ガスで満たされ、昇
温されている加熱室1内に搬送し、出口真空扉7及び加
熱室1の断熱扉11を閉じる。その加熱室1に浸炭処理
用のガスを供給しつつ所定の温度で浸炭処理を行う。
Now, using a carburizing furnace with a vacuum purge chamber as shown in FIG. 1 capable of processing 400 kg of gross and having an inner volume of 1.8 m 3 in the heating chamber 1, a work W (SCM415 material having a diameter of 15 mm and a length of 20 mm, a gross of 400 kg) ) Will be described. First, only the inlet vacuum door 6 of the vacuum purge chamber 5 is opened, and the outlet vacuum door 7 and the heat insulating door 11 of the heating chamber 1 are closed. In this state, the work W stored in the basket is sent into the vacuum purge chamber 5 and the inlet vacuum door 6 is closed. Next, the air in the vacuum purge chamber 5 is exhausted by a vacuum pump, and the pressure is restored with nitrogen. After the nitrogen pressure is restored, the outlet vacuum door 7 and the heat insulating door 11 of the heating chamber 1 are opened, and the work W is filled with the carburizing gas using the in-furnace drive chain 14 and transported into the heating chamber 1 where the temperature is raised. Then, the exit vacuum door 7 and the heat insulating door 11 of the heating chamber 1 are closed. Carburizing is performed at a predetermined temperature while supplying a gas for carburizing to the heating chamber 1.

【0027】図2に、加熱室1内における浸炭処理のヒ
ートパターンの一例を示す。図示パターンにおける昇温
および均熱中は、処理ガスとして、CH3OH:400
cc/h、C38:0.31/min、CO2:1.6
1/minを流した。浸炭期、拡散期及び降温保持期
は、CH3OH:400cc/h、C38:0.71/
minを一定量流し、図示していない加熱室に直接挿入
した酸素センサーにより加熱室1内のO2濃度を分析し
つつ、その時のカーボンポテンシャル(CP)が浸炭期
は1.1%、拡散期および降温保持期は0.75%にな
るようにC38と空気の導入を制御した。
FIG. 2 shows an example of a heat pattern of the carburizing process in the heating chamber 1. During the temperature rise and soaking in the illustrated pattern, CH 3 OH: 400
cc / h, C 3 H 8 : 0.31 / min, CO 2: 1.6
1 / min was flowed. During the carburizing period, the diffusion period and the cooling period, CH 3 OH: 400 cc / h, C 3 H 8 : 0.71 /
min, and while analyzing the O 2 concentration in the heating chamber 1 with an oxygen sensor directly inserted into a heating chamber (not shown), the carbon potential (CP) at that time was 1.1% in the carburizing period and the diffusion period. And the introduction of C 3 H 8 and air was controlled so that the cooling period was 0.75%.

【0028】降温保持期が終了した後、ワークWを加熱
室1から取り出して真空パージ室5に移し、エレベータ
8を用いて焼入槽4内に浸漬し、60℃で油冷して、実
施例の浸炭処理済ワークを得た。一方、比較例とし
て、同じワークWを、図2と同じヒートパターンで滴注
式浸炭法により処理した。その時の導入ガスとしては、
CH3OH:2000cc/hを一定量流し、酸素セン
サーによりO2濃度を分析しつつ、CPが浸炭期:1.
1%、拡散期および降温保持期0.75%になるように
38と空気の導入を制御した。
After the cooling period, the work W is taken out of the heating chamber 1, transferred to the vacuum purge chamber 5, immersed in the quenching tank 4 using the elevator 8, and oil-cooled at 60.degree. Example carburized workpieces were obtained. On the other hand, as a comparative example, the same work W was treated by the drip-injection carburizing method with the same heat pattern as in FIG. As the gas introduced at that time,
CH 3 OH: A constant amount of 2,000 cc / h is flown, and the O 2 concentration is analyzed by an oxygen sensor.
The introduction of C 3 H 8 and air was controlled so as to be 1% and the diffusion period and the cooling period 0.75%.

【0029】さらに、比較例として、図2と同じヒー
トパターンで滴注式浸炭法の滴注剤流量のみを削減して
処理した。その時の導入ガスとしては、CH3OH:4
00cc/hを一定量流し、酸素センサーによりO2
度を分析すしつつ、CPが浸炭期:1.1%、拡散期お
よび降温保持期:0.75%になるようにC38と空気
の導入を制御した。
Further, as a comparative example, the treatment was carried out with the same heat pattern as in FIG. The gas introduced at that time was CH 3 OH: 4
At a constant flow rate of 00 cc / h, while analyzing the O 2 concentration with an oxygen sensor, C 3 H 8 and air were adjusted so that the carburizing period was 1.1%, the diffusion period and the temperature-lowering period were 0.75%. Controlled the introduction of.

【0030】その時の雰囲気ガスを分析した結果を図3
に示す。図3によれば、本発明の浸炭処理方法は、比較
例の通常の滴注式浸炭法と同様に残留CH4も少な
く、CO濃度も浸炭期に約32%一定に保たれている。
しかし、比較例の滴注流量を削減した方式は、残留C
4は同様に少ないが、CO濃度が処理終了時点におい
ても約28%とかなり低くなっている。この時に、予め
炉内の9個所に設置した浸炭深さバラツキ用テストピー
ス(SCM415)を検査したところ、図4に示すよう
な結果を得た。これによれば、本発明品は、9点バラツ
キの結果が0.04mmと、従来の滴注式浸炭法と同等
以上の良好な結果が得られた。
FIG. 3 shows the result of analyzing the atmospheric gas at that time.
Shown in According to FIG. 3, the carburizing method of the present invention has a small amount of residual CH 4 and a constant CO concentration of about 32% during the carburizing period, as in the case of the ordinary dropping type carburizing method of the comparative example.
However, the method in which the flow rate of the dropping in the comparative example was reduced was the residual C
Although H 4 is similarly low, the CO concentration is considerably low at about 28% at the end of the treatment. At this time, test pieces (SCM415) for carburization depth variation, which were previously set at nine locations in the furnace, were inspected, and the results shown in FIG. 4 were obtained. According to this, the product of the present invention had a nine-point variation of 0.04 mm, which was a good result equal to or better than that of the conventional drip-injection type carburizing method.

【0031】図5に、本発明の浸炭処理方法における9
30℃浸炭期の雰囲気制御性を示した。これは、0.1
mm厚さの純鉄箔を炉内に30分間挿入することによ
り、その後のC濃度を分析したものである。その結果、
本発明方式は計算値と実際の分析値とがほぼ同等のC濃
度値であり、制御性が優れていることが判明した。次
に、本発明の第2の実施の形態を説明する。
FIG. 5 shows a graph of 9 in the carburizing method of the present invention.
The atmosphere controllability during the carburizing stage at 30 ° C. was exhibited. This is 0.1
The C concentration was analyzed by inserting a pure iron foil having a thickness of mm into the furnace for 30 minutes. as a result,
In the method of the present invention, the calculated value and the actual analysis value were almost the same C concentration value, and it was found that the controllability was excellent. Next, a second embodiment of the present invention will be described.

【0032】これは、前記第1の実施の形態と同じ本発
明方法により、同じワークWを同じ原料、同じガス流量
で、同じく930℃において浸炭処理したものである
が、ただし浸炭期のCPの値を1.0%に制御して行っ
た点が異なる。この第2の実施の形態における実施例の
浸炭時間と有効硬化層深さとの関係を図6に実線で示し
た。
This is obtained by carburizing the same workpiece W at the same raw material and the same gas flow rate at 930 ° C. by the same method of the present invention as in the first embodiment. The difference is that the value was controlled to 1.0%. The relationship between the carburizing time and the effective hardened layer depth of the example in the second embodiment is shown by a solid line in FIG.

【0033】一方、比較例として、プロパン炉内変成
方式により、C38:2l/min、空気:12l/m
inを一定量流し、C38をエンリッチすることによ
り、同様にCPを1.0%に制御して浸炭した場合の浸
炭時間と有効硬化層深さの関係を、図6に点線で示し
た。さらに、比較例として、メタン炉内変成方式によ
り、CH4:6l/min、空気:121/minを一
定量流し、CH4をエンリッチすることにより、同様に
CPを1.0%に制御して浸炭した場合の浸炭時間と有
効硬化層深さの関係を、図6に鎖線で示した。
On the other hand, as a comparative example, C 3 H 8 : 2 l / min, air: 12 l / m by a shift method in a propane furnace.
The dotted line in FIG. 6 shows the relationship between the carburizing time and the effective hardened layer depth when carburizing is performed by similarly controlling the CP to 1.0% by flowing a constant amount of in and enriching C 3 H 8 . Was. Further, as a comparative example, a constant amount of CH 4 : 6 l / min and air: 121 / min were flown by the methane furnace shift method, and the CH 4 was enriched, thereby similarly controlling the CP to 1.0%. The relationship between the carburizing time and the effective hardened layer depth in the case of carburizing is shown by the chain line in FIG.

【0034】図6の結果から、本発明の浸炭処理方法
は、比較例,に比べて同じ浸炭時間において有効硬
化層深さが深くなっていることがわかる。すなわち本発
明の浸炭処理方法は、従来の炉内変成式直接浸炭法より
浸炭速度が速いと言える。続いて、本発明の第3の実施
の形態を説明する。これは、前記第1の実施の形態と同
じ浸炭炉(図1)を用いて、同じヒートパターン(図
2)で、SCM415穴あき丸棒(直径20mm,長さ
40mmで、直径5mm,深さ32mmの穴を中心にあ
けたテストピース)をワークとして浸炭処理したもので
ある。
From the results shown in FIG. 6, it can be understood that the carburizing method of the present invention has a deeper effective hardened layer at the same carburizing time as compared with the comparative example. That is, it can be said that the carburizing method of the present invention has a higher carburizing rate than the conventional in-furnace direct conversion type carburizing method. Next, a third embodiment of the present invention will be described. This is performed by using the same carburizing furnace (FIG. 1) as in the first embodiment, using the same heat pattern (FIG. 2), and forming an SCM415 perforated round bar (diameter 20 mm, length 40 mm, diameter 5 mm, depth). The test piece is a carburizing process using a test piece (centered on a 32 mm hole) as a workpiece.

【0035】この実施例の穴あきテストピースにおけ
る、外周部の有効硬化層深さに対する穴の中の5〜30
mm部の有効硬化層深さの割合を、図7に実線で示し
た。一方、比較例として、プロパン炉内変成方式によ
り、C38:2l/min、空気:12l/minを一
定量流し、C38をエンリッチすることにより、同様の
ヒートパターンにて、同じ穴あきテストピースを浸炭処
理した。その場合の外周部の有効硬化層深さに対する穴
の中の5〜30mm部の有効硬化層深さの割合を、図7
に点線で示した。
In the test piece with a hole in this embodiment, 5 to 30 of the holes correspond to the effective hardened layer depth at the outer peripheral portion.
The ratio of the effective hardened layer depth in mm part is shown by a solid line in FIG. On the other hand, as a comparative example, C 3 H 8 : 2 l / min and air: 12 l / min are flowed in a fixed amount by a metamorphic system in a propane furnace, and C 3 H 8 is enriched to obtain the same heat pattern. The perforated test piece was carburized. In this case, the ratio of the effective hardened layer depth of the 5 to 30 mm portion in the hole to the effective hardened layer depth of the outer peripheral portion is shown in FIG.
Is indicated by a dotted line.

【0036】さらに、比較例として、メタン炉内変成
方式により、CH4:6l/min、空気:121/m
inを一定量流し、CH4をエンリッチすることによ
り、同様のヒートパターンにて、同じ穴あきテストピー
スを浸炭処理した。その場合の外周部の有効硬化層深さ
に対する穴の中の5〜30mm部の有効硬化層深さの割
合を、図7に鎖線で示した。
Further, as a comparative example, CH 4 : 6 l / min, air: 121 / m
In was flowed in a fixed amount and CH 4 was enriched to thereby carburize the same perforated test piece with the same heat pattern. In this case, the ratio of the effective hardened layer depth of the 5 to 30 mm portion in the hole to the effective hardened layer depth of the outer peripheral portion is shown by a chain line in FIG.

【0037】図7の結果から、本発明の浸炭処理方法
は、比較例,に比べて穴の中まで比較的深く浸炭さ
れており、浸炭均一性に優れていることがわかる。な
お、上記の各実施の形態では、浸炭処理の場合のみを説
明したが、浸炭処理の場合の原料ガスに、NH3、C3
7NO等を加えれば浸炭窒化処理も同様に実施できる。
From the results shown in FIG. 7, it can be seen that the carburizing method of the present invention carburized relatively deeply into the holes and was excellent in carburizing uniformity as compared with the comparative example. In each of the above embodiments, only the case of carburizing treatment has been described. However, NH 3 , C 3 H
Carbonitriding can be performed in the same manner by adding 7 NO and the like.

【0038】[0038]

【発明の効果】以上説明したように、本発明によれば、
従来のガス浸炭およびガス浸炭窒化法に比べて大幅にそ
の原料ガス使用量が削減でき、それによって、排出され
るCO 2量も大幅に削減できる。そのため、省資源、省
エネルギーの観点からも有利で、環境面に対してもやさ
しい浸炭および浸炭窒化法を提供できる。
As described above, according to the present invention,
Compared to conventional gas carburizing and gas carbonitriding methods,
Source gas usage, thereby reducing emissions
CO TwoThe amount can be greatly reduced. Therefore, resource saving, saving
Advantageous from an energy standpoint and environmentally friendly
New carburizing and carbonitriding methods can be provided.

【0039】また、本発明の方法は、従来のガス浸炭法
に比べて雰囲気安定性に優れ、そのことによりカーボン
ポテンシャルの制御性にも優れている。また、本発明の
方法は、従来のガス浸炭法に比べて浸炭速度が速く、浸
炭バラツキも少なくできる。さらに、本発明によれば、
加熱炉以外に1つ以上の真空パージ室を備えた浸炭炉を
使用することにより、安全で、なおかつ安定した浸炭処
理または浸炭窒化処理が可能となり、フレームカーテン
がないため環境的にも優れた浸炭および浸炭窒化法を提
供できる。
Further, the method of the present invention has better atmosphere stability than the conventional gas carburizing method, and thus has excellent controllability of carbon potential. In addition, the method of the present invention has a higher carburizing speed and less variation in carburizing than the conventional gas carburizing method. Furthermore, according to the present invention,
By using a carburizing furnace equipped with one or more vacuum purge chambers in addition to the heating furnace, safe and stable carburizing or carbonitriding can be performed. And carbonitriding can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を実施するためのバッチ型浸炭炉
の概略図。
FIG. 1 is a schematic diagram of a batch carburizing furnace for performing the method of the present invention.

【図2】浸炭処理のヒートパターンの図。FIG. 2 is a diagram of a heat pattern of a carburizing process.

【図3】930℃浸炭処理時の炉内雰囲気ガスの分析結
果を示す図。
FIG. 3 is a view showing an analysis result of an atmosphere gas in a furnace at a time of carburizing at 930 ° C.

【図4】炉内9点で測定した浸炭深さのバラツキを示す
図。
FIG. 4 is a view showing variations in carburizing depth measured at nine points in a furnace.

【図5】930℃浸炭処理時のCP計算値と箔分析C濃
度との関係を示す図。
FIG. 5 is a diagram showing a relationship between a calculated CP value and a foil analysis C concentration at 930 ° C. carburizing treatment.

【図6】930℃,1.0%CPにおける浸炭時間と有
効硬化層深さとの関係を示す図。
FIG. 6 is a graph showing the relationship between carburizing time and effective hardened layer depth at 930 ° C. and 1.0% CP.

【図7】SCM415穴あき丸棒における穴の深さと有
効硬化層割合との関係を示す図。
FIG. 7 is a diagram showing the relationship between the depth of a hole and the ratio of an effective hardened layer in an SCM415 holed round bar.

【符号の説明】[Explanation of symbols]

1………加熱室 2………前室 4………焼入れ油槽 5………真空パージ室 6………入口真空扉 7………出口真空扉 8………加熱室 11………断熱扉 12………攪拌用ファン 13………排気口 14………炉内駆動用チェーン 1 Heating chamber 2 Front chamber 4 Hardened oil tank 5 Vacuum purge chamber 6 Inlet vacuum door 7 Outlet vacuum door 8 Heating chamber 11 Heat insulation Door 12 Agitating fan 13 Exhaust port 14 Furnace drive chain

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 浸炭炉内で発生する総ガス量が時間当た
り浸炭炉内容積の0.05〜1.5倍であって、当該発
生総ガス中のCO量の50%以上をメタノールの分解ガ
スにより供給するとともに、残部をCとHとを含むガス
または液体のいずれかとOを含むガスまたは液体のいず
れかとの反応により供給することにより、浸炭炉内にお
ける総ガス中のCO濃度を28〜40%に保持して73
0〜1100℃の温度で浸炭することを特徴とする金属
表面のガス硬化処理方法。
1. The total amount of gas generated in a carburizing furnace is 0.05 to 1.5 times the internal volume of the carburizing furnace per hour, and 50% or more of the CO amount in the generated total gas is decomposed by methanol. The CO concentration in the total gas in the carburizing furnace is 28 to 28 by supplying by gas and supplying the remainder by reacting either gas or liquid containing C and H with gas or liquid containing O. Keep at 40% 73
A gas hardening method for a metal surface, comprising carburizing at a temperature of 0 to 1100C.
【請求項2】 請求項1記載の炉内ガスに、更にNとH
を含むガスまたは液体のいずれかを、浸炭炉内ガス体積
の0.5〜15%添加しつつ650〜1100℃の温度
で浸炭窒化することを特徴とする金属表面のガス硬化処
理方法。
2. The furnace gas according to claim 1, further comprising N and H.
A gas or liquid containing 0.5% to 15% of the gas volume in a carburizing furnace and carbonitriding at a temperature of 650 to 1100 ° C.
【請求項3】 加熱室以外に1つ以上の真空パージ室を
備えた炉を用いることを特徴とする請求項1または2記
載の金属表面のガス硬化処理方法。
3. The gas hardening method for a metal surface according to claim 1, wherein a furnace provided with one or more vacuum purge chambers in addition to the heating chamber is used.
JP2000022569A 2000-01-31 2000-01-31 Gas curing method for metal surface Expired - Lifetime JP3428936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000022569A JP3428936B2 (en) 2000-01-31 2000-01-31 Gas curing method for metal surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000022569A JP3428936B2 (en) 2000-01-31 2000-01-31 Gas curing method for metal surface

Publications (2)

Publication Number Publication Date
JP2001214255A true JP2001214255A (en) 2001-08-07
JP3428936B2 JP3428936B2 (en) 2003-07-22

Family

ID=18548856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000022569A Expired - Lifetime JP3428936B2 (en) 2000-01-31 2000-01-31 Gas curing method for metal surface

Country Status (1)

Country Link
JP (1) JP3428936B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004111292A1 (en) * 2003-06-12 2004-12-23 Koyo Thermo Systems Co., Ltd. Method of gas carburizing
WO2005003401A1 (en) * 2003-07-03 2005-01-13 Koyo Thermo Systems Co., Ltd. Method for gas carburizing
JP2005163056A (en) * 2003-11-28 2005-06-23 Koyo Thermo System Kk Gas carburizing method
JP2005200695A (en) * 2004-01-14 2005-07-28 Onex Corp Gas carburizing method
EP1598440A1 (en) * 2002-06-11 2005-11-23 Koyo Thermo Systems Co., Ltd. Method of gas carburizing
US7416614B2 (en) 2002-06-11 2008-08-26 Koyo Thermo Systems Co., Ltd. Method of gas carburizing
JP2009046700A (en) * 2007-08-14 2009-03-05 Dowa Thermotech Kk Heat treatment method and heat treatment facility
JP2009068070A (en) * 2007-09-13 2009-04-02 Dowa Thermotech Kk Heat treatment method and heat treatment apparatus
JP2015509070A (en) * 2012-01-06 2015-03-26 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for producing a gas mixture containing substantially equal proportions of carbon monoxide and hydrogen
JP2019119892A (en) * 2017-12-28 2019-07-22 エア・ウォーター株式会社 Gas carburization method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1598440A1 (en) * 2002-06-11 2005-11-23 Koyo Thermo Systems Co., Ltd. Method of gas carburizing
EP1598440A4 (en) * 2002-06-11 2008-06-18 Koyo Thermo Sys Co Ltd Method of gas carburizing
US7416614B2 (en) 2002-06-11 2008-08-26 Koyo Thermo Systems Co., Ltd. Method of gas carburizing
US8317939B2 (en) 2003-06-12 2012-11-27 Koyo Thermo Systems Co., Ltd. Method of gas carburizing
WO2004111292A1 (en) * 2003-06-12 2004-12-23 Koyo Thermo Systems Co., Ltd. Method of gas carburizing
WO2005003401A1 (en) * 2003-07-03 2005-01-13 Koyo Thermo Systems Co., Ltd. Method for gas carburizing
US7029540B2 (en) 2003-07-03 2006-04-18 Koyo Thermo Systems Co., Ltd. Method of gas carburizing
JP2005163056A (en) * 2003-11-28 2005-06-23 Koyo Thermo System Kk Gas carburizing method
JP2005200695A (en) * 2004-01-14 2005-07-28 Onex Corp Gas carburizing method
JP2009046700A (en) * 2007-08-14 2009-03-05 Dowa Thermotech Kk Heat treatment method and heat treatment facility
JP2009068070A (en) * 2007-09-13 2009-04-02 Dowa Thermotech Kk Heat treatment method and heat treatment apparatus
JP2015509070A (en) * 2012-01-06 2015-03-26 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for producing a gas mixture containing substantially equal proportions of carbon monoxide and hydrogen
JP2019119892A (en) * 2017-12-28 2019-07-22 エア・ウォーター株式会社 Gas carburization method

Also Published As

Publication number Publication date
JP3428936B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
US5702540A (en) Vacuum carburizing method and device, and carburized products
CA1084392A (en) Methods for carburizing steel parts
JP5747261B2 (en) Method and apparatus for preparing a process gas for heat treatment of metal materials / metal workpieces in an industrial furnace
US4003764A (en) Preparation of an ε-carbon nitride surface layer on ferrous metal parts
JP2001214255A (en) Gas-hardening treatment method for metal surface
JP3839615B2 (en) Vacuum carburizing method
JPH064906B2 (en) Carburizing of metal work
JPH06172960A (en) Vacuum carburization method
JP5330651B2 (en) Heat treatment method
US4236941A (en) Method of producing heat treatment atmosphere
US9540721B2 (en) Method of carburizing
US5133813A (en) Gas-carburizing process and apparatus
JPH02122062A (en) Method for vacuum carburization
US5225144A (en) Gas-carburizing process and apparatus
JP2005272884A (en) Gas nitriding method
JP2009138207A (en) Method and apparatus for manufacturing steel having carbon concentration-controlled steel surface
KR100871241B1 (en) A carburization treatment method
JP2009299122A (en) Nitriding-quenching method, heater for nitriding-quenching and nitriding-quenching apparatus
JPS585259B2 (en) Gas carburizing method and equipment
JP5837282B2 (en) Surface modification method
JP2009046700A (en) Heat treatment method and heat treatment facility
JPH0515782B2 (en)
JPH0232678Y2 (en)
JP6773411B2 (en) Carburizing system and manufacturing method of surface hardened steel
JPH0222451A (en) Vacuum carburizing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3428936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term