WO2019131602A1 - Nitrided steel member, and method and apparatus for producing nitrided steel member - Google Patents

Nitrided steel member, and method and apparatus for producing nitrided steel member Download PDF

Info

Publication number
WO2019131602A1
WO2019131602A1 PCT/JP2018/047505 JP2018047505W WO2019131602A1 WO 2019131602 A1 WO2019131602 A1 WO 2019131602A1 JP 2018047505 W JP2018047505 W JP 2018047505W WO 2019131602 A1 WO2019131602 A1 WO 2019131602A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
steel member
furnace
nitriding
nitrided steel
Prior art date
Application number
PCT/JP2018/047505
Other languages
French (fr)
Japanese (ja)
Inventor
陽一 渡邊
泰 平岡
Original Assignee
パーカー熱処理工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パーカー熱処理工業株式会社 filed Critical パーカー熱処理工業株式会社
Publication of WO2019131602A1 publication Critical patent/WO2019131602A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/04Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated adapted for treating the charge in vacuum or special atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/16Arrangements of air or gas supply devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/18Arrangement of controlling, monitoring, alarm or like devices

Definitions

  • the present invention relates to a nitride steel member and a method and an apparatus for manufacturing the nitride steel member. More specifically, the present invention relates to a nitride steel member having excellent fatigue resistance useful for gears, crankshafts, and the like for automobile transmissions, and a method and apparatus for manufacturing the nitride steel member.
  • a compound layer which is iron nitride is formed on the surface, and a hardened layer called a diffusion layer is formed inside.
  • the hardened layer is usually made of an alloy nitride such as Si or Cr as a base material component.
  • the atmosphere in the gas nitriding furnace is also used to control the thickness (depth) of each of these two layers and / or the type of iron nitride on the surface, etc. It is controlled appropriately. Specifically, the nitriding potential (K N ) in the gas nitriding furnace is appropriately controlled.
  • the volume fraction (type of iron nitride) of ⁇ 'phase (Fe 4 N) and ⁇ phase (Fe 2-3 N) in the compound layer formed on the surface of the steel material is controlled It is done. Specifically, it is known that the fatigue resistance is improved by forming the ⁇ ′ phase more than the ⁇ phase (“Heat treatment”, Volume 55, No. 1, pages 1 and 2 (Hiraoka, Yoichi Watanabe, Takeshi Ishida): Non-Patent Document 1). Furthermore, a nitrided steel member in which the bending fatigue strength and the surface fatigue are improved by the formation of the ⁇ ′ phase is also provided (Japanese Patent Application Laid-Open No. 2013-221203: Patent Document 1).
  • the? 'Phase is formed in the compound layer on the surface of the steel material to improve the fatigue resistance.
  • the compound layer contains not only a small amount of ⁇ phase, but in fact, it becomes a two phase state of ⁇ ' phase and ⁇ phase (Japanese Patent Application Laid-Open No. 2016-211069: Patent Document 2). That is, there is a limit in forming a compound layer mainly based on the? 'Phase in order to improve the fatigue strength.
  • a large number of voids are formed in the vicinity of the surface layer of the compound layer. These voids tend to develop into fatigue cracks.
  • Nitriding treatment in the temperature range is referred to as carbonitriding treatment in contrast to conventional nitriding treatment.
  • austenite in the structure near the surface is stabilized, and a large amount of austenite remains even if it is quenched after that. Therefore, the strain after the heat treatment is about the same as the nitriding treatment.
  • this stabilized austenite is transformed to a hard martensitic structure by being reheated to a temperature of 250 to 300.degree.
  • STKM13 (a kind of carbon steel) is subjected to nitridation treatment at 640 ° C. for 90 minutes, and further to nitrogen treatment at 660 ° C. for 40 minutes and then reheat treatment at 280 ° C. for 90 minutes. It is hardened until "(New concept and practice of carburization and nitridation", Agne Technical Center, p. 142-147, 2013 (Teruaki Watanabe): Non-Patent Document 2). However, there is a problem that the compound layer on the surface remains.
  • Patent Document 1 cited by this specification is JP-A-2013-221203, and Patent Document 2 cited by this specification is JP-A-2016-211069.
  • Non-Patent Document 1 cited by this specification is “Heat treatment”, Volume 55, No.
  • Non-Patent Document 3 cited in this specification is "European Conference on Heat Treatment and Surface Engineering A3 TS Congress (Nice, France, 2017), pp. 26-29 (Y. Kawata and T. Kidachi), and Non-Patent Document 4 cited in this specification is “Japanese Heat Treatment Technology”. Association 5th Heat Treatment Technology Seminar Text ", 2012, (5) pp. 1-8 (Masahiro Okumiya).
  • the fatigue failure of machine parts results from notches which are subjected to high load stress, for example the root of a gear tooth.
  • a stress distribution according to the shape and load environment occurs only in the surface layer region (from the surface to the inside of a predetermined depth). For this reason, it is desirable to harden only the surface layer region so as not to impair the toughness and the machinability of the steel material.
  • the inventor of the present invention repeated intensive studies and various experiments to limit the configuration of the processing furnace and control the temperature and the nitriding potential of the nitriding treatment with high precision to thereby make the surface region hardened as desired. It was found that the members could be manufactured.
  • An object of the present invention is to provide a nitrided steel member whose surface region is hardened as desired, and a manufacturing method and apparatus for manufacturing such a nitrided steel member.
  • the present invention is a nitrided steel member having a carbon steel or low alloy steel as a matrix, and having a hardened layer having a martensitic structure containing 0.8% or more of nitrogen by mass% on the surface, wherein the hardened layer
  • the lower portion is provided with a diffusion layer in which nitrogen is diffused in the matrix, and the hardened layer has a thickness of 2 ⁇ m to 50 ⁇ m from the surface of the nitrided steel member, and the diffusion layer is the nitrided portion.
  • the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface of the nitrided steel member, which extends to a depth of more than 100 ⁇ m from the surface of the steel member, and at a depth of 2 ⁇ m from the surface of the nitrided steel member Is a nitride steel member characterized in that it is larger than 100 HV.
  • the hardened layer having a martensitic structure containing 0.8% or more of nitrogen is limited to a thickness of 2 ⁇ m to 50 ⁇ m from the surface of the nitrided steel member, the heat treatment strain / transformation strain is small. Moreover, the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface of the nitride steel member is 100 HV or more than the hardness at a depth of 2 mm from the surface of the nitride steel member, so that the hardened layer is thin. Sufficient strength can be guaranteed.
  • carbon steel carbon steel whose carbon content is 0.1% or more in mass% can be used, for example.
  • low alloy steel SCr420, SCM415, etc. can be utilized, for example.
  • the present invention is a method of manufacturing a nitrided steel member having a carbon steel or a low alloy steel as a mother phase using a circulation type processing furnace provided with a guide cylinder and a stirring fan, and at the time of nitriding treatment,
  • the temperature range in the circulating process furnace is controlled to 610 ° C. to 660 ° C.
  • the nitriding potential in the circulating process furnace is controlled to the range of 0.06 to 0.3 at the time of the nitriding treatment It is a manufacturing method of the nitriding steel member characterized by the above.
  • a hardened layer having a martensitic structure containing 0.8% or more of nitrogen is provided on the surface, and a diffusion layer in which nitrogen is diffused in the matrix is provided below the hardened layer, and the hardened layer is It has a thickness of 2 ⁇ m to 50 ⁇ m from the surface of the nitrided steel member, and the diffusion layer extends to a depth of more than 100 ⁇ m from the surface of the nitrided steel member, and 2 mm from the surface of the nitrided steel member It is possible to manufacture a nitrided steel member characterized in that the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface of the nitrided steel member is greater than 100 HV or more than the hardness in the depth.
  • the present invention is provided with a circulation type processing furnace having a guide cylinder and a stirring fan, and during nitriding processing, the temperature range in the circulation type processing furnace is controlled to 610 ° C. to 660 ° C.
  • the nitriding potential in the circulation type processing furnace is controlled in the range of 0.06 to 0.3.
  • a hardened layer having a martensitic structure containing 0.8% or more of nitrogen is provided on the surface, and a diffusion layer in which nitrogen is diffused in the matrix is provided below the hardened layer, and the hardened layer is It has a thickness of 2 ⁇ m to 50 ⁇ m from the surface of the nitrided steel member, and the diffusion layer extends to a depth of more than 100 ⁇ m from the surface of the nitrided steel member, and 2 ⁇ m from the surface of the nitrided steel member It is possible to manufacture a nitrided steel member characterized in that the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface of the nitrided steel member is greater than 100 HV or more than the hardness in the depth.
  • ammonia gas and ammonia decomposition gas are introduced into the circulation type processing furnace.
  • the manufacturing apparatus changes a ratio of introduction of the ammonia gas and the amount of introduction of the ammonia decomposition gas while keeping the total flow rate constant; It is preferable that the second control for changing the introduction amount of the ammonia gas can be selectively performed in a state in which the introduction of the ammonia decomposition gas is stopped.
  • the hardened layer having a martensitic structure containing 0.8% or more of nitrogen is limited to a thickness of 2 ⁇ m to 50 ⁇ m from the surface of the nitrided steel member, the heat treatment strain / transformation strain is small. Moreover, the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface of the nitride steel member is 100 HV or more than the hardness at a depth of 2 mm from the surface of the nitride steel member, so that the hardened layer is thin. Sufficient strength can be guaranteed.
  • FIG. 3 is a cross-sectional photomicrograph of a nitrided steel member according to an embodiment of the present invention. It is a cross-sectional microscope picture of the nitrided steel member of FIG. 1 before reheat treatment. It is a cross-sectional microscope picture of a comparative example. It is a graph which shows the example of an experiment about hardness distribution. It is the schematic of the manufacturing apparatus of the nitride steel member by one Embodiment of this invention. It is a schematic sectional drawing of a circulation type processing furnace (horizontal gas nitriding furnace). It is a graph which shows the example of 1st control. It is a graph which shows the example of 1st control. It is a graph which shows the example of 2nd control. It is a graph which shows the example of 2nd control. It is the schematic which shows the example of the jig inserted in a furnace. It is a figure which shows the form of the Ono type rotation bending fatigue test piece.
  • FIG. 1 is a sectional photomicrograph of a nitrided steel member 100 according to an embodiment of the present invention.
  • the nitrided steel member 100 of the present embodiment is provided with a hardened layer 101 having a martensitic structure containing 0.8% or more of nitrogen on the surface, and in the lower part of the hardened layer 101, a matrix phase is provided. And a diffusion layer 102 in which nitrogen is diffused.
  • the matrix (base material) of the present embodiment is a carbon steel having a carbon content of 0.45% by mass.
  • Hardened layer 101 has a thickness of about 15 ⁇ m from the surface of nitrided steel member 100, which is in the range of 2 ⁇ m to 50 ⁇ m.
  • Diffusion layer 102 extends from the surface of nitrided steel member 100 to a depth exceeding 100 ⁇ m. Then, the hardness (for example, about 310 HV) of diffusion layer 102 at a depth of 100 ⁇ m from the surface of nitrided steel member 100 from the hardness (for example, about 180 HV) at a depth of 2 mm from the surface of nitrided steel member 100 It is larger than 100 HV. (Manufacturing conditions of one embodiment of a nitrided steel member)
  • the nitrided steel member 100 of the present embodiment is subjected to the nitronitriding treatment under the treatment conditions of the treatment temperature: 640 ° C., the nitriding potential: 0.16, and the treatment time: 2 hours using a circulation type treatment furnace described later It is quenched and further reheated at 250 ° C. for 2 hours.
  • the hardened layer 101 is strongly corroded (blackened) by the corrosive liquid for texture observation.
  • FIG. 1 A cross-sectional micrograph before the reheating treatment is shown in FIG. In this state, most of the region corresponding to the hardened layer 101 is an austenite phase and does not have sufficient hardness. By performing the reheat treatment, the martensitic structure in the austenite phase is increased, and accordingly, sufficient hardness can be obtained. (Configuration of comparative example)
  • Comparative Example 150 A cross-sectional micrograph of Comparative Example 150 is FIG.
  • the comparative example 150 was subjected to carbonitriding treatment using a circulation type treatment furnace described later under the treatment conditions of treatment temperature: 640 ° C., nitriding potential: 0.32 (> 0.3), treatment time: 2 hours. It is quenched afterward.
  • a compound layer 153 is formed on the surface, and a hardened layer 151 having a martensitic structure is provided below the compound layer 153, and further, the lower side of the hardened layer 151. , And the diffusion layer 152 in which nitrogen is diffused in the matrix phase. As described above, an unnecessary compound layer is formed under manufacturing conditions where the nitriding potential is high. (Effect of nitrided steel members)
  • the hardened layer having a martensitic structure containing 0.8% or more of nitrogen is limited to a thickness of 2 ⁇ m to 50 ⁇ m from the surface of the nitrided steel member, so heat treatment is performed. Low strain / transformation strain. Also, the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface of the nitride steel member is 100 HV or more than the hardness at a depth of 2 ⁇ m from the surface of the nitride steel member, so that the hardened layer is thin. Sufficient strength can be guaranteed. (Range of nitrogen concentration of hardened layer)
  • the nitrogen concentration of the hardened layer 101 is the result of considering the stability of the austenite phase at room temperature. That is, by containing 0.8% or more of nitrogen (more preferably by 1.0% or more of nitrogen), most of the austenite phase is stabilized at room temperature when quenched, ie, during quenching Martensitic transformation does not occur. As a result, the strain is extremely small as compared to the case where martensitic transformation occurs during quenching. (Martensitic transformation is promoted in subsequent reheat treatment to increase hardness.) (Range of thickness of hardened layer)
  • the thickness of the hardened layer 101 basically, the thicker the thickness, the better the fatigue strength.
  • the thickness of the hardened layer 101 can be appropriately selected depending on the shape of the nitrided steel member 100 and the load environment.
  • manufacturing conditions processing temperature such that the condition that “the hardness of the diffusion layer at the depth of 100 ⁇ m from the surface of the nitride steel member is 100 HV or more greater than the hardness at the depth of 2 mm from the surface of nitride steel member”
  • the thickness of the hardened layer 101 is 2 to 50 ⁇ m.
  • the alloy component-based carbon steel in which the hardened layer 101 tends to be thick (specifically, S50C steel, 50 ⁇ m which is the result when carbonizing at a processing temperature of 660 ° C., nitriding potential: 0.17) Is the upper limit value.
  • the nitrided steel member 100 of this embodiment is characterized in that not only the hardened layer 101 but also the diffusion layer 102 has sufficient hardness.
  • the surface hardness after nitriding treatment is generally often obtained at a depth of 50 ⁇ m from the surface.
  • the hardness at a depth position of 100 ⁇ m from the surface is to be evaluated.
  • the hardness at a depth of 2 mm from the surface is defined as an evaluation object for an internal structure not affected by nitriding.
  • the nitriding potential K N is defined by the following equation (2).
  • K N P NH 3 / P H 2 3/2 (2)
  • P NH3 is the ammonia partial pressure in the furnace
  • P H2 is the hydrogen partial pressure in the furnace.
  • the nitriding potential K N is known as an index indicating the nitriding ability of the atmosphere in the gas nitriding furnace.
  • the reaction of the formula (3) mainly occurs, and the nitriding reaction of the formula (1) can be almost neglected quantitatively. Therefore, if the in-furnace ammonia concentration consumed in the reaction of the equation (3) or the hydrogen gas concentration generated in the reaction of the equation (3) is known, the nitriding potential can be calculated. That is, since hydrogen and nitrogen to be generated are 1.5 mol and 0.5 mol respectively from 1 mol of ammonia, if the ammonia concentration in the furnace is measured, the hydrogen concentration in the furnace can also be understood, and the nitriding potential should be calculated. Can. Alternatively, if the in-furnace hydrogen concentration is measured, the in-furnace ammonia concentration can be known, and the nitriding potential can be calculated again.
  • the ammonia gas flowed into the gas nitriding furnace is discharged to the outside of the furnace after circulating in the furnace. That is, in the gas nitriding process, the existing gas is continuously discharged to the outside of the furnace by continuously flowing fresh (new) ammonia gas into the furnace with respect to the existing gas in the furnace (pushed by the supply pressure) .
  • the flow rate of ammonia gas introduced into the furnace is small, the gas residence time in the furnace will be long, so the amount of ammonia gas to be decomposed will increase and nitrogen gas generated by the decomposition reaction + The amount of hydrogen gas increases.
  • the flow rate of ammonia gas introduced into the furnace is high, the amount of ammonia gas discharged out of the furnace without being decomposed increases and the amount of nitrogen gas + hydrogen gas generated in the furnace decreases Do.
  • FIG. 5 is a schematic view showing a manufacturing apparatus for manufacturing a nitrided steel member according to an embodiment of the present invention.
  • the manufacturing apparatus 1 of the present embodiment includes the circulation type processing furnace 2, and only two types of ammonia and ammonia decomposition gas are used as the gas introduced into the circulation type processing furnace 2. ing.
  • the ammonia decomposition gas is a gas also called AX gas, and is a mixed gas consisting of nitrogen and hydrogen in a ratio of 1: 3.
  • ammonia and ammonia decomposition gas Only three types of nitrogen gas may be selected.
  • FIG. 6 An example of the cross-sectional structure of the circulation type processing furnace 2 is shown in FIG.
  • a cylinder 202 called retort is disposed in a furnace wall (also called a bell) 201, and a cylinder 204 called an internal retort is disposed further inside thereof.
  • the introduced gas supplied from the gas introducing pipe 205 passes around the object to be treated and then passes through the space between the two cylinders 202 and 204 by the action of the stirring fan 203 as shown by the arrows in the figure. It circulates.
  • 206 is a flared gas hood
  • 207 is a thermocouple
  • 208 is a lid for the cooling operation
  • 209 is a fan for the cooling operation.
  • the circulation type processing furnace 2 is also called a horizontal gas nitriding furnace, and the structure itself is known.
  • the workpiece S is carbon steel or low alloy steel, and is, for example, a crankshaft or a gear, which is an automobile part.
  • a furnace opening / closing lid 7 a stirring fan 8, a stirring fan drive motor 9, and an atmosphere gas concentration detection device 3 , A nitriding potential regulator 4, a programmable logic controller 30, and an in-furnace introduced gas supply unit 20.
  • the stirring fan 8 is disposed in the processing furnace 2, rotates in the processing furnace 2, and stirs the atmosphere in the processing furnace 2.
  • the stirring fan drive motor 9 is connected to the stirring fan 8 so as to rotate the stirring fan 8 at an arbitrary rotational speed.
  • the atmosphere gas concentration detection device 3 is configured by a sensor that can detect the hydrogen concentration or the ammonia concentration in the processing furnace 2 as the atmosphere gas concentration in the furnace.
  • the detection main body of the sensor is in communication with the inside of the processing furnace 2 through the atmosphere gas pipe 12.
  • the atmosphere gas pipe 12 is formed by a path that directly communicates the sensor main body of the atmosphere gas concentration detector 3 with the processing furnace 2, and the furnace gas waste pipe connected to the exhaust gas combustion decomposition device 41 halfway 40 are connected. Thereby, the atmosphere gas is distributed to the gas to be discarded and the gas supplied to the atmosphere gas concentration detection device 3.
  • the atmosphere gas concentration detection device 3 detects the atmosphere gas concentration in the furnace, the atmosphere gas concentration detection device 3 outputs an information signal including the detected concentration to the nitriding potential regulator 4.
  • the nitriding potential regulator 4 includes an in-furnace nitriding potential calculator 13 and a gas flow rate output adjuster 30.
  • the programmable logic controller 31 also has a gas introduction amount control device 14 and a parameter setting device 15.
  • the in-furnace nitriding potential calculation unit 13 calculates the nitriding potential in the processing furnace 2 based on the hydrogen concentration or the ammonia concentration detected by the in-furnace atmosphere gas concentration detection unit 3. Specifically, an arithmetic expression of the nitriding potential programmed according to the actual furnace introduced gas is incorporated, and the nitriding potential is calculated from the value of the atmosphere gas concentration in the furnace.
  • the parameter setting device 15 includes, for example, a touch panel, and can set and input a total flow rate of gas introduced into the furnace, a gas type, a processing temperature, a target nitriding potential, and the like. Each setting parameter value set and input is transmitted to the gas flow rate output adjusting means 30.
  • the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculating device 13 as an output value, sets a target nitriding potential (the set nitriding potential) as a target value, and outputs ammonia gas and ammonia decomposition gas. Control is performed with each introduction amount as an input value. More specifically, the first control for changing the introduction ratio of the ammonia gas and the ammonia decomposition gas while maintaining the total flow rate of the ammonia gas introduction amount and the ammonia decomposition gas constant, and the ammonia gas in a state where the introduction of the ammonia decomposition gas is stopped It is possible to selectively carry out a second control for changing the introduction amount of. The output value of the gas flow rate output adjustment means 30 is transmitted to the gas introduction amount control means 14.
  • the gas introduction amount control means 14 sends control signals to the first supply amount control device 22 for ammonia gas and the second supply amount control device 26 for ammonia decomposition gas in order to realize the introduction amount of each gas. It has become.
  • the in-furnace introduced gas supply unit 20 of the present embodiment includes a first in-furnace introduced gas supply unit 21 for ammonia gas, a first supply control device 22, a first supply valve 23, and a first flow meter 24. ,have. Further, the in-furnace introduced gas supply unit 20 of the present embodiment includes a second in-furnace introduced gas supply unit 25 for ammonia decomposition gas (AX gas), a second supply amount control device 26, and a second supply valve 27. , And a second flow meter 28.
  • AX gas ammonia decomposition gas
  • the ammonia gas and the ammonia decomposition gas are mixed in the in-furnace gas introduction pipe 29 before entering the processing furnace 2.
  • the first in-furnace introduction gas supply unit 21 is formed of, for example, a tank filled with a first in-furnace introduction gas (in this example, ammonia gas).
  • a first in-furnace introduction gas in this example, ammonia gas
  • the first supply amount control device 22 is formed by a mass flow controller, and is interposed between the first in-furnace introduced gas supply unit 21 and the first supply valve 23.
  • the opening degree of the first supply amount control device 22 changes in accordance with the control signal output from the gas introduction amount control means 14.
  • the first supply control unit 22 detects the amount of supply from the first in-furnace introduced gas supply unit 21 to the first supply valve 23, and sends an information signal including the detected supply to the gas introduction control means 14. It is designed to output.
  • the control signal may be used for correction of control by the gas introduction amount control means 14 or the like.
  • the first supply valve 23 is formed by a solenoid valve that switches the open / close state according to the control signal output from the gas introduction amount control means 14, and between the first supply amount control device 22 and the first flow meter 24. It is interspersed.
  • the second furnace introduction gas supply unit 25 is formed of, for example, a tank filled with a second furnace introduction gas (in this example, an ammonia decomposition gas).
  • the second supply control device 26 is formed by a mass flow controller, and is interposed between the second in-furnace introduced gas supply unit 25 and the first supply valve 27.
  • the opening degree of the first supply control unit 26 changes in accordance with the control signal output from the gas introduction control unit 14.
  • the third supply control unit 26 detects the amount of supply from the second in-furnace introduced gas supply unit 25 to the second supply valve 27, and sends an information signal including the detected supply to the gas introduction control means 14. It is designed to output.
  • the control signal may be used for correction of control by the gas introduction amount control means 14 or the like.
  • the second supply valve 27 is formed by an electromagnetic valve that switches the open / close state according to the control signal output from the gas introduction amount control means 14, and between the second supply amount control device 26 and the second flow meter 28. It is interspersed.
  • the article S is introduced into the circulation type processing furnace 2 and the circulation type processing furnace 2 is heated to a desired processing temperature. Thereafter, a mixed gas of ammonia gas and ammonia decomposition gas or only ammonia gas is introduced into the processing furnace 2 at a set initial flow rate from the in-furnace introduced gas supply unit 20.
  • the setting initial flow rate can also be set and input in the parameter setting device 15, and is controlled by the first supply amount control device 22 and the second supply amount control device 26 (both mass flow controllers).
  • the stirring fan drive motor 9 is driven to rotate the stirring fan 8 and stir the atmosphere in the processing furnace 2.
  • the in-furnace nitriding potential calculator 13 of the nitriding potential regulator 4 calculates the in-furnace nitriding potential (at the beginning, it is a very high value (because there is no hydrogen in the furnace) but there is decomposition of ammonia gas (hydrogen generation) Decreases as the process progresses), and it is determined whether or not the sum of the target nitriding potential and the reference deviation value is exceeded.
  • the reference deviation value can also be set and input in the parameter setting device 15.
  • the nitriding potential adjuster 4 causes the gas introduction amount control means 14 to introduce the introduction amount of gas introduced into the furnace. Start control of the
  • the furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the furnace nitriding potential based on the inputted hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 uses the nitriding potential calculated by the in-furnace nitriding potential calculator 13 as an output value, and uses the target nitriding potential (the set nitriding potential) as a target value. Implement PID control with an input value.
  • the first control for changing the introduction ratio of the ammonia gas and the introduction amount of the ammonia decomposition gas while keeping the total flow rate of the introduction amount of the ammonia gas constant and stopping the introduction of the ammonia decomposition gas A second control of changing the introduction amount of ammonia gas in the state is selectively performed.
  • each set parameter value set and input by the parameter setting device 15 is used.
  • the setting parameter value for example, different values are prepared in accordance with the value of the target nitriding potential.
  • the gas flow rate output adjusting means 30 controls the introduction amount of each in-furnace introduced gas as a result of the PID control. Specifically, the gas flow rate output adjustment means 30 determines the flow rate of each gas, and the output value is transmitted to the gas introduction amount control means 14.
  • the gas introduction amount control means 14 sends control signals to the first supply amount control device 22 for ammonia gas and the second supply amount control device 26 for ammonia decomposition gas in order to realize the introduction amount of each gas.
  • the nitriding potential in the furnace can be stably controlled in the vicinity of the target nitriding potential. As a result, it is possible to carry out the nitridation treatment of the article S with extremely high quality.
  • the cooling step after the nitridation treatment in the manufacturing apparatus 1 concerned.
  • the article S is removed from the furnace while maintaining the heating temperature after the nitriding treatment in the manufacturing apparatus 1. It is necessary to transport it to the quenching device (e.g., an oil tank) and then to quench it.
  • the quenching device e.g., an oil tank
  • the reheating step can also be performed in the manufacturing apparatus 1, it is generally performed in another tempering furnace outside the furnace.
  • FIGS. 7A and 7B An example in which the first control is adopted is shown in FIGS. 7A and 7B.
  • the total flow rate of the introduced amount of ammonia gas and the introduced amount of ammonia decomposition gas is constant at 166 (l / min), and the nitriding potential is as high as 0.16. It is controlled.
  • FIGS. 8A and 8B An example in which the second control is adopted is shown in FIGS. 8A and 8B.
  • the introduction of the ammonia decomposition gas is stopped, and only the introduction amount of the ammonia gas is feedback-controlled in small steps in the vicinity of 220 (l / min), whereby the nitriding potential is 0.16. It is controlled with high precision.
  • the first control be performed.
  • the first control has a nitriding potential. It is difficult to control with high accuracy. In such a case, it is preferable to shift to the second control to perform nitriding potential control.
  • the carbonizing treatment is performed at a treatment temperature of 640 ° C., a nitriding potential of 0.16, and a treatment time of 2 hours.
  • the nitrogen treatment it was transported to an oil tank separately installed outside the furnace while maintaining the temperature, and then cooling was performed (hereinafter, the procedure of carrying to the oil tank after the carbonizing treatment and cooling as described above; Called
  • the article S using the jig shown in FIG. 9, as a steel material at the center of the A surface (furnace lid side), the B surface (center in the furnace), and the C surface (deep side in the furnace).
  • a coin-shaped test piece of S45C steel and having a diameter of 20 x 5 mm was used.
  • the compound layer was formed on any surface, and it was recognized that the hardened layer thickness by martensite tends to be larger as the surface was set in the depth direction. It is considered that this is because the in-furnace uniformity of the nitriding potential is not good.
  • Comparative Example 3 after carbonitriding at a treatment temperature of 700 ° C., a nitriding potential of 0.1, and a treatment time of 1.5 hours, it was oil-cooled and subjected to reheat treatment at 250 ° C. for 2 hours. As a result, a hardened layer of martensitic structure was obtained with a thickness of 40 ⁇ m on the surface.
  • the difference ( ⁇ HV) between the hardness of the diffusion layer 102 at a depth of 100 ⁇ m from the surface and the hardness at a depth of 2 mm from the surface was 70 HV ⁇ 100 HV.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

This nitrided steel member contains a carbon steel or a low alloy steel as a matrix phase, and is characterized by having a hardened layer having a martensite structure containing 0.8% or more of nitrogen at the surface of the member, having a diffusion layer, in which nitrogen diffuses into the matrix phase, below the hardened layer, and in that the hardened layer has a thickness of 2-50 µm from the surface of the nitrided steel member, the diffusion layer extends to a depth of more than 100 µm from the surface of the nitrided steel member, and the hardness of the diffusion layer at a depth of 100 µm from the surface of the nitrided steel member is at least 100 HV more than the hardness at a depth of 2 mm from the surface of the nitrided steel member.

Description

窒化鋼部材並びに窒化鋼部材の製造方法及び製造装置Nitride steel member and method and apparatus for producing nitride steel member
 本発明は、窒化鋼部材並びに窒化鋼部材の製造方法及び製造装置に関する。さらに詳しくは、自動車変速機用の歯車やクランクシャフト等に有用な耐疲労性に優れる窒化鋼部材並びに当該窒化鋼部材の製造方法及び製造装置に関する。 The present invention relates to a nitride steel member and a method and an apparatus for manufacturing the nitride steel member. More specifically, the present invention relates to a nitride steel member having excellent fatigue resistance useful for gears, crankshafts, and the like for automobile transmissions, and a method and apparatus for manufacturing the nitride steel member.
 鋼材の表面硬化処理の中でも、低熱処理ひずみ処理である窒化処理のニーズは高く、最近では特に、ガス窒化処理の雰囲気制御技術への関心が高まっている。 Among surface hardening treatments of steel materials, the need for nitriding treatment, which is low heat treatment distortion treatment, is high, and in recent years, the interest in atmosphere control technology for gas nitriding treatment has been particularly increasing.
 ガス窒化処理により得られる基本的な組織構成では、表面において鉄窒化物である化合物層が形成され、内部において拡散層と呼ばれる硬化層が形成される。当該硬化層は、通常、母材成分のSiやCrなどの合金窒化物からなる。 In the basic structure configuration obtained by the gas nitriding process, a compound layer which is iron nitride is formed on the surface, and a hardened layer called a diffusion layer is formed inside. The hardened layer is usually made of an alloy nitride such as Si or Cr as a base material component.
 これらの2層の各々の厚さ(深さ)及び/または表面の鉄窒化物のタイプ等を制御するために、ガス窒化処理の温度と時間とに加えて、ガス窒化処理炉内の雰囲気も適宜に制御されている。具体的には、ガス窒化炉内の窒化ポテンシャル(KN)が適宜に制御されている。 In addition to the temperature and time of the gas nitriding process, the atmosphere in the gas nitriding furnace is also used to control the thickness (depth) of each of these two layers and / or the type of iron nitride on the surface, etc. It is controlled appropriately. Specifically, the nitriding potential (K N ) in the gas nitriding furnace is appropriately controlled.
 例えば、当該制御を介して、鋼材の表面に生成される化合物層中のγ’相(Fe4N)とε相(Fe2-3N)の体積分率(鉄窒化物のタイプ)が制御されている。具体的には、ε相よりもγ’相を形成することにより、耐疲労性が改善されることが知られている(「熱処理」、55巻、1号、1~2頁(平岡泰、渡邊陽一、石田暁丈):非特許文献1)。更に、γ’相の形成により曲げ疲労強度や面疲労を改善した窒化鋼部材も提供されている(特開2013-221203号公報:特許文献1)。 For example, through this control, the volume fraction (type of iron nitride) of γ 'phase (Fe 4 N) and ε phase (Fe 2-3 N) in the compound layer formed on the surface of the steel material is controlled It is done. Specifically, it is known that the fatigue resistance is improved by forming the γ ′ phase more than the ε phase (“Heat treatment”, Volume 55, No. 1, pages 1 and 2 (Hiraoka, Yoichi Watanabe, Takeshi Ishida): Non-Patent Document 1). Furthermore, a nitrided steel member in which the bending fatigue strength and the surface fatigue are improved by the formation of the γ ′ phase is also provided (Japanese Patent Application Laid-Open No. 2013-221203: Patent Document 1).
 鋼材の表面の化合物層中にγ’相を形成して耐疲労性を向上することは、前述のとおり既に知られている。但し、γ’相を多く形成するべくガス窒化処理を行っても、化合物層中には少なからずε相が含まれており、実際にはγ’相とε相との2相状態となっている(特開2016-211069号公報:特許文献2)。すなわち、疲労強度を向上させるためにγ’相主体の化合物層を形成することには限界がある。また、γ’相やε相を如何様に制御した化合物層においても、当該化合物層の表層近傍には、ボイドが多数形成されてしまう。これらのボイドは、疲労亀裂へと発展し易い。 As described above, it is already known that the? 'Phase is formed in the compound layer on the surface of the steel material to improve the fatigue resistance. However, even if the gas nitriding process is performed to form a large amount of γ 'phase, the compound layer contains not only a small amount of ε phase, but in fact, it becomes a two phase state of γ' phase and ε phase (Japanese Patent Application Laid-Open No. 2016-211069: Patent Document 2). That is, there is a limit in forming a compound layer mainly based on the? 'Phase in order to improve the fatigue strength. Further, even in the compound layer in which the γ ′ phase and the ε phase are controlled in a controlled manner, a large number of voids are formed in the vicinity of the surface layer of the compound layer. These voids tend to develop into fatigue cracks.
 一方、Fe-N二元合金の共析変態点(約590℃)以上の温度で窒化処理を行うと、表面には化合物層が形成され、その後急冷すればその下部には窒素含有マルテンサイト組織を含む硬化層が形成される。当該温度域での窒化処理は、従来の窒化処理と区別して、浸窒処理と呼ばれている。 On the other hand, when nitriding treatment is carried out at a temperature above the eutectoid transformation point (about 590 ° C) of the Fe-N binary alloy, a compound layer is formed on the surface, and if quenching is performed thereafter, the nitrogen-containing martensitic structure is present below Is formed. Nitriding treatment in the temperature range is referred to as carbonitriding treatment in contrast to conventional nitriding treatment.
 しかし、当該浸窒処理では、表面近傍の組織(表面の化合物層は除く)のオーステナイトが安定化され、その後に急冷されても大部分のオーステナイトが残留する。このため、熱処理後のひずみは、窒化処理と同程度である。加えて、この安定化されたオーステナイトは、250~300℃の温度にまで再加熱されることで、硬質なマルテンサイト組織へと変態される。 However, in the carbonitriding treatment, austenite in the structure near the surface (except for the compound layer on the surface) is stabilized, and a large amount of austenite remains even if it is quenched after that. Therefore, the strain after the heat treatment is about the same as the nitriding treatment. In addition, this stabilized austenite is transformed to a hard martensitic structure by being reheated to a temperature of 250 to 300.degree.
 例えば、STKM13(炭素鋼の一種)を640℃で90min浸窒処理し、更に660℃で40min浸窒処理してから、280℃で90min再加熱処理することにより、表面近傍のオーステナイトは800~900HVまで硬化される(「浸炭と浸窒の新たな概念と実際」、アグネ技術センター、2013年、142~147頁(渡辺輝興):非特許文献2)。但し、表面の化合物層が残ってしまうという問題はある。 For example, STKM13 (a kind of carbon steel) is subjected to nitridation treatment at 640 ° C. for 90 minutes, and further to nitrogen treatment at 660 ° C. for 40 minutes and then reheat treatment at 280 ° C. for 90 minutes. It is hardened until "(New concept and practice of carburization and nitridation", Agne Technical Center, p. 142-147, 2013 (Teruaki Watanabe): Non-Patent Document 2). However, there is a problem that the compound layer on the surface remains.
 更に、700℃でJIS-SPCC(冷間圧延鋼板の一種)を浸窒処理しても、表面に化合物層が形成され、その後の急冷でその下部に窒素マルテンサイト組織の硬化層が形成される(「European Conference on Heat Treatment and Surface Engineering A3TS Congress (Nice, France, 2017)」、26~29頁(Y. Kawata and T. Kidachi):非特許文献3)。すなわち、この場合も、表面の化合物層が残ってしまう。 Furthermore, even if a JIS-SPCC (a type of cold rolled steel sheet) is subjected to nitridation treatment at 700 ° C., a compound layer is formed on the surface, and a hardened layer of nitrogen martensitic structure is formed on the lower part in subsequent quenching. ("European Conference on Heat Treatment and Surface Engineering A3 TS Congress (Nice, France, 2017)", pp. 26-29 (Y. Kawata and T. Kidachi): Non-Patent Document 3). That is, also in this case, the compound layer on the surface remains.
 一方、800℃で浸窒処理を実施し、その後急冷することによって、化合物層を形成することなく0.35mm以上の厚さのマルテンサイト組織による硬化層が得られて、耐疲労性を改善できることが報告されている(「日本熱処理技術協会 第5回熱処理技術セミナーテキスト」、2012年、(5)1~8頁(奥宮正洋):非特許文献4)。
 本明細書が引用する特許文献1は、特開2013-221203号公報であり、本明細書が引用する特許文献2は、特開2016-211069号公報である。また、本明細書が引用する非特許文献1は、「熱処理」、55巻、1号、1~2頁(平岡泰、渡邊陽一、石田暁丈)であり、本明細書が引用する非特許文献2は、「浸炭と浸窒の新たな概念と実際」、アグネ技術センター、2013年、142~147頁(渡辺輝興)であり、本明細書が引用する非特許文献3は、「European Conference on Heat Treatment and Surface Engineering A3TS Congress (Nice, France, 2017)」、26~29頁(Y. Kawata and T. Kidachi)であり、本明細書が引用する非特許文献4は、「日本熱処理技術協会 第5回熱処理技術セミナーテキスト」、2012年、(5)1~8頁(奥宮正洋)である。
On the other hand, a hardened layer of martensitic structure having a thickness of 0.35 mm or more can be obtained without forming a compound layer by carrying out a nitriding treatment at 800 ° C. and then quenching it, and the fatigue resistance can be improved. Have been reported ("The 5th heat treatment technology seminar text of Japan heat treatment technology", 2012, (5) pages 1 to 8 (Mashiro Okumiya): Non-patent document 4).
Patent Document 1 cited by this specification is JP-A-2013-221203, and Patent Document 2 cited by this specification is JP-A-2016-211069. In addition, Non-Patent Document 1 cited by this specification is “Heat treatment”, Volume 55, No. 1, pages 1-2 (Taira Hiraoka, Yoichi Watanabe, Takeshi Ishida), and non-patents cited by this specification. Reference 2 is "New concept and practice of carburization and nitridation", Agne Technical Center, p. 142-147 (Watanabe Teruaki) 2013, and Non-Patent Document 3 cited in this specification is "European Conference on Heat Treatment and Surface Engineering A3 TS Congress (Nice, France, 2017), pp. 26-29 (Y. Kawata and T. Kidachi), and Non-Patent Document 4 cited in this specification is “Japanese Heat Treatment Technology”. Association 5th Heat Treatment Technology Seminar Text ", 2012, (5) pp. 1-8 (Masahiro Okumiya).
特開2013-221203号公報JP, 2013-221203, A 特開2016-211069号公報JP, 2016-211069, A
 機械部品の疲労破壊は、例えばギアの歯元など、高い負荷応力がかかる切欠き部から生じる。当該切欠き部では、その形状と負荷環境に応じた応力分布が表層領域(表面から所定深さの内部まで)においてのみ生じる。このため、鋼材の靭性や被削性を損なわないよう、当該表層領域のみを硬化することが望まれている。 The fatigue failure of machine parts results from notches which are subjected to high load stress, for example the root of a gear tooth. In the notched portion, a stress distribution according to the shape and load environment occurs only in the surface layer region (from the surface to the inside of a predetermined depth). For this reason, it is desirable to harden only the surface layer region so as not to impair the toughness and the machinability of the steel material.
 しかしながら、従来から実施されている浸窒処理では、そのような要望に十分に応えられていない。非特許文献2及び非特許文献3に開示された技術では、不要な化合物層が表面に残ってしまうため、表層領域の硬化には適さない。一方、非特許文献4に開示された技術では、不要な化合物層は形成されないものの、硬化層が厚すぎて熱ひずみ/変態ひずみが大きく、やはり表層領域の硬化には適さない。 However, the conventionally practiced nitrogen treatment does not sufficiently meet such a demand. In the techniques disclosed in Non-Patent Document 2 and Non-Patent Document 3, unnecessary compound layers remain on the surface, so they are not suitable for curing the surface region. On the other hand, in the technique disclosed in Non-Patent Document 4, although the unnecessary compound layer is not formed, the cured layer is too thick and the thermal strain / transformation strain is large, which is also not suitable for curing the surface region.
 本件発明者は、鋭意の検討及び種々の実験を繰り返し、処理炉の構成を限定した上で窒化処理の温度及び窒化ポテンシャルを高精度に制御することによって、表層領域が所望に硬化された窒化鋼部材を製造できることを知見した。 The inventor of the present invention repeated intensive studies and various experiments to limit the configuration of the processing furnace and control the temperature and the nitriding potential of the nitriding treatment with high precision to thereby make the surface region hardened as desired. It was found that the members could be manufactured.
 本発明は、以上の知見に基づいて創案されたものである。本発明の目的は、表層領域が所望に硬化された窒化鋼部材、及び、そのような窒化鋼部材を製造するための製造方法及び製造装置を提供することである。 The present invention has been made based on the above findings. An object of the present invention is to provide a nitrided steel member whose surface region is hardened as desired, and a manufacturing method and apparatus for manufacturing such a nitrided steel member.
 本発明は、炭素鋼または低合金鋼を母相とする窒化鋼部材であって、表面に、質量%で窒素を0.8%以上含むマルテンサイト組織を有する硬化層を備え、前記硬化層の下部に、前記母相内に窒素が拡散されている拡散層を備え、前記硬化層は、当該窒化鋼部材の表面から2μm~50μmの厚さを有しており、前記拡散層は、当該窒化鋼部材の表面から100μmを超える深さまで延在しており、当該窒化鋼部材の表面から2μmの深さにおける硬さよりも、当該窒化鋼部材の表面から100μmの深さにおける前記拡散層の硬さの方が、100HV以上大きいことを特徴とする窒化鋼部材である。 The present invention is a nitrided steel member having a carbon steel or low alloy steel as a matrix, and having a hardened layer having a martensitic structure containing 0.8% or more of nitrogen by mass% on the surface, wherein the hardened layer The lower portion is provided with a diffusion layer in which nitrogen is diffused in the matrix, and the hardened layer has a thickness of 2 μm to 50 μm from the surface of the nitrided steel member, and the diffusion layer is the nitrided portion. The hardness of the diffusion layer at a depth of 100 μm from the surface of the nitrided steel member, which extends to a depth of more than 100 μm from the surface of the steel member, and at a depth of 2 μm from the surface of the nitrided steel member Is a nitride steel member characterized in that it is larger than 100 HV.
 本発明によれば、窒素を0.8%以上含むマルテンサイト組織を有する硬化層が、当該窒化鋼部材の表面から2μm~50μmの厚さに限定されているため、熱処理ひずみ/変態ひずみが小さい。また、窒化鋼部材の表面から2mmの深さにおける硬さよりも窒化鋼部材の表面から100μmの深さにおける拡散層の硬さの方が100HV以上大きいことにより、硬化層が薄いにも拘わらず、十分な強度を保証することができる。 According to the present invention, since the hardened layer having a martensitic structure containing 0.8% or more of nitrogen is limited to a thickness of 2 μm to 50 μm from the surface of the nitrided steel member, the heat treatment strain / transformation strain is small. . Moreover, the hardness of the diffusion layer at a depth of 100 μm from the surface of the nitride steel member is 100 HV or more than the hardness at a depth of 2 mm from the surface of the nitride steel member, so that the hardened layer is thin. Sufficient strength can be guaranteed.
 炭素鋼としては、例えば炭素含有量が質量%で0.1%以上である炭素鋼が利用可能である。また、低合金鋼としては、例えばSCr420やSCM415などが利用可能である。 As carbon steel, carbon steel whose carbon content is 0.1% or more in mass% can be used, for example. Moreover, as low alloy steel, SCr420, SCM415, etc. can be utilized, for example.
 また、本発明は、案内筒と撹拌ファンとを備えた循環型処理炉を用いて、炭素鋼または低合金鋼を母相とする窒化鋼部材を製造する方法であって、窒化処理時において、前記循環型処理炉内の温度範囲が、610℃~660℃に制御され、前記窒化処理時において、前記循環型処理炉内の窒化ポテンシャルが、0.06~0.3の範囲に制御されることを特徴とする窒化鋼部材の製造方法である。 Further, the present invention is a method of manufacturing a nitrided steel member having a carbon steel or a low alloy steel as a mother phase using a circulation type processing furnace provided with a guide cylinder and a stirring fan, and at the time of nitriding treatment, The temperature range in the circulating process furnace is controlled to 610 ° C. to 660 ° C., and the nitriding potential in the circulating process furnace is controlled to the range of 0.06 to 0.3 at the time of the nitriding treatment It is a manufacturing method of the nitriding steel member characterized by the above.
 本発明の窒化鋼部材の製造方法によれば、
 表面に、窒素を0.8%以上含むマルテンサイト組織を有する硬化層を備え、前記硬化層の下部に、前記母相内に窒素が拡散されている拡散層を備え、前記硬化層は、当該窒化鋼部材の表面から2μm~50μmの厚さを有しており、前記拡散層は、当該窒化鋼部材の表面から100μmを超える深さまで延在しており、当該窒化鋼部材の表面から2mmの深さにおける硬さよりも、当該窒化鋼部材の表面から100μmの深さにおける前記拡散層の硬さの方が、100HV以上大きいことを特徴とする窒化鋼部材
を製造することができる。
According to the method of manufacturing a nitrided steel member of the present invention,
A hardened layer having a martensitic structure containing 0.8% or more of nitrogen is provided on the surface, and a diffusion layer in which nitrogen is diffused in the matrix is provided below the hardened layer, and the hardened layer is It has a thickness of 2 μm to 50 μm from the surface of the nitrided steel member, and the diffusion layer extends to a depth of more than 100 μm from the surface of the nitrided steel member, and 2 mm from the surface of the nitrided steel member It is possible to manufacture a nitrided steel member characterized in that the hardness of the diffusion layer at a depth of 100 μm from the surface of the nitrided steel member is greater than 100 HV or more than the hardness in the depth.
 また、本発明は、案内筒と撹拌ファンとを有する循環型処理炉を備え、窒化処理時において、前記循環型処理炉内の温度範囲が、610℃~660℃に制御され、前記窒化処理時において、前記循環型処理炉内の窒化ポテンシャルが、0.06~0.3の範囲に制御されることを特徴とする窒化鋼部材の製造装置である。 Further, the present invention is provided with a circulation type processing furnace having a guide cylinder and a stirring fan, and during nitriding processing, the temperature range in the circulation type processing furnace is controlled to 610 ° C. to 660 ° C. In the above, the nitriding potential in the circulation type processing furnace is controlled in the range of 0.06 to 0.3.
 本発明の窒化鋼部材の製造装置によれば、
 表面に、窒素を0.8%以上含むマルテンサイト組織を有する硬化層を備え、前記硬化層の下部に、前記母相内に窒素が拡散されている拡散層を備え、前記硬化層は、当該窒化鋼部材の表面から2μm~50μmの厚さを有しており、前記拡散層は、当該窒化鋼部材の表面から100μmを超える深さまで延在しており、当該窒化鋼部材の表面から2μmの深さにおける硬さよりも、当該窒化鋼部材の表面から100μmの深さにおける前記拡散層の硬さの方が、100HV以上大きいことを特徴とする窒化鋼部材
を製造することができる。
According to the apparatus for manufacturing a nitrided steel member of the present invention,
A hardened layer having a martensitic structure containing 0.8% or more of nitrogen is provided on the surface, and a diffusion layer in which nitrogen is diffused in the matrix is provided below the hardened layer, and the hardened layer is It has a thickness of 2 μm to 50 μm from the surface of the nitrided steel member, and the diffusion layer extends to a depth of more than 100 μm from the surface of the nitrided steel member, and 2 μm from the surface of the nitrided steel member It is possible to manufacture a nitrided steel member characterized in that the hardness of the diffusion layer at a depth of 100 μm from the surface of the nitrided steel member is greater than 100 HV or more than the hardness in the depth.
 本発明の窒化鋼部材の製造装置は、例えば、アンモニアガスとアンモニア分解ガスとが前記循環型処理炉内に導入されるようになっている。この場合、当該製造装置は、前記窒化ポテンシャルを制御するために、前記アンモニアガスの導入量と前記アンモニア分解ガスの導入量との総流量を一定として互いの導入比を変更する第1制御と、前記アンモニア分解ガスの導入を停止させた状態で、前記アンモニアガスの導入量を変更する第2制御と、を選択的に実施できるようになっていることが好ましい。 In the apparatus for manufacturing a nitride steel member according to the present invention, for example, ammonia gas and ammonia decomposition gas are introduced into the circulation type processing furnace. In this case, in order to control the nitriding potential, the manufacturing apparatus changes a ratio of introduction of the ammonia gas and the amount of introduction of the ammonia decomposition gas while keeping the total flow rate constant; It is preferable that the second control for changing the introduction amount of the ammonia gas can be selectively performed in a state in which the introduction of the ammonia decomposition gas is stopped.
本発明の効果Effect of the present invention
 本発明によれば、窒素を0.8%以上含むマルテンサイト組織を有する硬化層が、当該窒化鋼部材の表面から2μm~50μmの厚さに限定されているため、熱処理ひずみ/変態ひずみが小さい。また、窒化鋼部材の表面から2mmの深さにおける硬さよりも窒化鋼部材の表面から100μmの深さにおける拡散層の硬さの方が100HV以上大きいことにより、硬化層が薄いにも拘わらず、十分な強度を保証することができる。 According to the present invention, since the hardened layer having a martensitic structure containing 0.8% or more of nitrogen is limited to a thickness of 2 μm to 50 μm from the surface of the nitrided steel member, the heat treatment strain / transformation strain is small. . Moreover, the hardness of the diffusion layer at a depth of 100 μm from the surface of the nitride steel member is 100 HV or more than the hardness at a depth of 2 mm from the surface of the nitride steel member, so that the hardened layer is thin. Sufficient strength can be guaranteed.
本発明の一実施形態による窒化鋼部材の断面顕微鏡写真である。3 is a cross-sectional photomicrograph of a nitrided steel member according to an embodiment of the present invention. 再加熱処理前の図1の窒化鋼部材の断面顕微鏡写真である。It is a cross-sectional microscope picture of the nitrided steel member of FIG. 1 before reheat treatment. 比較例の断面顕微鏡写真である。It is a cross-sectional microscope picture of a comparative example. 硬さ分布についての実験例を示すグラフである。It is a graph which shows the example of an experiment about hardness distribution. 本発明の一実施形態による窒化鋼部材の製造装置の概略図である。It is the schematic of the manufacturing apparatus of the nitride steel member by one Embodiment of this invention. 循環型処理炉(横型ガス窒化炉)の概略断面図である。It is a schematic sectional drawing of a circulation type processing furnace (horizontal gas nitriding furnace). 第1制御の例を示すグラフである。It is a graph which shows the example of 1st control. 第1制御の例を示すグラフである。It is a graph which shows the example of 1st control. 第2制御の例を示すグラフである。It is a graph which shows the example of 2nd control. 第2制御の例を示すグラフである。It is a graph which shows the example of 2nd control. 炉内に挿入される冶具の例を示す概略図である。It is the schematic which shows the example of the jig inserted in a furnace. 小野式回転曲げ疲労試験片の形態を示す図である。It is a figure which shows the form of the Ono type rotation bending fatigue test piece.
 以下、本発明の好ましい実施形態について説明するが、本発明は以下の実施形態に限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described, but the present invention is not limited to the following embodiments.
(窒化鋼部材の一実施形態の構成)
 図1は、本発明の一実施形態の窒化鋼部材100の断面顕微鏡写真である。図1に示すように、本実施形態の窒化鋼部材100は、表面に、窒素を0.8%以上含むマルテンサイト組織を有する硬化層101を備え、当該硬化層101の下部に、母相内に窒素が拡散されている拡散層102を備えている。本実施形態の母相(母材)は、炭素含有量が質量%で0.45%である炭素鋼である。
(Configuration of one embodiment of a nitrided steel member)
FIG. 1 is a sectional photomicrograph of a nitrided steel member 100 according to an embodiment of the present invention. As shown in FIG. 1, the nitrided steel member 100 of the present embodiment is provided with a hardened layer 101 having a martensitic structure containing 0.8% or more of nitrogen on the surface, and in the lower part of the hardened layer 101, a matrix phase is provided. And a diffusion layer 102 in which nitrogen is diffused. The matrix (base material) of the present embodiment is a carbon steel having a carbon content of 0.45% by mass.
 硬化層101は、窒化鋼部材100の表面から約15μmの厚さを有しており、これは2μm~50μmの範囲内の厚さである。拡散層102は、窒化鋼部材100の表面から100μmを超える深さまで延在している。そして、窒化鋼部材100の表面から2mmの深さにおける硬さ(例えば約180HV)より、窒化鋼部材100の表面から100μmの深さにおける拡散層102の硬さ(例えば約310HV)の方が、100HV以上大きくなっている。
(窒化鋼部材の一実施形態の製造条件)
Hardened layer 101 has a thickness of about 15 μm from the surface of nitrided steel member 100, which is in the range of 2 μm to 50 μm. Diffusion layer 102 extends from the surface of nitrided steel member 100 to a depth exceeding 100 μm. Then, the hardness (for example, about 310 HV) of diffusion layer 102 at a depth of 100 μm from the surface of nitrided steel member 100 from the hardness (for example, about 180 HV) at a depth of 2 mm from the surface of nitrided steel member 100 It is larger than 100 HV.
(Manufacturing conditions of one embodiment of a nitrided steel member)
 本実施形態の窒化鋼部材100は、後述の循環型処理炉を用いて、処理温度:640℃、窒化ポテンシャル:0.16、処理時間:2時間、という処理条件で浸窒処理された後、急冷され、更に250℃で2時間の再加熱処理がされたものである。図1の写真においては、硬化層101が、組織観察用の腐食液によって強く腐食されている(黒くなっている)。 The nitrided steel member 100 of the present embodiment is subjected to the nitronitriding treatment under the treatment conditions of the treatment temperature: 640 ° C., the nitriding potential: 0.16, and the treatment time: 2 hours using a circulation type treatment furnace described later It is quenched and further reheated at 250 ° C. for 2 hours. In the photograph of FIG. 1, the hardened layer 101 is strongly corroded (blackened) by the corrosive liquid for texture observation.
 再加熱処理を行う前の断面顕微鏡写真が、図2である。この状態では、硬化層101に相当する領域の大部分がオーステナイト相であり、十分な硬さがない。再加熱処理を施すことによって、オーステナイト相中のマルテンサイト組織が増加され、それに伴って十分な硬さを得ることができる。
(比較例の構成)
A cross-sectional micrograph before the reheating treatment is shown in FIG. In this state, most of the region corresponding to the hardened layer 101 is an austenite phase and does not have sufficient hardness. By performing the reheat treatment, the martensitic structure in the austenite phase is increased, and accordingly, sufficient hardness can be obtained.
(Configuration of comparative example)
 比較例150の断面顕微鏡写真が、図3である。当該比較例150は、後述の循環型処理炉を用いて、処理温度:640℃、窒化ポテンシャル:0.32(>0.3)、処理時間:2時間、という処理条件で浸窒処理された後、急冷されたものである。 A cross-sectional micrograph of Comparative Example 150 is FIG. The comparative example 150 was subjected to carbonitriding treatment using a circulation type treatment furnace described later under the treatment conditions of treatment temperature: 640 ° C., nitriding potential: 0.32 (> 0.3), treatment time: 2 hours. It is quenched afterward.
 図3に示すように、比較例150は、表面に、化合物層153が形成されており、当該化合物層153の下方に、マルテンサイト組織を有する硬化層151を備え、更に当該硬化層151の下方に、母相内に窒素が拡散されている拡散層152を備えている。このように、窒化ポテンシャルが高い製造条件では、不要な化合物層が形成されてしまう。
(窒化鋼部材の効果)
As shown in FIG. 3, in Comparative Example 150, a compound layer 153 is formed on the surface, and a hardened layer 151 having a martensitic structure is provided below the compound layer 153, and further, the lower side of the hardened layer 151. , And the diffusion layer 152 in which nitrogen is diffused in the matrix phase. As described above, an unnecessary compound layer is formed under manufacturing conditions where the nitriding potential is high.
(Effect of nitrided steel members)
 本実施形態の窒化鋼部材100によれば、窒素を0.8%以上含むマルテンサイト組織を有する硬化層が、当該窒化鋼部材の表面から2μm~50μmの厚さに限定されているため、熱処理ひずみ/変態ひずみが小さい。また、窒化鋼部材の表面から2μmの深さにおける硬さよりも窒化鋼部材の表面から100μmの深さにおける拡散層の硬さの方が100HV以上大きいことにより、硬化層が薄いにも拘わらず、十分な強度を保証することができる。
(硬化層の窒素濃度の範囲)
According to the nitrided steel member 100 of the present embodiment, the hardened layer having a martensitic structure containing 0.8% or more of nitrogen is limited to a thickness of 2 μm to 50 μm from the surface of the nitrided steel member, so heat treatment is performed. Low strain / transformation strain. Also, the hardness of the diffusion layer at a depth of 100 μm from the surface of the nitride steel member is 100 HV or more than the hardness at a depth of 2 μm from the surface of the nitride steel member, so that the hardened layer is thin. Sufficient strength can be guaranteed.
(Range of nitrogen concentration of hardened layer)
 硬化層101の窒素濃度は、室温でのオーステナイト相の安定度を考慮した結果である。すなわち、0.8%以上の窒素を含むことにより(更に好ましくは1.0%以上の窒素をことにより)、急冷された際に大部分のオーステナイト相が室温で安定化され、すなわち、急冷中にマルテンサイト変態が起こらない。これにより、急冷中にマルテンサイト変態が生ずる場合と比較して、ひずみが極めて小さい。(硬度を高めるため、マルテンサイト変態はその後の再加熱処理において促される。)
(硬化層の厚さの範囲)
The nitrogen concentration of the hardened layer 101 is the result of considering the stability of the austenite phase at room temperature. That is, by containing 0.8% or more of nitrogen (more preferably by 1.0% or more of nitrogen), most of the austenite phase is stabilized at room temperature when quenched, ie, during quenching Martensitic transformation does not occur. As a result, the strain is extremely small as compared to the case where martensitic transformation occurs during quenching. (Martensitic transformation is promoted in subsequent reheat treatment to increase hardness.)
(Range of thickness of hardened layer)
 硬化層101の厚さについては、基本的には厚い方が疲労強度は向上する。但し、窒化鋼部材100の負荷環境によって、それ以上厚さを向上させても、疲労強度向上の更なる効果がない(効果が飽和している)という場合がある。具体的には、窒化鋼部材100の形状や負荷環境によって、例えば切欠き部の応力分布が異なる場合がある。従って、窒化鋼部材100の形状や負荷環境によって、硬化層101の厚さは適宜に選択され得る。 With regard to the thickness of the hardened layer 101, basically, the thicker the thickness, the better the fatigue strength. However, depending on the load environment of the nitrided steel member 100, there is a case that there is no further effect of improving the fatigue strength (the effect is saturated) even if the thickness is further improved. Specifically, depending on the shape of the nitrided steel member 100 and the load environment, for example, the stress distribution in the notch may differ. Therefore, the thickness of the hardened layer 101 can be appropriately selected depending on the shape of the nitrided steel member 100 and the load environment.
 但し「窒化鋼部材の表面から2mmの深さにおける硬さよりも窒化鋼部材の表面から100μmの深さにおける拡散層の硬さの方が100HV以上大きい」という条件を満たすような製造条件(処理温度:610℃~660℃、窒化ポテンシャル:0.06~0.3)では、硬化層101の厚さは、2~50μmとなる。 However, manufacturing conditions (processing temperature such that the condition that “the hardness of the diffusion layer at the depth of 100 μm from the surface of the nitride steel member is 100 HV or more greater than the hardness at the depth of 2 mm from the surface of nitride steel member”) At a temperature of 610 ° C. to 660 ° C. and a nitriding potential of 0.06 to 0.3, the thickness of the hardened layer 101 is 2 to 50 μm.
 具体的には、硬化層101が厚くなり易い合金成分系の炭素鋼(具体的にはS50C鋼を、処理温度:660℃、窒化ポテンシャル:0.17で浸窒処理した時の結果である50μmを上限値としている。 Specifically, the alloy component-based carbon steel in which the hardened layer 101 tends to be thick (specifically, S50C steel, 50 μm which is the result when carbonizing at a processing temperature of 660 ° C., nitriding potential: 0.17) Is the upper limit value.
 一方、硬化層101が窒化鋼部材100の全面に形成される(硬化層101が局所的に形成されない場合がない)ための条件として、2μmを下限値としている。
(拡散層の硬さの条件)
On the other hand, as a condition for forming the hardened layer 101 on the entire surface of the nitrided steel member 100 (there is no case where the hardened layer 101 is not locally formed), 2 μm is set as the lower limit value.
(Condition of hardness of diffusion layer)
 本実施形態の窒化鋼部材100は、硬化層101のみならず、拡散層102が十分な硬度を有することが特徴である。図4は、JIS-S45C鋼(炭素鋼)とJIS-SCM415鋼(Cr-Mo鋼)とについて、図中に示す種々の温度で1.5時間の浸窒処理を実施し、その後急冷し、更に250℃で2時間再加熱処理した各試験片の硬さ分布を示している。図4に示すように、浸窒温度と鋼種とを選択することによって、100μm(=0.1mm)の深さ位置での表面硬さを、約300~500HVの範囲とすることが可能であった。 The nitrided steel member 100 of this embodiment is characterized in that not only the hardened layer 101 but also the diffusion layer 102 has sufficient hardness. Fig. 4 is a graph showing that JIS-S45C steel (carbon steel) and JIS-SCM415 steel (Cr-Mo steel) are subjected to nitriding treatment for 1.5 hours at various temperatures shown in the drawing and then quenched. Furthermore, the hardness distribution of each test piece reheated at 250 ° C. for 2 hours is shown. As shown in FIG. 4, the surface hardness at a depth position of 100 μm (= 0.1 mm) can be made in the range of about 300 to 500 HV by selecting the nitriding temperature and the steel type. The
 窒化処理後の表面硬さは、一般的には、表面から50μmの深さ位置で取得されることが多い。しかしながら、本実施形態の窒化鋼部材100では、マルテンサイト組織を有する硬化層101の影響を避けるため、表面から100μmの深さ位置での硬さを評価対象としている。 The surface hardness after nitriding treatment is generally often obtained at a depth of 50 μm from the surface. However, in the nitrided steel member 100 of the present embodiment, in order to avoid the influence of the hardened layer 101 having a martensitic structure, the hardness at a depth position of 100 μm from the surface is to be evaluated.
 図4に示すように、S45C鋼(炭素鋼)を580℃で窒化処理したもの(・・・線で表示)と同等以上の硬さ分布を得るためには、660℃以下の温度で浸窒処理することが必要である。さらに、図示されていないが、SCM415鋼よりも合金添加量の高いJIS-SACM645鋼でも、660℃以下の温度で浸窒処理すれば、100μmの深さ位置での硬さを500HV以上に高めることが可能であった。 As shown in FIG. 4, in order to obtain a hardness distribution equal to or higher than that of the S45C steel (carbon steel) nitrided at 580 ° C. (represented by the line), carbonitriding at a temperature of 660 ° C. It is necessary to process. Furthermore, although not shown, even if JIS-SACM 645 steel, which has a higher alloy content than SCM 415 steel, if it is carbonized at a temperature of 660 ° C. or less, the hardness at a depth of 100 μm should be increased to 500 HV or more Was possible.
 一方、表面から2mmの深さ位置での硬さというのは、窒化の影響を受けていない内部組織について評価対象として規定したものである。 On the other hand, the hardness at a depth of 2 mm from the surface is defined as an evaluation object for an internal structure not affected by nitriding.
(窒化鋼部材の製造装置の構成)
 まず、ガス窒化処理の基本的事項について化学的に説明すれば、ガス窒化処理では、被処理品が配置される処理炉(ガス窒化炉)内において、以下の式(1)で表される窒化反応が発生する。
         NH3→[N]+3/2H2   ・・・(1)
(Configuration of manufacturing apparatus for nitrided steel members)
First, the basic matter of the gas nitriding treatment will be explained chemically. In the gas nitriding treatment, nitriding represented by the following formula (1) in the processing furnace (gas nitriding furnace) in which the article to be treated is disposed A reaction occurs.
NH 3 → [N] + 3 / 2H 2 (1)
 このとき、窒化ポテンシャルKNは、以下の式(2)で定義される。
         KN=PNH3/PH2 3/2    ・・・(2)
ここで、PNH3は炉内アンモニア分圧であり、PH2は炉内水素分圧である。窒化ポテンシャルKNは、ガス窒化炉内の雰囲気が有する窒化能力を表す指標として周知である。
At this time, the nitriding potential K N is defined by the following equation (2).
K N = P NH 3 / P H 2 3/2 (2)
Here, P NH3 is the ammonia partial pressure in the furnace, and P H2 is the hydrogen partial pressure in the furnace. The nitriding potential K N is known as an index indicating the nitriding ability of the atmosphere in the gas nitriding furnace.
 一方、ガス窒化処理中の炉内では、当該炉内へ導入されたアンモニアガスの一部が、式(3)の反応にしたがって水素ガスと窒素ガスとに熱分解する。
         NH3→1/2N2+3/2H2   ・・・(3)
On the other hand, in the furnace during gas nitriding treatment, a part of the ammonia gas introduced into the furnace is thermally decomposed into hydrogen gas and nitrogen gas according to the reaction of the equation (3).
NH 3 → 1/2 N 2 + 3/2 H 2 (3)
 炉内では、主に式(3)の反応が生じており、式(1)の窒化反応は量的にはほとんど無視できる。したがって、式(3)の反応で消費された炉内アンモニア濃度または式(3)の反応で発生された水素ガス濃度が分かれば、窒化ポテンシャルを演算することができる。すなわち、発生される水素及び窒素は、アンモニア1モルから、それぞれ1.5モルと0.5モルであるから、炉内アンモニア濃度を測定すれば炉内水素濃度も分かり、窒化ポテンシャルを演算することができる。あるいは、炉内水素濃度を測定すれば、炉内アンモニア濃度が分かり、やはり窒化ポテンシャルを演算することができる。 In the furnace, the reaction of the formula (3) mainly occurs, and the nitriding reaction of the formula (1) can be almost neglected quantitatively. Therefore, if the in-furnace ammonia concentration consumed in the reaction of the equation (3) or the hydrogen gas concentration generated in the reaction of the equation (3) is known, the nitriding potential can be calculated. That is, since hydrogen and nitrogen to be generated are 1.5 mol and 0.5 mol respectively from 1 mol of ammonia, if the ammonia concentration in the furnace is measured, the hydrogen concentration in the furnace can also be understood, and the nitriding potential should be calculated. Can. Alternatively, if the in-furnace hydrogen concentration is measured, the in-furnace ammonia concentration can be known, and the nitriding potential can be calculated again.
 なお、ガス窒化炉内に流されたアンモニアガスは、炉内を循環した後、炉外へ排出される。すなわち、ガス窒化処理では、炉内の既存ガスに対して、フレッシュ(新た)なアンモニアガスを炉内へ絶えず流入させることにより、当該既存ガスが炉外へ排出され続ける(供給圧で押し出される)。 The ammonia gas flowed into the gas nitriding furnace is discharged to the outside of the furnace after circulating in the furnace. That is, in the gas nitriding process, the existing gas is continuously discharged to the outside of the furnace by continuously flowing fresh (new) ammonia gas into the furnace with respect to the existing gas in the furnace (pushed by the supply pressure) .
 ここで、炉内へ導入されるアンモニアガスの流量が少なければ、炉内でのガス滞留時間が長くなるため、分解されるアンモニアガスの量が増加して、当該分解反応によって発生される窒素ガス+水素ガスの量は増加する。一方、炉内へ導入されるアンモニアガスの流量が多ければ、分解されずに炉外へ排出されるアンモニアガスの量が増加して、炉内で発生される窒素ガス+水素ガスの量は減少する。 Here, if the flow rate of ammonia gas introduced into the furnace is small, the gas residence time in the furnace will be long, so the amount of ammonia gas to be decomposed will increase and nitrogen gas generated by the decomposition reaction + The amount of hydrogen gas increases. On the other hand, if the flow rate of ammonia gas introduced into the furnace is high, the amount of ammonia gas discharged out of the furnace without being decomposed increases and the amount of nitrogen gas + hydrogen gas generated in the furnace decreases Do.
 さて、図5は、本発明の一実施形態による窒化鋼部材を製造するための製造装置を示す概略図である。図5に示すように、本実施形態の製造装置1は、循環型処理炉2を備えており、当該循環型処理炉2内へ導入するガスとして、アンモニアとアンモニア分解ガスの2種類のみを用いている。アンモニア分解ガスとは、AXガスとも呼ばれるガスで、1:3の比率の窒素と水素とからなる混合ガスである。もっとも、導入ガスとしては、(1)アンモニアガスのみ、(2)アンモニアとアンモニア分解ガスの2種類のみ、(3)アンモニアと窒素ガスの2種類のみ、または、(4)アンモニアとアンモニア分解ガスと窒素ガスの3種類のみ、から選択され得る。 Now, FIG. 5 is a schematic view showing a manufacturing apparatus for manufacturing a nitrided steel member according to an embodiment of the present invention. As shown in FIG. 5, the manufacturing apparatus 1 of the present embodiment includes the circulation type processing furnace 2, and only two types of ammonia and ammonia decomposition gas are used as the gas introduced into the circulation type processing furnace 2. ing. The ammonia decomposition gas is a gas also called AX gas, and is a mixed gas consisting of nitrogen and hydrogen in a ratio of 1: 3. However, as introduced gas, (1) only ammonia gas, (2) only two types of ammonia and ammonia decomposition gas, (3) only two types of ammonia and nitrogen gas, or (4) ammonia and ammonia decomposition gas Only three types of nitrogen gas may be selected.
 循環型処理炉2の断面構造例を、図6に示す。図6において、炉壁(ベルとも呼ばれる)201の中に、レトルトと呼ばれる円筒202が配置され、更にその内側に内部レトルトと呼ばれる円筒204が配置されている。ガス導入管205から供給される導入ガスは、図中の矢印に示されるように、被処理品の周囲を通過した後、攪拌扇203の作用によって2つの円筒202、204間の空間を通過して循環する。206は、フレア付きのガスフードであり、207は、熱電対であり、208は冷却作業用の蓋であり、209は、冷却作業用のファンである。当該循環型処理炉2は、横型ガス窒化炉とも呼ばれており、その構造自体は公知のものである。 An example of the cross-sectional structure of the circulation type processing furnace 2 is shown in FIG. In FIG. 6, a cylinder 202 called retort is disposed in a furnace wall (also called a bell) 201, and a cylinder 204 called an internal retort is disposed further inside thereof. The introduced gas supplied from the gas introducing pipe 205 passes around the object to be treated and then passes through the space between the two cylinders 202 and 204 by the action of the stirring fan 203 as shown by the arrows in the figure. It circulates. 206 is a flared gas hood, 207 is a thermocouple, 208 is a lid for the cooling operation, and 209 is a fan for the cooling operation. The circulation type processing furnace 2 is also called a horizontal gas nitriding furnace, and the structure itself is known.
 被処理品Sは、炭素鋼または低合金鋼であって、例えば自動車部品であるクランクシャフトやギア等である。 The workpiece S is carbon steel or low alloy steel, and is, for example, a crankshaft or a gear, which is an automobile part.
 また、図5に示すように、本実施形態の表面硬化処理装置1の処理炉2には、炉開閉蓋7と、攪拌ファン8と、攪拌ファン駆動モータ9と、雰囲気ガス濃度検出装置3と、窒化ポテンシャル調節計4と、プログラマブルロジックコントローラ30と、炉内導入ガス供給部20と、が設けられている。 Further, as shown in FIG. 5, in the processing furnace 2 of the surface hardening treatment apparatus 1 of the present embodiment, a furnace opening / closing lid 7, a stirring fan 8, a stirring fan drive motor 9, and an atmosphere gas concentration detection device 3 , A nitriding potential regulator 4, a programmable logic controller 30, and an in-furnace introduced gas supply unit 20.
 攪拌ファン8は、処理炉2内に配置されており、処理炉2内で回転して、処理炉2内の雰囲気を攪拌するようになっている。攪拌ファン駆動モータ9は、攪拌ファン8に連結されており、攪拌ファン8を任意の回転速度で回転させるようになっている。 The stirring fan 8 is disposed in the processing furnace 2, rotates in the processing furnace 2, and stirs the atmosphere in the processing furnace 2. The stirring fan drive motor 9 is connected to the stirring fan 8 so as to rotate the stirring fan 8 at an arbitrary rotational speed.
 雰囲気ガス濃度検出装置3は、処理炉2内の水素濃度またはアンモニア濃度を炉内雰囲気ガス濃度として検出可能なセンサにより構成されている。当該センサの検出本体部は、雰囲気ガス配管12を介して処理炉2の内部と連通している。雰囲気ガス配管12は、本実施形態においては、雰囲気ガス濃度検出装置3のセンサ本体部と処理炉2とを直接連通させる経路で形成され、途中で排ガス燃焼分解装置41へ繋がる炉内ガス廃棄配管40が接続されている。これにより、雰囲気ガスは、廃棄されるガスと雰囲気ガス濃度検出装置3に供給されるガスとに分配される。 The atmosphere gas concentration detection device 3 is configured by a sensor that can detect the hydrogen concentration or the ammonia concentration in the processing furnace 2 as the atmosphere gas concentration in the furnace. The detection main body of the sensor is in communication with the inside of the processing furnace 2 through the atmosphere gas pipe 12. In the present embodiment, the atmosphere gas pipe 12 is formed by a path that directly communicates the sensor main body of the atmosphere gas concentration detector 3 with the processing furnace 2, and the furnace gas waste pipe connected to the exhaust gas combustion decomposition device 41 halfway 40 are connected. Thereby, the atmosphere gas is distributed to the gas to be discarded and the gas supplied to the atmosphere gas concentration detection device 3.
 また、雰囲気ガス濃度検出装置3は、炉内雰囲気ガス濃度を検出した後、当該検出濃度を含む情報信号を、窒化ポテンシャル調節計4へ出力するようになっている。 Further, after the atmosphere gas concentration detection device 3 detects the atmosphere gas concentration in the furnace, the atmosphere gas concentration detection device 3 outputs an information signal including the detected concentration to the nitriding potential regulator 4.
 窒化ポテンシャル調節計4は、炉内窒化ポテンシャル演算装置13と、ガス流量出力調整装置30と、を有している。また、プログラマブルロジックコントローラ31は、ガス導入量制御装置14と、パラメータ設定装置15と、を有している。 The nitriding potential regulator 4 includes an in-furnace nitriding potential calculator 13 and a gas flow rate output adjuster 30. The programmable logic controller 31 also has a gas introduction amount control device 14 and a parameter setting device 15.
 炉内窒化ポテンシャル演算装置13は、炉内雰囲気ガス濃度検出装置3によって検出される水素濃度またはアンモニア濃度に基づいて、処理炉2内の窒化ポテンシャルを演算するようになっている。具体的には、実際の炉内導入ガスに応じてプログラムされた窒化ポテンシャルの演算式が組み込まれており、炉内雰囲気ガス濃度の値から窒化ポテンシャルを演算するようになっている。 The in-furnace nitriding potential calculation unit 13 calculates the nitriding potential in the processing furnace 2 based on the hydrogen concentration or the ammonia concentration detected by the in-furnace atmosphere gas concentration detection unit 3. Specifically, an arithmetic expression of the nitriding potential programmed according to the actual furnace introduced gas is incorporated, and the nitriding potential is calculated from the value of the atmosphere gas concentration in the furnace.
 パラメータ設定装置15は、例えばタッチパネルからなり、炉内導入ガスの総流量、ガス種、処理温度、目標窒化ポテンシャル、等をそれぞれ設定入力できるようになっている。設定入力された各設定パラメータ値は、ガス流量出力調整手段30へ伝送されるようになっている。 The parameter setting device 15 includes, for example, a touch panel, and can set and input a total flow rate of gas introduced into the furnace, a gas type, a processing temperature, a target nitriding potential, and the like. Each setting parameter value set and input is transmitted to the gas flow rate output adjusting means 30.
 そして、ガス流量出力調整手段30が、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、アンモニアガスとアンモニア分解ガスの各々の導入量を入力値とした制御を実施するようになっている。より具体的には、アンモニアガスの導入量とアンモニア分解ガスの導入量との総流量を一定として互いの導入比を変更する第1制御と、アンモニア分解ガスの導入を停止させた状態でアンモニアガスの導入量を変更する第2制御と、を選択的に実施できるようになっている。ガス流量出力調整手段30の出力値は、ガス導入量制御手段14へ伝達されるようになっている。 Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculating device 13 as an output value, sets a target nitriding potential (the set nitriding potential) as a target value, and outputs ammonia gas and ammonia decomposition gas. Control is performed with each introduction amount as an input value. More specifically, the first control for changing the introduction ratio of the ammonia gas and the ammonia decomposition gas while maintaining the total flow rate of the ammonia gas introduction amount and the ammonia decomposition gas constant, and the ammonia gas in a state where the introduction of the ammonia decomposition gas is stopped It is possible to selectively carry out a second control for changing the introduction amount of. The output value of the gas flow rate output adjustment means 30 is transmitted to the gas introduction amount control means 14.
 ガス導入量制御手段14は、各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22とアンモニア分解ガス用の第2供給量制御装置26とにそれぞれ制御信号を送るようになっている。 The gas introduction amount control means 14 sends control signals to the first supply amount control device 22 for ammonia gas and the second supply amount control device 26 for ammonia decomposition gas in order to realize the introduction amount of each gas. It has become.
 本実施形態の炉内導入ガス供給部20は、アンモニアガス用の第1炉内導入ガス供給部21と、第1供給量制御装置22と、第1供給弁23と、第1流量計24と、を有している。また、本実施形態の炉内導入ガス供給部20は、アンモニア分解ガス(AXガス)用の第2炉内導入ガス供給部25と、第2供給量制御装置26と、第2供給弁27と、第2流量計28と、を有している。 The in-furnace introduced gas supply unit 20 of the present embodiment includes a first in-furnace introduced gas supply unit 21 for ammonia gas, a first supply control device 22, a first supply valve 23, and a first flow meter 24. ,have. Further, the in-furnace introduced gas supply unit 20 of the present embodiment includes a second in-furnace introduced gas supply unit 25 for ammonia decomposition gas (AX gas), a second supply amount control device 26, and a second supply valve 27. , And a second flow meter 28.
 本実施形態では、アンモニアガスとアンモニア分解ガスとは、処理炉2内に入る前の炉内導入ガス導入配管29内で混合されるようになっている。 In the present embodiment, the ammonia gas and the ammonia decomposition gas are mixed in the in-furnace gas introduction pipe 29 before entering the processing furnace 2.
 第1炉内導入ガス供給部21は、例えば、第1炉内導入ガス(本例ではアンモニアガス)を充填したタンクにより形成されている。 The first in-furnace introduction gas supply unit 21 is formed of, for example, a tank filled with a first in-furnace introduction gas (in this example, ammonia gas).
 第1供給量制御装置22は、マスフローコントローラにより形成されており、第1炉内導入ガス供給部21と第1供給弁23との間に介装されている。第1供給量制御装置22の開度が、ガス導入量制御手段14から出力される制御信号に応じて変化する。また、第1供給量制御装置22は、第1炉内導入ガス供給部21から第1供給弁23への供給量を検出し、この検出した供給量を含む情報信号をガス導入制御手段14へ出力するようになっている。当該制御信号は、ガス導入量制御手段14による制御の補正等に用いられ得る。 The first supply amount control device 22 is formed by a mass flow controller, and is interposed between the first in-furnace introduced gas supply unit 21 and the first supply valve 23. The opening degree of the first supply amount control device 22 changes in accordance with the control signal output from the gas introduction amount control means 14. In addition, the first supply control unit 22 detects the amount of supply from the first in-furnace introduced gas supply unit 21 to the first supply valve 23, and sends an information signal including the detected supply to the gas introduction control means 14. It is designed to output. The control signal may be used for correction of control by the gas introduction amount control means 14 or the like.
 第1供給弁23は、ガス導入量制御手段14が出力する制御信号に応じて開閉状態を切り換える電磁弁により形成されており、第1供給量制御装置22と第1流量計24との間に介装されている。 The first supply valve 23 is formed by a solenoid valve that switches the open / close state according to the control signal output from the gas introduction amount control means 14, and between the first supply amount control device 22 and the first flow meter 24. It is interspersed.
 第2炉内導入ガス供給部25は、例えば、第2炉内導入ガス(本例ではアンモニア分解ガス)を充填したタンクにより形成されている。 The second furnace introduction gas supply unit 25 is formed of, for example, a tank filled with a second furnace introduction gas (in this example, an ammonia decomposition gas).
 第2供給量制御装置26は、マスフローコントローラにより形成されており、第2炉内導入ガス供給部25と第1供給弁27との間に介装されている。第1供給量制御装置26の開度が、ガス導入量制御手段14から出力される制御信号に応じて変化する。また、第3供給量制御装置26は、第2炉内導入ガス供給部25から第2供給弁27への供給量を検出し、この検出した供給量を含む情報信号をガス導入制御手段14へ出力するようになっている。当該制御信号は、ガス導入量制御手段14による制御の補正等に用いられ得る。 The second supply control device 26 is formed by a mass flow controller, and is interposed between the second in-furnace introduced gas supply unit 25 and the first supply valve 27. The opening degree of the first supply control unit 26 changes in accordance with the control signal output from the gas introduction control unit 14. Further, the third supply control unit 26 detects the amount of supply from the second in-furnace introduced gas supply unit 25 to the second supply valve 27, and sends an information signal including the detected supply to the gas introduction control means 14. It is designed to output. The control signal may be used for correction of control by the gas introduction amount control means 14 or the like.
 第2供給弁27は、ガス導入量制御手段14が出力する制御信号に応じて開閉状態を切り換える電磁弁により形成されており、第2供給量制御装置26と第2流量計28との間に介装されている。 The second supply valve 27 is formed by an electromagnetic valve that switches the open / close state according to the control signal output from the gas introduction amount control means 14, and between the second supply amount control device 26 and the second flow meter 28. It is interspersed.
(窒化鋼部材の製造装置の作用(製造方法))
 次に、本実施形態の製造装置1の作用について説明する。まず、循環型処理炉2内に被処理品Sが投入され、循環型処理炉2が所望の処理温度に加熱される。その後、炉内導入ガス供給部20からアンモニアガスとアンモニア分解ガスとの混合ガス、あるいはアンモニアガスのみ、が設定初期流量で処理炉2内へ導入される。この設定初期流量も、パラメータ設定装置15において設定入力可能であり、第1供給量制御装置22及び第2供給量制御装置26(共にマスフローコントローラ)によって制御される。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気を攪拌する。
(Operation of manufacturing apparatus for nitrided steel members (manufacturing method))
Next, the operation of the manufacturing apparatus 1 of the present embodiment will be described. First, the article S is introduced into the circulation type processing furnace 2 and the circulation type processing furnace 2 is heated to a desired processing temperature. Thereafter, a mixed gas of ammonia gas and ammonia decomposition gas or only ammonia gas is introduced into the processing furnace 2 at a set initial flow rate from the in-furnace introduced gas supply unit 20. The setting initial flow rate can also be set and input in the parameter setting device 15, and is controlled by the first supply amount control device 22 and the second supply amount control device 26 (both mass flow controllers). Further, the stirring fan drive motor 9 is driven to rotate the stirring fan 8 and stir the atmosphere in the processing furnace 2.
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャルと基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能である。 The in-furnace nitriding potential calculator 13 of the nitriding potential regulator 4 calculates the in-furnace nitriding potential (at the beginning, it is a very high value (because there is no hydrogen in the furnace) but there is decomposition of ammonia gas (hydrogen generation) Decreases as the process progresses), and it is determined whether or not the sum of the target nitriding potential and the reference deviation value is exceeded. The reference deviation value can also be set and input in the parameter setting device 15.
 炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。 When it is determined that the calculated value of the nitriding potential in the furnace falls below the sum of the target nitriding potential and the reference deviation value, the nitriding potential adjuster 4 causes the gas introduction amount control means 14 to introduce the introduction amount of gas introduced into the furnace. Start control of the
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号に基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、炉内導入ガスの導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニアガスの導入量とアンモニア分解ガスの導入量との総流量を一定として互いの導入比を変更する第1制御と、アンモニア分解ガスの導入を停止させた状態でアンモニアガスの導入量を変更する第2制御と、が選択的に実施される。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、例えば、目標窒化ポテンシャルの値に応じて異なる値が用意されている。 The furnace nitriding potential calculator 13 of the nitriding potential controller 4 calculates the furnace nitriding potential based on the inputted hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 uses the nitriding potential calculated by the in-furnace nitriding potential calculator 13 as an output value, and uses the target nitriding potential (the set nitriding potential) as a target value. Implement PID control with an input value. Specifically, in the PID control, the first control for changing the introduction ratio of the ammonia gas and the introduction amount of the ammonia decomposition gas while keeping the total flow rate of the introduction amount of the ammonia gas constant and stopping the introduction of the ammonia decomposition gas A second control of changing the introduction amount of ammonia gas in the state is selectively performed. In the PID control, each set parameter value set and input by the parameter setting device 15 is used. As the setting parameter value, for example, different values are prepared in accordance with the value of the target nitriding potential.
 そして、ガス流量出力調整手段30が、PID制御の結果として、炉内導入ガスの各々の導入量を制御する。具体的には、ガス流量出力調整手段30が、各ガスの流量を決定し、当該出力値がガス導入量制御手段14へ伝達される。 Then, the gas flow rate output adjusting means 30 controls the introduction amount of each in-furnace introduced gas as a result of the PID control. Specifically, the gas flow rate output adjustment means 30 determines the flow rate of each gas, and the output value is transmitted to the gas introduction amount control means 14.
 ガス導入量制御手段14は、各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22とアンモニア分解ガス用の第2供給量制御装置26とにそれぞれ制御信号を送る。 The gas introduction amount control means 14 sends control signals to the first supply amount control device 22 for ammonia gas and the second supply amount control device 26 for ammonia decomposition gas in order to realize the introduction amount of each gas.
 以上のような制御により、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの浸窒処理を極めて高品質に行うことができる。 By the control as described above, the nitriding potential in the furnace can be stably controlled in the vicinity of the target nitriding potential. As a result, it is possible to carry out the nitridation treatment of the article S with extremely high quality.
 更に、被処理品Sの材料種類や形状によっては、当該製造装置1において浸窒処理後の冷却工程をも実施することが可能である。しかし、当該製造装置1の冷却速度では再加熱後に十分な硬さが得られない場合は、当該製造装置1での浸窒処理後、加熱温度を保持した状態で、被処理品Sを炉外の急冷装置(例えば油槽)へ搬送し、その後に急冷することが必要である。あるいは、製造装置1において冷却した後の被処理品Sを製造装置1から取り出して、急冷装置を備えた別の加熱炉において加熱温度まで再度昇温し、その後に急冷することが必要である。 Furthermore, depending on the type and shape of the material of the product S to be processed, it is possible to carry out the cooling step after the nitridation treatment in the manufacturing apparatus 1 concerned. However, if a sufficient hardness can not be obtained after reheating at the cooling rate of the manufacturing apparatus 1, the article S is removed from the furnace while maintaining the heating temperature after the nitriding treatment in the manufacturing apparatus 1. It is necessary to transport it to the quenching device (e.g., an oil tank) and then to quench it. Alternatively, it is necessary to take out the object S after cooling in the manufacturing apparatus 1 from the manufacturing apparatus 1, raise the temperature again to the heating temperature in another heating furnace equipped with a quenching device, and then quench it.
 また、再加熱工程についても、製造装置1での実施も可能ではあるが、一般的には炉外の別の焼戻し炉で実施される。 In addition, although the reheating step can also be performed in the manufacturing apparatus 1, it is generally performed in another tempering furnace outside the furnace.
(第1制御と第2制御との選択について)
 第1制御が採用された例を、図7A及び図7Bに示す。図7A及び図7Bの例では、アンモニアガスの導入量とアンモニア分解ガスの導入量との総流量が、166(l/min)で一定となっており、窒化ポテンシャルが0.16に高精度に制御されている。
(On the selection of the first control and the second control)
An example in which the first control is adopted is shown in FIGS. 7A and 7B. In the example of FIGS. 7A and 7B, the total flow rate of the introduced amount of ammonia gas and the introduced amount of ammonia decomposition gas is constant at 166 (l / min), and the nitriding potential is as high as 0.16. It is controlled.
 第2制御が採用された例を、図8A及び図8Bに示す。図8A及び図8Bの例では、アンモニア分解ガスの導入が停止され、アンモニアガスの導入量のみが220(l/min)の近傍で小刻みにフィードバック制御されることで、窒化ポテンシャルが0.16に高精度に制御されている。 An example in which the second control is adopted is shown in FIGS. 8A and 8B. In the example of FIGS. 8A and 8B, the introduction of the ammonia decomposition gas is stopped, and only the introduction amount of the ammonia gas is feedback-controlled in small steps in the vicinity of 220 (l / min), whereby the nitriding potential is 0.16. It is controlled with high precision.
 制御の安定性及び処理の安全性という観点からは、第1制御が実施されることが好ましい。しかしながら、被処理品Sの炉内挿入量が多い場合(例えば被処理品Sの表面積が7m2を超える場合)には、(3)式の分解反応が多く生ずるため、第1制御では窒化ポテンシャルを高精度に制御することが難しい。そのような場合には、第2制御に移行して窒化ポテンシャル制御が行われることが好ましい。 From the viewpoint of control stability and process safety, it is preferable that the first control be performed. However, when there is a large amount of insertion of the article S in the furnace (for example, when the surface area of the article S exceeds 7 m 2 ), many decomposition reactions of the formula (3) occur, so the first control has a nitriding potential. It is difficult to control with high accuracy. In such a case, it is preferable to shift to the second control to perform nitriding potential control.
(案内筒(内部レトルト)の重要性について)
 本件発明者の実験によれば、製造装置1から案内筒204(内部レトルト)を取り除いて窒化処理を実施した場合(比較例)には、被処理品Sの表面に化合物層が形成されてしまうことが確認された。(比較例においては、案内筒204を取り除いたことに加えて、撹拌扇203とガス導入管205の位置についても、炉内天井中央に移動した。)
(About the importance of the guide tube (internal retort))
According to the experiment of the present inventor, when the guide cylinder 204 (internal retort) is removed from the manufacturing apparatus 1 and the nitriding treatment is performed (comparative example), the compound layer is formed on the surface of the article S to be treated. That was confirmed. (In the comparative example, in addition to the removal of the guide cylinder 204, the positions of the stirring fan 203 and the gas introduction pipe 205 also moved to the center of the ceiling in the furnace.)
 具体的には、製造装置1を用いた場合と、比較例の場合とで、処理温度:640℃、窒化ポテンシャル:0.16、処理時間:2時間、という浸窒処理を実施して、浸窒処理後は温度を保持した状態で別途炉外に設置した油槽まで搬送し、その後に冷却を行った(以後、このように浸窒処理後に油槽まで搬送してから冷却する手順を、油冷と呼ぶ)。被処理品Sとしては、図9で示される冶具を用いて、A面(炉蓋側)、B面(炉内中央)、C面(炉内奥行側)の中央に、それぞれ、鋼材として、S45C鋼であってφ20×5mmのコイン状の試験片が用いられた。 Specifically, in the case of using the manufacturing apparatus 1 and in the case of the comparative example, the carbonizing treatment is performed at a treatment temperature of 640 ° C., a nitriding potential of 0.16, and a treatment time of 2 hours. After the nitrogen treatment, it was transported to an oil tank separately installed outside the furnace while maintaining the temperature, and then cooling was performed (hereinafter, the procedure of carrying to the oil tank after the carbonizing treatment and cooling as described above; Called As the article S, using the jig shown in FIG. 9, as a steel material at the center of the A surface (furnace lid side), the B surface (center in the furnace), and the C surface (deep side in the furnace). A coin-shaped test piece of S45C steel and having a diameter of 20 x 5 mm was used.
 浸窒処理後の各試験片の平面部を当該平面部と垂直に切断し、図2と同様な状態で組織観察した際の断面のM層の厚さを測定したところ、以下の表1に示すように、実施例の場合には、いずれの面においても18~20μm厚さの窒素マルテンサイトによる硬化層が得られた。 When the thickness of the M layer of the cross section at the time of observing the structure in a state similar to FIG. As shown, in the case of the example, a hardened layer of nitrogen martensite having a thickness of 18 to 20 μm was obtained on any surface.
 一方、比較例の場合には、いずれの面でも化合物層が形成されてしまって、奥行方向へ設置した面ほどマルテンサイトによる硬化層厚さが厚くなる傾向が認められた。これは、窒化ポテンシャルの炉内均一性が良くないためであると考えられる。 On the other hand, in the case of the comparative example, the compound layer was formed on any surface, and it was recognized that the hardened layer thickness by martensite tends to be larger as the surface was set in the depth direction. It is considered that this is because the in-furnace uniformity of the nitriding potential is not good.
Figure JPOXMLDOC01-appb-T000001
 ※CL有無:化合物層の有無、M層厚さ:窒素マルテンサイト組織による硬化層厚さ
Figure JPOXMLDOC01-appb-T000001
※ CL presence / absence: presence or absence of compound layer, M layer thickness: hardened layer thickness by nitrogen martensitic structure
(硬度の検証)
 図10に示すような形状のS45C鋼を対象にして、表2の実施例及び比較例の各々の処理を行った。
(Verification of hardness)
The treatments of the example of Table 2 and the comparative example were performed on S45C steel having a shape as shown in FIG.
 実施例では、処理温度640℃、窒化ポテンシャル0.16、処理時間2時間、の浸窒処理後、油冷して、250℃で2時間の再加熱処理を実施した。その結果、マルテンサイト組織による硬化層が、表面に20μmの厚さで得られた。表面から100μmの深さでの拡散層102の硬さと表面から2mmの深さでの硬さとの差(ΔHV)は、135HV>100HVであった。 In the example, after nitriding treatment at a treatment temperature of 640 ° C., a nitriding potential of 0.16, and a treatment time of 2 hours, it was oil cooled and reheating treatment was carried out at 250 ° C. for 2 hours. As a result, a hardened layer of martensitic structure was obtained with a thickness of 20 μm on the surface. The difference (ΔHV) between the hardness of the diffusion layer 102 at a depth of 100 μm from the surface and the hardness at a depth of 2 mm from the surface was 135 HV> 100 HV.
 比較例1では、処理温度570℃、窒化ポテンシャル0.25(γ′相を形成させる値として知られている)、処理時間3.5時間、の浸窒処理後、油冷した。その結果、表面に10μmのγ′相リッチな化合物層が得られた。表面から100μmの深さでの拡散層102の硬さと表面から2mmの深さでの硬さとの差(ΔHV)は、140HV>100HVであった。 In Comparative Example 1, oil cooling was performed after carbonitriding at a treatment temperature of 570 ° C., a nitriding potential of 0.25 (known as a value for forming a γ ′ phase), and a treatment time of 3.5 hours. As a result, a 10 μm γ ′ phase rich compound layer was obtained on the surface. The difference (ΔHV) between the hardness of the diffusion layer 102 at a depth of 100 μm from the surface and the hardness at a depth of 2 mm from the surface was 140 HV> 100 HV.
 比較例2では、処理温度640℃、窒化ポテンシャル0.32(γ′相を形成させる値として知られている)、処理時間2時間、の浸窒処理後、油冷して、250℃で2時間の再加熱処理を実施した。その結果、表面に20μm厚さの化合物層と、その下部に15μmの窒素マルテンサイト組織による硬化層と、が得られた。表面から100μmの深さでの拡散層102の硬さと表面から2mmの深さでの硬さとの差(ΔHV)は、135HV>100HVであった。 In Comparative Example 2, after a nitronization treatment with a treatment temperature of 640 ° C., a nitriding potential of 0.32 (known as a value for forming a γ ′ phase), and a treatment time of 2 hours, oil cooling was carried out, and A reheat treatment of time was performed. As a result, a compound layer with a thickness of 20 μm was obtained on the surface, and a hardened layer with a nitrogen martensitic structure of 15 μm was obtained under the compound layer. The difference (ΔHV) between the hardness of the diffusion layer 102 at a depth of 100 μm from the surface and the hardness at a depth of 2 mm from the surface was 135 HV> 100 HV.
 比較例3では、処理温度700℃、窒化ポテンシャル0.1、処理時間1.5時間、の浸窒処理後、油冷して、250℃で2時間の再加熱処理を実施した。その結果、マルテンサイト組織による硬化層が、表面に40μmの厚さで得られた。表面から100μmの深さでの拡散層102の硬さと表面から2mmの深さでの硬さとの差(ΔHV)は、70HV<100HVであった。 In Comparative Example 3, after carbonitriding at a treatment temperature of 700 ° C., a nitriding potential of 0.1, and a treatment time of 1.5 hours, it was oil-cooled and subjected to reheat treatment at 250 ° C. for 2 hours. As a result, a hardened layer of martensitic structure was obtained with a thickness of 40 μm on the surface. The difference (ΔHV) between the hardness of the diffusion layer 102 at a depth of 100 μm from the surface and the hardness at a depth of 2 mm from the surface was 70 HV <100 HV.
 更に、各試験片に対して、小野式回転曲げ疲労試験機(島津製作所、H7型)を用いて回転曲げ疲労強度を評価した。試験荷重は、56kgfと60kgfで実施し、回転数は3000rpmで共通とした。試験結果の評価は、56kgfでは105回転、60kgfでは107回転を迎えたものを合格(表中○)とし、そうでない場合は不合格(表中×)として評価した。 Furthermore, the rotational bending fatigue strength of each of the test pieces was evaluated using the Ono type rotational bending fatigue tester (Shimadzu Corporation, H7 type). The test load was carried out at 56 kgf and 60 kgf, and the rotational speed was made common at 3000 rpm. Evaluation of test results, 10 5 rotates in 56Kgf, and pass those celebrated 10 7 rotating at 60 kgf (in the table ○), otherwise was evaluated as unacceptable (× in the table).
 実施例は、いずれの試験荷重でも目標寿命を達成したが、比較例2と比較例3では、いずれの試験荷重でも目標寿命を達成することができなかった。なお、比較例3では、いずれの試験荷重でも内部破壊をしており、拡散層の硬さが不足して事実と符合した。 Although the example achieved the target life with any test load, in Comparative Example 2 and Comparative Example 3, the target life could not be achieved with any of the test loads. In addition, in the comparative example 3, internal fracture was carried out by any test load, and the hardness of the diffusion layer was insufficient, which was in agreement with the fact.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
1 窒化鋼部材の製造装置
2 循環型処理炉
3 雰囲気ガス濃度検出装置
4 窒化ポテンシャル調節計
5 内部レトルト
6 レトルト
7 炉開閉蓋
8 攪拌ファン
9 攪拌ファン駆動モータ
12 雰囲気ガス配管
13 炉内窒化ポテンシャル演算装置
14 ガス導入量制御装置
15 パラメータ設定装置(タッチパネル)
20 炉内ガス供給部
21 第1炉内導入ガス供給部
22 第1炉内ガス供給制御装置
23 第1供給弁
25 第2炉内導入ガス供給部
26 第2炉内ガス供給制御装置
27 第2供給弁
29 炉内導入ガス導入配管
30 ガス流量出力調整装置
31 プログラマブルロジックコントローラ
40 炉内ガス廃棄配管
41 排ガス燃焼分解装置
100 一実施形態の窒化鋼部材
101 硬化層
102 拡散層
150 比較例の窒化鋼部材
153 化合物層
151 硬化層
152 拡散層
201 炉壁またはベル
202 レトルト
203 撹拌扇
204 案内筒(内部レトルト)
205 ガス導入管
206 フレア付きのガス排気またはガスフード
207 熱電対
208 冷却作業用の蓋
209 冷却作業用の送風機
DESCRIPTION OF SYMBOLS 1 manufacturing apparatus of nitrided steel member 2 circulation type processing furnace 3 atmosphere gas concentration detection apparatus 4 nitriding potential regulator 5 internal retort 6 retort 7 furnace opening / closing lid 8 stirring fan 9 stirring fan drive motor 12 atmosphere gas piping 13 nitriding potential calculation in furnace Device 14 Gas flow control device 15 Parameter setting device (touch panel)
20 In-furnace gas supply unit 21 first in-furnace introduction gas supply unit 22 first in-furnace gas supply control device 23 first supply valve 25 second in-furnace introduction gas supply unit 26 second in-furnace gas supply control device 27 second Supply valve 29 In-furnace introduced gas introduction piping 30 Gas flow rate output adjustment device 31 Programmable logic controller 40 In-furnace gas disposal piping 41 Exhaust gas combustion decomposition device 100 One embodiment steel nitride member 101 hard layer 102 diffusion layer 150 steel nitride of comparative example Member 153 Compound layer 151 Hardened layer 152 Diffusion layer 201 Furnace wall or bell 202 Retort 203 Agitating fan 204 Guide tube (internal retort)
205 gas inlet tube 206 flared gas exhaust or gas hood 207 thermocouple 208 lid for cooling operation 209 blower for cooling operation

Claims (5)

  1.  炭素鋼または低合金鋼を母相とする窒化鋼部材であって、
     表面に、質量%で窒素を0.8%以上含むマルテンサイト組織を有する硬化層を備え、
     前記硬化層の下部に、前記母相内に窒素が拡散されている拡散層を備え、
     前記硬化層は、当該窒化鋼部材の表面から2μm~50μmの厚さを有しており、
     前記拡散層は、当該窒化鋼部材の表面から100μmを超える深さまで延在しており、
     当該窒化鋼部材の表面から2mmの深さにおける硬さよりも、当該窒化鋼部材の表面から100μmの深さにおける前記拡散層の硬さの方が、100HV以上大きい
    ことを特徴とする窒化鋼部材。
    A nitride steel member having a carbon steel or low alloy steel as a matrix,
    The surface is provided with a hardened layer having a martensitic structure containing 0.8% or more of nitrogen by mass%,
    A diffusion layer in which nitrogen is diffused in the matrix is provided under the hardened layer.
    The hardened layer has a thickness of 2 μm to 50 μm from the surface of the nitrided steel member,
    The diffusion layer extends from the surface of the nitrided steel member to a depth of over 100 μm,
    A nitrided steel member characterized in that the hardness of the diffusion layer at a depth of 100 μm from the surface of the nitrided steel member is 100 HV or more larger than the hardness at a depth of 2 mm from the surface of the nitrided steel member.
  2.  炭素含有量が質量%で0.1%以上である炭素鋼を母相としている
    ことを特徴とする請求項1に記載の窒化鋼部材。
    The nitrided steel member according to claim 1, characterized in that a carbon steel having a carbon content of 0.1% or more in mass% is used as a matrix.
  3.  案内筒と撹拌ファンとを備えた循環型処理炉を用いて、炭素鋼または低合金鋼を母相とする窒化鋼部材を製造する方法であって、
     窒化処理時において、前記循環型処理炉内の温度範囲が、610℃~660℃に制御され、
     前記窒化処理時において、前記循環型処理炉内の窒化ポテンシャルが、0.06~0.3の範囲に制御される
    ことを特徴とする窒化鋼部材の製造方法。
    A method of manufacturing a nitrided steel member having a carbon steel or a low alloy steel as a matrix by using a circulation type processing furnace provided with a guide tube and a stirring fan,
    During nitriding, the temperature range in the circulating processing furnace is controlled to 610 ° C. to 660 ° C.,
    A method of manufacturing a nitrided steel member, wherein the nitriding potential in the circulating treatment furnace is controlled to a range of 0.06 to 0.3 during the nitriding treatment.
  4.  案内筒と撹拌ファンとを有する循環型処理炉を備え、
     窒化処理時において、前記循環型処理炉内の温度範囲が、610℃~660℃に制御され、
     前記窒化処理時において、前記循環型処理炉内の窒化ポテンシャルが、0.06~0.3の範囲に制御される
    ことを特徴とする窒化鋼部材の製造装置。
    It has a circulation type processing furnace with a guide tube and a stirring fan,
    During nitriding, the temperature range in the circulating processing furnace is controlled to 610 ° C. to 660 ° C.,
    At the time of the nitriding treatment, the nitriding potential in the circulation type processing furnace is controlled in the range of 0.06 to 0.3.
  5.  アンモニアガスとアンモニア分解ガスとが前記循環型処理炉内に導入されるようになっており、
     当該製造装置は、前記窒化ポテンシャルを制御するために、
     前記アンモニアガスの導入量と前記アンモニア分解ガスの導入量との総流量を一定として互いの導入比を変更する第1制御と、
     前記アンモニア分解ガスの導入を停止させた状態で、前記アンモニアガスの導入量を変更する第2制御と、
    を選択的に実施できるようになっている
    ことを特徴とする請求項4に記載の窒化鋼部材の製造装置。
    Ammonia gas and ammonia decomposition gas are introduced into the circulating treatment furnace,
    The manufacturing apparatus is configured to control the nitriding potential
    First control for changing the introduction ratio of the ammonia gas and the ammonia decomposition gas while keeping the total flow rate of the introduction amount of the ammonia gas and the introduction amount of the ammonia decomposition gas constant;
    A second control that changes the introduction amount of the ammonia gas while stopping the introduction of the ammonia decomposition gas;
    The apparatus for manufacturing a nitrided steel member according to claim 4, wherein the apparatus can selectively carry out.
PCT/JP2018/047505 2017-12-27 2018-12-25 Nitrided steel member, and method and apparatus for producing nitrided steel member WO2019131602A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-251028 2017-12-27
JP2017251028A JP2021042398A (en) 2017-12-27 2017-12-27 Nitrided steel member, and method and apparatus for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2019131602A1 true WO2019131602A1 (en) 2019-07-04

Family

ID=67063676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047505 WO2019131602A1 (en) 2017-12-27 2018-12-25 Nitrided steel member, and method and apparatus for producing nitrided steel member

Country Status (2)

Country Link
JP (1) JP2021042398A (en)
WO (1) WO2019131602A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175453A1 (en) * 2019-02-26 2020-09-03 パーカー熱処理工業株式会社 Nitriding steel member, and method and device for manufacturing nitriding steel member
EP4043606A4 (en) * 2019-10-11 2023-06-14 Parker Netsushori Kogyo Co., Ltd. Surface hardening apparatus and surface hardening method
EP4249625A4 (en) * 2020-11-18 2023-12-27 Parker Netsushori Kogyo Co., Ltd. Method and apparatus for treating metallic member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046088A (en) * 2005-08-09 2007-02-22 Yuki Koshuha:Kk Nitrided quenched part, and method for producing the same
JP2010007128A (en) * 2008-06-26 2010-01-14 Toyota Motor Corp Heat-treatment tool and heat-treatment apparatus
JP2011219851A (en) * 2010-04-14 2011-11-04 Nhk Spring Co Ltd Spring and manufacturing method thereof
JP2013221203A (en) * 2012-04-18 2013-10-28 Dowa Thermotech Kk Nitrided steel member and method for manufacturing the same
JP2014047410A (en) * 2012-09-03 2014-03-17 Yuki-Koushuha Co Ltd Iron-based alloy material and method of producing the same
JP2017171951A (en) * 2016-03-18 2017-09-28 新日鐵住金株式会社 Steel component and production method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046088A (en) * 2005-08-09 2007-02-22 Yuki Koshuha:Kk Nitrided quenched part, and method for producing the same
JP2010007128A (en) * 2008-06-26 2010-01-14 Toyota Motor Corp Heat-treatment tool and heat-treatment apparatus
JP2011219851A (en) * 2010-04-14 2011-11-04 Nhk Spring Co Ltd Spring and manufacturing method thereof
JP2013221203A (en) * 2012-04-18 2013-10-28 Dowa Thermotech Kk Nitrided steel member and method for manufacturing the same
JP2014047410A (en) * 2012-09-03 2014-03-17 Yuki-Koushuha Co Ltd Iron-based alloy material and method of producing the same
JP2017171951A (en) * 2016-03-18 2017-09-28 新日鐵住金株式会社 Steel component and production method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175453A1 (en) * 2019-02-26 2020-09-03 パーカー熱処理工業株式会社 Nitriding steel member, and method and device for manufacturing nitriding steel member
EP4043606A4 (en) * 2019-10-11 2023-06-14 Parker Netsushori Kogyo Co., Ltd. Surface hardening apparatus and surface hardening method
EP4249625A4 (en) * 2020-11-18 2023-12-27 Parker Netsushori Kogyo Co., Ltd. Method and apparatus for treating metallic member

Also Published As

Publication number Publication date
JP2021042398A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
RU2518840C2 (en) Case-hardened steel element and method of its production
JP4390576B2 (en) Rolling member
WO2019131602A1 (en) Nitrided steel member, and method and apparatus for producing nitrided steel member
JP6636829B2 (en) Nitrided steel member and method of manufacturing nitrided steel
EP3118346B1 (en) Nitriding method and nitrided part production method
JP5883727B2 (en) Gas nitriding and gas soft nitriding methods
JP7094540B2 (en) Nitride steel member and manufacturing method and manufacturing equipment for nitrided steel member
CN101392361A (en) Nitrocarburizing method of martensitic stainless steel and preparation method thereof
KR101830221B1 (en) Nitriding heat treatment method of steel for gear
US20030205297A1 (en) Carburizing method
JP3792341B2 (en) Soft nitriding steel with excellent cold forgeability and pitting resistance
TW202100757A (en) Nitriding steel member, and method and device for manufacturing nitriding steel member
JP2006241480A (en) Rolling support device, method for manufacturing rolling member of rolling support device, and heat treatment process for steel
JP2006348321A (en) Steel for nitriding treatment
WO2020090999A1 (en) Nitrided steel member, and method and apparatus for producing nitrided steel member
JP2008121064A (en) Method for producing low strain quenched material
JP2015025161A (en) Surface hardening method of iron or iron alloy and apparatus of the same, and surface hardening structure of iron or iron alloy
EP3502302A1 (en) Nitriding process for carburizing ferrium steels
JP2009102733A (en) Method for producing rolling member
JP2005036279A (en) Surface hardening method for steel, and metallic product obtained thereby
KR102360964B1 (en) Complex heat treatment method of steel for gear
EP3158104B1 (en) Ferrous alloy and its method of manufacture
JP2019049032A (en) Steel material for carburization processing
Todo et al. Development of application technology for vacuum carburizing
JP4858071B2 (en) Steel surface treatment method and surface-treated steel material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP