JPS6321748B2 - - Google Patents

Info

Publication number
JPS6321748B2
JPS6321748B2 JP56020097A JP2009781A JPS6321748B2 JP S6321748 B2 JPS6321748 B2 JP S6321748B2 JP 56020097 A JP56020097 A JP 56020097A JP 2009781 A JP2009781 A JP 2009781A JP S6321748 B2 JPS6321748 B2 JP S6321748B2
Authority
JP
Japan
Prior art keywords
mold
steel
less
toughness
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56020097A
Other languages
Japanese (ja)
Other versions
JPS57134554A (en
Inventor
Norioki Uehara
Kunio Namiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2009781A priority Critical patent/JPS57134554A/en
Publication of JPS57134554A publication Critical patent/JPS57134554A/en
Publication of JPS6321748B2 publication Critical patent/JPS6321748B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は金型の製造方法に関する。 近年、自動車部品等における冷間鍛造の普及に
伴い、この冷間鍛造に用いる金型に対する要求も
次第に厳しいものになつてきている。一般に、金
型の寿命向上のためには、耐摩耗性に優れている
と共に、強度および靭性の高いことが必要である
が、これらの相反する性質を合金設計のみによつ
て金型に付与させるのは非常に困難なことであ
る。そこで、最近、金型に対して種々の表面処理
を施して用いることが試みられているが、各表面
処理法にはいずれも一長一短があり、全般的に普
及するには至つていない。たとえば、通常のガス
浸炭法では、硬化深さが比較的容易に深く得られ
るため、耐摩耗性の向上にはかなり効果があると
考えられるが、高Cで炭化物形成元素を多く含む
通常の工具鋼では、表面近傍に網目状の炭化物が
形成されてCの拡散を妨げるため、十分な拡散層
が得られないという難点があつた。 本発明はこのような従来の事情に鑑みてなされ
たもので、耐摩耗性に優れていると共に、強度お
よび靭性が高く、前記耐摩耗性と靭性とのバラン
スが良好に保たれている金型の製造方法を提供す
ることを目的としている。 本発明による金型の製造方法は、重量%で、
C:0.50〜0.70%、Si:1.5%以下、Mn:1.5%以
下、Ni:1.5%以下、Cr:5.0超過〜9.0%、Mo:
0.2〜5.0%、V:0.5〜1.5%を含み、必要に応じ
て、W:0.5〜5.0%、Co:2.0%以下のうちの1
種または2種を含有し、残部Feおよび不可避的
不純物からなる鋼を用いて所定形状の金型を製作
したのち当該金型に真空浸炭を施すことを特徴と
している。 すなわち、本発明者らは、表面の清浄効果と活
性化作用のある真空浸炭法に着目して基礎実験を
繰返しおこなつた結果、上記真空浸炭法を用いれ
ば高合金鋼においても深い拡散層が得られると共
に、必要により拡散処理をさらに加えることによ
つて微細でかつ均一な球状炭化物が形成されるこ
とを見出した。かくして、本発明では、靭性に優
れた組成の金型に真空浸炭処理を施すことによつ
て、耐摩耗性と靭性とのバランスを良好に保持す
る金型に仕上げるようにしたものである。このよ
うな観点から、本発明ではその金型の化学成分に
ついて、当該金型として必要な芯部の強度を維持
し、かつ靭性を低下させる粗大な炭化物の形成を
抑制するために、Cおよび炭化物形成元素の含有
量を低めるようにし、いわゆるマトリツクスハイ
ス系に属するものとした。ただし、浸炭時におい
てM7C3型複炭化物を析出させかつ表層の耐摩耗
性を高めるために、Cr含有量を高めた。さらに、
芯部の強度を高めると同時に高負荷の金型にも適
用できるように、WおよびCoの1種または2種
を適宜加えることとした。 上述した観点に立つて、本発明では前述の化学
成分範囲の鋼を用いるように定めているが、以
下、その成分範囲の限定理由を説明する。 C(炭素):0.50〜0.70% Cは冷間成形用工具鋼として必要な硬さ(たと
えばHRC56以上)を得るために少なくとも0.50%
含有することが必要であるが、0.70%を超えると
靭性が劣化し、加えて浸炭時に表層に炭化物が凝
集してCの拡散を妨げる。したがつて、0.50〜
0.70%の範囲とする。 Si(ケイ素):1.5%以下、 Mn(マンガン):1.5%以下 SiおよびMnは脱酸剤として添加される元素で
あつて、Siは降伏点を高める効果を有し、Mnは
強度および靭性を改善する効果を有するが、いず
れも1.5%を超えると鍛造性等の加工性が劣化す
るため、それぞれ1.5%以下とする。 Ni(ニツケル):1.5%以下 Niは焼入性向上に有効な元素であり、大型の
金型の場合でも中心まで焼入れ組織として強靭性
を高めるのに有効である。しかしながら、1.5%
を超えると焼なまし硬さが上昇し、被削性を劣化
させるため1.5%以下とする。 Cr(クロム):5.0超過〜9.0% Crは浸炭時にHv2000〜2500の高硬度を有する
M7C3型複炭化物を析出して耐摩耗性の向上に寄
与するので、浸炭温度(例えば1000〜1050℃)で
容易にM7C3型複炭化物を形成させるために5.0%
を超えて含有させる。しかしながら、9.0%を超
えると凝固時に共晶炭化物が晶出して靭性が低下
するため、その上限を9.0%とする。 Mo(モリブヂン):0.2〜5.0% Moは焼もどし時にMo2C型炭化物を析出して
二次硬化に寄与する元素であり、そのため最低
0.2%を必要とする。そして、添加量が多くなる
につれて二次硬化による硬さおよび焼もどし硬さ
を高めるので、金型に要求される強度に応じて
Mo量を調整する。しかしながら、冷間鍛造用金
型として必要な強度を得るには5.0%以下で十分
であり、さらに5.0%を超えると靭性を劣化させ
るためこれを上限とする。 V(バナジウム):0.5〜1.5% Vは炭化物を形成してオーステナイト結晶粒の
微細化に寄与する元素であり、そのためには0.5
%以上添加する。しかしながら、1.5%を超える
と被削性および被研削性が劣化するため0.5〜1.5
%の範囲とする。 W(タングステン):0.5〜5.0% WはMoと同様に焼もどし時に複炭化物を析出
して二次硬化に寄与し、金型の強度向上に有効な
元素であり、Moと同様の作用(重量%にして
Moの約1/2の効果)を与える。したがつて、必
要に応じて0.5%以上添加させるが、5.0%を超え
ると靭性の劣化をきたすためこれを上限とする。 Co(コバルト):2.0%以下 Coはマトリツクスに固溶して該マトリツクス
の耐焼戻し性を高めると共に、炭化物の残留量を
多くして耐摩耗性を増し、金型の強度向上とくに
芯部の強度向上に効果があるので、必要に応じて
適宜添加する。しかしながら、現状では高価であ
ると共に、添加量が2.0%を超えると靭性が劣化
するので、2.0%以下とすることが好ましい。 実施例 1 この実施例では、第1表に示す本発明鋼(供試
材No.1〜7)および比較鋼(供試材No.8,9)を
用いて実施した。なお、供試材No.8はJIS SKH9
相当品、No.9はJIS SKD11相当品である。
The present invention relates to a method for manufacturing a mold. In recent years, with the spread of cold forging for automobile parts and the like, requirements for molds used for cold forging have become increasingly strict. Generally, in order to extend the life of a mold, it is necessary to have excellent wear resistance as well as high strength and toughness, but these contradictory properties can be imparted to the mold only by alloy design. is extremely difficult. Therefore, attempts have recently been made to apply various surface treatments to the molds, but each surface treatment method has its advantages and disadvantages, and it has not yet become widespread. For example, in the conventional gas carburizing method, a deep hardening depth can be obtained relatively easily, so it is thought to be quite effective in improving wear resistance. Steel has the disadvantage that a sufficient diffusion layer cannot be obtained because mesh-like carbides are formed near the surface and hinder the diffusion of C. The present invention has been made in view of such conventional circumstances, and provides a mold that has excellent wear resistance, high strength and toughness, and maintains a good balance between the wear resistance and toughness. The purpose is to provide a manufacturing method for. The method for manufacturing a mold according to the present invention, in weight%,
C: 0.50 to 0.70%, Si: 1.5% or less, Mn: 1.5% or less, Ni: 1.5% or less, Cr: more than 5.0 to 9.0%, Mo:
Contains 0.2 to 5.0%, V: 0.5 to 1.5%, and if necessary, one of W: 0.5 to 5.0%, Co: 2.0% or less
The method is characterized in that a mold of a predetermined shape is manufactured using steel containing one or two kinds of iron and the remainder is Fe and unavoidable impurities, and then the mold is subjected to vacuum carburizing. In other words, the inventors repeatedly conducted basic experiments focusing on the vacuum carburizing method, which has surface cleaning and activating effects, and found that it is possible to form a deep diffusion layer even in high-alloy steel by using the vacuum carburizing method described above. It has been found that fine and uniform spherical carbides can be formed by further applying a diffusion treatment if necessary. Thus, in the present invention, by performing vacuum carburizing treatment on a mold having a composition excellent in toughness, a mold that maintains a good balance between wear resistance and toughness is produced. From this point of view, in the present invention, regarding the chemical components of the mold, C and carbide are added in order to maintain the strength of the core necessary for the mold and to suppress the formation of coarse carbides that reduce toughness. The content of the forming elements was reduced, and the material belonged to the so-called matrix high-speed steel system. However, the Cr content was increased in order to precipitate M 7 C 3 type double carbide during carburizing and to improve the wear resistance of the surface layer. moreover,
In order to increase the strength of the core and at the same time make it applicable to high-load molds, we decided to add one or both of W and Co as appropriate. From the above-mentioned viewpoint, the present invention specifies that steel having the above-mentioned chemical composition range be used, and the reasons for limiting the composition range will be explained below. C (carbon): 0.50-0.70% C is at least 0.50% to obtain the hardness required for cold forming tool steel (e.g. H R C56 or higher)
It is necessary to contain C, but if it exceeds 0.70%, toughness deteriorates, and in addition, carbide aggregates on the surface layer during carburizing, hindering the diffusion of C. Therefore, 0.50~
The range shall be 0.70%. Si (silicon): 1.5% or less, Mn (manganese): 1.5% or less Si and Mn are elements added as deoxidizing agents. Si has the effect of increasing the yield point, and Mn has the effect of increasing strength and toughness. However, if it exceeds 1.5%, workability such as forgeability will deteriorate, so each should be kept at 1.5% or less. Ni (nickel): 1.5% or less Ni is an effective element for improving hardenability, and even in the case of large molds, it is effective in increasing the toughness as a hardened structure to the center. However, 1.5%
If it exceeds 1.5%, the annealing hardness increases and machinability deteriorates, so it should be kept at 1.5% or less. Cr (Chromium): Exceeding 5.0~9.0% Cr has high hardness of Hv2000~2500 when carburized
5.0% to easily form M7C3 type double carbide at carburizing temperature (e.g. 1000 to 1050℃) because it precipitates M7C3 type double carbide and contributes to improving wear resistance.
Contain more than . However, if it exceeds 9.0%, eutectic carbides will crystallize during solidification and the toughness will decrease, so the upper limit is set at 9.0%. Mo (molybdenum): 0.2 to 5.0% Mo is an element that precipitates Mo 2 C type carbide during tempering and contributes to secondary hardening.
Requires 0.2%. As the amount of addition increases, the hardness due to secondary hardening and tempering hardness increase, so it can be adjusted according to the strength required for the mold.
Adjust the amount of Mo. However, 5.0% or less is sufficient to obtain the strength required for a cold forging die, and if it exceeds 5.0%, toughness deteriorates, so this is the upper limit. V (vanadium): 0.5 to 1.5% V is an element that forms carbides and contributes to the refinement of austenite grains, and for this purpose 0.5%
% or more. However, if it exceeds 1.5%, machinability and grindability deteriorate, so 0.5 to 1.5
% range. W (tungsten): 0.5-5.0% W, like Mo, precipitates double carbides during tempering and contributes to secondary hardening, and is an effective element for improving the strength of molds. %
Approximately 1/2 the effect of Mo). Therefore, if necessary, add 0.5% or more, but if it exceeds 5.0%, the toughness will deteriorate, so this is the upper limit. Co (cobalt): 2.0% or less Co dissolves in the matrix and improves the tempering resistance of the matrix, and increases the residual amount of carbides to increase wear resistance, improving the strength of the mold, especially the core strength. Since it has an effect on improvement, it should be added as necessary. However, at present, it is expensive, and if the amount added exceeds 2.0%, the toughness deteriorates, so it is preferable to keep it at 2.0% or less. Example 1 This example was carried out using the invention steels (sample materials No. 1 to 7) and comparative steels (sample materials No. 8 and 9) shown in Table 1. In addition, sample material No. 8 is JIS SKH9
Equivalent product No. 9 is equivalent to JIS SKD11.

【表】 そこで、上記各供試材No.1〜7について、第2
表に示す真空浸炭条件で真空浸炭をおこない、供
試材No.1,3,6についてはさらに拡散をおこな
い、次いで同じく第2表に示す焼戻し条件でそれ
ぞれ焼もどしをおこなつて、芯部硬さ、表面硬さ
および全硬化深さを測定した。これらの結果を同
じく第2表に示す。 なお、上記真空浸炭に際しては、真空炉本体、
ガス供給装置および制御盤(温度,真空度,浸炭
量等を制御する)から主としてなる装置を用い
た。そして、各供試材No.1〜7の鋼を上記装置内
に装入して炉内雰囲気を10-1mmHg程度に減圧し、
第2表に示す各温度においてプロパン(C3H8
ガスを同じく第2表に示す各時間供給し、真空加
熱中に活性化された各供試材の鋼表面に対する浸
炭をおこない、供試材によつてはさらに第2表に
示す各条件で拡散をおこなつた。浸炭の終了後
N2ガスを導入して冷却室内で焼入れをおこなつ
たのち、同じく第2表に示す各焼もどし条件で焼
もどしをおこなつた。この第2表においては、真
空浸炭後焼もどしを施して芯部硬さをHRC56〜60
に調質したときの浸炭性能を示しており、Hv800
〜900の表面硬さと約1.5mm前後の硬化深さを得て
いる。 一方、供試材No.8〜9についても第2表に示す
条件で焼入れ焼もどしをおこない、各々の表面硬
さを測定した。これらの結果を同じく第2表に示
す。
[Table] Therefore, for each sample material No. 1 to 7 above, the second
Vacuum carburizing was carried out under the vacuum carburizing conditions shown in the table. Sample materials No. 1, 3, and 6 were further diffused, and then tempered under the same tempering conditions shown in Table 2 to harden the core. The hardness, surface hardness and total cure depth were measured. These results are also shown in Table 2. In addition, when performing the above vacuum carburizing, the vacuum furnace main body,
The main equipment used was a gas supply device and a control panel (controlling temperature, degree of vacuum, amount of carburization, etc.). Then, the steel samples No. 1 to 7 were charged into the above-mentioned apparatus, and the atmosphere in the furnace was reduced to about 10 -1 mmHg.
Propane (C 3 H 8 ) at each temperature shown in Table 2
Gas was also supplied for the times shown in Table 2 to carburize the steel surface of each specimen material activated during vacuum heating, and depending on the specimen material, it was further diffused under the conditions shown in Table 2. I did this. After carburizing
After quenching was performed in a cooling chamber by introducing N 2 gas, tempering was performed under each tempering condition shown in Table 2. In this Table 2, the core hardness is H R C56 to 60 after vacuum carburizing and tempering.
It shows the carburizing performance when tempered to Hv800
A surface hardness of ~900 and a hardening depth of approximately 1.5mm have been obtained. On the other hand, sample materials No. 8 to 9 were also quenched and tempered under the conditions shown in Table 2, and the surface hardness of each was measured. These results are also shown in Table 2.

【表】【table】

【表】 次に、上記第2表に示すうちの供試材No.5の鋼
について、表層部に形成された炭化物の性状を添
付図面の顕微鏡組織写真に示す。図に示すよう
に、表層部に比較的球状化した微細なM7C3複炭
化物(Hv2000〜2500)が均一に分散しており、
これが耐摩耗性の向上に著しく寄与するものであ
ることが後述する試験によつても確認された。 次いで、上記第1表および第2表に示した熱処
理後の各供試材について、耐摩耗性を評価した。
この試験に際しては大越式摩耗試験機を使用し、
速度1.96m/sec,荷重6.5Kg,距離200mの条件で
相手材としてJIS SCM21材を使用して実施した。
その結果を第3表に示す。
[Table] Next, the properties of carbides formed in the surface layer of the steel sample No. 5 shown in Table 2 above are shown in the microscopic structure photograph in the attached drawing. As shown in the figure, relatively spherical fine M 7 C 3 double carbides (Hv2000-2500) are uniformly dispersed in the surface layer.
It was also confirmed through the tests described below that this contributes significantly to improving wear resistance. Next, the wear resistance of each heat-treated sample material shown in Tables 1 and 2 above was evaluated.
For this test, an Okoshi type abrasion tester was used.
Testing was conducted using JIS SCM21 material as the mating material at a speed of 1.96 m/sec, a load of 6.5 kg, and a distance of 200 m.
The results are shown in Table 3.

【表】 第3表から明らかなように、本発明によるもの
では、従来のものに比べて比摩耗量がかなり少な
く、耐摩耗性はかなり優れていることが確認され
た。 次に、前記第1表および第2表に示した熱処理
後の各供試材について、圧縮試験およびシヤルピ
ー衝撃試験をおこなつた。なお、圧縮試験におい
ては平行部が6mmφ×20mlの試験片を使用し、衝
撃試験においては10Rノツチシヤルピー衝撃試験
片を使用した。その結果を第4表に示す。
[Table] As is clear from Table 3, it was confirmed that the specific wear amount of the product according to the present invention was considerably smaller than that of the conventional product, and the wear resistance was considerably superior. Next, a compression test and a Charpy impact test were conducted on each of the heat-treated test materials shown in Tables 1 and 2 above. In the compression test, a test piece with a parallel portion of 6 mmφ x 20 ml was used, and in the impact test, a 10R notched pea impact test piece was used. The results are shown in Table 4.

【表】 第4表より明らかなように、本発明鋼は強度お
よび靭性とも非常にすぐれた値を示しているのに
対して、比較鋼は靭性がかなり劣つている。第3
表および第4表の結果から、本発明鋼は、耐摩耗
性と靭性とのバランスがきわめて良好に維持され
ていることが確認された。 実施例 2 ここでは、第1表に示す供試材No.4の鋼を用い
て電磁鋼板の抜き型を製作し、次いで第2表に示
す条件で真空浸炭および焼もどしをおこなつて使
用に供した。一方、第1表に示す供試材No.9の鋼
を用いて同様に電磁鋼板の抜き型を製作し、次い
で第2表に示す条件で焼入れ焼もどしをおこなつ
て使用に供した。この結果、供試材No.9の鋼を用
いた抜き型では約4万シヨツトの寿命であつたの
に対し、供試材No.4の鋼を用いた抜き型では約10
万シヨツトの耐用寿命を示した。 実施例 3 ここでは、第1表に示す供試材No.6の鋼を用い
てボルトフオーマーパンチを製作し、次いで第2
表に示す条件で真空浸炭および焼もどしをおこな
つて使用に供した。一方、第1表に示す供試材No.
8の鋼を用いて同様にボルトフオーマーパンチを
製作し、次いで第2表に示す条件で焼入れ焼もど
しをおこなつて使用に供した。この結果、供試材
No.8の鋼を用いたパンチでは約1万シヨツトの寿
命であつのに対し、供試材No.6の鋼を用いたパン
チでは約3万シヨツトまで寿命を延長することが
できた。 以上詳述したように、本発明は金型の化学成分
を真空浸炭に適したものとして、これを所定形状
の金型に製作したのち、この金型を真空加熱し、
この真空加熱中に活性化された前記金型表面に真
空浸炭を施すようにしたものである。従つて短か
い浸炭時間で清浄な浸炭層を均一に得ることがで
き、表面の耐摩耗性が優れていると共に、強度お
よび靭性が高く、前記耐摩耗性と靭性とのバラン
スが良好に保たれている金型を供給することがで
きる。さらに冷間鍛造用金型、冷間プレス用金
型、温間鍛造用金型などの金型の耐用寿命をかな
り増大させることができるという非常にすぐれた
効果を有するものである。
[Table] As is clear from Table 4, the steel of the present invention exhibits very excellent values in both strength and toughness, whereas the comparative steel has considerably poor toughness. Third
From the results in Tables and Table 4, it was confirmed that the steel of the present invention maintains an extremely good balance between wear resistance and toughness. Example 2 Here, a cutting die for an electrical steel sheet was manufactured using the steel of test material No. 4 shown in Table 1, and then vacuum carburized and tempered under the conditions shown in Table 2 to prepare it for use. provided. On the other hand, a cutting die for an electromagnetic steel sheet was manufactured in the same manner using the steel of test material No. 9 shown in Table 1, and then quenched and tempered under the conditions shown in Table 2 and used. As a result, the life of the cutting die made of steel of test material No. 9 was approximately 40,000 shots, while the life of the cutting die made of steel of test material No. 4 was approximately 10,000 shots.
It has a service life of 10,000 shots. Example 3 Here, a bolt former punch was manufactured using steel sample material No. 6 shown in Table 1, and then a second
The specimens were subjected to vacuum carburizing and tempering under the conditions shown in the table and then used. On the other hand, the sample material No. shown in Table 1.
Bolt former punches were manufactured in the same manner using No. 8 steel, and then quenched and tempered under the conditions shown in Table 2 and used. As a result, the sample material
While the punch using No. 8 steel had a lifespan of about 10,000 shots, the life of the punch using test material No. 6 steel could be extended to about 30,000 shots. As detailed above, the present invention uses chemical components of a mold that are suitable for vacuum carburizing, manufactures the mold into a predetermined shape, and then vacuum-heats the mold.
The surface of the mold activated during this vacuum heating is subjected to vacuum carburization. Therefore, a clean carburized layer can be uniformly obtained in a short carburizing time, and the surface has excellent wear resistance, as well as high strength and toughness, and a good balance between the wear resistance and toughness is maintained. We can supply the molds you want. Furthermore, it has the very excellent effect of considerably increasing the useful life of molds such as cold forging molds, cold press molds, and warm forging molds.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の一実施結果における供試材の
表層部の顕微鏡組織写真である。
The drawing is a microscopic structure photograph of the surface layer of a sample material as a result of implementing the present invention.

Claims (1)

【特許請求の範囲】 1 重量%で、C:0.50〜0.70%、Si:1.5%以
下、Mn:1.5%以下、Ni:1.5%以下、Cr:5.0超
過〜9.0%、Mo:0.2〜5.0%、V:0.5〜1.5%を含
み、残部Feおよび不可避的不純物からなる鋼を
用いて所定形状の金型を製作したのち当該金型に
真空浸炭を施すことを特徴とする金型の製造方
法。 2 重量%で、C:0.50〜0.70%、Si:1.5%以
下、Mn:1.5%以下、Ni:1.5%以下、Cr:5.0超
過〜9.0%、Mo:0.2〜5.0%、V:0.5〜1.5%,お
よびW:0.5〜5.0%,Co:2.0%以下のうちの1
種または2種を含み、残部Feおよび不可避的不
純物からなる鋼を用いて所定形状の金型を製作し
たのち当該金型に真空浸炭を施すことを特徴とす
る金型の製造方法。
[Claims] 1 In weight%, C: 0.50 to 0.70%, Si: 1.5% or less, Mn: 1.5% or less, Ni: 1.5% or less, Cr: more than 5.0 to 9.0%, Mo: 0.2 to 5.0%. , V: 0.5 to 1.5%, and the remainder is Fe and unavoidable impurities.A method for manufacturing a mold is characterized in that a mold of a predetermined shape is manufactured using steel, and then the mold is vacuum carburized. 2 In weight%, C: 0.50 to 0.70%, Si: 1.5% or less, Mn: 1.5% or less, Ni: 1.5% or less, Cr: more than 5.0 to 9.0%, Mo: 0.2 to 5.0%, V: 0.5 to 1.5 %, and W: 0.5 to 5.0%, Co: 2.0% or less.
1. A method for manufacturing a mold, which comprises manufacturing a mold of a predetermined shape using steel containing one or two kinds of Fe and unavoidable impurities, and then subjecting the mold to vacuum carburizing.
JP2009781A 1981-02-16 1981-02-16 Manufacture of die Granted JPS57134554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009781A JPS57134554A (en) 1981-02-16 1981-02-16 Manufacture of die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009781A JPS57134554A (en) 1981-02-16 1981-02-16 Manufacture of die

Publications (2)

Publication Number Publication Date
JPS57134554A JPS57134554A (en) 1982-08-19
JPS6321748B2 true JPS6321748B2 (en) 1988-05-09

Family

ID=12017608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009781A Granted JPS57134554A (en) 1981-02-16 1981-02-16 Manufacture of die

Country Status (1)

Country Link
JP (1) JPS57134554A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974263A (en) * 1982-10-21 1984-04-26 Sanyo Tokushu Seikou Kk Cold working tool steel with high hardness and toughness for coating treatment with carbide
JPS63241144A (en) * 1987-03-30 1988-10-06 Mitsubishi Steel Mfg Co Ltd High-toughness alloy tool steel
WO1991000929A1 (en) * 1989-07-07 1991-01-24 Aga Ab Process for case-hardening roller bearing components of low-alloy nickel steel
KR100506328B1 (en) * 2002-11-20 2005-08-05 이일규 Special steel as hot-cool composite material and manufacturing process thereof
JP4645303B2 (en) * 2005-05-24 2011-03-09 愛知製鋼株式会社 Overlay welding material for hot forging die and hot forging die using the welding material
JP4746934B2 (en) * 2005-08-02 2011-08-10 本田技研工業株式会社 Die for forging and manufacturing method thereof
JP5090257B2 (en) * 2008-06-05 2012-12-05 山陽特殊製鋼株式会社 Tool steel suitable for aluminum machining dies and aluminum machining dies
JP2021042399A (en) * 2019-09-06 2021-03-18 株式会社不二越 Method for heating component made of high alloy steel
CN113737106B (en) * 2020-05-29 2022-11-15 宝山钢铁股份有限公司 Die steel for 1500MPa hot stamping part cold trimming punching cutter and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62994A (en) * 1985-06-27 1987-01-06 株式会社東芝 Pcm voice signal memory

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62994A (en) * 1985-06-27 1987-01-06 株式会社東芝 Pcm voice signal memory

Also Published As

Publication number Publication date
JPS57134554A (en) 1982-08-19

Similar Documents

Publication Publication Date Title
JPS6321748B2 (en)
JP4970811B2 (en) High surface pressure parts and manufacturing method thereof
JPS5853709B2 (en) As-forged high-strength forging steel
KR20010101300A (en) Steel for large bearing and parts for large bearing
JP6477904B2 (en) Crankshaft rough profile, nitrided crankshaft, and method of manufacturing the same
JPH09170017A (en) Production of steel plate with high strength and high toughness
KR20140087279A (en) A cold-work tool steel with excellent hardness and impact toughness
JPH10226817A (en) Production of steel for soft-nitriding and soft-nitrided parts using this steel
JPH0146582B2 (en)
JP2019019374A (en) Hot tool steel excellent in hardening property and toughness
JPH0254416B2 (en)
JPH10226818A (en) Production of steel for soft-nitriding and soft-nitrided parts using this steel
JP3629851B2 (en) Cold tool steel for plasma carburizing
JP2706940B2 (en) Manufacturing method of non-heat treated steel for nitriding
JPS62994B2 (en)
JP3883782B2 (en) Case-hardened steel with excellent pitting resistance
JPH09279296A (en) Steel for soft-nitriding excellent in cold forgeability
JP2005002366A (en) High hardness steel for induction hardening having excellent cold work properties
JPH0227408B2 (en)
JPH02166257A (en) Spheroidal graphite cast iron and its production
JP5287183B2 (en) Manufacturing method of carburizing steel
JPH0881740A (en) Steel for carburizing and carburized member
JPH0559526A (en) Production of steel excellent in wear resistance and rolling fatigue characteristic
JPH09256045A (en) Production of steel for soft-nitriding and soft-nitrided parts using the same steel
JPH0881738A (en) Steel for induction hardening excellent in high bearing fatigue strength