WO2019208383A1 - 電気車用電源システム - Google Patents

電気車用電源システム Download PDF

Info

Publication number
WO2019208383A1
WO2019208383A1 PCT/JP2019/016617 JP2019016617W WO2019208383A1 WO 2019208383 A1 WO2019208383 A1 WO 2019208383A1 JP 2019016617 W JP2019016617 W JP 2019016617W WO 2019208383 A1 WO2019208383 A1 WO 2019208383A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
terminal
electric vehicle
storage device
Prior art date
Application number
PCT/JP2019/016617
Other languages
English (en)
French (fr)
Inventor
常仁 藤田
佑樹 白沢
Original Assignee
株式会社東芝
東芝インフラシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝インフラシステムズ株式会社 filed Critical 株式会社東芝
Priority to US17/049,506 priority Critical patent/US11312241B2/en
Priority to CN201980027238.4A priority patent/CN112004708B/zh
Priority to EP19792224.8A priority patent/EP3785976A4/en
Publication of WO2019208383A1 publication Critical patent/WO2019208383A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/32Control or regulation of multiple-unit electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/53Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells in combination with an external power supply, e.g. from overhead contact lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/32Constructional details of charging stations by charging in short intervals along the itinerary, e.g. during short stops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/16Dynamic electric regenerative braking for vehicles comprising converters between the power source and the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C3/00Electric locomotives or railcars
    • B61C3/02Electric locomotives or railcars with electric accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/16Regulation of the charging current or voltage by variation of field
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • Embodiments described herein relate generally to an electric vehicle power supply system. This application claims priority based on Japanese Patent Application No. 2018-82624 filed on Apr. 23, 2018, the contents of which are incorporated herein by reference.
  • the electric vehicle power supply system operates with the voltage of the overhead wire (hereinafter referred to as overhead wire voltage) as a power source in normal times, and supplies power to the electric vehicle motors that form the train.
  • overhead wire voltage the voltage of the overhead wire
  • a power storage device may be provided in the train and the power storage device may be operated as a power source in a non-normal time when the overhead line voltage is lost.
  • a power storage device and a dedicated charging device for the power storage device are mounted in the knitting, it may be difficult to install these devices due to a limitation of installation space.
  • the problem to be solved by the present invention is to provide a power supply system for an electric vehicle that is simply formed.
  • the electric vehicle power supply system includes a first terminal, a second terminal, and a conversion unit.
  • the first terminal is electrically connected to any one of the power storage device and the overhead wire provided in the formation of the electric vehicle.
  • the second terminal has a plurality of electric motors in the train, a self-power supply device, and an external power supply device different from the self-power supply device electrically connected to the lead-through line, and is electrically connected to the lead-through line.
  • the conversion unit converts power between the first terminal and the second terminal under any one of the first operation state and the second operation state.
  • the conversion unit takes in the first power supplied from the plurality of electric motors and the external power supply device from the second terminal, and generates a DC voltage at the first terminal by regenerative operation of the self-conversion unit. And charging the power storage device.
  • the conversion unit takes in the second power supplied from either the power storage device or the overhead wire from the first terminal, and partially converts the second power by the power running operation of the own conversion unit.
  • the third power is output from the second terminal by converting into 3 power.
  • the lineblock diagram of the electric vehicle power supply system of a 1st embodiment The block diagram of the power supply system for electric vehicles of 2nd Embodiment.
  • the block diagram of the power supply system for electric vehicles of 3rd Embodiment The block diagram of the electric vehicle power supply system of 4th Embodiment.
  • FIG. 1 is a configuration diagram of an electric vehicle power supply system including the electric vehicle power supply system according to the first embodiment.
  • the electric vehicle power supply system 1 is applied to a knitting including a plurality of electric vehicles, and supplies electric power from the power source to the electric vehicle motor.
  • the electric vehicle ETA and the electric vehicle ETB are examples of electric vehicles. The number of electric vehicles can be changed as appropriate without being limited to the two shown in the figure.
  • the overhead wire L relating to the electric vehicle ETA and the electric vehicle ETB is supplied with DC power.
  • the electric vehicle power supply system 1 includes a power conversion device 10, a power conversion device 20, lead-through lines 31 and 32, and a power supply / reception contactor device 30.
  • the power conversion device 10 and the power conversion device 20 are examples of an electric vehicle power supply device.
  • summary of the power converter device 10 and the power converter device 20 is demonstrated.
  • the power conversion device 10 is provided in the electric vehicle ETA, and supplies power to the plurality of electric motors 41 provided in the electric vehicle ETA and the power conversion device 20.
  • the number of the plurality of electric motors 41 can be changed as appropriate without being limited to the number shown in the figure.
  • the power conversion device 10 includes an electric vehicle power supply device 11, a power storage device 14, and a switch 15.
  • the electric vehicle power supply device 11 functions as a power conversion device for supplying power to the plurality of electric motors 41 and the like, and further functions as a power conversion device for charging the power storage device 14.
  • the electric vehicle power supply device 11 is an inverter that converts DC power into AC power, and has a regeneration function. A detailed description thereof will be described later.
  • the power storage device 14 is a secondary battery having a capacity capable of holding an amount of power sufficient to drive a plurality of electric vehicles.
  • the positive electrode side of the power storage device 14 shown in this figure is connected to the switch 15, and the negative electrode side is grounded to the vehicle body of the electric vehicle ETA.
  • the power storage device 14 may include a plurality of cell batteries (not shown) and a battery monitoring unit (not shown) that detects the state of the plurality of cell batteries.
  • the power storage device 14 may be disposed outside a housing (not shown) of the power conversion device 10. In that case, the power storage device 14 may be housed in a battery box (not shown).
  • the power storage device 14 may be provided in the electric vehicle ETA, and is not limited to being provided in another electric vehicle.
  • the switch 15 includes a first electrode connected to the current collector 19, a second electrode connected to the positive electrode of the power storage device 14, and a common electrode connected to the first terminal 111 of the electric vehicle power supply device 11. Is provided.
  • the switch 15 is connected to the first terminal 111 of the electric vehicle power supply device 11 by switching the electrical connection destination of the common electrode to either the first electrode or the second electrode under the control of the control unit 13. Is switched to either the current collector 19 or the power storage device 14.
  • the switch 15 may be incorporated in the electric vehicle power supply device 11. However, maintainability can be improved by separating the switch 15 and the electric vehicle power supply device 11 and providing the switch 15 in the DC link.
  • the power conversion device 20 is provided in the electric vehicle ETB and supplies power to the plurality of electric motors 42 provided in the electric vehicle ETB and the power conversion device 10.
  • the number of the plurality of electric motors 42 can be changed as appropriate without being limited to the number shown in the drawing.
  • the power conversion device 20 includes an electric vehicle power supply device 21.
  • the electric vehicle power supply device 11 includes a first terminal 111, a second terminal 112, a ground terminal 113, an inverter 12 (conversion unit), and a control unit 13.
  • the first terminal 111 is connected to, for example, the power storage device 14 and the overhead wire L provided in the knitting via the switch 15.
  • the second terminal 112 is electrically connected to the lead wire 31.
  • the ground terminal 113 is grounded via the vehicle body of the electric vehicle ETA.
  • each of the lead-through line 31 and the lead-through line 32 includes a three-wire type three-phase AC cable.
  • the inverter 12 is formed such that the first terminal 111 side can exchange DC power and the second terminal 112 side can exchange AC power.
  • the inverter 12 takes in the first power supplied from at least one of the plurality of electric motors and the electric vehicle power supply device 21 from the second terminal 112, and applies a DC voltage to the first terminal 111 by its regenerative operation. It is generated and the power storage device 14 is charged.
  • Such an operation state is referred to as a first operation state of the inverter 12.
  • the plurality of electric motors includes a plurality of electric motors 41 and a plurality of electric motors 42.
  • the inverter 12 takes in the second power supplied from either the power storage device 14 or the overhead line L from the first terminal 111 and converts a part of the second power into the third power by its power running operation.
  • the inverter 12 outputs the third power from the second terminal 112.
  • Such an operation state is referred to as a second operation state of the inverter 12.
  • the inverter 12 converts power between the first terminal 111 and the second terminal 112 under at least one of the first operation state and the second operation state.
  • the arrows in FIG. 1 show an example of the direction in which power is supplied in the second operating state.
  • the control unit 13 collects data regarding the state of each unit in the power conversion device 10 and controls each unit in the power conversion device 10 based on the data.
  • the control unit 13 electrically connects the first terminal 111 to the power storage device 14 and the switch 15 electrically connects the first terminal 111 to the overhead line L.
  • the control unit 13 collects data such as the operating state of the inverter 12, the output current, the input voltage, and the output voltage.
  • the control unit 13 collects data indicating whether the current collector 19 is in contact with the overhead line L or away from the overhead line L.
  • the control unit 13 collects data regarding the state of charge of the overhead line L with which the current collector 19 is in contact.
  • the control unit 13 collects data such as a charge amount of the power storage device 14, a terminal voltage, and a result of pass / fail determination.
  • the control unit 13 controls the operation state of the inverter 12.
  • the control unit 13 controls the current collector 19 to bring the current collector 19 into contact with the overhead line L.
  • the control unit 13 controls the switch 15 to switch the connection destination.
  • Control unit 13 controls power storage device 14 to permit its charge / discharge.
  • the electric vehicle power supply device 21 includes a first terminal 211, a second terminal 212, a ground terminal 213, an inverter 22 (converter), and a controller 23.
  • the first terminal 211 is connected to the overhead line L.
  • the second terminal 212 is electrically connected to the lead-through line 32.
  • the ground terminal 213 is grounded via the vehicle body.
  • a plurality of electric motors 42, an electric vehicle power supply device 21 (self power supply device), and a second terminal of the power supply / reception contactor device 30 are connected to the lead-through line 32.
  • the inverter 22 is formed in the same manner as the inverter 12, and the first terminal 211 side is formed so as to be able to exchange DC power, and the second terminal 212 side is formed so as to be able to exchange AC power.
  • the inverter 22 takes in the first power supplied from the plurality of electric motors from the second terminal 212, generates a DC voltage at the first terminal 211 by its regenerative operation, and sends the power to the overhead line L. Such an operation state is referred to as a first operation state of the inverter 22.
  • the plurality of electric motors includes a plurality of electric motors 41 and a plurality of electric motors 42.
  • Inverter 22 takes in the 2nd electric power supplied from overhead line L from the 1st terminal 211, and converts a part of the 2nd electric power into the 3rd electric power by own power running operation.
  • the inverter 22 outputs the third power from the second terminal 212.
  • Such an operation state is referred to as a second operation state of the inverter 12.
  • the inverter 22 converts electric power between the first terminal 211 and the second terminal 212 under at least one of the first operation state and the second operation state.
  • the control unit 23 collects data relating to the state of each unit in the power conversion device 20, and controls each unit in the power conversion device 20 based on the data.
  • control unit 23 collects data such as the operating state of the inverter 22, the output current, the input voltage, and the output voltage.
  • the control unit 23 collects data indicating whether the current collector 29 is in contact with the overhead line L or away from the overhead line L.
  • the control unit 23 collects data regarding the state of charge of the overhead line L with which the current collector 29 is in contact.
  • the control unit 23 controls the operation state of the inverter 12.
  • the control unit 23 controls the current collector 29 to bring the current collector 29 into contact with the overhead wire L.
  • the operation of the electric vehicle power supply system 1 will be described.
  • the electric vehicle power supply system 1 defines several operating states, which will be described in order.
  • the basic operation state is selected when receiving power from the overhead line L.
  • the control unit 13 performs the following control when setting the basic operation state.
  • the control unit 13 brings the current collector 19 into contact with the overhead line L.
  • the controller 13 switches the switch 15 so as to select the overhead line L side.
  • the switch 15 electrically connects the inverter 12 and the overhead line L. If the overhead line L is in a pressurized state, the voltage of the overhead line L is applied to the first terminal 111 of the inverter 12.
  • the control unit 13 operates the inverter 12 in a power running operation. Thereby, the inverter 12 converts the electric power received from the overhead line L, and supplies a part of the electric power to the electric motor 41 or the like.
  • the control unit 23 performs the following control together when the basic operation state is set.
  • the control unit 23 brings the current collector 19 into contact with the overhead line L, whereby the inverter 22 and the overhead line L are electrically connected. If the overhead line L is in a pressurized state, the voltage of the overhead line L is applied to the first terminal 211 of the inverter 22.
  • the control unit 23 operates the inverter 22 in a power running operation in the same manner as the control unit 13. Thereby, the inverter 22 converts the electric power received from the overhead line L and supplies a part of the electric power to the electric motor 42 and the like.
  • the first operating state is selected when discharging from the power storage device 14.
  • the control unit 13 performs the following control when the first operation state is set.
  • Control unit 13 controls switch 15 to switch to select power storage device 14. With this control, the switch 15 electrically connects the inverter 12 and the power storage device 14. Control unit 13 permits electric storage device 14 to discharge. Thus, inverter 12 uses power storage device 14 as a power source, converts power from power storage device 14 and supplies the converted power to each unit. With this discharge, the amount of power stored in the power storage device 14 decreases.
  • the second operation state is selected when charging the power storage device 14.
  • the control unit 13 performs the following control when the second operation state is set.
  • Control unit 13 controls switch 15 to switch to select power storage device 14. With this control, the switch 15 electrically connects the inverter 12 and the power storage device 14. The control unit 13 further stops the conversion operation (power running operation) of the inverter 12 for converting AC power into DC power, thereby enabling regenerative operation.
  • the electric vehicle power supply system 1 can adjust the power supply range according to the conduction state of the power supply / reception contactor device 30. For example, when the power supply / reception contactor device 30 is cut off, the lead-through lines 31 and 32 are separated by the power supply / reception contactor device 30.
  • the power receiving / feeding contactor device 30 can control the voltages of the lead-through lines 31 and 32 independently by separating the lead-through lines 31 and 32.
  • the voltages of the lead-through lines 31 and 32 change together. For example, even if the supply of AC power from one of the inverters 12 and 22 is stopped, AC power supplementing the AC power can be supplied to both the lead-in lines 31 and 32 from the other.
  • the inverter 12 can convert part of the power from the inverter 22 and charge the power storage device 14.
  • the power conversion device 10 includes the first terminal 111, the second terminal 112, and the inverter 12.
  • the first terminal 111 is electrically connected to one of the power storage device 14 and the overhead wire L provided in the formation of the electric vehicle.
  • a plurality of electric motors 41 and the like in the knitting, the power conversion device 10 and a power conversion device 20 different from the power conversion device 10 are electrically connected to the lead-in lines 31 and 32, and the second terminal 112 is passed through It is electrically connected to the line 31.
  • the inverter 12 converts electric power between the first terminal and the second terminal under any one of the first operation state and the second operation state.
  • the inverter 12 takes in the first power supplied from at least one of the plurality of electric motors 41 and the power converter 20 from the second terminal under the first operation state, and the first terminal is generated by the regenerative operation of the inverter 12.
  • a DC voltage is generated at 111 to charge the power storage device 14.
  • the inverter 12 takes in the second power supplied from either the power storage device 14 or the overhead line L from the first terminal 111 under the second operation state, and partially converts the second power by the power running operation of the inverter 12.
  • the third power is converted from the third power and output from the second terminal 112. Thereby, the plurality of electric motors 41 and the like can be driven by the electric power charged in the power storage device 14.
  • the power conversion device 10 uses the power storage device 14 as a power source when the voltage of the overhead line L is lost in an emergency or the like, and the electric motor regardless of the presence or absence of the overhead line voltage. Power can be supplied to a load such as 41.
  • the power conversion device 10 can be operated by the power of the power storage device 14.
  • the power conversion device 10 can use the power generated by the regenerative operation of the inverter 12 for charging the power storage device 14 by switching the switch 15.
  • the electric vehicle power supply device 11 can also serve as the charging device without providing a dedicated charging device connected to the power storage device 14, and the electric vehicle power supply device 11 is simply formed. It becomes possible to do. Along with this, it becomes possible to improve maintainability and achieve an economic effect.
  • the electric vehicle power supply system 1 described above is in a situation where it is not possible to secure a sufficient equipment space in the electric vehicle ETA or under the floor, if the electric storage device 14 can be provided, The power storage device 14 can be charged / discharged without separately providing a dedicated charging device to be connected.
  • a power supply / reception contactor device 30 is provided between the power conversion device 10 and the power conversion device 20.
  • the switch 15 may switch between receiving power from the overhead line L and charging the power storage device 14 while the power supply / reception contactor device 30 is in a conductive state. Thus, if the switch 15 can be operated, the procedure for switching between receiving power from the overhead line L and charging the power storage device 14 can be simplified.
  • FIG. 2 is a configuration diagram of the electric vehicle power supply device according to the second embodiment.
  • the overhead line LA related to the electric vehicle ETA and the electric vehicle ETB is pressurized with an alternating voltage.
  • the electric vehicle power supply system 1A includes a power conversion device 10A, a power conversion device 20A, lead-through lines 31 and 32, and a power supply / reception contactor device 30 (power supply / reception contactor).
  • the power conversion device 10 ⁇ / b> A and the power conversion device 20 ⁇ / b> A correspond to the power conversion device 10 and the power conversion device 20 of the electric vehicle power supply system 1.
  • the power conversion device 10 ⁇ / b> A includes an electric vehicle power supply device 11 ⁇ / b> A, a power storage device 14, a switch 15, and a converter 17.
  • the power conversion device 20A includes an electric vehicle power supply device 21A and a converter 27.
  • the electric vehicle power supply system 1A further includes converters 17 and 27 as compared with the electric vehicle power supply system 1 of the first embodiment as described above, and instead of the electric vehicle power supply devices 11 and 12, an electric vehicle power supply is provided. The difference is that the devices 11A and 12A are provided.
  • the converter 17 of the power converter 10 ⁇ / b> A has a first terminal connected to the current collector 19 and a second terminal connected to the first terminal of the switch 15. That is, the current collector 19, the converter 17, and the switch 15 are electrically connected in series in the order described.
  • the converter 17 is a power converter that converts AC power on the feeder line side and DC power on the electric vehicle power supply device 11A side.
  • the electric vehicle power supply device 11A includes a first terminal 111, a second terminal 112, a ground terminal 113, an inverter 12 (conversion unit), and a control unit 13A.
  • the first terminal 111 is connected to, for example, the power storage device 14 and the converter 17 provided in the knitting via the switch 15.
  • the control unit 13A collects and controls information related to items similar to those of the control unit 13 of the first embodiment. Furthermore, the control unit 13A collects information related to the state of the converter 17 and controls the power conversion of the converter 17.
  • the converter 27 of the power conversion device 20A has a first terminal connected to the current collector 29 and a second terminal connected to the first terminal 211 of the electric vehicle power supply device 21A.
  • the electric vehicle power supply device 21A includes a first terminal 211, a second terminal 212, a ground terminal 213, an inverter 22 (conversion unit), and a control unit 23A.
  • the control unit 23A collects and controls information related to items similar to those of the control unit 23 of the first embodiment. Furthermore, the control unit 23 ⁇ / b> A collects information regarding the state of the converter 27 and controls the power conversion of the converter 27. Converter 27 is the same as converter 17.
  • Converters 17 and 27 convert the voltage of overhead line LA (hereinafter referred to as overhead line voltage) into a DC voltage.
  • the inverters 12 and 22 convert the DC voltage into an AC different from the AC of the overhead line voltage.
  • the operation of the electric vehicle power supply system 1A in the present embodiment other than the above is the operation of each part in each operation state of the basic operation state, the first operation state, and the second operation state described in the first embodiment. It is the same.
  • the switch 15 electrically connects the first terminal 111 to either the overhead line LA that is pressurized with alternating current or the power storage device 14.
  • the converters 17 and 27 convert the same into a direct current voltage, thereby providing the same effect as that of the first embodiment.
  • FIG. 3 is a configuration diagram of the electric vehicle power supply device according to the third embodiment.
  • the electric vehicle power supply system 1 ⁇ / b> B includes a power conversion device 10, a power conversion device 20, and a lead-through line 33.
  • the power supply contactor device 30 provided between the lead-through lines 31 and 32 is deleted from the electric vehicle power supply system 1 of the first embodiment. Instead, a lead-through line 33 is provided over all the vehicles in the train.
  • the power converters 10 and 20 in the electric vehicle power supply system 1B are connected in parallel to each other and can perform parallel synchronous operation.
  • the operation of the electric vehicle power supply system 1B will be described.
  • the description of the electric vehicle power supply system 1 ⁇ / b> B refer to the description of the first embodiment other than that related to the power supply / reception contactor device 30.
  • the power supply range is adjusted by the power supply / reception contactor device 30.
  • the power supply / reception contactor device 30 when the power supply / reception contactor device 30 is in the cut-off state, there is a range in which power from the power storage device 14 cannot be supplied until the power supply / reception contactor device 30 is turned on.
  • a load such as the electric motor 42 provided outside the power supply range may have a power failure state during which power is not supplied.
  • the power supply contactor device 30 is not provided, and the power supply range of the inverter 12 covers, for example, the entire formation of the electric vehicle provided with the lead-through line 33.
  • the power from the power storage device 14 is supplied to all the loads connected to the lead-through line 33 without operating the power supply / reception contactor device 30. Can be supplied.
  • the inverters 12 and 22 of the embodiment can be operated in parallel and synchronous.
  • the lead-through line 33 is pressurized. If at least one of the inverters 12 and 22 applies a voltage to the lead-through line, the lead-through line 33 is maintained in a pressurized state by the voltage. Even if the operation state of the inverter 12 is changed from the basic operation state to the first operation state or the second operation state, at least one inverter circuit other than the inverter 12 applies a voltage to the lead-through line. If pressure is applied, the lead-through line is maintained in a pressurized state.
  • the control part 13 can switch the operation state of the inverter 12, without stopping the electric power feeding with respect to a load, and it becomes possible to start charge or discharge of an electrical storage apparatus.
  • FIG. 4 is a configuration diagram of an electric vehicle power supply device according to the fourth embodiment.
  • the electric vehicle power system 1 ⁇ / b> C includes a power conversion device 10 ⁇ / b> C, a power conversion device 20, lead-through lines 31 and 32, and a power supply / reception contactor device 30.
  • the power conversion device 10C corresponds to the power conversion device 10.
  • the power conversion device 10C includes an electric vehicle power supply device 11, a power storage device 14, a switch 15, and a charging diode 18 (rectifier).
  • the charging diode 18 has an anode connected to the positive electrode of the power storage device 14 and a cathode connected to the first terminal 111 of the electric vehicle power supply device 11. As shown in FIG. 4, the switch 15 is connected to the first electrode connected to the current collector 19, the second electrode connected to the positive electrode of the power storage device 14, and the first terminal 111 of the electric vehicle power supply device 11. A common electrode to be connected.
  • the operation of the electric vehicle power supply system 1C will be described. As described above, there are two current paths from the positive electrode of the power storage device 14 to the inverter 12 in the power conversion device 10 ⁇ / b> C, the route passing through the switch 15 and the route passing through the charging diode 18.
  • the power conversion device 10C has the two paths described above, so that when the overhead line voltage is higher than the voltage of the power storage device 14, the inverter 12 operates with the overhead line L side as a power source. When the overhead wire voltage is lower than the voltage of the power storage device 14, the inverter 12 operates with the power storage device 14 side as a power source.
  • the charging diode 18 is connected in parallel to the second electrode of the switch 15 and the common electrode of the switch 15, and is discharged from the power storage device 14. Is arranged so that the direction of the current is the forward direction, a current in a direction in which the power storage device is discharged flows. Even if an instantaneous power failure occurs in the overhead line L or when passing through a dead section, the power supply system 1C for an electric vehicle requires a switching operation of the switch 15 even if the overhead line voltage may be momentarily lost. Thus, it is possible to secure electric power for causing the electric motor 41 and the like to function using the power storage device 14 as a power source. Since this switching is performed by switching of the charging diode 18, the power source is switched without causing a momentary power failure.
  • control device of each of the above embodiments may be realized at least partially by a software function unit, or all may be realized by a hardware function unit such as an LSI.
  • the electric vehicle power supply device includes the first terminal, the second terminal, and the conversion unit.
  • the first terminal is electrically connected to one of the power storage device and the overhead wire provided in the formation of the electric vehicle.
  • the second terminal is electrically connected to the lead-through line together with the plurality of electric motors, the self-power supply device, and the external power supply device different from the self-power supply device in the formation.
  • the conversion unit takes in the first power supplied from the plurality of electric motors and the external power supply device from the second terminal, and generates a DC voltage at the first terminal by regenerative operation of the self-conversion unit, thereby The first operating state to be charged, the second power supplied from either the power storage device or the overhead wire is taken in from the first terminal, and a part of the second power is supplied to the third power by the power running operation of the own conversion unit. And converting the power between the first terminal and the second terminal under any one of the second operation states in which the third power is output from the second terminal.
  • the electric vehicle power supply device formed simply can be provided. Accordingly, it is possible to drive a plurality of electric motors with electric power charged in the power storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

実施形態によれば電気車用電源システムは、第1端子と、第2端子と、変換部とを持つ。第1端子は、電気車の編成内に設けられている蓄電装置と架線の何れかに電気的に接続される。第2端子は、前記編成内の複数の電動機と自電源装置と外部電源装置とともに引き通し線に電気的に接続される。変換部は、第1動作状態において、前記複数の電動機と前記外部電源装置から供給される第1電力を前記第2端子から取り込み、自変換部の回生運転によって前記第1端子に直流電圧を発生させて前記蓄電装置を充電し、第2動作状態において、前記蓄電装置と前記架線の何れかから供給される第2電力を前記第1端子から取り込み、自変換部の力行運転によって前記第2電力の一部を第3電力に変換して、前記第3電力を前記第2端子から出力して、電力を変換する。

Description

電気車用電源システム
 本発明の実施形態は、電気車用電源システムに関する。
 本願は、2018年4月23日に出願された日本国特許出願第2018-82624号に基づき優先権を主張し、その内容をここに援用する。
 電気車用電源システムは、平常時において架線の電圧(以下、架線電圧という。)を電源として稼働して、編成を組む電気車の電動機に電力を供給する。また、架線の停電などの影響を軽減するために、蓄電装置をその編成内に設けておき、架線電圧が喪失した非平常時に、その蓄電装置を電源として稼働することがある。ただし、蓄電装置と、その蓄電装置の専用の充電装置とを、上記の編成内に搭載する場合、設置空間の制限などによりこれらの装置を設置することが困難な場合がある。
特開2014-93791号公報
 本発明が解決しようとする課題は、簡素に形成された電気車用電源システムを提供することである。
 実施形態によれば電気車用電源システムは、第1端子と、第2端子と、変換部とを持つ。第1端子は、電気車の編成内に設けられている蓄電装置と架線の何れかに電気的に接続される。第2端子は、前記編成内の複数の電動機と自電源装置と自電源装置とは異なる外部電源装置とが引き通し線に電気的に接続され、前記引き通し線に電気的に接続される。
変換部は、第1動作状態と、第2動作状態との何れかの動作状態の下で、前記第1端子と前記第2端子との間で電力を変換する。第1動作状態において、変換部は、前記複数の電動機と前記外部電源装置から供給される第1電力を前記第2端子から取り込み、自変換部の回生運転によって前記第1端子に直流電圧を発生させて前記蓄電装置を充電する。第2動作状態において、変換部は、前記蓄電装置と前記架線の何れかから供給される第2電力を前記第1端子から取り込み、自変換部の力行運転によって前記第2電力の一部を第3電力に変換して、前記第3電力を前記第2端子から出力する。
第1の実施形態の電気車用電源システムの構成図。 第2の実施形態の電気車用電源システムの構成図。 第3の実施形態の電気車用電源システムの構成図。 第4の実施形態の電気車用電源システムの構成図。
 以下、実施形態の電気車用電源システムを、図面を参照して説明する。なお以下の説明では、同一または類似の機能を有する構成に同一の符号を付す。そして、それらの構成の重複する説明は省略する場合がある。
(第1の実施形態)
 まず、電気車用電源システム1の構成について説明する。
 図1は、第1の実施形態の電気車用電源システムを含む電気車用電源システムの構成図である。
 電気車用電源システム1は、複数の電気車を含む編成に適用され、電源からの電力を電気車の電動機に供給する。電気車ETAと電気車ETBは、電気車の一例である。電気車の台数は、図に示した2台に制限されることなく、適宜変更できる。電気車ETAと電気車ETBに係る架線Lは、直流電力が供給される。
 電気車用電源システム1は、電力変換装置10と、電力変換装置20と、引き通し線31、32と、受給電接触器装置30とを備える。電力変換装置10と、電力変換装置20は、電気車用電源装置の一例である。電力変換装置10と、電力変換装置20の概要について説明する。
 電力変換装置10は、電気車ETAに設けられ、電気車ETAに設けられている複数の電動機41と、電力変換装置20とに電力を供給する。なお、複数の電動機41の台数は、図に示した数に制限されることなく、適宜変更できる。
 例えば、電力変換装置10は、電気車用電源装置11と、蓄電装置14と、切替器15とを備える。
 電気車用電源装置11は、複数の電動機41等に電力を供給するための電力変換装置として機能し、さらに、蓄電装置14を充電するための電力変換装置として機能する。電気車用電源装置11は、直流電力を交流電力に変換するインバータであり、回生機能を有する。これに関する詳細な説明は後述する。
 蓄電装置14は、複数の電気車を駆動させるだけの電力量を保持可能な容量の2次電池である。この図に示す蓄電装置14の正極側が切替器15に接続され、負極側が電気車ETAの車体に接地される。蓄電装置14は、図示しない複数のセル電池を有し、複数のセル電池の状態を検出する電池監視部(不図示)を有するものであってもよい。例えば、蓄電装置14は、電力変換装置10の筐体(不図示)の外部に配置してもよい。その場合には、蓄電装置14を電池箱(不図示)に収容してもよい。蓄電装置14は、電気車ETAに設けられていてもよく、他の電気車に設けることを制限することはない。
 切替器15は、集電装置19に接続される第1電極と、蓄電装置14の正極に接続される第2電極と、電気車用電源装置11の第1端子111に接続される共通電極とを備える。切替器15は、制御部13の制御により、共通電極の電気的な接続先を第1電極と第2電極の何れかに切り替えることで、電気車用電源装置11の第1端子111の接続先を、集電装置19と蓄電装置14の何れかに切り替える。なお、切替器15は電気車用電源装置11に内蔵されていてもよい。ただし、切替器15と電気車用電源装置11とを別体にして、切替器15を直流リンクに設けることにより保守性を高めることができる。
 電力変換装置20は、電気車ETBに設けられ、電気車ETBに設けられている複数の電動機42と、電力変換装置10とに電力を供給する。なお、複数の電動機42の台数は、図に示した数に制限されることなく、適宜変更できる。例えば、電力変換装置20は、電気車用電源装置21を備える。
 次に、電力変換装置10の各部の詳細について説明する。
 電気車用電源装置11は、第1端子111と、第2端子112と、接地端子113と、インバータ12(変換部)と、制御部13とを備える。
 第1端子111は、例えば、上記の編成内に設けられている蓄電装置14と架線Lの何れかに、切替器15を介して接続される。第2端子112は、引き通し線31に電気的に接続される。接地端子113は、電気車ETAの車体を介して接地される。
 なお、引き通し線31には、複数の電動機41と電気車用電源装置11(自電源装置)と受給電接触器装置30の第1端子とが接続される。受給電接触器装置30の第2端子には、引き通し線32が接続されている。引き通し線32には、電気車用電源装置21(外部電源装置)と、複数の電動機42とが電気的に接続される。例えば、引き通し線31と引き通し線32は、3線式三相交流用のケーブルをそれぞれ有する。受給電接触器装置30が導通状態にある場合に、引き通し線31と引き通し線32が電気的に接続される。
 インバータ12は、第1端子111側が直流電力を授受可能に形成され、第2端子112側が交流電力を授受可能に形成されている。インバータ12は、上記の複数の電動機と、電気車用電源装置21との少なくとも何れかから供給される第1電力を第2端子112から取り込み、自らの回生運転によって第1端子111に直流電圧を発生させて蓄電装置14を充電する。このような動作状態をインバータ12の第1動作状態という。上記の複数の電動機には、複数の電動機41と複数の電動機42が含まれる。インバータ12は、蓄電装置14と架線Lの何れかから供給される第2電力を第1端子111から取り込み、自らの力行運転によって、その第2電力の一部を第3電力に変換する。インバータ12は、その第3電力を第2端子112から出力する。このような動作状態をインバータ12の第2動作状態という。インバータ12は、少なくとも上記の第1動作状態と第2動作状態との何れかの動作状態の下で、第1端子111と第2端子112との間で電力を変換する。図1の中の矢印は、第2動作状態において、電力が供給される方向の一例を示す。
 制御部13は、電力変換装置10内の各部の状態に関するデータを収集し、そのデータなどに基づいて電力変換装置10内の各部を制御する。
 例えば、制御部13は、切替器15の状態について、切替器15が第1端子111を蓄電装置14に電気的に接続する状態と、切替器15が第1端子111を架線Lに電気的に接続する状態の何れの状態にあるかのデータを収集する。制御部13は、インバータ12の稼働状態、出力電流、入力電圧、出力電圧などのデータを収集する。制御部13は、集電装置19が、架線Lに接触している状態と、架線Lから離れている状態の何れの状態にあるかのデータを収集する。制御部13は、集電装置19が接触している架線Lの充電状態に関するデータを収集する。制御部13は、蓄電装置14の充電量、端子電圧、良否判定の結果などのデータを収集する。制御部13は、インバータ12の動作状態を制御する。制御部13は、集電装置19を制御して、その集電装置19を架線Lに接触させる。制御部13は、切替器15を制御して、その接続先を切り替える。制御部13は、蓄電装置14を制御して、その充放電を許可する。
 次に、電力変換装置20の各部の詳細について説明する。
 電気車用電源装置21は、第1端子211と、第2端子212と、接地端子213と、インバータ22(変換部)と、制御部23とを備える。
 第1端子211は、架線Lに接続される。第2端子212は、引き通し線32に電気的に接続される。接地端子213は、車体を介して接地される。なお、引き通し線32には、複数の電動機42と電気車用電源装置21(自電源装置)と受給電接触器装置30の第2端子とが接続される。
 インバータ22は、インバータ12と同様に形成され、第1端子211側が直流電力を授受可能に形成され、第2端子212側が交流電力を授受可能に形成されている。インバータ22は、上記の複数の電動機から供給される第1電力を第2端子212から取り込み、自らの回生運転によって第1端子211に直流電圧を発生させて架線Lに電力を送る。
このような動作状態をインバータ22の第1動作状態という。上記の複数の電動機には、複数の電動機41と複数の電動機42が含まれる。インバータ22は、架線Lから供給される第2電力を第1端子211から取り込み、自らの力行運転によって、その第2電力の一部を第3電力に変換する。インバータ22は、その第3電力を第2端子212から出力する。このような動作状態をインバータ12の第2動作状態という。インバータ22は、少なくとも上記の第1動作状態と第2動作状態との何れかの動作状態の下で、第1端子211と第2端子212との間で電力を変換する。
 制御部23は、電力変換装置20内の各部の状態に関するデータを収集し、そのデータなどに基づいて電力変換装置20内の各部を制御する。
 例えば、制御部23は、インバータ22の稼働状態、出力電流、入力電圧、出力電圧などのデータを収集する。制御部23は、集電装置29が、架線Lに接触している状態と、架線Lから離れている状態の何れの状態にあるかのデータを収集する。制御部23は、集電装置29が接触している架線Lの充電状態に関するデータを収集する。
 制御部23は、インバータ12の動作状態を制御する。制御部23は、集電装置29を制御して、その集電装置29を架線Lに接触させる。
 電気車用電源システム1の作用について説明する。
 電気車用電源システム1には、いくつかの動作状態が規定されており、それらについて順に説明する。
 最初に基本動作状態について説明する。基本動作状態は、架線Lから受電する際に選択される。
 例えば、制御部13は、基本動作状態にする場合、下記の制御を実施する。
 制御部13は、集電装置19を架線Lに接触させる。制御部13は、架線L側を選択するように切替器15を切り替える。この制御により切替器15は、インバータ12と架線Lとが電気的に接続される。架線Lが加圧状態にあれば、インバータ12の第1端子111に架線Lの電圧が掛る。例えば、その電圧が架線Lからの電力を変換可能な電圧である場合、制御部13は、インバータ12を、力行運転で稼働させる。これにより、インバータ12は、架線Lから受ける電力を変換して、その電力の一部を電動機41などに供給する。
 制御部23は、基本動作状態にする場合、下記の制御を合わせて実施する。制御部23は、集電装置19を架線Lに接触させることにより、インバータ22と架線Lとが電気的に接続される。架線Lが加圧状態にあれば、インバータ22の第1端子211に架線Lの電圧が掛る。制御部23は、制御部13と同様にインバータ22を、力行運転で稼働させる。これにより、インバータ22は、架線Lから受ける電力を変換して、その電力の一部を電動機42などに供給する。
 次に、第1の動作状態について説明する。第1の動作状態は、蓄電装置14から放電する際に選択される。制御部13は、第1の動作状態にする場合、下記の制御を実施する。
 制御部13は、切替器15を制御して、蓄電装置14を選択するように切り替える。この制御により切替器15は、インバータ12と蓄電装置14とを電気的に接続する。制御部13は、蓄電装置14に対し放電を許可する。これにより、インバータ12は、蓄電装置14を電源として使用して、蓄電装置14からの電力を変換して各部に供給する。この放電に伴い蓄電装置14の蓄電量が減少する。
 次に、第2の動作状態について説明する。第2の動作状態は、蓄電装置14を充電する際に選択される。制御部13は、第2の動作状態にする場合、下記の制御を実施する。
 制御部13は、切替器15を制御して、蓄電装置14を選択するように切り替える。この制御により切替器15は、インバータ12と蓄電装置14とを電気的に接続する。制御部13は、さらに交流電力を直流電力に変換するためのインバータ12の変換動作(力行運転)を停止させて、回生運転を可能にする。
 なお、電気車用電源システム1は、受給電接触器装置30の導通状態により電力の供給範囲を調整できる。例えば、受給電接触器装置30を遮断状態にすると、引き通し線31と32は、受給電接触器装置30によって分離される。受給電接触器装置30は、引き通し線31と32を分離することで、引き通し線31と32の電圧を独立に制御することができる。
 受給電接触器装置30は、引き通し線31と32を導通させると、引き通し線31と32の電圧がともに変化する。例えば、インバータ12、22の一方の交流電力の供給が停止しても、他方からそれを補う交流電力を引き通し線31と32の双方に供給することができる。
 さらに、インバータ12の交流電力の供給を停止して回生運転させることにより、インバータ12は、インバータ22からの電力の一部を変換して、蓄電装置14を充電することができる。
 以上の実施形態によれば、電力変換装置10は、第1端子111と、第2端子112と、インバータ12とを備える。第1端子111は、電気車の編成内に設けられている蓄電装置14と架線Lの何れかに電気的に接続される。その編成内の複数の電動機41等と電力変換装置10と電力変換装置10とは異なる電力変換装置20とが引き通し線31、32に電気的に接続され、第2端子112は、その引き通し線31に電気的に接続される。
インバータ12は、第1動作状態と第2動作状態との何れかの動作状態の下で、前記第1端子と前記第2端子との間で電力を変換する。
 インバータ12は、第1動作状態の下で、複数の電動機41等と電力変換装置20の少なくとも何れかから供給される第1電力を前記第2端子から取り込み、インバータ12の回生運転によって第1端子111に直流電圧を発生させて蓄電装置14を充電する。インバータ12は、第2動作状態の下で、蓄電装置14と架線Lの何れかから供給される第2電力を第1端子111から取り込み、インバータ12の力行運転によって第2電力の一部を第3電力に変換して、第3電力を第2端子112から出力する。これにより、蓄電装置14に充電された電力で複数の電動機41等を駆動させることができる。
 また、上記の実施形態によれば、電力変換装置10は、非常時などの架線Lの電圧が喪失した場合に、蓄電装置14を電源として使用して、架線の電圧の有無に依らずに電動機41等の負荷に電力を供給することができる。蓄電装置14の電力によって電力変換装置10を稼働させることができる。
 また、電力変換装置10は、切替器15を切り替えることにより、インバータ12の回生運転によって発生する電力を、蓄電装置14の充電に利用することが可能になる。このように、蓄電装置14に接続される専用の充電装置を別途設けることなく、電気車用電源装置11がその充電装置を兼ねることができ、簡素に形成された電気車用電源装置11を提供することが可能となる。これに伴い、上記により保守性を高め、経済的な効果を奏することも可能になる。
 また、上記の電気車用電源システム1は、電気車ETAの車内又は床下に十分な艤装スペースを確保できない状況にあったとしても、蓄電装置14を設けることが可能であれば、蓄電装置14に接続される専用の充電装置を別途設けることなく蓄電装置14の充放電を可能にする。
 なお、上記の電気車用電源システム1は、電力変換装置10と電力変換装置20との間に受給電接触器装置30が設けられている。切替器15は、受給電接触器装置30が導通状態のまま、架線Lからの受電と蓄電装置14の充電とを切り替えてもよい。このように、切替器15を操作することができれば、架線Lからの受電と蓄電装置14の充電とを切り替える手順を簡素化できる。
(第2の実施形態)
 第2の実施形態について図を参照し、詳細に説明する。第2の実施形態では、交流き電方式への適用例について説明する。以下、第1の実施形態との相違点を中心に説明する。
 まず、電気車用電源システム1Aの構成について説明する。図2は、第2の実施形態の電気車用電源装置の構成図である。電気車ETAと電気車ETBに係る架線LAは、交流電圧で加圧される。
 電気車用電源システム1Aは、電力変換装置10Aと、電力変換装置20Aと、引き通し線31、32と、受給電接触器装置30(受給電接触器)とを備える。
電力変換装置10Aと、電力変換装置20Aは、電気車用電源システム1の電力変換装置10と、電力変換装置20に対応する。
 電力変換装置10Aは、電気車用電源装置11Aと、蓄電装置14と、切替器15と、コンバータ17を備える。
 電力変換装置20Aは、電気車用電源装置21Aと、コンバータ27とを備える。
 電気車用電源システム1Aは、上記の通り第1の実施形態の電気車用電源システム1に対して、コンバータ17、27をさらに備え、電気車用電源装置11、12に代えて電気車用電源装置11A、12Aを備える点が異なっている。
 電力変換装置10Aのコンバータ17は、第1端子が集電装置19に接続され、第2端子が切替器15の第1端子に接続されている。つまり集電装置19と、コンバータ17と、切替器15は、記載の順に電気的に直列に接続される。コンバータ17は、き電線側の交流電力と電気車用電源装置11A側の直流電力とを変換する電力変換器である。
 電気車用電源装置11Aは、第1端子111と、第2端子112と、接地端子113と、インバータ12(変換部)と、制御部13Aとを備える。第1端子111は、例えば、切替器15を介して、上記の編成内に設けられている蓄電装置14とコンバータ17の何れかに接続される。制御部13Aは、第1の実施形態の制御部13と同様の項目に関する情報の収集と制御を実施する。さらに、制御部13Aは、コンバータ17の状態に関する情報を収集し、コンバータ17の電力変換を制御する。
 電力変換装置20Aのコンバータ27は、第1端子が集電装置29に接続され、第2端子が電気車用電源装置21Aの第1端子211に接続されている。
 電気車用電源装置21Aは、第1端子211と、第2端子212と、接地端子213と、インバータ22(変換部)と、制御部23Aとを備える。制御部23Aは、第1の実施形態の制御部23と同様の項目に関する情報の収集と制御を実施する。さらに、制御部23Aは、コンバータ27の状態に関する情報を収集し、コンバータ27の電力変換を制御する。なお、コンバータ27は、コンバータ17と同様のものである。
 電気車用電源システム1Aの作用について説明する。
 コンバータ17、27は、架線LAの電圧(以下、架線電圧という。)を直流電圧に変換する。インバータ12、22は、その直流電圧を、上記の架線電圧の交流とは異なる交流に変換する。上記以外の本実施形態における電気車用電源システム1Aの作用は、前述の第1の実施形態に示した基本動作状態、第1の動作状態、第2の動作状態の各動作状態における各部の作用と同様である。
 上記の実施形態によれば、切替器15は、第1端子111を、交流で加圧される架線LAと蓄電装置14の何れかに電気的に接続する。例えば、架線LAが交流で加圧されるとしても、コンバータ17、27がそれを直流電圧に変換することにより第1の実施形態と同様の効果を奏する。
(第3の実施形態)
 第3の実施形態について図を参照し、詳細に説明する。第3の実施形態では、編成内の引き通し線が1系統に集約され、編成内の各インバータ回路が並列同期運転を行う事例について説明する。以下、第1の実施形態との相違点を中心に説明する。
 まず、電気車用電源システム1Bの構成について説明する。図3は、第3の実施形態の電気車用電源装置の構成図である。
 電気車用電源システム1Bは、電力変換装置10と、電力変換装置20と、引き通し線33を備える。上記の通り、電気車用電源システム1Bは、第1の実施形態の電気車用電源システム1から、引き通し線31、32の間に設けられていた受給電接触器装置30が削除されており、それに代わる引き通し線33が、編成内の全車両に渡って設けられている。なお、電気車用電源システム1Bにおける、電力変換装置10、20は、互いに並列に接続されといて、並列同期運転が可能なものである。
 電気車用電源システム1Bの作用について説明する。
 電気車用電源システム1Bについての説明は、受給電接触器装置30に関すること以外の第1の実施形態の説明を参照する。
 ここで第1の実施形態の事例と対比する。前述の第1の実施形態では、受給電接触器装置30によって給電範囲を調整する。例えば、受給電接触器装置30を遮断状態にしている場合、受給電接触器装置30を導通状態にするまで、蓄電装置14からの電力を供給できない範囲が生じる。給電範囲外に設けられた電動機42などの負荷は、給電されない停電状態の期間が生じうる。
 これに対し、上記の実施形態によれば、受給電接触器装置30がなく、インバータ12の給電範囲は、例えば、引き通し線33が設けられている電気車の編成全体に及ぶ。これにより、蓄電装置14に充電された電力を利用する際などに、受給電接触器装置30を操作することなく、引き通し線33に接続されている全ての負荷に蓄電装置14からの電力を供給することができる。
 さらに、実施形態のインバータ12、22は、並列同期運転が可能である。各インバータが互いに並列同期運転すると、引き通し線33が加圧される。
 なお、インバータ12、22のうちの少なくとも1台のインバータが引き通し線に電圧を印加していれば、その電圧により引き通し線33が加圧された状態に維持される。仮に、インバータ12の動作状態を、基本動作状態から、第1の動作状態又は第2の動作状態に遷移させたとしても、インバータ12以外の少なくとも1台のインバータ回路が引き通し線に電圧を加圧していれば、引き通し線が加圧された状態に維持される。つまり、インバータ22がインバータ12の状態変化に応じることなく加圧状態を継続することにより、引き通し線が継続的に加圧される。これにより、制御部13は、負荷に対する給電を停止することなく、インバータ12の動作状態を切り替えることができ、蓄電装置の充電又は放電を始めることが可能となる。
(第4の実施形態)
 第4の実施形態について図を参照し、詳細に説明する。第4の実施形態では、動作状態の切り替え時に停電が生じないようにする事例について説明する。以下、第1の実施形態との相違点を中心に説明する。
 まず、電気車用電源システム1Cの構成について説明する。図4は、第4の実施形態の電気車用電源装置の構成図である。
 電気車用電源システム1Cは、電力変換装置10Cと、電力変換装置20と、引き通し線31、32と、受給電接触器装置30とを備える。
 電力変換装置10Cは、電力変換装置10に対応する。例えば、電力変換装置10Cは、電気車用電源装置11と、蓄電装置14と、切替器15と、充電ダイオード18(整流器)とを備える。
 充電ダイオード18は、アノードが蓄電装置14の正極に、カソードが電気車用電源装置11の第1端子111に接続されている。図4に示すように切替器15は、集電装置19に接続される第1電極と、蓄電装置14の正極に接続される第2電極と、電気車用電源装置11の第1端子111に接続される共通電極とを備える。
 電気車用電源システム1Cの作用について説明する。
 上記の通り、電力変換装置10Cにおける蓄電装置14の正極からインバータ12に向かう電流の経路は、切替器15を通る経路と、充電ダイオード18を通る経路の2つになる。電力変換装置10Cは、上記の2つの経路を有することで、蓄電装置14の電圧よりも架線電圧の方が高い場合には、インバータ12は、架線L側を電源にして稼働する。蓄電装置14の電圧よりも架線電圧の方が低い場合には、インバータ12は蓄電装置14側を電源にして稼働する。
 上記の実施形態によれば、電気車用電源システム1Cは、充電ダイオード18は、切替器15の第2電極と、切替器15の共通電極に並列に接続され、蓄電装置14から放電される際の電流の向きが順方向になるように配置されていることにより、蓄電装置を放電させる方向の電流を流す。仮に、架線Lにおける瞬間停電の発生の際又はデッドセクションを通過する際に、架線電圧を瞬間的に喪失することがあっても、電気車用電源システム1Cは、切替器15の切り替え操作を必要とすることなく、蓄電装置14を電源として、電動機41などを機能させるための電力を確保できる。この切り替えは、充電ダイオード18のスイッチングにより行われるため、瞬停が発生することなく、電源が切り替わる。
 上記の各実施形態の制御装置は、その少なくとも一部をソフトウェア機能部で実現してもよく、全てをLSI等のハードウェア機能部で実現してもよい。
 少なくとも上記の何れかの実施形態によれば、電気車用電源装置は、第1端子と、第2端子と、変換部とを持つ。第1端子は、電気車の編成内に設けられている蓄電装置と架線の何れかに電気的に接続される。第2端子は、前記編成内の複数の電動機と自電源装置と自電源装置とは異なる外部電源装置とともに引き通し線に電気的に接続される。変換部は、前記複数の電動機と前記外部電源装置から供給される第1電力を前記第2端子から取り込み、自変換部の回生運転によって前記第1端子に直流電圧を発生させて前記蓄電装置を充電する第1動作状態と、前記蓄電装置と前記架線の何れかから供給される第2電力を前記第1端子から取り込み、自変換部の力行運転によって前記第2電力の一部を第3電力に変換して、前記第3電力を前記第2端子から出力する第2動作状態との何れかの動作状態の下で、前記第1端子と前記第2端子との間で電力を変換することにより、簡素に形成された電気車用電源装置を提供できる。これにより、蓄電装置に充電された電力で複数の電動機を駆動することが可能になる。
 上記で説明された全ての実施形態は、例として提示したものであり、発明の範囲を限定するものではない。そのため、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1、1A、1B、1C…電気車用電源システム、10、10A、10C、20、20A…
電力変換装置、11、11A、11C、21、21A…電気車用電源装置、12、22…
インバータ(変換部)、13、13A、13C、23…制御部、14…蓄電装置、15…
切替器、17、27…コンバータ、18…充電ダイオード、19、29…集電装置、30
…受給電接触器装置(受給電接触器)、111、211…第1端子、112、212…第
2端子、113、213…接地端子、ETA、ETB…電気車、L、LA…架線

Claims (6)

  1.  電気車の編成内に設けられている蓄電装置と架線の何れかに電気的に接続される第1端子と、
     前記編成内の複数の電動機と自電源装置と自電源装置とは異なる外部電源装置とともに引き通し線に電気的に接続される第2端子と、
     前記複数の電動機と前記外部電源装置の少なくとも何れかから供給される第1電力を前記第2端子から取り込み、自変換部の回生運転によって前記第1端子に直流電圧を発生させて前記蓄電装置を充電する第1動作状態と、前記蓄電装置と前記架線の何れかから供給される第2電力を前記第1端子から取り込み、自変換部の力行運転によって前記第2電力の一部を第3電力に変換して、前記第3電力を前記第2端子から出力する第2動作状態との何れかの動作状態の下で、前記第1端子と前記第2端子との間で電力を変換する変換部と
     を備える電気車用電源システム。
  2.  前記第1端子を、前記架線と前記蓄電装置の何れかに電気的に接続する切替器
     を備える請求項1記載の電気車用電源システム。
  3.  前記切替器は、
     前記第1端子を、交流電圧が印加される前記架線と前記蓄電装置の何れかに電気的に接続する、
     請求項2記載の電気車用電源システム。
  4.  前記自電源装置と前記外部電源装置との間に受給電接触器が設けられており、
     前記切替器は、
     前記受給電接触器が導通状態のまま、前記架線からの受電と前記蓄電装置の充電とを切り替え可能に形成されている、
     請求項2記載の電気車用電源システム。
  5.  前記切替器は、
     前記架線に接続される第1電極と、
     前記蓄電装置に接続される第2電極と、
     前記第1端子に接続される共通電極と、
     を備え、
     さらに、前記第2電極と前記共通電極との間に並列に接続され、前記蓄電装置を放電させる方向の電流を流す整流器
     を備える、
     請求項2に記載の電気車用電源システム。
  6.  前記変換部は、互いに並列に接続することで並列同期運転が可能な複数の変換部を含む、
     請求項2に記載の電気車用電源システム。
PCT/JP2019/016617 2018-04-23 2019-04-18 電気車用電源システム WO2019208383A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/049,506 US11312241B2 (en) 2018-04-23 2019-04-18 Power supply system for electric motor car
CN201980027238.4A CN112004708B (zh) 2018-04-23 2019-04-18 电动车辆用电源系统
EP19792224.8A EP3785976A4 (en) 2018-04-23 2019-04-18 POWER SYSTEM FOR AN ELECTRIC MOTOR CAR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018082624A JP7182898B2 (ja) 2018-04-23 2018-04-23 電気車用電源システム
JP2018-082624 2018-04-23

Publications (1)

Publication Number Publication Date
WO2019208383A1 true WO2019208383A1 (ja) 2019-10-31

Family

ID=68293563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016617 WO2019208383A1 (ja) 2018-04-23 2019-04-18 電気車用電源システム

Country Status (5)

Country Link
US (1) US11312241B2 (ja)
EP (1) EP3785976A4 (ja)
JP (1) JP7182898B2 (ja)
CN (1) CN112004708B (ja)
WO (1) WO2019208383A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210316678A1 (en) * 2020-04-13 2021-10-14 Transportation Ip Holdings, Llc Power supply system and method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08251835A (ja) * 1995-03-07 1996-09-27 Toshiba Corp 車両用受給電装置
JPH10174202A (ja) * 1996-12-11 1998-06-26 Mitsubishi Electric Corp バックアップ給電システム
JP2006174573A (ja) * 2004-12-15 2006-06-29 Toshiba Corp 鉄道車両の電源装置及び電源起動方法
JP2010252524A (ja) * 2009-04-15 2010-11-04 Toshiba Corp 電気車の蓄電制御装置及び蓄電制御方法
JP2012037359A (ja) * 2010-08-06 2012-02-23 Toyota Motor Corp 電源装置の制御装置
JP2013211964A (ja) * 2012-03-30 2013-10-10 Hitachi Ltd 鉄道車両の駆動装置
JP2014093791A (ja) 2012-10-31 2014-05-19 Toshiba Corp 電気車制御装置
WO2015001621A1 (ja) * 2013-07-02 2015-01-08 三菱電機株式会社 ハイブリッド駆動システム
JP2016226187A (ja) * 2015-06-01 2016-12-28 株式会社日立製作所 補助電源システムおよびその運転方法
JP2018082624A (ja) 2016-11-21 2018-05-31 株式会社白崎コーポレーション 害獣侵入防止ネット

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021266A1 (ja) * 2009-08-17 2011-02-24 三菱電機株式会社 電気車推進用電力変換装置
WO2012014324A1 (ja) * 2010-07-30 2012-02-02 三菱電機株式会社 電気車の推進制御装置、および鉄道車両システム
KR101506411B1 (ko) * 2010-12-01 2015-03-26 미쓰비시덴키 가부시키가이샤 전기차의 제어장치
WO2013018167A1 (ja) * 2011-07-29 2013-02-07 三菱電機株式会社 電気車の推進制御装置
CN104024030B (zh) * 2011-11-04 2017-04-12 丰田自动车株式会社 电源系统、具备该电源系统的车辆以及电源系统的控制方法
EP2810813B1 (en) * 2012-01-30 2017-07-12 Mitsubishi Electric Corporation Propulsion control device of electric vehicle and control method thereof
RU2014153927A (ru) * 2012-06-07 2016-07-27 Мицубиси Электрик Корпорейшн Устройство управления электрического транспортного средства
AU2012385647B2 (en) 2012-07-19 2016-10-13 Mitsubishi Electric Corporation Device and method for controlling propulsion of electric vehicle
KR101641560B1 (ko) * 2014-07-28 2016-07-21 경성대학교 산학협력단 전기자전거의 회생제동 제어장치
WO2017188057A1 (ja) 2016-04-27 2017-11-02 株式会社日立製作所 電気鉄道車両の駆動システム及び車両駆動方法
WO2020075504A1 (ja) * 2018-10-11 2020-04-16 株式会社日立製作所 鉄道車両駆動システム及び鉄道車両における蓄電装置の充電方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08251835A (ja) * 1995-03-07 1996-09-27 Toshiba Corp 車両用受給電装置
JPH10174202A (ja) * 1996-12-11 1998-06-26 Mitsubishi Electric Corp バックアップ給電システム
JP2006174573A (ja) * 2004-12-15 2006-06-29 Toshiba Corp 鉄道車両の電源装置及び電源起動方法
JP2010252524A (ja) * 2009-04-15 2010-11-04 Toshiba Corp 電気車の蓄電制御装置及び蓄電制御方法
JP2012037359A (ja) * 2010-08-06 2012-02-23 Toyota Motor Corp 電源装置の制御装置
JP2013211964A (ja) * 2012-03-30 2013-10-10 Hitachi Ltd 鉄道車両の駆動装置
JP2014093791A (ja) 2012-10-31 2014-05-19 Toshiba Corp 電気車制御装置
WO2015001621A1 (ja) * 2013-07-02 2015-01-08 三菱電機株式会社 ハイブリッド駆動システム
JP2016226187A (ja) * 2015-06-01 2016-12-28 株式会社日立製作所 補助電源システムおよびその運転方法
JP2018082624A (ja) 2016-11-21 2018-05-31 株式会社白崎コーポレーション 害獣侵入防止ネット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3785976A4

Also Published As

Publication number Publication date
CN112004708B (zh) 2024-05-17
US11312241B2 (en) 2022-04-26
EP3785976A1 (en) 2021-03-03
EP3785976A4 (en) 2022-01-19
JP7182898B2 (ja) 2022-12-05
US20210170879A1 (en) 2021-06-10
CN112004708A (zh) 2020-11-27
JP2019193405A (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
AU2013379082B9 (en) Railroad vehicle propulsion control device
US10046646B2 (en) Power conversion system for electric vehicles
RU2667019C1 (ru) Транспортное средство
US10525838B2 (en) Power conversion system
US9774215B2 (en) Power conversion apparatus
JP5664600B2 (ja) 電気自動車
US11097620B2 (en) Circuit system for railroad vehicle
WO2017104204A1 (ja) 車両
WO2019208383A1 (ja) 電気車用電源システム
JP2013255360A (ja) 充放電装置
JP2013150525A (ja) 電気自動車
JP2010221888A (ja) 交流き電装置
US11936289B2 (en) Vehicle electrical system
JP6786268B2 (ja) 蓄電システム
JP2020072591A (ja) 車両用電源システム
JP2021052453A (ja) 変換装置及び変換システム
US20220289031A1 (en) Circuit arrangement for discharging at least one energy accumulator charged to a high voltage
JP7301684B2 (ja) 電力変換システム
JP7301686B2 (ja) 電力変換システム
JP2021044980A (ja) 電力変換システム
JP2015095995A (ja) 車両用電力変換装置
JP2021044978A (ja) 電力変換システム
JP2019186985A (ja) 蓄電池システムおよび電気車制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019792224

Country of ref document: EP

Effective date: 20201123