JP6636829B2 - Nitrided steel member and method of manufacturing nitrided steel - Google Patents

Nitrided steel member and method of manufacturing nitrided steel Download PDF

Info

Publication number
JP6636829B2
JP6636829B2 JP2016042580A JP2016042580A JP6636829B2 JP 6636829 B2 JP6636829 B2 JP 6636829B2 JP 2016042580 A JP2016042580 A JP 2016042580A JP 2016042580 A JP2016042580 A JP 2016042580A JP 6636829 B2 JP6636829 B2 JP 6636829B2
Authority
JP
Japan
Prior art keywords
compound layer
phase
nitriding
gas
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016042580A
Other languages
Japanese (ja)
Other versions
JP2016211069A (en
Inventor
泰 平岡
泰 平岡
陽一 渡邊
陽一 渡邊
Original Assignee
パーカー熱処理工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パーカー熱処理工業株式会社 filed Critical パーカー熱処理工業株式会社
Priority to PCT/JP2016/064100 priority Critical patent/WO2016182013A1/en
Publication of JP2016211069A publication Critical patent/JP2016211069A/en
Application granted granted Critical
Publication of JP6636829B2 publication Critical patent/JP6636829B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、窒化鋼部材及び窒化鋼部材の製造方法に関し、さらに詳しくは、自動車用や変速機用の歯車やクランクシャフト等に有用な、ガス窒化処理により表面が窒化されてなる耐摩耗性や耐疲労性に優れる十分な厚みの化合物層を有する窒化鋼部材及び窒化鋼部材の製造方法に関する。   The present invention relates to a nitrided steel member and a method for producing a nitrided steel member, and more particularly, to abrasion resistance whose surface is nitrided by gas nitriding, which is useful for gears and crankshafts for automobiles and transmissions. The present invention relates to a nitrided steel member having a sufficiently thick compound layer having excellent fatigue resistance and a method for producing a nitrided steel member.

鋼の表面硬化処理の中でも低ひずみ処理である窒化処理のニーズは多く、最近では特にガス窒化処理の雰囲気制御技術への関心が高まっている。この背景には、ガス窒化処理によれば、機械部品に対する焼入れを伴う浸炭や浸炭窒化処理、また、高周波焼入れによるひずみが改善されることによる。ガス窒化処理による雰囲気制御の基本は、炉内の窒化ポテンシャル(KN)を制御することにあり、これによって、鋼材表面に生成する化合物層中のγ’相(Fe4N)とε相(Fe2-3N)の体積分率の制御、あるいは化合物層の生成しない処理など、幅広い窒化品質を得ることが可能であり、様々な提案がされている。例えば、特許文献1では、γ’相の選択により、曲げ疲労強度や面疲労を改善し、浸炭代替が行われている。 Among the surface hardening treatments of steel, there is a great need for nitriding treatment, which is a low strain treatment. In recent years, there has been an increasing interest in gas nitriding atmosphere control technology. This is due to the fact that the gas nitriding treatment improves the carburizing or carbonitriding treatment involving quenching of machine parts and the distortion caused by induction hardening. The basis of the atmosphere control by the gas nitriding treatment is to control the nitriding potential (K N ) in the furnace, whereby the γ ′ phase (Fe 4 N) and the ε phase (Fe 4 N) in the compound layer formed on the steel material surface are formed. A wide range of nitriding qualities can be obtained, such as control of the volume fraction of Fe 2-3 N) or treatment without formation of a compound layer, and various proposals have been made. For example, in Patent Literature 1, bending fatigue strength and surface fatigue are improved by selecting the γ 'phase, and carburization is substituted.

一方で、耐摩耗性や耐疲労性の観点から厚い化合物層の形成が望まれているが、従来のε相主体の窒化では化合物層が剥離し易く、厚膜化できていなかった(特許文献2〜4参照)。具体的には、特許文献2の技術は、ギアノイズの低減を目的とした軟窒化歯車に関するが、化合物層厚さとポーラス層厚さを12μm以下であると規定している。また、特許文献3の技術では、凹凸による応力集中回避を、化合物層厚さを5μm以下に低減することにより実施しており、特許文献4の技術では、化合物層厚さ5μm以下で、曲げ矯正によるき裂抑制をしている。さらに、前記した特許文献1の技術でも、γ’相は低KNで処理されるため、γ’相を厚膜化する場合は、窒化処理に長時間を要し、その結果、拡散層の軟化や圧縮残留応力の低下が起こるため、厚膜化が困難であった。 On the other hand, formation of a thick compound layer is desired from the viewpoints of wear resistance and fatigue resistance. However, in the conventional nitridation mainly composed of ε-phase, the compound layer is easily peeled off, and a thick film cannot be formed (Patent Document 2-4). Specifically, the technology of Patent Document 2 relates to a nitrocarburized gear for the purpose of reducing gear noise, but specifies that the thickness of the compound layer and the thickness of the porous layer are 12 μm or less. Further, in the technique of Patent Document 3, stress concentration due to unevenness is avoided by reducing the thickness of the compound layer to 5 μm or less. In the technique of Patent Document 4, bending correction is performed at a compound layer thickness of 5 μm or less. Cracks are suppressed. Further, even in the technique of Patent Document 1 described above, since the γ ′ phase is processed with a low K N , if the γ ′ phase is to be made thicker, it takes a long time for the nitriding treatment, and as a result, the diffusion layer Since the softening and the reduction of the compressive residual stress occur, it is difficult to increase the film thickness.

一方、γ’相主体の化合物層を、被処理材の量や流速、また、均一に形成する方法として、最初に炉内のNH3分圧が高い雰囲気で窒化を行い、その後、炉内の雰囲気をNH3分圧の低い状態にする2段窒化法が実施されている(特許文献5参照)。この方法を用いれば、1段目の雰囲気を高いKNへ設定し、2段目にγ’相領域のKNを選定すれば、γ’相主体の化合物層を厚膜化することが可能である。特許文献5では、化合物層の厚さが4〜16μmであることが好ましいとしている。しかし、特許文献5には、16μmを超えるとε相の割合が増加して脆くなることから、疲労強度の向上が期待できないと記載されており、また、比較例2で化合物層の厚さがロットでばらついたとの記載があるものの、その実施例には化合物層の厚みについての記載はなく、この技術で実用化できる化合物層の厚みは16μmに達していないと推定される。また、特許文献5に記載の技術では、2段目のガス雰囲気中における窒化時間も管理されておらず、実施例によれば窒化時間が長いものになっている。本発明者らの検討によれば、このような条件下では、形成したγ’相の結晶粒が大きくなるため、耐摩耗性などの機械的特性を低下させる要因になり、この点でも課題がある。 On the other hand, as a method for uniformly forming the γ 'phase-based compound layer, the amount and flow rate of the material to be treated, and first, nitriding is performed in an atmosphere where the NH 3 partial pressure is high in the furnace, and then the furnace is heated. A two-stage nitriding method in which the atmosphere has a low NH 3 partial pressure has been performed (see Patent Document 5). Using this method, the atmosphere in the first stage is set to a higher K N, 'be selected to K N of the phase field, gamma' gamma the second stage compound layer of a phase mainly can be thickened It is. Patent Document 5 discloses that the thickness of the compound layer is preferably 4 to 16 μm. However, Patent Document 5 describes that if the thickness exceeds 16 μm, the proportion of the ε phase increases and the material becomes brittle, so that improvement in fatigue strength cannot be expected. In Comparative Example 2, the thickness of the compound layer is reduced. Although there is a description that the thickness varies from lot to lot, there is no description about the thickness of the compound layer in the examples, and it is estimated that the thickness of the compound layer that can be put to practical use by this technique has not reached 16 μm. Further, in the technique described in Patent Document 5, the nitriding time in the second-stage gas atmosphere is not controlled, and according to the embodiment, the nitriding time is long. According to the study of the present inventors, under such conditions, the crystal grains of the formed γ ′ phase are large, which causes a decrease in mechanical properties such as abrasion resistance. is there.

特開2013−221203号公報JP 2013-221203 A 特開平11−72159号公報JP-A-11-72159 特開2009−30134号公報JP 2009-30134 A 特開2014−129607号公報JP 2014-129607 A 国際公開第2015/046593号公報WO 2015/046593

上記したように厚膜化が困難であるといった問題があるものの、従来から、鋼部材にガス窒化やガス軟窒化処理をすると、未処理材よりも耐摩耗性や疲労強度が向上するため、
これらの処理が用いられてきた。耐摩耗性や耐疲労性を向上させるためには、化合物層が厚いことが望まれているが、化合物層の厚膜化は疲労強度を低下させるため、上記したように、部品の使用環境に応じた厚さの最適化を行うことで、これらの問題への対応がなされている(特許文献2〜4参照)。一方、最近では、特許文献1や5の記載からわかるように、従来使われてきたε相主体の化合物層よりも、γ’相主体の化合物層とする方が、疲労強度が向上することが明らかとなっている。
Although there is a problem that it is difficult to increase the film thickness as described above, conventionally, when a steel member is subjected to gas nitriding or gas nitrocarburizing treatment, wear resistance and fatigue strength are improved as compared with an untreated material,
These processes have been used. In order to improve wear resistance and fatigue resistance, it is desired that the compound layer be thick.However, since increasing the thickness of the compound layer lowers the fatigue strength, as described above, the thickness of the compound These problems are addressed by optimizing the thickness according to the requirements (see Patent Documents 2 to 4). On the other hand, recently, as can be seen from the descriptions of Patent Documents 1 and 5, fatigue strength can be improved by using a compound layer mainly composed of a γ ′ phase rather than a compound layer mainly composed of an ε phase that has been conventionally used. It is clear.

しかし、γ’相主体の化合物層を生成させるのは低KNでの処理であるので、化合物層を厚膜化するためには、処理温度を高めるか、長時間処理することが必要となる。これに対し、ガス窒化処理の高温化や長時間化は、窒化拡散層に形成される圧縮残留応力や硬さの低下を招くことや、生産上や環境への負荷が高くなることから、こうした工法は工業的には成立し得ず、実現化することができなかった。また、特許文献5に記載されているような2段ガス窒化処理により、γ’主体の化合物層を厚膜化することも可能であるが、この技術では、16μm以上ではε相の割合が増加して脆くなることから、疲労強度の向上が望めないとしており、さらなる厚膜化は望めない。また、特許文献5に記載の技術では、2段目のガス窒化処理時間も最適化されておらず、先に述べたように、窒化時間が長くなっているため、形成したγ’相中の結晶粒が大きくなり、耐磨耗性など機械特性を低下させるという課題がある。 However, since the formation of the compound layer mainly composed of the γ ′ phase is performed at a low K N , it is necessary to increase the processing temperature or perform the treatment for a long time to increase the thickness of the compound layer. . On the other hand, the higher temperature and longer time of the gas nitriding process cause a decrease in compressive residual stress and hardness formed in the nitrided diffusion layer, and increase the load on production and the environment. The construction method could not be realized industrially and could not be realized. Further, it is possible to increase the thickness of the compound layer mainly composed of γ ′ by a two-stage gas nitriding treatment as described in Patent Document 5, but with this technique, the ratio of the ε phase increases at 16 μm or more. Therefore, improvement in fatigue strength cannot be expected, and further increase in film thickness cannot be expected. Further, in the technique described in Patent Document 5, the time of the second-stage gas nitriding treatment is not optimized, and as described above, the nitriding time is long. There is a problem that crystal grains become large and mechanical properties such as abrasion resistance deteriorate.

すなわち、ガス窒化処理によって形成されるγ’主体の化合物層を、疲労強度を低下させることなく、むしろ疲労強度を向上させることができ、所望の耐摩耗性を満足する厚みにできる、簡便な実用化できる従来の技術はこれまでになく、実現できれば、その工業的価値は極めて大きい。   That is, the compound layer mainly composed of γ ′ formed by the gas nitriding treatment can improve the fatigue strength without lowering the fatigue strength, and can have a thickness satisfying the desired wear resistance. There is no conventional technology that can be realized, and if it can be realized, its industrial value is extremely large.

したがって、本発明の目的は、通常のガス窒化処理時間でも、γ’相を主体とする化合物層を13μm以上、好適には15μm以上に厚膜化することができ、また、γ’相主体化合物層の厚膜化を行うことによってさらに疲労強度を向上させることができ、従来技術よりも高い疲労強度を備えながらも、耐摩耗性を向上させることが可能な窒化処理部材を提供できる技術を開発することである。   Therefore, an object of the present invention is to provide a compound layer mainly composed of a γ ′ phase to have a thickness of 13 μm or more, preferably 15 μm or more, even during a normal gas nitriding treatment time. Developing a technology that can provide a nitrided member that can increase the fatigue strength by increasing the thickness of the layer and further improve the wear resistance while having higher fatigue strength than the conventional technology It is to be.

本発明者らは上記課題を達成すべく鋭意検討した結果、鉄窒素化合物層中に占めるγ’相とε相の体積割合が特定のもので、加えて、化合物層の厚みが13μm以上であり、ガス窒化処理後の窒化拡散層の実用硬化深さDLT[μm]に対するガス窒化処理後の化合物層の厚さCLT[μm]の比が特定の関係を満たす場合に、上記課題を達成することができることを見出して本発明を完成するに至った。   The present inventors have conducted intensive studies to achieve the above object, and as a result, the volume ratio of the γ ′ phase and the ε phase in the iron-nitrogen compound layer is specific, and in addition, the thickness of the compound layer is 13 μm or more. The above object is achieved when the ratio of the thickness CLT [μm] of the compound layer after gas nitriding to the practical hardening depth DLT [μm] of the nitrided diffusion layer after gas nitriding satisfies a specific relationship. The inventors have found that the present invention can be performed, and have completed the present invention.

すなわち、本発明は、γ’相主体化合物層が生成する鋼材成分からなる鋼部材の表面に鉄窒素化合物層が形成されてなる窒化鋼部材であって、前記鉄窒素化合物層中に占めるγ’相とε相の体積割合をVγ’とVεとし、γ’相の存在割合をVγ’/(Vγ’+Vε)で規定される比で表した場合に、その値が0.5以上であるγ’相主体の化合物層の厚さが13μm〜30μmであり、且つ、前記鉄窒素化合物層は、ガス窒化処理後の化合物層の厚さ[μm]の値をCLTと表し、ガス窒化処理後の窒化拡散層の実用硬化深さ[μm]の値をDLTと表した場合に、下記式(1)の関係を満たすことを特徴とする窒化鋼部材を提供する。
CLT÷DLT≧0.04 ・・・(1)
That is, the present invention is a nitrided steel member in which an iron-nitrogen compound layer is formed on the surface of a steel member made of a steel material component in which a γ′-phase-based compound layer is generated, and γ ′ occupying the iron-nitrogen compound layer. When the volume ratio of the ε phase to the ε phase is Vγ ′ and Vε, and the proportion of the γ ′ phase is represented by the ratio defined by Vγ ′ / (Vγ ′ + Vε), the value is γ of 0.5 or more. 'The thickness of the phase-based compound layer is 13 μm to 30 μm, and the iron-nitrogen compound layer represents the value of the thickness [μm] of the compound layer after gas nitriding as CLT, and Provided is a nitrided steel member that satisfies the following expression (1) when the value of the practical hardening depth [μm] of the nitrided diffusion layer is represented by DLT.
CLT ÷ DLT ≧ 0.04 (1)

本発明の窒化鋼部材は、前記γ’相主体化合物層の厚さが、15μm〜30μmであることが好ましく、また、歯車又はクランクシャフトに好適に適用できる。   In the nitrided steel member of the present invention, the thickness of the γ′-phase-based compound layer is preferably 15 μm to 30 μm, and can be suitably applied to a gear or a crankshaft.

本発明は、別の実施形態として、ガス窒化処理炉内の窒化ポテンシャル(KN)を調整しながら、前記炉内の被処理材にガス窒化処理を行って、請求項1に記載の窒化部材を製造するための製造方法であって、前記ガス窒化炉内へ導入するガスを、アンモニアとアンモニア分解ガスの2種類のみの混合ガスとするか、或いは、アンモニアとアンモニア分解ガスを含む複数の混合ガスとし、前記被処理材近傍における水素濃度の連続的な検出を行い、該検出結果を元にして前記炉内のアンモニア分圧を推定し、設定の窒化ポテンシャルへ制御する雰囲気の自動制御を行い、制御の際に、ガス窒化処理中雰囲気の窒化ポテンシャルKN=pNH3/pH2 1.5を、最初にKN1とし、続いて必要に応じて窒化ポテンシャルをKN2〜KNx-1、KNxとしてもよいが、最終のKNxを、下記式(2)と下記式(3)とを同時に満たすように制御し、且つ、上記要件を満たすように制御した最終のKNxでの窒化時間を5〜60分とすることを特徴とする窒化鋼部材の製造方法を提供する。
N1〜KNx-1>KNx ・・・(2)
126.7034−5.68797×10-1×T+8.64682×10-4×T2−4.43596×10-7×T3 >KNx >22.2265−1.15×10-1×T+2.03×10-4×T2−1.21466×10-7×T3 ・・・(3)
(ただし、pNH3、pH2は、窒化処理炉内のNH3分圧とH2分圧、式(3)中の、Tは温度[℃]である。)
本発明の窒化鋼部材の製造方法は、前記KN1が、1.0〜2.0であることが好ましい。
According to another aspect of the present invention, the nitriding member according to claim 1, wherein the material to be treated in the furnace is subjected to gas nitriding while adjusting the nitriding potential (K N ) in the furnace. Wherein the gas introduced into the gas nitriding furnace is a mixture of only two kinds of ammonia and ammonia decomposition gas, or a plurality of mixed gases containing ammonia and ammonia decomposition gas. As a gas, perform continuous detection of the hydrogen concentration in the vicinity of the material to be processed, estimate the ammonia partial pressure in the furnace based on the detection result, and automatically control the atmosphere to control to a set nitriding potential. At the time of control, the nitriding potential K N = p NH3 / p H2 1.5 in the atmosphere during the gas nitriding treatment is first set to K N1, and then, if necessary, the nitriding potential is set to K N2 to K Nx-1 , K Nx. As well However, the final K Nx is controlled so as to satisfy the following equations (2) and (3) simultaneously, and the nitriding time at the final K Nx controlled so as to satisfy the above requirements is 5 to 5. A method for producing a nitrided steel member, wherein the method is performed for 60 minutes, is provided.
K N1 to K Nx-1 > K Nx (2)
126.7034−5.68797 × 10 −1 × T + 8.64682 × 10 −4 × T 2 −4.43596 × 10 -7 × T 3 > K Nx > 22.2265-1.15 × 10 -1 × T + 2.03 × 10 -4 × T 2 − 1.21466 × 10 -7 × T 3 ... (3)
(However, p NH3 and p H2 are the partial pressures of NH 3 and H 2 in the nitriding furnace, and T in Expression (3) is the temperature [° C.].)
In the method for manufacturing a nitrided steel member of the present invention, it is preferable that the K N1 is 1.0 to 2.0.

本発明によれば、通常のガス窒化処理時間でも、γ’相を主体とする化合物層をε相主体とする化合物層と同様に厚膜化することができ、また、γ’相主体化合物層の厚膜化を行っても、低KNで形成したγ’相を主体とする化合物層と比べて、曲げ疲労強度を低下させることなく、むしろ疲労強度を向上させることができ、且つ、耐摩耗性を向上させることが可能な、従来にない新規な窒化処理部材の提供が可能になる。なお、本発明で規定するように、本発明でいう「γ’相を主体とする化合物層」とは、鋼部材の表面に形成されている鉄窒素化合物層において、γ’相の存在割合を、Vγ’/(Vγ’+Vε)で規定される比で表した場合に、その値が0.5以上である部分を意味する。 According to the present invention, the compound layer mainly composed of the γ ′ phase can be formed into a thick film in the same manner as the compound layer mainly composed of the ε phase even during the normal gas nitriding treatment time. Even when the film thickness is increased, the fatigue strength can be improved without lowering the bending fatigue strength as compared with the compound layer mainly composed of the γ ′ phase formed at a low K N , and It is possible to provide an unprecedented new nitriding member capable of improving abrasion. Note that, as defined in the present invention, the “compound layer mainly composed of the γ ′ phase” in the present invention refers to an existing ratio of the γ ′ phase in the iron-nitrogen compound layer formed on the surface of the steel member. , Vγ ′ / (Vγ ′ + Vε) means a portion whose value is 0.5 or more.

鉄のLehrer図(E.Lehrer: Zeitschrift fur Elektrochemie,36,p.383(1930).)である。It is a Lehrer diagram of iron (E. Lehrer: Zeitschrift fur Elektrochemie, 36, p.383 (1930).). ピット型ガス窒化処理炉の概略図である。It is a schematic diagram of a pit type gas nitriding furnace. ヒートパターン(ピット炉)である。It is a heat pattern (pit furnace). バッチ型ガス窒化処理炉の概略図である。It is a schematic diagram of a batch type gas nitriding furnace. ヒートパターン(バッチ炉)である。It is a heat pattern (batch furnace). 小野式回転曲げ疲労試験片形状である。It is an Ono-type rotating bending fatigue test piece. SRV試験機の概要の説明図である。It is explanatory drawing of the outline | summary of an SRV testing machine. オッシレーション法の説明図である。It is an explanatory view of an oscillation method. EBSD解析結果の例(黒部分:解析不能)を示す図である。It is a figure showing an example (black part: analysis impossible) of an EBSD analysis result.

以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。まず、本発明の技術の前提について述べる。本発明は、鋼部材の表面にγ’相主体の鉄窒素化合物層が形成されてなる窒化鋼部材であり、該鉄窒素化合物層中に占めるγ’相とε相の体積割合を特定のものとしていることから、該化合物層を形成させる鋼材は、γ’相主体の化合物層が生成される成分のものであることを要する。また、本発明は、自動車用や変速機用の歯車やクランクシャフト等に有効に適用できる窒化鋼部材の提供をも目的としていることから、鋼材の被削性や製造性といった機能に対して必要不可欠な元素が存在することや、不純物元素として必ず存在する元素もある。これらの点も含めて、本発明を構成する「γ’相主体化合物層が生成する鋼材成分からなる鋼」としては、下記のような成分範囲を満足する鋼種であることが好ましい。なお、下記の%は、質量基準である。   Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the following embodiments. First, the premise of the technology of the present invention will be described. The present invention is a nitrided steel member in which a γ ′ phase-based iron-nitrogen compound layer is formed on the surface of a steel member, wherein a specific volume ratio of the γ ′ phase and the ε phase in the iron-nitrogen compound layer is specified. Therefore, the steel material forming the compound layer needs to be a component that forms a compound layer mainly composed of a γ ′ phase. Further, since the present invention aims at providing a nitrided steel member that can be effectively applied to gears and crankshafts for automobiles and transmissions, the present invention is required for functions such as machinability and manufacturability of steel materials. Some elements are indispensable and some are necessarily present as impurity elements. In consideration of these points, the “steel comprising a steel material component that forms the γ′-phase-based compound layer” constituting the present invention is preferably a steel type satisfying the following component range. In addition, the following% is based on mass.

〔母材である鋼成分〕
<炭素(C)>
Cは、窒化部品の強度確保のために必須の元素であるといえ、0.05%以上の含有量が必要である。一方、Cの含有量が多くなって0.5%を超えると、窒化前の硬さが高くなって被削性の低下をきたすため、Cの含有量は、0.05〜0.5%であることが好ましい。
[Steel component as base material]
<Carbon (C)>
C can be said to be an indispensable element for securing the strength of the nitrided component, and requires a content of 0.05% or more. On the other hand, when the content of C is increased to exceed 0.5%, the hardness before nitriding is increased and the machinability is reduced. Therefore, the content of C is 0.05 to 0.5%. It is preferred that

<ケイ素(Si)>
Siは、脱酸作用を有する。この効果を得るには、0.10%以上のSi含有量が必要である。しかし、Siの含有量が多くなって0.90%を超えると、窒化前の硬さが高くなって被削性が低下するので好ましくない。したがって、Siの含有量は、0.10〜0.90%であることが好ましい。
<Silicon (Si)>
Si has a deoxidizing effect. To obtain this effect, a Si content of 0.10% or more is required. However, when the content of Si is increased to exceed 0.90%, the hardness before nitriding is increased and the machinability is reduced, which is not preferable. Therefore, the content of Si is preferably 0.10 to 0.90%.

<マンガン(Mn)>
Mnは、脱酸作用を有する。この効果を得るには、0.3%以上のMn含有量が必要である。しかし、Mnの含有量が多くなって1.65%を超えると、窒化前の硬さが高くなりすぎて被削性が低下するので好ましくない。したがって、Mnの含有量を0.3〜1.65%であることが好ましい。
<Manganese (Mn)>
Mn has a deoxidizing effect. To obtain this effect, a Mn content of 0.3% or more is required. However, when the content of Mn is increased to exceed 1.65%, the hardness before nitriding becomes too high, and the machinability is undesirably reduced. Therefore, the content of Mn is preferably from 0.3 to 1.65%.

<ニッケル(Ni)>
Niは必ずしも含有していなくてもよい。ただし、Niは、焼入れ性と靱性の向上に資する成分であるので、この観点から含有させてもよい。しかし、あまり多く含有させても、上記効果は飽和に達するのみで徒にコストアップを招くだけではなく、被削性の低下も引き起こすので、好ましくない。したがって、その含有量は2.10%以下に制限することが好ましい。
<Nickel (Ni)>
Ni does not necessarily have to be contained. However, Ni is a component contributing to the improvement of hardenability and toughness, and may be contained from this viewpoint. However, if the content is too large, the above effect only reaches saturation and not only raises the cost but also lowers the machinability, which is not preferable. Therefore, its content is preferably limited to 2.10% or less.

<クロム(Cr)>
Crは必ずしも含有していなくてもよい。ただし、Crの含有量が多くなって2.7%を超えると、窒化化合物層の厚さが低下して、本発明を構成するγ’相主体の化合物層の効果が十分に得られなくなる。したがって、Crの含有量は0〜2.7%であることが好ましい。
<Chrome (Cr)>
Cr does not necessarily have to be contained. However, when the content of Cr is increased to exceed 2.7%, the thickness of the nitride compound layer is reduced, and the effect of the compound layer mainly composed of the γ ′ phase constituting the present invention cannot be sufficiently obtained. Therefore, the content of Cr is preferably 0 to 2.7%.

<モリブデン(Mo)>
Moは必ずしも含有していなくてもよい。ただし、Moは、窒化温度で、鋼中のCと結合して炭化物を形成し、窒化後の芯部硬さの向上作用をもたらし、機械部品によっては必要となる元素である。しかし、Moの含有量が多くなって0.50%を超えると、原料コストが高くなるだけでなく、窒化前の硬さが高くなって被削性が低下するので好ましくない。したがって、Moの含有量は0.50%以下であることが好ましい。
<Molybdenum (Mo)>
Mo does not necessarily have to be contained. However, Mo combines with C in the steel at the nitriding temperature to form carbides, thereby improving the core hardness after nitriding, and is an element necessary for some mechanical parts. However, when the content of Mo is increased to exceed 0.50%, not only is the raw material cost increased, but also the hardness before nitriding is increased and the machinability is reduced, which is not preferable. Therefore, the content of Mo is preferably 0.50% or less.

<バナジウム(V)>
Vは必ずしも含有していなくてもよい。ただし、Vを含有させると、Moと同じく、窒化温度で鋼中のCと結合して炭化物を形成し、窒化後の芯部硬さを向上させる作用を有し、また、窒化時に表面から侵入・拡散するNやCと結合して窒化物や炭窒化物を形成し、表面硬さを向上させる作用も有し、場合によっては必要となる元素である。しかし、Vの含有量が多くなって0.40%を超えると、窒化前の硬さが高くなりすぎて被削性が低下するばかりか、熱間鍛造やその後の焼準でマトリックス中にVが固溶しなくなるため、前記の効果が飽和する。したがって、Vの含有量は0〜0.30%であることが好ましい。
<Vanadium (V)>
V does not necessarily have to be contained. However, when V is contained, as in Mo, it combines with C in the steel at the nitriding temperature to form carbides and has the effect of improving the core hardness after nitriding, and has the effect of penetrating from the surface during nitriding. -It combines with N and C which diffuse to form nitrides and carbonitrides, has an effect of improving surface hardness, and is an element required in some cases. However, when the content of V is increased to exceed 0.40%, the hardness before nitriding becomes too high and the machinability is reduced, and the V content in the matrix by hot forging or subsequent normalizing is increased. Does not form a solid solution, so that the above effect is saturated. Therefore, the content of V is preferably 0 to 0.30%.

<アルミニウム(Al)>
Alは必ずしも含有していなくてもよい。ただし、Alの含有量が多くなって1.1%を超えると、窒化化合物層の形成量が低下して、本発明のγ’相主体の化合物層の効果が十分に得られなくなる。したがって、Alの含有量は0〜1.1%であることが好ましい。
<Aluminum (Al)>
Al does not necessarily have to be contained. However, when the content of Al is increased to exceed 1.1%, the formation amount of the nitride compound layer is reduced, and the effect of the compound layer mainly composed of the γ ′ phase of the present invention cannot be sufficiently obtained. Therefore, the content of Al is preferably 0 to 1.1%.

<硫黄(S)>
Sは、Mnと結合してMnSを形成し、被削性を向上させる作用がある。しかし、Sの含有量が0.030%を超えると、粗大なMnSを形成して、熱間鍛造性および曲げ疲労強度が低下する。そのため、Sの含有量は0.002〜0.030%であることが好ましい。より安定して被削性を確保するためには、Sの含有量は0.010%以上であることが好ましい。また、熱間鍛造性および曲げ疲労強度がより重視される用途に適用する部材の場合には、Sの含有量は0.025%以下であることが好ましい。
<Sulfur (S)>
S combines with Mn to form MnS and has an effect of improving machinability. However, when the S content exceeds 0.030%, coarse MnS is formed, and the hot forgeability and the bending fatigue strength decrease. Therefore, the content of S is preferably 0.002 to 0.030%. In order to secure the machinability more stably, the content of S is preferably 0.010% or more. Further, in the case of a member applied to an application in which hot forgeability and bending fatigue strength are more important, the S content is preferably 0.025% or less.

<リン(P)>
Pは、鋼に含有される不純物であり、結晶粒界に偏析して鋼を脆化させ、特に、その含有量が0.030%を超えると、脆化の程度が著しくなる場合がある。したがって、本発明においては、不純物中のPの含有量が0.030%以下であることを必要とする。なお、不純物中のPの含有量は0.020%以下であることが好ましい。
<Phosphorus (P)>
P is an impurity contained in steel and segregates at grain boundaries to embrittle the steel. In particular, if the content exceeds 0.030%, the degree of embrittlement may become significant. Therefore, in the present invention, the content of P in the impurities needs to be 0.030% or less. Note that the content of P in the impurities is preferably 0.020% or less.

<その他の元素>
本発明で用いる鋼部材は、上記に挙げた各元素の他、残部がFe及びその他の不純物からなる化学組成を有するものである。なお、残部としての「Feおよび不純物」とは、鋼材を工業的に製造する際に、原料としての鉱石から不可避的に混入する、例えば、銅(Cu)やチタン(Ti)、または、製造環境から不可避的に混入する、例えば、O(酸素)などのFe以外の成分を含むことを意味している。
<Other elements>
The steel member used in the present invention has a chemical composition consisting of Fe and other impurities in addition to the above elements. In addition, “Fe and impurities” as the balance refers to, for example, copper (Cu) or titanium (Ti), which is inevitably mixed from ore as a raw material when a steel material is manufactured industrially, or in a manufacturing environment. For example, it means that components other than Fe, such as O (oxygen), which are inevitably mixed in from the material.

〔窒化鋼部材〕
本発明の窒化鋼部材は、γ’相主体化合物層が生成する上記に挙げたような鋼材成分からなる鋼部材の表面に、特有の構成の鉄窒素化合物層が形成されてなることを特徴とする。すなわち、本発明の窒化鋼部材を特徴づける鉄窒素化合物層は、該層中に占めるγ’相とε相の体積割合Vγ’とVεとの関係が、Vγ’/(Vγ’+Vε)で規定される比で表した場合に、その値が0.5以上(γ’相の存在割合が0.5以上)である、γ’相主体化合物層の厚さが、13μm〜30μmであり、さらに、前記鉄窒素化合物層が下記式(1)の関係を満たすものであることを特徴とする。
CLT÷DLT≧0.04 ・・・(1)
(ただし、式(1)中のCLTは、ガス窒化処理後の化合物層の厚さ[μm]の値を表わし、DLTは、ガス窒化処理後の窒化拡散層の実用硬化深さ[μm]の値を表わす。)
以下、これらについて説明する。
(Nitrided steel members)
The nitrided steel member of the present invention is characterized in that an iron-nitrogen compound layer having a specific configuration is formed on the surface of a steel member made of the above-described steel material components in which a γ ′ phase-based compound layer is generated. I do. That is, in the iron-nitrogen compound layer that characterizes the nitrided steel member of the present invention, the relationship between the volume ratio Vγ ′ and Vε of the γ ′ phase and the ε phase in the layer is defined by Vγ ′ / (Vγ ′ + Vε). When the ratio is expressed by the following ratio, the value is 0.5 or more (the existence ratio of the γ ′ phase is 0.5 or more), the thickness of the γ ′ phase-based compound layer is 13 μm to 30 μm, and , Wherein the iron-nitrogen compound layer satisfies the relationship of the following formula (1).
CLT ÷ DLT ≧ 0.04 (1)
(However, CLT in the formula (1) indicates the value of the thickness [μm] of the compound layer after the gas nitriding treatment, and DLT indicates the value of the practical hardening depth [μm] of the nitrided diffusion layer after the gas nitriding treatment. Value.)
Hereinafter, these will be described.

<窒素化合物層>
本発明において、「鉄窒素化合物層」(窒素化合物層或いは化合物層とも呼ぶ場合がある)とは、ガス軟窒化処理によって形成された鋼部材表面のγ’相(Fe4N)やε相(Fe2-3N)に代表される鉄の窒素化合物からなる層をいう。ただし、鋼材には、母材に炭素を含有しており、この炭素分の一部が化合物層中にも含有されるため、厳密には炭窒化物である。窒素化合物層は、図9に示したように、表面に層状態として析出している。本発明では、鋼部材(母材)の表面に、これらγ’相、ε相からなる窒化化合物層が、厚さ13〜30μmの範囲で形成されている。なお、ここでいう厚みは、γ’相主体の化合物層の厚みを意味する。鋼部材の表面に鉄窒素化合物層が形成されてなる本発明の窒化鋼部材は、まず、窒素化合物層中に占めるγ’相とε相の体積割合Vγ’とVεの関係が、Vγ’/(Vγ’+Vε)で規定される比で0.5以上であることを要する。すなわち、本発明の窒化鋼部材では、鉄窒素化合物層を、このようにγ’相を主体とする構成としたことで、疲労強度や耐摩耗性を改善する。
<Nitrogen compound layer>
In the present invention, the “iron-nitrogen compound layer” (sometimes called a nitrogen compound layer or a compound layer) refers to a γ ′ phase (Fe 4 N) or an ε phase (Fe 4 N) on a steel member surface formed by gas nitrocarburizing. Fe 2-3 N) is a layer composed of a nitrogen compound of iron. However, the steel material contains carbon in the base material, and since a part of this carbon content is also contained in the compound layer, it is strictly a carbonitride. As shown in FIG. 9, the nitrogen compound layer is deposited as a layer on the surface. In the present invention, a nitride compound layer composed of the γ ′ phase and the ε phase is formed on the surface of the steel member (base material) in a thickness of 13 to 30 μm. Here, the thickness means the thickness of the compound layer mainly composed of the γ 'phase. In the nitrided steel member of the present invention in which the iron-nitrogen compound layer is formed on the surface of the steel member, first, the relationship between the volume ratio Vγ ′ and Vε of the γ ′ phase and the ε phase in the nitrogen compound layer is Vγ ′ / The ratio defined by (Vγ ′ + Vε) needs to be 0.5 or more. That is, in the nitrided steel member of the present invention, the iron-nitrogen compound layer is configured mainly of the γ ′ phase in this way, thereby improving the fatigue strength and wear resistance.

(機械的特性向上について)
上記構成を有する本発明の窒化鋼部材が、疲労強度や耐摩耗性に優れる理由は次のように考えられる。γ’相の結晶構造はFCC(面心立方晶)であり、12個のすべり系を有するため、結晶構造自体が靭性に富んでいる。さらに、γ’相の結晶構造は微細な等軸組織を形成するため、疲労強度が向上すると考えられる。これに対し、ε相の結晶構造はHCP(六方最密充填)であり、底面すべりが優先されるため、結晶構造自体に「変形しにくく脆い」という性質があると考えられる。このため、本発明では、γ’相を主体とする構成としたことで、疲労強度が改善できたものと考えられる。
(About improvement of mechanical properties)
The reason why the nitrided steel member of the present invention having the above configuration is excellent in fatigue strength and wear resistance is considered as follows. The crystal structure of the γ 'phase is FCC (face-centered cubic) and has 12 slip systems, and therefore the crystal structure itself is rich in toughness. Further, it is considered that the crystal structure of the γ ′ phase forms a fine equiaxed structure, so that the fatigue strength is improved. On the other hand, the crystal structure of the ε phase is HCP (Hexagonal closest packing), and since the bottom surface slip is prioritized, it is considered that the crystal structure itself has the property of being hardly deformed and brittle. For this reason, in the present invention, it is considered that the fatigue strength was able to be improved by employing a configuration mainly composed of the γ 'phase.

(γ’相とε相の体積割合)
本発明の窒化鋼部材の表面に形成された鉄窒素化合物層は、鉄窒素化合物層中に占めるγ’相とε相の体積割合Vγ’とVεの関係が、Vγ’/(Vγ’+Vε)で規定される比で0.5以上であることを要するが、この点について説明する。前述の通り「窒素化合物層」は、上記したような特性を有するε相(Fe2-3N)やγ’相(Fe4N)等からなる層であるが、化合物層中におけるこれらの相の分布状態は、EBSD(Electron BackScatter Diffraction)によって、化合物層の深さ方向断面のγ’相とε相の相分布解析を、幅100μm×3視野で行った結果(体積比率)から判定する。本発明者らの検討によれば、この体積比率が0.5以上であれば、窒化鋼部材の疲労強度が優れたものとなる。前記強度比は0.7以上が好ましく、さらには0.8以上であることがより好ましい。
(Volume ratio of γ 'phase and ε phase)
In the iron-nitride compound layer formed on the surface of the nitrided steel member of the present invention, the relationship between the volume ratio Vγ ′ and Vε of the γ ′ phase and the ε phase in the iron-nitrogen compound layer is Vγ ′ / (Vγ ′ + Vε). It is necessary that the ratio defined by the above is 0.5 or more, and this point will be described. As described above, the “nitrogen compound layer” is a layer composed of an ε phase (Fe 2-3 N) or a γ ′ phase (Fe 4 N) having the above-described characteristics. Is determined from the results (volume ratio) of analyzing the phase distribution of the γ 'phase and the ε phase in the cross section in the depth direction of the compound layer by EBSD (Electron BackScatter Diffraction) in a visual field of 100 μm × 3 fields. According to the study of the present inventors, when the volume ratio is 0.5 or more, the fatigue strength of the nitrided steel member is excellent. The intensity ratio is preferably 0.7 or more, and more preferably 0.8 or more.

(化合物層厚さ)
本発明の窒化鋼部材の表面に形成された鉄窒素化合物層(以下、単に化合物層とも呼ぶ)の厚みは、13〜30μmで規定されるが、この点について説明する。回転曲げ疲労強度は化合物層厚さが厚いほど高くなる傾向があるため、化合物層は厚い方が有利である。一方、従来の2段ガス窒化法では特許文献5に記載されている通り、γ’相主体の化合物層を16μm以上とすることができなかった。これに対し、本発明の窒化鋼部材の製造方法で規定するガス窒化処理方法を採用することによって、16μm以上のγ’相を主体とした化合物層をも形成することができる。このため、単に化合物層の厚みに関しての比較で言えば、本発明は、特許文献5に記載の技術では得られなかった16μm超の厚みの化合物層を得ることを可能にした技術である。しかし、特許文献5に記載の技術に対する本発明の優位性は、化合物層の厚さの点だけでなく、後述するように、化合物層が、本発明で規定する式(1)の関係を満たす機能性に優れるものにできる点で異なる。さらに、特許文献5で対象としている鋼は、Crが1.2%程度の機械構造用鋼であるのに対し、本発明は、「γ’相主体の化合物層が生成する鋼材成分からなる鋼部材」であれば、いずれに対しても適用可能であり、多様な鋼材表面に所望する厚みで、機能性に優れる有用な化合物層を確実に形成できる、凡用性の高い技術である点でも異なる。具体的には、例えば、JIS−SACM645鋼や、DIN−31CrMoV9鋼のような窒化鋼においては、特許文献5に記載の技術が対象としている機械構造用鋼よりも化合物層の厚さは若干薄くなる傾向がある。そうした窒化鋼では、化合物層の厚さは13μm程度あれば足る場合も多い。このため、本発明では、本発明で規定する式(1)の関係を満たす機能性に優れる化合物層の厚みを13μm以上であると規定している。また、本発明で規定する式(1)の関係を満たす機能性に優れる化合物層の厚み上限値については、実用的な窒化時間で、化合物層が最も厚くなりやすく、且つ、炭素鋼のような鋼種で到達できる点を勘案して、30μmと規定した。
(Compound layer thickness)
The thickness of the iron-nitrogen compound layer (hereinafter, also simply referred to as a compound layer) formed on the surface of the nitrided steel member of the present invention is defined as 13 to 30 μm. This will be described. Since the rotational bending fatigue strength tends to increase as the thickness of the compound layer increases, the thicker the compound layer, the better. On the other hand, in the conventional two-stage gas nitriding method, as described in Patent Document 5, the compound layer mainly composed of the γ 'phase could not be made 16 μm or more. On the other hand, by employing the gas nitriding method defined in the method for manufacturing a nitrided steel member of the present invention, a compound layer mainly composed of a γ ′ phase of 16 μm or more can also be formed. For this reason, simply speaking in comparison with respect to the thickness of the compound layer, the present invention is a technique that has made it possible to obtain a compound layer having a thickness of more than 16 μm, which cannot be obtained by the technique described in Patent Document 5. However, the superiority of the present invention over the technique described in Patent Document 5 is not only in the thickness of the compound layer, but also as described later, the compound layer satisfies the relationship of the formula (1) defined in the present invention. They differ in that they can have excellent functionality. Further, while the steel targeted in Patent Document 5 is a steel for machine structural use containing about 1.2% of Cr, the present invention provides a steel containing a steel component in which a compound layer mainly composed of a γ 'phase is formed. If it is a `` member '', it can be applied to any of them, and it is a highly versatile technology that can reliably form a useful compound layer with excellent functionality at a desired thickness on various steel surfaces. different. Specifically, for example, in nitrided steels such as JIS-SACM645 steel and DIN-31CrMoV9 steel, the thickness of the compound layer is slightly thinner than the steel for machine structural use which is the target of the technology described in Patent Document 5. Tend to be. In such a nitrided steel, it is often sufficient that the thickness of the compound layer is about 13 μm. For this reason, the present invention specifies that the thickness of the compound layer having excellent functionality satisfying the relationship of the formula (1) specified in the present invention is 13 μm or more. Further, regarding the upper limit of the thickness of the compound layer having excellent functionality satisfying the relationship of the formula (1) defined in the present invention, the compound layer is liable to become the thickest in a practical nitriding time, and the carbon layer is made of carbon steel. Taking into account that the steel type can be reached, the thickness is specified as 30 μm.

(KNxでの窒化時間5〜60分)
本発明の窒化鋼部材の製造方法では、KNxでの窒化時間は5〜60分と規定しているが、以下、この点について説明する。本発明の窒化鋼部材の製造方法で規定しているK1〜KNx-1はε相を含む領域であるが、このとき形成されたε相は、KNxへ雰囲気を変えることでγ’相へ変態する。このときの変態速度は、化合物層中の窒素が雰囲気へ脱窒する速度に律速される。本発明者らの検討によれば、化合物層内部まで十分なγ’相を得るのに必要になるKNxで制御して窒化する保持時間は、温度に応じて変わる。例えば、580℃であれば5分〜20分と保持時間が短くて済むが、500℃の温度では20分〜60分を要する。また、上記保持時間が短いと十分なγ’相が得られない傾向があり、逆に長くなるとγ’相の結晶粒が大きくなる場合があり、その場合には機械的特性の低下を生じる。しがたって、本発明の窒化鋼部材の製造方法では、580℃以上で、短時間でも十分なγ’相が得られる上記保持時間として、その下限値を5分と規定した。また、KNxで制御して窒化する保持時間の上限値については、実用窒化温度の下限値である500℃で十分なγ’相が得られる60分と規定した。より好ましくは5〜30分程度である。上記した範囲内であれば、保持時間を短くできる580℃以上の窒化温度でもγ’相中の結晶粒が大きくなることがなく、耐摩耗性などの機械特性を低下させるおそれもない。
(Nitriding time with K Nx 5 to 60 minutes)
In the method for manufacturing a nitrided steel member of the present invention, the nitriding time with K Nx is specified to be 5 to 60 minutes, and this point will be described below. K 1 to K Nx-1 specified in the method for manufacturing a nitrided steel member of the present invention are regions containing an ε phase, and the ε phase formed at this time is changed to γ ′ by changing the atmosphere to K Nx . Transform into phase. The rate of transformation at this time is determined by the rate at which nitrogen in the compound layer is denitrified into the atmosphere. According to the study of the present inventors, the retention time for nitriding under the control of K Nx required to obtain a sufficient γ ′ phase up to the inside of the compound layer varies depending on the temperature. For example, when the temperature is 580 ° C., the holding time is as short as 5 to 20 minutes, but when the temperature is 500 ° C., it takes 20 to 60 minutes. If the holding time is short, a sufficient γ ′ phase tends not to be obtained, and if the holding time is long, the crystal grains of the γ ′ phase may become large, in which case the mechanical properties are reduced. Therefore, in the method for producing a nitrided steel member of the present invention, the lower limit of the retention time at which the sufficient γ 'phase is obtained at 580 ° C. or higher for a short time is specified as 5 minutes. In addition, the upper limit of the holding time for nitriding under the control of K Nx is defined as 60 minutes at which a sufficient γ ′ phase can be obtained at 500 ° C., which is the lower limit of the practical nitriding temperature. More preferably, it is about 5 to 30 minutes. Within the above range, even at the nitriding temperature of 580 ° C. or higher where the holding time can be shortened, the crystal grains in the γ ′ phase do not become large, and there is no possibility that the mechanical properties such as wear resistance are lowered.

本発明の窒化鋼部材の表面に形成された鉄窒素化合物層は、上記したγ’相とε相の体積割合が特定の関係を満足することに加えて、下記式(1)を満たすことを特徴とする。
CLT÷DLT≧0.04 ・・・(1)
(ただし、式(1)中のCLTは、ガス窒化処理後の化合物層の厚さ[μm]の値を表わし、DLTは、ガス窒化処理後の窒化拡散層の実用硬化深さ[μm]の値を表わす。)
The iron-nitrogen compound layer formed on the surface of the nitrided steel member according to the present invention is such that the volume ratio of the γ ′ phase and the ε phase satisfies the specific relationship and also satisfies the following expression (1). Features.
CLT ÷ DLT ≧ 0.04 (1)
(However, CLT in the formula (1) indicates the value of the thickness [μm] of the compound layer after the gas nitriding treatment, and DLT indicates the value of the practical hardening depth [μm] of the nitrided diffusion layer after the gas nitriding treatment. Value.)

上記式(1)は、窒化処理後の化合物層厚さと、窒化拡散層(以下、単に拡散層と呼ぶ場合もある)の深さの割合を表す指標である。先に挙げた特許文献1に記載されているγ’相主体の化合物層の形成方法は、一般的なガス窒化処理条件であり、図1に示したLehrer線図(KNと温度を軸とした平衡状態図)の、γ’相領域の温度とKNの組み合わせにより実施されている。この従来技術と本発明の異なる点は、γ’相主体の化合物層であっても、層厚さがε相主体の化合物層並に厚くなる点であり、上記式(1)は、この点を規定したものである。通常、ε相主体の化合物層は脆いため、疲労強度などの機械的特性が悪くなる傾向があり、一般的にこの相を選択する処理は行われないが、γ’相と比べると窒素の組成幅が大きいため、成長速度がγ’相に比べると大きいという特徴がある。本発明では、このε相の成長速度を利用し、γ’相の主体の化合物層を厚く形成し、通常のガス窒化処理時間でも、γ’相を主体とする化合物層を、先に挙げた特許文献5に記載されているような、従来の2段窒化法では達成できなかった16μm以上に厚くすることを達成している。また、本発明によって、γ’相主体の化合物層の厚膜化を行っても、低KNで形成したγ’相を主体とする化合物層と比べて、曲げ疲労強度を低下させることなく、且つ、耐摩耗性を向上させることが可能な、従来にない新規な窒化処理部材の提供の達成が実現できる。 The above formula (1) is an index indicating the ratio between the thickness of the compound layer after the nitriding treatment and the depth of the nitrided diffusion layer (hereinafter, sometimes simply referred to as a diffusion layer). Method of forming a compound layer of gamma 'phase mainly described in Patent Document 1 mentioned above is a typical gas nitriding conditions, and Lehrer diagram shown in FIG. 1 (K N and temperature axis are implemented by a combination of the equilibrium phase diagram), the temperature of the gamma 'phase field and K N. The difference between the prior art and the present invention is that even in the case of a compound layer mainly composed of a γ ′ phase, the layer thickness becomes as thick as that of a compound layer mainly composed of an ε phase. Is defined. Usually, since the compound layer mainly composed of the ε phase is brittle, mechanical properties such as fatigue strength tend to be deteriorated. Generally, the treatment for selecting this phase is not performed. Since the width is large, the growth rate is higher than that of the γ ′ phase. In the present invention, by utilizing the growth rate of the ε phase, a compound layer mainly composed of the γ ′ phase is formed thickly, and the compound layer mainly composed of the γ ′ phase is mentioned above even during the normal gas nitriding time. As described in Patent Document 5, the thickness is increased to 16 μm or more, which cannot be achieved by the conventional two-stage nitriding method. Further, the present invention, 'even if the thickening of the phase mainly of the compound layer, gamma and formed of a low K N' gamma compared with a compound layer consisting mainly of phase, without reducing the bending fatigue strength, In addition, it is possible to realize the provision of a novel nitridation member which has not been able to improve the wear resistance.

ここで、実用硬化深さは、窒化層中の硬さ分布において、芯部硬さ+50HVの位置における硬化深さを示している(JIS−0563)。実用硬化深さは、化合物層厚さと拡散層深さの和を示しているが、一般的に、化合物層厚さは、拡散層厚さの1/10以下であり、実用硬化深さ≒拡散層深さ、とみなせる。この窒化拡散層の成長は、化合物層から供給されるN原子が鋼材内部へ拡散することにより進んでいく。この層の成長速度は、化合物層の成長速度とは無関係に温度と時間で律速されるため、この拡散層の成長速度を化合物層厚さで割った式(1)の右辺の値によって、温度と時間に対する化合物層の成長速度として間接的に知ることが可能である。本発明者らは、前記した本発明の目的を達成するため鋭意検討した結果、形成される化合物層がγ’相主体の化合物層であり、且つ、この化合物層の成長が速いことを特徴とし、化合物層の厚膜化による耐摩耗性や耐疲労性の向上が可能で、且つ、窒化時間の短縮効果を達成でき、拡散層内の圧縮残留応力や硬さを低下させることなく、ε相主体の化合物層と比べ疲労強度が高くなる窒化鋼部材となるのは、上記式(1)の右辺の値が0.04以上であることを発見して、本発明を完成するに至った。なお、全窒化時間は、好ましくは6時間以下とすることが望ましい。また、従来技術における低KNによるガス窒化処理では、γ’相主体の化合物層を形成できても、その成長速度は(1)式で規定される0.040未満であり、上記した本発明の効果を達成できる窒化鋼部材とはならない。 Here, the practical hardening depth indicates the hardening depth at the position of the core hardness +50 HV in the hardness distribution in the nitrided layer (JIS-0563). The practical curing depth indicates the sum of the compound layer thickness and the diffusion layer depth. Generally, the compound layer thickness is 1/10 or less of the diffusion layer thickness. Layer depth. The growth of the nitrided diffusion layer proceeds by the diffusion of N atoms supplied from the compound layer into the steel material. Since the growth rate of this layer is determined by temperature and time irrespective of the growth rate of the compound layer, the growth rate of this diffusion layer is divided by the thickness of the compound layer, and the temperature on the right side of the equation (1) gives the temperature. And the growth rate of the compound layer with respect to time. The present inventors have conducted intensive studies to achieve the above object of the present invention, and as a result, the compound layer formed is a compound layer mainly composed of a γ 'phase, and the compound layer is rapidly grown. It is possible to improve the abrasion resistance and fatigue resistance by increasing the thickness of the compound layer, achieve the effect of shortening the nitriding time, and reduce the ε phase without reducing the compressive residual stress and hardness in the diffusion layer. The inventors of the present invention have found that the nitrided steel member having a higher fatigue strength than the main compound layer has a value on the right side of the above formula (1) of 0.04 or more, and has completed the present invention. The total nitriding time is preferably set to 6 hours or less. Further, in the conventional gas nitriding treatment with low K N , even if a compound layer mainly composed of a γ ′ phase can be formed, its growth rate is less than 0.040 defined by the formula (1). Does not result in a nitrided steel member capable of achieving the above-mentioned effect.

〔窒化鋼部材の製造方法〕
本発明の窒化鋼部材の製造方法は、上記した構成の窒化鋼部材を得るためのものであるが、処理炉内の被処理材に対して、炉内に窒化性ガスを流しながら加熱処理するガス窒化処理する際の処理条件を、下記のように構成したことを特徴とする。すなわち、本発明の窒化鋼部材の製造方法では、ガス窒化炉内へ導入するガスを、アンモニアとアンモニア分解ガスの2種類のみの混合ガスとするか、或いは、アンモニアとアンモニア分解ガスを含む複数の混合ガスとし、炉内の前記被処理材近傍における水素濃度の連続的な検出を行い、該検出結果を元にして、炉内のアンモニア分圧を推定し、設定の窒化ポテンシャルへ制御する雰囲気の自動制御を行い、制御の際に、ガス窒化処理中雰囲気の窒化ポテンシャルKN=pNH3/pH2 1.5を、最初にKN1とし、続いて必要に応じて窒化ポテンシャルをKN2〜KNx-1、KNxとしてもよいが、本発明で重要なことは、最終のKNxを、下記式(2)と下記式(3)とを同時に満たすように制御し、且つ、これらの要件を満たすように制御した最終のKNxでの窒化時間を、5〜60分、より好ましくは5〜30分としたことを特徴とする。
N1〜KNx-1>KNx ・・・(2)
126.7034−5.68797×10-1×T+8.64682×10-4×T2−4.43596×10-7×T3 >KNx >22.2265−1.15×10-1×T+2.03×10-4×T2−1.21466×10-7×T3 ・・・(3)
(ただし、pNH3、pH2は、窒化処理炉内のNH3分圧とH2分圧、式(3)中の、Tは温度[℃]である。)
(Production method of nitrided steel member)
The method for producing a nitrided steel member of the present invention is for obtaining a nitrided steel member having the above-described configuration, and heats a material to be processed in a processing furnace while flowing a nitriding gas into the furnace. It is characterized in that the processing conditions at the time of gas nitriding are configured as follows. That is, in the method for manufacturing a nitrided steel member of the present invention, the gas introduced into the gas nitriding furnace is a mixed gas of only two types of ammonia and ammonia decomposition gas, or a plurality of gases including ammonia and ammonia decomposition gas. As a mixed gas, continuously detect the hydrogen concentration in the vicinity of the material to be treated in the furnace, estimate the ammonia partial pressure in the furnace based on the detection result, and control the atmosphere to control the nitriding potential to a set value. Automatic control is performed, and at the time of control, the nitriding potential K N = p NH3 / p H2 1.5 in the atmosphere during the gas nitriding treatment is first set to K N1, and then, if necessary, the nitriding potential is set to K N2 to K Nx−. 1 , K Nx may be used, but what is important in the present invention is that the final K Nx is controlled so as to simultaneously satisfy the following equations (2) and (3), and that these requirements are satisfied. Controlled so that the final The nitriding time with K Nx is set to 5 to 60 minutes, more preferably 5 to 30 minutes.
K N1 to K Nx-1 > K Nx (2)
126.7034−5.68797 × 10 −1 × T + 8.64682 × 10 −4 × T 2 −4.43596 × 10 -7 × T 3 > K Nx > 22.2265-1.15 × 10 -1 × T + 2.03 × 10 -4 × T 2 − 1.21466 × 10 -7 × T 3 ... (3)
(However, p NH3 and p H2 are the partial pressures of NH 3 and H 2 in the nitriding furnace, and T in Expression (3) is the temperature [° C.].)

ガス窒化処理中に形成される表面窒素化合物層の相構造(γ’相又はε相)は、図1に示した鉄のLehrer図から、温度と窒化ポテンシャルKNで決定される。そして、一般的には、ガス窒化処理中のKNは一定で行われる。これに対し、本発明者らの検討によれば、本発明において最終的な化合物層の相構造を支配するのは、どのような雰囲気制御過程を経てもガス窒化処理中の最後のKNxであり、さらに、その場合に、最後のKNxが上記式(2)と上記式(3)とを同時に満たし、且つ、これらの要件を満たすように制御した最終のKNxでの窒化時間を5〜60分とすることで、本発明の目的を達成することができる相構造の窒化鋼部材となることを発見した。 The phase structure (γ ′ phase or ε phase) of the surface nitrogen compound layer formed during the gas nitriding treatment is determined by the temperature and the nitriding potential K N from the iron Lehrer diagram shown in FIG. In general, K N during the gas nitriding treatment is kept constant. On the other hand, according to the study of the present inventors, in the present invention, the final K Nx during the gas nitriding process governs the final phase structure of the compound layer regardless of the atmosphere control process. In that case, the final K Nx simultaneously satisfies the above formulas (2) and (3), and the nitriding time at the final K Nx controlled to satisfy these requirements is 5 It has been found that by setting the time to 分 60 minutes, a nitrided steel member having a phase structure can achieve the object of the present invention.

本発明では、最初及び途中段階のKN1〜KNx-1と、最終のKNxとの関係が、式(2)のKN1〜KNx-1>KNxを満足することに加え、最終のKNxの範囲は、式(3)で規定した「γ’相領域中」に限定されることを要す。換言すれば、最初及び途中段階のKN1〜KNx-1は、「γ’相領域」外の領域であることになる。これに対し従来技術では、窒化化合物層をγ’相とするために、一貫してγ’相領域である低KNで処理してきたため、化合物層を厚くすることができなかった。上記した効果を利用することにより、本発明の方法では、KNxに到達するまでの最初から途中のKNの設定は自由にすることが可能であり、厚膜化するためには、最初のKN1をより高めることが有効である。また、最終のKNx保持中の窒化処理時間は、化合物層中の窒素が雰囲気へ流れる拡散速度に律速され、本発明者らの検討によれば、化合物層厚さや鋼種、また、雰囲気の変更時間を含め10〜60分を要する。 In the present invention, the K N1 ~K Nx-1 of the first and intermediate stage, the relationship between the final K Nx is, in addition to satisfying the K N1 ~K Nx-1> K Nx of formula (2), the final Needs to be limited to “in the γ′-phase region” defined by the equation (3). In other words, K N1 to K Nx−1 at the first and intermediate stages are regions outside the “ γ′- phase region”. On the other hand, in the prior art, in order to make the nitrided compound layer have a γ ′ phase, the treatment was consistently performed at a low K N in the γ ′ phase region, and thus the compound layer could not be thickened. By utilizing the above-described effects, in the method of the present invention, the setting of K N from the beginning to the point where K Nx is reached can be freely set. It is effective to further increase K N1 . Further, the duration of the nitriding treatment during the final K Nx holding is determined by the diffusion rate of nitrogen in the compound layer flowing into the atmosphere. According to the study of the present inventors, the thickness of the compound layer, the type of steel, and the change of the atmosphere are changed. It takes 10 to 60 minutes including time.

(従来の2段窒化との相違点)
以下に、本発明と、窒化ポテンシャルKNを途中で変更する従来の2段窒化法の違いについて説明する。例えば、先に挙げた特許文献5に記載されている従来の2段窒化法は、最初に炉内のNH3分圧が高い雰囲気で窒化を行い、その後、炉内の雰囲気を、NH3分圧の低い状態にする2段窒化法が実施されている。特許文献5に記載の技術における目的は、γ’主体の化合物層を、被処理部品の各位置で均一に、また大量に、風速に制約されずに生産することであり、化合物層厚みを厚くすることを目的としていない。また、特許文献5に記載の技術では、γ’相を形成できる化合物層厚さを4μm〜16μmに限定し、これ以上化合物層が厚くなるとε相の割合が増加して脆くなることから、疲労強度の向上が望めないとしている。また、2段目のガス窒化処理時間も最適化されておらず、窒化時間が長いため、γ’相中の結晶粒が大きくなり、耐磨耗性など機械特性を低下させる。これに対し、本発明で規定する手法は、上記したように、従来の技術では達成できなかった16μmよりも厚いγ’相の形成をも可能にでき、また、形成されたγ’相中の結晶粒が微細であり、さらに、拡散層の硬さや圧縮残留応力を低減することのない、2段窒化法である。この本発明で規定する手法は、従来の方法とは目的が異なるため、2段目の最終の窒化雰囲気(KNx)は小さくするが、その領域はγ’相領域に限定され、且つ、窒化時間も5分〜60分と、1段目の窒化時間よりも短時間で行っており、この2段目の処理で、1段目で形成されたε相を含んだ化合物層をγ’相へ変態させることを特徴としている。
(Differences from conventional two-stage nitriding)
Hereinafter, the difference between the present invention and a conventional two-stage nitriding method in which the nitriding potential K N is changed in the middle will be described. For example, conventional two-stage nitriding method disclosed in Patent Document 5 mentioned above is carried out nitriding at first the NH 3 partial pressure in the furnace high atmosphere, then the atmosphere in the furnace, NH 3 minutes A two-stage nitriding method for reducing the pressure is performed. The purpose of the technique described in Patent Document 5 is to produce a compound layer mainly composed of γ ′ at each position of a part to be processed uniformly and in large quantities, without being restricted by the wind speed. Not intended to be. Further, according to the technique described in Patent Document 5, the thickness of a compound layer capable of forming a γ ′ phase is limited to 4 μm to 16 μm. It says that improvement in strength cannot be expected. In addition, the time of the second-stage gas nitriding treatment is not optimized, and the nitriding time is long, so that the crystal grains in the γ 'phase become large and the mechanical properties such as abrasion resistance deteriorate. On the other hand, the method defined in the present invention can also enable the formation of a γ ′ phase thicker than 16 μm, which cannot be achieved by the conventional technique, as described above. This is a two-stage nitriding method in which the crystal grains are fine and the hardness and the compressive residual stress of the diffusion layer are not reduced. Since the purpose of the method defined in the present invention is different from that of the conventional method, the final nitridation atmosphere (K Nx ) in the second stage is reduced, but the region is limited to the γ ′ phase region, and The time is also 5 to 60 minutes, which is shorter than the nitriding time of the first step. In the second step, the compound layer containing the ε phase formed in the first step is converted to the γ ′ phase. It is characterized by being transformed into

(設定の窒化ポテンシャル制御する雰囲気の自動制御について)
特許文献5では、炉内に導入するNH3ガスを一定の流量で挿入し、炉内のNH3濃度を赤外線吸収方式で、また、炉内のH2濃度を高耐食熱伝導度方式で連続的に分析することで、炉内に必要な窒化ポテンシャルを、H2ガスの導入流量を変えることで調整している。しかし、赤外線吸収方式による炉内のNH3濃度の測定については、炉外まで引き込んだ炉気に対して分析が行われること、また、熱伝導度方式の水素センサと比べて応答速度が遅いこと、さらに、一般的に、炭酸アンモニウムの析出によるサンプルラインの閉塞や、サンプルラインの汚れによるNH3の吸着等による損失に起因して測定精度上の問題を生じる、といったいくつかの技術的課題がまだ残されている(藤原雅彦著、熱処理、45巻、5号、p.311、「窒化処理におけるアンモニア濃度連続測定装置」参照)。一方、熱伝導度方式の水素センサは、応答性がよく、一般的に窒化処理炉の炉気を測定するために利用されている。しかし、熱伝導度方式の水素センサは、NH3と同様に炉外まで引き込んだ炉気に対しても測定でき、また、直接炉内にセンサを差し込むことで被処理材近傍の炉気に対しても測定でき、いずれのケースでも測定が可能であることから、どこの位置の炉気を選択するかで精度が異なる。以上のことから、NH3濃度分析とH2濃度分析を同時に行い、これらの値を参照しながら炉気を制御する方法は、窒化ポテンシャル制御の精度に悪影響を及ぼし、最善の方法とは言い難い。
(About the automatic control of the atmosphere to control the setting nitriding potential)
In Patent Document 5, NH 3 gas introduced into the furnace is inserted at a constant flow rate, and the NH 3 concentration in the furnace is continuously measured by an infrared absorption method, and the H 2 concentration in the furnace is continuously measured by a high corrosion resistance thermal conductivity method. By performing the analysis, the nitriding potential required in the furnace is adjusted by changing the introduction flow rate of the H 2 gas. However, in the measurement of NH 3 concentration in the furnace by the infrared absorption method, the analysis is performed on the furnace gas drawn outside the furnace, and the response speed is slower than that of the thermal conductivity type hydrogen sensor. In addition, there are some technical problems such as generally causing a problem in measurement accuracy due to blockage of the sample line due to precipitation of ammonium carbonate and loss due to adsorption of NH 3 due to contamination of the sample line. It is still left (see Masahiko Fujiwara, Heat Treatment, Vol. 45, No. 5, p. 311, "A continuous measurement apparatus for ammonia concentration in nitriding treatment"). On the other hand, a thermal conductivity type hydrogen sensor has good responsiveness and is generally used to measure the furnace air of a nitriding furnace. However, the thermal conductivity type hydrogen sensor can measure the furnace gas drawn out of the furnace in the same way as NH 3, and the sensor can be directly inserted into the furnace to measure the furnace gas near the material to be treated. Can be measured in any case, and the measurement is possible in any case. Therefore, the accuracy differs depending on where the furnace gas is selected. From the above, the method of simultaneously performing the NH 3 concentration analysis and the H 2 concentration analysis and controlling the furnace gas while referring to these values has an adverse effect on the accuracy of the nitriding potential control, and cannot be said to be the best method. .

これに対し、本発明の窒化鋼部材の製造方法は、被処理材近傍におけるH2濃度の連続的な検出のみで、具体的には、熱伝導度方式のH2センサのみで、被処理材近傍におけるH2濃度の連続的な測定を行って炉気を制御している。すなわち、本発明の窒化鋼部材の製造方法では、窒化ポテンシャルを下げるために利用するガスとして、H2ガスではなく、NH3分解ガスを用いているため、水素センサだけでも炉内NH3濃度を正確に知ることができる。一方、特許文献5に記載の制御方法では、炉内に挿入するH2ガス量が変動しているため、H2センサだけでは炉内のNH3分圧を正確に把握することは困難であり正確な制御は難しい。この結果、本発明の製造方法では、特許文献5に記載の技術ではできないとされている16μm以上の厚みの厚い化合物層を形成させても、ε相が増加することなく、γ’相主体の化合物層が形成できたものと考えている。 On the other hand, the method for manufacturing a nitrided steel member of the present invention is based on only continuous detection of the H 2 concentration in the vicinity of the material to be treated, and specifically, only with a thermal conductivity type H 2 sensor. The furnace gas is controlled by continuously measuring the H 2 concentration in the vicinity. That is, in the method for manufacturing a nitrided steel member of the present invention, since the NH 3 decomposition gas is used instead of the H 2 gas as the gas used for lowering the nitriding potential, the NH 3 concentration in the furnace can be reduced even with the hydrogen sensor alone. You can know exactly. On the other hand, in the control method described in Patent Document 5, since the amount of H 2 gas inserted into the furnace fluctuates, it is difficult to accurately grasp the partial pressure of NH 3 in the furnace using only the H 2 sensor. Precise control is difficult. As a result, in the production method of the present invention, even if a thick compound layer having a thickness of 16 μm or more, which is considered to be impossible with the technique described in Patent Document 5, is formed without increasing the ε phase, It is believed that the compound layer was formed.

本発明の製造方法で実施されるガス窒化処理を行う処理炉は、ピット型でもバッチ型等でもよく、炉の形状を問わず、前記したように、その処理結果は、処理炉での温度と時間、また、雰囲気のKNで決定される。このことは、一般的にLehrer図と呼ばれている、図1に示したKNと温度を軸とした状態図から知ることができる(出典:ディータリートケほか「鉄の窒化と軟窒化」、アグネ技術センターp.131)。本発明の製造方法で行うピット型、バッチ型の各処理炉を用いた場合の窒化処理方法を下記に記す。 The processing furnace for performing the gas nitriding treatment performed by the production method of the present invention may be a pit type or a batch type, regardless of the shape of the furnace, and as described above, the processing result is the temperature and the temperature in the processing furnace. time, also determined in an atmosphere of K N. This is commonly referred to as Lehrer diagram, can be known from the state diagram to the axis of the K N and temperature shown in FIG. 1 (Source: DIETER Ried Ke addition "nitride and nitrocarburizing of iron" Agne Technology Center p.131). The nitriding method using the pit type and batch type processing furnaces performed by the production method of the present invention is described below.

(ピット型の例)
ピット炉の概略図を図2に示し、ピット炉での処理条件の例を図3に示した。図2に示したように、炉内のKNを制御するために、H2センサ21とPLC+KN調整器22、また、各プロセスガスには、それぞれ質量流量計(MFC)23が設定してある。そして、ガス窒化処理の対象となる処理品24は、予め炉内中央に設置して炉内に封入し、炉内を真空に引いた後、N2ガスで炉内を復圧し、その後、一定流量のN2ガスを炉内に流しながら加熱を始める。加熱は、外周に設定されているヒーター(不図示)でレトルト25を外側から加熱し、温度調整は、炉内熱電対26で測定された温度を元に、所望の温度まで温調計により調整される。図2中の27は、撹拌機である。
(Example of pit type)
FIG. 2 shows a schematic diagram of the pit furnace, and FIG. 3 shows an example of processing conditions in the pit furnace. As shown in FIG. 2, in order to control K N in the furnace, a H 2 sensor 21 and a PLC + K N regulator 22 are set, and a mass flow meter (MFC) 23 is set for each process gas. is there. The processed product 24 to be subjected to the gas nitriding treatment is set in the center of the furnace in advance, sealed in the furnace, and the inside of the furnace is evacuated. Then, the inside of the furnace is restored with N 2 gas. Heating is started while flowing a flow of N 2 gas into the furnace. For heating, the retort 25 is heated from the outside by a heater (not shown) set on the outer periphery, and the temperature is adjusted by a temperature controller to a desired temperature based on the temperature measured by the in-furnace thermocouple 26. Is done. 27 in FIG. 2 is a stirrer.

上記した構成のピット炉で処理する場合は、例えば、図3に示したように、炉内が約400℃に達した後、プロセスガスを、N2ガスからNH3+AXガス(NH3分解ガスH2+N2=3:1)へ切替え、所望のKN値(=KN1)になるよう雰囲気制御を始める。一般的にγ’相主体の化合物層とするためは、均熱域でKN1を低KN一定(例えば、KN=0.3)とし、冷却途中の400℃ぐらいまでこのKN1保持しながら処理が行われる。一方、本発明では、KN1を高KN(例えば、KN=1.3)とし、冷却の20分前からKNx(例えば、KN=0.3)へ変更することも好ましい形態である。高KNで形成される窒化化合物層はε相を含む化合物層であり、γ’相よりも成長速度が速く、本発明では、この高KNでの速い成長速度を利用して化合物層の厚膜化を行い、その後、KNxへ雰囲気を変更し、ε相からγ’相へ変態させるのが本発明で考案した手法である。その後、KNxのまま約400℃まで冷却した後、再びN2ガスへ雰囲気を置き換えて、100℃以下まで炉内を冷却する。冷却時は、ヒーターを止め、レトルトの外周をファン冷却しながら炉内を冷却する。 In the case of processing in the pit furnace having the above-described configuration, for example, as shown in FIG. 3, after the inside of the furnace reaches about 400 ° C., the process gas is changed from N 2 gas to NH 3 + AX gas (NH 3 decomposition gas). H 2 + N 2 = 3: 1), and the atmosphere control is started so as to obtain a desired K N value (= K N1 ). Generally, in order to form a compound layer mainly composed of a γ 'phase, K N1 is set to a low K N constant (for example, K N = 0.3) in the soaking zone, and this K N1 is maintained until about 400 ° C. during cooling. The processing is performed while performing. On the other hand, in a preferred embodiment of the present invention, K N1 is set to a high K N (for example, K N = 1.3) and changed to K Nx (for example, K N = 0.3) 20 minutes before cooling. is there. The nitrided compound layer formed at a high K N is a compound layer containing an ε phase, and has a higher growth rate than the γ ′ phase. In the present invention, the high growth rate at a high K N is used to form the compound layer. The technique devised in the present invention is to increase the film thickness, then change the atmosphere to K Nx , and transform from the ε phase to the γ ′ phase. Then, after cooling to about 400 ° C. while keeping K Nx , the atmosphere is replaced with N 2 gas again, and the furnace is cooled to 100 ° C. or less. During cooling, the heater is stopped, and the inside of the furnace is cooled while cooling the outer periphery of the retort with a fan.

(バッチ型の場合)
ストレートスルータイプバッチ炉の概略図を図4に示し、バッチ炉での処理条件の例を図5に示した。図4に示したように、炉内のKNを制御するために、H2センサ41とPLC+KN調整器42、また、各プロセスガスにはMFC43が設定してある点はピット炉と同様である。バッチ炉の場合は、処理品44は予めNH3ガス雰囲気で580℃に加熱された炉内へ扉48を開けることで、炉内へ挿入される。上記した構成のバッチ炉で処理する場合は、例えば、図5に示したように、炉内へ処理品44が挿入された後、プロセスガスをNH3+AXガスへ切替え、所望のKN値(=KN1)になるよう雰囲気制御を始める。上述のピット炉と同様に、高KNで2hrのガス窒化処理を行った後、雰囲気をKNxへ変更し20分保持することで、ピット炉での処理と同様に、厚いγ’相主体の窒化化合物層を形成することが可能である。図4中の46は熱電対、47は攪拌機、49は冷却槽である。
(For batch type)
FIG. 4 shows a schematic diagram of a straight-through type batch furnace, and FIG. 5 shows an example of processing conditions in the batch furnace. As shown in FIG. 4, the H 2 sensor 41 and the PLC + K N regulator 42 for controlling the K N in the furnace, and the MFC 43 for each process gas are the same as in the pit furnace. is there. In the case of a batch furnace, the processed product 44 is inserted into the furnace by opening the door 48 into the furnace previously heated to 580 ° C. in an NH 3 gas atmosphere. In the case of processing in a batch furnace having the above-described configuration, for example, as shown in FIG. 5, after the processed product 44 is inserted into the furnace, the process gas is switched to NH 3 + AX gas, and the desired K N value ( = K N1 ). As in the case of the pit furnace described above, after performing gas nitriding for 2 hours at a high K N , the atmosphere is changed to K Nx and held for 20 minutes, so that a thick γ ′ phase mainly Can be formed. In FIG. 4, 46 is a thermocouple, 47 is a stirrer, and 49 is a cooling tank.

以下、本発明を実施例及び比較例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described based on examples and comparative examples, but the present invention is not limited to these examples.

実施例及び比較例で用いた鋼材成分を表1に示した。なお、残部は鉄(Fe)である。下記に示したように、いずれの鋼材も、γ’相主体化合物層の厚膜化が可能な鋼材成分からなり、鋼材の被削性や製造性といった使用目的からの観点からも満足できる鋼種である。   Table 1 shows the steel components used in the examples and comparative examples. The balance is iron (Fe). As shown below, each steel material is composed of a steel material component capable of increasing the thickness of the γ 'phase-based compound layer, and is a steel type that can be satisfied from the viewpoint of the purpose of use such as machinability and manufacturability of the steel material. is there.

(実施例1〜15)
表2に、それぞれに対するガス窒化処理条件を示した。先に説明したバッチ型又はピット型の炉を用い、いずれも、ガス窒化処理中雰囲気の窒化ポテンシャルKNが、最初KN1と最終KNxで異なる2段処理で行った。実施例の一段目の窒化ポテンシャルKN1は、いずれも、それぞれの合金鋼におけるLehrer線図上〔図1は純鉄のもので、それとは異なる(平岡泰、渡邊陽一著、熱処理、55巻、1号、p.7、「ガス窒化における窒化ポテンシャル制御および熱力学計算手法を活用した低合金鋼の化合物層相構造制御」参照)〕において、ε相形成領域で実施しており、この間にε相の速い成長速度を利用した化合物層の厚膜化が行われる。続いて2段目の窒化ポテンシャルKNxは、いずれもγ’相領域で実施し、形成する化合物層厚さや炉の特性に応じて、窒化時間を15〜50分の間で設定した。
(Examples 1 to 15)
Table 2 shows the gas nitriding conditions for each. Using the batch-type or pit-type furnace described above, each was performed in a two-stage process in which the nitriding potential K N of the atmosphere during the gas nitriding process was different between K N1 and K Nx at the beginning. The nitriding potential K N1 in the first stage of the embodiment is different from that in the Lehrer diagram of each alloy steel [FIG. 1 is pure iron and different from that (Hiraoka Yasushi, Watanabe Yoichi, heat treatment, vol. 55, No. 1, p.7, “Controlling the Nitriding Potential in Gas Nitriding and Controlling the Layer Structure of the Compound in Low-Alloy Steel Using Thermodynamic Calculation Method”)]). The thickness of the compound layer is increased by utilizing the fast growth rate of the phase. Subsequently, the nitriding potential K Nx in the second stage was all performed in the γ ′ phase region, and the nitriding time was set between 15 and 50 minutes according to the thickness of the compound layer to be formed and the characteristics of the furnace.

各条件で行ったガス窒化処理後に得られた窒化鋼部材について、表面に形成された鉄窒素化合物層の厚さCLTと、拡散層の実用硬化深さDLTをそれぞれ測定し、CLT÷DLTの値をそれぞれ算出し、結果を表3にまとめて示した。また、鉄窒素化合物層中に占めるγ’相とε相との関係において、γ’相の存在割合を後述する方法で求めて、結果を表3にまとめて示した。さらに、得られた各窒化鋼部材について、下記で説明する回転曲げ疲労試験と摩擦摩耗試験を行い、機械的特性を調べて評価した。その結果を表3にそれぞれまとめて示した。   For the nitrided steel member obtained after the gas nitriding treatment performed under each condition, the thickness CLT of the iron-nitrogen compound layer formed on the surface and the practical hardening depth DLT of the diffusion layer were measured, and the value of CLTCLDLT was obtained. Was calculated, and the results are shown in Table 3. In the relationship between the γ ′ phase and the ε phase in the iron-nitrogen compound layer, the existence ratio of the γ ′ phase was determined by a method described later, and the results are shown in Table 3. Further, each of the obtained nitrided steel members was subjected to a rotating bending fatigue test and a friction wear test described below, and mechanical properties were examined and evaluated. Table 3 summarizes the results.

<評価>
(1)小野式回転曲げ疲労試験
図6に示した形状の切欠き試験片を用い、実施例の条件でそれぞれガス窒化処理を施した後、小野式回転曲げ疲労試験(JIS Z 2274)を実施した。試験荷重は鋼材成分に応じて、30kgf又は50kgfの2水準のうちいずれかを選択し、また、回転数は3000rpm共通として実施した。試験結果の評価は、107回転を迎えた場合を合格で○とし、そうでない場合は不合格で×として評価した。
<Evaluation>
(1) Ono-type rotating bending fatigue test After using a notched test piece having the shape shown in Fig. 6 and performing gas nitriding under the conditions of the examples, an Ono-type rotating bending fatigue test (JIS Z 2274) was performed. did. As the test load, one of two levels of 30 kgf or 50 kgf was selected according to the steel material component, and the rotation speed was common to 3000 rpm. The evaluation of the test result was evaluated as "O" when passing 10 7 rotations, and "Fail" when it did not.

(2)摩擦摩耗試験
摩擦摩耗試験(摺動特性評価)は、図7に示したSRV(Schwingungs Reihungund und Vershceiss)試験機を用い、下記のようにして測定した。窒化処理したφ25×8mmサイズの試料を固定片とし、φ10mmのJIS−SUJ2鋼製のボールを摺動子とし、油滴潤滑環境下(80℃、日産純正 CVTフルード NS−2(80mg))において、負荷荷重を与えながら往復摺動(振幅2mm、20Hz)させた場合の摩擦係数を測定することで行った(図7、図8)。また、摺動距離は、100mとした。摩擦係数は、摺動子の上方より負荷荷重(600N)を与えながら、電磁サーボによって摺動子を加振し,ボールと試料との間に発生した摺動抵抗力をロードセルで検出し、摺動抵抗力と負荷荷重の値から摩擦係数を算出した。試験結果の判定は、試験中(5m以上摺動させた後)の摩擦係数が0.15以下である場合を合格で○とし、それ以上であれば不合格で×として評価した。
(2) Friction and Wear Test A friction and wear test (evaluation of sliding characteristics) was measured using an SRV (Schwingungs Reihung and Vershceiss) test machine shown in FIG. 7 as follows. A sample of 2525 × 8 mm size subjected to nitriding treatment was used as a fixed piece, and a ball made of JIS-SUJ2 steel of mm10 mm was used as a slider. The measurement was performed by measuring the coefficient of friction when reciprocating sliding (amplitude 2 mm, 20 Hz) while applying a load (FIGS. 7 and 8). The sliding distance was 100 m. The friction coefficient is determined by applying a load (600 N) from above the slider to the slider by vibrating the slider with an electromagnetic servo, detecting the sliding resistance generated between the ball and the sample with a load cell, The friction coefficient was calculated from the values of the dynamic resistance and the applied load. The judgment of the test result was evaluated as ○ when the coefficient of friction during the test (after sliding for 5 m or more) was 0.15 or less, and evaluated as × when the coefficient of friction was more than 0.15.

(3)窒素化合物層の測定方法
φ20×5mmのコイン状の試験片を用い、実施例の条件でそれぞれガス窒化処理を行い、ガス窒化処理後の試験片の平面部を平面部と垂直に切断し、JIS−0562に従い断面の化合物層の厚さを測定した。
(3) Measurement method of nitrogen compound layer Using a coin-shaped test piece of φ20 × 5 mm, gas nitriding treatment was performed under the conditions of the examples, and the plane part of the test piece after gas nitriding was cut perpendicular to the plane part. Then, the thickness of the compound layer in the cross section was measured according to JIS-0562.

(4)EBSDによる相分布解析方法
窒化処理を施した鋼材について、断面を機械的に鏡面研磨した後、走査型電子顕微鏡(FEI社製Sirion)に装着された後方散乱電子回折(EBSD)装置(Oxford Instruments社製、 Inca Crystal)を用いて、Phase Mapの測定を行った。Phase Mapは、実測された電子回折図形と候補となる相の電子回折図形をマッチングして判定した相を色分けしたものである。図9に、γ’相主体の化合物層とε相主体の化合物層を有するEBSD解析結果の例を示した。図9の上段は、γ’相主体化合物層の顕微鏡写真であり、下段はε相主体化合物層の顕微鏡写真である。それぞれの右欄は、Phase Mapであり、灰色に色分けされた部分がγ’相の部分である。本発明では、このPhase Mapを用い、Vγ’/(Vγ’+Vε)で規定される比を求め、これによって、鉄窒素化合物層中に占めるγ’相とε相との存在割合を比較した。
(4) Phase Distribution Analysis Method by EBSD A backscattered electron diffraction (EBSD) device (EBSD) mounted on a scanning electron microscope (Sirion manufactured by FEI), after mechanically mirror-polishing the cross section of a steel material subjected to nitriding treatment, Phase Map was measured using Oxford Instruments (Inca Crystal). The Phase Map is obtained by color-coding a phase determined by matching an actually measured electron diffraction pattern with an electron diffraction pattern of a candidate phase. FIG. 9 shows an example of an EBSD analysis result having a compound layer mainly composed of a γ ′ phase and a compound layer mainly composed of an ε phase. The upper part of FIG. 9 is a micrograph of the γ′-phase main compound layer, and the lower part is a micrograph of the ε-phase main compound layer. Each right column is a Phase Map, and a gray-colored part is a part of the γ 'phase. In the present invention, using this Phase Map, a ratio defined by Vγ ′ / (Vγ ′ + Vε) was determined, and thereby the ratios of the γ ′ phase and the ε phase occupying in the iron-nitrogen compound layer were compared.

(比較例1〜3)
比較例1〜3では、表2に示したように、それぞれ実施例1、5、9で用いたと同様の鋼材を用い、従来の技術と同様にγ’相領域となる低KN(=0.25)における1段のみのガス窒化処理を行い、得られた窒化鋼材について実施例と同様の試験をした。その結果、表3に示したように、回転曲げ疲労強度は問題なかったものの、摩擦摩耗試験の結果は不合格であった。
(Comparative Examples 1 to 3)
In Comparative Examples 1 to 3, as shown in Table 2, the same steel materials as those used in Examples 1, 5, and 9 were used, and the low K N (= 0 .25), the gas nitriding treatment of only one stage was performed, and the obtained nitrided steel material was subjected to the same test as in the example. As a result, as shown in Table 3, although there was no problem with the rotating bending fatigue strength, the result of the friction and wear test was rejected.

(比較例4、5、6)
比較例4、5、6では、それぞれ実施例3、5、7で用いたと同様の鋼材を用い、同じ2段窒化処理を行った。しかし、2段目の窒化時間を60分以上とした。その結果、表3に示したように、KNxに保持する2段目の窒化時間が本発明の規定とする60分以上であったため、γ’相中の結晶粒が大きくなり、得られた窒化鋼材について実施例と同様の試験をした結果、表3に示したように、疲労強度(50kgf)だけでなく耐摩耗性も不合格であった。
(Comparative Examples 4, 5, 6)
In Comparative Examples 4, 5, and 6, the same two-stage nitriding treatment was performed using the same steel materials as used in Examples 3, 5, and 7, respectively. However, the second stage nitriding time was set to 60 minutes or more. As a result, as shown in Table 3, since the nitridation time of the second stage held at K Nx was 60 minutes or more as specified in the present invention, the crystal grains in the γ ′ phase became large, and As a result of performing the same test on the nitrided steel material as in the example, as shown in Table 3, not only the fatigue strength (50 kgf) but also the wear resistance was rejected.

(比較例7、8、9)
比較例7、8、9では、それぞれ実施例3、5、7で用いたと同様の鋼材を用い、KNを、従来の技術と同様にγ’相を形成する0.25にとり、いずれも1段で処理した。そして、化合物層の厚さを本発明で規定した13μm以上にするために、比較例7、8では窒化時間を長時間側にし、比較例9では窒化温度を高くして時間を短くして実施した。具体的には、比較例7では窒化時間を10時間、比較例8では12時間とし、比較例9では窒化温度を610℃と高くして窒化時間を3時間と短くして実施した。その結果、得られた窒化鋼材の鉄窒素化合物層の厚みは、13μm以上を満たすものができた。しかし、表3に示したように、本発明で規定した式(1)を満足する化合物層にはならなかった。得られた窒化鋼材について実施例と同様の試験をした結果、表3に示したように、いずれも疲労強度が不合格(50kgf)であった。
(Comparative Examples 7, 8, 9)
In Comparative Examples 7, 8, and 9, the same steel materials as those used in Examples 3, 5, and 7 were used, and K N was set to 0.25, which forms the γ ′ phase, as in the conventional technique. Processed in stages. In order to increase the thickness of the compound layer to 13 μm or more as specified in the present invention, the nitriding time was set to a longer time in Comparative Examples 7 and 8, and in Comparative Example 9, the nitriding temperature was increased to shorten the time. did. Specifically, in Comparative Example 7, the nitriding time was 10 hours, in Comparative Example 8 was 12 hours, and in Comparative Example 9, the nitriding temperature was increased to 610 ° C. and the nitriding time was reduced to 3 hours. As a result, the thickness of the iron-nitrogen compound layer of the obtained nitrided steel material satisfied 13 μm or more. However, as shown in Table 3, the compound layer did not satisfy the formula (1) defined in the present invention. As a result of performing the same test as in the examples on the obtained nitrided steel materials, as shown in Table 3, the fatigue strength was rejected (50 kgf) in all cases.

本発明によれば、通常のガス窒化処理時間でも、γ’相を主体とする化合物層をε相主体とする化合物層と同様に厚膜化することができ、また、γ’相主体化合物層の厚膜化を行っても、低KNで形成したγ’相を主体とする化合物層と比べて、曲げ疲労強度を低下させることなく、且つ、耐摩耗性を向上させることが可能な窒化鋼部材の提供が可能になり、本発明によって提供される窒化鋼部材としては、例えば、自動車用や変速機用の歯車やクランクシャフト等への使用が期待される。 According to the present invention, the compound layer mainly composed of the γ ′ phase can be formed into a thick film in the same manner as the compound layer mainly composed of the ε phase even during the normal gas nitriding treatment time. Even if the film thickness is increased, compared with a compound layer mainly composed of a γ ′ phase formed at a low K N , it is possible to improve the abrasion resistance without lowering the bending fatigue strength. It is possible to provide a steel member, and the nitrided steel member provided by the present invention is expected to be used for, for example, gears and crankshafts for automobiles and transmissions.

1:オシレーションブロックヘッドプレート
2a:ねじれセンサー
2b:試験片用固定具
3:上部試験片振幅運動用アーム
3a:上部試験片ホルダー
4:垂直荷重軸
1: Oscillation block head plate 2a: Torsion sensor 2b: Fixture for test piece 3: Arm for amplitude motion of upper test piece 3a: Upper test piece holder 4: Vertical load axis

Claims (4)

ガス窒化処理炉内の窒化ポテンシャル(KN)を調整しながら、前記炉内の被処理材にガス窒化処理を行って窒化部材を製造するための製造方法であって、
前記ガス窒化炉内へ導入するガスを、アンモニアとアンモニア分解ガスの2種類のみの混合ガスとするか、或いは、アンモニアとアンモニア分解ガスを含む複数の混合ガスとし、前記被処理材近傍における水素濃度の連続的な検出を行い、該検出結果を元にして前記炉内のアンモニア分圧を推定し、設定の窒化ポテンシャルへ制御する雰囲気の自動制御を行い、制御の際に、ガス窒化処理中雰囲気の窒化ポテンシャルKN=pNH3/pH2 1.5を、最初にKN1とし、続いて窒化ポテンシャルを調整して、最終のKNxを、下記式(2)と下記式(3)とを同時に満たすように制御し、且つ、上記要件を満たすように制御した最終のKNxでの窒化時間を5〜60分とすることを特徴とする窒化鋼部材の製造方法。
N1 Nx ・・・(2)
126.7034−5.68797×10-1×T+8.64682×10-4×T2−4.43596×10-7×T3 >KNx >22.2265−1.15×10-1×T+2.03×10-4×T2−1.21466×10-7×T3 ・・・(3)
(ただし、pNH3、pH2は、窒化処理炉内のNH3分圧とH2分圧、式(3)中の、Tは温度[℃]である。)
While adjusting the gas nitriding potential nitriding furnace (K N), a method for manufacturing a nitrided member performs gas nitriding process on a target material in the furnace,
The gas introduced into the gas nitriding furnace may be a mixed gas of only two kinds of ammonia and ammonia decomposition gas, or a plurality of mixed gases containing ammonia and ammonia decomposition gas, and the hydrogen concentration in the vicinity of the material to be treated Is continuously detected, the ammonia partial pressure in the furnace is estimated based on the detection result, and the atmosphere for controlling to the set nitriding potential is automatically controlled. nitriding potential K N = p NH3 / p H2 1.5 of first and K N1, followed by adjusting the nitriding potential and the final K Nx, the following equation (2) the following formula (3) and at the same time A method for producing a nitrided steel member, characterized in that the nitriding time at K Nx controlled so as to satisfy the above-mentioned requirements is 5 to 60 minutes.
K N1 > K Nx ... (2)
126.7034-5.68797 × 10 -1 × T + 8.64682 × 10 -4 × T 2 -4.43596 × 10 -7 × T 3 > K Nx > 22.2265-1.15 × 10 -1 × T + 2.03 × 10 -4 × T 2 − 1.21466 × 10 -7 × T 3 ... (3)
(However, p NH3 and p H2 are the partial pressures of NH 3 and H 2 in the nitriding furnace, and T in Expression (3) is the temperature [° C.].)
前記KN1が、1.0〜2.0である請求項に記載の窒化鋼部材の製造方法。 Wherein K N1 method of producing a nitride steel member according to claim 1 is 1.0 to 2.0. 前記最初のKThe first K N1N1 と、前記最終のKAnd the final K NxNx との間に、ガス窒化処理炉内の窒化ポテンシャルがKAnd the nitriding potential in the gas nitriding furnace is K Nx-1Nx-1 になるように調整し、KAdjust so that K Nx-1Nx-1 >K> K NxNx の式と、前記式(3)とを同時に満たすように制御する請求項1又は2に記載の窒化鋼部材の製造方法。3. The method for producing a nitrided steel member according to claim 1, wherein the control is performed so as to simultaneously satisfy the formula (3) and the formula (3). 4. 請求項1〜3のいずれか1項に記載の窒化鋼部材の製造方法によって得られた、γ’相主体の化合物層が生成する鋼材成分からなる鋼部材の表面に鉄窒素化合物層が形成されてなる窒化鋼部材であって、
前記鉄窒素化合物層中に占めるγ’相とε相の体積割合をVγ’とVεとし、γ’相の存在割合をVγ’/(Vγ’+Vε)で規定される比で表した場合に、その値が0.5以上であるγ’相主体の化合物層の厚さが13μm〜30μmであり、且つ、前記鉄窒素化合物層は、ガス窒化処理後の化合物層の厚さ[μm]の値をCLTと表し、ガス窒化処理後の窒化拡散層の実用硬化深さ[μm]の値をDLTと表した場合に、下記式(1)の関係を満たすことを特徴とする窒化鋼部材。
CLT÷DLT≧0.04 ・・・(1)
An iron-nitrogen compound layer is formed on a surface of a steel member obtained by the method for manufacturing a nitrided steel member according to any one of claims 1 to 3 and comprising a steel component in which a compound layer mainly composed of a γ 'phase is formed. A nitrided steel member comprising:
When the volume ratio of the γ ′ phase and the ε phase in the iron-nitrogen compound layer is Vγ ′ and Vε, and the existence ratio of the γ ′ phase is represented by a ratio defined by Vγ ′ / (Vγ ′ + Vε), The thickness of the compound layer mainly composed of the γ ′ phase having a value of 0.5 or more is 13 μm to 30 μm, and the iron nitride compound layer has a value of the thickness [μm] of the compound layer after the gas nitriding treatment. Is represented by CLT, and when the value of the practical hardening depth [μm] of the nitrided diffusion layer after the gas nitriding treatment is represented by DLT, a relation of the following formula (1) is satisfied.
CLT ÷ DLT ≧ 0.04 (1)
JP2016042580A 2015-05-12 2016-03-04 Nitrided steel member and method of manufacturing nitrided steel Active JP6636829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064100 WO2016182013A1 (en) 2015-05-12 2016-05-12 Nitride steel member and method for manufacturing nitride steel member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015097198 2015-05-12
JP2015097198 2015-05-12

Publications (2)

Publication Number Publication Date
JP2016211069A JP2016211069A (en) 2016-12-15
JP6636829B2 true JP6636829B2 (en) 2020-01-29

Family

ID=57550706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016042580A Active JP6636829B2 (en) 2015-05-12 2016-03-04 Nitrided steel member and method of manufacturing nitrided steel

Country Status (1)

Country Link
JP (1) JP6636829B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4317480A4 (en) * 2021-03-31 2024-09-18 Parker Netsushori Kogyo Co Ltd Nitriding treatment method for steel member

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6345320B1 (en) 2017-07-07 2018-06-20 パーカー熱処理工業株式会社 Surface hardening processing apparatus and surface hardening processing method
WO2019098340A1 (en) 2017-11-16 2019-05-23 日本製鉄株式会社 Nitration-treated component
JP7094540B2 (en) * 2018-04-26 2022-07-04 パーカー熱処理工業株式会社 Nitride steel member and manufacturing method and manufacturing equipment for nitrided steel member
JP6503122B1 (en) 2018-08-17 2019-04-17 パーカー熱処理工業株式会社 Surface hardening treatment apparatus and surface hardening treatment method
KR102293648B1 (en) * 2019-08-22 2021-08-24 박인석 Low Deformation Heat Treatment of Steel Parts
TW202124731A (en) 2019-10-11 2021-07-01 日商帕卡熱處理工業股份有限公司 Surface hardening apparatus and surface hardening method
JP7415154B2 (en) * 2019-12-24 2024-01-17 日本製鉄株式会社 Manufacturing method for nitrided steel parts
WO2021230383A1 (en) * 2020-05-15 2021-11-18 Jfeスチール株式会社 Steel and steel component

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9598760B2 (en) * 2011-02-23 2017-03-21 Dowa Thermotech Co., Ltd. Nitrided steel member and manufacturing method thereof
JP5656908B2 (en) * 2012-04-18 2015-01-21 Dowaサーモテック株式会社 Nitride steel member and manufacturing method thereof
WO2014136307A1 (en) * 2013-03-08 2014-09-12 新日鐵住金株式会社 Semi-finished material for induction hardened component and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4317480A4 (en) * 2021-03-31 2024-09-18 Parker Netsushori Kogyo Co Ltd Nitriding treatment method for steel member

Also Published As

Publication number Publication date
JP2016211069A (en) 2016-12-15

Similar Documents

Publication Publication Date Title
JP6636829B2 (en) Nitrided steel member and method of manufacturing nitrided steel
US9988704B2 (en) Manufacturing method of nitrided steel member
US9783879B2 (en) Nitrided steel member and manufacturing method thereof
JP6755106B2 (en) Nitriding steel member and manufacturing method of nitrided steel member
JP5994924B2 (en) Shaped material of induction-hardened parts and method for manufacturing the same
EP3118346B1 (en) Nitriding method and nitrided part production method
CN107406959B (en) Nitrided component and soft nitrided component having excellent wear resistance and pitting resistance, and nitriding method and soft nitriding method
JP6520347B2 (en) Forming material of induction hardened parts, induction hardened parts, and manufacturing method thereof
JP6287390B2 (en) Gas soft nitriding method of low alloy steel
JP6772499B2 (en) Steel parts and their manufacturing methods
WO2017043594A1 (en) Nitrided steel component and manufacturing method thereof
JP7094540B2 (en) Nitride steel member and manufacturing method and manufacturing equipment for nitrided steel member
WO2019131602A1 (en) Nitrided steel member, and method and apparatus for producing nitrided steel member
JP7364895B2 (en) Steel parts and their manufacturing method
JP2015117412A (en) Nitriding treatment method, and nitrided article
TW202100757A (en) Nitriding steel member, and method and device for manufacturing nitriding steel member
WO2016182013A1 (en) Nitride steel member and method for manufacturing nitride steel member
WO2020090999A1 (en) Nitrided steel member, and method and apparatus for producing nitrided steel member
JP2020117756A (en) Soft-nitrided parts and method for manufacturing the same
WO2022224849A1 (en) Steel material for carbonitriding and carbonitrided steel material
JP2019049032A (en) Steel material for carburization processing
JP2021101040A (en) Nitriding treated steel component and manufacturing method of the same
JPH11310824A (en) Carburized and quenched steel member and its manufacture
JP2020033636A (en) Component and manufacturing method therefor
JP2020143320A (en) Steel material for carburization and nitridation treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191219

R150 Certificate of patent or registration of utility model

Ref document number: 6636829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250