JPS62994B2 - - Google Patents

Info

Publication number
JPS62994B2
JPS62994B2 JP10360079A JP10360079A JPS62994B2 JP S62994 B2 JPS62994 B2 JP S62994B2 JP 10360079 A JP10360079 A JP 10360079A JP 10360079 A JP10360079 A JP 10360079A JP S62994 B2 JPS62994 B2 JP S62994B2
Authority
JP
Japan
Prior art keywords
less
temperature
carburizing
vacuum
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10360079A
Other languages
Japanese (ja)
Other versions
JPS5629667A (en
Inventor
Norioki Uehara
Kunio Namiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP10360079A priority Critical patent/JPS5629667A/en
Publication of JPS5629667A publication Critical patent/JPS5629667A/en
Publication of JPS62994B2 publication Critical patent/JPS62994B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐摩耗性および耐焼付性の優れた冷間
鍛造用金型の製造法に関するもので、さらに詳し
くは真空浸炭処理の利用とそれに適した成分組成
を有する素材を用いて耐久性の優れた冷間鍛造用
金型を製造する方法に関するものである。 近年冷間鍛造技術の普及にともない自動車用部
品等の生産性は著るしく向上したが、これにとも
なつて冷間鍛造用金型の耐久性にたいする要求も
ますます厳しくなつてきた。冷間鍛造用金型は従
来からJISにも規定されているSKH9、SKD11等の
冷間加工用工具鋼を用いて製作し、焼入れおよび
焼もどし処理により目標かたさに調質したものを
使用してきたが、最近これらの金型にたいして軟
窒化処理または炭化物被覆処理等の表面硬化処理
を施したものが一部実用化され始めている。しか
しながら金型の耐久性にたいする要求はこれにと
どまらずさらに優れたものが要求される傾向にあ
る。 このような観点から本発明者等はまず冷間鍛造
用金型にたいして好適な表面処理法を追究した結
果、従来の軟窒化処理または炭化物被覆処理より
も真空浸炭処理のほうが耐久性の点で有利である
ことを実験的に確認した。すなわち真空浸炭処理
によれば表面に脆い化合物が生成せず、また表面
自体の活性化度が高いため炭素の侵入が容易であ
ると同時に硬化深さも軟窒化処理より深いため金
型の耐久性の向上にはきわめて都合のよい表面硬
化処理である。 次に素材の組成面から追究した結果従来の冷間
加工用工具鋼では重量百分率で1%以上の炭素と
炭化物形成元素を多く含むため、これをそのまま
真空浸炭処理すると、表層近傍に網状の炭化物が
形成され侵入炭素の拡散を防げるため十分な拡散
層が得られないということが判明した。そこで冷
間鍛造用金型として充分な強度を保有するととも
に真空浸炭処理において充分な拡散層が得られる
成分組成について種々検討した結果、以下に示す
成分組成の合金が本発明の目的にたいして好適で
あることを見い出した。すなわち本発明に用いる
合金は、C:0.40〜0.70%、Si:1.50%以下、
Mn:1.50%以下、Ni:1.50%以下、Cr:2.0〜5.0
%、Mo:2.0〜50%、W:2.0〜6.0%、V:0.50
〜1.50%残部が実質的にFeからなる合金または
これにCo:2.0%以下、Ti:0.50%以下、Nb:
0.50%以下、Zr:0.50%以下のうちから選んだ元
素を1種または2種以上を含有する合金である。 次に上記合金の最適な真空浸炭処理条件を見い
出すために種々検討した結果1050℃以下の温度で
浸炭すれば結晶粒の粗大化は生じないことが判明
した。また浸入した炭素の拡散と焼入のためのオ
ーステナイト化を浸炭加熱に引き続いて同時に行
なうことは熱効率的に望ましいことであり、この
ような観点から真空浸炭後の直接焼入法について
検討した結果、この目的を達成するためには1050
℃以下の温度で真空浸炭処理を施し、表面に炭素
を浸透させた後1050〜1150℃に温度を上昇させ完
全にオーステナイト化を図つた後焼入れを行なえ
ば結晶粒の粗大化は生ずることがなく、かつ十分
に深い拡散層が得られることを見い出した。 すなわち本発明に限定された成分組成の素材を
用いて金型形状に成形後1050℃以下の温度に調整
した真空浸炭炉中で浸炭を行ない、つづいて1050
〜1150℃の温度に上昇させ、侵入炭素を充分に拡
散させた後そのまま冷却してマルテンサイト組織
を生成させつづいて550℃以上の温度で焼もどし
処理を施すことを特徴とする高性能冷間鍛造用金
型の製造法である。 次に本発明製造法における限定理由を以下に述
べる。 素材の成分組成 C:0.40〜0.07% 冷間鍛造用金型として必要なかたさ、すなわち
RC56以上を確保するためには、少なくとも0.4
%以上添加する必要がある。ただし多量に添加す
ると浸炭時に表面近傍に網状炭化物の壁ができ、
C原子の侵入および拡散が妨げられるため0.70%
以下に限定した。 Si:1.50%以下 溶製時の脱酸元素として必要であるばかりでな
く焼入性の確保のためにも必要であるが、多量に
添加すると熱間加工性が劣化するため1.50%以下
に限定した。 Mn:1.50%以下 溶製時の脱酸元素として必要であるばかりでな
く、焼入性の確保のためにも必要であるが、多量
に添加すると熱間加工性が劣化するため、1.50%
以下に限定した。 Ni:1.50%以下 焼入性を確保するために必要な元素であるが、
他の特性値にはあまり効果を及ぼさないため1.50
%以下に限定した。 Cr:2.0〜5.0% 金型としての強度を確保するために必須の元素
であり、主としてCと結合し、Cr炭化物の形で
存在する。上記効果を得るためには少なくとも
2.0%以上添加する必要がある。ただし多量に添
加すると粗大炭化物が形成され靭性を低下させる
ため5.0%以下に限定した。 Mo:2.0〜5.0% Crと同様に金型としての強度を確保するため
に必須の元素であり、主としてCと結合し、Mo
炭化物の形で存在する。上記効果を得るためには
少なくとも2.0%以上添加する必要がある。ただ
し多量に添加すると粗大炭化物が形成され、靭性
を低下させるため5.0%以下に限定した。 W:2.0〜5.0% CrおよびMoと同様な効果があり、その効果的
な範囲は2.0〜5.0%である。 V:0.50〜1.50% Cr、Mo、Wと同様な効果があり、その効果的
な範囲は0.50〜1.50%である。 上記成分組成の合金を素材とすることにより、
優れた耐久性を有する冷間鍛造用金型が製造でき
るが、さらに以下の元素を適量添加することによ
り、その耐久性はさらに向上する。 Ti、Nb、Zr:0.50%以下 上記元素は主に結晶粒の粗大化防止に効果があ
り、金型の耐久性に大きく寄与するため目的に応
じて適量添加することが望ましい。ただし多量に
添加すると靭性が低下するためそれぞれ0.50%以
下に限定した。 Co:2.0%以下 高温かたさを上げるために効果的な元素であ
り、必要に応じて適量添加することが望ましい。
ただし多量に添加すると靭性が低下するため2.0
%以下に限定した。 浸炭処理条件 浸炭温度:1050℃以下 浸炭温度を上げすぎると、所定の炭素原子を侵
入させるのに必要な時間が短かくなり、大形金型
の場合に時間のコントロールが困難となるため
1050℃以下に限定した。 拡散温度:1050〜1150℃ 浸炭後内部まで炭素を浸透させるために必要な
処理であり、通常は浸炭加熱温度に長時間保持す
ることにより拡散しているが、本発明の場合炭素
の拡散と同時にその焼入のためのオーステナイト
化をはかる必要がある。本発明における浸炭温度
は上記のごとく1050℃以下に限定したが同温度で
は完全なオーステナイト組織とするためには長時
間加熱が必要となり処理性が悪い。そこで保持時
間、温度の組し合わせにより十分オーステナイト
化し、結晶粒が粗大化しない温度領域を探索した
結果浸炭加熱後のオーステナイト化温度の上限は
1150℃であることを確認したため1150℃以下に限
定した。 焼もどし温度:550以上 真空浸炭処理後の焼入処理により表面には未変
態のオーステナイトが多量に残存し、金型の耐久
性を大きく劣化させる原因となるため、残留オー
ステナイトを分解する必要がある。残留オーステ
ナイトは500℃以下の温度に加熱してもほとんど
分解しないが550℃以上の加熱により除々に分解
が始まり600℃においてほぼ分解が終了する。し
たがつて本発明法においては真空浸炭→焼入処理
後の焼もどし温度は550℃以上に限定した。 次に本発明製造法の特徴を実施例により詳細に
説明する。 実施例 1 第1表に示すごとき成分組成の合金を溶製し、
真空浸炭処理後の各種特性値を調査した。
The present invention relates to a method for manufacturing cold forging dies that have excellent wear resistance and seizure resistance.More specifically, the present invention relates to a method for manufacturing cold forging dies that have excellent wear resistance and seizure resistance. The present invention relates to a method of manufacturing a cold forging die. With the spread of cold forging technology in recent years, the productivity of automobile parts and the like has improved significantly, but along with this, demands on the durability of cold forging dies have become increasingly strict. Cold forging molds are traditionally manufactured using JIS-specified cold working tool steels such as SKH 9 and SKD 11 , and are tempered to the target hardness through quenching and tempering. However, recently, some of these molds subjected to surface hardening treatments such as soft nitriding treatment or carbide coating treatment have begun to be put into practical use. However, the demand for mold durability is not limited to this, and there is a tendency for even better durability to be required. From this perspective, the present inventors first investigated a suitable surface treatment method for cold forging molds, and found that vacuum carburizing treatment is more advantageous in terms of durability than conventional soft nitriding treatment or carbide coating treatment. It was experimentally confirmed that In other words, vacuum carburizing does not produce brittle compounds on the surface, and the surface itself has a high degree of activation, allowing carbon to penetrate easily. At the same time, the hardening depth is deeper than soft-nitriding, which improves the durability of the mold. This is a very convenient surface hardening treatment for improving the surface finish. Next, we investigated the composition of the material and found that conventional tool steel for cold working contains a large amount of carbon and carbide-forming elements, with a weight percentage of 1% or more. It was found that a sufficient diffusion layer could not be obtained because the carbon was formed and the diffusion of the interstitial carbon was prevented. Therefore, as a result of various studies on compositions that would have sufficient strength as a mold for cold forging and provide a sufficient diffusion layer during vacuum carburizing treatment, it was found that an alloy with the composition shown below is suitable for the purpose of the present invention. I discovered that. That is, the alloy used in the present invention contains C: 0.40 to 0.70%, Si: 1.50% or less,
Mn: 1.50% or less, Ni: 1.50% or less, Cr: 2.0 to 5.0
%, Mo: 2.0-50%, W: 2.0-6.0%, V: 0.50
~1.50% Alloy with the balance essentially consisting of Fe, or this with Co: 2.0% or less, Ti: 0.50% or less, Nb:
It is an alloy containing one or more elements selected from 0.50% or less and Zr: 0.50% or less. Next, various studies were conducted to find the optimum vacuum carburizing treatment conditions for the above alloy, and it was found that coarsening of crystal grains does not occur if carburizing is carried out at a temperature of 1050°C or lower. Furthermore, it is desirable in terms of thermal efficiency to simultaneously perform diffusion of the infiltrated carbon and austenitization for quenching following carburizing heating, and from this perspective, as a result of examining the direct quenching method after vacuum carburizing, we found that: To achieve this purpose 1050
If the vacuum carburizing treatment is performed at a temperature below ℃ to infiltrate the surface with carbon, then the temperature is raised to 1050 to 1150℃ to achieve complete austenitization, and then quenching is performed, no coarsening of the crystal grains will occur. , and a sufficiently deep diffusion layer can be obtained. That is, after forming into a mold shape using a material with the composition limited to the present invention, carburization is performed in a vacuum carburizing furnace adjusted to a temperature of 1050°C or less, and then 1050°C
High-performance cold processing is characterized by raising the temperature to ~1150℃, sufficiently diffusing the interstitial carbon, and then cooling it to generate a martensitic structure, followed by tempering at a temperature of 550℃ or higher. This is a method for manufacturing forging dies. Next, the reasons for limitations in the manufacturing method of the present invention will be described below. Material composition C: 0.40 to 0.07% At least 0.4 to ensure the hardness required for a cold forging die, that is, H R C56 or higher.
It is necessary to add more than %. However, if added in large quantities, a wall of reticulated carbide will form near the surface during carburizing.
0.70% because the penetration and diffusion of C atoms is prevented.
Limited to the following. Si: 1.50% or less It is necessary not only as a deoxidizing element during melting but also to ensure hardenability, but if added in large amounts, hot workability deteriorates, so limit it to 1.50% or less. did. Mn: 1.50% or less Not only is it necessary as a deoxidizing element during melting, but it is also necessary to ensure hardenability, but if added in large amounts, hot workability deteriorates, so 1.50%
Limited to the following. Ni: 1.50% or less An element necessary to ensure hardenability, but
1.50 because it does not have much effect on other characteristic values
% or less. Cr: 2.0 to 5.0% This is an essential element to ensure the strength of the mold, and it mainly combines with C and exists in the form of Cr carbide. To obtain the above effect, at least
It is necessary to add 2.0% or more. However, if added in a large amount, coarse carbides will be formed and the toughness will be reduced, so the content was limited to 5.0% or less. Mo: 2.0 to 5.0% Like Cr, it is an essential element to ensure the strength of the mold.It mainly combines with C, and Mo
Exists in the form of carbides. In order to obtain the above effect, it is necessary to add at least 2.0% or more. However, if added in a large amount, coarse carbides will be formed and the toughness will be reduced, so the content was limited to 5.0% or less. W: 2.0-5.0% It has the same effect as Cr and Mo, and its effective range is 2.0-5.0%. V: 0.50-1.50% It has the same effect as Cr, Mo, and W, and its effective range is 0.50-1.50%. By using an alloy with the above composition as a material,
A cold forging die with excellent durability can be manufactured, and the durability can be further improved by adding appropriate amounts of the following elements. Ti, Nb, Zr: 0.50% or less The above elements are mainly effective in preventing coarsening of crystal grains and greatly contribute to the durability of the mold, so it is desirable to add an appropriate amount depending on the purpose. However, since adding too much will reduce toughness, each content was limited to 0.50% or less. Co: 2.0% or less Co is an effective element for increasing high-temperature hardness, and it is desirable to add an appropriate amount as necessary.
However, if added in large quantities, the toughness will decrease, so 2.0
% or less. Carburizing treatment conditions Carburizing temperature: 1050℃ or less If the carburizing temperature is raised too high, the time required to infiltrate the specified carbon atoms becomes shorter, making it difficult to control the time in the case of large molds.
The temperature was limited to 1050℃ or less. Diffusion temperature: 1050 to 1150℃ This is a necessary treatment to allow carbon to penetrate into the interior after carburizing. Normally, diffusion is achieved by holding the carburizing heating temperature for a long time, but in the case of the present invention, carbon is diffused at the same time. It is necessary to make it into austenite for quenching. The carburizing temperature in the present invention was limited to 1050° C. or lower as described above, but at this temperature, long-term heating is required to obtain a complete austenitic structure, resulting in poor processability. Therefore, we searched for a temperature range in which sufficient austenitization could be achieved through a combination of holding time and temperature, and the crystal grains would not become coarse.As a result, the upper limit of the austenitization temperature after carburizing heating was found.
Since it was confirmed that the temperature was 1150℃, the temperature was limited to 1150℃ or less. Tempering temperature: 550 or higher Due to the quenching process after vacuum carburizing, a large amount of untransformed austenite remains on the surface, which causes a significant deterioration of the durability of the mold, so it is necessary to decompose the residual austenite. . Retained austenite hardly decomposes even when heated to temperatures below 500°C, but when heated above 550°C it gradually begins to decompose, and decomposition is almost completed at 600°C. Therefore, in the method of the present invention, the tempering temperature after vacuum carburizing and quenching treatment is limited to 550°C or higher. Next, the features of the manufacturing method of the present invention will be explained in detail using examples. Example 1 An alloy having the composition shown in Table 1 was melted,
Various characteristic values after vacuum carburizing treatment were investigated.

【表】 第1表の供試材を各種温度条件で真空浸炭処理
および直接焼入を施し、つづいて焼もどしを行つ
た。なお真空浸炭における真空度は10-2mmHg、
浸炭雰囲気は10mmHgのC3H8とした。また比較の
ために供試材No.10、11については真空浸炭処理の
ほかに軟窒化処理を施した。 第2表に各供試材の熱処理条件をまとめて示し
た。
[Table] The test materials shown in Table 1 were subjected to vacuum carburizing and direct quenching under various temperature conditions, and then tempered. The degree of vacuum in vacuum carburizing is 10 -2 mmHg.
The carburizing atmosphere was C 3 H 8 at 10 mmHg. For comparison, sample materials No. 10 and 11 were subjected to soft nitriding treatment in addition to vacuum carburizing treatment. Table 2 summarizes the heat treatment conditions for each sample material.

【表】 各種処理を施した供試材について表面かたさ特
性、摩耗特性、および焼付特性等を調べた。以下
それぞれの実験について詳述する。 表面かたさ特性 各種処理を施した供試材について表面からのか
たさ分布おび結晶粒度を測定した。その結果を第
3表に示した。
[Table] Surface hardness characteristics, wear characteristics, seizure characteristics, etc. were investigated for test materials subjected to various treatments. Each experiment will be explained in detail below. Surface Hardness Characteristics The hardness distribution and crystal grain size from the surface of the sample materials subjected to various treatments were measured. The results are shown in Table 3.

【表】 同表にみられるごとく本発明法においては比較
用素材を用いたものにくらべ表面かたさが高くか
つ、硬化深さも深い。また本発明法においては結
晶粒度もすべ7.0以上の細粒を示している。 摩耗特性 各種処理を施した供試材を用いて大越式摩耗試
験を行つた。なお試験条件は以下の通りである。 回転円板:HRB96のかたさに調整したSNCM8. 最終荷重:3.6Kg 摩擦速度:2.9m/sec 摩擦距離:200m 摩耗試験結果を第4表に示す。
[Table] As shown in the same table, the surface hardness is higher and the curing depth is deeper in the method of the present invention than in the case of using the comparative material. In addition, in the method of the present invention, the crystal grain size also shows fine grains of 7.0 or more. Wear characteristics Okoshi type wear tests were conducted using test materials that had been subjected to various treatments. The test conditions are as follows. Rotating disk: SNCM8 adjusted to H R B96 hardness.Final load: 3.6Kg Friction speed: 2.9m/sec Friction distance: 200m The wear test results are shown in Table 4.

【表】 同表にみられるごとく本発明用素材を用いて真
空浸炭処理したものは従来の冷間加工用工具鋼の
真空浸炭処理材または軟窒化処理材にくらべて比
摩耗量は明らかに少ないことを示している。 耐焼付性 各種処理を施した供試材を用いて、Falex式焼
付性試験を行なつた。なお試験条件は以下の通り
である。 試片寸法:6.35mmφ 回 転:300rpm 荷 重:200Kgから増加 判 定:F値=∫ fdt(Kg.sec) f=最終荷重(Kg) t=焼付寿命(sec) 焼付性試験結果を第4表に併記した。 同表にみられるごとく本発明用素材を用いて真
空浸炭処理したものは従来の冷間加工用工具鋼の
真空浸炭処理材または軟窒化処理材にくらべて耐
焼付性も明らかに良好であることを示している。 実施例 2 本発明製造法によつて製造した冷間鍛造用金型
を用いて実用性を調査した。用いた金型の成分組
成、熱処理条件、かたさ特性および耐用命数をま
とめて第5表に示した。
[Table] As shown in the table, the specific wear amount of the vacuum carburized material using the material of the present invention is clearly lower than that of conventional cold working tool steels that are vacuum carburized or nitrocarburized. It is shown that. Seizure Resistance A Falex type antiseizure test was conducted using test materials that had been subjected to various treatments. The test conditions are as follows. Specimen size: 6.35mmφ Rotation: 300rpm Load: Increased from 200Kg Judgment: F value = ∫ t p fdt (Kg.sec) f = Final load (Kg) t = Seizure life (sec) Seizure test results It is also listed in Table 4. As shown in the same table, the material of the present invention subjected to vacuum carburization has clearly better seizure resistance than conventional cold working tool steel that has been vacuum carburized or nitrocarburized. It shows. Example 2 Practicality was investigated using a cold forging die manufactured by the manufacturing method of the present invention. Table 5 summarizes the composition, heat treatment conditions, hardness characteristics, and service life of the molds used.

【表】 同表にみられるごとく本発明製造法によつて製
造した金型は従来の金型にくらべて1.5〜5倍の
耐用命数を示した。 以上のごとく本発明は耐久性の良好な冷間鍛造
用金型の製造方法であつて、限定された成分組成
の素材を用いて金型形状に成形後限定された温度
条件で真空浸炭処理を施し、そのまま直接焼入を
施し、さらに焼もどし処理することを特徴とする
製造方法であつて従来のこの種金型にくらべて耐
用命数が長く、産業界の要望に充分に応じられる
高性能冷間鍛造用金型を提供できることを確認し
た。
[Table] As shown in the table, the molds manufactured by the manufacturing method of the present invention had a service life 1.5 to 5 times longer than the conventional molds. As described above, the present invention is a method for manufacturing a cold forging die with good durability, and involves forming a die into a die shape using a material with a limited composition, and then performing vacuum carburizing treatment under a limited temperature condition. It is a manufacturing method characterized by directly quenching, followed by tempering.It has a longer service life than conventional molds of this type, and is a high-performance cooling mold that fully meets the demands of the industry. We have confirmed that we can provide molds for intermediate forging.

Claims (1)

【特許請求の範囲】 1 C:0.40〜0.70%、Si:1.50%以下、Mn:
1.50%以下、Ni:1.50%以下、Cr:2.0〜5.0%、
Mo:2.0〜5.0%、W:2.0〜6.0%、V:0.50〜
1.50%、残余が実質的にFeからなる素材を用い
て金型形状に成形後、1050℃以下の温度に調整し
た真空浸炭炉中で浸炭を行ない、つづいて1050〜
1150℃の温度に上昇させ侵入炭素を充分に拡散さ
せた後、そのまま冷却してマルテンサイト組織を
生成させ、つづいて550℃以上の温度で焼もどし
処理を施すことを特徴とする高性能冷間鍛造用金
型の製造法。 2 C:0.40〜0.70%、Si:1.50%以下、Mn:
1.50%以下、Ni:1.50%以下、Cr:2.0〜5.0%、
Mo:2.0〜5.0%、W:2.0〜6.0%、V:0.50〜
1.50%と、さらにCo:2.0%以下、Ti:0.50%以
下、Nb:0.50%以下、Zr:0.50%以下のうちから
選んだ元素を1種または2種以上を含有し、残余
が実質的にFeからなる素材を用いて金型形状に
成形後、1050℃以下の温度に調整した真空浸炭炉
中で浸炭を行ない、つづいて1050〜1150℃の温度
に上昇させ侵入炭素を充分に拡散させた後そのま
ま冷却してマルテンサイト組織を生成させ、つづ
いて550℃以上の温度で焼もどし処理を施すこと
を特徴とする高性能冷間鍛造用金型の製造法。
[Claims] 1 C: 0.40 to 0.70%, Si: 1.50% or less, Mn:
1.50% or less, Ni: 1.50% or less, Cr: 2.0-5.0%,
Mo: 2.0~5.0%, W: 2.0~6.0%, V: 0.50~
After forming into a mold shape using a material consisting of 1.50% Fe with the remainder being substantially Fe, carburizing is performed in a vacuum carburizing furnace adjusted to a temperature of 1050℃ or less, followed by carburizing at 1050℃ or less.
High-performance cold processing is characterized by raising the temperature to 1150°C to sufficiently diffuse the interstitial carbon, then cooling it as it is to generate a martensitic structure, followed by tempering at a temperature of 550°C or higher. Manufacturing method for forging molds. 2 C: 0.40-0.70%, Si: 1.50% or less, Mn:
1.50% or less, Ni: 1.50% or less, Cr: 2.0-5.0%,
Mo: 2.0~5.0%, W: 2.0~6.0%, V: 0.50~
1.50% and further contains one or more elements selected from Co: 2.0% or less, Ti: 0.50% or less, Nb: 0.50% or less, Zr: 0.50% or less, and the remainder is substantially After forming into a mold shape using a material made of Fe, carburization was performed in a vacuum carburizing furnace adjusted to a temperature of 1050°C or less, and then the temperature was raised to 1050 to 1150°C to sufficiently diffuse the interstitial carbon. A method for manufacturing a high-performance cold forging die, which is characterized in that the die is then cooled as it is to generate a martensitic structure, and then tempered at a temperature of 550°C or higher.
JP10360079A 1979-08-16 1979-08-16 Preparation of metal mold Granted JPS5629667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10360079A JPS5629667A (en) 1979-08-16 1979-08-16 Preparation of metal mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10360079A JPS5629667A (en) 1979-08-16 1979-08-16 Preparation of metal mold

Publications (2)

Publication Number Publication Date
JPS5629667A JPS5629667A (en) 1981-03-25
JPS62994B2 true JPS62994B2 (en) 1987-01-10

Family

ID=14358254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10360079A Granted JPS5629667A (en) 1979-08-16 1979-08-16 Preparation of metal mold

Country Status (1)

Country Link
JP (1) JPS5629667A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053431A (en) * 2008-08-29 2010-03-11 Ihi Corp Vacuum carburizing method and vacuum carburizing device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655853A (en) * 1982-08-09 1987-04-07 Federal-Mogul Corporation Method for making powder metal forging preforms of high-strength ferrous-base alloys
WO1999010557A1 (en) * 1997-08-26 1999-03-04 Nsk Ltd. Method of production of rolling bearing
JP4746934B2 (en) * 2005-08-02 2011-08-10 本田技研工業株式会社 Die for forging and manufacturing method thereof
JP5090257B2 (en) * 2008-06-05 2012-12-05 山陽特殊製鋼株式会社 Tool steel suitable for aluminum machining dies and aluminum machining dies
CN110724873A (en) * 2018-07-17 2020-01-24 宝钢特钢有限公司 High-wear-resistance die forging die steel and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053431A (en) * 2008-08-29 2010-03-11 Ihi Corp Vacuum carburizing method and vacuum carburizing device

Also Published As

Publication number Publication date
JPS5629667A (en) 1981-03-25

Similar Documents

Publication Publication Date Title
JP4390576B2 (en) Rolling member
JPWO2019198539A1 (en) Machine parts and their manufacturing methods
JP3792341B2 (en) Soft nitriding steel with excellent cold forgeability and pitting resistance
CN109881122B (en) High-wear-resistance corrosion-resistance large-tillage-depth rotary blade material and preparation method thereof
WO2005066383A1 (en) Method for carburizing a steel article and steel article thus obtained with improved wear resistance
JP3381738B2 (en) Manufacturing method of mechanical structural parts with excellent mechanical strength
JP2006348321A (en) Steel for nitriding treatment
JPS62994B2 (en)
JP4912385B2 (en) Manufacturing method of rolling member
JP2894184B2 (en) Steel for soft nitriding
JPS6321748B2 (en)
JPH0559488A (en) Precipitation hardening type high strength steel for soft-nitriding excellent in machinability
JPH0967644A (en) Carburizing steel for gear, excellent in gear cutting property
JPH11229032A (en) Production of steel for soft-nitriding and soft-nitrided parts using the steel
JPS58104160A (en) Steel plate for precision blanking work with superior carburizing characteristic and hardenability and its manufacture
JP7263796B2 (en) RING GEAR FOR AUTOMOBILE TRANSMISSION AND MANUFACTURING METHOD THEREOF
CN112795722A (en) Austempering technology for austempered ductile iron
KR101839166B1 (en) The method of carbonitriding process for boron added steel
JP3629851B2 (en) Cold tool steel for plasma carburizing
JP2021167451A (en) Case hardened steel, and high strength member and method for manufacturing the same
JP3849296B2 (en) Method of manufacturing steel for nitrocarburizing and nitrocarburized component using the steel
JP2706940B2 (en) Manufacturing method of non-heat treated steel for nitriding
JPS61147815A (en) Production of roll having high hardened depth
JP3436867B2 (en) Induction hardened part excellent in strength and fatigue resistance and method of manufacturing the same
WO2017146057A1 (en) Cement steel component and steel material having excellent stability of rolling fatigue life, and method for manufacturing same