JPH0881738A - Steel for induction hardening excellent in high bearing fatigue strength - Google Patents

Steel for induction hardening excellent in high bearing fatigue strength

Info

Publication number
JPH0881738A
JPH0881738A JP25261294A JP25261294A JPH0881738A JP H0881738 A JPH0881738 A JP H0881738A JP 25261294 A JP25261294 A JP 25261294A JP 25261294 A JP25261294 A JP 25261294A JP H0881738 A JPH0881738 A JP H0881738A
Authority
JP
Japan
Prior art keywords
steel
induction hardening
less
fatigue strength
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25261294A
Other languages
Japanese (ja)
Inventor
Tatsumi Urita
龍実 瓜田
Sadayuki Nakamura
貞行 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP25261294A priority Critical patent/JPH0881738A/en
Publication of JPH0881738A publication Critical patent/JPH0881738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE: To produce a steel for induction hardening excellent in high bearing fatigue strength. CONSTITUTION: This steel for induction hardening excellent in high bearing fatigue strength is characterized by subjecting a steel in which the contents of alloy elements are regulated to, by mass, 0.40 to 0.80% C, <=3.0% Si, 0.35 to 1.5% Mn, 0.10 to 3.0% Cr and 0.05 to 0.50% V, and the balance Fe with inevitable impurities to induction hardening in the temp. range of 950 to 1150 deg.C surface temp. and thereafter cooling the same in the temp. range from the heating temp. to 200 deg.C at >=50 deg.C/s rate. Moreover, this steel may contain one or >=two kinds among <=3.0% Ni, <=1.0% Mo, <=0.10% Nb, 0.0005 to 0.0050% B, <=0.20% S, <=0.20% Te and <=0.0050% Ca as well.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐摩耗性と面圧疲労強
度に優れた高周波焼入れして用いる鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to steel which is excellent in wear resistance and surface fatigue strength and used by induction hardening.

【0002】[0002]

【従来の技術】これまで耐摩耗性と面圧疲労強度が要求
される転動体部品または転動部位には、SUJ2に代表
される軸受鋼やSCr420、SCM420などに代表
される浸炭鋼が用いられてきた。高周波焼入れに用いら
れる炭素鋼は、一般的に軸受け鋼や浸炭鋼に比べて転動
寿命が低く、耐摩耗性と面圧疲労強度が高いレベルで要
求される部品には不適当であった。
2. Description of the Related Art Up to now, bearing steel typified by SUJ2 and carburized steel typified by SCr420 and SCM420 have been used for rolling element parts or rolling parts which are required to have wear resistance and surface fatigue strength. Came. Carbon steel used for induction hardening generally has a shorter rolling life than bearing steel and carburized steel, and is unsuitable for parts that require high levels of wear resistance and surface fatigue strength.

【0003】ところが、高周波焼入れした部位をそのま
ま軸受けとして用いる転動体部品が最近増加してきた。
また省エネルギー、インライン化のニーズにより従来は
浸炭焼入材により製造されていた部品が、高周波焼入に
て製造されるようになってきた。これにともない、耐摩
耗性と面圧疲労強度および被削性に優れる高周波焼入用
鋼の要求が増してきた。
However, there has recently been an increase in the number of rolling element parts that use the induction-hardened portion as it is as a bearing.
Also, due to the need for energy saving and in-line construction, parts that were conventionally manufactured by carburizing and quenching materials are now manufactured by induction hardening. Along with this, there has been an increasing demand for induction hardening steels having excellent wear resistance, surface fatigue strength and machinability.

【0004】高周波焼入用鋼の耐摩耗性と面圧疲労強度
を向上させるためには、高周波焼入後の表面硬さを高め
るC量を増加させるのが最も有効であるが、C量は鋼の
共析点である0.80%の添加が限界で、0.80%以
上添加してもむしろ表面硬さが低下し、強度向上の低下
を招く。またC量が高ければ素材状態における硬さを高
め、被削性を損なうなどの弊害をもたらす。またO含有
率の低減やSi、Crの添加なども検討されているが、
耐摩耗性と面圧疲労強度を大幅に向上するには至らなか
った。
In order to improve the wear resistance and the surface fatigue strength of induction hardening steel, it is most effective to increase the amount of C which increases the surface hardness after induction hardening, but the amount of C is Addition of 0.80%, which is the eutectoid point of steel, is the limit, and even if 0.80% or more is added, the surface hardness rather lowers, leading to lower strength improvement. Further, if the amount of C is high, the hardness in the raw material state is increased, and the machinability is impaired. Also, reduction of O content and addition of Si and Cr are being studied,
The wear resistance and surface fatigue strength were not significantly improved.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記のよう
な事情を背景としてなされたもので、本発明の目的とす
るところは、耐摩耗性と面圧疲労強度に優れる高周波焼
入用鋼を提供するところにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a steel for induction hardening which is excellent in wear resistance and surface fatigue strength. Is in the place of providing.

【0006】[0006]

【課題を解決するための手段】本発明者は種々の合金元
素について検討した結果、高周波焼入材の耐摩耗性と面
圧疲労強度を向上には、高周波焼入層部に過飽和に固溶
したVが極めて有効に作用することを見出した。この理
由は、過飽和に固溶したVが非常に大きな焼もどし軟化
抵抗性を示すことによる。高周波焼入がVの有効利用に
有利な点は、比較的短時間で高温加熱が可能であるため
オーステナイト結晶粒の粗大化を招くことなく、マトリ
ックス中へのVの固溶をほぼ完全にすることができる点
と加熱後、水または溶媒により急速に冷却されるため冷
却過程でのV炭窒化物の析出を抑制でき、Vをマトリッ
クス中に過飽和に固溶することができるためである。
As a result of studying various alloy elements, the present inventor has found that in order to improve the wear resistance and the contact pressure fatigue strength of induction hardened materials, a supersaturated solid solution is formed in the induction hardened layer. It was found that the above V worked extremely effectively. The reason for this is that V dissolved in supersaturation has a very large tempering softening resistance. The advantage of induction hardening for effective use of V is that it can be heated at a high temperature in a relatively short time, so that the solid solution of V in the matrix is almost completed without causing coarsening of austenite crystal grains. This is because, after heating, it is rapidly cooled with water or a solvent after heating, so that precipitation of V carbonitride in the cooling process can be suppressed, and V can be supersaturated as a solid solution in the matrix.

【0007】さらに高周波焼入れの適正条件を検討した
結果、Vがほぼ完全固溶する表面温度は950℃〜11
50℃の温度範囲であり、加熱後の温度から200℃ま
での範囲を50℃/s以上の速さで冷却するとV炭窒化
物の析出を大部分抑制できることを発見した。
As a result of further studying the proper conditions for induction hardening, the surface temperature at which V is almost completely solid-dissolved is 950 ° C to 11
It was discovered that V carbonitride precipitation can be largely suppressed by cooling at a rate of 50 ° C./s or more in a temperature range of 50 ° C. and from a temperature after heating to 200 ° C.

【0008】すなわち、本発明の耐摩耗性と面圧疲労強
度に優れた高周波焼入鋼は、合金元素の含有率が質量%
で、C :0.40〜0.80%、Mn:0.35〜
1.5%、Si:3.0%以下 Cr:0.10〜3.0%、V :0.05〜0.5%
であり、残部Feおよび不可避的不純物からなる鋼を表
面温度が950〜1150℃の温度範囲で高周波加熱し
た後、加熱温度から200℃までの温度範囲を50℃/
s以上の速さで冷却することを特徴とする高面圧疲労強
度に優れた高周波焼入用鋼。
That is, the induction hardened steel excellent in wear resistance and surface fatigue strength of the present invention has an alloying element content of mass%.
C: 0.40 to 0.80%, Mn: 0.35
1.5%, Si: 3.0% or less Cr: 0.10 to 3.0%, V: 0.05 to 0.5%
After high-frequency heating of the steel consisting of the balance Fe and unavoidable impurities in the temperature range of 950 to 1150 ° C., the temperature range from the heating temperature to 200 ° C. is 50 ° C. /
Steel for induction hardening, which has excellent high surface pressure fatigue strength and is characterized by cooling at a speed of s or more.

【0009】また、上記の合金元素に加えて、質量%
で、Ni:3.0%以下、Mo:1.0%以下、Nb:
0.10%以下 B :0.0005〜0.0050%のうち1種または
2種以上を含むことができる。
In addition to the above alloying elements, mass%
Then, Ni: 3.0% or less, Mo: 1.0% or less, Nb:
0.10% or less B: One or more of 0.0005 to 0.0050% can be contained.

【0010】また、上記の合金元素に加えて、質量%
で、S :0.20%以下、Te:0.20%以下、C
a:0.0050%以下のうち1種または2種以上の被
削性向上元素を含むことができる。
In addition to the above alloying elements, mass%
And S: 0.20% or less, Te: 0.20% or less, C
a: One or more of 0.0050% or less may be included in the machinability improving element.

【0011】以下に各合金成分の限定理由について説明
する。 C :0.40〜0.80% Cは高周波焼入後、 鋼の強度を保持するために必須の
元素であり、高周波焼入れ後の表面硬さを維持するため
に0.40%以上添加する必要がある。しかし、その含
有率が 0.80%の共析点を超えて添加するとむしろ
表面硬さが低下し、強度向上の劣化を招く。また初析セ
メンタイトが生成して靭性にを損なうばかりでなく、素
材状態における材料硬さを高め、被削性を損なうなどの
弊害をもたらすので、C含有率の上限を0.80%とす
る。
The reasons for limiting the alloy components will be described below. C: 0.40 to 0.80% C is an essential element for maintaining the strength of steel after induction hardening, and is added by 0.40% or more to maintain the surface hardness after induction hardening. There is a need. However, when the content exceeds the eutectoid point of 0.80%, the surface hardness rather lowers, leading to deterioration of strength improvement. In addition, not only the proeutectoid cementite is generated to impair the toughness, but also the material hardness in the raw material state is increased and the machinability is impaired. Therefore, the upper limit of the C content is 0.80%.

【0012】Si:3.0%以下 Siは、鋼に焼もどし軟化抵抗を与えるため添加する。
しかし、過剰に添加してもその効果が飽和するのみなら
ず、鍛造性および被削性を損なうなどの不都合をもたら
すので、Si含有率の上限を3.0%とする。
Si: 3.0% or less Si is added to impart tempering softening resistance to steel.
However, even if added excessively, not only the effect is saturated but also inconveniences such as impairing forgeability and machinability are brought about, so the upper limit of the Si content is made 3.0%.

【0013】Mn:0.35〜1.5% Mnは鋼の熱間加工性を高め、焼入性を確保するために
0.35%以上添加する。しかし、過剰に添加すると素
材の被削性を損なうのでMnの含有率の上限を1.5%
とする。
Mn: 0.35 to 1.5% Mn is added in an amount of 0.35% or more in order to enhance the hot workability of steel and to secure hardenability. However, if added excessively, the machinability of the material will be impaired, so the upper limit of the Mn content is 1.5%.
And

【0014】Cr:0.10〜3.0% Crは鋼の焼入性を増し、軟化抵抗を高める元素なので
0.10%以上添加するが、過剰に添加してもその効果
は飽和し、いたずらにコストを高めるのみなので、含有
率の上限を3.0%とした。
Cr: 0.10 to 3.0% Since Cr is an element that increases the hardenability of steel and softening resistance, it is added in an amount of 0.10% or more, but even if added in excess, the effect is saturated, Since the cost is unnecessarily increased, the upper limit of the content rate is set to 3.0%.

【0015】V :0.05〜0.50% Vは本発明において重要な役割をもつ元素で、Vが高周
波加熱によりほぼ完全にオーステナイト中に固溶しかつ
急速冷却によりVがマトリックス中に過飽和に固溶する
場合、鋼の焼もどし軟化抵抗を著しく高める効果をも
つ。これらの効果を発揮するためには、V含有率0.0
5%以上を必要とする。しかし、過剰に添加してもその
効果は飽和するので上限を0.50%とする。またVの
効果を発揮させるための高周波焼入条件としては、被加
熱材の表面温度が950〜1150℃の温度範囲で高周
波加熱した後、加熱温度から200℃までを50℃/s
以上の速さで冷却することを必要とする。
V: 0.05 to 0.50% V is an element which plays an important role in the present invention. V is almost completely dissolved in austenite by high frequency heating and V is supersaturated in the matrix by rapid cooling. When dissolved in steel, it has the effect of significantly increasing the temper softening resistance of steel. In order to exert these effects, the V content is 0.0
5% or more is required. However, even if added excessively, the effect is saturated, so the upper limit is made 0.50%. Further, the induction hardening condition for exerting the effect of V is as follows: after the surface temperature of the material to be heated is induction heated in the temperature range of 950 to 1150 ° C., the heating temperature up to 200 ° C. is 50 ° C./s.
It is necessary to cool at the above speed.

【0016】Ni:3.0%以下 Mo:1.0%以下 Nb:0.10%以下 B :0.0005〜0.0050% Ni、MoおよびNbは、硬化層部の靭性を高め、硬化
層深さを深める元素なので、それぞれ3.0%以下、
1.0%以下および0.10%以下で単独に、または複
合添加してもよい。またBは素材での鋼の硬さの上昇を
招くことなく、硬化層深さを深める唯一の元素である。
B効果の最も安定する0.0005〜0.0050%の
範囲で単独に、または他元素と複合添加してもよい。
Ni: 3.0% or less Mo: 1.0% or less Nb: 0.10% or less B: 0.0005 to 0.0050% Ni, Mo and Nb increase the toughness of the hardened layer portion and harden it. Since it is an element that deepens the layer depth, each 3.0% or less,
1.0% or less and 0.10% or less may be added alone or in combination. B is the only element that deepens the depth of the hardened layer without increasing the hardness of steel in the material.
In the range of 0.0005 to 0.0050% where the B effect is most stable, it may be added alone or in combination with other elements.

【0017】S :0.20%以下、Te:0.20%
以下、Ca:0.0050%以下 被削性を特に高めたい場合に添加する元素であって、
S、TeおよびCaをそれぞれ 0.20%以下、0.
20%以下および0.0050%以下の範囲で単独に、
または複合添加してもよい。ただしこれ以上添加すると
機械的性質が劣化するので上限を定めた。
S: 0.20% or less, Te: 0.20%
Hereinafter, Ca: 0.0050% or less, which is an element added when it is desired to particularly improve machinability,
S, Te and Ca are 0.20% or less, respectively.
Independently in the range of 20% or less and 0.0050% or less,
Alternatively, they may be added in combination. However, an upper limit was set because mechanical properties deteriorate if added more than this.

【0018】表面の加熱温度が950〜1150℃の温
度範囲での高周波加熱および加熱温度から200℃まで
の温度範囲を50℃/s以上の速さで冷却する。高周波
焼入れにより表層部がマルテンサイト化して硬化するこ
とおよび表面に大きな圧縮残留応力が導入され面圧疲労
強度に優れた部品が得られる点は従来より利用されてき
た高周波焼入れの効果である。
High-frequency heating in a temperature range of 950 to 1150 ° C. for the surface and cooling at a temperature range from the heating temperature to 200 ° C. at a rate of 50 ° C./s or more. The fact that the surface layer part is martensite-hardened by induction hardening and that a large compressive residual stress is introduced into the surface to obtain a part having excellent surface pressure fatigue strength is an effect of induction hardening that has been conventionally used.

【0019】この効果に加え、本発明においてはVの効
果を発揮させるために以下の点に留意する必要がある。
すなわちVの焼もどし軟化抵抗を高める効果を得るため
には、高周波加熱によりV炭窒化物をほぼ完全にオース
テナイト中に固溶させかつ急速冷却によりVがマトリッ
クス中に過飽和に固溶した状態を得る。そこでV炭窒化
物をほぼ完全固溶させるための加熱温度の下限値を95
0℃に定めた。またオーバーヒートの防止のため上限を
1150℃に定めた。また過飽和なVを増加させるため
に、冷却中にV炭窒化物の析出を極力少なくする必要が
ある。そのために、加熱温度から200℃までの温度範
囲を50℃/s以上の速さで冷却する必要がある。
In addition to this effect, it is necessary to pay attention to the following points in order to exert the effect of V in the present invention.
That is, in order to obtain the effect of increasing the tempering softening resistance of V, V carbonitride is almost completely dissolved in austenite by high frequency heating and V is supersaturated in the matrix by rapid cooling. . Therefore, the lower limit of the heating temperature for almost completely dissolving V carbonitride is 95
It was set to 0 ° C. The upper limit was set to 1150 ° C to prevent overheating. Further, in order to increase the supersaturated V, it is necessary to minimize the precipitation of V carbonitride during cooling. Therefore, it is necessary to cool the temperature range from the heating temperature to 200 ° C. at a speed of 50 ° C./s or more.

【0020】[0020]

【実施例】表1に示す化学組成をもつ熱間圧延鋼材か
ら、試験部直径12.3mmのラジアル型転動疲労試験
片を削り出し、表2に示す条件で高周波焼入焼戻し処理
施した。また高周波焼入れの比較として、比較例4のみ
表2に示す条件で焼入焼戻し処理をした。処理後、表面
研削を行い試験部直径12mmの転動試験片を作製し
た。転動試験はラジアル型転動疲労試験により、SUJ
2製ボールを用いて面圧5880MPaにて試験を実施
した。試験結果を表3に示す。
EXAMPLE A radial rolling fatigue test piece having a test portion diameter of 12.3 mm was cut out from a hot rolled steel material having the chemical composition shown in Table 1 and subjected to induction hardening and tempering treatment under the conditions shown in Table 2. Further, as a comparison of induction hardening, only Comparative Example 4 was subjected to quenching and tempering treatment under the conditions shown in Table 2. After the treatment, surface grinding was performed to produce a rolling test piece having a test portion diameter of 12 mm. The rolling test is a radial type rolling fatigue test, and SUJ
The test was performed using a ball made of No. 2 at a surface pressure of 5880 MPa. The test results are shown in Table 3.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】表3から明らかなようにVを添加し、高周
波加熱により表面温度が950〜1150℃になり、そ
の後200℃までの温度範囲を50℃/s以上の速さで
冷却された本発明の実施例1〜12は転動疲労試験にお
ける累積破損確率10%(L10)が著しい向上を示し
ているのがわかる。
As is apparent from Table 3, the present invention in which V was added and the surface temperature was raised to 950 to 1150 ° C. by high frequency heating, and then the temperature range up to 200 ° C. was cooled at a speed of 50 ° C./s or more It can be seen that Examples 1 to 12 of No. 1 show a remarkable improvement in the cumulative damage probability 10% (L 10 ) in the rolling fatigue test.

【0025】これに対して、実施例4よりVを除いた化
学成分を有する比較例1はL10寿命が低い。
On the other hand, Comparative Example 1 having a chemical component except V as compared with Example 4 has a short L 10 life.

【0026】比較例2〜5は実施例3と同じ成分材であ
るものの、比較例2は高周波加熱温度が920℃とクレ
ーム範囲より低い場合、比較例3は1200℃と高い場
合である。比較例2ではVの固溶が不十分なため、比較
例3ではオーバーヒートによる組織の粗大化によりL
10寿命が低い。
Although Comparative Examples 2 to 5 are the same component materials as in Example 3, Comparative Example 2 is a case where the high frequency heating temperature is 920 ° C., which is lower than the claimed range, and Comparative Example 3 is a case where it is high, 1200 ° C. In Comparative Example 2, the solid solution of V was insufficient, so in Comparative Example 3, L was caused by the coarsening of the structure due to overheating.
10 Life is low.

【0027】比較例4は高周波加熱であるものの油冷却
で冷却速度が遅い場合である。適正な冷却速度に比べV
炭窒化物の析出量が多いため、L10寿命が低い。
Comparative Example 4 is a case in which the cooling rate is low due to oil cooling, although high frequency heating is used. V compared to proper cooling rate
Since the amount of carbonitrides deposited is large, the L 10 life is short.

【0028】比較例5は、炉加熱による焼入焼戻し処理
材である。L10寿命が低くなるのは、V炭窒化物の固
溶が不完全となるためと疲労亀裂の発生と伝播を抑制す
る圧縮残留応力が焼入れ焼戻し材では小さいためと考え
られる。
Comparative Example 5 is a material for quenching and tempering by heating in a furnace. It is considered that the L 10 life is shortened because the solid solution of V carbonitride is incomplete and the compressive residual stress that suppresses the initiation and propagation of fatigue cracks is small in the quenched and tempered material.

【0029】比較例6は、従来より転動体部品に用いら
れてきたSCM420浸炭鋼の例である。L10寿命は
35×10であり実施例1〜12の発明鋼は同等もし
くはそれ以上の転動寿命をもつことがわかる。
Comparative Example 6 is an example of SCM420 carburized steel which has been conventionally used for rolling element parts. The L 10 life is 35 × 10 7 , and it can be seen that the invention steels of Examples 1 to 12 have the same or longer rolling life.

【0030】[0030]

【発明の効果】本発明によれば、固有の合金元素の選択
と適正は高周波焼入れ条件の選択によって、高面圧疲労
強度に優れた高周波焼入用鋼を提供することができる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to provide an induction hardening steel having a high surface pressure fatigue strength by selecting a proper alloying element and appropriate induction hardening conditions.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/60 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical indication C22C 38/60

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】合金元素の含有率が質量%で、 C :0.40〜0.80%、 Si:3.0%以下 Mn:0.35〜1.5%、 Cr:0.10〜3.0%、 V :0.05〜0.50%であり、残部Feおよび不
可避的不純物からなる鋼を表面温度が950〜1150
℃の温度範囲で高周波加熱した後、加熱温度から200
℃までの温度範囲を50℃/s以上の速さで冷却するこ
とを特徴とする高面圧疲労強度に優れた高周波焼入用
鋼。
1. The content of alloy elements is% by mass, C: 0.40 to 0.80%, Si: 3.0% or less Mn: 0.35 to 1.5%, Cr: 0.10 to 3.0%, V: 0.05 to 0.50%, and a steel having a balance Fe and unavoidable impurities having a surface temperature of 950 to 1150.
After high-frequency heating in the temperature range of ℃, 200 from the heating temperature
Induction hardening steel with excellent high surface pressure fatigue strength, characterized by cooling the temperature range up to ℃ at a speed of 50 ℃ / s or more.
【請求項2】請求項1の合金元素に加えて、質量%で、 Ni:3.0%以下、 Mo:1.0%以下、 Nb:0.10%以下 B :0.0005〜0.0050%のうち1種または
2種以上の元素を添加した鋼を表面温度が950〜11
50℃の温度範囲で高周波加熱した後、加熱温度から2
00℃までの温度範囲を50℃/s以上の速さで冷却す
ることを特徴とする高面圧疲労強度に例れた高周波焼入
用鋼。
2. In addition to the alloy elements of claim 1, in mass%, Ni: 3.0% or less, Mo: 1.0% or less, Nb: 0.10% or less B: 0.0005 to 0. The surface temperature of the steel containing one or more elements out of 0050% is 950 to 11
After high frequency heating in the temperature range of 50 ℃, from the heating temperature to 2
A steel for induction hardening exemplifying high surface pressure fatigue strength, which is characterized by cooling a temperature range up to 00 ° C at a rate of 50 ° C / s or more.
【請求項3】 請求項1または2記載の合金元素に加え
て、質量%で、 S :0.20%以下、 Te:0.20%以下、 Ca:0.0050%以下のうち1種または2種以上の
被削性向上元素を添加した鋼を表面温度が950〜11
50℃の温度範囲で高周波加熱した後、加熱温度から2
00℃までの温度範囲を50℃/s以上の速さで冷却す
ることを特徴とする高面圧疲労強度に優れた高周波焼入
用鋼。
3. In addition to the alloy element according to claim 1 or 2, in mass%, one of S: 0.20% or less, Te: 0.20% or less, Ca: 0.0050% or less, or Surface temperature of steel containing two or more machinability improving elements is 950-11
After high frequency heating in the temperature range of 50 ℃, from the heating temperature to 2
Induction hardening steel with excellent high surface pressure fatigue strength, characterized by cooling the temperature range up to 00 ° C at a rate of 50 ° C / s or more.
JP25261294A 1994-09-12 1994-09-12 Steel for induction hardening excellent in high bearing fatigue strength Pending JPH0881738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25261294A JPH0881738A (en) 1994-09-12 1994-09-12 Steel for induction hardening excellent in high bearing fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25261294A JPH0881738A (en) 1994-09-12 1994-09-12 Steel for induction hardening excellent in high bearing fatigue strength

Publications (1)

Publication Number Publication Date
JPH0881738A true JPH0881738A (en) 1996-03-26

Family

ID=17239797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25261294A Pending JPH0881738A (en) 1994-09-12 1994-09-12 Steel for induction hardening excellent in high bearing fatigue strength

Country Status (1)

Country Link
JP (1) JPH0881738A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2356635A (en) * 1999-11-05 2001-05-30 Fag Oem & Handel Ag Tyre or solid wheel for wheel sets on railway vehicles
US7691212B2 (en) 2003-03-04 2010-04-06 Komatsu Ltd. Rolling element and method of producing the same
WO2019114864A1 (en) * 2017-12-14 2019-06-20 Schaeffler Technologies AG & Co. KG Main rotor mounting or transmission mounting

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2356635A (en) * 1999-11-05 2001-05-30 Fag Oem & Handel Ag Tyre or solid wheel for wheel sets on railway vehicles
GB2356635B (en) * 1999-11-05 2003-10-15 Fag Oem & Handel Ag Tyres or solid wheels for wheel sets on rail vehicles
US7691212B2 (en) 2003-03-04 2010-04-06 Komatsu Ltd. Rolling element and method of producing the same
WO2019114864A1 (en) * 2017-12-14 2019-06-20 Schaeffler Technologies AG & Co. KG Main rotor mounting or transmission mounting

Similar Documents

Publication Publication Date Title
JP2005133152A (en) High-strength wire rod to be induction-hardened superior in cold workability and impact resistance, and steel component using the wire rod
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
JP2019218582A (en) Mechanical component
JPH0156124B2 (en)
JP3381738B2 (en) Manufacturing method of mechanical structural parts with excellent mechanical strength
JP2000129347A (en) Production of high strength parts
JP2004027334A (en) Steel for induction tempering and method of producing the same
JPH039168B2 (en)
JP2000063935A (en) Production of nitrided part
JP3551573B2 (en) Steel for carburized gear with excellent gear cutting
JPH11217649A (en) Steel for induction hardening having both cold workability and high strength and its production
JP2768062B2 (en) Manufacturing method of high strength tough steel
KR101713677B1 (en) Steel for high nitrogen air hardened bearing with high performance on rolling contact fatigue and method producing the same
JPH0881738A (en) Steel for induction hardening excellent in high bearing fatigue strength
JP2004124190A (en) Induction-tempered steel having excellent twisting property
JP3436867B2 (en) Induction hardened part excellent in strength and fatigue resistance and method of manufacturing the same
JPH01225751A (en) Work roll for heavy-load cold rolling excellent in spalling resistance and its production
JP2008248282A (en) Induction hardened component and manufacturing method thereof
JPH07310118A (en) Production of case hardening steel suitable for cold-working
JPH11131135A (en) Induction-hardened parts and production thereof
JP3419333B2 (en) Cold work steel excellent in induction hardenability, component for machine structure, and method of manufacturing the same
JP3907986B2 (en) Method for producing case-hardened steel with excellent cold workability and grain size characteristics
JPH10183296A (en) Steel material for induction hardening, and its production
JP3492550B2 (en) Corrosion resistant steel for induction hardening
JPH11279713A (en) Martensitic stainless steel for disk brake excellent in rust resistance and heat degradation resistance