CN104152916A - Thermal treatment and plasma nitrocarburizing surface treatment process method for special wear-resistant die steel with ultrahigh heat conductivity for hot stamping - Google Patents
Thermal treatment and plasma nitrocarburizing surface treatment process method for special wear-resistant die steel with ultrahigh heat conductivity for hot stamping Download PDFInfo
- Publication number
- CN104152916A CN104152916A CN201410187617.9A CN201410187617A CN104152916A CN 104152916 A CN104152916 A CN 104152916A CN 201410187617 A CN201410187617 A CN 201410187617A CN 104152916 A CN104152916 A CN 104152916A
- Authority
- CN
- China
- Prior art keywords
- mold
- nitriding
- hot stamping
- heat treatment
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Articles (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
一种高强钢板/管热冲压专用超高热导率耐磨模具钢(HDCM)的热处理和等离子氮碳共渗表面处理工艺。热处理工艺为1050-1000℃淬火,560-600℃两次回火;表面处理工艺为电压600-850V,气氛比值NH3∶CO2=10∶1-16∶1,炉压450-700Pa,渗氮温度520℃-550℃,渗氮时间8h-12h。在综合性能上,该专用热冲压模具钢性能为:硬度为51-53HRC,冲击韧性值Ak约为170-200J;表面等离子渗氮后,模具表面形成化合物层,白两层厚度6-17μm,显微维氏硬度750-850HV300,渗层厚度150-260μm。本发明模具钢硬度值比一般热处理H13高,能提高模具的耐磨性能,能有效的防止模具表面的拉毛,经等离子表面渗氮后更能大大延长模具的使用寿命。
A heat treatment and plasma nitrocarburizing surface treatment process for ultra-high thermal conductivity wear-resistant die steel (HDCM) for high-strength steel plate/tube hot stamping. The heat treatment process is quenching at 1050-1000°C, tempering twice at 560-600°C; the surface treatment process is voltage 600-850V, atmosphere ratio NH 3 : CO 2 =10:1-16:1, furnace pressure 450-700Pa, nitriding The temperature is 520°C-550°C, and the nitriding time is 8h-12h. In terms of comprehensive performance, the performance of the special hot stamping die steel is: the hardness is 51-53HRC, and the impact toughness value Ak is about 170-200J; The micro-Vickers hardness is 750-850HV 300 , and the thickness of the infiltrated layer is 150-260μm. The hardness value of the mold steel of the invention is higher than that of general heat treatment H13, can improve the wear resistance of the mold, can effectively prevent the roughening of the mold surface, and can greatly prolong the service life of the mold after plasma surface nitriding.
Description
技术领域 technical field
本发明涉及一种高强钢板/管热冲压专用超高热导率耐磨模具钢的热处理和等离子氮碳共渗表面处理工艺方法,应用于合金钢热处理和表面处理技术领域。 The invention relates to a process method for heat treatment and plasma nitrocarburizing surface treatment of ultra-high thermal conductivity wear-resistant die steel special for high-strength steel plate/pipe hot stamping, which is applied in the technical field of alloy steel heat treatment and surface treatment.
背景技术 Background technique
通常按模具使用对象将模具钢分为冷作模具钢、热作模具钢和塑料模具钢三大类。热冲压模具钢属于热作模具钢。随着汽车行业的高速发展,以及汽车轻量化需求的不断提高,热冲压成形工艺主要用于获得超高强度冲压件。在获得超高强度钢时,由于冷冲压成形工艺所需的成形力极大,容易导致模具损坏、设备震动,且还易产生破裂、起皱、反弹、尺寸精度不良等问题。因此,原有冷冲压成形工艺的不再满足技术和生产发展的需要,而热冲压成形工艺利用金属在高温状态下,其塑性和延展性迅速增加,屈服强度迅速下降。热冲压模具钢是近几十年使用量急剧上升和消耗最大的模具钢之一,它的工况条件比一般热作模具钢还更复杂。 Die steel is usually divided into three categories according to the object of mold use: cold work die steel, hot work die steel and plastic mold steel. Hot stamping die steel belongs to hot work die steel. With the rapid development of the automobile industry and the continuous improvement of the demand for lightweight automobiles, the hot stamping forming process is mainly used to obtain ultra-high-strength stamping parts. When obtaining ultra-high-strength steel, due to the extremely high forming force required by the cold stamping forming process, it is easy to cause mold damage, equipment vibration, and problems such as cracking, wrinkling, rebound, and poor dimensional accuracy. Therefore, the original cold stamping forming process no longer meets the needs of technology and production development, while the hot stamping forming process utilizes metals at high temperatures, whose plasticity and ductility increase rapidly, and the yield strength decreases rapidly. Hot stamping die steel is one of the die steels whose usage has risen sharply and consumed the most in recent decades, and its working conditions are more complicated than that of general hot work die steel.
钢板热冲压过程是将特殊的高强度钢板加热到奥氏体温度范围,快速移动到模具,快速冲压,在压机保压状态下通过布置有冷却回路的模具(而不是空气)对零件进行淬火冷却(并要保证一定的冷却速度),最后获得超高强度冲压件(组织为马氏体,强度在1500MPa左右甚至更高)。在工作时,由于模具与加热的坯料直接接触,当炽热的金属放入热冲压模具型腔时,型腔表面急剧升温,且冲压和保压时表层产生压应力和压应变,这使得模具需要较好的热强性和热稳定性;在保压过程中通过带有冷却水道的模具对零部件淬火,为了使模具能很快地把钢板的热量带走和保证模具在服役过程中的精度,模具材料必需具有较大的导热系数和较小的热膨胀系数;当金属件取出时,型腔表面由于急剧降温而受到拉应力和拉应变作用,在这种交替变换温度的工况下模具极易产生热疲劳;并且热冲压模具钢在服役过程中,还要受到较大冲击载荷,因此模具需具备优良的韧性;为防止模具表面在服役过程中产生的拉毛,模具还需具有较高的硬度。另外,由于奥氏体化后钢板从炉内转移到模内过程中与氧气和水接触产生大量氧化皮,模具使用过程中脱落的碳化物颗粒等在模具与工件相对运动过程中产生磨损,要求模具有较好的耐磨性能。因此,复杂的工况要求热冲压模具材料具有较高的热导率、热强度、硬度、冲击韧性、耐磨性、淬透性和热稳定性和抗冷热疲劳性能等。 The steel plate hot stamping process is to heat a special high-strength steel plate to the austenitic temperature range, quickly move to the mold, quickly stamp, and quench the part through the mold (instead of air) with a cooling circuit in the state of the press holding pressure Cool (and ensure a certain cooling rate), and finally obtain ultra-high-strength stampings (the structure is martensite, and the strength is around 1500MPa or even higher). When working, because the mold is in direct contact with the heated blank, when the hot metal is put into the cavity of the hot stamping mold, the surface of the cavity heats up sharply, and the surface layer generates compressive stress and strain during stamping and holding pressure, which makes the mold need Good thermal strength and thermal stability; during the pressure holding process, the parts are quenched through the mold with cooling channels, in order to make the mold quickly take away the heat of the steel plate and ensure the precision of the mold during service , the mold material must have a large thermal conductivity and a small thermal expansion coefficient; when the metal part is taken out, the surface of the cavity is subjected to tensile stress and tensile strain due to the sharp drop in temperature. It is prone to thermal fatigue; and the hot stamping die steel is subject to a large impact load during service, so the die must have excellent toughness; in order to prevent the roughening of the die surface during service, the die must also have a high hardness. In addition, since the steel plate after austenitization is transferred from the furnace to the mold, a large amount of oxide scales will be produced in contact with oxygen and water, and the carbide particles that fall off during the use of the mold will be worn during the relative movement between the mold and the workpiece. The mold has good wear resistance. Therefore, complex working conditions require hot stamping die materials to have high thermal conductivity, thermal strength, hardness, impact toughness, wear resistance, hardenability, thermal stability, and thermal fatigue resistance.
目前,我国最长使用的热冲压模具钢采用的是国家标准GB/T1299-2000中钢号为4Cr5MoSiV1(相当于北美标准H13钢)。这种热冲压模具钢的化学成分采用C 0.32-0.45wt%、Cr 4.75-5.50wt%、Mo 1.20-1.75 wt%、V 0.80-1.20 wt%、Si 0.80-1.2wt%、Mn 0.20-0.5wt%、P≤0.03wt%、S≤0.03wt%。目前,日本企业采用的是热作模具钢SKD61(相当于北美标准H13钢),瑞典热冲压模具供应商采用的是ORVAR,德国企业采用的是CR7V和1.2379。 At present, the longest used hot stamping die steel in my country is the national standard GB/T1299-2000 steel grade 4Cr5MoSiV1 (equivalent to North American standard H13 steel). The chemical composition of this hot stamping die steel adopts C 0.32-0.45wt%, Cr 4.75-5.50wt%, Mo 1.20-1.75wt%, V 0.80-1.20wt%, Si 0.80-1.2wt%, Mn 0.20-0.5wt% %, P≤0.03wt%, S≤0.03wt%. At present, Japanese companies use SKD61 hot work die steel (equivalent to North American standard H13 steel), Swedish hot stamping die suppliers use ORVAR, and German companies use CR7V and 1.2379.
热处理对模具钢的使用性能有着至关重要的影响。热处理决定了模具钢内部显微组织,从而确定了模具钢的强韧性。通过不同的热处理可以使模具获得所需的硬度,但其组织、性能可能有显著差别,要充分发挥模具钢合金元素的强韧作用,不同用途的不同模具钢就必须有相应的热处理工艺。等离子表面渗氮温度与热作模具钢的回火温度吻合的很好,与其他表面处理相比,它是一种成熟的技术,而且成本低、可靠性高。通过气氛、渗氮温度、时间可以很好的控制表面化合物层和扩散层的相组成以及它的性能。通过简单的渗氮处理,可以大大提高模具的使用寿命,具有非常高的性价比。 Heat treatment has a crucial influence on the performance of die steel. Heat treatment determines the internal microstructure of die steel, thereby determining the strength and toughness of die steel. The mold can obtain the required hardness through different heat treatments, but its structure and performance may be significantly different. In order to give full play to the toughness of the alloy elements of the mold steel, different mold steels for different purposes must have corresponding heat treatment processes. Plasma surface nitriding temperatures agree well with the tempering temperatures of hot work tool steels, and compared to other surface treatments, it is a well-established technology that is low cost and highly reliable. The phase composition and properties of the surface compound layer and diffusion layer can be well controlled by the atmosphere, nitriding temperature, and time. Through simple nitriding treatment, the service life of the mold can be greatly improved, and it has a very high cost performance.
上海大学发明了一种高强钢板/管热冲压超高热导率耐磨模具钢HDCM,其化学元素重量百分含量为:C:0.33-0.40%;Si:<0.30%;Mn:﹤0.30%;W:1.0-2.0%;Mo:4.0-5.0%;Cr:<0.30%;V:0.10-0.20%;其余为Fe和不可避免的杂质元素,杂质元素中S:≤0.01%;P:≤0.02%;O:≤30ppm。。此外,该发明还提供一种热冲压模具钢的制造方法,其采用电渣重熔工艺、高温均匀化和超细化热处理工艺控制材料组织,从而起到对材料的强化作用,提高其性能指标。较之现有材料,该发明所述的热冲压模具钢的热导系数在100-200℃区间较H13钢提高了80%以上,而且具有良好的耐磨性能。 Shanghai University invented a high-strength steel plate/tube hot stamping ultra-high thermal conductivity wear-resistant die steel HDCM, the weight percentage of chemical elements is: C: 0.33-0.40%; Si: <0.30%; Mn: <0.30%; W: 1.0-2.0%; Mo: 4.0-5.0%; Cr: <0.30%; V: 0.10-0.20%; the rest is Fe and unavoidable impurity elements, among which S: ≤0.01%; P: ≤0.02 %; O: ≤30ppm. . In addition, the invention also provides a manufacturing method of hot stamping die steel, which adopts electroslag remelting process, high temperature homogenization and ultra-fine heat treatment process to control the material structure, so as to strengthen the material and improve its performance index . Compared with existing materials, the thermal conductivity of the hot stamping die steel described in the invention is 80% higher than that of H13 steel in the range of 100-200°C, and has good wear resistance. the
对相关技术的中外专利检索内容分析Analysis of Chinese and foreign patent retrieval content for related technologies
通过输入相关本发明内容的关键词在对中外专利进行检索发现,涉及到和本发明相关联的热作模具钢热处理及其表面处理技术的专利文献有: Searching Chinese and foreign patents by entering keywords related to the content of the present invention found that the patent documents related to the heat treatment of hot work die steel and its surface treatment technology related to the present invention include:
1) 专利申请号:CN201210146712.5,名称:高硅高锰型高热稳定性热作模具钢及其热处理工艺,该钢的特征在于化学成分中高含量的硅元素和锰元素的比例保持为1:1不变,各主要合金元素的质量百分比为:C0.25~0.45%,Si0.8~2.0%,Mn0.8~2.0%,Cr3.5~4.5%,Mo0.6~1.2%,V0.4~0.8%,P<0.02%,S<0.02%,Fe余量。本发明热作模具钢的制备过程如下:配料、冶炼、浇涛,然后电渣重熔;高温匀质化热处理,然后多向锻造热加工;再进行超细化热处理和等温退火处理;最后进行淬火和回火热处理,即将其加热至980~1100℃进行奥氏体化,经过油冷或水雾冷却后,在540℃~600℃进行两至三次回火。 1) Patent application number: CN201210146712.5, name: high silicon and high manganese type high thermal stability hot work die steel and its heat treatment process, the steel is characterized in that the ratio of high content of silicon and manganese in the chemical composition is kept at 1: 1 unchanged, the mass percentage of each main alloying element is: C0.25~0.45%, Si0.8~2.0%, Mn0.8~2.0%, Cr3.5~4.5%, Mo0.6~1.2%, V0. 4~0.8%, P<0.02%, S<0.02%, Fe balance. The preparation process of the hot work die steel of the present invention is as follows: batching, smelting, pouring, and then electroslag remelting; high-temperature homogenization heat treatment, and then multi-directional forging heat processing; then superfine heat treatment and isothermal annealing treatment; finally Quenching and tempering heat treatment, that is, heating it to 980-1100°C for austenitization, and after oil cooling or water mist cooling, tempering at 540°C-600°C for two to three times.
2) 专利申请号:CN201210139562.5,名称:汽车锻件模具钢H13的热处理工艺,其特征是,包括以下工艺步骤:(1)将模具钢装入加热炉,加热炉的温度<300℃,升温至760~780℃,通入甲醇作为保护气氛,保护气氛的通入量为:3~5×炉子体积/小时;(2)先将加热炉继续升温至820~850℃进行第一阶段热处理,加热时间为:模具钢长度×1.2~1.8min;再将加热炉升温至1020~1050℃进行第二阶段热处理,加热时间为:模具钢长度×1.5~2.2min;(3)淬火冷却:将模具钢在160~180℃的淬火硝盐炉中进行冷却,冷却时间为1.5~2.5小时;然后模具钢出硝盐炉在空气中自然冷却至120~160℃,冷却时间为1.5~2.5小时;(4)回火处理:将淬火冷却后的模具钢在530~600℃进行回火处理,保温时间为5~9小时,回火处理后在空气中自然冷却至室温;(5)重复步骤(4)的操作2~3次,即完成所述模具钢的热处理过程;所述模具钢长度的单位为毫米。 2) Patent application number: CN201210139562.5, name: Heat treatment process of automobile forging die steel H13, which is characterized in that it includes the following process steps: (1) Put the die steel into the heating furnace, the temperature of the heating furnace is <300°C, and the temperature is raised To 760~780°C, methanol is introduced as a protective atmosphere, and the amount of protective atmosphere is: 3~5×furnace volume/hour; (2) First, continue to heat the heating furnace to 820~850°C for the first stage heat treatment, The heating time is: the length of the mold steel × 1.2~1.8min; then the heating furnace is heated to 1020~1050°C for the second stage heat treatment, the heating time is: the length of the mold steel × 1.5~2.2min; (3) quenching and cooling: the mold The steel is cooled in a quenching nitrate furnace at 160~180°C, and the cooling time is 1.5~2.5 hours; then the mold steel is naturally cooled to 120~160°C in the air, and the cooling time is 1.5~2.5 hours; ( 4) Tempering treatment: Temper the quenched and cooled die steel at 530-600°C for a holding time of 5-9 hours. After tempering, naturally cool to room temperature in the air; (5) repeat steps (4) ) for 2 to 3 times to complete the heat treatment process of the mold steel; the unit of the length of the mold steel is mm.
3) 专利申请号:CN200710039838.1发明公开了一种取向硅钢的渗氮方法,主要特征包括在等离子渗氮室内进行等离子渗氮处理,通过控制等离子渗氮室中的渗氮温度500~700℃、 渗氮时间10~30秒,渗氮气氛为H2占0~10%,NH3占0~5%,其余为N2, 控制等离子渗氮室真空度为1000~2000Pa,极板电压为700~1000V,来控制 渗入取向硅钢中的N元素的渗入量、分布以及氮化物的尺寸。在取向硅钢生 产中采用等离子渗氮方法可以使渗氮效果均匀,增强抑制剂的抑制力,提高工艺稳定性。 3) Patent application number: CN200710039838.1 invention discloses a nitriding method for grain-oriented silicon steel, the main features include plasma nitriding treatment in the plasma nitriding chamber, by controlling the nitriding temperature in the plasma nitriding chamber to 500-700°C , The nitriding time is 10-30 seconds, the nitriding atmosphere is 0-10% of H2, 0-5% of NH3, and the rest is N2, the vacuum degree of the plasma nitriding chamber is controlled to be 1000-2000Pa, and the plate voltage is 700-1000V , to control the infiltration amount, distribution and nitride size of the N element infiltrated into the grain-oriented silicon steel. The plasma nitriding method used in the production of oriented silicon steel can make the nitriding effect uniform, enhance the inhibitory force of the inhibitor, and improve the process stability.
4) 专利申请号:CN200410017949.9一种气门精锻模的表面改性处理加工方法,主要采用渗氮工艺,该方法的特征在 于具有以下工艺过程和步骤: a.采用原热作模具钢制造的气门精锻模,经淬回火后,放入专用的等离子热处理设备,通入以氨气为主的含氮气氛,并在500-550℃温度范围内进行2-8 小时的等离子渗氮处理; b.等离子渗氮结束时,再通入氨气和丙酮混合气,在上述500-550℃温度下进行 1-3小时的等离子氮碳共渗处理,氨气和丙酮气体的体积比为10∶1~5∶1; c.然后再放入蒸汽氧化炉中,在0.05~0.25MPa的蒸汽压力下、在500-550℃温 度范围内对模具进行表面氧化处理。 d.经上述复合工艺处理后,使模具表面呈均匀的蓝灰色,且模具表层结构形成 为三层,即最表层为氧化膜,厚度为3~10μm;第二层次表层为氮、碳扩散 层,厚度为100~400μm,第三层为基体心部,在次表层以下,为热作模具钢的基体组织。 4) Patent application number: CN200410017949.9 A method for surface modification treatment of precision forging dies for valves, mainly using nitriding technology, the method is characterized by the following processes and steps: a. Using the original hot-worked die steel After quenching and tempering, the manufactured valve precision forging die is put into a special plasma heat treatment equipment, and a nitrogen-containing atmosphere mainly composed of ammonia gas is introduced, and plasma infiltration is carried out for 2-8 hours at a temperature range of 500-550°C. Nitrogen treatment; b. At the end of plasma nitriding, add ammonia and acetone mixed gas, and carry out plasma nitrocarburizing treatment at the above-mentioned temperature of 500-550°C for 1-3 hours. The volume ratio of ammonia gas and acetone gas 10:1~5:1; c. Then put it into a steam oxidation furnace, and carry out surface oxidation treatment on the mold under the steam pressure of 0.05~0.25MPa and the temperature range of 500-550℃. d. After the above composite process, the surface of the mold is uniform blue-gray, and the surface structure of the mold is formed into three layers, that is, the outermost layer is an oxide film with a thickness of 3-10 μm; the second layer is a nitrogen and carbon diffusion layer. , the thickness is 100 ~ 400μm, the third layer is the core of the matrix, below the subsurface, is the matrix structure of the hot work die steel.
本发明与现有技术的对比分析Comparative analysis between the present invention and prior art
对比分析如下:从成份的对比可以看出,本发明的化学成份的元素含量和专利1-2明显不同,元素对材料的性能作用的机理也就不同,材料的应用环境也有所不同。 The comparative analysis is as follows: From the comparison of the components, it can be seen that the element content of the chemical composition of the present invention is obviously different from that of patent 1-2, the mechanism of the element's effect on the performance of the material is also different, and the application environment of the material is also different.
1) 专利CN201210146712.5与本发明的相似之处在于采用了淬火并回火两次的工艺,得到稳定的回火马氏体组织。本发明通过控制等离子渗氮气氛比值、渗氮时间、炉压、电压、渗氮温度等参数,得到无化合物层渗氮层。在提高模具表面硬度的同时,优化模具耐蚀性、耐磨性和防粘附性能。与普通等离子渗氮得到从表面到心部依次为化合物层、扩散层工艺相比,本发明所得到无化合物层渗层避免了化合物层的脆性,提高了模具的热疲劳性能,避免的化合物层破碎脱落产生的硬质磨粒有利于模具抗磨。 1) The similarity between the patent CN201210146712.5 and the present invention is that it adopts the process of quenching and tempering twice to obtain a stable tempered martensite structure. The invention obtains the compound-free nitriding layer by controlling parameters such as plasma nitriding atmosphere ratio, nitriding time, furnace pressure, voltage, nitriding temperature and the like. While improving the surface hardness of the mold, optimize the corrosion resistance, wear resistance and anti-adhesion performance of the mold. Compared with the process of ordinary plasma nitriding to obtain a compound layer and a diffusion layer sequentially from the surface to the core, the compound-free layer obtained in the present invention avoids the brittleness of the compound layer, improves the thermal fatigue performance of the mold, and avoids compound layer The hard abrasive grains produced by breaking and falling off are beneficial to the wear resistance of the mold.
2) 专利CN201210139562.5是用于汽车锻模的H13钢热处理,与本发明不同之处在于其淬火方式,其模具钢在160~180℃的淬火硝盐炉中进行冷却,冷却时间为1.5~2.5小时;然后模具钢出硝盐炉在空气中自然冷却至120~160℃,冷却时间为1.5~2.5小时;本发明为真空气淬。较专利CN201210139562.5,本发明在560-600℃根据模具此寸回火不同时间。本研究采用真空高压气淬炉,冷却方式为气冷至室温。并在热处理后,通过等离子渗氮工艺进一步提高模具的使用寿命。 2) Patent CN201210139562.5 is used for the heat treatment of H13 steel for automobile forging dies. The difference from the present invention lies in its quenching method. The die steel is cooled in a quenching nitrate furnace at 160-180 ° C, and the cooling time is 1.5 ~ 2.5 hours; then the mold steel is naturally cooled in the air to 120-160°C in the nitrate furnace, and the cooling time is 1.5-2.5 hours; the present invention is vacuum air quenching. Compared with patent CN201210139562.5, the present invention tempers at 560-600°C for different times according to the size of the mold. In this study, a vacuum high-pressure gas quenching furnace was used, and the cooling method was air cooling to room temperature. And after heat treatment, the service life of the mold is further improved by plasma nitriding process.
3) 专利CN201210099323.1是一种取向硅钢的渗氮方法。通过在取向硅钢生产中采用等离子渗氮方法可以使渗氮效果均匀,增强抑制剂的抑制力,提高工艺稳定性。而本发明在处理材料及氮碳共渗工艺上都是不同的。本专利研究在热冲压用模具材料HDCM上通过等离子氮碳共渗来提高其模具耐磨性能。 3) Patent CN201210099323.1 is a nitriding method for grain-oriented silicon steel. By adopting the plasma nitriding method in the production of grain-oriented silicon steel, the nitriding effect can be uniformed, the inhibitory force of the inhibitor can be enhanced, and the process stability can be improved. And the present invention is all different on processing material and nitrocarburizing process. This patent research improves the wear resistance of the mold by plasma nitrocarburizing on the mold material HDCM for hot stamping.
4) 专利CN200410017949.9是一种气门精锻模的表面改性处理加工方法,采用渗氮+氧化工艺。采用原热作模具钢制造的气门精锻模,经淬回火后,放入专用的等离子热处理设备进行等离子渗氮处理;等离子渗氮结束时,再通入氨气和丙酮混合气等离子氮碳共渗处理,然后再放入蒸汽氧化炉中对模具进行表面氧化处理。经工艺处理后,模具表层结构形成 为三层,即最表层为氧化膜,厚度为3~10μm;第二层次表层为氮、碳扩散 层,厚度为100~400μm,第三层为基为热作模具钢的基体组织。而本专利设计一种新型热冲压模具材料和其等离子氮碳共渗工艺,其中氮碳共渗工艺与专利CN200410017949.9在温度,气氛等渗氮工艺参数是不同的,得到的表层结构组织也是不同的,本发明最后得到的组织为表层化合物白亮层6-17μm,硬度为750-850HV300,;次层为扩散层,约150-260μm;第三层为模具材料基体。 4) Patent CN200410017949.9 is a surface modification processing method of valve precision forging die, which adopts nitriding + oxidation process. The valve precision forging die made of original hot work die steel is put into special plasma heat treatment equipment for plasma nitriding treatment after quenching and tempering; when the plasma nitriding is finished, the mixed gas of ammonia and acetone is injected into the plasma nitrogen carbon Co-infiltration treatment, and then placed in a steam oxidation furnace for surface oxidation treatment of the mold. After the process treatment, the surface structure of the mold is formed into three layers, that is, the outermost layer is an oxide film with a thickness of 3-10 μm; the second layer is a nitrogen and carbon diffusion layer with a thickness of 100-400 μm, and the third layer is based on heat. As the matrix structure of die steel. And this patent designs a new type of hot stamping die material and its plasma nitrocarburizing process, wherein the nitrocarburizing process is different from the patent CN200410017949.9 in temperature, atmosphere and other nitriding process parameters, and the obtained surface structure is also Differently, the final structure obtained in the present invention is a surface compound white layer with a hardness of 6-17 μm and a hardness of 750-850HV 300 ; the second layer is a diffusion layer, about 150-260 μm; the third layer is a mold material matrix.
有关本发明的机理及选用工艺参数的分析解释Relevant mechanism of the present invention and the analytical explanation of selection process parameter
以下是对本发明各参数的分析解释: Below is the analysis explanation to each parameter of the present invention:
1. 淬火温度1050-1000℃:该热冲压专用模具钢为过共析钢,淬火温度较低时,回火后模具硬度过低;淬火温度较高时,奥氏体晶粒长大导致材料强度下降、韧性较差。最终选择淬火温度1050-1100℃,回火之后得到最适合热冲压成型的模具钢强韧配比。 1. Quenching temperature 1050-1000°C: The special die steel for hot stamping is hypereutectoid steel. When the quenching temperature is low, the hardness of the mold after tempering is too low; when the quenching temperature is high, the austenite grain grows and the material Decreased strength and poor toughness. Finally, the quenching temperature is selected to be 1050-1100°C. After tempering, the mold steel strength and toughness ratio most suitable for hot stamping is obtained.
2. 回火温度560-600℃:经淬火后,该模具钢奥氏体含碳量曾加,淬火后残余一定奥氏体量,这部分残余奥氏体经一次回火分解为马氏体,致使冲击韧性差。因此,本发明采用560-580-600℃回火3次达到稳定组织与调整硬度的目的。最终模具钢硬度为51-53HRC,7mm×10mm×55mm无缺口冲击功为170-200J。 2. Tempering temperature 560-600°C: After quenching, the austenite carbon content of the mold steel has increased, and a certain amount of austenite remains after quenching, and this part of the residual austenite is decomposed into martensite after one tempering , resulting in poor impact toughness. Therefore, the present invention uses 560-580-600°C tempering three times to achieve the purpose of stabilizing the structure and adjusting the hardness. The final mold steel hardness is 51-53HRC, and the unnotched impact energy of 7mm×10mm×55mm is 170-200J.
3. 等离子氮碳共渗电压600-850V:电压在等离子渗氮中主要等渗氮过程具有较大的促进作用,较高电压这可以提高轰击能量,从而增加渗氮层厚度和力高渗氮层硬度,而电压过高会妨碍离子体在基体表面的附着和扩散,因此电压应选取合适的范围。 3. Plasma nitrocarburizing voltage 600-850V: The voltage has a greater role in promoting the main nitriding process in plasma nitriding. Higher voltage can increase the bombardment energy, thereby increasing the thickness of the nitriding layer and high nitriding force layer hardness, and too high voltage will hinder the attachment and diffusion of ions on the surface of the substrate, so the voltage should be selected in an appropriate range.
4. 等离子氮碳共渗气氛比值NH3:CO2= 10:1-16:1:通过改变NH3: CO2比值可以调节化合物层的厚度和扩散层相组成及厚度。因此根据不同的需要来进行气氛比值的调整。 4. Plasma nitrocarburizing atmosphere ratio NH3:CO2= 10:1-16:1: By changing the ratio of NH3:CO2, the thickness of the compound layer and the phase composition and thickness of the diffusion layer can be adjusted. Therefore, adjust the atmosphere ratio according to different needs. the
5. 等离子氮碳共渗炉压450-750Pa:离子渗氮炉炉压越高,辉光集中;炉压低时,辉光发散。实际操作中,炉压可以在133-1066Pa范围内调节。高压下,化合物层长α相含量高,低炉压易获得γ相。在低于40Pa或者高于2660Pa的条件下离子渗氮,不易出现化合物层。 5. Plasma nitrocarburizing furnace pressure 450-750Pa: The higher the furnace pressure of the plasma nitriding furnace, the more concentrated the glow; when the furnace pressure is lower, the glow diverges. In actual operation, the furnace pressure can be adjusted within the range of 133-1066Pa. Under high pressure, the compound layer has a high content of α phase, and low furnace pressure is easy to obtain γ phase. Ion nitriding under the condition of lower than 40Pa or higher than 2660Pa, the compound layer is not easy to appear.
6. 等离子氮碳共渗温度520-550℃:离子渗氮化合物层和扩散层温度随温度增加而显著增加,但对化合物层的组织结构没有太大影响,而且,即使在400℃的低温下,也有明显的渗氮效果,这也是离子渗氮的突出特点。表面硬度在一定范围内存在一个最大值,温度太低,硬化层太浅,强化效果欠佳;温度太高,渗层中的氮化物粗化,致使硬度下降。 6. Plasma nitrocarburizing temperature 520-550°C: The temperature of the ion nitriding compound layer and diffusion layer increases significantly with the increase of temperature, but it does not have much influence on the structure of the compound layer, and even at a low temperature of 400°C , There is also an obvious nitriding effect, which is also a prominent feature of ion nitriding. The surface hardness has a maximum value within a certain range, the temperature is too low, the hardened layer is too shallow, and the strengthening effect is not good; the temperature is too high, the nitrides in the infiltrated layer are coarsened, resulting in a decrease in hardness.
7. 等离子氮碳共渗时间8h-12h:渗氮对α相和γ相化合物层厚度的影响具有不同的规律。小于4h时,γ相化合物层厚度随时间延长而增厚,4h后基本保持不变,而α相化合物层厚度随着渗氮时间延长持续增加。在一般情况下,渗氮时间的延长总是使化合物层厚度增加。而扩散层深度与时间之间复合抛物线关系,其变化规律与气体渗氮相似。另外炉内渗氮气氛一定时,化合物层的氮浓度不瘦渗氮时间影响。随着渗氮时间延长,扩散层加深,硬度梯度趋于平缓;但保温时间增加,引起氮化物组织粗话,导致硬度下降。 7. Plasma nitrocarburizing time 8h-12h: The influence of nitriding on the thickness of α-phase and γ-phase compound layers has different rules. When it is less than 4h, the thickness of the γ-phase compound layer increases with time, and remains basically unchanged after 4h, while the thickness of the α-phase compound layer continues to increase with the prolongation of nitriding time. In general, prolonging the nitriding time always increases the thickness of the compound layer. The compound parabolic relationship between the depth of the diffusion layer and time is similar to that of gas nitriding. In addition, when the nitriding atmosphere in the furnace is constant, the nitrogen concentration of the compound layer is not affected by the nitriding time. As the nitriding time prolongs, the diffusion layer deepens, and the hardness gradient tends to be gentle; but the increase of the holding time causes the nitride structure to become rough, resulting in a decrease in hardness.
与现有技术相比,本发明具有以下优点: Compared with the prior art, the present invention has the following advantages:
本发明涉及一种高强钢板、管热冲压专用模具钢的热处理及其表面处理工艺方法。在热处理工艺上,本发明钢的特点是将热处理温度和时间严格限制,得到最适合热冲压成型的模具状态。在表面处理上,通过多因素复合控制,得到热冲压模具所需抗耐磨性能良好的坚固的氮化层和扩散层。在综合性能上,该专用热冲压模具钢性能为:经1080℃淬火,560-600℃3次回火后,硬度为51-53HRC,冲击韧性值Ak为170-200 J;经表面等离子渗氮后,模具表面化合物层厚度为6-17μm,显微维氏硬度750-850HV300,渗层厚度150-260μm。本发明模具钢硬度值比一般热处理H13高,能提高模具的耐磨性能,能有效的防止模具表面的拉毛,经等离子表面渗氮后更能大大延长模具的使用寿命。磨损后的模具,经修模和本发明的等离子渗氮可以重新投入使用,从而大大地提高模具的总使用寿命。 The invention relates to a heat treatment and surface treatment process of high-strength steel plates and die steels special for hot stamping of pipes. In the heat treatment process, the steel of the present invention is characterized in that the heat treatment temperature and time are strictly limited to obtain the mold state most suitable for hot stamping. In terms of surface treatment, through multi-factor composite control, a strong nitrided layer and diffusion layer with good wear resistance required by the hot stamping die are obtained. In terms of comprehensive performance, the performance of the special hot stamping die steel is: after quenching at 1080°C and tempering at 560-600°C for three times, the hardness is 51-53HRC, and the impact toughness value Ak is 170-200 J; after surface plasma nitriding , the thickness of the mold surface compound layer is 6-17μm, the micro-Vickers hardness is 750-850HV 300 , and the thickness of the seepage layer is 150-260μm. The hardness value of the mold steel of the invention is higher than that of general heat treatment H13, can improve the wear resistance of the mold, can effectively prevent the roughening of the mold surface, and can greatly prolong the service life of the mold after plasma surface nitriding. The mold after wear can be put into use again through mold repair and plasma nitriding of the present invention, thereby greatly improving the total service life of the mold.
the
发明内容 Contents of the invention
本发明的目的是提供一种高强钢板/管热冲压专用超高热导率耐磨模具材料热处理及等离子氮碳共渗表面处理技术。其目的在于使热冲压模具钢通过热处理得到最合适热冲压生产的强韧配比,并且经过表面处理有效的提高模具表面强度,增强模具的耐磨性、耐蚀性、抗粘结性和抗热疲劳性能。磨损后的模具,经修复和再次等离子渗氮可以重新投入使用,从而大大地提高模具的总使用寿命。其内容包括: The purpose of the present invention is to provide a heat treatment and plasma nitrocarburizing surface treatment technology for high-strength steel plate/pipe hot stamping special ultra-high thermal conductivity wear-resistant mold material. Its purpose is to make the hot stamping die steel obtain the most suitable strength and toughness ratio for hot stamping production through heat treatment, and effectively improve the surface strength of the die through surface treatment, and enhance the wear resistance, corrosion resistance, adhesion resistance and resistance of the die. thermal fatigue performance. The worn mold can be put into use again after repair and plasma nitriding again, thus greatly improving the total service life of the mold. Its contents include:
a. 高强钢板/管热冲压专用超高热导率耐磨模具钢热处理工艺如下:采用真空高压气淬炉在1050-1000℃淬火,560-600℃回火三次,处理后该专用热冲压模具钢性能为:基体硬度为51-53HRC,冲击韧性值Ak为170-200J; a. The heat treatment process of ultra-high thermal conductivity wear-resistant die steel for high-strength steel plate/pipe hot stamping is as follows: use a vacuum high-pressure gas quenching furnace to quench at 1050-1000 ° C, temper three times at 560-600 ° C, after treatment, the special hot stamping die steel The performance is: the hardness of the matrix is 51-53HRC, and the impact toughness value Ak is 170-200J;
b. 高强钢板/管热冲压专用超高热导率耐磨模具钢表面等离子氮碳共渗工艺如下:处理工艺电压为600-850V,气氛比值NH3:CO2= 10:1-16:1,炉压450-700Pa,渗氮温度520℃-550℃,渗氮时间8h-12h。表面等离子渗氮后,模具表面形成化合物渗层,白亮层厚度6-17μm,显微维氏硬度750-850HV0.3,渗层厚度150-260μm。 b. The surface plasma nitrocarburizing process of high-strength steel plate/pipe hot stamping special ultra-high thermal conductivity wear-resistant die steel is as follows: the treatment process voltage is 600-850V, the atmosphere ratio NH3:CO2= 10:1-16:1, the furnace pressure 450-700Pa, nitriding temperature 520°C-550°C, nitriding time 8h-12h. After surface plasma nitriding, a compound infiltrated layer is formed on the surface of the mold, the thickness of the white layer is 6-17μm, the micro-Vickers hardness is 750-850HV 0.3 , and the thickness of the infiltrated layer is 150-260μm.
the
附图说明 Description of drawings
图1为实施例1该热处理工艺模具钢的显微组织光学和SEM照片; Fig. 1 is the microstructure optical and SEM photo of this heat treatment process die steel of embodiment 1;
图2为实施例1热处理及等离子氮碳共渗后模具钢截面金相组织照片; Fig. 2 is the metallographic structure photo of the die steel section after heat treatment and plasma nitrocarburizing in embodiment 1;
图3为实施例2热处理及等离子氮碳共渗后模具钢截面金相组织照片; Fig. 3 is the metallographic structure photo of the mold steel section after the heat treatment of embodiment 2 and plasma nitrocarburizing;
图4为实施例3热处理及等离子氮碳共渗后模具钢截面金相组织照片; Fig. 4 is the metallographic structure photo of the mold steel section after the heat treatment of embodiment 3 and plasma nitrocarburizing;
图5为实施例3热处理及等离子氮碳共渗后模具钢表面XRD物相分析; Fig. 5 is the XRD phase analysis of the mold steel surface after heat treatment and plasma nitrocarburizing in embodiment 3;
图6为实施例3热处理及等离子氮碳共渗后模具钢截面硬度梯度。 Fig. 6 is the cross-sectional hardness gradient of the mold steel after heat treatment and plasma nitrocarburizing in Example 3.
具体实施方式 Detailed ways
现将本发明的具体实施例结合附图叙述于下。 The specific embodiment of the present invention is described below in conjunction with accompanying drawing now.
实施例1Example 1
本发明涉及一种高强钢板、管热冲压专用超高热导率耐磨模具钢的热处理及其表面处理工艺,具体工艺下: The invention relates to a heat treatment and surface treatment process of a high-strength steel plate and a special ultra-high thermal conductivity wear-resistant die steel for hot stamping of tubes. The specific process is as follows:
1. 模具材料化学成分:C:0.36%;Si:0.07%;Mn:0.14%;W:1.70%;Mo:4.51%; 1. Chemical composition of mold material: C: 0.36%; Si: 0.07%; Mn: 0.14%; W: 1.70%; Mo: 4.51%;
Cr:0.12%;V:0.14%; Cr: 0.12%; V: 0.14%;
2. 热处理工艺:1080℃淬火,560℃、580℃、600℃个回火2h,在该热处理工艺条件下,硬度及冲击韧性:硬度值为51-53HRC,冲击韧性值为170-200 J。淬回火态显微组织如图1所示。 2. Heat treatment process: Quenching at 1080°C, tempering at 560°C, 580°C, and 600°C for 2 hours. Under the conditions of this heat treatment process, the hardness and impact toughness: the hardness value is 51-53HRC, and the impact toughness value is 170-200 J. The quenched and tempered microstructure is shown in Fig. 1.
3. 等离子渗氮工艺:电压600-650V,气氛比值NH3: CO2=10:1,炉压450-500Pa,渗氮温度520℃,渗氮时间8h。渗氮后表面硬度为760-800HV0.3,化合物层厚度6-9μm。氮碳共渗试样截面组织图片如图2所示。 3. Plasma nitriding process: voltage 600-650V, atmosphere ratio NH 3 : CO2=10:1, furnace pressure 450-500Pa, nitriding temperature 520°C, nitriding time 8h. After nitriding, the surface hardness is 760-800HV 0.3 and the compound layer thickness is 6-9μm. The microstructure of the nitrocarburized sample section is shown in Fig. 2.
实施例2Example 2
本发明涉及一种高强钢板、管热冲压专用超高热导率耐磨模具钢的热处理及其表面处理工艺,具体工艺下: The invention relates to a heat treatment and surface treatment process of a high-strength steel plate and a special ultra-high thermal conductivity wear-resistant die steel for hot stamping of tubes. The specific process is as follows:
1. 模具材料化学成分:C:0.38 %;Si:0.06%;Mn:0.12%;W:1.65 %;Mo:4.43%; 1. Chemical composition of mold material: C: 0.38%; Si: 0.06%; Mn: 0.12%; W: 1.65%; Mo: 4.43%;
Cr:0.12%;V:0.13%; Cr: 0.12%; V: 0.13%;
2. 热处理工艺:1080℃淬火,560℃、580℃、600℃个回火2h,在该热处理工艺条件下,硬度及冲击韧性:硬度值为51-53HRC,冲击韧性值为170-200 J。 2. Heat treatment process: Quenching at 1080°C, tempering at 560°C, 580°C, and 600°C for 2 hours. Under the conditions of this heat treatment process, the hardness and impact toughness: the hardness value is 51-53HRC, and the impact toughness value is 170-200 J.
3. 等离子渗氮工艺:电压800-850V,气氛比值NH3: CO2=16:1,炉压450-500Pa,渗氮温度550℃,渗氮时间8h。渗氮后表面硬度为800-840HV300,化合物层厚度11-15μm。氮碳共渗试样截面组织图片如图3所示。 3. Plasma nitriding process: voltage 800-850V, atmosphere ratio NH 3 : CO2=16:1, furnace pressure 450-500Pa, nitriding temperature 550°C, nitriding time 8h. After nitriding, the surface hardness is 800-840HV 300 , and the compound layer thickness is 11-15μm. The microstructure of the nitrocarburized sample section is shown in Fig. 3.
实施例3Example 3
本实施例进行了一种热冲压专用超高热导率耐磨模具钢进行热处理及表面处理,具体工艺下: In this example, a special ultra-high thermal conductivity wear-resistant die steel for hot stamping is carried out for heat treatment and surface treatment. The specific process is as follows:
1. 模具材料化学成分:C:0.37 %;Si:0.08%;Mn:0.12%;W:1.65 %;Mo:4.43%;Cr:0.20%;V:0.12%; 1. Chemical composition of mold material: C: 0.37%; Si: 0.08%; Mn: 0.12%; W: 1.65%; Mo: 4.43%; Cr: 0.20%; V: 0.12%;
2. 热处理工艺:1080℃淬火,560℃、580℃、600℃个回火2h,在该热处理工艺条件下,硬度及冲击韧性:硬度值为51-53HRC,冲击韧性值为170-200 J。 2. Heat treatment process: Quenching at 1080°C, tempering at 560°C, 580°C, and 600°C for 2 hours. Under the conditions of this heat treatment process, the hardness and impact toughness: the hardness value is 51-53HRC, and the impact toughness value is 170-200 J.
3. 等离子渗氮工艺:电压800-850V,气氛比值NH3: CO2=10:1,炉压650-750Pa,渗氮温度550℃,渗氮时间12h。渗氮后表面硬度为820-850HV300,化合物层厚度12-17μm。氮碳共渗试样截面组织图片如图4所示;图5为实施例3表层物象X射线衍射分析。图6为实施例3试样的截面硬度梯度。 3. Plasma nitriding process: voltage 800-850V, atmosphere ratio NH 3 : CO2=10:1, furnace pressure 650-750Pa, nitriding temperature 550°C, nitriding time 12h. After nitriding, the surface hardness is 820-850HV 300 , and the compound layer thickness is 12-17μm. Figure 4 shows the cross-sectional structure picture of the nitrocarburizing sample; Figure 5 shows the X-ray diffraction analysis of the surface image of Example 3. Fig. 6 is the cross-sectional hardness gradient of the sample of Example 3.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410187617.9A CN104152916A (en) | 2014-05-06 | 2014-05-06 | Thermal treatment and plasma nitrocarburizing surface treatment process method for special wear-resistant die steel with ultrahigh heat conductivity for hot stamping |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410187617.9A CN104152916A (en) | 2014-05-06 | 2014-05-06 | Thermal treatment and plasma nitrocarburizing surface treatment process method for special wear-resistant die steel with ultrahigh heat conductivity for hot stamping |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104152916A true CN104152916A (en) | 2014-11-19 |
Family
ID=51878535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410187617.9A Pending CN104152916A (en) | 2014-05-06 | 2014-05-06 | Thermal treatment and plasma nitrocarburizing surface treatment process method for special wear-resistant die steel with ultrahigh heat conductivity for hot stamping |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104152916A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105039900A (en) * | 2015-06-04 | 2015-11-11 | 上海大学 | Ion nitrocarburizing compound layer phase adjustment and control method for SDC 99 steel |
CN108385056A (en) * | 2018-04-09 | 2018-08-10 | 湖南特科能热处理有限公司 | A kind of heat treatment method of engine fuel oil system atomizer |
CN108866283A (en) * | 2018-07-21 | 2018-11-23 | 安徽启慧信息科技有限公司 | A kind of surface treatment method of automobile manufacture extrusion die |
CN108866474A (en) * | 2018-06-22 | 2018-11-23 | 珠海格力精密模具有限公司 | Mold processing method |
CN109136480A (en) * | 2018-09-28 | 2019-01-04 | 上大鑫仑材料科技(上海)有限公司 | A kind of life-prolonging method of high strength steel plate hot stamping forming die and application |
CN109906278A (en) * | 2016-10-31 | 2019-06-18 | 新日铁住金株式会社 | Manufacturing method of steel part and steel part |
CN111940611A (en) * | 2020-08-07 | 2020-11-17 | 和县卜集振兴标准件厂 | Method for improving precision of alloy steel stamping die |
CN112708849A (en) * | 2019-10-24 | 2021-04-27 | 迪尔公司 | Cutting blade for agricultural implement and method of making same |
CN112921325A (en) * | 2020-12-25 | 2021-06-08 | 苏州奥维精密机械有限公司 | High-stability die steel surface composite double-treatment process |
CN113122683A (en) * | 2021-04-19 | 2021-07-16 | 江阴大手印精密材料科技发展有限公司 | High-wear-resistance alloy steel for linear guide rail and preparation method thereof |
CN114427091A (en) * | 2020-10-14 | 2022-05-03 | 无锡朗贤轻量化科技股份有限公司 | High-wear-resistance die steel product for hot stamping and additive manufacturing process thereof |
CN114481011A (en) * | 2021-12-31 | 2022-05-13 | 锦州捷通铁路机械股份有限公司 | A Solid Nitriding Process for Surface Strengthening of Hot Die Steel with Low Deformation |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090223275A1 (en) * | 2008-03-05 | 2009-09-10 | Gm Global Technology Operations, Inc. | Hot forming tools for aluminum and magnesium sheets |
CN103290354A (en) * | 2012-02-24 | 2013-09-11 | 上海汇众汽车制造有限公司 | Nitrocarburizing optimizing process of Cr12MoV steel |
-
2014
- 2014-05-06 CN CN201410187617.9A patent/CN104152916A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090223275A1 (en) * | 2008-03-05 | 2009-09-10 | Gm Global Technology Operations, Inc. | Hot forming tools for aluminum and magnesium sheets |
CN103290354A (en) * | 2012-02-24 | 2013-09-11 | 上海汇众汽车制造有限公司 | Nitrocarburizing optimizing process of Cr12MoV steel |
Non-Patent Citations (3)
Title |
---|
楼芬丽等: "H13钢的表面处理技术", 《金属热处理》 * |
郑小燕: "H13模具钢热处理工艺优化及表面渗氮处理研究", 《中国优秀硕士学位论文全文数据库 工程技术Ⅰ辑》 * |
陈玉华等: "喷丸对H13钢等离子渗氮处理的影响", 《金属热处理》 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105039900A (en) * | 2015-06-04 | 2015-11-11 | 上海大学 | Ion nitrocarburizing compound layer phase adjustment and control method for SDC 99 steel |
CN109906278A (en) * | 2016-10-31 | 2019-06-18 | 新日铁住金株式会社 | Manufacturing method of steel part and steel part |
CN108385056A (en) * | 2018-04-09 | 2018-08-10 | 湖南特科能热处理有限公司 | A kind of heat treatment method of engine fuel oil system atomizer |
CN108385056B (en) * | 2018-04-09 | 2020-02-11 | 湖南特科能热处理有限公司 | Heat treatment method for fuel injection nozzle of engine fuel system |
CN108866474A (en) * | 2018-06-22 | 2018-11-23 | 珠海格力精密模具有限公司 | Mold processing method |
CN108866283A (en) * | 2018-07-21 | 2018-11-23 | 安徽启慧信息科技有限公司 | A kind of surface treatment method of automobile manufacture extrusion die |
CN109136480A (en) * | 2018-09-28 | 2019-01-04 | 上大鑫仑材料科技(上海)有限公司 | A kind of life-prolonging method of high strength steel plate hot stamping forming die and application |
CN112708849A (en) * | 2019-10-24 | 2021-04-27 | 迪尔公司 | Cutting blade for agricultural implement and method of making same |
CN111940611A (en) * | 2020-08-07 | 2020-11-17 | 和县卜集振兴标准件厂 | Method for improving precision of alloy steel stamping die |
CN111940611B (en) * | 2020-08-07 | 2024-06-04 | 和县卜集振兴标准件厂 | Method for improving precision of alloy steel stamping die |
CN114427091A (en) * | 2020-10-14 | 2022-05-03 | 无锡朗贤轻量化科技股份有限公司 | High-wear-resistance die steel product for hot stamping and additive manufacturing process thereof |
CN114427091B (en) * | 2020-10-14 | 2024-03-26 | 无锡朗贤轻量化科技股份有限公司 | High-wear-resistance die steel product for hot stamping and additive manufacturing process thereof |
CN112921325A (en) * | 2020-12-25 | 2021-06-08 | 苏州奥维精密机械有限公司 | High-stability die steel surface composite double-treatment process |
CN113122683A (en) * | 2021-04-19 | 2021-07-16 | 江阴大手印精密材料科技发展有限公司 | High-wear-resistance alloy steel for linear guide rail and preparation method thereof |
CN114481011A (en) * | 2021-12-31 | 2022-05-13 | 锦州捷通铁路机械股份有限公司 | A Solid Nitriding Process for Surface Strengthening of Hot Die Steel with Low Deformation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104152916A (en) | Thermal treatment and plasma nitrocarburizing surface treatment process method for special wear-resistant die steel with ultrahigh heat conductivity for hot stamping | |
JP5135562B2 (en) | Carburizing steel, carburized steel parts, and manufacturing method thereof | |
JP5135563B2 (en) | Carburizing steel, carburized steel parts, and manufacturing method thereof | |
JP6911606B2 (en) | Nitriding parts and nitriding method | |
JP5093010B2 (en) | Hot working mold | |
CN114318168B (en) | High-strength high-toughness carbonitriding steel and preparation method thereof | |
CN104864039A (en) | Flexible externally toothed gear for strain wave gearing and method for manufacturing same | |
JP2011510175A (en) | High alloy cold die steel | |
CN108774712A (en) | Superelevation thermal conductivity hot stamping die steel and its manufacturing method | |
CN104178771A (en) | Heat treatment and surface treatment method of mold steel SDCM1 for hot stamping | |
CN100513609C (en) | Cold die steel excellent in characteristic of suppressing dimensional change | |
CN103993233B (en) | A kind of long-life die casting die steel and the process of manufacture magnalium compression mod | |
US8377235B2 (en) | Process for forming steel | |
JP2007131907A (en) | Steel for induction hardening with excellent cold workability, and its manufacturing method | |
CN104131227A (en) | Low-alloy heat-resisting steel pipe and manufacturing method thereof | |
JP2007146232A (en) | Manufacturing method for steel nitrocarburized machine parts | |
JPWO2017056896A1 (en) | Crankshaft rough profile, nitrided crankshaft, and method of manufacturing the same | |
JP5768734B2 (en) | Rolled steel for cold forging and nitriding | |
JPS6321748B2 (en) | ||
JP5999751B2 (en) | Manufacturing method of ferrous materials | |
JPH10226817A (en) | Method of manufacturing steel for nitrocarburizing and nitrocarburized parts using the steel | |
JP5365477B2 (en) | Steel for surface hardening treatment | |
CN104762561A (en) | Nitriding wearing-resistant steel and thermal treatment method thereof | |
Mesquita et al. | Heat treating of hot-work tool steels | |
JPH10226818A (en) | Method of manufacturing steel for nitrocarburizing and nitrocarburized parts using the steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20141119 |