JPH10121109A - Method for controlling carbon content in metallic sintered body - Google Patents

Method for controlling carbon content in metallic sintered body

Info

Publication number
JPH10121109A
JPH10121109A JP28725896A JP28725896A JPH10121109A JP H10121109 A JPH10121109 A JP H10121109A JP 28725896 A JP28725896 A JP 28725896A JP 28725896 A JP28725896 A JP 28725896A JP H10121109 A JPH10121109 A JP H10121109A
Authority
JP
Japan
Prior art keywords
carbon
amount
oxygen
sintered body
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28725896A
Other languages
Japanese (ja)
Inventor
Shoichi Tomita
正一 富田
Takanori Igarashi
貴教 五十嵐
Takashi Amano
隆嗣 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANAGAWA PREF GOV
Topy Industries Ltd
Kanagawa Prefecture
Original Assignee
KANAGAWA PREF GOV
Topy Industries Ltd
Kanagawa Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANAGAWA PREF GOV, Topy Industries Ltd, Kanagawa Prefecture filed Critical KANAGAWA PREF GOV
Priority to JP28725896A priority Critical patent/JPH10121109A/en
Publication of JPH10121109A publication Critical patent/JPH10121109A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To control a metallic sintered body to a desired carbon content at high accuracy regardless of the history of a degreased body by removing the carbon content and oxygen content in a green compact before sintering as much as possible. SOLUTION: The degreased green compact contains carbon and oxygen mainly as a metallic oxide. The carbon can almost be removed by a hydrogen reduction below 1000 deg.C, but the oxygen remains considerably depending on a kind of the degreased body. A large part of the oxygen is removed in any degreased body by the hydrogen reduction in a prescribed time by slowly raising the temp. from 1000 deg.C to a sintered body producing temp. The sintered body producing temp. is desirable to be in the range of 1150-1250 deg.C and the temp. raising time is sufficient to about 2-4hr regardless of the kind of degreased body. Therefore, it is recommended to execute two steps of the hydrogen reduction process below 1000 deg.C and the hydrogen reduction process raising the temp. to the sintered body producing temp. By this method, since the influence of the history of the degreased body and the material of metallic powder can almost perfectly be rejected, the carbon content in the sintered body can easily be controlled to the desired value in the high accuracy in the same operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、金属焼結体の炭
素量制御方法に係り、詳記すれば、脱脂体履歴及び金属
粉の材質の影響を排除して、高精度に浸炭量を所定の値
に容易に制御することができる金属焼結体の炭素量制御
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the amount of carbon in a metal sintered body. More specifically, the present invention relates to a method for controlling the amount of carburization with high accuracy by eliminating the influence of the degreased body history and the material of the metal powder. The present invention relates to a method for controlling the amount of carbon in a metal sintered body that can be easily controlled to the value of

【0002】[0002]

【従来の技術】従来、金属焼結体(焼結合金ともいう)
は、原料の金属微粉末とバインダ−(結合剤、可塑剤、
滑剤)とを混練し、これを高熱で溶解して射出成形し、
脱脂工程でバインダ−を蒸発させた後、焼結することに
より作製されている。そして、このような金属焼結体を
作製する場合、炭素量を適確に制御することは、炭素量
が焼結体の機械的性質を左右するので、極めて重大な課
題となっている。
2. Description of the Related Art Conventionally, a metal sintered body (also called a sintered alloy)
Is a raw metal powder and a binder (binder, plasticizer,
Lubricant), melt it with high heat and injection mold it.
It is manufactured by evaporating a binder in a degreasing process and then sintering. When producing such a metal sintered body, properly controlling the amount of carbon is an extremely important issue since the amount of carbon affects the mechanical properties of the sintered body.

【0003】従来、金属粉末成形体の炭素量制御方法と
しては、主バインダーの樹脂より残留炭素量が高い樹脂
を添加する方法や焼結前に残留する炭素を所望の炭素量
に減少させるために酸化鉄等の金属酸化物を添加する方
法等が知られていた。
Conventionally, as a method for controlling the amount of carbon in a metal powder compact, a method of adding a resin having a higher residual carbon amount than the resin of the main binder or a method of reducing the residual carbon amount before sintering to a desired carbon amount has been employed. A method of adding a metal oxide such as iron oxide has been known.

【0004】上記従来法は、いずれも炭素量の調整操作
が焼結工程以前に行われるので、得られる焼結体中の適
正炭素量を見いだす実験条件を試行錯誤により選択する
操作が、焼結工程での条件を選択するだけでは済まず、
グラフアイトや金属酸化物の添加量を変えた何通りもの
成形素材を作成したり、時間のかかる脱脂や含炭処理を
何度も繰り返し行わなければならないので、極めて繁雑
となる問題があった。そればかりか、これら従来法は、
得られた焼結成形体の内部の炭素分布までは制御するこ
とができなかった。
In any of the above conventional methods, the operation of adjusting the amount of carbon is performed before the sintering step, and the operation of selecting experimental conditions for finding an appropriate amount of carbon in the obtained sintered body by trial and error is performed by sintering. It is not enough to just select the conditions in the process,
There is a problem that it becomes extremely complicated because it is necessary to produce many types of molding materials with different amounts of graphite and metal oxide, and to repeat time-consuming degreasing and carbon-containing treatments many times. Not only that, these conventional methods
It was not possible to control the carbon distribution inside the obtained sintered compact.

【0005】このような問題を解決するため、本出願人
の1人は、炭化水素・水素混合ガス雰囲気中で炭化水素
と水素の混合比を選択して焼結する方法を開発し、先に
特許出願した(特開平7−118705号明細書参
照)。
In order to solve such a problem, one of the present applicants has developed a method of sintering by selecting a mixture ratio of hydrocarbon and hydrogen in a hydrocarbon / hydrogen mixed gas atmosphere. A patent application has been filed (see JP-A-7-118705).

【0006】[0006]

【発明が解決しようとする課題】上記方法は、炭化水素
と水素の混合比を調整しながら焼結するだけで、焼結成
形体全体を所望の炭素量に容易に制御できるという点
で、極めて優れた方法であった。しかしながら、この方
法は、原料金属微粉末の製造法、結合剤の種類及び脱脂
法等の履歴の違いが、所望の炭素量に高精度に制御する
のを困難にするという点で、充分満足すべきものではな
かった。
The above-mentioned method is extremely excellent in that the entire sintered compact can be easily controlled to a desired carbon content only by sintering while adjusting the mixing ratio of hydrocarbon and hydrogen. It was a way. However, this method should be sufficiently satisfactory in that differences in the history of the production method of the raw metal powder, the type of binder, the degreasing method, etc. make it difficult to control the desired carbon content with high accuracy. It was not a kimono.

【0007】この発明は、焼結前の脱脂体の履歴がどの
ようなものであっても、所望の炭素量に高精度に制御す
ることができる金属焼結体の炭素量制御方法を提供する
ことを目的とする。
The present invention provides a method for controlling the carbon content of a metal sintered body which can control the desired carbon content with high accuracy regardless of the history of the degreased body before sintering. The purpose is to:

【0008】[0008]

【課題を解決するための手段】本発明者等は、上記課題
を解決するため、一連の基礎的研究の結果、焼結前の成
形体中の炭素量と酸素量とを、ゼロ若しくはほぼ一定に
制御することによって、焼結前の履歴がどのようなもの
であっても、所望の炭素量に高精度に制御することがで
きることを見いだし、本発明に到達した。
Means for Solving the Problems To solve the above-mentioned problems, the present inventors have made a series of basic studies and found that the carbon content and the oxygen content in the compact before sintering were reduced to zero or almost constant. The present inventors have found that the desired amount of carbon can be controlled with a high degree of accuracy regardless of the history before sintering by controlling the amount of carbon before sintering.

【0009】即ち、本発明は、金属粉末成形体を、脱
脂、水素還元した後、所定の混合比に調整した炭化水素
・水素混合ガス雰囲気中で浸炭・焼結して、金属焼結体
中の炭素量を所定値に制御する炭素量制御方法に於い
て、前記水素還元工程で、前記成形体中の炭素と酸素を
除去して、脱脂体履歴及び金属粉の材質によらず、均一
化したことを特徴とする。
That is, according to the present invention, a metal powder compact is degreased and hydrogen reduced, and then carburized and sintered in a hydrocarbon / hydrogen mixed gas atmosphere adjusted to a predetermined mixing ratio. In the carbon amount control method of controlling the carbon amount of the molded body to a predetermined value, in the hydrogen reduction step, carbon and oxygen in the molded body are removed to homogenize regardless of the degreased body history and the material of the metal powder. It is characterized by having done.

【0010】要するに本発明は、どのような履歴の脱脂
体でも、浸炭・焼結工程前の炭素量と酸素量とを、ゼロ
若しくは一定値に低減すれば、脱脂体の履歴の相違を完
全に排除することができるから、所望の炭素量となるよ
うに、浸炭・焼結工程での条件を選択するだけで、所望
の炭素量に高精度に制御し得るようにしたことを要旨と
するものである。
In short, according to the present invention, the difference in the history of the degreased body can be completely reduced by reducing the amount of carbon and the amount of oxygen before the carburizing and sintering process to zero or a constant value. The gist of the present invention is that it is possible to control the desired amount of carbon with high accuracy by simply selecting the conditions in the carburizing and sintering process so that the desired amount of carbon can be obtained. It is.

【0011】本発明で、炭素量と酸素量とを均一化する
ということは、脱脂体の履歴等による浸炭・焼結工程前
の炭素量と酸素量とのバラ付きを少なくすることであ
り、好ましくは、炭素量と酸素量をゼロ若しくは最小限
に低減させることである。
In the present invention, to make the carbon amount and the oxygen amount uniform means to reduce the variation between the carbon amount and the oxygen amount before the carburizing and sintering process due to the history of the degreased body. Preferably, the amounts of carbon and oxygen are reduced to zero or to a minimum.

【0012】[0012]

【発明の実施の形態】次に、本発明の実施の形態を説明
する。金属粉末成形体は、金属微粉末とバインダ−(結
合剤、可塑剤、滑剤等)とを混練し、適温で加熱して射
出成形する公知の方法によって製造すれば良い。脱脂工
程では、公知の方法によって、成形体中に混入している
バインダーを分解揮散させる。
Next, an embodiment of the present invention will be described. The metal powder compact may be manufactured by a known method in which a metal fine powder and a binder (a binder, a plasticizer, a lubricant, etc.) are kneaded, heated at an appropriate temperature, and injection molded. In the degreasing step, the binder mixed in the molded body is decomposed and volatilized by a known method.

【0013】このようにして脱脂した成形体は、炭素と
主として金属酸化物としての酸素を含有している。炭素
は、1000℃迄の温度の水素還元によって、殆ど除去
できるが、酸素はこの条件では、脱脂体の種類によって
は、かなり多量に残存する。
[0013] The degreased molded body contains carbon and mainly oxygen as a metal oxide. Carbon can be mostly removed by hydrogen reduction at temperatures up to 1000 ° C., but oxygen remains under this condition in considerable amounts depending on the type of degreased body.

【0014】酸素は、1000℃から焼結体製造温度
(浸炭・焼結温度)まで、徐々に昇温させて所定時間水
素還元することにより、どのような脱脂体でも、大部分
除去することができる。昇温時間は、2〜4時間位で十
分であり、脱脂体の種類によらず、ゼロ若しくは最小限
に低減できるように選択すれば良い。従って、好ましく
は、1000℃迄の第一段階の水素還元工程と、該第一
段階の温度から焼結体製造温度迄徐々に昇温させる第二
段階の水素還元工程の二段階で行うのが良い。
Oxygen can be largely removed from any degreased body by gradually reducing the temperature from 1000 ° C. to the sintered body manufacturing temperature (carburizing / sintering temperature) and reducing the hydrogen for a predetermined time. it can. A heating time of about 2 to 4 hours is sufficient, and may be selected so that it can be reduced to zero or minimized regardless of the type of degreased body. Therefore, it is preferable to perform the hydrogen reduction in the first stage up to 1000 ° C. and the hydrogen reduction in the second stage in which the temperature is gradually increased from the temperature of the first stage to the production temperature of the sintered body. good.

【0015】焼結体製造温度は、好ましくは1150〜
1250℃の範囲内のほぼ一定の温度で行うのが良い。
焼結保持時間は、焼結体中の目的とする炭素量、焼結保
持温度及び炭化水素・水素混合ガスの割合等により変化
するが、1〜3時間程度で十分である。
[0015] The sintered body production temperature is preferably 1150-150.
It is preferable to carry out at a substantially constant temperature in the range of 1250 ° C.
The sintering holding time varies depending on the desired amount of carbon in the sintered body, the sintering holding temperature, the ratio of the mixed gas of hydrocarbon and hydrogen, and the like, but about 1 to 3 hours is sufficient.

【0016】炭化水素・水素混合ガスの割合は、焼結保
持温度に応じて、焼結体中の炭素量が目的とする量とな
るように選択すれば良い。炭化水素・水素混合ガスの割
合は、浸炭・焼結中、一定の割合としても良いが、混合
比を変えるように調整しても良い。炭化水素としては、
メタンガスを使用するのが良いが、エタンガス、プロパ
ンガス及びブタンガス等でも差し支えない。本発明で製
造する焼結体中の炭素量は、広範囲に調整することがで
きるが、焼結体の物性上の理由から、0.3〜0.7重
量%程度に調整するのが良い。
The proportion of the hydrocarbon / hydrogen mixed gas may be selected in accordance with the sintering holding temperature so that the amount of carbon in the sintered body becomes a target amount. The ratio of the hydrocarbon / hydrogen mixed gas may be constant during carburizing and sintering, or may be adjusted so as to change the mixing ratio. As hydrocarbons,
It is preferable to use methane gas, but ethane gas, propane gas, butane gas, etc. may be used. The amount of carbon in the sintered body produced in the present invention can be adjusted in a wide range, but is preferably adjusted to about 0.3 to 0.7% by weight for reasons of the physical properties of the sintered body.

【0017】[0017]

【実施例】次に、実施例、参考例を挙げて本発明を更に
説明するが、本発明はこの実施例に限定されない。 参考例 次表1に記載の供試材とバインダーとを混練し、供試材
1〜3は、板状引張試験片に、供試材4〜5は、シャル
ビ−衝撃試験片に射出成形した。尚、供試材3のカ−ボ
ニル鉄粉に対するグラフアイト添加量は、質量比で0.
4%及び0.8%とした。
Next, the present invention will be further described with reference to examples and reference examples, but the present invention is not limited to these examples. Reference Example The test materials and binders described in the following Table 1 were kneaded, and the test materials 1 to 3 were injection-molded into plate-like tensile test pieces, and the test materials 4 to 5 were injection-molded into Charbie-impact test pieces. . The amount of graphite added to Carbonyl iron powder of Test Material 3 was 0.1% by mass.
4% and 0.8%.

【0018】[0018]

【表1】 [Table 1]

【0019】上記供試材を、大気中で12℃/時間で昇
温させ、300℃に4時間保持して脱脂した後、脱脂体
をシリコニット管状炉に入れ、図1に示すように昇温し
て、浸炭・焼結を行った。得られた脱脂体、還元処理体
及び焼結体について炭素量を測定し、還元処理体につい
ては酸素量をも測定した。結果を図2に示す。尚、還元
処理体は、図1の工程で、浸炭・焼結工程に入る直前に
中断し、真空引きして冷却後、取り出した試料である。
炭素量の測定には、堀場製作所EMIA−720型炭素
・硫黄分析装置を、酸素量の測定には、堀場製作所EM
GA−650型酸素・窒素分析装置を使用した。
The specimen was heated at a rate of 12 ° C./hour in the air, kept at 300 ° C. for 4 hours and degreased. The degreased body was placed in a silicon knit tube furnace, and the temperature was raised as shown in FIG. Then, carburizing and sintering were performed. The amount of carbon was measured for the obtained degreased body, reduced body and sintered body, and the amount of oxygen was also measured for the reduced body. The results are shown in FIG. The reduction treatment body is a sample that was interrupted immediately before the carburizing and sintering step in the step of FIG. 1, was evacuated, cooled, and then taken out.
To measure the amount of carbon, use a Horiba Seisakusho EMIA-720 type carbon / sulfur analyzer, and to measure the amount of oxygen, use Horiba EM
A GA-650 oxygen / nitrogen analyzer was used.

【0020】図2中の記号及び略号は、以下の供試材を
表す。 ○SCM.W:SCM40水アトマイズ粉 ●SCM.G:SCM40ガスアトマイズ粉 △CO.4%:グラフアイトO.4%添加カ−ボニル鉄
粉 ▲CO.8%:グラフアイトO.8%添加カ−ボニル鉄
粉 □4600L:4600鋼低酸素粉 ■4600H:4600鋼高酸素粉
The symbols and abbreviations in FIG. 2 represent the following test materials. ○ SCM. W: SCM40 water atomized powder ● SCM. G: SCM40 gas atomized powder △ CO. 4%: Graphite Carbonyl iron powder added with 4% ▲ CO. 8%: Graphite 8% added carbonyl iron powder □ 4600L: 4600 steel low oxygen powder ■ 4600H: 4600 steel high oxygen powder

【0021】図2に示すように、脱脂体では、結合剤の
炭素及び添加グラフアイトが多く残存しているので、概
して炭素量は多い。供試材の中で、SCM440の炭素
量が最小で、4600鋼粉の炭素量が最大であり、中間
がカ−ボニル鉄粉で、カ−ボニル鉄粉へのグラフアイト
添加量の差がおよそ炭素量の差となっている。
As shown in FIG. 2, the defatted body generally has a large amount of carbon since a large amount of carbon and added graphite remain in the binder. Among the test materials, the carbon content of SCM440 was the smallest, the carbon content of 4600 steel powder was the largest, the carbon iron powder was in the middle, and the difference in the amount of graphite added to the carbon iron powder was approximately It is the difference in carbon content.

【0022】還元処理体では、水素の強力な脱炭作用に
よって、全ての供試材について、炭素量は殆どゼロとな
っている。このように全ての供試材は、同程度の炭素量
から浸炭されるので、浸炭量も同様となる筈であるが、
実際には、図2に示すように、0.13%から0.85
%に大きくバラついている。
In the reduced material, the carbon content of all the test materials is almost zero due to the strong decarburizing action of hydrogen. In this way, all the test materials are carburized from the same amount of carbon, so the carburized amount should be the same,
In practice, as shown in FIG.
The percentage varies greatly.

【0023】還元処理体の酸素量は、カ−ボニル鉄粉が
最小で、4600鋼粉及びSCM440ガスアトマイズ
粉が中間で、SCM440水アトマイズ粉が最大であ
り、これらを同一条件で浸炭すると、浸炭量は、図2に
示すように、この酸素量の逆の順となっている。このこ
とから、酸素量は浸炭量を左右する重要な因子であり、
炭素量制御精度を高めるには、炭素量だけでなく、酸素
量をも精密に管理する必要があることが明らかとなっ
た。
The oxygen content of the reduced product is as follows. Carbonyl iron powder is the smallest, 4600 steel powder and SCM440 gas atomized powder are intermediate, and SCM440 water atomized powder is the largest. Are in the reverse order of the oxygen amount as shown in FIG. For this reason, oxygen content is an important factor influencing carburization,
It has become clear that not only the amount of carbon but also the amount of oxygen needs to be precisely controlled in order to enhance the control accuracy of the amount of carbon.

【0024】実施例 上記参考例から、焼結体炭素量の制御精度を高めるに
は、浸炭開始時の炭素量及び酸素量を一定(例えばほぼ
ゼロとする)として、同一の含有量から浸炭を開始する
ようにすれば、脱脂体履歴及び金属粉の材質にかかわり
なく、ほぼ均一な浸炭を可能にすると推論される。この
ような推論を確認するため、以下の実験を行った。
Example From the above reference example, in order to improve the control accuracy of the amount of carbon in the sintered body, the amount of carbon and the amount of oxygen at the start of carburizing are fixed (for example, almost zero), and It is inferred that if started, carburization can be performed substantially uniformly regardless of the history of the degreased body and the material of the metal powder. The following experiment was performed to confirm such inference.

【0025】前記表1に記載の供試材から、前記参考例
と同様にして脱脂体を製造し、これを、図3に示すよう
に昇温して、浸炭・焼結を行った。即ち、図3に示すよ
うに、室温から1000℃迄は参考例と同一であるが、
1000℃から1200℃へは、3時間かけて徐々に昇
温させた。1200℃に達してから、この温度で2時間
保持する工程で、低濃度メタン(CH40.2%)のメ
タン・水素混合ガスを流して、浸炭・焼結を行った。降
温、冷却工程は、図1の参考例と同一である。
A degreased body was produced from the test materials shown in Table 1 in the same manner as in the above reference example, and the temperature was raised as shown in FIG. 3 to carry out carburizing and sintering. That is, as shown in FIG. 3, from room temperature to 1000 ° C. is the same as the reference example,
The temperature was gradually raised from 1000 ° C to 1200 ° C over 3 hours. After reaching 1200 ° C., in a step of maintaining the temperature at this temperature for 2 hours, a methane / hydrogen mixed gas of low-concentration methane (CH 4 0.2%) was flowed to carry out carburizing and sintering. The temperature lowering and cooling steps are the same as in the reference example of FIG.

【0026】参考例と同様にして、焼結体の炭素量を測
定し、結果を図4に示す。尚、図4中の記号及び略号
は、前記図3と同一の意味を表す。図4の結果から、全
ての供試材からの焼結体は、炭素量含有量が0.09%
に集中している。この結果から明らかなように、本発明
方法によれば、脱脂体履歴及び金属粉の材質の影響を排
除し、ほぼ均一に浸炭することができる。
The carbon content of the sintered body was measured in the same manner as in the reference example, and the results are shown in FIG. The symbols and abbreviations in FIG. 4 have the same meaning as in FIG. From the results shown in FIG. 4, the sintered bodies from all the test materials have a carbon content of 0.09%.
Is focused on As is clear from these results, according to the method of the present invention, the effects of the degreased body history and the material of the metal powder are eliminated, and carburization can be performed almost uniformly.

【0027】上記実施例における1000℃還元処理体
(昇温直前に取り出した)及び1200℃還元処理体
(1200℃に達した時点で取り出した)について、前
記参考例と同様にして、酸素量と炭素量を測定した。炭
素量は、全ての試料について、1000℃還元処理体で
殆ど脱炭され、1200℃還元処理体では、完全に脱炭
されていた。酸素量は、1000℃還元処理体では、
0.05〜0.82重量%にバラ付いていたが、120
0℃還元処理体では、0.02〜0.3重量%に均一化
していた。
With respect to the 1000 ° C. reduction treated body (taken out immediately before raising the temperature) and the 1200 ° C. reduction treated body (taken out at the time of reaching 1200 ° C.) in the above embodiment, the oxygen amount and The carbon content was measured. Regarding the amount of carbon, all the samples were almost decarburized by the 1000 ° C. reduction treatment, and completely decarbonized by the 1200 ° C. reduction treatment. The amount of oxygen is 1000 ° C.
Although it varied from 0.05 to 0.82% by weight, 120
In the 0 ° C. reduction treated body, it was homogenized to 0.02 to 0.3% by weight.

【0028】上記実施例と参考例に記載の方法との相違
点は、第1に水素による還元温度域を、焼結温度迄拡張
したことであり、第2にメタン・水素混合ガスを導入す
る浸炭工程を、焼結工程と重ねたことである。水素によ
る還元温度域を、焼結温度迄拡張したことによって、脱
脂体中の炭素量及び酸素量を、脱脂体履歴及び金属粉の
材質によらず、ゼロ若しくは最小限に低減させることが
できる。
The difference between the above embodiment and the method described in the reference example is that firstly, the temperature range for reduction by hydrogen is extended to the sintering temperature, and secondly, a mixed gas of methane and hydrogen is introduced. That is, the carburizing step is overlapped with the sintering step. By extending the temperature range for reduction by hydrogen to the sintering temperature, the amount of carbon and oxygen in the degreased body can be reduced to zero or to a minimum regardless of the history of the degreased body and the material of the metal powder.

【0029】メタン・水素混合ガスを導入する浸炭工程
を、焼結工程に重ねたことによって、メタン・水素混合
ガスは、炭素量及び酸素量がゼロ若しくは最小限に低減
させた状態で導入されるので、メタン・水素混合ガスの
混合割合等を制御するだけで、脱脂体履歴及び金属粉の
材質によらず、焼結体中の炭素含有量を所望の値に容易
に制御することができる。
Since the carburizing step of introducing the methane / hydrogen mixed gas is repeated in the sintering step, the methane / hydrogen mixed gas is introduced in a state where the carbon amount and the oxygen amount are reduced to zero or to a minimum. Therefore, the carbon content in the sintered body can be easily controlled to a desired value irrespective of the history of the degreased body and the material of the metal powder only by controlling the mixing ratio of the methane / hydrogen mixed gas.

【0030】[0030]

【発明の効果】本発明によれば、メタン・水素混合ガス
導入(浸炭・焼結工程)前の炭素量と酸素量を、脱脂体
履歴及び金属粉の材質によらず、ゼロ若しくは最小限に
低減させ均一化させることができるので、脱脂体履歴及
び金属粉の材質の影響をほぼ完全に排除することができ
る。従って、脱脂体履歴及び金属粉の材質がどのような
ものであっても、同一の操作で金属焼結体中の炭素量
を、容易に所望の値に高精度に制御することができる。
According to the present invention, the amount of carbon and the amount of oxygen before the introduction of the methane / hydrogen mixed gas (the carburizing / sintering step) can be reduced to zero or minimum regardless of the history of the degreased body and the material of the metal powder. Since it can be reduced and made uniform, the influence of the degreased body history and the material of the metal powder can be almost completely eliminated. Therefore, regardless of the degreased body history and the material of the metal powder, the amount of carbon in the metal sintered body can be easily and precisely controlled to a desired value by the same operation.

【0031】[0031]

【図面の簡単な説明】[Brief description of the drawings]

【図1】参考例による脱脂体から焼結体の製造工程を示
す線図である。
FIG. 1 is a diagram showing a manufacturing process of a sintered body from a degreased body according to a reference example.

【図2】参考例による脱脂体、還元処理体及び浸炭・焼
結体中の炭素量と酸素量を示す図である。
FIG. 2 is a diagram showing the amounts of carbon and oxygen in a degreased body, a reduced body, and a carburized / sintered body according to a reference example.

【図3】実施例による脱脂体から焼結体の製造工程を示
す線図である。
FIG. 3 is a diagram showing a manufacturing process of a sintered body from a degreased body according to an example.

【図4】実施例による脱脂体、還元処理体及び浸炭・焼
結体中の炭素量と酸素量を示す図である。
FIG. 4 is a diagram showing the amounts of carbon and oxygen in a degreased body, a reduced body, and a carburized / sintered body according to an example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 天野 隆嗣 東京都千代田区四番町五番地九 トピー工 業株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Takashi Amano 5th-9th, Yonbancho, Chiyoda-ku, Tokyo Topy Industries Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】金属粉末成形体を、脱脂、水素還元した
後、所定の混合比に調整した炭化水素・水素混合ガス雰
囲気中で浸炭・焼結して、金属焼結体中の炭素量を所定
値に制御する炭素量制御方法に於いて、前記水素還元工
程で、前記成形体中の炭素と酸素を除去して、脱脂体履
歴及び金属粉の材質によらず、均一化したことを特徴と
する金属焼結体の炭素量制御方法。
1. A metal powder compact is degreased and hydrogen reduced, then carburized and sintered in a hydrocarbon / hydrogen mixed gas atmosphere adjusted to a predetermined mixing ratio to reduce the amount of carbon in the metal sintered body. In the carbon amount control method of controlling to a predetermined value, in the hydrogen reduction step, carbon and oxygen in the molded body are removed, and the molded body is made uniform regardless of the history of the degreased body and the material of the metal powder. A method for controlling the amount of carbon in a metal sintered body.
【請求項2】前記成形体中の炭素量と酸素量を、ゼロ若
しくは最小限に低減させてなる請求項1に記載の炭素量
制御方法。
2. The method according to claim 1, wherein the amount of carbon and the amount of oxygen in the compact are reduced to zero or to a minimum.
【請求項3】前記水素還元工程を、主として炭素を除去
する水素還元工程と、主として酸素を除去する水素還元
工程との二段階で行う請求項1または2に記載の炭素量
制御方法。
3. The method according to claim 1, wherein the hydrogen reduction step is performed in two stages: a hydrogen reduction step for mainly removing carbon and a hydrogen reduction step for mainly removing oxygen.
【請求項4】前記第一段階の主として炭素を除去する水
素還元工程を、1000℃迄の温度で行い、前記第二段
階の主として酸素を除去する水素還元工程を、前記第一
段階の温度から浸炭・焼結温度迄昇温させて行う請求項
3に記載の炭素量制御方法。
4. The hydrogen reduction step of removing carbon mainly in the first step is performed at a temperature of up to 1000 ° C., and the hydrogen reduction step of removing mainly oxygen in the second step is carried out from the temperature of the first step. 4. The method according to claim 3, wherein the temperature is raised to a carburizing / sintering temperature.
【請求項5】前記第二段階の還元工程で、浸炭・焼結温
度迄昇温させた後、前記炭化水素・水素混合ガスを導入
して、浸炭と焼結とを同時に行う請求項4に記載の炭素
量制御方法。
5. The method according to claim 4, wherein in the reduction step of the second step, after raising the temperature to the carburizing / sintering temperature, the hydrocarbon / hydrogen mixed gas is introduced to simultaneously perform carburizing and sintering. The method for controlling the amount of carbon described above.
【請求項6】前記浸炭・焼結工程を、1150〜125
0℃のほぼ一定の温度で行う請求項5に記載の炭素量制
御方法。
6. The carburizing and sintering step is performed at 1150 to 125
The method according to claim 5, wherein the method is performed at a substantially constant temperature of 0 ° C.
【請求項7】前記金属焼結体中の炭素量を、0.3〜
0.7重量%に制御してなる請求項1〜6のいずれかに
記載の炭素量制御方法。
7. The amount of carbon in the sintered metal is 0.3 to 0.3.
The method for controlling carbon content according to any one of claims 1 to 6, wherein the carbon content is controlled to 0.7% by weight.
JP28725896A 1996-10-11 1996-10-11 Method for controlling carbon content in metallic sintered body Pending JPH10121109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28725896A JPH10121109A (en) 1996-10-11 1996-10-11 Method for controlling carbon content in metallic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28725896A JPH10121109A (en) 1996-10-11 1996-10-11 Method for controlling carbon content in metallic sintered body

Publications (1)

Publication Number Publication Date
JPH10121109A true JPH10121109A (en) 1998-05-12

Family

ID=17715080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28725896A Pending JPH10121109A (en) 1996-10-11 1996-10-11 Method for controlling carbon content in metallic sintered body

Country Status (1)

Country Link
JP (1) JPH10121109A (en)

Similar Documents

Publication Publication Date Title
WO2019208534A1 (en) Nitrided steel member, and method and device for producing nitrided steel member
CN113862610A (en) Pretreatment method for improving corrosion resistance of carburized layer
KR102004723B1 (en) Method for prediction of physical property data of plasma ion nitriding
JP3854851B2 (en) Carburizing method for steel parts
JPH10121109A (en) Method for controlling carbon content in metallic sintered body
JP2015025161A (en) Surface hardening method of iron or iron alloy and apparatus of the same, and surface hardening structure of iron or iron alloy
US2142139A (en) Hardening process for high speed steel tools and other articles
JP2588057B2 (en) Manufacturing method of mold material for mold
JP3677460B2 (en) Steel manufacturing method
KR100592757B1 (en) Method of gas carburizing
US3795551A (en) Case hardening steel
JPS6372821A (en) Treatment of metal
JPS61117268A (en) Vacuum carburization method of steel material parts
JP2020164994A (en) Steel member nitriding treatment method
JPH06200303A (en) Control process for amount of carbon contained in injection molded steel in debinding
WO2015087154A1 (en) Method of manufacturing ferrous metal component
JP2743974B2 (en) Control method of carbon content and oxygen content of degreased molded body in metal powder injection molding method
KR100526389B1 (en) Method for heat treatment in gasnitriding
JPH0913104A (en) Method for controlling carbon content in ion based metallic powder molding
KR102360964B1 (en) Complex heat treatment method of steel for gear
CN117047097A (en) Novel steel material and preparation method thereof
JP2000192106A (en) Method for controlling carbon content in metal powder sintered body
JP3995178B2 (en) Gas nitriding treatment method for maraging steel
KR970002093B1 (en) Method of sintering object
JPH1180806A (en) Method for controlling carbon content in metallic sintered body

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050131

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050606