JP2020164994A - Steel member nitriding treatment method - Google Patents

Steel member nitriding treatment method Download PDF

Info

Publication number
JP2020164994A
JP2020164994A JP2020056358A JP2020056358A JP2020164994A JP 2020164994 A JP2020164994 A JP 2020164994A JP 2020056358 A JP2020056358 A JP 2020056358A JP 2020056358 A JP2020056358 A JP 2020056358A JP 2020164994 A JP2020164994 A JP 2020164994A
Authority
JP
Japan
Prior art keywords
nitriding
phase
steel member
stage
nitriding treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020056358A
Other languages
Japanese (ja)
Other versions
JP7434018B2 (en
Inventor
克成 清水
Katsunari Shimizu
克成 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Thermotech Co Ltd
Original Assignee
Dowa Thermotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Thermotech Co Ltd filed Critical Dowa Thermotech Co Ltd
Publication of JP2020164994A publication Critical patent/JP2020164994A/en
Application granted granted Critical
Publication of JP7434018B2 publication Critical patent/JP7434018B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a steel member nitriding treatment method capable of substantially increasing a γ' phase fraction in a short treatment time.SOLUTION: A steel member nitriding treatment method comprises: a first-stage nitriding treatment step of nitriding a steel member in a nitriding gas atmosphere at 550-610°C with a nitriding potential at which ε-phase or ε-phase and γ'-phase nitride layers are formed; and following the first-stage nitriding treatment step, a second-stage nitriding treatment step of nitriding the steel member while holding the steel member in a nitriding gas atmosphere at 480-520°C for 10-60 minutes. In a method of nitriding a steel member by performing a first-stage nitriding treatment step of forming ε-phase or ε-phase and γ'-phase nitride layers and a second-stage nitriding treatment step of increasing the γ'-phase fraction of the nitride layer, the γ'-phase fraction can be substantially increased by carrying out the second-stage nitriding treatment step in a short time.SELECTED DRAWING: Figure 1

Description

本発明は、窒化処理により鋼部材の表面に窒化化合物層を形成する鋼部材の窒化処理方法に関する。 The present invention relates to a method for nitriding a steel member that forms a nitride compound layer on the surface of the steel member by nitriding.

自動車用の変速機に用いられる歯車などの鋼部材には、高い耐ピッチング性と曲げ疲労強度が要求されており、かかる要求に応えるべく、歯車などの鋼部材を強化させる手法として、浸炭処理や窒化処理による高強度化が行われている。特に、γ’相を主体とする窒化化合物層を有する部品は、高い耐ピッチング性と曲げ疲労強度を有することが明らかになっており、その製造方法が種々提案されている。 Steel members such as gears used in transmissions for automobiles are required to have high pitching resistance and bending fatigue strength, and in order to meet these requirements, carburizing treatment and other methods for strengthening steel members such as gears are required. The strength has been increased by nitriding. In particular, it has been clarified that a component having a nitride compound layer mainly composed of the γ'phase has high pitching resistance and bending fatigue strength, and various manufacturing methods thereof have been proposed.

例えば特許文献1には、高い窒化ポテンシャルで窒化したのちに、低い窒化ポテンシャルでの窒化を行い(どちらの窒化も、温度520〜610℃にて実施されている)、γ’相を析出させる窒化処理方法が開示されている。また、特許文献2には、鋼部材に対して600℃で窒化処理工程を行った後、冷却して、続いて425℃〜600℃の鉄窒化化合物相が成長しない雰囲気中に5分以上かけて通過させる通過工程を行って、γ’相を40%以上析出させることが開示されている。なお、特許文献3には、鋼部材に対して第1の窒化ゾーンで550〜650℃で窒化処理し、第2の窒化ゾーンで400〜550℃で窒化処理を行うこと、および、第2の窒化では、第1の窒化より温度の低い雰囲気ガスにさらされるためγ’相が析出することが開示されている。この特許文献3の実施例8では、第2の窒化を500℃、90分間の条件で実施している。 For example, in Patent Document 1, after nitriding with a high nitriding potential, nitriding with a low nitriding potential is performed (both nitriding is carried out at a temperature of 520 to 610 ° C.) to precipitate a γ'phase. The processing method is disclosed. Further, in Patent Document 2, a steel member is subjected to a nitriding treatment step at 600 ° C., then cooled, and subsequently, it takes 5 minutes or more in an atmosphere in which the iron nitride compound phase at 425 ° C. to 600 ° C. does not grow. It is disclosed that 40% or more of the γ'phase is precipitated by carrying out a passing step. In Patent Document 3, the steel member is subjected to nitriding treatment at 550 to 650 ° C. in the first nitriding zone and nitriding treatment at 400 to 550 ° C. in the second nitriding zone, and the second It is disclosed that in nitriding, the γ'phase is precipitated because it is exposed to an atmospheric gas having a temperature lower than that of the first nitriding. In Example 8 of Patent Document 3, the second nitriding is carried out under the conditions of 500 ° C. and 90 minutes.

WO2015/046593A1WO2015 / 046593A1 特開2016−194111号公報Japanese Unexamined Patent Publication No. 2016-194111 特開2018−59195号公報JP-A-2018-59195

窒化処理において窒化化合物層を生成させる工程では、窒化化合物層の生成速度(生産性)と最終的なγ’相を十分に生成させる観点から、600℃といった高温で処理する必要がある。特許文献1や特許文献3では、高温窒化処理で窒化化合物層を形成した後、2段目の窒化を行い、γ’相を析出させている。2段目の窒化には60〜120分程度がかかっている(特許文献3では、温度500℃の場合は90分かかっている)。 In the step of forming the nitrided compound layer in the nitriding treatment, it is necessary to perform the treatment at a high temperature of 600 ° C. from the viewpoint of the formation rate (productivity) of the nitrided compound layer and the sufficient formation of the final γ'phase. In Patent Document 1 and Patent Document 3, a nitride compound layer is formed by high-temperature nitriding treatment, and then nitriding in the second stage is performed to precipitate the γ'phase. It takes about 60 to 120 minutes for the second stage nitriding (in Patent Document 3, it takes 90 minutes when the temperature is 500 ° C.).

窒化処理鋼部材の生産性の観点からは、短時間の処理で、より多くのγ’相を析出させることが望まれる。そこで本発明は、ε相又はε相及びγ’相の窒化化合物層を生成させる1段目窒化処理工程と、窒化化合物層のγ’相分率を高める2段目窒化処理工程とを行う鋼部材の窒化処理方法において、短時間の2段目窒化処理でγ’相分率を大きく高めることができる、鋼部材の窒化処理方法を提供することを課題とする。 From the viewpoint of productivity of the nitrided steel member, it is desired to precipitate more γ'phases in a short time treatment. Therefore, in the present invention, a steel that performs a first-stage nitriding treatment step of forming ε-phase or ε-phase and γ'phase nitriding compound layers and a second-stage nitriding treatment step of increasing the γ'phase fraction of the nitride compound layer. An object of the present invention is to provide a method for nitriding a steel member, which can greatly increase the γ'phase fraction in a short second-stage nitriding treatment.

上記課題を解決するため、本発明によれば、鋼部材を、ε相又はε相及びγ’相の窒化化合物層が生成される窒化ポテンシャルの、550〜610℃の窒化ガス雰囲気中で窒化処理する1段目窒化処理工程と、前記1段目窒化処理工程に続いて、窒化ガス雰囲気中で、窒化処理された鋼部材を480〜520℃で10〜60分間保持することにより窒化処理する2段目窒化処理工程とを有する、鋼部材の窒化処理方法が提供される。 In order to solve the above problems, according to the present invention, a steel member is nitrided in a nitriding gas atmosphere at 550 to 610 ° C. having a nitriding potential at which ε-phase or ε-phase and γ'phase nitriding compound layers are formed. Following the first-stage nitriding treatment step and the first-stage nitriding treatment step, the nitrided steel member is held at 480 to 520 ° C. for 10 to 60 minutes in a nitriding gas atmosphere to perform nitriding treatment. Provided is a method for nitriding a steel member, which comprises a step nitriding process.

この窒化処理方法において、前記2段目窒化処理工程を、窒化ポテンシャルが0.2〜2.0atm−0.5の窒化ガス雰囲気中で実施しても良い。また、前記1段目窒化処理工程における窒化ポテンシャルが、0.2〜2.0atm−0.5であっても良い。また、前記2段目窒化処理工程を実施した後、前記鋼部材を室温まで冷却する冷却工程を更に有しても良い。また、前記2段目窒化処理工程で、前記窒化処理された鋼部材を480〜520℃で10〜45分間保持しても良い。また、前記2段目窒化処理工程で、前記窒化処理された鋼部材を490〜510℃で10〜45分間保持しても良い。 In this nitriding treatment method, the second-stage nitriding treatment step may be carried out in a nitriding gas atmosphere having a nitriding potential of 0.2 to 2.0 atm −0.5 . Further, the nitriding potential in the first-stage nitriding treatment step may be 0.2 to 2.0 atm −0.5 . Further, after performing the second-stage nitriding treatment step, a cooling step of cooling the steel member to room temperature may be further provided. Further, in the second-stage nitriding treatment step, the nitriding steel member may be held at 480 to 520 ° C. for 10 to 45 minutes. Further, in the second stage nitriding treatment step, the nitriding steel member may be held at 490 to 510 ° C. for 10 to 45 minutes.

また本発明によれば、鋼部材を、ε相又はε相及びγ’相の窒化化合物層が生成される窒化ポテンシャルの、550〜610℃の窒化ガス雰囲気中で窒化処理する1段目窒化処理工程と、前記1段目窒化処理工程に続いて、窒化処理された鋼部材を、前記窒化化合物層のγ’相分率を60分以内に30%以上高める条件で窒化処理する2段目窒化処理工程を有する、鋼部材の窒化処理方法が提供される。 Further, according to the present invention, a first-stage nitriding treatment in which a steel member is nitrided in a nitriding gas atmosphere at 550 to 610 ° C. at a nitriding potential at which ε-phase or ε-phase and γ'phase nitriding compound layers are formed. Following the step and the first-stage nitriding treatment step, the nitriding-treated steel member is nitrided under the condition that the γ'phase fraction of the nitrided compound layer is increased by 30% or more within 60 minutes. A method for nitriding a steel member having a processing step is provided.

本発明によれば、ε相又はε相及びγ’相の窒化化合物層を生成させる1段目窒化処理工程と、窒化化合物層のγ’相分率を高める2段目窒化処理工程とを行う鋼部材の窒化処理方法において、短時間の2段目窒化処理工程の実施によりγ’相分率を大きく高めることが可能となる。 According to the present invention, the first-stage nitriding treatment step of forming the ε-phase or ε-phase and γ'phase nitriding compound layers and the second-stage nitriding treatment step of increasing the γ'phase fraction of the nitrided compound layer are performed. In the nitriding treatment method for steel members, it is possible to greatly increase the γ'phase fraction by carrying out the second-stage nitriding treatment step in a short time.

熱処理装置の構成の例を示す説明図である。It is explanatory drawing which shows the example of the structure of the heat treatment apparatus. 本発明の窒化処理方法の一実施形態の温度及び窒化ポテンシャルKNのプロファイルを示す図である。It is a figure which shows the profile of the temperature and the nitriding potential KN of one Embodiment of the nitriding treatment method of this invention. 比較例1のワーク表層におけるN濃度とC濃度の深さ方向の分布を示すグラフである。It is a graph which shows the distribution in the depth direction of N concentration and C concentration in the work surface layer of Comparative Example 1. 比較例1のワーク表層をEBSD解析して作成した、γ’相とε相の分布を示すPhase MAPである。This is a Phase MAP showing the distribution of the γ'phase and the ε phase, which was created by EBSD analysis of the work surface layer of Comparative Example 1. 実施例1のワーク表層におけるN濃度とC濃度の深さ方向の分布を示すグラフである。6 is a graph showing the distribution of N concentration and C concentration in the depth direction on the work surface layer of Example 1. 実施例1のワーク表層をEBSD解析して作成した、γ’相とε相の分布を示すPhase MAPである。This is a Phase MAP showing the distribution of the γ'phase and the ε phase, which was prepared by EBSD analysis of the work surface layer of Example 1. 鉄−窒素−炭素系状態図である。It is an iron-nitrogen-carbon system phase diagram.

以下、本発明の技術思想及び具体的な実施の形態を、図を参照して説明する。 Hereinafter, the technical idea and specific embodiments of the present invention will be described with reference to the drawings.

本発明は、鋼部材をガス窒化処理することにより、鋼部材(母材)の表面に、γ’相を主成分とする窒化化合物層を形成するものである。 In the present invention, a nitriding compound layer containing the γ'phase as a main component is formed on the surface of the steel member (base material) by gas nitriding the steel member.

被処理体としての鋼部材に施される窒化処理は、例えば図1に示されるような熱処理装置1を用いて行われる。図1に示すように、熱処理装置1は、搬入部10、1段目窒化処理工程を実施する加熱室11、2段目窒化処理工程を実施する加熱室12、冷却室13、搬出コンベア14を有している。搬入部10に置かれたケース20内には、例えば自動変速機に用いられる歯車などの機械構造用炭素鋼鋼材または機械構造用合金鋼鋼材からなる鋼部材が収納されている。加熱室11の入り口側(図1において左側)には、開閉自在な扉21を備えた入口フード22が取り付けられている。 The nitriding treatment applied to the steel member as the object to be treated is performed using, for example, the heat treatment apparatus 1 as shown in FIG. As shown in FIG. 1, the heat treatment apparatus 1 includes a carry-in portion 10, a heating chamber 11 for carrying out the first-stage nitriding treatment step, a heating chamber 12, a cooling chamber 13, and a carry-out conveyor 14 for carrying out the second-stage nitriding treatment step. Have. In the case 20 placed in the carry-in portion 10, a steel member made of a carbon steel material for machine structure or an alloy steel material for machine structure such as a gear used for an automatic transmission is housed. An entrance hood 22 having a door 21 that can be opened and closed is attached to the entrance side (left side in FIG. 1) of the heating chamber 11.

<1段目窒化処理工程>
本発明の鋼部材の窒化処理方法における1段目窒化処理工程では、鋼部材を、ε相又はε相及びγ’相の窒化化合物層が生成される窒化ポテンシャルの、550〜610℃の窒化ガス雰囲気中で窒化処理する。鋼部材はFe(鉄)を主成分とし、通常炭素を0.02〜0.8質量%含有しており、ε相の生成にはこの炭素の存在が必要である。前記「主成分」とは、鋼部材中のFeの含有量が90質量%以上であることを意味し、好ましくは94質量%以上であることを意味し、より好ましくは96質量%以上であることを意味する。また、鋼部材は他に各種の目的に応じて、又は不可避不純物として、Si(ケイ素),Mn(マンガン),P(リン),S(硫黄),Ni(ニッケル),Cr(クロム),Cu(銅),Mo(モリブデン)等の元素を含有していてもよい。これら各々の鋼部材中の含有量は、Si,Mn及びMoについてはおおむね0.05〜2質量%、Ni,Cu及びCrはおおむね1質量%以下、P及びSについてはおおむね0.05質量%以下とされる。
<1st stage nitriding process>
In the first-stage nitriding treatment step in the nitriding treatment method for a steel member of the present invention, the steel member is subjected to a nitriding gas at 550 to 610 ° C. having a nitriding potential at which ε-phase or ε-phase and γ'phase nitriding compound layers are formed. Nitriding is performed in the atmosphere. The steel member contains Fe (iron) as a main component and usually contains 0.02 to 0.8% by mass of carbon, and the presence of this carbon is necessary for the formation of the ε phase. The "main component" means that the content of Fe in the steel member is 90% by mass or more, preferably 94% by mass or more, and more preferably 96% by mass or more. Means that. In addition, steel members can be used for various purposes or as unavoidable impurities, such as Si (silicon), Mn (manganese), P (phosphorus), S (sulfur), Ni (nickel), Cr (chromium), Cu. It may contain elements such as (copper) and Mo (molybdenum). The content of each of these steel members is approximately 0.05 to 2% by mass for Si, Mn and Mo, approximately 1% by mass or less for Ni, Cu and Cr, and approximately 0.05% by mass for P and S. It is said to be as follows.

なお、窒化処理する前に、被処理材(鋼部材)の汚れや油を除去するための前洗浄を行ってもよい。前洗浄としては、例えば、炭化水素系の洗浄液で油などを溶解させ、蒸発させることで脱脂乾燥させる真空洗浄、アルカリ系の洗浄液で脱脂処理するアルカリ洗浄などが好ましい。 Before the nitriding treatment, pre-cleaning may be performed to remove dirt and oil from the material to be treated (steel member). As the pre-cleaning, for example, vacuum cleaning in which oil or the like is dissolved in a hydrocarbon-based cleaning liquid and degreased and dried by evaporating, alkaline cleaning in which degreasing treatment is performed with an alkaline cleaning liquid, or the like is preferable.

上記窒化ポテンシャル(KN)は、窒化ガス雰囲気を構成するNHガスの分圧P(NH)とHガスの分圧P(H)との比率により、周知の下記式(1)で表される。
KN=P(NH)/P(H3/2 ・・・(1)
The nitriding potential (KN) is by the ratio of the partial pressure P of the NH 3 gas constituting the gas nitriding atmosphere (NH 3) with H 2 partial pressure of the gas P (H 2), a well-known formula (1) expressed.
KN = P (NH 3 ) / P (H 2 ) 3/2 ... (1)

1段目窒化処理工程における窒化ポテンシャルKNは、鋼部材(表面)にε相又はε相及びγ’相の窒化化合物層を形成させるため、好ましくは0.2〜2.0atm−0.5とされ、より好ましくは0.4〜1.0atm−0.5とされる。 The nitriding potential KN in the first-stage nitriding treatment step is preferably 0.2 to 2.0 atm −0.5 because a ε-phase or ε-phase and γ'phase nitriding compound layer is formed on the steel member (surface). It is more preferably 0.4 to 1.0 atm −0.5 .

また1段目窒化処理工程における窒化ガス雰囲気の温度は、550℃〜610℃である。550℃より低いと、窒化化合物層の形成速度が遅くなることと、化合物層中のε相の炭素濃度が高まり、2段目窒化処理工程でγ’相が得にくくなる。窒化ガス雰囲気の温度が610℃よりも高いと、鋼部材の軟化や歪の増大等が起こる可能性がある。これら窒化化合物層の形成速度や鋼部材の軟化等の防止の観点から、窒化ガス雰囲気の温度は570〜600℃であることが好ましい。 The temperature of the nitriding gas atmosphere in the first-stage nitriding treatment step is 550 ° C to 610 ° C. If it is lower than 550 ° C., the formation rate of the nitride compound layer becomes slow, the carbon concentration of the ε phase in the compound layer increases, and it becomes difficult to obtain the γ'phase in the second nitriding treatment step. If the temperature of the nitriding gas atmosphere is higher than 610 ° C., softening of the steel member, increase in strain, and the like may occur. From the viewpoint of the formation rate of the nitrided compound layer and the prevention of softening of the steel member, the temperature of the nitride gas atmosphere is preferably 570 to 600 ° C.

窒化ガス雰囲気は、Nガス、NHガス及びHガスにより構成され、所定の窒化ポテンシャルKNを達成するようにそれぞれの割合が調整される。 The nitriding gas atmosphere is composed of N 2 gas, NH 3 gas and H 2 gas, and the respective proportions are adjusted so as to achieve a predetermined nitriding potential KN.

また、1段目窒化処理工程の窒化処理の時間は、目的とする厚みの窒化化合物層が形成されるように制御すればよい。一般的には、窒化処理の時間は、1〜8時間の範囲内である。 Further, the nitriding time of the first-stage nitriding treatment step may be controlled so that a nitriding compound layer having a target thickness is formed. Generally, the nitriding time is in the range of 1 to 8 hours.

以上説明した1段目窒化処理工程の具体的な実施の形態について、図1の熱処理装置1を参照して説明する。加熱室11内には、ヒータ25が設けられている。加熱室11内には、Nガス、NHガス、Hガスからなる窒化ガスが導入され、その窒化ガスがヒータ25で所定の温度(上記の通り550〜610℃)に加熱されて、加熱室11内に搬入された鋼部材の1段目の窒化処理が行われる。加熱室11の天井には、加熱室11内の窒化ガスを攪拌し、鋼部材の加熱温度を均一化させるファン26が装着されている。加熱室11の出口側(図1において右側)には、開閉自在な中間扉27が取り付けられている。 A specific embodiment of the first-stage nitriding process described above will be described with reference to the heat treatment apparatus 1 of FIG. A heater 25 is provided in the heating chamber 11. A nitride gas composed of N 2 gas, NH 3 gas, and H 2 gas is introduced into the heating chamber 11, and the nitride gas is heated to a predetermined temperature (550 to 610 ° C. as described above) by the heater 25. The first-stage nitriding treatment of the steel member carried into the heating chamber 11 is performed. A fan 26 is mounted on the ceiling of the heating chamber 11 to agitate the nitriding gas in the heating chamber 11 to make the heating temperature of the steel member uniform. An openable and closable intermediate door 27 is attached to the outlet side (right side in FIG. 1) of the heating chamber 11.

かかる熱処理装置1において、鋼部材が収納されたケース20が、プッシャー等により、搬入部10から加熱室11内に搬入される。この搬入の前に、必要に応じて上記で説明した前洗浄を行ってもよい。また加熱室11は、ケース20の搬入の前に、窒化ガスが導入され、そのガスがヒータ25で所定の温度(上記の通り550〜610℃)に加熱される。このとき加熱室11内が均等に加熱されるように、ファン26を例えば1000rpmで回転させて、窒化ガスを撹拌する。 In the heat treatment apparatus 1, the case 20 in which the steel member is housed is carried into the heating chamber 11 from the carry-in portion 10 by a pusher or the like. Prior to this delivery, the pre-cleaning described above may be performed, if necessary. Further, in the heating chamber 11, a nitride gas is introduced before the case 20 is carried in, and the gas is heated to a predetermined temperature (550 to 610 ° C. as described above) by the heater 25. At this time, the fan 26 is rotated at, for example, 1000 rpm so that the inside of the heating chamber 11 is heated evenly, and the nitride gas is agitated.

そして、必要に応じて前洗浄された鋼部材を収納したケース20が加熱室11内に搬入された後、ファン26で窒化ガスを攪拌しながら加熱室11内に搬入された鋼部材の窒化処理が行われる。なお、鋼部材は加熱室11内に搬入された時点では室温であり、その状態では窒化は起こらない。また、鋼部材は室温であるので、一般的にこれを加熱室11内に入れると加熱室11内の温度が下がる。これをヒータ25で元々の設定温度に加熱する。その加熱とともに鋼部材自体の温度も上昇して加熱室11内の温度と同様の高温となり、窒化が開始する。 Then, after the case 20 containing the pre-cleaned steel member is carried into the heating chamber 11 as needed, the nitriding treatment of the steel member carried into the heating chamber 11 while stirring the nitride gas with the fan 26. Is done. The steel member is at room temperature when it is carried into the heating chamber 11, and nitriding does not occur in that state. Further, since the steel member is at room temperature, generally, when it is put in the heating chamber 11, the temperature in the heating chamber 11 is lowered. This is heated to the originally set temperature by the heater 25. Along with the heating, the temperature of the steel member itself rises to a high temperature similar to the temperature inside the heating chamber 11, and nitriding starts.

この1段目窒化処理工程では、加熱室11内の窒化ポテンシャルKNを特定の範囲に制御する。具体的には、例えばNHガスの分圧P(NH)及びHガスの分圧P(H)に関して、加熱室11内雰囲気のNHガスを赤外線式ガス分析計で、Hガスを熱伝導度式ガス分析計でオンラインで分析しながら、加熱室11に供給する窒化ガスの総量や流量比を自動調整することにより制御できる。これらのガスの分圧を制御することで、窒化ポテンシャルKNを0.2〜2.0atm−0.5になるように制御する。なお、1段目窒化処理工程の途中において、窒化ポテンシャルKNを変更してもよい。 In this first-stage nitriding treatment step, the nitriding potential KN in the heating chamber 11 is controlled within a specific range. Specifically, for example, NH respect 3 partial pressure of the gas P (NH 3) and H 2 gas partial pressure P (H 2), the NH 3 gas atmosphere in the heating chamber 11 by the infrared gas analyzer, H 2 It can be controlled by automatically adjusting the total amount and flow rate ratio of the nitrided gas supplied to the heating chamber 11 while analyzing the gas online with a thermal conductivity type gas analyzer. By controlling the partial pressure of these gases, the nitriding potential KN is controlled to be 0.2 to 2.0 atm −0.5 . The nitriding potential KN may be changed in the middle of the first-stage nitriding treatment step.

<2段目窒化処理工程>
1段目窒化処理工程に続けて、窒化化合物層表面のγ’相分率を高めるための2段目窒化処理工程を行う。2段目窒化処理工程では、窒化ガス雰囲気中で、1段目窒化処理工程で窒化処理された鋼部材について、当該部材の温度を480〜520℃に10〜60分間保持する。このような特定の温度に鋼部材を保持することで、1段目窒化処理工程で形成された窒化化合物層中のγ’相分率を短時間で大きく高めることができる。
<Second stage nitriding process>
Following the first-stage nitriding treatment step, a second-stage nitriding treatment step for increasing the γ'phase fraction on the surface of the nitride compound layer is performed. In the second-stage nitriding treatment step, the temperature of the steel member nitrided in the first-stage nitriding treatment step is maintained at 480 to 520 ° C. for 10 to 60 minutes in a nitride gas atmosphere. By holding the steel member at such a specific temperature, the γ'phase fraction in the nitride compound layer formed in the first-stage nitriding treatment step can be greatly increased in a short time.

特定の温度に保持することでγ’相分率を短時間で大きく高められる理由は定かではないが、本発明者は窒化ガス雰囲気から鋼部材へ侵入する窒素とともに、鋼部材自体にもともと含まれている炭素のふるまいが重要であるとして、以下のように考察している。1段目窒化処理工程の実施温度である550℃以上の領域で生成したε相が2段目窒化処理工程における480℃〜520℃の領域に置かれることで、炭素を固溶しているε相が、より高い炭素をもつε相と炭素濃度の低いγ’相の2相に相分離していると考えている。図7はTHERMO−CALC社のTHERMO−CALCにより計算した、窒化ポテンシャルKNを0.5で一定とした時の鉄−窒素−炭素系状態図である。図7から読み取れることは、温度が低下したときε相の安定領域が高炭素濃度側に移動していることであり、仮に図7中に示すように600℃の相境界付近にあるε相がいたとすると、このε相を500℃まで温度低下させた場合、より炭素濃度の高いε相と炭素濃度の低いγ’相に相分離することが予想され、相分離が起きるためには炭素の移動が必要であることがわかる。計算値と実測値の一致はまだ不十分であるものの、550℃以上で生成したε相が480〜520℃で保持することで減少し、代わりにγ’相が増加しているのは、温度変化によるε相の炭素固溶量の変化が原因であり、γ’相分率を高めるために10〜60分保持する必要があるのは、相分離のための炭素の移動に必要な時間であると考えられる。 Although it is not clear why the γ'phase fraction can be greatly increased in a short time by keeping the temperature at a specific temperature, the present inventor originally contains nitrogen that penetrates into the steel member from the nitride gas atmosphere as well as the steel member itself. Considering that the behavior of carbon is important, it is considered as follows. The ε phase generated in the region of 550 ° C. or higher, which is the implementation temperature of the first-stage nitriding treatment step, is placed in the region of 480 ° C. to 520 ° C. in the second-stage nitriding treatment step to dissolve carbon. It is considered that the phase is separated into two phases, an ε phase having a higher carbon and a γ'phase having a lower carbon concentration. FIG. 7 is an iron-nitrogen-carbon phase diagram when the nitriding potential KN is constant at 0.5, calculated by THERMO-CALC of THERMO-CALC. What can be read from FIG. 7 is that the stable region of the ε phase shifts to the high carbon concentration side when the temperature drops, and as shown in FIG. 7, the ε phase near the phase boundary at 600 ° C. If so, when the temperature of this ε phase is lowered to 500 ° C, it is expected that the phase will be separated into the ε phase with a higher carbon concentration and the γ'phase with a lower carbon concentration. It turns out that movement is necessary. Although the agreement between the calculated value and the measured value is still insufficient, it is the temperature that the ε phase generated at 550 ° C or higher decreases by holding it at 480 to 520 ° C, and the γ'phase increases instead. Due to the change in the carbon solid solution amount of the ε phase due to the change, it is necessary to hold for 10 to 60 minutes in order to increase the γ'phase fraction, which is the time required for carbon transfer for phase separation. It is believed that there is.

2段目窒化処理工程において、鋼部材を480℃より低い温度で保持すると、相分離の進行速度が低下し、長時間保持すればγ’相分率を高めることができるものの、短時間でγ’相分率を高めることができない。一方鋼部材を保持する温度が520℃より高いと、ε相が安定であり、相分離が発生しにくく、短時間でγ’相分率を高めることができない。短時間でγ’相分率を大きく高める観点から、鋼部材を490〜510℃で保持することが好ましい。 In the second stage nitriding process, if the steel member is held at a temperature lower than 480 ° C., the progress rate of phase separation decreases, and if it is held for a long time, the γ'phase fraction can be increased, but γ in a short time. 'The phase fraction cannot be increased. On the other hand, when the temperature at which the steel member is held is higher than 520 ° C., the ε phase is stable, phase separation is unlikely to occur, and the γ'phase fraction cannot be increased in a short time. From the viewpoint of greatly increasing the γ'phase fraction in a short time, it is preferable to hold the steel member at 490 to 510 ° C.

窒化処理された鋼部材を以上説明した所定の温度で保持する時間について、10分間で相分離が大きく進行し、以後はほとんど変化しない。2段目窒化処理工程を短時間の処理とするため、保持時間の上限は60分とする。以上から、保持時間は10〜60分間とする。短時間でγ’相分率を大きく高める観点から、保持時間は10〜45分間とすることが好ましい。 Regarding the time for holding the nitrided steel member at the predetermined temperature described above, the phase separation greatly progresses in 10 minutes, and there is almost no change thereafter. Since the second-stage nitriding process is a short-time process, the upper limit of the holding time is 60 minutes. From the above, the holding time is 10 to 60 minutes. From the viewpoint of greatly increasing the γ'phase fraction in a short time, the holding time is preferably 10 to 45 minutes.

なお、2段目窒化処理工程の窒化ガス雰囲気の窒化ポテンシャルKNは、α相が生成しないよう、0.2〜2.0atm−0.5とするのが好ましい。なお窒化ガス雰囲気中で鋼部材を480〜520℃で保持することにより、γ’相分率がどこまで高くなるかは、窒化ポテンシャルKNにより決まり、鋼部材に要求されるγ’相分率に応じて窒化ポテンシャルKNを調整する。γ’相分率を高くする観点から、窒化ポテンシャルKNは0.25〜0.55であることがより好ましく、0.25〜0.45であることが特に好ましい。 The nitriding potential KN of the nitriding gas atmosphere in the second-stage nitriding treatment step is preferably 0.2 to 2.0 atm −0.5 so that the α phase is not generated. How high the γ'phase fraction is by holding the steel member at 480 to 520 ° C. in a nitriding gas atmosphere is determined by the nitriding potential KN, and depends on the γ'phase fraction required for the steel member. To adjust the nitriding potential KN. From the viewpoint of increasing the γ'phase fraction, the nitriding potential KN is more preferably 0.25 to 0.55, and particularly preferably 0.25 to 0.45.

以上説明した2段目窒化処理工程の具体的な実施の形態について、図1の熱処理装置1を参照して説明する。例えば、加熱室12内に導入する窒化ガスの総量や流量比を調整することによって、α相が生成しないように、窒化ポテンシャルKNが0.2〜2.0atm−0.5になるように制御する(なお、2段目窒化処理工程の途中において、窒化ポテンシャルKNを変更してもよい。)。そして、加熱室12内をヒータ28で加熱し、480〜520℃としておく。この加熱室12内に、加熱室11で1段目の窒化処理を受けた鋼部材を搬入する。鋼部材は加熱室11内と同様の温度(550〜610℃)であり、それより低温の加熱室12内で徐々に480〜520℃の範囲に降温し、たとえばその温度で20分保持される。 A specific embodiment of the second-stage nitriding process described above will be described with reference to the heat treatment apparatus 1 of FIG. For example, by adjusting the total amount and flow rate ratio of the nitriding gas introduced into the heating chamber 12, the nitriding potential KN is controlled to be 0.2 to 2.0 atm −0.5 so that the α phase is not generated. (Note that the nitriding potential KN may be changed in the middle of the second-stage nitriding treatment step). Then, the inside of the heating chamber 12 is heated by the heater 28 to keep the temperature at 480 to 520 ° C. The steel member that has undergone the first-stage nitriding treatment in the heating chamber 11 is carried into the heating chamber 12. The steel member has the same temperature (550 to 610 ° C.) as in the heating chamber 11, and gradually lowers to the range of 480 to 520 ° C. in the heating chamber 12 at a lower temperature, and is held at that temperature for 20 minutes, for example. ..

窒化処理を行う間は、加熱室12内のファン29を例えば1000rpmで回転させ、窒化処理ガスを均一に拡散させる。 During the nitriding treatment, the fan 29 in the heating chamber 12 is rotated at, for example, 1000 rpm to uniformly diffuse the nitriding treatment gas.

以上では、加熱室を2つ有する熱処理装置で1段目及び2段目窒化処理を行う態様を説明したが、加熱室を1つとして、この中で温度調整することで、1段目及び2段目窒化処理を順次実施してもよい。 In the above, the mode in which the first-stage and second-stage nitriding treatments are performed by the heat treatment apparatus having two heating chambers has been described. However, by adjusting the temperature in one heating chamber, the first-stage and second-stage nitriding treatments are performed. The step nitriding treatment may be carried out sequentially.

<冷却工程>
2段目窒化処理工程が終了すると、冷却工程が行われる。冷却工程では、2段目窒化処理を受けた鋼部材を室温まで冷却する。この工程では500℃程度となった高温の鋼部材を冷却するので、当該工程は専用の冷却室(閉鎖空間)にて実施することが好ましい。また冷却工程は、酸化防止のため窒素ガスなどの不活性ガス雰囲気下で実施すること(空冷)が好ましい。
<Cooling process>
When the second stage nitriding process is completed, a cooling process is performed. In the cooling step, the steel member subjected to the second stage nitriding treatment is cooled to room temperature. Since this step cools the steel member having a high temperature of about 500 ° C., it is preferable to carry out the step in a dedicated cooling chamber (closed space). Further, the cooling step is preferably carried out in an atmosphere of an inert gas such as nitrogen gas (air cooling) to prevent oxidation.

冷却工程の実施方法としては、冷却用の油を用意しておき、これに鋼部材を浸漬することで、空冷以上の冷却速度で急冷してもよい。2段目窒化処理においてε相とγ’相への相分離が十分に進行していなかった場合は、冷却の際にも相分離が進行する(つまり、γ’相分率が上昇する)ことが考えられる。一度に複数の鋼部材を窒化処理する場合には、冷却工程において鋼部材が受ける冷却履歴には微差があり、そのため冷却後の鋼部材のγ’分率にばらつきが生じうる。そのような場合には油を利用した急冷により、相分離を実質的に進行させないことが考えられる。しかし本発明においては、2段目窒化処理工程において、相分離が好適に進行する温度域で十分な時間鋼部材を保持するので、鋼部材の相分離は実質的に完了しており、前記のような急冷を行う必要はない。 As a method of carrying out the cooling step, cooling oil may be prepared and a steel member may be immersed in the oil for rapid cooling at a cooling rate higher than that of air cooling. If the phase separation into the ε phase and the γ'phase has not progressed sufficiently in the second-stage nitriding treatment, the phase separation also proceeds during cooling (that is, the γ'phase fraction increases). Can be considered. When a plurality of steel members are nitrided at one time, there is a slight difference in the cooling history received by the steel members in the cooling step, and therefore, the γ'fraction of the steel members after cooling may vary. In such a case, it is conceivable that the phase separation does not substantially proceed by quenching using oil. However, in the present invention, in the second-stage nitriding process, the steel member is held for a sufficient time in the temperature range in which the phase separation is preferably advanced, so that the phase separation of the steel member is substantially completed. There is no need to perform such quenching.

以上説明した冷却工程の具体的な実施の形態について、図1の熱処理装置1を参照して説明する。例えば、2段目窒化処理工程を経た鋼部材が収納されたケース20が、加熱室12から冷却室13内に搬入される。冷却室13内は室温の窒素ガス雰囲気とされており、この中で鋼部材は室温まで冷却される。 A specific embodiment of the cooling step described above will be described with reference to the heat treatment apparatus 1 of FIG. For example, the case 20 in which the steel member that has undergone the second-stage nitriding treatment step is housed is carried from the heating chamber 12 into the cooling chamber 13. The inside of the cooling chamber 13 has a nitrogen gas atmosphere at room temperature, in which the steel members are cooled to room temperature.

図2は、以上説明した本発明の鋼部材の窒化処理方法の一実施形態の温度及び窒化ポテンシャルKNのプロファイルを示す。例えば、鋼部材の装入前には、加熱室11内を約600℃に昇温し、窒化ポテンシャルKNを0.4atm−0.5とする。室温の鋼部材が収納されたケース20が加熱室11内に搬入され、600℃の窒化ガス雰囲気中で2時間保持される。鋼部材は加熱室11内で加熱されて昇温していき、高温になって窒化が開始する。 FIG. 2 shows the profile of the temperature and the nitriding potential KN of one embodiment of the nitriding treatment method for steel members of the present invention described above. For example, before charging the steel member, the temperature inside the heating chamber 11 is raised to about 600 ° C., and the nitriding potential KN is set to 0.4 atm −0.5 . The case 20 in which the steel member at room temperature is housed is carried into the heating chamber 11 and held in a nitride gas atmosphere at 600 ° C. for 2 hours. The steel member is heated in the heating chamber 11 to raise the temperature, and when the temperature rises, nitriding starts.

1段目窒化処理を受けた鋼部材を、室内温度を500℃、窒化ポテンシャルKNを0.4atm−0.5とした加熱室12に搬入する。加熱室12内で鋼部材は室内温度まで降温し(2分程度で降温が完了する)、その温度で18分保持される(合計で20分、鋼部材が加熱室12内に保持される)。 The steel member subjected to the first-stage nitriding treatment is carried into a heating chamber 12 having a chamber temperature of 500 ° C. and a nitriding potential KN of 0.4 atm −0.5 . The steel member is cooled to the room temperature in the heating chamber 12 (the temperature is lowered in about 2 minutes) and held at that temperature for 18 minutes (a total of 20 minutes, the steel member is held in the heating chamber 12). ..

続いて鋼部材を加熱室12から冷却室13に搬入する。冷却室13内は室温の窒素ガス雰囲気とされている。ここで鋼部材は室温まで冷却される。 Subsequently, the steel member is carried from the heating chamber 12 into the cooling chamber 13. The inside of the cooling chamber 13 has a nitrogen gas atmosphere at room temperature. Here the steel member is cooled to room temperature.

以上説明した本発明の鋼部材の窒化処理方法の条件で窒化処理が行われることにより、表面にγ’相を主成分とする窒化化合物層を有する窒化鋼部材を得ることができる。こうして得られた鋼部材は、内部に窒素拡散層および窒化物が形成されて強化されると共に、表面にγ’相リッチな窒化化合物層が形成されて、十分な耐ピッチング性と曲げ疲労強度を有する。 By performing the nitriding treatment under the conditions of the nitriding treatment method for the steel member of the present invention described above, it is possible to obtain a nitriding steel member having a nitride compound layer containing the γ'phase as a main component on the surface. The steel member thus obtained is strengthened by forming a nitrogen diffusion layer and a nitride inside, and a γ'phase-rich nitride compound layer is formed on the surface to provide sufficient pitching resistance and bending fatigue strength. Have.

本発明によれば、ε相又はε相及びγ’相の窒化化合物層を生成させる1段目窒化処理工程と、窒化化合物層のγ’相分率を高める2段目窒化処理工程とを行う窒化処理方法において、特に2段目窒化処理工程を短時間で行うことが可能となる。 According to the present invention, a first-stage nitriding process for forming ε-phase or ε-phase and γ'phase nitriding compound layers and a second-stage nitriding process for increasing the γ'phase fraction of the nitride compound layer are performed. In the nitriding treatment method, in particular, the second-stage nitriding treatment step can be performed in a short time.

このような効果の点から、本発明は、
「鋼部材を、ε相又はε相及びγ’相の窒化化合物層が生成される窒化ポテンシャルの、550〜610℃の窒化ガス雰囲気中で窒化処理する1段目窒化処理工程と、前記1段目窒化処理工程に続いて、窒化処理された鋼部材を、前記窒化化合物層のγ’相分率を60分以内に30%以上(好ましくは35〜70%)高める条件で窒化処理する2段目窒化処理工程とを有する、鋼部材の窒化処理方法。」
ととらえることもできる。
From such an effect, the present invention
"The first-stage nitriding process of nitriding a steel member in a nitriding gas atmosphere at 550 to 610 ° C. and the first-stage nitriding process having a nitriding potential at which ε-phase or ε-phase and γ'phase nitriding compound layers are formed. Following the nitriding treatment step, a two-stage nitriding treatment is performed on the nitrided steel member under the condition that the γ'phase fraction of the nitrided compound layer is increased by 30% or more (preferably 35 to 70%) within 60 minutes. A method for nitriding a steel member, which comprises a nitriding process. "
You can also catch it.

また、浸炭や浸炭窒化処理と比較して、本発明の窒化処理はオーステナイト変態温度以下での処理であるため、歪量が小さい。また、浸炭・浸炭窒化処理で必須工程である焼き入れ工程が省略できるため、歪ばらつき量も小さい。その結果、高強度且つ低歪の窒化鋼部材を得ることができる。 Further, as compared with the carburizing or carburizing nitriding treatment, the nitriding treatment of the present invention is a treatment at an austenite transformation temperature or lower, so that the amount of strain is small. Further, since the quenching step, which is an essential step in the carburizing / carburizing nitriding treatment, can be omitted, the amount of strain variation is small. As a result, a nitrided steel member having high strength and low strain can be obtained.

なお、特許文献3は連続処理炉であるが、このような連続処理炉は、同じ条件で運転し続けることになる。この場合、仮に窒化処理すべき鋼部材が複数種類(鋼部材自体の組成や構造や、求められるγ’相分率の点で複数種類、という意味)ある場合、これを連続処理炉で処理しようとすると、以下のようなプロセスが必要となる。まず、これまで一定条件で連続処理してきた鋼部材の処理を完了して炉から取りだす。次に、異なる条件で処理すべき鋼部材を処理炉に搬入する。そしてこれまでから条件を変えて、窒化処理を行う(バッチ式処理のようになる)。このようなプロセスを連続処理炉で行うことは非常に非効率的であり、コストの点で問題がある。 Although Patent Document 3 is a continuous processing furnace, such a continuous processing furnace will continue to operate under the same conditions. In this case, if there are multiple types of steel members to be nitrided (meaning multiple types in terms of the composition and structure of the steel members themselves and the required γ'phase fraction), let's process them in a continuous processing furnace. Then, the following process is required. First, the processing of the steel member, which has been continuously processed under certain conditions, is completed and taken out from the furnace. Next, the steel members to be processed under different conditions are carried into the processing furnace. Then, the nitriding process is performed by changing the conditions from now on (like a batch process). It is very inefficient to carry out such a process in a continuous processing furnace, and there is a problem in terms of cost.

本発明の窒化処理方法をバッチ式で運転すれば、鋼部材が複数種類ある場合、それぞれにあわせて条件を変更して運転することができる。このため本発明によれば、多品種少量生産を適切なコストで好適に実施できる。 If the nitriding treatment method of the present invention is operated in a batch manner, when there are a plurality of types of steel members, the conditions can be changed according to each type. Therefore, according to the present invention, high-mix low-volume production can be suitably carried out at an appropriate cost.

また、窒化ポテンシャルKNはアンモニアと水素の分圧比であり、KNを小さくするためには、高価な水素を多く使う必要がある。例えば特許文献1は2段目窒化処理のKNを0.16〜0.25としているが、本発明ではそこまでKNを小さくしなくとも、短時間でγ’相分率を大きく高めることができ、コスト的に有利である。 Further, the nitriding potential KN is a partial pressure ratio of ammonia and hydrogen, and in order to reduce KN, it is necessary to use a large amount of expensive hydrogen. For example, Patent Document 1 sets the KN of the second-stage nitriding treatment to 0.16 to 0.25, but in the present invention, the γ'phase fraction can be greatly increased in a short time without reducing the KN to that extent. , It is advantageous in terms of cost.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although preferred embodiments of the present invention have been described above, the present invention is not limited to such examples. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the technical idea described in the claims, and of course, the technical scope of the present invention also includes them. It is understood that it belongs to.

[比較例1]
鋼部材(鋼種Aとする)である板状試験片(30mm×40mm、厚み5mm)をワーク(被処理体)として、窒化処理を行った。1段目窒化処理工程では、窒化ポテンシャルKNが0.4atm−0.5である、600℃の窒化ガス雰囲気中で2時間保持して窒化処理した。
[Comparative Example 1]
Nitriding was performed using a plate-shaped test piece (30 mm × 40 mm, thickness 5 mm) which is a steel member (steel type A) as a work (workpiece). In the first-stage nitriding treatment step, the nitriding treatment was carried out by holding for 2 hours in a nitriding gas atmosphere at 600 ° C. having a nitriding potential KN of 0.4 atm −0.5 .

続けて、ワークを冷却チャンバーにて室温まで冷却した(2段目窒化処理は行わなかった)。冷却チャンバーにワーク1個を入れて冷却を行ったので、この場合の冷却速度は非常に速く、冷却開始から2分でワーク温度が400℃以下となった。以降の比較例及び実施例においても同様である。 Subsequently, the work was cooled to room temperature in the cooling chamber (the second stage nitriding treatment was not performed). Since one work was put in the cooling chamber for cooling, the cooling rate in this case was very fast, and the work temperature became 400 ° C. or less in 2 minutes from the start of cooling. The same applies to the subsequent comparative examples and examples.

なお、鋼種Aの合金組成は、以下の表1のとおりである。
The alloy composition of steel type A is as shown in Table 1 below.

また、上記窒化処理及び以降の比較例2〜11及び実施例1〜4の窒化処理は内容積約300Lの炉で行った。各窒化ポテンシャルKNに応じたガス組成は以下の表2のとおりである。
Further, the above nitriding treatment and the subsequent nitriding treatments of Comparative Examples 2 to 11 and Examples 1 to 4 were carried out in a furnace having an internal volume of about 300 L. The gas composition according to each nitriding potential KN is shown in Table 2 below.

[比較例2]
比較例1で用いたのと同様のワークを比較例1と同様な条件で1段目窒化処理工程に付した。
続けて、ワークを、窒化ポテンシャルKNが0.4atm−0.5である、550℃の窒化ガス雰囲気中に5分置き、ワーク温度を550℃に降温した。
次に、そのワークを冷却チャンバーにて室温まで急冷した。
[Comparative Example 2]
A work similar to that used in Comparative Example 1 was subjected to the first-stage nitriding process under the same conditions as in Comparative Example 1.
Subsequently, the work was placed in a nitriding gas atmosphere at 550 ° C. having a nitriding potential KN of 0.4 atm −0.5 for 5 minutes, and the work temperature was lowered to 550 ° C.
Next, the work was rapidly cooled to room temperature in a cooling chamber.

[比較例3〜11、実施例1〜4]
比較例1で用いたのと同様のワークを比較例1と同様な条件で1段目窒化処理工程に付し、続けて急冷(2段目窒化処理工程無し)又は後記表3に示す様々な温度履歴で2段目窒化処理工程および冷却工程を実施した。1段目窒化処理工程の窒化ガス雰囲気の温度、窒化ポテンシャルKN、1段目窒化処理工程の時間(保持時間)、2段目窒化処理工程の鋼部材の保持温度T、鋼部材の温度が保持温度Tまで降温するのに要する時間、保持温度Tでの保持時間、窒化ポテンシャルKN、鋼部材が480〜520℃の温度範囲にある時間及び冷却方法を後記表3に示す。
[Comparative Examples 3 to 11, Examples 1 to 4]
The same workpieces used in Comparative Example 1 were subjected to the first-stage nitriding process under the same conditions as in Comparative Example 1, followed by rapid cooling (without the second-stage nitriding process), or various types shown in Table 3 below. The second stage nitriding process and the cooling process were carried out in the temperature history. The temperature of the nitriding gas atmosphere in the first-stage nitriding process, the nitriding potential KN, the time (holding time) in the first-stage nitriding process, the holding temperature T of the steel member in the second-stage nitriding process, and the temperature of the steel member are maintained. The time required to lower the temperature to the temperature T, the holding time at the holding temperature T, the nitriding potential KN, the time during which the steel member is in the temperature range of 480 to 520 ° C., and the cooling method are shown in Table 3 below.

なお表3の読み方の例として、比較例3を説明する。比較例3では、比較例1と同様な条件で1段目窒化処理工程が実施された。続けて2段目窒化処理工程として、窒化ポテンシャルKNが0.4atm−0.5である、550℃の窒化ガス雰囲気中にワークを5分置き、ワーク温度を550℃に降温させ、さらに550℃のままで5分保持した。そして冷却工程として、実施例1と同様の急冷を実施した。 Comparative Example 3 will be described as an example of how to read Table 3. In Comparative Example 3, the first-stage nitriding treatment step was carried out under the same conditions as in Comparative Example 1. Subsequently, as the second-stage nitriding treatment step, the work is placed in a nitriding gas atmosphere at 550 ° C. having a nitriding potential KN of 0.4 atm- 0.5 for 5 minutes, the work temperature is lowered to 550 ° C., and further 550 ° C. It was held for 5 minutes. Then, as a cooling step, the same quenching as in Example 1 was carried out.

<γ’相分率の測定>
実施例1〜4及び比較例1〜11で得られた窒化処理済みワークのγ’相分率を、EBSP解析により求めた。解析には、FE-SEM(型式:JSM7001F JEOL製)に実装されたEBSP(Electron Back Scatter diffraction Pattern)装置を用いた。EBSP法はSEM試料室内で70°前後と大きく傾斜した試料に電子線を照射した際に電子線後方散乱回折により発生する菊池パターンを蛍光スクリーンに投影しTVカメラ等で取込み、さらにそのパターンの指数づけを行いその照射点の結晶方位の測定を行う方法である。ダイヤモンド(粒径1μm)バフで鏡面研磨した板状試験片を、さらにコロイダルシリカ砥粒(粒径0.05μm)で研磨仕上げしたものを分析に使用した。解析ソフトウェア(OIM Analysis)を使用して事前に考慮した結晶構造と得られたパターンを基に相を分離したPhase MAPを作成し(比較例1のものを図4に、実施例1のものを図6に示す)、窒化化合物層中のεとγ’の各相の分率を解析した。
<Measurement of γ'phase fraction>
The γ'phase fractions of the nitrided workpieces obtained in Examples 1 to 4 and Comparative Examples 1 to 11 were determined by EBSP analysis. For the analysis, an EBSP (Electron Backscatter Diffraction Pattern) apparatus mounted on an FE-SEM (model: JSM7001F manufactured by JEOL) was used. In the EBSP method, the Kikuchi pattern generated by electron backscatter diffraction when an electron beam is irradiated to a sample with a large inclination of about 70 ° in the SEM sample chamber is projected on a fluorescent screen and captured by a TV camera or the like, and the index of the pattern is further measured. This is a method of measuring the crystal orientation of the irradiation point. A plate-shaped test piece mirror-polished with a diamond (particle size 1 μm) buff and further polished with colloidal silica abrasive grains (particle size 0.05 μm) was used for analysis. Using analysis software (OIM Analysis), a Phase MAP was created in which the phases were separated based on the crystal structure considered in advance and the obtained pattern (Comparative Example 1 is shown in FIG. 4, and Example 1 is shown). (Shown in FIG. 6), the fractions of each phase of ε and γ'in the nitride compound layer were analyzed.

以上の結果及び窒化処理条件を、下記表3に示す。
The above results and nitriding treatment conditions are shown in Table 3 below.

比較例1〜7及び実施例1・2は1段目窒化処理工程の窒化処理条件が同一である。そして比較例1は1段目窒化処理工程後ワークを急冷して、冷却開始から2分でワーク温度が400℃以下となっている。400℃以下という温度領域ではγ’相の生成は実質的に起きないので、比較例1で得られたワークのγ’相分率は、比較例2以降の例における1段目窒化処理工程直後のワークのγ’相分率であると言える。表3の結果から、実施例1・2の窒化処理条件にて、2段目窒化処理工程によりγ’相分率が35%以上高まった。同様のことが、比較例8・9及び実施例3、比較例10・11及び実施例4についても言える。このように、600℃といった高温での1段目窒化処理工程後、500℃程度で2段目窒化処理工程を実施することで、γ’相を短時間で多く生成させることができる。 Comparative Examples 1 to 7 and Examples 1 and 2 have the same nitriding conditions in the first-stage nitriding process. In Comparative Example 1, the work is rapidly cooled after the first-stage nitriding process, and the work temperature is 400 ° C. or lower 2 minutes after the start of cooling. Since the formation of the γ'phase does not substantially occur in the temperature range of 400 ° C. or lower, the γ'phase fraction of the work obtained in Comparative Example 1 is immediately after the first-stage nitriding treatment step in the examples after Comparative Example 2. It can be said that it is the γ'phase fraction of the work. From the results in Table 3, the γ'phase fraction was increased by 35% or more by the second-stage nitriding treatment step under the nitriding treatment conditions of Examples 1 and 2. The same can be said for Comparative Examples 8 and 9, Example 3, Comparative Examples 10 and 11, and Example 4. As described above, by carrying out the second-stage nitriding treatment step at about 500 ° C. after the first-stage nitriding treatment step at a high temperature of 600 ° C., a large amount of γ'phase can be generated in a short time.

図3に、比較例1のワーク表層における電子プローブマイクロアナライザ(EPMA)によるN濃度とC濃度の深さ方向の分布を示し、図5に、実施例1のワーク表層におけるEPMAによるN濃度とC濃度の深さ方向の分布を示す。 FIG. 3 shows the distribution of N concentration and C concentration in the depth direction by the electron probe microanalyzer (EPMA) on the work surface layer of Comparative Example 1, and FIG. 5 shows the N concentration and C concentration by EPMA on the work surface layer of Example 1. The distribution in the depth direction of the concentration is shown.

図3、4と図5、6は、1段目窒化処理工程後に室温まで急冷したとき(比較例1)と、500℃付近で所定時間保持(2段目窒化処理工程)したとき(実施例1)のγ’相分率の違いを表している。窒化化合物層のうち、比較的うすく(白く)見えている部分がγ’相、比較的濃く(黒く)見えている部分がε相である。比較例1では、ε相中の炭素濃度が低く、なだらかな分布をしている(深さ0.00〜0.015mmくらいのところまでほぼ同量の炭素が検出される)。一方、実施例1では、ε相中の炭素濃度が高まって、炭素が濃縮していることが示されている(深さ0.01mmくらいまでの炭素濃度が減って、そこから深さ0.015mmくらいまでの炭素濃度が増えた)。500℃付近で保持(2段目窒化処理工程)することによって、窒化化合物層中で炭素が移動し、ε相からγ’相+ε相への相分離が起きていると考えられる。 3 and 4 and 5 and 6 show the case of quenching to room temperature after the first-stage nitriding process (Comparative Example 1) and the case of holding at around 500 ° C. for a predetermined time (second-stage nitriding process) (Example). It shows the difference in the γ'phase fraction of 1). Of the nitride compound layer, the portion that looks relatively light (white) is the γ'phase, and the portion that looks relatively dark (black) is the ε phase. In Comparative Example 1, the carbon concentration in the ε phase is low and the distribution is gentle (almost the same amount of carbon is detected up to a depth of about 0.00 to 0.015 mm). On the other hand, in Example 1, it is shown that the carbon concentration in the ε phase is increased and the carbon is concentrated (the carbon concentration is decreased to a depth of about 0.01 mm, and the depth is 0. The carbon concentration has increased up to about 015 mm). It is considered that carbon is transferred in the nitrided compound layer by holding the mixture at around 500 ° C. (second nitriding treatment step), and phase separation from the ε phase to the γ'phase + ε phase occurs.

[比較例12〜14、実施例5〜7]
各種のワークを下記表4に示す条件で1段目窒化処理工程に付し、続けて急冷(2段目窒化処理工程無し)又は下記表4に示す様々な温度履歴で2段目窒化処理工程および冷却工程を実施した。なお、1段目窒化処理工程については、全体(2時間)のうち最初の1時間の窒化ポテンシャルKNを2.0atm−0.5とし、後半の1時間の窒化ポテンシャルKNを0.4atm−0.5とした。各実施例及び比較例で使用した鋼種、1段目窒化処理工程の窒化ガス雰囲気の温度、窒化ポテンシャルKN、1段目窒化処理工程の時間(保持時間)、2段目窒化処理工程の鋼部材の保持温度T、鋼部材の温度が保持温度Tまで降温するのに要する時間、保持温度Tでの保持時間、窒化ポテンシャルKN、鋼部材が480〜520℃の温度範囲にある時間及び冷却方法を下記表4に示す。
[Comparative Examples 12 to 14, Examples 5 to 7]
Various workpieces are subjected to the first-stage nitriding process under the conditions shown in Table 4 below, followed by quenching (without the second-stage nitriding process) or the second-stage nitriding process with various temperature histories shown in Table 4 below. And a cooling step was carried out. Regarding the first-stage nitriding process, the nitriding potential KN for the first hour of the whole (2 hours) is 2.0 atm −0.5, and the nitriding potential KN for the latter 1 hour is 0.4 atm −0. It was set to 5.5 . Steel type used in each Example and Comparative Example, temperature of nitriding gas atmosphere in first-stage nitriding process, nitriding potential KN, time (holding time) in first-stage nitriding process, steel member in second-stage nitriding process The holding temperature T, the time required for the temperature of the steel member to cool down to the holding temperature T, the holding time at the holding temperature T, the nitriding potential KN, the time during which the steel member is in the temperature range of 480 to 520 ° C., and the cooling method. It is shown in Table 4 below.

また、表4に示した各実施例及び比較例で使用した鋼種の合金組成は、以下の表5のとおりである。
The alloy compositions of the steel types used in each of the Examples and Comparative Examples shown in Table 4 are as shown in Table 5 below.

比較例12〜15及び実施例5〜7における窒化処理は内容積約5000Lの炉で行い、各窒化ポテンシャルKNに応じたガス組成は以下の表6のとおりである。
The nitriding treatments in Comparative Examples 12 to 15 and Examples 5 to 7 were performed in a furnace having an internal volume of about 5000 L, and the gas composition according to each nitriding potential KN is as shown in Table 6 below.

本発明は、鋼部材の窒化技術として有用である。 The present invention is useful as a nitriding technique for steel members.

1 熱処理装置
10 搬入部
11 加熱室
12 加熱室
13 冷却室
14 搬出コンベア
20 ケース
21 扉
22 入口フード
25 ヒータ
26 ファン
27 扉
28 ヒータ
29 ファン
1 Heat treatment device 10 Carry-in part 11 Heating chamber 12 Heating chamber 13 Cooling chamber 14 Carry-out conveyor 20 Case 21 Door 22 Entrance hood 25 Heater 26 Fan 27 Door 28 Heater 29 Fan

Claims (7)

鋼部材を、ε相又はε相及びγ’相の窒化化合物層が生成される窒化ポテンシャルの、550〜610℃の窒化ガス雰囲気中で窒化処理する1段目窒化処理工程と、
前記1段目窒化処理工程に続いて、窒化ガス雰囲気中で、窒化処理された鋼部材を480〜520℃で10〜60分間保持することにより窒化処理する2段目窒化処理工程とを有する、鋼部材の窒化処理方法。
A first-stage nitriding step of nitriding a steel member in a nitriding gas atmosphere at 550 to 610 ° C. with a nitriding potential at which ε-phase or ε-phase and γ'phase nitriding compound layers are formed.
Following the first-stage nitriding treatment step, there is a second-stage nitriding treatment step in which the nitriding-treated steel member is held at 480 to 520 ° C. for 10 to 60 minutes in a nitriding gas atmosphere. Nitriding treatment method for steel members.
前記2段目窒化処理工程を、窒化ポテンシャルが0.2〜2.0atm−0.5の窒化ガス雰囲気中で実施する、請求項1に記載の鋼部材の窒化処理方法。 The method for nitriding a steel member according to claim 1, wherein the second-stage nitriding process is performed in a nitriding gas atmosphere having a nitriding potential of 0.2 to 2.0 atm −0.5 . 前記1段目窒化処理工程における窒化ポテンシャルが、0.2〜2.0atm−0.5である、請求項1又は2に記載の鋼部材の窒化処理方法。 The method for nitriding a steel member according to claim 1 or 2, wherein the nitriding potential in the first-stage nitriding process is 0.2 to 2.0 atm −0.5 . 前記2段目窒化処理工程を実施した後、前記鋼部材を室温まで冷却する冷却工程を更に有する、請求項1〜3のいずれかに記載の鋼部材の窒化処理方法。 The method for nitriding a steel member according to any one of claims 1 to 3, further comprising a cooling step of cooling the steel member to room temperature after performing the second-stage nitriding treatment step. 前記2段目窒化処理工程で、前記窒化処理された鋼部材を480〜520℃で10〜45分間保持する、請求項1〜4のいずれかに記載の鋼部材の窒化処理方法。 The method for nitriding a steel member according to any one of claims 1 to 4, wherein in the second-stage nitriding process, the nitrided steel member is held at 480 to 520 ° C. for 10 to 45 minutes. 前記2段目窒化処理工程で、前記窒化処理された鋼部材を490〜510℃で10〜45分間保持する、請求項1〜4のいずれかに記載の鋼部材の窒化処理方法。 The method for nitriding a steel member according to any one of claims 1 to 4, wherein in the second-stage nitriding process, the nitrided steel member is held at 490 to 510 ° C. for 10 to 45 minutes. 鋼部材を、ε相又はε相及びγ’相の窒化化合物層が生成される窒化ポテンシャルの、550〜610℃の窒化ガス雰囲気中で窒化処理する1段目窒化処理工程と、
前記1段目窒化処理工程に続いて、窒化処理された鋼部材を、前記窒化化合物層のγ’相分率を60分以内に30%以上高める条件で窒化処理する2段目窒化処理工程を有する、鋼部材の窒化処理方法。
A first-stage nitriding step of nitriding a steel member in a nitriding gas atmosphere at 550 to 610 ° C. with a nitriding potential at which ε-phase or ε-phase and γ'phase nitriding compound layers are formed.
Following the first-stage nitriding treatment step, a second-stage nitriding treatment step is performed in which the nitrided steel member is nitrided under the condition that the γ'phase fraction of the nitrided compound layer is increased by 30% or more within 60 minutes. A method for nitriding a steel member.
JP2020056358A 2019-03-29 2020-03-26 Nitriding method for steel parts Active JP7434018B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019066909 2019-03-29
JP2019066909 2019-03-29

Publications (2)

Publication Number Publication Date
JP2020164994A true JP2020164994A (en) 2020-10-08
JP7434018B2 JP7434018B2 (en) 2024-02-20

Family

ID=72715922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020056358A Active JP7434018B2 (en) 2019-03-29 2020-03-26 Nitriding method for steel parts

Country Status (1)

Country Link
JP (1) JP7434018B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176878A1 (en) * 2021-02-17 2022-08-25 パーカー熱処理工業株式会社 Nitriding method for steel member

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6647792B2 (en) 2015-03-31 2020-02-14 Dowaサーモテック株式会社 Method of nitriding steel members
JP6755106B2 (en) 2016-03-11 2020-09-16 パーカー熱処理工業株式会社 Nitriding steel member and manufacturing method of nitrided steel member
WO2018062290A1 (en) 2016-09-30 2018-04-05 Dowaサーモテック株式会社 Continuous nitriding treatment furnace and continuous nitriding treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176878A1 (en) * 2021-02-17 2022-08-25 パーカー熱処理工業株式会社 Nitriding method for steel member
TWI809714B (en) * 2021-02-17 2023-07-21 日商帕卡熱處理工業股份有限公司 Nitriding treatment method of steel components
EP4296383A4 (en) * 2021-02-17 2023-12-27 Parker Netsushori Kogyo Co., Ltd. Nitriding method for steel member

Also Published As

Publication number Publication date
JP7434018B2 (en) 2024-02-20

Similar Documents

Publication Publication Date Title
JP6212190B2 (en) Manufacturing method of nitrided steel member
JP6378189B2 (en) Method of nitriding steel member
JP4971751B2 (en) Manufacturing method of high-concentration carburized steel
JP5639064B2 (en) Method for producing carbonitrided member
US11242592B2 (en) Continuous nitriding treatment furnace and continuous nitriding treatment method
JP4423608B2 (en) Hardened tool steel material
CN113862610A (en) Pretreatment method for improving corrosion resistance of carburized layer
JP2020007603A (en) Carburized quenching device and carburized quenching method
JP2020164994A (en) Steel member nitriding treatment method
JP6587886B2 (en) Manufacturing method of nitrided steel member
JP5359582B2 (en) Hardened tool steel material
WO2016159235A1 (en) Method for nitriding steel member
JP2008106308A (en) Method for manufacturing steel parts superior in fatigue strength, and steel parts
US2142139A (en) Hardening process for high speed steel tools and other articles
CN105814230B (en) The method for manufacturing ferrous metal part
JP6752624B2 (en) Manufacturing method of carburized steel
JPH11269630A (en) Surface treated steel member
CN114790536A (en) Gear product carburizing process
JPH0874027A (en) Carburization treatment
JP2019183266A (en) Steel for case hardening
KR20100037989A (en) Batch annealing furnace heat trearment conditions for high strength steel
JP2020152944A (en) Manufacturing method of CVT ring
JP2002266021A (en) Heat treatment method for steel member
JPH03281723A (en) Method for removing decarburized layer from high carbon steel material
JPH05279732A (en) Method for annealing stainless steel having excellent descaling property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240207

R150 Certificate of patent or registration of utility model

Ref document number: 7434018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150