JP4645303B2 - Overlay welding material for hot forging die and hot forging die using the welding material - Google Patents
Overlay welding material for hot forging die and hot forging die using the welding material Download PDFInfo
- Publication number
- JP4645303B2 JP4645303B2 JP2005150372A JP2005150372A JP4645303B2 JP 4645303 B2 JP4645303 B2 JP 4645303B2 JP 2005150372 A JP2005150372 A JP 2005150372A JP 2005150372 A JP2005150372 A JP 2005150372A JP 4645303 B2 JP4645303 B2 JP 4645303B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- overlay
- alloy
- hot forging
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Forging (AREA)
Description
本発明は、過酷な条件で使用される熱間鍛造用金型の寿命を大幅に向上することのできる溶接材料及びそれを用いた熱間鍛造用金型に関するものであり、具体的には工具鋼からなる金型表面に肉盛溶接することによって、表面に靭性、耐ヒートチェック性および高温耐摩耗性の優れた肉盛溶接層を設けることにより、寿命の改善を可能とする金型の肉盛溶接材料及びその溶接材料を用いた熱間鍛造用金型に関する。 The present invention relates to a welding material capable of significantly improving the life of a hot forging die used under severe conditions, and a hot forging die using the same, specifically a tool. By overlay welding on the surface of a mold made of steel, a mold wall that can improve the life by providing an overlay weld layer with excellent toughness, heat check resistance and high temperature wear resistance on the surface. The present invention relates to a prime welding material and a hot forging die using the welding material.
熱間鍛造は、1000〜1300℃に加熱された被加工材を鍛造型に設置して機械力または油圧力の加圧手段によって成形する技術であり、高温に加熱することにより冷間で加工する場合に比べ変形抵抗が低下し、比較的大きな部品であっても高い生産性での部品製造が可能となることから、クランクシャフト、コンロッド等のエンジン部品等多くの機能部品に採用されている。 Hot forging is a technology in which a workpiece heated to 1000 to 1300 ° C is placed in a forging die and molded by mechanical force or hydraulic pressure pressurization means, and is processed cold by heating to a high temperature. Compared to the case, deformation resistance is reduced, and even relatively large parts can be manufactured with high productivity. Therefore, they are used in many functional parts such as engine parts such as crankshafts and connecting rods.
しかし、熱間鍛造は高温に加熱された被加工材に繰返し加工を加え、一つの金型を使って多数の部品を連続的に製造することを特徴としていること、被加工材は高温に加熱されているため、冷間に比べ変形抵抗は低下しているものの、かなりの高荷重が高温状態にて負荷されること等から、鍛造型には過酷な機械的応力と熱的応力を受け、寿命が比較的短いという問題がある。従って、鍛造型の寿命を改善するためには、以下の特性が特に優れていることが要求される。 However, hot forging is characterized by the fact that a workpiece heated to a high temperature is repeatedly processed and a large number of parts are continuously manufactured using a single mold, and the workpiece is heated to a high temperature. Therefore, although the deformation resistance is lower than that of cold, since a considerably high load is applied at a high temperature, the forging die is subjected to severe mechanical stress and thermal stress, There is a problem that the lifetime is relatively short. Therefore, in order to improve the life of the forging die, the following characteristics are required to be particularly excellent.
(1)繰返し高温の被加工材と接触することに伴う熱負荷に耐えられる耐ヒートチェック性
(2)繰返し衝撃荷重を受けることに耐えられる耐衝撃性(靭性)
(3)繰返し高温で高面圧の負荷がされる条件下での高温耐摩耗性
(1) Heat check resistance that can withstand the heat load caused by repeated contact with high-temperature workpieces
(2) Impact resistance (toughness) that can withstand repeated impact loads
(3) High temperature wear resistance under repeated high temperature and high surface pressure
このような熱間加工時の型に使用される工具鋼としては、JISでSKD61、SKT4などが規格化されており、現在も使用されている。しかしながら、熱間鍛造のような過酷な条件の下で使用した場合、期待する寿命を得られない場合が多いことから、前記した型の表面に母材型材料に比較して高温耐摩耗性、耐ヒートチェック性等耐熱性に優れた材料を、特に摩耗が多くなりそうな箇所について肉盛溶接することにより、型寿命を向上するという方法が一般的に行われている。この肉盛溶接用材料としては、Ni基の合金やCo基の合金が多く用いられている。また、最近では、Cr、Mo、W、V等の元素を適量添加することによって前記性能を改善した鉄合金も使用されている(特許文献1、非特許文献1参照)。 SKD61, SKT4, etc. are standardized by JIS as tool steels used for such hot working molds and are still used. However, when used under severe conditions such as hot forging, the expected life is often not obtained, high temperature wear resistance compared to the matrix material on the surface of the mold, A method of improving the mold life is generally performed by overlay welding a material having excellent heat resistance such as heat check resistance particularly on a portion where wear is likely to increase. As this overlay welding material, a Ni-based alloy or a Co-based alloy is often used. Recently, iron alloys whose performance has been improved by adding appropriate amounts of elements such as Cr, Mo, W, and V have also been used (see Patent Document 1 and Non-Patent Document 1).
特許文献1に記載の発明は、従来肉盛用溶接材料として用いられてきたCo基合金で問題となっていた肉盛性を改善することを目的に開発されたCo基合金について記載されている。また、この特許の出願時に既に用いられていたCo基合金についても記載されている。 The invention described in Patent Document 1 describes a Co-based alloy that has been developed for the purpose of improving the build-up property that has been a problem with Co-based alloys that have been conventionally used as welding materials for building-up. . It also describes Co-based alloys that were already used at the time of filing this patent.
また、非特許文献1は、ドイツにおいて熱間用金型材に使用されている肉盛溶接材料について記載されたものであり、Ni基合金やCr、Mo、W、V等を適量添加した鉄合金を適用した例が記載されている。 Non-Patent Document 1 describes the overlay welding material used in hot mold materials in Germany, and Ni-based alloys and iron alloys to which appropriate amounts of Cr, Mo, W, V, etc. are added. The example which applied is described.
しかし、現在まで使用されている前記肉盛溶接材料には以下の問題がある。
通常肉盛溶接した場合、肉盛溶接後に表面形状を修正するための機械加工が行われる。しかしながら、ステライト系Co基合金やNi基合金は、高温での耐摩耗性や耐ヒートチェック性等、高温での諸特性については優れているものの、被削性が大きく劣るため、切削工具の費用が高騰するとともに、合金自体が極めて高価であるという問題がある。従って、高温での各種特性が優れているものの、コスト面での問題を考えると、その採用を躊躇せざるをえない場合があるという問題がある。
However, the build-up welding material used up to now has the following problems.
In general, when overlay welding is performed, machining for correcting the surface shape is performed after overlay welding. However, although stellite-based Co-based alloys and Ni-based alloys are superior in various properties at high temperatures, such as wear resistance and heat check resistance at high temperatures, the machinability is greatly inferior. However, there is a problem that the alloy itself is very expensive. Therefore, although various characteristics at high temperature are excellent, there is a problem that there is a case where it is unavoidable to adopt the adoption in consideration of the problem in terms of cost.
また、Cr、Mo、W、V等を適量添加して高温での耐摩耗性等の特性を改善したFe合金については、母材として用いられているSKD61等の熱間工具鋼に比べると高温での特性が改善されているものの、前記したCo基合金、Ni基合金に比べて劣り、改善の程度が十分でないという問題がある。さらに、高温耐摩耗性を向上するために合金元素の添加等を行うと、靭性が大きく低下するため、期待する程の寿命向上効果が得られないという問題がある。 In addition, Fe alloys that have improved properties such as wear resistance at high temperatures by adding appropriate amounts of Cr, Mo, W, V, etc. have higher temperatures than hot tool steels such as SKD61 used as a base material. Although the characteristics of the above are improved, there is a problem in that the degree of improvement is not sufficient because it is inferior to the aforementioned Co-base alloy and Ni-base alloy. Furthermore, when an alloy element is added to improve the high temperature wear resistance, the toughness is greatly reduced, and there is a problem that the expected life improvement effect cannot be obtained.
本発明は、これらの課題を解決するために検討した結果見出されたものであり、高温での耐摩耗性等の諸特性の点でステライト系Co基合金や、Ni基合金と同等かかなり近い特性を有しつつ被削性については大幅に優れ、材料価格もCo基合金やNi基合金に比較して安価な、肉盛溶接材料として新規のFe基合金を提案することを目的とする。 The present invention has been found as a result of studies to solve these problems, and is equivalent to or substantially equivalent to stellite-based Co-based alloys and Ni-based alloys in terms of various properties such as wear resistance at high temperatures. The aim is to propose a new Fe-based alloy as a build-up welding material that has close characteristics but is significantly superior in machinability and is cheaper than Co-based alloys and Ni-based alloys. .
本発明の請求項1に記載の発明は、質量%で、C:0.30〜0.55%、Si:0.2〜1.5%、Mn:0.4〜2.0%、Cr:4.0〜9.0%、V:0.1〜1.0%、Mo:2.0〜5.0%、W:2.0〜11.0%、Ni:0.3〜2.0%を含有し、残部Feおよび不可避不純物からなることを特徴とする熱間鍛造金型用肉盛溶接材料である。 Invention of Claim 1 of this invention is mass%, C: 0.30-0.55%, Si: 0.2-1.5%, Mn: 0.4-2.0%, Cr: 4.0-9.0%, V: 0.1-1.0% Mo: 2.0 to 5.0%, W: 2.0 to 11.0%, Ni: 0.3 to 2.0%, a balance welding material for hot forging dies characterized by comprising the balance Fe and inevitable impurities.
本発明のポイントは、Cr、V、Mo、W等の炭化物形成元素を添加して、微細炭化物を析出させ、高温に加熱された際の焼もどし軟化抵抗を高め、高温強度、高温耐摩耗性を改善したことは勿論であるが、その添加量を適切に調整することで、切削性、溶接性を大きく劣化することなく高温特性をCo基合金、Ni基合金に近いレベルまで改善することに成功したこと、Niの適量添加により高温耐摩耗性の大幅な改善を達成しつつ靭性の低下を最小限に抑えた点にある。 The point of the present invention is to add carbide-forming elements such as Cr, V, Mo, W, etc., to precipitate fine carbides, increase temper softening resistance when heated to high temperature, high temperature strength, high temperature wear resistance Of course, by adjusting the addition amount appropriately, the high temperature characteristics will be improved to a level close to that of Co-based alloys and Ni-based alloys without significantly degrading the machinability and weldability. The success is that the addition of an appropriate amount of Ni has achieved a significant improvement in high temperature wear resistance while minimizing the reduction in toughness.
また、請求項1からなる溶接材料は、特に高温での耐摩耗性の改善を重視して成分設計されているため、靭性が優れているとは言えず、母材である工具鋼にそのまま肉盛溶接した場合、激しい材料流れが起きる部分であったり、面圧が高くなる部分では、短寿命で割れが生じる可能性がある。そこで、そのような箇所には、請求項2に示すように、質量%で、C:0.05〜0.25%、Si:0.1〜1.0%、Mn:0.2〜2.0%、Cr:0.6〜3.5%と、V:0.1〜0.5%、Mo:0.2〜2.0%、W:0.2〜4.0%、Ni:0.3〜3.0%のうちの1種または2種以上含有し、かつV+Mo+W≧0.3%であり、残部Feおよび不可避不純物からなる溶接材料をまず肉盛溶接し、その上層部に上盛材として前記した請求項1に示す合金を肉盛溶接する複数層からなる肉盛溶接を行うことによって、肉盛箇所の短寿命での割れ発生を抑えることができることを見出したものである。なお、請求項2からなる合金は、C含有率を抑えることによって、高温耐摩耗性については請求項1の合金に比較して劣るものの、靭性については逆に改善したことを特徴とし、高面圧が負荷された際にいわゆるクッションとなる役割を示し、低寿命での割れ発生を防止可能にすることを特徴とするものである。 In addition, since the welding material according to claim 1 is designed with an emphasis on improving wear resistance particularly at high temperatures, it cannot be said that the toughness is excellent, and the tool steel, which is the base material, is directly subjected to the meat. In the case of live welding, there is a possibility that cracking may occur with a short life in a portion where a violent material flow occurs or a portion where the surface pressure is high. Therefore, in such a portion, as shown in claim 2, in mass%, C: 0.05 to 0.25%, Si: 0.1 to 1.0%, Mn: 0.2 to 2.0%, Cr: 0.6 to 3.5%, V: 0.1 to 0.5%, Mo: 0.2 to 2.0%, W: 0.2 to 4.0%, Ni: One or more of 0.3 to 3.0%, and V + Mo + W ≧ 0.3%, and the balance Fe and First, overlay welding of a welding material made of inevitable impurities is performed, and overlay welding consisting of a plurality of layers for overlay welding the above-described alloy according to claim 1 as an overlay material is performed on the upper layer portion. It has been found that the occurrence of cracks in a short life can be suppressed. The alloy of claim 2 is characterized in that, by suppressing the C content, high temperature wear resistance is inferior to that of claim 1 but toughness is improved on the contrary. It exhibits a role as a so-called cushion when pressure is applied, and is characterized by being capable of preventing the occurrence of cracks in a short lifetime.
次に請求項1、2からなる肉盛溶接材料の各成分範囲の限定理由について説明する。
まず、最初に上盛材として用いる請求項1からなる合金について説明する。
Next, the reasons for limiting each component range of the overlay welding material according to claims 1 and 2 will be described.
First, the alloy according to claim 1 used as the overlay material will be described first.
C:0.30〜0.55%
本発明は微細炭化物を適量生成させることにより、必要とする高温での特性、特に高温耐摩耗性を確保している。また、Cが少ないと溶接時の湯流れと母材との密着性を低下させるという問題もある。従って、必要とする量の炭化物を生成させるためには一定量以上のCの添加を必要とするため、その下限を0.30%とした。しかしながら、多量に含有させすぎると靭性が低下するため、上限を0.55%とした。
C: 0.30 to 0.55%
The present invention secures the required high-temperature characteristics, particularly high-temperature wear resistance, by producing an appropriate amount of fine carbides. Moreover, when C is low, there is also a problem that the adhesion between the molten metal flow during welding and the base material is lowered. Therefore, in order to produce the required amount of carbide, it is necessary to add a certain amount or more of C, so the lower limit was made 0.30%. However, if the content is too large, the toughness decreases, so the upper limit was made 0.55%.
Si:0.2〜1.5%
Siは、鋼の製造時に脱酸剤として必要な元素であるとともに、高温酸化抵抗を増加し、溶接時の湯流れと密着性を向上させる。従って、そのための効果を十分に得るために、下限を0.2%とした。しかしながら、多量に含有させすぎると靭性が低下し、耐ヒートチェック性が低下するため、上限を1.5%とした。
Si: 0.2-1.5%
Si is an element necessary as a deoxidizer during the production of steel, increases high-temperature oxidation resistance, and improves hot water flow and adhesion during welding. Therefore, in order to sufficiently obtain the effect for that purpose, the lower limit was made 0.2%. However, if the content is too large, the toughness decreases and the heat check resistance decreases, so the upper limit was made 1.5%.
Mn:0.4〜2.0%
Mnは、溶接時の湯流れと密着性を向上させる効果を有する元素であるため、下限を0.4%とした。しかしながら、多量に含有させると靭性が低下するとともに、溶接後の硬度が高くなって被削性も低下するため、上限を2.0%とした。
Mn: 0.4-2.0%
Mn is an element that has the effect of improving the hot water flow and adhesion during welding, so the lower limit was made 0.4%. However, if it is contained in a large amount, the toughness is lowered and the hardness after welding is increased and the machinability is also lowered, so the upper limit was made 2.0%.
Cr:4.0〜9.0%
Crは、高温における耐熱性および耐食性を改善する効果を有するとともに、Cと結合して炭化物を生成し、高温硬さおよび高温加熱に伴う軟化抵抗を増加する効果を有する。従って高温耐摩耗性を重視する上盛材用の溶接材料として十分な特性を確保するためには、4%以上の含有が必要である。しかしながら、多量に含有させすぎると、靭性および機械加工性が低下し、低寿命で割れが発生しやすくなるため、上限を9.0%とした。
Cr: 4.0-9.0%
Cr has the effect of improving heat resistance and corrosion resistance at high temperatures, and also forms carbides by combining with C, and has the effect of increasing high temperature hardness and softening resistance associated with high temperature heating. Therefore, in order to ensure sufficient characteristics as a welding material for the overlay material that places importance on high-temperature wear resistance, it is necessary to contain 4% or more. However, if the content is too large, the toughness and machinability are lowered, and cracking is likely to occur with a low life, so the upper limit was made 9.0%.
V:0.1〜1.0%
Vは、安定な高硬度炭化物を生成し、高温加熱時に析出硬化によって硬度が低下するのを抑制し、高い耐摩耗性を確保するために必要な元素である。また、Vは結晶粒の微細化に効果があり、それにより靭性を向上させる。従って、これらの効果を得るために、最低でも0.1%以上の含有が必要である。しかしながら、多量に含有させると、生成される炭化物が粗大化して逆に靭性が低下するとともに、被削性も低下するため、上限を1.0%とした。
V: 0.1-1.0%
V is an element necessary for producing a stable high-hardness carbide, suppressing a decrease in hardness due to precipitation hardening during high-temperature heating, and ensuring high wear resistance. V is effective in reducing the crystal grain size, thereby improving toughness. Therefore, in order to obtain these effects, a content of at least 0.1% is necessary. However, if it is contained in a large amount, the generated carbide becomes coarse and conversely the toughness is lowered and the machinability is also lowered. Therefore, the upper limit was made 1.0%.
Mo:2.0〜5.0%
Moは、微細な炭化物を形成し、耐摩耗性、靭性および耐軟化抵抗の向上から高温強度を改善する元素であるが、少ない場合にはその効果が十分でなく、多すぎる場合には溶接時に割れを発生しやすくなる。従って、添加範囲を2.0〜5.0%とした。
Mo: 2.0-5.0%
Mo is an element that forms fine carbides and improves high-temperature strength by improving wear resistance, toughness and resistance to softening. Prone to cracking. Therefore, the addition range is set to 2.0 to 5.0%.
W:2.0〜11.0%
Wは、炭化物を微細化するとともに、素地を固溶強化し、高温硬度を向上させる効果がある。従って、優れた高温耐摩耗性を要求される上盛材では、その効果を十分に得る必要があるため、下限を2.0%とした。しかしながら、添加しすぎると、溶接時に湯流れが劣化するとともに、機械加工性も低下するため、上限を11%とした。
W: 2.0-11.0%
W has the effect of making carbide finer, strengthening the substrate in solid solution, and improving high temperature hardness. Therefore, in the overlay material that requires excellent high temperature wear resistance, it is necessary to obtain the effect sufficiently, so the lower limit was made 2.0%. However, if too much is added, the hot water flow deteriorates during welding and the machinability also decreases, so the upper limit was made 11%.
Ni:0.3〜2.0%
Niは、靭性を向上させる効果のある元素であり、高温で繰返し高荷重が負荷されても割れが生じないようにするために不可欠となる元素である。従って、そのための効果を十分に得るために、下限を0.3%とした。また、多量に添加しすぎた場合には、被削性が低下するため、上限を2.0%とした。
Ni: 0.3-2.0%
Ni is an element that has an effect of improving toughness, and is an indispensable element for preventing cracking even when a high load is repeatedly applied at a high temperature. Therefore, in order to sufficiently obtain the effect for that purpose, the lower limit was made 0.3%. In addition, if too much is added, the machinability deteriorates, so the upper limit was made 2.0%.
次に、下盛材として使用する溶接材料(請求項2)の各成分範囲の限定理由について説明する。
C:0.05〜0.25%
下盛材については、鍛造時に被加工材と直接接触しないため、上盛材ほど高温耐摩耗性を高める必要はなく、逆に靭性を高め、高温高面圧負荷時においてクッションとなる役割を高める必要があるため、上盛材に比べてC含有率を低めに設定する必要があり、下限を0.05%、上限を0.25%とした。
Next, the reasons for limiting each component range of the welding material used as the underlaying material (Claim 2) will be described.
C: 0.05-0.25%
For the underlaying material, it does not need to be in direct contact with the workpiece during forging, so it is not necessary to increase the high temperature wear resistance as the overlaying material. Therefore, it is necessary to set the C content lower than that of the overlay, and the lower limit is set to 0.05% and the upper limit is set to 0.25%.
Si:0.1〜1.0%
Siは、鋼の製造時に脱酸剤として必要な元素であるとともに、高温酸化抵抗を増加し、溶接時の湯流れと密着性を向上させる。従って、そのための効果を十分に得るために、下限を0.1%とした。下盛材は、クッションの役割をすることにより、繰返し連続的に型として使用され、過酷な条件で使用されても割れを生じないようにすることを目的に使用する。従って、靭性については上盛材よりも優れていることが要求されるため、これらの特性を劣化させる原因となるSi添加量の上限を上盛材に比較して少なめに抑え、1.0%に設定した。
Si: 0.1-1.0%
Si is an element necessary as a deoxidizer during the production of steel, increases high-temperature oxidation resistance, and improves hot water flow and adhesion during welding. Therefore, in order to sufficiently obtain the effect for that purpose, the lower limit was made 0.1%. The underlay material is used for the purpose of preventing a crack from occurring even if used under severe conditions by repeatedly and continuously being used as a mold by acting as a cushion. Therefore, since the toughness is required to be superior to the overlay material, the upper limit of the amount of Si added, which causes these properties to deteriorate, is suppressed to a lower level than the overlay material, and is set to 1.0%. did.
Mn:0.2〜2.0%
Mnは、溶接時の湯流れと密着性を向上させる効果を有する元素であるため、下限を0.2%とした。しかしながら、多量に含有させると靭性が低下するため、上限を2.0%とした。
Mn: 0.2-2.0%
Mn is an element that has the effect of improving the hot water flow and adhesion during welding, so the lower limit was made 0.2%. However, since the toughness decreases when a large amount is contained, the upper limit was made 2.0%.
Cr:0.6〜3.5%
Crは、高温における耐熱性および耐食性を改善する効果を有するとともに、Cと結合して炭化物を生成し、高温硬さおよび高温加熱に伴う軟化抵抗を向上する効果を有する。但し、下盛材では上盛材ほど高温耐摩耗性が要求されない。従って、添加量は上盛材に比較して少量で良いため、その範囲を0.6〜3.5%とした。
Cr: 0.6-3.5%
Cr has the effect of improving heat resistance and corrosion resistance at high temperatures, and also forms carbides by combining with C, and has the effect of improving high temperature hardness and softening resistance associated with high temperature heating. However, high temperature wear resistance is not required in the underlaying material as in the overlaying material. Therefore, since the addition amount may be a small amount as compared with the overlay material, the range is set to 0.6 to 3.5%.
また、下盛材ではV、Mo、W、およびNiのうちの1種または2種以上を含有させることにより、下盛材として最低限必要な強度を確保するとともに、靭性を改善する効果も有する。以下、V、Mo、WおよびNiのそれぞれの成分範囲限定理由について説明する。 In addition, by including one or more of V, Mo, W, and Ni in the underlaying material, the minimum necessary strength as an underlaying material is ensured and the toughness is also improved. . Hereinafter, the reasons for limiting the component ranges of V, Mo, W, and Ni will be described.
V:0.1〜0.5%、Mo:0.2〜2.0%、W:0.2〜4.0%
V、Mo、Wは3元素共に炭化物を形成して高温耐摩耗性を改善する元素である。従って、優れた高温耐摩耗性が要求される上盛材では、ある程度多量に添加して優れた耐摩耗性を確保する必要があるが、下盛材では上盛材ほどの高温耐摩耗性は必要なく、逆に靭性(耐衝撃性)についてはより高いレベルが要求される。また、下盛材も使用時に高い負荷を受けることから、室温で最低限HRC30以上の硬度(望ましくはHRC33以上)を確保する必要がある。そこで、必要な硬度と靭性(耐衝撃性)が得られるようにするために、Vは0.1%、Mo、Wは0.2%以上含有させることとした。
V: 0.1-0.5%, Mo: 0.2-2.0%, W: 0.2-4.0%
V, Mo, and W are elements that improve the high temperature wear resistance by forming carbides with all three elements. Therefore, it is necessary to add a certain amount in a large amount that requires excellent high temperature wear resistance to ensure excellent wear resistance. On the contrary, a higher level of toughness (impact resistance) is required. In addition, since the underlay is also subjected to a high load during use, it is necessary to secure a hardness of HRC30 or more (preferably HRC33 or more) at room temperature. Therefore, in order to obtain the necessary hardness and toughness (impact resistance), V is 0.1% and Mo and W are 0.2% or more.
前記理由から、上盛材ほどの硬さ、耐摩耗性は必要としないことと、コスト面を考慮して、上限は、上盛材に比較して低めとし、Vは0.5%、Moは2. 0%、Wは4.0%とした。 For the above reasons, the upper limit is set lower than the upper material, considering that the hardness and wear resistance of the upper material are not required and considering the cost, V is 0.5%, Mo is 2 0% and W were 4.0%.
Ni:0.3〜2.0%
Niは、V、Mo、Wとは異なり炭化物形成元素ではないが、素地の靭性を高める効果の大きい元素である。従って、短寿命での割れ防止のため、靭性を高める必要のある下盛材にとっては、上盛材と同様に必要となる元素である。そこで、上盛材と同様に0.3〜2.0%の範囲で添加することとした。
Ni: 0.3-2.0%
Unlike V, Mo, and W, Ni is not a carbide-forming element, but is an element that has a large effect of increasing the toughness of the substrate. Therefore, in order to prevent cracking with a short life, it is an element that is necessary in the same manner as the overlay material for the overlay material that needs to improve toughness. Therefore, it was decided to add in the range of 0.3 to 2.0% as in the case of the overlay.
また、以上のV、Mo、W、およびNiの4元素のうち、V、Mo、Wは、下盛材の靭性の改善のために添加する元素であるだけでなく、下盛材として必要な硬度確保のために必要不可欠な元素でもある。従って、3種類の元素の合計含有率(V+Mo+W)の下限を0.3%に規定した。 Of the four elements V, Mo, W and Ni described above, V, Mo and W are not only elements added for improving the toughness of the underlaying material, but also necessary for the underlaying material. It is also an indispensable element for ensuring hardness. Therefore, the lower limit of the total content (V + Mo + W) of the three elements is defined as 0.3%.
なお、本発明を実際に適用する際には、前記成分からなる材料を用いて線状又は棒状(溶接棒)からなる溶接材料を製造して、母型となるSKD61やSKT4等の工具鋼で製造した型表面の適当な位置にTIG溶接、アーク溶接、ガス溶接等を行って肉盛溶接することにより可能なことは説明するまでもないが、その他に本発明の成分からなる溶接材料を溶解し、溶湯をガスアトマイズ法を用いて粉末を生成し、粉体プラズマ溶接法によって肉盛溶接した場合であっても同様に優れた効果を得ることができる。 When the present invention is actually applied, a welding material made of a wire or a rod (welding rod) is manufactured using the material composed of the above components, and a tool steel such as SKD61 or SKT4 serving as a mother die. Needless to say, it is possible to perform overlay welding by performing TIG welding, arc welding, gas welding, etc. at an appropriate position on the manufactured mold surface, but in addition, the welding material comprising the components of the present invention is dissolved. Even when the molten metal is powdered using the gas atomizing method and overlay welding is performed by the powder plasma welding method, the same excellent effect can be obtained.
なお、肉盛溶接は、実際の鍛造において特に型への負担が大きく、摩耗が大きくなる部位に限定して行っても良いし、母型は比較的安価な材料を用い、型表面のうち、鍛造時に被加工材と接触する部位全面を肉盛溶接し、全面について耐摩耗性の向上を図るようにしても良い。 In addition, overlay welding may be performed only in a part where the burden on the die is particularly large in actual forging and wear increases, and the mother die is made of a relatively inexpensive material. The entire surface of the part that contacts the workpiece during forging may be subjected to overlay welding to improve the wear resistance of the entire surface.
また、肉盛溶接の際は、肉盛溶接する母型を300〜500℃程度に予熱後、後熱するまでの間200℃以下に低下しない条件下で溶接し、溶接後も400〜500℃程度で後熱後徐冷することが、溶接後の欠陥生成防止のために重要である。 In addition, during overlay welding, the base metal to be welded is preheated to about 300-500 ° C and then welded under conditions that do not drop below 200 ° C until post-heating, and 400-500 ° C after welding. It is important to gradually cool after post-heating to the extent of preventing defect formation after welding.
次に請求項3の発明は、質量%で、C:0.30〜0.55%、Si:0.2〜1.5%、Mn:0.4〜2.0%、Cr:4.0〜9.0%、V:0.1〜1.0%、Mo:2.0〜5.0%、W:2.0〜11.0%、Ni:0.3〜2.0%を含有し、残部Feおよび不可避不純物からなる溶接材料を母型表面に肉盛溶接したことを特徴とする熱間鍛造用金型である。 Next, the invention of claim 3 is mass%, C: 0.30 to 0.55%, Si: 0.2 to 1.5%, Mn: 0.4 to 2.0%, Cr: 4.0 to 9.0%, V: 0.1 to 1.0%, Mo: Gold for hot forging containing 2.0 to 5.0%, W: 2.0 to 11.0%, Ni: 0.3 to 2.0%, and overlay welding a welding material consisting of the remainder Fe and inevitable impurities on the surface of the master die It is a type.
前記したように、請求項1からなる溶接材料は、優れた高温特性を有していることから、母型のうち、鍛造時において特に耐摩耗性が必要となる部位にあらかじめ肉盛溶接した金型を用いることにより、肉盛溶接しない場合に比較して型の寿命を大幅に延長させることができる。また、肉盛溶接しない場合には、母型自身に優れた耐摩耗性が要求されるため、高価な型材を用いる必要があるが、請求項3で規定したように型表面の中の必要と考えられる位置に肉盛溶接した金型を用いた場合には、母型の材料は、熱間鍛造型として使用した際に塑性変形や割れが生じない程度の高温強度を有していれば良く、肉盛溶接箇所では直接被加工材に接触しないことから高いレベルの耐熱性を必要としないため、母型の材料コストを大幅に低減することも可能となる。 As described above, since the welding material according to claim 1 has excellent high-temperature characteristics, gold that is preliminarily welded to a portion of the master die that requires particularly wear resistance during forging. By using the mold, the life of the mold can be greatly extended as compared with the case where overlay welding is not performed. In addition, when the build-up welding is not performed, an excellent wear resistance is required for the mother die itself, and therefore it is necessary to use an expensive mold material. When using a mold that is welded and welded at a possible position, it is sufficient that the matrix material has a high temperature strength that does not cause plastic deformation or cracking when used as a hot forging die. In addition, since a high level of heat resistance is not required because the welded part does not directly contact the workpiece, the material cost of the mother die can be significantly reduced.
また、使用する母型の材料は、勿論JISに熱間金型用として規定されているSKD61等の合金工具鋼でも良いが、肉盛溶接によって表面の耐摩耗性等の性能が十分に確保できるのであれば、より安価な材料を選択することも可能である。 The material of the mother die used may of course be alloy tool steel such as SKD61, which is prescribed for hot molds by JIS, but sufficient performance such as surface wear resistance can be secured by overlay welding. In this case, it is possible to select a cheaper material.
次に請求項4の発明は、質量%で、C:0.05〜0.25%、Si:0.1〜1.0%、Mn:0.2〜2.0%、Cr:0.6〜3.5%と、V:0.1〜0.5%、Mo:0.2〜2.0%、W:0.2〜4.0%、Ni:0.3〜3.0%のうちの1種または2種以上含有し、かつV+Mo+W≧0.3%であり、残部Feおよび不可避不純物からなる材料を母型表面に下盛材として肉盛溶接し、さらに請求項1記載の溶接材料を下盛材の上層部に上盛材として肉盛溶接したことを特徴とする熱間鍛造金型である。 Next, the invention of claim 4 is the mass%, C: 0.05-0.25%, Si: 0.1-1.0%, Mn: 0.2-2.0%, Cr: 0.6-3.5%, V: 0.1-0.5%, Mo : 0.2-2.0%, W: 0.2-4.0%, Ni: One or more of 0.3-3.0%, V + Mo + W ≧ 0.3%, the balance is Fe and inevitable impurities. A hot forging die characterized in that build-up welding is performed on the surface as a build-up material, and the welding material according to claim 1 is build-up welded on the upper layer of the build-up material as a build-up material.
前記したように、請求項1記載の溶接材料を直接母型表面に肉盛溶接するのではなく、請求項2で示した溶接材料を下盛材として用いた場合には、下盛材がクッションとしての役割として働くことにより、高温高面圧という厳しい条件で連続的に鍛造を行う場合に型に生じる割れの発生を防止することができ、耐摩耗性に優れ、割れが生じにくく寿命の優れた熱間鍛造用金型の提供が可能になる。 As described above, when the welding material according to claim 1 is not directly welded to the surface of the master mold, but when the welding material shown in claim 2 is used as a building material, the building material is a cushion. By acting as a role, it is possible to prevent the occurrence of cracks in the mold when continuously forging under severe conditions such as high temperature and high surface pressure, and it has excellent wear resistance and is resistant to cracking and has a long life It is possible to provide a hot forging die.
次に、本発明を適用した場合の効果について、実施例により明らかにする。表1、表2
は、実施例として用いた溶接材料の化学成分を示すものである。
Next, the effect when the present invention is applied will be clarified by examples. Table 1, Table 2
These show the chemical composition of the welding material used as an Example.
表1は、上盛材として準備した合金であり、このうち、No.1〜4が、本発明に該当する合金であり、No.5〜9が一部の成分が発明の範囲外である比較合金である。また、No.10〜14は従来から上盛材として既に使用されている合金であり、10、11は、Cr、Mo、Wを添加して耐摩耗性を高め、使用されていたFe基の肉盛用溶接合金、12はNi基の肉盛用溶接合金、13、14は、ステライトと呼ばれているCo基の溶接合金である。また、15、16は、肉盛溶接合金ではなく、母型用として従来から広く使用されているSKD61、SKT4である。 Table 1 shows alloys prepared as overlay materials, among which Nos. 1 to 4 are alloys corresponding to the present invention, and Nos. 5 to 9 have some components outside the scope of the invention. Comparative alloy. In addition, Nos. 10 to 14 are alloys that have already been used as overlay materials, and Nos. 10 and 11 increase the wear resistance by adding Cr, Mo, W, The welding alloy for overlaying, 12 is a welding alloy for overlaying Ni-based, and 13 and 14 are welding alloys of Co-based called stellite. In addition, 15 and 16 are not overlay welding alloys but SKD61 and SKT4 that have been widely used for mother molds.
また、表2は下盛用の溶接合金として準備した合金であり、No.17〜20が、本発明の成分範囲の条件を満足する溶接合金であり、No.21〜22は、一部の成分が範囲外である比較合金である。 Table 2 shows alloys prepared as welding alloys for underlaying, Nos. 17 to 20 are welding alloys satisfying the conditions of the component range of the present invention, and Nos. 21 to 22 It is a comparative alloy whose components are out of range.
これらの供試合金は、成分調整して溶解後、溶湯を鋳型内に鋳造し、棒状に成形して溶接棒を製造することにより準備した。また、No.1合金については、ガスアトマイズ法により粉末も同時に準備した。そして、No.15合金(SKD61)の板厚16mmの鉄板上に深さ10mm、幅15mmの溝加工したものを準備し、その溝部分に前記表1、2に示す合金をTIG溶接によって(No.1合金の粉末については、粉体プラズマ溶接によって)肉盛溶接し、必要な場合には、その肉盛部分を切り出して試験片を作製し、後述の試験を行った。TIG溶接時の条件を表3に示す。また、従来型材である15、16合金は、それぞれの熱処理済の鉄板(15合金は1030℃×30分焼入れ、580℃×90分焼もどし、16合金は、950℃×30分焼入れ、550℃×90分焼もどし)から切り出して、試験片を作製した。 These match golds were prepared by adjusting the components and melting, casting the molten metal in a mold, and forming it into a rod shape to produce a welding rod. Moreover, about No. 1 alloy, the powder was prepared simultaneously by the gas atomization method. Then, a No. 15 alloy (SKD61) steel plate with a thickness of 16 mm and a groove processed to a depth of 10 mm and a width of 15 mm was prepared, and the alloys shown in Tables 1 and 2 were applied to the groove portion by TIG welding (No. About the powder of the .1 alloy, by overlay welding (by powder plasma welding), if necessary, the overlay portion was cut out to produce a test piece, and the test described later was performed. Table 3 shows the conditions for TIG welding. Also, 15 and 16 alloys, which are conventional molds, are heat-treated iron plates (15 alloys are tempered at 1030 ° C for 30 minutes, 580 ° C for 90 minutes, 16 alloys are quenched at 950 ° C for 30 minutes, 550 ° C X90 minutes tempering) and cut out to prepare a test piece.
試験は、耐摩耗性、耐衝撃性(靭性)、耐ヒートチェック性、被削性のそれぞれについて行った。但し、下盛材については、耐ヒートチェック性、被削性は、必須の要求特性ではないので、評価を省略した。 The test was conducted for each of wear resistance, impact resistance (toughness), heat check resistance, and machinability. However, for the underlay material, the heat check resistance and the machinability are not essential required characteristics, and thus the evaluation was omitted.
耐摩耗性は、溶接ままの硬さと高温硬さを測定することにより評価した。特に上盛材は高温での耐摩耗性が優れる必要があることから、室温での硬度のみでは正確な評価ができないため、加熱し600℃に達してから温度保持し、2時間経過後の硬度を測定することにより評価した。これは、Fe合金の場合、600℃付近で急激に硬度が低下する傾向があること、室温と600℃とでは硬度に差異があることを考慮したためである。なお、600℃という温度は、通常の熱間鍛造において、繰返し連続して加工を継続した場合に到達する型表面温度よりも若干高い温度(局部的に高温となっている箇所は除く)に相当することから、この温度での硬度測定が評価に適当であると判断した。また、下盛材は、上盛材ほどの耐摩耗性は必要としないため、高温硬さの測定については省略し、負荷される圧縮力に耐える強度を確保する必要があることから、必要とする強度を有していることの確認の目的で、溶接ままの硬さの測定(室温)を行った。 The wear resistance was evaluated by measuring the hardness as welded and the high temperature hardness. In particular, the overlay material must have excellent wear resistance at high temperatures, so accurate evaluation cannot be performed only by hardness at room temperature. Therefore, the temperature is maintained after heating to 600 ° C, and the hardness after 2 hours has passed. Was evaluated by measuring. This is because in the case of an Fe alloy, the hardness tends to drop rapidly around 600 ° C., and the hardness is different between room temperature and 600 ° C. Note that the temperature of 600 ° C corresponds to a temperature slightly higher than the die surface temperature reached when processing is continued continuously in normal hot forging (excluding locations that are locally hot). Therefore, it was judged that the hardness measurement at this temperature was appropriate for the evaluation. In addition, since the underlaying material does not require the wear resistance as high as the overlaying material, it is necessary to omit the measurement of the high temperature hardness and ensure the strength to withstand the compressive force applied. For the purpose of confirming that it has the strength to be welded, the hardness as welded was measured (room temperature).
耐衝撃性(靭性)は、4点曲げ試験を行い破断時の荷重によって評価した。曲げ試験は、前記したNo.14合金(SKD61)の鉄板の中央部にそれぞれの溶接合金を肉盛溶接したものの溶接部分を他の部分と高さが同一となるよう機械加工し、さらに5Rの切欠加工を施した200mm×100mm×16mmの寸法の板を準備し、溶接箇所が中央に位置し、かつ下側に向くようにして、下支点間距離が150mm、上支点間距離が40mmとなる条件で4点曲げ試験を行うことにより評価した。なお、5Rの切欠加工を行って試験したのは、平滑のままで評価した場合には、結果が単純に材料の強度に依存する傾向が強くなり、靭性を正しく評価しにくくなるためである。結果は、従来型材であるNo.15合金(SKD61)の破断荷重を100として、比で示したものである。 Impact resistance (toughness) was evaluated based on the load at the time of breaking by performing a four-point bending test. The bending test was performed by machining the welded portion of the above-mentioned No. 14 alloy (SKD61) steel plate that was welded to the center of each steel plate so that the height of the welded portion was the same as the other portions. Prepare a notched plate with dimensions of 200mm x 100mm x 16mm, with the welding point located in the center and facing down, the distance between the lower fulcrum is 150mm and the distance between the upper fulcrum is 40mm Evaluation was performed by performing a four-point bending test under the conditions. The reason why the 5R notch processing was performed was that when the evaluation was performed in a smooth state, the result was more likely to simply depend on the strength of the material, making it difficult to evaluate toughness correctly. The results are shown as a ratio with the breaking load of No. 15 alloy (SKD61), which is a conventional mold, being 100.
耐ヒートチェック性は、前記した溶接部分を切り出して、φ10、長さ20mmの円柱型試験片を作製し、この試験片に700℃へ高周波加熱し、2秒間温度保持後水冷という熱処理
を500回実施し、試験後の亀裂発生状況を調査したものである。なお、実際の使用時においては水冷されることはなく、かつ温度も700℃までは上昇しないことから、この試験条件は、実際の条件よりかなり厳しい条件に相当するものである。そして、亀裂発生状況を調査した結果、亀裂が認められないか亀裂が認められた場合でも側面からD/8以下の小さい亀裂であった場合は○、亀裂が側面からD/8〜D/4の中程度であった場合を△、亀裂がそれ以上に大きく進展していた場合を×と判定した。
The heat check resistance was cut out from the welded portion described above to produce a cylindrical test piece of φ10, 20 mm in length, and this test piece was heated to 700 ° C. at high frequency, maintained for 2 seconds and then water-cooled 500 times. This is an investigation of the occurrence of cracks after testing. In actual use, the test conditions are considerably more severe than actual conditions because they are not cooled by water and the temperature does not rise to 700 ° C. And as a result of investigating the crack occurrence situation, even when cracks are not recognized or cracks are recognized, if they are small cracks of D / 8 or less from the side, ○, cracks from the side D / 8 to D / 4 The case where the crack was moderate was judged as Δ, and the case where the crack had progressed more than that was judged as x.
被削性は、前記したNo.15合金上に肉盛溶接した溶接部分を表4に示す条件でエンドミル加工し、逃げ面コーナ平均摩耗幅が0.08mmとなるまでの切削距離により評価した。また、従来型材であるNo.15、16合金については、型材自身の被削性を同様の方法で評価した。なお、結果は、No.15合金の切削距離を100とした場合の比で値を示した。結果を前記した評価を含めて表5(上盛材)、表6(下盛材)に示す。 The machinability was evaluated by the end milling of the welded portion welded on the No. 15 alloy described above under the conditions shown in Table 4 and the cutting distance until the flank corner average wear width reached 0.08 mm. For the conventional mold materials No. 15 and 16, the machinability of the mold material itself was evaluated by the same method. In addition, the result showed the value as a ratio when the cutting distance of No. 15 alloy was 100. The results including the above-described evaluation are shown in Table 5 (superior material) and Table 6 (underscore material).
表5から明らかなように、比較合金であるNo.5、7合金は、No.5合金はC含有率が低く、No.7合金は炭化物形成元素であるCr、Mo含有率が低いため、炭化物の析出による強度向上効果が不十分となり、溶接ままの硬さ、高温硬さが低く、高温耐摩耗性が低下するとともに、ヒートチェック性が劣るものであり、No.6合金は、C含有率が高いため、靭性が低下し、曲げ試験破断荷重が低下するとともに、被削性が若干低下したものであり、No.8合金は、高温強度向上に大きな効果を有するW含有率が低いため、室温での硬さは十分に高いものの、高温硬さ、ヒートチェック性が大きく劣るものであり、No.9合金は、Ni含有率が低いため、靭性(曲げ試験破断荷重)、耐ヒートチェック性が劣るものである。 As is apparent from Table 5, the No. 5 and 7 alloys, which are comparative alloys, have a low C content in the No. 5 alloy, and the No. 7 alloy has a low content of Cr and Mo as carbide forming elements. Strength improvement effect due to precipitation of carbides becomes insufficient, hardness as welded, low-temperature hardness is low, high-temperature wear resistance is lowered, heat checkability is inferior, No. 6 alloy contains C Since the ratio is high, the toughness is reduced, the bending test breaking load is lowered, and the machinability is slightly lowered. The No. 8 alloy has a low W content which has a large effect on improving high-temperature strength. Although the hardness at room temperature is sufficiently high, the high temperature hardness and heat checkability are greatly inferior, and the No. 9 alloy has low Ni content, so toughness (bending test breaking load), heat resistance check It is inferior in nature.
また、従来から使用されてきた肉盛材であるNo.10〜14合金のうち、Fe合金の肉盛材であるNo.10、11合金は、高温耐摩耗性を改善するV、Mo、Wの添加量が十分でないため、耐摩耗性、ヒートチェック性が大きく劣り、かつ11合金はNiが未添加であるため、靭性も劣るものであり、Ni基合金、Co基合金であるNo.12〜14合金は、高温に加熱しても硬度が低下せず、ヒートチェック性も優れているが、被削性が著しく劣るものである。 In addition, among No.10-14 alloys that have been used in the past, No.10 and 11 alloys that are built-up materials of Fe alloy are V, Mo, W that improve high temperature wear resistance. Is not sufficient, wear resistance, heat check property is greatly inferior, and 11 alloy is not added Ni, toughness is also inferior, Ni-based alloy, Co-based alloy No. 12 The ~ 14 alloy does not decrease in hardness even when heated to a high temperature and has excellent heat check properties, but is extremely inferior in machinability.
さらに、従来の型材(SKD61、SKT4)であるNo.15、16合金は、600℃での高温硬さがHRCで20.4(SKD61)、15.4(SKT4)と室温での硬さに比べ大きく低下するとともに、ヒートチェック性が劣るものである。 In addition, the conventional mold materials (SKD61, SKT4) No.15 and 16 alloys have a high temperature hardness at 600 ° C of 20.4 (SKD61) and 15.4 (SKT4) at HRC, which is significantly lower than the hardness at room temperature. At the same time, the heat check property is inferior.
これに対し、本発明の肉盛材であるNo.1〜4合金は、室温での硬さがHRC55以上、600℃での高温硬さもNi基合金、Co基合金と同等以上であるHRC34以上を確保でき、ヒートチェック性も優れ、高温耐摩耗性、ヒートチェック性改善のための成分添加による靭性、被削性の低下も従来型材に比較して小さく抑えることができた。 On the other hand, the No. 1-4 alloys that are the build-up materials of the present invention have a hardness at room temperature of HRC55 or higher, and a high temperature hardness at 600 ° C. of HRC34 or higher that is equal to or higher than that of Ni-based alloys and Co-based alloys The heat check property is excellent, the high temperature wear resistance, the toughness due to the addition of components for improving the heat check property, and the machinability are reduced to a smaller extent than the conventional materials.
次に下盛材の評価結果であるが、本発明の成分範囲の条件を満足している下盛材であるNo.17〜20合金は、溶接ままの硬さがHRC33以上であって、かつ曲げ試験破断荷重が従来型材の1.3倍以上の値を示し、クッションの役割を果たすために優れていることが確認できた。それに対し、比較合金であるNo.21、22は、22合金はCr含有率が低く、22合金は、炭化物形成元素であるV、Mo、Wの合計含有率が低いため、靭性の評価結果である曲げ試験破断荷重については優れていたが、溶接ままの硬さが、前記No.17〜20合金に比較して劣るものである。 Next, it is the evaluation result of the underlaying material, the No.17-20 alloy which is the underlaying material satisfying the conditions of the component range of the present invention, the hardness as welded is HRC33 or more, and The bending test breaking load was 1.3 times or more that of the conventional mold material, and it was confirmed that the bending test fracture load was excellent for the role of a cushion. On the other hand, No. 21 and 22 which are comparative alloys have low Cr content in Alloy 22, and 22 alloy has a low total content of carbide forming elements V, Mo and W. Although it was excellent with respect to a certain bending test breaking load, the hardness as welded is inferior to the No. 17-20 alloy.
以上の結果より、高温耐摩耗性と耐ヒートチェック性に優れた上盛材と、靭性の優れた下盛材の化学成分の範囲がほぼ把握できたので、実際に従来型材SKD61を用いて製造したフランジヨークの型表面の摩耗が大きい部位に前記実施例で試験評価した肉盛材を肉盛溶接し、1200℃の温度で加熱及び熱間鍛造を行って、型の摩耗状況及び割れの有無について調査した。肉盛溶接は、型表面のうち、過去の製造で摩耗が大きいことがわかっている箇所を選択し、その箇所に肉盛溶接することによって評価した。また、肉盛溶接の際には、溶接欠陥が生じることのないようにするため、溶接前に400℃×2hrの予熱を行い、後熱までの間250℃以下にならないようにして溶接し、溶接後も450℃×5hrの後熱を行い室温まで徐冷した。そして、肉盛溶接後必要な表面の仕上加工を行い、10000ショット、15000ショットの熱間鍛造を実際に行い、鍛造加工後に肉盛溶接部の割れ発生の有無と摩耗量の測定を行った。 From the above results, we were able to grasp the range of chemical composition of the overlay material with excellent high temperature wear resistance and heat check resistance and the overlay material with excellent toughness, so it was actually manufactured using the conventional type SKD61. The welded material tested and evaluated in the above example was welded to a portion of the flange yoke where the surface of the die was heavily worn, and heated and hot forged at a temperature of 1200 ° C. Was investigated. Overlay welding was evaluated by selecting a portion of the mold surface that was known to have a large amount of wear in past manufacturing and overlay welding at that location. In addition, during overlay welding, in order to prevent welding defects from occurring, perform preheating of 400 ° C x 2 hr before welding, and weld so that it does not fall below 250 ° C until after heating. After welding, after-heating was performed at 450 ° C. for 5 hours, and then gradually cooled to room temperature. Then, finishing processing of the necessary surface was performed after overlay welding, and hot forging of 10,000 shots and 15000 shots was actually performed, and the presence or absence of cracking and the amount of wear of the overlay welds were measured after forging.
なお、フランジヨークの鍛造による製造によって生じる型表面の各部位毎の摩耗量は、過去の鍛造実績から明らかになっているので、前記した肉盛溶接を行った部位の中から特に摩耗の大きくなる部位を選択し、摩耗量の測定部位を決定した。そして、測定は、鍛造途中に型自身を直接測定するのは困難であることから、100ショット後の鍛造品と10000ショット後の鍛造品を採取し、その鍛造品のうち、前記したように決定した測定部位の表面形状を三次元形状測定器で測定し、両者の表面形状の差異を面積の値として換算することによって摩耗量を算出した。従来型材については肉盛溶接を行っていないが、同じ部位の摩耗量を同様の方法で測定することにより評価した。表7に示した摩耗量(10000ショット後)は、従来型材を肉盛溶接しないで熱間鍛造した場合の摩耗量を100とした場合の値を比で表示したものである。 In addition, since the amount of wear for each part of the die surface caused by the forging of the flange yoke has been clarified from past forging results, the wear becomes particularly large from the parts subjected to the above-described overlay welding. The part was selected, and the measurement part of the wear amount was determined. And since it is difficult to directly measure the mold itself during forging, the forged product after 100 shots and the forged product after 10,000 shots are sampled and the forged products are determined as described above. The surface shape of the measured part was measured with a three-dimensional shape measuring instrument, and the wear amount was calculated by converting the difference between the two surface shapes as an area value. Although the overlay welding was not performed about the conventional type | mold material, it evaluated by measuring the amount of wear of the same site | part by the same method. The amount of wear shown in Table 7 (after 10,000 shots) is a ratio value obtained by setting the amount of wear when the conventional mold material is hot forged without overlay welding as 100.
表7から明らかなように、比較例であるNo.5、7合金及び従来合金であるNo.10合金からなる肉盛材を用いた型(試験No.9〜11)では、従来型材と比較して高温での耐摩耗性向上の程度が十分でないため、従来型材(SKD61)に肉盛溶接することなく、そのまま用いた場合に比較して若干摩耗量は低減できるものの、その効果は小さく、割れ発生も防止できなかったものである。 As is apparent from Table 7, the molds (test Nos. 9 to 11) using the overlay material composed of No. 5 and 7 alloys as comparative examples and the No. 10 alloy as conventional alloys are compared with the conventional mold materials. Since the degree of improvement in wear resistance at high temperatures is not sufficient, the amount of wear can be reduced slightly compared to when used as it is without overlay welding to the conventional mold (SKD61), but the effect is small, The occurrence of cracks could not be prevented.
それに対し、本発明の肉盛材料を用いた場合には、従来型材に比較して摩耗量が1/2以下に低減できただけでなく、10000ショットまで割れを完全に防止することができたものである。また、この摩耗量は、比較例で示したNi基合金、Co基合金の摩耗量とほぼ同程度の数値が得られており、合金自体のコスト差に加えて被削性の点での大きな差異があることを考慮すると、Ni基合金やCo基合金を用いる場合と比較してコストを大きく低減することが可能になる。 On the other hand, when the overlay material of the present invention was used, not only was the amount of wear reduced to 1/2 or less compared to the conventional mold material, but it was also possible to completely prevent cracking up to 10,000 shots. Is. In addition, this wear amount is almost the same as the wear amount of the Ni-base alloy and Co-base alloy shown in the comparative example, and in addition to the cost difference of the alloy itself, it is large in terms of machinability. Considering that there is a difference, the cost can be greatly reduced as compared with the case of using a Ni-based alloy or a Co-based alloy.
また、本発明の肉盛材を用いた場合でも15000ショット後においては、若干の割れの発生が認められた。しかしながら、15000ショット後においても、あらかじめ下盛材を溶接した後で上盛材を溶接した場合(試験No.5〜8)には、割れ発生がなく、かつ摩耗量も上盛材のみの場合と比較してほとんど差異がなく良好であった。この結果より、下盛材の存在は、割れを防止して寿命を改善するのに効果的であることが確認できた。 Even when the overlay material of the present invention was used, some cracks were observed after 15,000 shots. However, even after 15000 shots, if the overlay material is welded in advance after welding the overlay material (Test Nos. 5 to 8), there is no cracking and the wear amount is only the overlay material Compared with, it was good with almost no difference. From this result, it was confirmed that the presence of the overlay material is effective in preventing cracking and improving the life.
以上説明した通り、本発明は、Fe基の合金でCr、V、Mo、W、Niの適量添加によって、被削性を大きく劣化することなく、優れた高温耐摩耗性と耐ヒートチェック性を得ることを可能にしたもので、従来の肉盛材で最も高温特性が優れていたNi基やCo基の肉盛材料がコスト高で被削性が著しく劣るという問題があったのに対し、その問題解決に大きく貢献できるという特徴を有するものである。
As described above, the present invention is an Fe-based alloy, and by adding an appropriate amount of Cr, V, Mo, W, Ni, excellent high temperature wear resistance and heat check resistance can be achieved without greatly degrading the machinability. While it was possible to obtain, there was a problem that the Ni-based and Co-based overlaying materials, which had the best high-temperature characteristics of the conventional overlaying materials, were expensive and the machinability was significantly inferior, It has a feature that it can greatly contribute to solving the problem.
Claims (4)
In mass%, C: 0.05-0.25%, Si: 0.1-1.0%, Mn: 0.2-2.0%, Cr: 0.6-3.5%, V: 0.1-0.5%, Mo: 0.2-2.0%, W: 0.2 -4.0%, Ni: One or more of 0.3-3.0%, V + Mo + W ≧ 0.3%, and material consisting of the balance Fe and unavoidable impurities as overlay material on the matrix surface Further, a hot forging die characterized in that the welding material according to claim 1 is overlay welded as an overlay material on an upper layer portion of the overlay material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005150372A JP4645303B2 (en) | 2005-05-24 | 2005-05-24 | Overlay welding material for hot forging die and hot forging die using the welding material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005150372A JP4645303B2 (en) | 2005-05-24 | 2005-05-24 | Overlay welding material for hot forging die and hot forging die using the welding material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006326609A JP2006326609A (en) | 2006-12-07 |
JP4645303B2 true JP4645303B2 (en) | 2011-03-09 |
Family
ID=37548877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005150372A Expired - Fee Related JP4645303B2 (en) | 2005-05-24 | 2005-05-24 | Overlay welding material for hot forging die and hot forging die using the welding material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4645303B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110714163A (en) * | 2019-11-05 | 2020-01-21 | 上海欣冈贸易有限公司 | High-hardness steel alloy welding material |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5606994B2 (en) * | 2010-09-30 | 2014-10-15 | 株式会社神戸製鋼所 | Machine parts welded with overlay welding material and overlay welding metal |
JP6146030B2 (en) * | 2013-02-04 | 2017-06-14 | 大同特殊鋼株式会社 | Mold repair welding material |
JP7069654B2 (en) * | 2017-11-14 | 2022-05-18 | 大同特殊鋼株式会社 | Mold repair welding material |
CN113210930B (en) * | 2021-05-21 | 2022-07-26 | 泰安市瑞朗科技有限公司 | Flux-cored wire for hot forging die repair and using method thereof |
CN113684426B (en) * | 2021-08-31 | 2022-02-25 | 北京煜鼎增材制造研究院有限公司 | High-tungsten steel and preparation method thereof |
JP7337904B2 (en) * | 2021-12-23 | 2023-09-04 | 東海溶業株式会社 | TIG welding wire for overlay |
CN115415698B (en) * | 2022-06-02 | 2023-10-20 | 湖北三环智能科技有限公司 | Flux-cored wire manufactured through repair and remanufacturing of hot forging die and performance real-time regulation and control method |
CN117506230B (en) * | 2024-01-05 | 2024-03-15 | 成都工业学院 | Welding rod core wire and wear-resistant surfacing welding electrode |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57134554A (en) * | 1981-02-16 | 1982-08-19 | Daido Steel Co Ltd | Manufacture of die |
JPS6117363A (en) * | 1984-07-04 | 1986-01-25 | Kobe Steel Ltd | Method of build up welding of pressure container |
JPH03294084A (en) * | 1990-04-12 | 1991-12-25 | Daido Steel Co Ltd | Welding wire for high-hardness build-up welding |
JPH04182012A (en) * | 1990-11-15 | 1992-06-29 | Hitachi Metals Ltd | Wear resistant composite roll with excellent crack resistance and its manufacture |
-
2005
- 2005-05-24 JP JP2005150372A patent/JP4645303B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57134554A (en) * | 1981-02-16 | 1982-08-19 | Daido Steel Co Ltd | Manufacture of die |
JPS6117363A (en) * | 1984-07-04 | 1986-01-25 | Kobe Steel Ltd | Method of build up welding of pressure container |
JPH03294084A (en) * | 1990-04-12 | 1991-12-25 | Daido Steel Co Ltd | Welding wire for high-hardness build-up welding |
JPH04182012A (en) * | 1990-11-15 | 1992-06-29 | Hitachi Metals Ltd | Wear resistant composite roll with excellent crack resistance and its manufacture |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110714163A (en) * | 2019-11-05 | 2020-01-21 | 上海欣冈贸易有限公司 | High-hardness steel alloy welding material |
CN110714163B (en) * | 2019-11-05 | 2022-01-28 | 僖昴晰(上海)新材料有限公司 | High-hardness steel alloy welding material |
Also Published As
Publication number | Publication date |
---|---|
JP2006326609A (en) | 2006-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4645303B2 (en) | Overlay welding material for hot forging die and hot forging die using the welding material | |
EP2196551B1 (en) | Use of low-thermal-expansion nickel-based superalloy for a boiler component, according boiler component and method for its production | |
JP6338028B2 (en) | Welding material for ferritic heat resistant steel, welded joint for ferritic heat resistant steel, and method for producing welded joint for ferritic heat resistant steel | |
US8801876B2 (en) | Ni-based alloy product and producing method thereof | |
JP5515442B2 (en) | Hot tool steel and steel products using the same | |
JP6601051B2 (en) | Steel powder | |
EP2677053B1 (en) | Ni-based alloy for welding material and welding wire, rod and powder | |
KR20100135205A (en) | Hot work tool steel and steel product using the same | |
JP5601607B1 (en) | Metal powder, hot working tool, and method of manufacturing hot working tool | |
EP2853339B1 (en) | Welding material for welding of superalloys | |
JP2013521411A (en) | Tool steel for extrusion | |
JP5437669B2 (en) | Hot and hot forging die | |
KR20190054979A (en) | Repair-welding material for die | |
EP3569719B1 (en) | Steel for die-casting die, die-casting die and use of the die-casting die | |
JP2002121643A (en) | Steel for diecasting die, method for producing diecasting die composed by using the same and diecasting die | |
JP6520518B2 (en) | Mold repair welding material | |
JPH0547611B2 (en) | ||
JP6354281B2 (en) | Ferritic heat resistant steel pipe | |
JPH0578786A (en) | Austenitic high-temperature processed steel of precipitation hardenability and treatment thereof | |
KR20150037480A (en) | Welding material for welding of superalloys | |
JP2002060907A (en) | Steel and cast steel for hot press anvil | |
JP2007000892A (en) | Build-up welding material for hot-forging die and hot-forging die using the welding material | |
JP7508873B2 (en) | Hot working tools | |
JP7052342B2 (en) | Mold repair welding material | |
JP2006341273A (en) | Build-up welding material for hot forging die, and die for hot forging using the welding material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101013 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101109 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101122 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131217 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4645303 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |