WO2019208301A1 - モリブデンジチオカルバメート及びモリブデンジチオカルバメートの製造方法 - Google Patents

モリブデンジチオカルバメート及びモリブデンジチオカルバメートの製造方法 Download PDF

Info

Publication number
WO2019208301A1
WO2019208301A1 PCT/JP2019/016129 JP2019016129W WO2019208301A1 WO 2019208301 A1 WO2019208301 A1 WO 2019208301A1 JP 2019016129 W JP2019016129 W JP 2019016129W WO 2019208301 A1 WO2019208301 A1 WO 2019208301A1
Authority
WO
WIPO (PCT)
Prior art keywords
molybdenum dithiocarbamate
alkyl group
molybdenum
carbon atoms
oil
Prior art date
Application number
PCT/JP2019/016129
Other languages
English (en)
French (fr)
Inventor
太朗 角
真史 飯野
拓 三村
剛介 舘野
卓哉 徳永
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Publication of WO2019208301A1 publication Critical patent/WO2019208301A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic System

Definitions

  • the present invention relates to molybdenum dithiocarbamate and a method for producing molybdenum dithiocarbamate having excellent properties as a lubricity additive.
  • Organic molybdenum compounds have excellent lubricity and friction reducing action, and molybdenum dithiocarbamate is added to various lubricating oils because of its low corrosiveness to metals. Particularly in engine oils, organic molybdenum compounds are effective for so-called fuel saving, which reduces the frictional resistance of each part of the engine and consequently reduces the amount of fuel used. ing.
  • Patent Document 1 describes that sulfurized oxymolybdenum dialkyldithiocarbamate having an alkyl group having 1 to 24 carbon atoms and having a specific ratio of sulfur atom to oxygen atom is used as a lubricant.
  • Patent Document 2 discloses, as a molybdenum dithiocarbamate having a hydrocarbon group having 4 to 13 carbon atoms and a hydrocarbon group having 8 to 24 carbon atoms, specifically, 2-ethylhexyl group, tridecyl group, dodecyl group. Molybdenum dithiocarbamates having a group or octadecyl group are described.
  • the conventional molybdenum dithiocarbamate compound generally exhibits a high friction reducing effect in a specific lubricating region, for example, a region where the engine speed is as low as about 550 to 800 rpm.
  • a region where the engine speed is higher than 800 rpm for example, a region of about 1200 to 2000 rpm
  • the friction reducing effect may not be sufficient.
  • JP 52-019702 A Japanese Patent Laid-Open No. Sho 62-081396
  • an object of the present invention is to provide molybdenum dithiocarbamate that exhibits a friction reducing effect under a wide range of use conditions.
  • the present invention is a molybdenum dithiocarbamate represented by the following general formula (1).
  • R 1 represents a linear or branched alkyl group having 10 to 14 carbon atoms
  • R 2 to R 4 may be the same or different and each may be the same or different.
  • the average number of branches of R 1 to R 4 is 0.75 to 1.25
  • X 1 to X 4 each independently represents an oxygen atom or a sulfur atom.
  • the present invention it is possible to provide molybdenum dithiocarbamate and a method for producing molybdenum dithiocarbamate that exhibit an excellent friction reducing effect under a wide range of use conditions.
  • the molybdenum dithiocarbamate of the present invention exhibits an excellent friction reducing effect in a region where the frequency of use is very high.
  • the molybdenum dithiocarbamate of the present invention is a molybdenum dithiocarbamate represented by the following general formula (1).
  • R 1 represents a linear or branched alkyl group having 10 to 14 carbon atoms.
  • Examples of the linear or branched alkyl group having 10 to 14 carbon atoms include linear alkyl groups such as n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, and n-tetradecyl group, and secondary groups.
  • Examples thereof include branched alkyl groups such as decyl group, isodecyl group, secondary undecyl group, isoundecyl group, secondary dodecyl group, isododecyl group, secondary tridecyl group, isotridecyl group, secondary tetradecyl group and isotetradecyl group.
  • R 1 is such an alkyl group
  • the molybdenum dithiocarbamate of the present invention can exhibit an excellent friction reducing effect under a wide range of use conditions.
  • R 1 is preferably a linear or branched alkyl group having 10 to 13 carbon atoms, particularly a linear chain having 10 or 13 carbon atoms, from the viewpoint of exhibiting an excellent friction reducing effect under a wide range of usage conditions.
  • it is more preferably a branched alkyl group, further preferably a linear or branched alkyl group having 13 carbon atoms, and even more preferably a branched alkyl group having 13 carbon atoms.
  • the branched alkyl group refers to an alkyl group having a branched structure, but the number of branches of the branched alkyl group at this time is not particularly limited.
  • the number of branches may be about 1 to 4.
  • R 1 is branched from the viewpoint that it can be set within an appropriate range for conditions and speed for forming a film similar to molybdenum disulfide by decomposition during use, and exhibiting an excellent friction reducing effect under a wide range of usage conditions.
  • a branched alkyl group having 1 to 2 is more preferable, and a branched alkyl group having 1 branch is particularly preferable.
  • the branched alkyl group having 1 branch there are a plurality of types of alkyl groups having different branch positions.
  • R 1 has a branch at the ⁇ -position ( A branched alkyl group (having a branched structure on the carbon atom adjacent to the carbon atom bonded to the nitrogen atom) is particularly preferred.
  • the structure of R 1 can be adjusted by selecting raw materials used for the production of molybdenum dithiocarbamate.
  • R 2 to R 4 each represent a linear or branched alkyl group having 8 to 14 carbon atoms which may be the same or different.
  • R 2 to R 4 may contain the same alkyl group as R 1 .
  • Examples of the linear or branched alkyl group having 8 to 14 carbon atoms include n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, and n-tetradecyl group.
  • R 2 to R 4 are preferably linear or branched alkyl groups having 8 to 13 carbon atoms from the viewpoint of exhibiting a particularly excellent friction reducing effect by the combination with the alkyl group of R 1. It is more preferably a linear or branched alkyl group having 8 or 13 carbon atoms, and even more preferably a branched alkyl group having 8 or 13 carbon atoms.
  • the number of branches of the branched alkyl group at this time is not particularly limited, and for example, the number of branches may be about 1 to 4.
  • R 2 ⁇ R 4 is a branched alkyl group branched having 1 to 2, the R 2 ⁇ R 4 It is more preferable that at least one of them is a branched alkyl group having 1 branch, and it is particularly preferable that all of R 2 to R 4 are branched alkyl groups having 1 branch. Further, when any one of R 2 to R 4 is a branched alkyl group, any branch position of the branched alkyl group is not particularly limited.
  • R 2 to R 4 comprise a branched alkyl group
  • the branched alkyl group is preferably a branched alkyl group having a branch at the ⁇ -position from the viewpoint of exhibiting a particularly excellent friction reducing effect.
  • the structure of R 2 to R 4 can be adjusted by selection of raw materials used for the production of molybdenum dithiocarbamate.
  • the average number of branches of R 1 to R 4 is 0.75 to 1.25.
  • the average number of branches of R 1 ⁇ R 4 the average value of the number of values of the branch of each alkyl group of R 1 ⁇ R 4 in molybdenum dithiocarbamate.
  • the average value of the number of branches of R 1 ⁇ R 4 when the number of branches R 1 ⁇ R 4 are each 1 is 1.0, also of R 1 ⁇ R 3
  • the average value of the number of branches of R 1 to R 4 is 0.75, and the number of branches of R 1 and R 2 is 1 respectively.
  • the average number of branches of R 1 to R 4 is 1.5.
  • the conditions and speed for decomposition during use to form a film similar to molybdenum disulfide can be set within an appropriate range.
  • Molybdenum dithiocarbamate can exhibit an excellent friction reducing effect under a wide range of usage conditions.
  • the average value of the number of branches of R 1 to R 4 is more preferably 1.0, and further, the number of branches of R 1 to R 4 is preferably 1 respectively.
  • X 1 to X 4 each represents an oxygen atom or a sulfur atom. From the viewpoint of excellent lubricity, it is preferable that 2 to 3 of X 1 to X 4 are sulfur atoms and the rest are oxygen atoms, more preferably 2 each of sulfur atoms and oxygen atoms, and X 1 to X 4 Most preferably, 2 is a sulfur atom and X 3 to X 4 are oxygen atoms.
  • the molybdenum dithiocarbamate represented by the general formula (1) may be a molybdenum dithiocarbamate having a symmetrical alkyl group or an asymmetric molybdenum dithiocarbamate having an asymmetric alkyl group from the viewpoint of friction reduction effect.
  • the symmetrical molybdenum dithiocarbamate is molybdenum dithiocarbamate in which R 1 to R 4 are all the same alkyl group, or R 1 and R 2 are the same alkyl group, and R 3 and R 4 are R 1 and Examples include molybdenum dithiocarbamate, which is the same alkyl group different from R 2 .
  • molybdenum dithiocarbamate in which R 1 to R 4 are all different alkyl groups molybdenum dithiocarbamate in which R 1 to R 3 are the same alkyl group and R 4 is different, at least Molybdenum dithiocarbamate in which R 1 and R 2 are different alkyl groups, or R 3 and R 4 are different alkyl groups (for example, R 1 and R 3 are the same alkyl group, and R 2 and R 4 are the same Molybdenum dithiocarbamate) in which R 1 and R 2 are different alkyl groups.
  • R 1 and R 2 are the same alkyl group
  • R 3 and R 4 are the same alkyl group (in this case, R 1 and R 3 may be the same or different.
  • a symmetric type molybdenum dithiocarbamate is the same alkyl group
  • the method for producing molybdenum dithiocarbamate represented by the general formula (1) is a known method for producing molybdenum dithiocarbamate by appropriately changing raw materials so that the structure of the alkyl group becomes a specific structure. Can be mentioned.
  • a reducing agent is added to an aqueous solution or an aqueous suspension of a hexavalent molybdenum compound such as molybdate such as molybdenum trioxide or an alkali metal salt of molybdic acid and an alkali hydrosulfide or an alkali sulfide, and molybdenum
  • a dialkylamine represented by the following general formula (2) and, if necessary, a dialkylamine raw material containing the dialkylamine represented by the following general formula (3) and carbon disulfide are added. It can be produced by reacting with a reduced molybdenum compound.
  • R 11 is a linear or branched alkyl group having 10 to 14 carbon atoms
  • R 12 is a linear or branched alkyl group having 8 to 14 carbon atoms
  • R 13 to R 14 are the same. Or a linear or branched alkyl group having 8 to 9 carbon atoms, which may be different from each other.
  • molybdate examples include sodium molybdate, potassium molybdate, and heteropolyacid molybdate
  • alkali hydrosulfide examples include sodium sulfide, potassium sulfide, and ammonium sulfide.
  • alkali hydrosulfide examples include sodium hydrosulfide and potassium hydrosulfide.
  • alkali sulfide examples include sodium sulfide, potassium sulfide and ammonium sulfide. Among these, alkali sulfide is preferable and sodium sulfide is more preferable because of good reactivity and easy industrial availability.
  • aqueous solutions such as potassium sulfide and ammonium sulfide, and alkali sulfide aqueous solutions obtained by introducing a sulfide gas into an alkali hydroxide aqueous solution can also be used.
  • the amount of alkali hydrosulfide or alkali sulfide used is preferably 1 to 2 moles relative to 1 mole of molybdenum of the hexavalent molybdenum compound, and 1.2 to 1 More preferred is 8 moles.
  • Examples of the reducing agent include hydrides such as hydrogen iodide, hydrogen sulfide, and sodium borohydride; sodium sulfite, sodium dithionate, sodium dithionite (hydrosulfide), sodium bisulfite, sodium pyrosulfite, thio Low oxygen acid salts such as sodium sulfate; sulfur compounds such as sodium sulfide, polysodium sulfide, ammonium sulfide; low valence states such as iron (II), tin (II), titanium (III), chromium (II) Specific metal salts; aldehydes such as formaldehyde and acetaldehyde, hydrazine, borane, diborane, formic acid, oxalic acid, ascorbic acid and the like.
  • hydrides such as hydrogen iodide, hydrogen sulfide, and sodium borohydride
  • the amount of the reducing agent used is preferably 0.05 to 2 mol, preferably 0.1 to 1 mol, relative to 1 mol of molybdenum in the hexavalent molybdenum compound. Further preferred.
  • R 11 is a linear or branched alkyl group having 10 to 14 carbon atoms
  • R 12 is a linear or branched alkyl group having 8 to 14 carbon atoms.
  • R 11 is preferably a linear or branched alkyl group having 10 to 13 carbon atoms, and 13 carbon atoms. Is more preferably a straight-chain or branched alkyl group, and even more preferably a branched alkyl group having 13 carbon atoms.
  • R 11 and R 12 may be the same or different, but R 11 and R 12 are the same from the viewpoint that the resulting molybdenum dithiocarbamate can exert an excellent friction reducing effect, It is preferable that both of R 11 and R 12 are the same linear or branched alkyl group having 10 to 14 carbon atoms.
  • the dialkylamine represented by the general formula (3) is a linear or branched alkyl group having 8 to 9 carbon atoms in which R 13 to R 14 may be the same or different. From the viewpoint that the obtained molybdenum dithiocarbamate can exhibit an excellent friction reducing effect, it is preferable that R 13 to R 14 are linear or branched alkyl groups having 8 carbon atoms, which may be the same or different.
  • the dialkylamine represented by general formula (2) or general formula (3) may be produced by a known method, or a commercially available product may be used.
  • a method for producing a dialkylamine having an alkyl group having 1 branch for example, a ⁇ -branched alkyl first obtained by the method described in Japanese Patent Application Laid-Open No. 04-31555 is disclosed.
  • a production method described in Japanese Patent Publication No. 02-202855, which is a Japanese patent publication using as a raw material a ⁇ -branched alcohol obtained by a class amine or a method described in Japanese Patent Publication No. 2013-139416. And the like.
  • a dialkylamine raw material having a branched alkyl group having about 2 to 4 branches can be obtained by oligomerizing a light olefin feedstock such as butylene, ethylene or propylene.
  • a raw material mainly composed of a dialkylamine composed of a branched alkyl group having 13 carbon atoms and 2 to 4 branches can be obtained.
  • a dialkylamine raw material used for producing the molybdenum dithiocarbamate represented by the general formula (1) a dialkylamine represented by the general formula (2) and, if necessary, a dialkylamine represented by the general formula (3) are used. From the viewpoint that the obtained molybdenum dithiocarbamate can exhibit an excellent friction reducing effect under a wide range of use conditions, a dialkylamine represented by the general formula (2) and a dialkylamine represented by the general formula (3) It is preferably included in a molar ratio of 100 to 25: 0 to 75, more preferably in a ratio of 100 to 50: 0 to 50, and still more preferably in a ratio of 100 to 75: 0 to 25. Most preferably, it consists essentially only of a dialkylamine represented by the general formula (2).
  • the dialkylamine raw material and the carbon disulfide are preferably used in the same number of moles.
  • the amount of the dialkylamine raw material and the carbon disulfide used is It is preferably 0.9 to 2 mol, more preferably 1 to 1.5 mol, per 1 mol of molybdenum in the hexavalent molybdenum compound.
  • each of the dialkylamine raw material and carbon disulfide may be reacted by adding the entire amount used for the reaction at once, or may be reacted by adding the entire amount used for the reaction in two or more steps.
  • the reaction temperature after adding the dialkylamine raw material and carbon disulfide is preferably 20 to 110 ° C., and preferably 60 to 100 ° C. Further, the reaction time is preferably about 2 to 15 hours. After completion of the reaction, the reaction solution is neutralized with sulfuric acid or the like, and then the product is separated, whereby the molybdenum dithiocarbamate represented by the general formula (1) can be obtained.
  • the molybdenum dithiocarbamate composition of the present invention may consist of only one or a plurality of molybdenum dithiocarbamates represented by the general formula (1), and has a structure different from that of the molybdenum dithiocarbamate represented by the general formula (1). It may further contain other molybdenum dithiocarbamate (hereinafter referred to as other molybdenum dithiocarbamate). At this time, the type of other molybdenum dithiocarbamate is not limited, and for example, Japanese Patent Publication No. Sho 62-081396, Japanese Patent Publication No. Hei 8-176579, etc. And molybdenum dithiocarbamate represented by the following general formula (4) as exemplified by the molybdenum dithiocarbamate produced in (1).
  • R 5 to R 8 each represent a linear or branched alkyl group having 3 to 18 carbon atoms, which may be the same or different, and X 5 to X 8 each independently represents an oxygen atom or sulfur.
  • Represents an atom wherein R 5 represents a linear or branched alkyl group having 10 to 14 carbon atoms, and R 6 to R 8 may be the same or different, and each linear or branched group has 8 to 14 carbon atoms
  • molybdenum dithiocarbamate contained in the molybdenum dithiocarbamate composition of the present invention the uniformity of the friction reducing effect when used together with the molybdenum dithiocarbamate represented by the general formula (1) is improved, and the composition is excellent.
  • molybdenum dithiocarbamate represented by the general formula (4) is preferable.
  • R 5 to R 8 may be the same or different and each have 8 to 13 carbon atoms.
  • the molybdenum dithiocarbamate composition of the present invention is represented by the general formula (1) in the composition from the viewpoint of enhancing the uniformity of the friction reducing effect and thus exhibiting an excellent friction reducing effect as the composition. It is preferable to contain at least 25 mol% of molybdenum dithiocarbamate, more preferably 50 mol% or more, still more preferably 75 mol% or more, and particularly preferably 90 mol% or more.
  • the molybdenum dithiocarbamate composition of the present invention has a molar ratio of the molybdenum dithiocarbamate represented by the general formula (1) to the molybdenum dithiocarbamate represented by the general formula (4) of 25 to 100: 75 to It is preferably a composition comprising 0, more preferably a composition comprising 50-100: 50-0, more preferably a composition comprising 75-100: 25-0, and more preferably 90-100 : A composition comprising 10 to 0 is particularly preferred.
  • the number of branches of R 1 to R 4 of the molybdenum dithiocarbamate represented by the general formula (1) and the number of branches of alkyl groups contained in other molybdenum dithiocarbamates for example, general
  • the average value of the number of branches of all alkyl groups in the molybdenum dithiocarbamate composition, calculated by the number of branches of R 5 to R 8 of the molybdenum dithiocarbamate represented by formula (4) and the molar ratio thereof is particularly limited.
  • the conditions and speed at which the molybdenum dithiocarbamate composition decomposes during use to form a film similar to molybdenum disulfide can be set within an appropriate range, and an excellent friction reducing effect is exhibited under a wide range of conditions.
  • the average value of the number of branches of all alkyl groups in the composition is preferably 0.25 to 2.5. It is more preferably 30 to 2.0, further preferably 0.40 to 1.75, still more preferably 0.50 to 1.50, and 0.60 to 1.40. It is particularly preferred.
  • the average number of branches of all alkyl groups in the molybdenum dithiocarbamate composition is the number of branches of R 1 to R 4 of the molybdenum dithiocarbamate represented by the general formula (1), and the branch of alkyl groups of other molybdenum dithiocarbamates. It can be adjusted by adjusting the number and the content ratio in the composition.
  • the “average value of the number of branches of all alkyl groups” is the number of branched chains of each alkyl group of molybdenum dithiocarbamate R 1 to R 4 and other molybdenum dithiocarbamates represented by the general formula (1). Represents an average value.
  • the molybdenum dithiocarbamate of the present invention and the molybdenum dithiocarbamate composition of the present invention reduce friction loss under a wide range of usage conditions compared to conventional molybdenum dithiocarbamate and are useful as a superior lubricity additive.
  • the method for producing molybdenum dithiocarbamate according to the present invention includes a step of reducing a hexavalent molybdenum compound, a dialkylamine having a C10-14 alkyl group having 1 branching, and carbon disulfide. And a step of reacting with a molybdenum compound.
  • a reaction method and conditions known methods such as those described above can be applied, and other raw materials and additional operations are included as necessary. May be.
  • the dialkylamine having an alkyl group having 10 to 14 carbon atoms and having 1 branch used in the method for producing molybdenum dithiocarbamate according to the present invention is a dialkylamine represented by the following general formula (5).
  • R 15 is an alkyl group having 10 to 14 carbon atoms having 1 branch
  • R 16 is a linear alkyl group having 1 to 18 carbon atoms or a branched alkyl group having 3 to 18 carbon atoms.
  • R 15 is an alkyl group having 10 to 14 carbon atoms having 1 branch, for example, an alkyl group having 10 carbon atoms having 1 branch, or a carbon number having 1 branch.
  • R 16 is a linear alkyl group having 1 to 18 carbon atoms or a branched alkyl group having 3 to 18 carbon atoms, and from the viewpoint that the resulting molybdenum dithiocarbamate can exhibit an excellent friction reducing effect under a wide range of usage conditions.
  • a linear or branched alkyl group having 8 to 14 carbon atoms is preferable, and a linear or branched alkyl group having 10 to 14 carbon atoms is more preferable.
  • R 15 and R 16 are preferably an alkyl group having 10 to 14 carbon atoms having 1 branch.
  • Examples of the dialkylamine which is an alkyl group having 10 to 14 carbon atoms in which the number of branches of R 15 and R 16 is 1 may include, for example, R 15 and R 16 may be the same or different.
  • the number of branches of the alkyl group is 1, and the branch position is ⁇ -position. It is preferable to use a dialkylamine having an alkyl group having 10 to 14 carbon atoms.
  • a dialkylamine having an alkyl group having 10 to 14 carbon atoms in which the number of branches of the alkyl group is 1 and the branch position is ⁇ -position is R 15 and R 16 among the dialkylamines represented by the general formula (5).
  • a dialkylamine which is an alkyl group having 10 to 14 carbon atoms having a branch number of 1 and a branch position of ⁇ -position.
  • the alkyl group having 10 to 14 carbon atoms and having a branch number of 1 and a branch position of ⁇ -position has a branch (side chain) on the ⁇ -position carbon of the amino group, and has the number of carbon atoms in the main chain and the side chain.
  • the alkyl group is not particularly limited as long as the total is 10 to 14, for example, when the number of carbon atoms is 13, 2-methyldodecyl group, 2-ethylundecyl group, 2-propyldecyl group, 2-butylnonyl group, A 2-pentyloctyl group may be mentioned.
  • one kind of dialkylamine which is an alkyl group having 10 to 14 carbon atoms and having a branch number of 1 and a ⁇ -position may be used. May be used.
  • dialkylamines other dialkylamines (hereinafter referred to as other dialkylamines) other than the dialkylamine represented by the general formula (5) may be used together.
  • other dialkylamines include dialkylamines having two linear or branched alkyl groups having 1 to 7 carbon atoms, and alkyl groups having a saturated or unsaturated cyclic alkyl group and 4 to 18 carbon atoms.
  • a dialkylamine, a dialkylamine represented by the general formula (2) except that at least one of R 11 and R 12 is an alkyl group having 10 to 14 carbon atoms having 1 branch), a general formula ( And dialkylamines represented by 3).
  • the other dialkylamine is a dialkylamine represented by the general formula (2) (wherein at least one of R 11 and R 12 is an alkyl group having 10 to 14 carbon atoms having 1 branch). It is preferable that it is a dialkylamine represented by General formula (3), and specifically, the dialkylamine of the structure mentioned above is mentioned.
  • a dialkylamine having an alkyl group having 10 to 14 carbon atoms having 1 branch and other dialkylamines in a molar ratio of 100 to 25: 0 to 75 It is preferably used in a ratio of 100 to 50: 0 to 50, more preferably in a ratio of 100 to 75: 0 to 25, and the number of carbons having substantially 1 branch. It is particularly preferred to use only dialkylamines having 10 to 14 alkyl groups.
  • the raw material contains a trace amount of a different structure resulting from the production method of dialkylamine, for example, in the dialkylamine raw material having an alkyl group having 10 to 14 carbon atoms having 1 branching
  • the dialkylamine raw material having an alkyl group having 10 to 14 carbon atoms having 1 branching
  • a dialkylamine raw material consisting essentially only of a dialkylamine as a main component
  • the dialkylamine having an alkyl group having 10 to 14 carbon atoms and having 1 branch used in the method for producing molybdenum dithiocarbamate of the present invention may be produced by a known method, or a commercially available product may be used. Similarly, other dialkylamines may be produced by known methods, or commercially available products may be used.
  • a method for producing a dialkylamine having an alkyl group having 10 to 14 carbon atoms having 1 branch for example, in the method for producing a dialkylamine having an alkyl group having 1 branch as described above, 10 to 14 carbon atoms can be used. The method of manufacturing by using the alcohol whose 1 branch number is 1 as a raw material is mentioned.
  • molybdenum dithiocarbamate that can exhibit a friction reducing effect under a wide range of use conditions can be obtained in high yield.
  • the use mode of the molybdenum dithiocarbamate or molybdenum dithiocarbamate composition of the present invention (hereinafter sometimes collectively referred to as the molybdenum dithiocarbamate of the present invention) as a lubricity additive is not particularly limited.
  • Lubricating oil used for grease such as bearing grease, gear grease, gear grease, joint grease, bearing grease.
  • the method for dissolving and dispersing molybdenum dithiocarbamate in the base oil when the molybdenum dithiocarbamate of the present invention is added to the base oil to form a lubricating oil composition or grease is not limited.
  • molybdenum dithiocarbamate is added to the base oil.
  • the molybdenum dithiocarbamate may be dissolved in the base oil in the form of particles to disperse the base oil as necessary in order to improve dispersion stability.
  • the molybdenum dithiocarbamate may be finely pulverized and dispersed before or after the addition of.
  • the particle diameter of molybdenum dithiocarbamate when dispersing particulate molybdenum dithiocarbamate in the base oil is not particularly limited, but for example, the 50% particle diameter measured by a laser diffraction light scattering method is preferably 10 to 450 nm.
  • the method for finely pulverizing the particulate molybdenum dithiocarbamate is not particularly limited. For example, a dispersion having good dispersion stability and a small particle size of 50% can be obtained. Therefore, molybdenum dithiocarbamate is added to the base oil. Further, a method of finely pulverizing with a roller mill, hammer mill, rotary mill, vibration mill, planetary mill, attritor, bead mill or the like can be used.
  • molybdenum dithiocarbamate When molybdenum dithiocarbamate is dispersed in the base oil, for example, as much molybdenum dithiocarbamate as possible may be added to the base oil and dispersed, and then diluted with the base oil so as to achieve the target concentration. However, if the amount of molybdenum dithiocarbamate is excessive, viscosity may increase and dispersion may become insufficient. Therefore, in roller mills and hammer mills, molybdenum dithiocarbamate is added to 100 parts by mass of base oil. Preferably, 10 to 180 parts by mass, more preferably 20 to 150 parts by mass are added.
  • molybdenum dithiocarbamate is preferably used with respect to 100 parts by mass of the base oil. Is added in an amount of 1 to 40 parts by weight, more preferably 1.5 to 30 parts by weight.
  • the total amount of the lubricating oil composition including the base oil and the additive is used.
  • the amount of molybdenum derived from molybdenum dithiocarbamate is preferably 50 to 3,000 ppm by mass, more preferably 100 to 2,500 ppm by mass, and 300 to 2,000 ppm by mass. More preferably, the amount is 500 to 1,800 ppm by mass, even more preferably, particularly when used with the expectation of a friction reducing effect, the amount to be 600 to 1,500 ppm. Most preferred.
  • the lubricating oil composition may contain molybdenum derived from additives other than molybdenum dithiocarbamate (for example, as an antioxidant and a dispersant), and the total molybdenum content in the lubricating oil composition is particularly important.
  • the total molybdenum content in the lubricating oil composition is preferably 50 to 4,000 mass ppm, more preferably 100 to 3,000 mass ppm, still more preferably 300 to 2,500 mass ppm, and 500 to 2,000 ppm by mass is even more preferred, and 600-1800 ppm is most preferred.
  • the base oil used in the lubricating oil composition is not particularly limited, and can be appropriately selected from mineral base oils, chemically synthesized base oils, animal and plant base oils, mixed base oils thereof, and the like according to the purpose and conditions of use.
  • examples of the mineral base oil include paraffin-based crude oil, naphthenic-based crude oil, intermediate-based crude oil, and aromatic-based crude oil, and further distillate oil obtained by atmospheric distillation, or normal oil
  • distillate oils obtained by distilling the residual oil of pressure distillation under reduced pressure and refined oils obtained by further purifying them according to conventional methods, specifically solvent refined oil, hydrogenated refined oil, dewaxing treatment Oil and clay-treated oil.
  • Examples of chemically synthesized base oils include poly- ⁇ -olefin, polyisobutylene (polybutene), monoester, diester, polyol ester, silicate ester, polyalkylene glycol, polyphenyl ether, silicone, fluorinated compound, alkylbenzene, and GTL.
  • Examples include base oils.
  • poly- ⁇ -olefin, polyisobutylene (polybutene), diester, polyol ester and the like can be used for general purposes.
  • poly- ⁇ -olefins examples include those obtained by polymerizing or oligomerizing 1-hexene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 1-tetradecene, etc., or hydrogenating them. Is mentioned.
  • diester examples include dibasic acids such as dibasic acids such as glutaric acid, adipic acid, azelaic acid, sebacic acid and dodecanedioic acid, and alcohols such as 2-ethylhexanol, octanol, decanol, dodecanol and tridecanol.
  • polyol esters examples include neopentyl glycol, trimethylol ethane, trimethylol propane, pentaerythritol, dipentaerythritol and tripentaerythritol, and caproic acid, caprylic acid, lauric acid, capric acid, myristic acid, palmitic acid. And esters with fatty acids such as stearic acid and oleic acid.
  • animal and plant base oils include castor oil, olive oil, cacao butter, sesame oil, rice bran oil, safflower oil, soybean oil, camellia oil, corn oil, rapeseed oil, palm oil, palm kernel oil, sunflower oil, cottonseed oil and palm.
  • vegetable oils such as oil, beef tallow, pork fat, milk fat, fish oil and whale oil.
  • Paraffin-based highly refined mineral oil, poly- ⁇ -olefin system It is more preferable to use a base oil containing a GTL-based chemically synthesized base oil and a mixed base oil thereof. At this time, it is preferable to include 50% by mass or more of these base oils in the total amount of the base oil, since the characteristics of molybdenum dithiocarbamate can be further exhibited, and it is more preferable to include 90% by mass or more of the total amount of the base oils.
  • the viscosity of the base oil of the lubricating oil composition is preferably higher from the viewpoint of the dispersion stability of molybdenum dithiocarbamate, but if it is too high, it may be difficult to disperse the molybdenum dithiocarbamate.
  • the kinematic viscosity at 40 ° C. is preferably 1 to 800 mm 2 / s, more preferably 3 to 250 mm 2 / s, and most preferably 8 to 80 mm 2 / s. In the present invention, the kinematic viscosity is a value obtained by measuring by the method described in JIS K 2283.
  • the lubricating oil composition can be appropriately used with known lubricating oil additives depending on the purpose of use, for example, metal detergents, ashless type Dispersant, antiwear agent, antioxidant, phosphorus antiwear agent or phosphorus antioxidant, sulfur extreme pressure agent, thiophosphate extreme pressure agent, oiliness improver, rust inhibitor, viscosity index improver, metal Examples thereof include an inactivator, an antifoaming agent and a solid lubricant. These additives may use 1 type, or 2 or more types of compounds.
  • Metal-based detergent Alkaline earth metal sulfonates, alkaline earth metal phenates, alkaline earth metal salicylates, alkaline earth metal phosphonates, etc. are used as metal detergents, and alkaline earth metals include magnesium, calcium, barium, etc. Is mentioned. Among these, at least one metal-based detergent selected from the group consisting of calcium-based detergents and magnesium-based detergents is used in a total amount of calcium and magnesium atoms of 0.05 to It is preferable to contain at 0.4 mass%.
  • TBN Total Base Number in accordance with ASTM D2896
  • the TBN of the component (C) is preferably 50 to 500 mgKOH / g, more preferably 100 to 400 mgKOH / g, and most preferably 100 to 200 mgKOH / g.
  • an ashless dispersant is blended in the lubricating oil composition in order to prevent sludge accumulation by dispersing and solubilizing sludge, solubilizing sludge deposit (a stable precursor of sludge), and the like.
  • a succinimide type dispersant obtained by a condensation reaction of an alkenyl succinic anhydride and a polyamine compound a succinic ester type dispersant obtained by a condensation reaction of an alkenyl succinic anhydride and a polyol compound
  • succinic ester amide type dispersants obtained by condensation reaction of alkenyl succinic anhydride and alkanolamine examples thereof include succinic ester amide type dispersants obtained by condensation reaction of alkenyl succinic anhydride and alkanolamine, Mannich base dispersants obtained by condensing alkylphenol and polyamine with formaldehyde, and boric acid modified products thereof.
  • the lubricating oil composition preferably contains the ashless dispersant in an amount of 0.5 to 10% by mass based on the total amount of the lubricating oil composition.
  • the lubricating oil composition may contain a zinc dithiophosphate compound for the purpose of preventing corrosion, improving load resistance, preventing wear, etc., and the zinc dithiophosphate compound is added to the total amount of the lubricating oil composition. It is preferable to contain 200 to 800 ppm by mass as phosphorus atoms. If the content of the zinc dithiophosphate compound is less than 200 ppm by mass as phosphorus atoms, corrosion prevention, improved load resistance, and anti-wear effects may not be obtained sufficiently, and if it exceeds 800 ppm by mass, exhaust gas purification The catalyst may be poisoned.
  • the content of the zinc dithiophosphate compound is more preferably 350 to 800 ppm by mass, and most preferably 500 to 800 ppm by mass.
  • antioxidants for lubricating oil compositions amine-based antioxidants, phenol-based antioxidants, phenothiazine-based antioxidants, thioether-based antioxidants, phosphite-based antioxidants and the like may be blended Preferably, at least one antioxidant consisting of the group consisting of a phenolic antioxidant and an amine antioxidant may be blended in an amount of 0.1 to 10% by mass based on the total amount of the lubricating oil composition.
  • phosphorus antiwear agent or phosphorus antioxidant examples include organic phosphines, organic phosphine oxides, organic phosphinites, organic phosphonites, organic phosphinates, organic phosphites, organic phosphonates, organic phosphates, and organic phosphoramidates. It is done.
  • a preferable blending amount of the phosphorus antiwear agent or phosphorus antioxidant is about 0.1 to 20% by mass with respect to the total lubricating oil composition.
  • sulfur-based extreme pressure agent examples include sulfurized fats and oils, sulfurized mineral oil, organic mono- or polysulfides, polyolefin sulfides, 1,3,4-thiadiazole derivatives, thiuram disulfides, dithiocarbamic acid esters, and the like.
  • a preferable blending amount of the sulfur-based extreme pressure agent is about 0.1 to 20% by mass with respect to the entire lubricating oil composition.
  • thiophosphoric acid extreme pressure agent examples include organic trithiophosphites and organic thiophosphates.
  • a preferable blending amount of the thiophosphoric acid extreme pressure agent is about 0.1 to 20% by mass with respect to the whole lubricating oil composition.
  • the exhaust gas purification catalyst may be poisoned, it is preferable that the phosphorus content of the entire composition does not exceed 1000 mass ppm and the sulfur content does not exceed 5000 mass ppm.
  • oil improver examples include, for example, fatty acids, fats and oils or hydrogenated products or partially saponified products thereof, epoxidized esters, polycondensates of hydroxystearic acid or esters of the polycondensates with fatty acids, higher alcohols, higher amides, Examples include glycerides, polyglycerin esters, polyglycerin ethers, and compounds obtained by adding an ⁇ -olefin oxide to the above compounds.
  • a preferable blending amount of the oiliness improver is about 0.05 to 15% by mass with respect to the entire lubricating oil composition. When the blending amount of the oiliness improver is less than 0.05% by mass, a sufficient addition effect may not be obtained. When the blending amount exceeds 15% by mass, an effect commensurate with the blending amount cannot be obtained, and viscosity such as a viscosity index is not obtained. The characteristics may be deteriorated.
  • rust preventive examples include oxidized paraffin wax calcium salt, oxidized paraffin wax magnesium salt, beef tallow fatty acid alkali metal salt, alkaline earth metal salt or amine salt, alkenyl succinic acid or alkenyl succinic acid half ester (the molecular weight of the alkenyl group is Sorbitan monoester, pentaerythritol monoester, glycerin monoester, nonylphenol ethoxylate, lanolin fatty acid ester, lanolin fatty acid calcium salt, and the like.
  • a preferable blending amount of the rust preventive agent is about 0.1 to 15% by mass with respect to the entire lubricating oil composition as a range in which the rust preventive effect is sufficiently exhibited.
  • viscosity index improver examples include poly (C1-18) alkyl methacrylate, (C1-18) alkyl acrylate / (C1-18) alkyl methacrylate copolymer, diethylaminoethyl methacrylate / (C1-18) alkyl methacrylate copolymer Copolymer, ethylene / (C1-18) alkyl methacrylate copolymer, polyisobutylene, polyalkylstyrene, ethylene / propylene copolymer, styrene / maleic ester copolymer, styrene / maleic amide copolymer, styrene / butadiene Examples thereof include hydrogenated copolymers and styrene / isoprene hydrogenated copolymers. The average molecular weight is about 10,000 to 1,500,000. A preferable blending amount of the viscosity index improve
  • Metal deactivator examples include N, N′-salicylidene-1,2-propanediamine, alizarin, tetraalkylthiuram disulfide, benzotriazole, benzimidazole, 2-alkyldithiobenzimidazole, and 2-alkyldithiobenzothiazole.
  • a preferable blending amount of the metal deactivator is about 0.01 to 5% by mass with respect to the entire lubricating oil composition.
  • antifoaming agent examples include polydimethyl silicone, trifluoropropylmethyl silicone, colloidal silica, polyalkyl acrylate, polyalkyl methacrylate, alcohol ethoxy / propoxylate, fatty acid ethoxy / propoxylate, sorbitan partial fatty acid ester and the like.
  • a preferred blending amount of the antifoaming agent is about 1 to 1000 ppm by mass with respect to the entire lubricating oil composition.
  • Solid lubricant examples include graphite, molybdenum disulfide, polytetrafluoroethylene, fatty acid alkaline earth metal salts, mica, cadmium dichloride, cadmium diiodide, calcium fluoride, lead iodide, lead oxide, titanium carbide. , Titanium nitride, aluminum silicate, antimony oxide, cerium fluoride, polyethylene, diamond powder, silicon nitride, boron nitride fluorocarbon, melamine isocyanurate and the like.
  • a preferable blending amount of the solid lubricant is about 0.005 to 2% by mass with respect to the whole lubricating oil composition. If the amount is less than 0.005% by mass, the effect of addition cannot be obtained. If the amount exceeds 2% by mass, the fluidity of the engine oil may be adversely affected.
  • Lubricating oil compositions using the molybdenum dithiocarbamate of the present invention as a lubricity additive include lubricating oils for internal combustion engines (for example, gasoline engine oils for automobiles and motorcycles, diesel engine oils, etc.), industrial lubricating oils (for example, Gear oil, turbine oil, oil film bearing oil, refrigerator lubricating oil, vacuum pump oil, compression lubricating oil, multipurpose lubricating oil, etc.).
  • lubricity additive for lubricating oil for internal combustion engines such as a gasoline engine and a diesel engine.
  • additives include antioxidants such as amine antioxidants, phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants; sulfonates such as calcium, magnesium, barium, phenates, salicylates, phosphates, and the like.
  • Detergents such as overbased salts; oily improvers such as higher alcohols, higher fatty acids, higher fatty acid glycerin esters, higher fatty acid amides, higher alkyl amines; dispersants such as alkenyl succinimides; phosphoric acid Extreme pressure agents such as esters, zinc dialkyldithiophosphates (ZnDTP), zinc dialkyldithiocarbamates; other organic molybdenum compounds such as dialkyldithiophosphates, molybdenum long chain amine salts, molybdenum alkenyl succinimide complexes; viscosity index improvers , Pour point depressant, rust inhibitor, rot Inhibitors, anti-foaming agents, and the like. These additives may be blended with the molybdenum dithiocarbamate of the present invention to form an additive composition and then used in grease.
  • oily improvers such as higher alcohols, higher fatty acids, higher fatty
  • Examples of the base oil in the case where the molybdenum dithiocarbamate of the present invention is added to the base oil to form the grease composition include the base oils exemplified in the case of the lubricating oil composition.
  • the base oil used in the grease composition it is preferable to include at least a mineral oil or a hydrocarbon-based synthetic oil because the effect of improving the lubricity of molybdenum dithiocarbamate tends to be obtained.
  • Paraffin-based highly refined mineral oil, poly- More preferably, a base oil containing an ⁇ -olefin-based or GTL-based chemically synthesized base oil and a mixed base oil thereof is used.
  • the molybdenum dithiocarbamate of the present invention When added to a base oil to form a grease composition, it may further contain a thickener.
  • a thickener include soap-based or complex soap-based thickeners, organic non-soap thickeners, inorganic non-soap thickeners, and the like.
  • the grease which consists of a base oil and a thickener and does not contain other additives may be called a base grease.
  • soap thickener examples include lauric acid, myristic acid, palmitic acid, stearic acid, 12-hydroxystearic acid, arachidic acid, behenic acid, zomarinic acid, oleic acid, linoleic acid, linolenic acid, and ricinoleic acid.
  • a soap in which a higher fatty acid is reacted with a base such as lithium, sodium, potassium, aluminum, barium, calcium, and the above fatty acid and base are further reacted with acetic acid, benzoic acid, sebacic acid, azelaic acid, phosphoric acid, boric acid, etc.
  • complex soap thickeners complex soap thickeners.
  • organic non-soap thickeners examples include terephthalate thickeners, urea thickeners, polytetrafluoroethylene, fluorine-based copolymers such as fluorinated ethylene-propylene copolymers, and the like. System thickeners are preferred.
  • the urea thickener include, for example, a monourea compound obtained by reacting monoisocyanate and monoamine, a diurea compound obtained by reacting diisocyanate and monoamine, a urea urethane compound obtained by reacting diisocyanate, monoamine and monool, and diisocyanate. Examples include tetraurea compounds obtained by reacting diamine and monoisocyanate.
  • the addition amount of the molybdenum dithiocarbamate of the present invention is preferably 0.1 to 10% by mass, more preferably 0.2 to 7% by mass, and most preferably 0.3 to 5% by mass with respect to the total amount of the grease composition. .
  • Example 1 In a flask equipped with a stirrer, thermometer, nitrogen tube and reflux condenser, 144 g (1.00 mol) of molybdenum trioxide was suspended in 500 ml of water and stirred. To this was added 280 g (1.50 mol) of 30% aqueous sodium sulfide solution and dissolved, and then 24 g (0.13 mol) of anhydrous sodium bisulfite was added.
  • di-tridecylamine tridecyl group is a tridecyl group having 1 branch having a branch at the ⁇ -position
  • 80 g (1.05 mol) of carbon disulfide as dialkylamine raw materials was added at room temperature and reacted for 2 hours, then neutralized with 154 g (0.55 mol) of 35% dilute sulfuric acid and refluxed at 80 ° C. for 5 hours. After cooling this and removing the aqueous layer, it was washed with warm water, dehydrated and filtered to obtain 560 g of a brownish viscous liquid.
  • the sample was diluted with naphthenic oil to obtain a sample having a Mo element content of 9.8%.
  • Example 2 As dialkylamine raw materials, 200 g (0.53 mol) of di-tridecylamine (tridecyl group is a tridecyl group having 1 branch having a branch at ⁇ -position) and 127 g (0.53 mol) of di-2-ethylhexylamine ) was used to produce molybdenum dithiocarbamate in the same manner as in Example 1.
  • the obtained molybdenum dithiocarbamate is a mixture of the following three types of molybdenum dithiocarbamates represented by the general formula (1) or the general formula (4) (X 1 to X 4 or X 5 to X 8 respectively).
  • di-2-ethylhexylamine and di-isotridecylamine are 1: 1.
  • Molybdenum dithiocarbamate was produced in the same manner as in Example 1 except that the molar ratio was used.
  • the obtained molybdenum dithiocarbamate is a molybdenum dithiocarbamate composition having the following molar ratio of the following three types of molybdenum dithiocarbamates represented by the general formula (4) (the average number of branches of all alkyl groups is 1.7).
  • X 5 to X 8 contained oxygen atoms: sulfur atoms in a molar ratio of 2: 2, and the Mo element content ratio was 9.9%.
  • Test engine Inline 4-cylinder 1.8L gasoline engine (manufactured by Toyota)
  • Base oil Base oil 1 (Toyota genuine castle motor oil SN 0W-20)
  • Synthetic oil base 100 ° C kinematic viscosity 8.7 mm 2 / s) 100 ppm of Mo derived from compounds other than MoDTC Engine rotation method: Rotation by electric motor Measurement conditions: no load, stationary test Oil temperature: 80 ° C Measurement engine speed: 800 rpm, 1200 rpm, 1600 rpm
  • Test engine Inline 4-cylinder 2.0L gasoline engine (manufactured by Nissan Motor) Base oil: Base oil 2 (Toyota genuine castle motor oil 0W-16) Synthetic oil base (100 ° C kinematic viscosity 7.1 mm 2 / s) 100 ppm of Mo derived from compounds other than MoDTC Engine rotation method: Rotation by electric motor Measurement conditions: no load, stationary test Oil temperature: 80 ° C Measurement engine speed: 800 rpm, 1200 rpm, 1600 rpm
  • the molybdenum dithiocarbamate and molybdenum dithiocarbamate composition of the present invention has a higher torque reduction rate than conventional molybdenum dithiocarbamate, and a high friction reducing effect under various conditions. .
  • the molybdenum dithiocarbamate according to the present invention has not only a low engine rotation speed lubrication area, which is considered to have a high friction reduction effect in lubricating oil for internal combustion engines, but also a mild lubrication condition and the most frequently used rotation area ( Since it shows a high torque reduction rate even at 1200 rpm and 1600 rpm), it can reduce friction loss under a wide range of operating conditions compared to conventional molybdenum dithiocarbamate. For example, as an additive for lubricating oil for internal combustion engines, It turns out that the fuel consumption effect can be demonstrated.

Abstract

本発明は、下記の一般式(1)で表されるモリブデンジチオカルバメート及びモリブデンジチオカルバメートの製造方法を提供する。 (式中、R1は炭素数10~14の直鎖又は分岐アルキル基を表し、R2~R4はそれぞれ同一であっても異なっていてもよい炭素数8~14の直鎖又は分岐アルキル基を表し、R1~R4の分岐数の平均値は0.75~1.25であり、X1~X4はそれぞれ独立して酸素原子又は硫黄原子を表す。)

Description

モリブデンジチオカルバメート及びモリブデンジチオカルバメートの製造方法
 本発明は、潤滑性添加剤として優れた特性を有するモリブデンジチオカルバメート及びモリブデンジチオカルバメートの製造方法に関する。
 自動車分野における燃費規制、排ガス規制など、地球温暖化、大気汚染、酸性雨といった環境問題や有限である石油エネルギーなどの資源保護に起因する規制は年々厳しくなっている。これらの対策として、例えば自動車の省燃費化を進める上では、自動車本体の軽量化、エンジンの改良等、自動車自体の改良と共に、エンジンでの摩擦ロスを防ぐ為のエンジン油の低粘度化、良好な摩擦調整剤の添加等、エンジン油の改善も重要な要素となっている。
 有機モリブデン化合物は優れた潤滑性及び摩擦低減作用を有しており、中でもモリブデンジチオカルバメートは、金属に対する腐食性も少ないことから種々の潤滑油に添加されている。特にエンジン油においては、有機モリブデン化合物がエンジン各部の摩擦抵抗を低減しその結果燃料の使用量を節減する、いわゆる省燃費化に効果的であり、省燃費油には必須の添加剤となってきている。
 例えば、特許文献1には、炭素数1~24のアルキル基を有し、硫黄原子と酸素原子の比が特定の割合である硫化オキシモリブデンジアルキルジチオカーバメートを潤滑剤として利用することが記載されている。特許文献2には、炭素原子数4~13の炭化水素基と、炭素原子数8~24の炭化水素基とを有するモリブデンジチオカーバメートとして、具体的に、2-エチルヘキシル基と、トリデシル基、ドデシル基又はオクタデシル基とを有するモリブデンジチオカーバメートが記載されている。
 近年では、自動車の低燃費化・省燃費化のためにエンジンや駆動系の改良も進められており、結果として使用時のエンジン回転数の広範化が進んでいる。そのような状況下で、従来のモリブデンジチオカルバメート化合物は、一般的に特定の潤滑領域、例えばエンジン回転数が550~800rpm程度の低い領域においては高い摩擦低減効果を発揮できることがエンジントルク試験などにより知られているものの、それ以外の領域、例えばエンジン回転数が800rpmよりも高い領域(例えば1200~2000rpm程度の領域)では、その摩擦低減効果が十分ではない場合が生じている。よって潤滑剤の市場では、内燃機関用の添加剤として実際の使用条件として想定される幅広い条件下や、またグリース用添加剤としても同様に、幅広い使用条件下で優れた摩擦低減効果を発揮することができるモリブデンジチオカルバメートが求められている。
特開昭52-019702号公報 特開昭62-081396号公報
 従って、本発明の目的は、幅広い使用条件下で摩擦低減効果を発揮するモリブデンジチオカルバメートを提供することにある。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、特定の構造を有するモリブデンジチオカルバメートが幅広い使用条件下で優れた摩擦低減効果を発揮することを見出し、本発明を完成させた。即ち、本発明は下記の一般式(1)で表されるモリブデンジチオカルバメートである。
Figure JPOXMLDOC01-appb-C000002
(式中、R1は炭素数10~14の直鎖又は分岐アルキル基を表し、R2~R4はそれぞれ同一であっても異なっていてもよい炭素数8~14の直鎖又は分岐アルキル基を表し、R1~R4の分岐数の平均値は0.75~1.25であり、X1~X4はそれぞれ独立して酸素原子又は硫黄原子を表す。)
 本発明によれば、幅広い使用条件下で優れた摩擦低減効果を発揮するモリブデンジチオカルバメート及びモリブデンジチオカルバメートの製造方法を提供することができる。特に、本発明のモリブデンジチオカルバメートは、使用頻度が非常に高い領域で優れた摩擦低減効果を示す。
 本発明のモリブデンジチオカルバメートは、下記の一般式(1)で表されるモリブデンジチオカルバメートである。
Figure JPOXMLDOC01-appb-C000003
 一般式(1)において、R1は炭素数10~14の直鎖又は分岐アルキル基を表す。炭素数10~14の直鎖又は分岐アルキル基としては、例えば、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基といった直鎖アルキル基や、2級デシル基、イソデシル基、2級ウンデシル基、イソウンデシル基、2級ドデシル基、イソドデシル基、2級トリデシル基、イソトリデシル基、2級テトラデシル基、イソテトラデシル基といった分岐アルキル基が挙げられる。R1がこのようなアルキル基であることで、本発明のモリブデンジチオカルバメートは幅広い使用条件下で優れた摩擦低減効果を発揮することができる。
 これらの中でも、特に幅広い使用条件下で優れた摩擦低減効果を発揮する観点から、R1は炭素数10~13の直鎖又は分岐アルキル基であることが好ましく、炭素数10又は13の直鎖又は分岐アルキル基であることがより好ましく、炭素数13の直鎖又は分岐アルキル基であることがさらに好ましく、炭素数13の分岐アルキル基であることがさらにより好ましい。ここで、分岐アルキル基とは、分岐構造を有するアルキル基のことを指すが、このときの分岐アルキル基の分岐数に特に制限はなく、例えば分岐数は1~4程度であってもよい。特に使用時に分解して二硫化モリブデンに類似した皮膜を形成する条件及び速度を適切な範囲に設定することができ、幅広い使用条件下で優れた摩擦低減効果を発揮する観点から、R1は分岐数が1~2の分岐アルキル基であることがより好ましく、分岐数が1の分岐アルキル基であることが特に好ましい。さらに、分岐数が1の分岐アルキル基としては、その分岐位置が異なる複数種類のアルキル基が存在するが、特に優れた摩擦低減効果を発揮する観点から、R1はβ位に分岐を有する(窒素原子に結合している炭素原子の隣の炭素原子に分岐構造を有する)分岐アルキル基であることが特に好ましい。R1の構造は、モリブデンジチオカルバメートの製造に用いる原料の選定等により調節することができる。
 一般式(1)において、R2~R4はそれぞれ同一であっても異なっていてもよい炭素数8~14の直鎖又は分岐アルキル基を表す。また、R2~R4はR1と同一のアルキル基を含んでいてもよい。炭素数8~14の直鎖又は分岐アルキル基としては、例えば、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基といった直鎖アルキル基、2級オクチル基、イソオクチル基、2級ノニル基、イソノニル基、2級デシル基、イソデシル基、2級ウンデシル基、イソウンデシル基、2級ドデシル基、イソドデシル基、2級トリデシル基、イソトリデシル基、2級テトラデシル基、イソテトラデシル基等の分岐アルキル基が挙げられる。R2~R4がこのようなアルキル基であることで、R1のアルキル基構造との組合せにより、本発明のモリブデンジチオカルバメートは優れた摩擦低減効果を発揮することができる。これらの中でも、R1のアルキル基との組合せにより特に優れた摩擦低減効果を発揮する観点から、R2~R4は炭素数8~13の直鎖又は分岐アルキル基であることが好ましく、炭素数8又は13の直鎖又は分岐アルキル基であることがより好ましく、炭素数8又は13の分岐アルキル基であることがさらにより好ましい。このときの分岐アルキル基の分岐数に特に制限はなく、例えば、分岐数は1~4程度であってもよい。特に幅広い使用条件下で優れた摩擦低減効果を発揮する観点からは、R2~R4の少なくともいずれかが分岐数1~2の分岐アルキル基であることがより好ましく、R2~R4の少なくともいずれかが分岐数1の分岐アルキル基であることがさらに好ましく、R2~R4のすべてが分岐数1の分岐アルキル基であることが特に好ましい。また、R2~R4のいずれかのアルキル基が分岐アルキル基である場合の、分岐アルキル基の分岐位置はいずれも特に限定されない。R2~R4が分岐アルキル基を含んでなる場合において、特に優れた摩擦低減効果を発揮する観点から、分岐アルキル基はβ位に分岐を有する分岐アルキル基であることが好ましい。R2~R4の構造は、モリブデンジチオカルバメートの製造に用いる原料の選定等により調節することができる。
 一般式(1)において、R1~R4の分岐数の平均値は0.75~1.25である。ここで、R1~R4の分岐数の平均値とは、モリブデンジチオカルバメートのR1~R4のそれぞれのアルキル基の分岐の数の値の平均値である。例えば、一般式(1)において、R1~R4の分岐数がそれぞれ1である場合のR1~R4の分岐数の平均値は1.0であり、また、R1~R3の分岐数がそれぞれ1であり、R4の分岐数が0である場合のR1~R4の分岐数の平均値は0.75であり、また、R1とR2の分岐数がそれぞれ1であり、R3とR4の分岐数がそれぞれ2である場合のR1~R4の分岐数の平均値は1.5である。R1~R4の分岐数の平均値がこの範囲にあることで、使用時に分解して二硫化モリブデンに類似した皮膜を形成する条件及び速度を適切な範囲に設定することができ、本発明のモリブデンジチオカルバメートは幅広い使用条件下で優れた摩擦低減効果を発揮することができる。これらの中でも、R1~R4の分岐数の平均値は1.0であることがより好ましく、さらには、R1~R4の分岐数がそれぞれ1であることが好ましい。
 一般式(1)において、X1~X4は酸素原子又は硫黄原子を表す。潤滑性に優れることから、X1~X4のうち2~3つが硫黄原子で残りが酸素原子であることが好ましく、硫黄原子と酸素原子でそれぞれ2であることが更に好ましく、X1~X2が硫黄原子でX3~X4が酸素原子であることが最も好ましい。
 一般式(1)で表されるモリブデンジチオカルバメートとしては、摩擦低減効果の観点から、アルキル基が対称型のモリブデンジチオカルバメートであってもよく、アルキル基が非対称型のモリブデンジチオカルバメートであってもよい。対称型のモリブデンジチオカルバメートとしては、R1~R4がすべて同一のアルキル基であるモリブデンジチオカルバメート、又は、R1とR2が同一のアルキル基であり、R3とR4がR1とR2とは異なる同一のアルキル基であるモリブデンジチオカルバメートが挙げられる。非対称型のモリブデンジチオカルバメートとしては、R1~R4がすべて異なるアルキル基であるモリブデンジチオカルバメート、R1~R3が同一のアルキル基でありR4が異なるアルキル基であるモリブデンジチオカルバメート、少なくともR1とR2が異なるアルキル基であるか、R3とR4が異なるアルキル基であるモリブデンジチオカルバメート(例えば、R1とR3が同一のアルキル基であり、R2とR4が同一のアルキル基であり、R1とR2が異なるアルキル基であるモリブデンジチオカルバメート)等が挙げられる。これらの中でも、摩擦低減効果の観点から、R1とR2が同一のアルキル基であり、R3とR4が同一のアルキル基(このときR1とR3は同一でも異なっていてもよい)である対称型のモリブデンジチオカルバメートであることが好ましい。
 一般式(1)で表されるモリブデンジチオカルバメートを製造する方法は、公知のモリブデンジチオカルバメートの製造方法において、アルキル基の構造が特定の構造となるように原料を適宜変更して製造する方法が挙げられる。例えば、三酸化モリブテン、モリブデン酸のアルカリ金属塩などのモリブデン酸塩等の6価のモリブデン化合物と、水硫化アルカリ又は硫化アルカリとの水溶液又は水懸濁液に、還元剤を添加して、モリブデンを還元処理した後、下記一般式(2)で表されるジアルキルアミン及び必要に応じて下記一般式(3)で表されるジアルキルアミンを含んでなるジアルキルアミン原料と、二硫化炭素とを加えて還元処理されたモリブデン化合物と反応させることにより製造できる。
Figure JPOXMLDOC01-appb-C000004
(式中、R11は炭素数10~14の直鎖又は分岐アルキル基であり、R12は炭素数8~14の直鎖又は分岐アルキル基であり、R13~R14は同一であっても異なっていてもよい炭素数8~9の直鎖又は分岐アルキル基である。)
 モリブデン酸塩としては、モリブデン酸ナトリウム、モリブデン酸カリウム、モリブデン酸ヘテロポリ酸等を挙げられ、水硫化アルカリとしては硫化ナトリウム、硫化カリウム、硫化アンモニウム等が挙げられる。
 水硫化アルカリとしては、例えば水硫化ナトリウム、水硫化カリウム等が挙げられ、硫化アルカリとしては、例えば、硫化ナトリウム、硫化カリウム、硫化アンモニウム等が挙げられる。これらの中でも、反応性が良好で、工業的な入手も容易であることから、硫化アルカリが好ましく、硫化ナトリウムが更に好ましい。硫化カリウム、硫化アンモニウム等これらの水溶液や、水酸化アルカリ水溶液中に硫化ガスを導入して得られる硫化アルカリ水溶液も同様に用いることができる。本発明のモリブデンジチオカルバメートが収率よく製造できることから、水硫化アルカリ又は硫化アルカリの使用量は、6価のモリブデン化合物のモリブデン1モルに対して、1~2モルが好ましく、1.2~1.8モルが更に好ましい。
 還元剤としては、例えば、ヨウ化水素、硫化水素、水素化ホウ素ナトリウム等の水素化物;亜硫酸ナトリウム、二チオン酸ナトリウム、亜二チオン酸ナトリウム(ハイドロサルファイド)、亜硫酸水素ナトリウム、ピロ亜硫酸ナトリウム、チオ硫酸ナトリウム等の低級酸素酸の塩;硫化ナトリウム、ポリ硫化ナトリウム、硫化アンモニウム等の硫黄化合物;鉄(II)、スズ(II)、チタン(III)、クロム(II)等の低原子価状態にある金属の塩類;ホルムアルデヒド、アセトアルデヒド等のアルデヒド類、ヒドラジン、ボラン、ジボラン、ギ酸、シュン酸、アスコルビン酸等が挙げられる。反応性が良好で、工業的な入手が容易であることから、低級酸素酸のアルカリ金属塩が好ましく、亜硫酸ナトリウム、亜硫酸水素ナトリウムが更に好ましい。本発明のモリブデンジチオカルバメートが収率よく製造できることから、還元剤の使用量は、6価のモリブデン化合物のモリブデン1モルに対して、0.05~2モルが好ましく、0.1~1モルが更に好ましい。
 一般式(2)で表されるジアルキルアミンは、R11が炭素数10~14の直鎖又は分岐アルキル基であり、R12が炭素数8~14の直鎖又は分岐アルキル基である。これらの中でも、得られるモリブデンジチオカルバメートが幅広い使用条件下で優れた摩擦低減効果を発揮できる観点から、R11は炭素数10~13の直鎖又は分岐アルキル基であることが好ましく、炭素数13の直鎖又は分岐アルキル基であることがさらに好ましく、炭素数13の分岐アルキル基であることがさらにより好ましい。このとき、R11とR12は同一であっても異なっていてもよいが、得られるモリブデンジチオカルバメートが優れた摩擦低減効果を発揮できる観点から、R11とR12が同一であること、すなわちR11及びR12のいずれもが同一の炭素数10~14の直鎖又は分岐アルキル基であることが好ましい。
 一般式(3)で表されるジアルキルアミンは、R13~R14が同一であっても異なっていてもよい炭素数8~9の直鎖又は分岐アルキル基である。得られるモリブデンジチオカルバメートが優れた摩擦低減効果を発揮できる観点から、R13~R14が同一であっても異なっていてもよい炭素数8の直鎖又は分岐アルキル基であることが好ましい。
 一般式(2)や一般式(3)で表されるジアルキルアミンは、公知の方法により製造してもよく、また市販品を用いてもよい。このうち、分岐数が1であるアルキル基を有するジアルキルアミンの製造方法としては、例えば、日本国の特許公開公報である特開平04-312555号に記載の方法により得られるβ-分岐アルキル第一級アミンや日本国の特許公開公報である特開2013-139416号に記載の方法により得られるβ分岐アルコールを原料として、日本国の特許公開公報である特開平02-202855号に記載の製造方法により製造する方法等が挙げられる。また、高分岐アルキル基を有するジアルキルアミンの製造方法としては例えば、国際公開第2012/141855号に対応する特表2014-514407号に記載のジトリデシルアミンの製造方法を参照することができる。すなわち具体的には、ブチレン、エチレン、プロピレンといった軽質オレフィン供給原料をオリゴマー化することで、分岐数が2~4程度の分岐アルキル基を有するジアルキルアミン原料を得ることができ、例えば、ブチレンを主体とした原料をオリゴマー化することで、炭素数が13の分岐数が2~4である分岐アルキル基からなるジアルキルアミンを主成分とする原料を得ることができる。
 一般式(1)で表されるモリブデンジチオカルバメートの製造に用いるジアルキルアミン原料としては、一般式(2)で表されるジアルキルアミン及び必要に応じて一般式(3)で表されるジアルキルアミンを含むが、得られるモリブデンジチオカルバメートが幅広い使用条件下で優れた摩擦低減効果を発揮できる観点から、一般式(2)で表されるジアルキルアミンと一般式(3)で表されるジアルキルアミンとをモル比で、100~25:0~75の比で含むことが好ましく、100~50:0~50の比で含むことがより好ましく、100~75:0~25の比で含むことがさらに好ましく、実質的に一般式(2)で表されるジアルキルアミンのみからなることが最も好ましい。
 一般式(1)で表されるモリブデンジチオカルバメートを収率よく製造できることから、ジアルキルアミン原料と二硫化炭素とは同じモル数で使用することが好ましく、ジアルキルアミン原料と二硫化炭素の使用量は6価のモリブデン化合物のモリブデン1モルに対して、それぞれ0.9~2モルであることが好ましく、1~1.5モルであることが更に好ましい。また、ジアルキルアミン原料と二硫化炭素はそれぞれ、反応に用いる全量を一度に加えて反応させてもよく、2回以上に分けて反応に用いる全量を加えて反応させてもよい。
 一般式(1)で表されるモリブデンジチオカルバメートを収率よく製造できることから、例えば、ジアルキルアミン原料と二硫化炭素とを添加した後の反応温度は20~110℃が好ましく、60~100℃が更に好ましく、また反応時間は2~15時間程度であることが好ましい。反応終了後、反応液を硫酸等で中和した後、生成物を分離することにより、一般式(1)で表されるモリブデンジチオカルバメートを得ることができる。
 本発明のモリブデンジチオカルバメート組成物は、一般式(1)で表される単一又は複数のモリブデンジチオカルバメートのみからなってもよく、一般式(1)で表されるモリブデンジチオカルバメートと異なる構造を有するその他のモリブデンジチオカルバメート(以下、その他のモリブデンジチオカルバメートという)をさらに含んでいてもよい。このとき、その他のモリブデンジチオカルバメートの種類に制限はなく、例えば、日本国の特許公開公報である特開昭62-081396号公報や日本国の特許公開公報である特開平8-176579号公報等にて製造されたモリブデンジチオカルバメートに例示されるような下記の一般式(4)で表されるモリブデンジチオカルバメート等が挙げられる。
Figure JPOXMLDOC01-appb-C000005
(式中、R5~R8はそれぞれ同一であっても異なっていてもよい炭素数3~18の直鎖又は分岐アルキル基を表し、X5~X8はそれぞれ独立して酸素原子又は硫黄原子を表す(ただしR5が炭素数10~14の直鎖又は分岐アルキル基を表し、R6~R8がそれぞれ同一であっても異なっていてもよい炭素数8~14の直鎖又は分岐アルキル基を表し、R5~R8の分岐数の平均値が0.75~1.25であり、X5~X8がそれぞれ独立して酸素原子又は硫黄原子を表す場合を除く)。)
 本発明のモリブデンジチオカルバメート組成物に含まれるその他のモリブデンジチオカルバメートとしては、一般式(1)で表されるモリブデンジチオカルバメートと共に使用する際の摩擦低減効果の均一性を高め、組成物として優れた摩擦低減効果を発揮することができる観点から、一般式(4)で表わされるモリブデンジチオカルバメートであることが好ましい。一般式(4)で表わされるモリブデンジチオカルバメートの中でも、モリブデンジチオカルバメート組成物の摩擦低減効果の観点から、R5~R8がそれぞれ同一であっても異なっていてもよい炭素数8~13の直鎖又は分岐アルキル基であるものがより好ましく、R5~R8がそれぞれ同一であっても異なっていてもよい炭素数8又は13の直鎖又は分岐アルキル基であるものがさらにより好ましい。一般式(4)で表わされるモリブデンジチオカルバメートは、公知の方法により製造することができる。
 本発明のモリブデンジチオカルバメート組成物は、摩擦低減効果の均一性を高め、よって組成物として優れた摩擦低減効果を発揮することができる観点から、組成物中に一般式(1)で表されるモリブデンジチオカルバメートを少なくとも25モル%以上含むことが好ましく、50モル%以上含むことがより好ましく、75モル%以上含むことがさらに好ましく、90モル%以上含むことが特に好ましい。より好ましくは、本発明のモリブデンジチオカルバメート組成物は、一般式(1)で表されるモリブデンジチオカルバメートと一般式(4)で表されるモリブデンジチオカルバメートとのモル比率が25~100:75~0からなる組成物であることが好ましく、50~100:50~0からなる組成物であることがより好ましく、75~100:25~0からなる組成物であることがさらに好ましく、90~100:10~0からなる組成物であることが特に好ましい。
 本発明のモリブデンジチオカルバメート組成物の、一般式(1)で表されるモリブデンジチオカルバメートのR1~R4の分岐数と、その他のモリブデンジチオカルバメートに含まれるアルキル基の分岐数(例えば、一般式(4)で表されるモリブデンジチオカルバメートのR5~R8の分岐数)及びそれらのモル比率によって算出される、モリブデンジチオカルバメート組成物中の全アルキル基の分岐数の平均値は特に限定されないが、モリブデンジチオカルバメート組成物が使用時に分解して二硫化モリブデンに類似した皮膜を形成する条件及び速度を適切な範囲に設定することができ、幅広い条件下で優れた摩擦低減効果を発揮する観点から、組成物中の全アルキル基の分岐数の平均値は、0.25~2.5であることが好ましく、0.30~2.0であることがより好ましく、0.40~1.75であることがさらに好ましく、0.50~1.50であることがさらにより好ましく、0.60~1.40であることが特に好ましい。モリブデンジチオカルバメート組成物中の全アルキル基の分岐数の平均値は、一般式(1)で表されるモリブデンジチオカルバメートのR1~R4の分岐数、その他のモリブデンジチオカルバメートのアルキル基の分岐数、及びそれらの組成物中の含有比率を調節することで調節することができる。
 なお、「全アルキル基の分岐数の平均値」は、一般式(1)で表されるモリブデンジチオカルバメートのR1~R4及びその他のモリブデンジチオカルバメートの各アルキル基が有する分岐鎖の数の平均値を表す。
 本発明のモリブデンジチオカルバメート及び本発明のモリブデンジチオカルバメート組成物は、従来のモリブデンジチオカルバメートと比べ、幅広い使用条件下で摩擦損失を低減し、より優れた潤滑性添加剤として有用である。
 本発明のモリブデンジチオカルバメートの製造方法は、6価のモリブデン化合物を還元処理する工程と、分岐数が1である炭素数10~14のアルキル基を有するジアルキルアミンと二硫化炭素とを還元処理されたモリブデン化合物と反応させる工程と、を含むモリブデンジチオカルバメートの製造方法である。このとき、6価のモリブデン化合物の選定、各反応方法及び条件については、前述した方法等の公知の方法を適用することができ、また、必要に応じてその他の原料や追加の操作を含んでいてもよい。
 本発明のモリブデンジチオカルバメートの製造方法に用いる分岐数が1である炭素数10~14のアルキル基を有するジアルキルアミンは、下記一般式(5)で表されるジアルキルアミンである。
Figure JPOXMLDOC01-appb-C000006
(式中、R15は分岐数が1である炭素数10~14のアルキル基であり、R16は炭素数1~18の直鎖アルキル基又は炭素数3~18の分岐アルキル基である。)
 一般式(5)において、R15は分岐数が1である炭素数10~14のアルキル基であり、例えば、分岐数が1である炭素数10のアルキル基、分岐数が1である炭素数11のアルキル基、分岐数が1である炭素数12のアルキル基、分岐数が1である炭素数13のアルキル基、及び分岐数が1である炭素数14のアルキル基が挙げられる。R16は、炭素数1~18の直鎖アルキル基又は炭素数3~18の分岐アルキル基であり、得られるモリブデンジチオカルバメートが幅広い使用条件下で優れた摩擦低減効果を発揮できる観点から、炭素数8~14の直鎖又は分岐アルキル基であることが好ましく、炭素数10~14の直鎖又は分岐アルキル基であることがより好ましい。
 得られるモリブデンジチオカルバメートの使用時の二硫化モリブデンに類似した皮膜を形成する条件及び速度を適切な範囲に設定し、摩擦低減効果を高める観点から、本発明のモリブデンジチオカルバメートの製造方法に用いるジアルキルアミンは、一般式(5)において、R15及びR16は分岐数が1である炭素数10~14のアルキル基であることが好ましい。R15及びR16の分岐数が1である炭素数10~14のアルキル基であるジアルキルアミンとしては、例えば、R15及びR16がそれぞれ同一であっても異なっていてもよい、分岐数が1である炭素数10のアルキル基、分岐数が1である炭素数11のアルキル基、分岐数が1である炭素数12のアルキル基、分岐数が1である炭素数13のアルキル基、及び分岐数が1である炭素数14のアルキル基からなる群から選ばれるアルキル基であるジアルキルアミンが挙げられ、R15とR16は同一のアルキル基であっても異なるアルキル基であってもよい。これらの中でも、R15及びR16が、炭素数が10~14のいずれかであり分岐数が1である同一のアルキル基であるジアルキルアミンであることがより好ましく、R15及びR16が、炭素数13の分岐数が1である同一のアルキル基であるジアルキルアミンであることが特に好ましい。
 また本発明のモリブデンジチオカルバメートの製造方法においては、得られるモリブデンジチオカルバメートが特に幅広い使用条件下で摩擦低減効果を発揮できる観点から、アルキル基の分岐数が1であり、分岐位置がβ位である炭素数10~14のアルキル基を有するジアルキルアミンを用いることが好ましい。アルキル基の分岐数が1であり、分岐位置がβ位である炭素数10~14のアルキル基を有するジアルキルアミンは、一般式(5)で表されるジアルキルアミンのうち、R15及びR16の少なくとも一方が、分岐数が1であり分岐位置がβ位である炭素数10~14のアルキル基であるジアルキルアミンである。分岐数が1であり分岐位置がβ位である炭素数10~14のアルキル基としては、アミノ基のβ位炭素上に分岐(側鎖)を有し、主鎖及び側鎖の炭素数の合計が10~14であるアルキル基であれば特に制限されないが、例えば、炭素数が13の場合、2-メチルドデシル基、2-エチルウンデシル基、2-プロピルデシル基、2-ブチルノニル基、2-ペンチルオクチル基が挙げられる。本発明のモリブデンジチオカルバメートの製造方法においては、分岐数が1であり、分岐位置がβ位である炭素数10~14のアルキル基である1種類のジアルキルアミンを用いてもよく、2種以上を用いてもよい。
 本発明のモリブデンジチオカルバメートの製造方法においては、一般式(5)で表されるジアルキルアミン以外のその他のジアルキルアミン(以下、その他のジアルキルアミンという)を併せて用いてもよい。その他のジアルキルアミンとしては、例えば、2つの炭素数1~7の直鎖又は分岐アルキル基を有するジアルキルアミン、飽和又は不飽和環状アルキル基を有し炭素数が4~18であるアルキル基を有するジアルキルアミン、一般式(2)で表されるジアルキルアミン(ただしR11及びR12の少なくともいずれかが分岐数が1である炭素数10~14のアルキル基であるものを除く)、一般式(3)で表されるジアルキルアミン等が挙げられる。これらの中でも、その他のジアルキルアミンとしては、一般式(2)で表されるジアルキルアミン(ただしR11及びR12の少なくともいずれかが分岐数が1である炭素数10~14のアルキル基であるものを除く)又は、一般式(3)で表されるジアルキルアミンであることが好ましく、具体的には、前述した構造のジアルキルアミンが挙げられる。
 本発明のモリブデンジチオカルバメートの製造方法においては、分岐数が1である炭素数10~14のアルキル基を有するジアルキルアミンと、その他のジアルキルアミンとを、モル比で100~25:0~75の比で用いることが好ましく、100~50:0~50の比で用いることがより好ましく、100~75:0~25の比で用いることがさらに好ましく、実質的に分岐数が1である炭素数10~14のアルキル基を有するジアルキルアミンのみを用いることが特に好ましい。なお本発明においては、ジアルキルアミンの製造方法に起因する微量の異構造体を原料に含む場合、例えば分岐数が1である炭素数10~14のアルキル基を有するジアルキルアミン原料において製造方法に起因する微量の異構造体を含む場合、実質的に主成分であるジアルキルアミンのみからなるジアルキルアミン原料として、具体的には分岐数が1である炭素数10~14のアルキル基を有するジアルキルアミンのみからなるジアルキルアミン原料として扱う。
 本発明のモリブデンジチオカルバメートの製造方法に用いる分岐数が1である炭素数10~14のアルキル基を有するジアルキルアミンは、公知の方法により製造してもよく、また市販品を用いてもよい。同様に、その他のジアルキルアミンについても、公知の方法により製造してもよく、また市販品を用いてもよい。分岐数が1である炭素数10~14のアルキル基を有するジアルキルアミンの製造方法としては、例えば、前述した分岐数が1であるアルキル基を有するジアルキルアミンの製造方法において、炭素数10~14の分岐数が1であるアルコールを原料として用いることで製造する方法が挙げられる。
 本発明のモリブデンジチオカルバメートの製造方法によれば、幅広い使用条件下で摩擦低減効果を発揮できるモリブデンジチオカルバメートを高収率で得ることができる。
 本発明のモリブデンジチオカルバメート又はモリブデンジチオカルバメート組成物(以下まとめて、本発明のモリブデンジチオカルバメートという場合がある)を潤滑性添加剤としての使用態様は特に限定されず、例えば、エンジン油、ギヤ油、タービン油、作動油、難燃性作動液、冷凍機油、コンプレッサー油、真空ポンプ油、軸受油、絶縁油、摺動面油、ロックドリル油、金属加工油、塑性加工油、熱処理油等の潤滑油;軸受用グリース、歯車用グリース、ギヤ用グリース、ジョイント用グリース、ベアリング用グリース等のグリース等に用いられる。
 本発明のモリブデンジチオカルバメートを基油に添加して潤滑油組成物又はグリースとする場合のモリブデンジチオカルバメートの基油への溶解・分散方法は限定されず、例えば、基油にモリブデンジチオカルバメートを添加し、必要に応じて加熱・撹拌することにより溶解させてもよいし、モリブデンジチオカルバメートを基油中に粒子状で分散させる場合は、分散安定性を向上させるために必要に応じて基油への添加前又は添加後にモリブデンジチオカルバメートを微粉砕して分散させてもよい。粒子状のモリブデンジチオカルバメートを基油に分散させる際のモリブデンジチオカルバメートの粒子径は特に限定されないが、例えばレーザー回折光散乱法により測定される50%粒子径が10~450nmであることが好ましい。また粒子状のモリブデンジチオカルバメートを微粉砕する方法も特に限定されないが、例えば、分散安定性が良好で50%粒子径の小さい分散物が得られることから、基油にモリブデンジチオカルバメートを添加してからローラーミル、ハンマーミル、回転ミル、振動ミル、遊星ミル、アトライター、ビーズミル等により微粉砕する方法等を用いることができる。
 モリブデンジチオカルバメートを基油に分散させる場合、例えば、基油に対しできるだけ多量のモリブデンジチオカルバメートを添加して分散させた後、目標とする濃度になるように基油で希釈してもよい。ただし、モリブデンジチオカルバメートの量が過剰であると、増粘して分散が不十分になる可能性があることから、ローラーミル、ハンマーミルでは、基油100質量部に対して、モリブデンジチオカルバメートを、好ましくは10~180質量部、より好ましくは20~150質量部添加し、回転ミル、振動ミル、遊星ミル、アトライター、ビーズミルでは、基油100質量部に対して、モリブデンジチオカルバメートを、好ましくは1~40質量部、より好ましくは1.5~30質量部添加する。
 本発明のモリブデンジチオカルバメートを基油に添加して潤滑油組成物に用いる場合、モリブデンジチオカルバメートの特性を発揮しやすくするためには、基油と添加剤を含めた潤滑油組成物全量に対してモリブデンジチオカルバメート由来のモリブデン含量が50~3,000質量ppmとなる量であることが好ましく、100~2,500質量ppmとなる量であることがより好ましく、300~2,000質量ppmとなる量であることが更に好ましく、500~1,800質量ppmとなる量であることが更により好ましく、特に、摩擦低減効果を期待して使用する場合は、600~1,500ppmとなる量が最も好ましい。50ppm未満であると摩擦低減効果が見られない場合があり、3,000ppmより多いと添加量に見合った摩擦低減効果が得られない場合や、基油への溶解性が著しく低下する場合がある。このとき、潤滑油組成物中にはモリブデンジチオカルバメート以外の添加剤(例えば酸化防止剤、分散剤として等)由来のモリブデンを含んでいてもよく、また潤滑油組成物中の総モリブデン含量に特に制限はないが、潤滑油組成物中の総モリブデン含量は、50~4,000質量ppmが好ましく、100~3,000質量ppmがより好ましく、300~2,500質量ppmが更に好ましく、500~2,000質量ppmが更により好ましく、600~1,800ppmが最も好ましい。
 潤滑油組成物に用いる基油としては、特に制限はなく、使用目的や条件に応じて適宜、鉱物基油、化学合成基油、動植物基油及びこれらの混合基油等から選ぶことができる。ここで、鉱物基油としては、例えば、パラフィン基系原油、ナフテン基系原油、中間基系原油、芳香族基系原油があり、更にこれらを常圧蒸留して得られる留出油、或いは常圧蒸留の残渣油を減圧蒸留して得られる留出油があり、また更にこれらを常法に従って精製することによって得られる精製油、具体的には溶剤精製油、水添精製油、脱ロウ処理油及び白土処理油等が挙げられる。
 化学合成基油としては、例えば、ポリ-α-オレフィン、ポリイソブチレン(ポリブテン)、モノエステル、ジエステル、ポリオールエステル、ケイ酸エステル、ポリアルキレングリコール、ポリフェニルエーテル、シリコーン、フッ素化化合物、アルキルベンゼン及びGTL基油等が挙げられる。これらの中でも、ポリ-α-オレフィン、ポリイソブチレン(ポリブテン)、ジエステル及びポリオールエステル等は汎用的に使用することができる。ポリ-α-オレフィンとしては例えば、1-ヘキセン、1-オクテン、1-ノネン、1-デセン、1-ドデセン及び1-テトラデセン等をポリマー化又はオリゴマー化したもの、或いはこれらを水素化したもの等が挙げられる。ジエステルとしては例えば、グルタル酸、アジピン酸、アゼライン酸、セバシン酸及びドデカン二酸等の2塩基酸と、2-エチルヘキサノール、オクタノール、デカノール、ドデカノール及びトリデカノール等のアルコールのジエステル等が挙げられる。ポリオールエステルとしては例えば、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール及びトリペンタエリスリトール等のポリオールと、カプロン酸、カプリル酸、ラウリン酸、カプリン酸、ミリスチン酸、パルミチン酸、ステアリン酸及びオレイン酸等の脂肪酸とのエステル等が挙げられる。
 動植物基油としては、例えば、ヒマシ油、オリーブ油、カカオ脂、ゴマ油、コメヌカ油、サフラワー油、大豆油、ツバキ油、コーン油、ナタネ油、パーム油、パーム核油、ひまわり油、綿実油及びヤシ油等の植物性油脂、牛脂、豚脂、乳脂、魚油及び鯨油等の動物性油脂が挙げられる。上記に挙げたこれらの各種基油は、一種を用いてもよく、二種以上を適宜組み合せて用いてもよい。また、モリブデンジチオカルバメートの特性が発揮しやすいことから、少なくとも鉱物基油又は化学合成基油を含む基油を使用することが好ましく、パラフィン系の高度精製鉱物油、ポリ-α-オレフィン系又は、GTL系の化学合成基油を含む基油ならびにこれらの混合基油を使用することがより好ましい。このとき、基油の全量のうちこれらの基油を50質量%以上含むことで、モリブデンジチオカルバメートの特性をより発揮できるため好ましく、基油の全量のうち90質量%以上含むことがさらに好ましい。
 潤滑油組成物の基油の粘度は、モリブデンジチオカルバメートの分散安定性の点からは高い方が好ましいが、あまりに高い場合にはモリブデンジチオカルバメートの分散が困難になる場合があることから、基油の粘度は、40℃の動粘度が1~800mm2/sであることが好ましく、3~250mm2/sであることが更に好ましく、8~80mm2/sであることが最も好ましい。なお本発明において、動粘度は、JIS K 2283に記載の方法により測定して得られる値である。
 潤滑油組成物には、本発明の効果を損なわない範囲であれば、公知の潤滑油添加剤を使用目的に応じて適宜使用することが可能であり、例えば、金属系清浄剤、無灰型分散剤、耐摩耗剤、酸化防止剤、リン系耐摩耗剤又はリン系酸化防止剤、硫黄系極圧剤、チオリン酸系極圧剤、油性向上剤、防錆剤、粘度指数向上剤、金属不活性化剤、消泡剤、固体潤滑剤等が挙げられる。これら添加剤は、1種又は2種以上の化合物を使用してもよい。
〔金属系清浄剤〕
 金属系清浄剤としては、アルカリ土類金属スルホネート、アルカリ土類金属フェネート、アルカリ土類金属サリシレート、アルカリ土類金属ホスホネート等が使用されており、アルカリ土類金属としては、マグネシウム、カルシウム、バリウム等が挙げられる。これらの中でも、カルシウム系清浄剤及びマグネシウム系清浄剤からなる群から選択される少なくとも1つの金属系清浄剤を、カルシウム原子とマグネシウム原子の合計で、潤滑油組成物全量に対し、0.05~0.4質量%で含有することが好ましい。金属系清浄剤は、TBN(ASTM D2896に準拠する全塩基価(Total Base Number))が、20~600mgKOH/gのものが知られているが、TBNが低すぎる場合は、多量に添加する必要があり、TBNが高すぎる場合は、(A)成分の潤滑性の持続に悪影響が出る場合がある。(C)成分のTBNは、50~500mgKOH/gであることが好ましく、100~400mgKOH/gであることがさらに好ましく、100~200mgKOH/gであることが最も好ましい。
〔無灰型分散剤〕
 潤滑油組成物には一般に、スラッジの分散及び可溶化、スラッジ・デポジット(スラッジの分安定な前駆体)の可溶化等により、スラッジの堆積を防ぐために無灰型分散剤が配合されている。無灰型分散剤としては、アルケニル無水コハク酸とポリアミン化合物との縮合反応によって得られるコハク酸イミド型分散剤、アルケニル無水コハク酸とポリオール化合物との縮合反応によって得られるコハク酸エステル型分散剤、アルケニル無水コハク酸とアルカノールアミンとの縮合反応によって得られるコハク酸エステルアミド型分散剤、アルキルフェノールとポリアミンをホルムアルデヒドで縮合させて得られるマンニッヒ塩基系分散剤及びこれらのホウ酸変性物が挙げられる。潤滑油組成物は、無灰型分散剤を、潤滑油組成物全量に対し0.5~10質量%含有することが好ましい。
〔亜鉛ジチオフォスフェート化合物〕
 潤滑油組成物には、腐食防止、耐荷重性の向上、摩耗防止能等を目的として亜鉛ジチオフォスフェート化合物が配合されていてもよく、亜鉛ジチオフォスフェート化合物を潤滑油組成物全量に対し、リン原子として200~800質量ppm含有することが好ましい。亜鉛ジチオフォスフェート化合物の含量がリン原子として200質量ppmよりも少ないと腐食防止、耐荷重性の向上、摩耗防止能効果が十分得られない場合があり、800質量ppmよりも多いと、排ガス浄化触媒を被毒したりする場合がある。亜鉛ジチオフォスフェート化合物の含有量は、350~800質量ppmであることが更に好ましく、500~800質量ppmであることが最も好ましい。
〔酸化防止剤〕
 潤滑油組成物用の酸化防止剤として、アミン系酸化防止剤、フェノール系酸化防止剤、フェノチアジン系酸化防止剤、チオエーテル系酸化防止剤、亜リン酸エステル系酸化防止剤等が配合されていてもよく、好ましくは、フェノール系酸化防止剤及びアミン系酸化防止剤からなる群からなる少なくとも1つの酸化防止剤を潤滑油組成物全量に対し、0.1~10質量%で配合してもよい。
〔リン系耐摩耗剤又はリン系酸化防止剤〕
 リン系耐摩耗剤又はリン系酸化防止剤としては、例えば、有機ホスフィン、有機ホスフィンオキシド、有機ホスフィナイト、有機ホスホナイト、有機ホスフィネート、有機ホスファイト、有機ホスホネート、有機ホスフェート、有機ホスホロアミデート等が挙げられる。リン系耐摩耗剤又はリン系酸化防止剤の好ましい配合量は、その合計量が潤滑油組成物全体に対して0.1~20質量%程度である。
〔硫黄系極圧剤〕
 硫黄系極圧剤としては、例えば、硫化油脂、硫化鉱油、有機モノ又はポリスルフィド、ポリオレフィンの硫化物、1,3,4―チアジアゾール誘導体、チウラムジスルフィド、ジチオカルバミン酸エステル等が挙げられる。硫黄系極圧剤の好ましい配合量は、潤滑油組成物全体に対して0.1~20質量%程度である。
〔チオリン酸系極圧剤〕
 チオリン酸系極圧剤としては、例えば、有機トリチオホスファイト、有機チオホスフェート等が挙げられる。チオリン酸系極圧剤の好ましい配合量は、潤滑油組成物全体に対して0.1~20質量%程度である。但し、排ガス浄化触媒を被毒する場合があることから、組成物全体のリン含量が1000質量ppm、硫黄含有量が5000質量ppmをそれぞれ超えないことが好ましい。
〔油性向上剤〕
 油性向上剤としては、例えば、脂肪酸、油脂或いはこれらの水素添加物又は部分ケン化物、エポキシ化エステル、ヒドロキシステアリン酸の重縮合物又は該重縮合物と脂肪酸とのエステル、高級アルコール、高級アミド、グリセリド、ポリグリセリンエステル、ポリグリセリンエーテル、及び上記の化合物にα-オレフィンオキシドを付加したもの等が挙げられる。油性向上剤の好ましい配合量は、潤滑油組成物全体に対して0.05~15質量%程度である。油性向上剤の配合量が0.05質量%未満では、充分な添加効果が得られない場合があり、15質量%を超えると、配合量に見合う効果は得られず、更に粘度指数等の粘度特性を低下させる場合がある。
〔防錆剤〕
 防錆剤としては、例えば、酸化パラフィンワックスカルシウム塩、酸化パラフィンワックスマグネシウム塩、牛脂脂肪酸アルカリ金属塩、アルカリ土類金属塩又はアミン塩、アルケニルコハク酸又はアルケニルコハク酸ハーフエステル(アルケニル基の分子量は100~300程度)、ソルビタンモノエステル、ペンタエリスリトールモノエステル、グリセリンモノエステル、ノニルフェノールエトキシレート、ラノリン脂肪酸エステル、ラノリン脂肪酸カルシウム塩等が挙げられる。防錆剤の好ましい配合量は、防錆効果が充分に発揮される範囲として、潤滑油組成物全体に対して0.1~15質量%程度である。
〔粘度指数向上剤〕
 粘度指数向上剤としては、例えば、ポリ(C1~18)アルキルメタクリレート、(C1~18)アルキルアクリレート/(C1~18)アルキルメタクリレート共重合体、ジエチルアミノエチルメタクリレート/(C1~18)アルキルメタクリレート共重合体、エチレン/(C1~18)アルキルメタクリレート共重合体、ポリイソブチレン、ポリアルキルスチレン、エチレン/プロピレン共重合体、スチレン/マレイン酸エステル共重合体、スチレン/マレイン酸アミド共重合体、スチレン/ブタジエン水素化共重合体、スチレン/イソプレン水素化共重合体等が挙げられる。平均分子量は10,000~1,500,000程度である。粘度指数向上剤の好ましい配合量は、潤滑油組成物全体に対して0.1~20質量%程度である。
〔金属不活性化剤〕
 金属不活性化剤としては、例えば、N,N’-サリチリデン-1,2-プロパンジアミン、アリザリン、テトラアルキルチウラムジスルフィド、ベンゾトリアゾール、ベンゾイミダゾール、2-アルキルジチオベンゾイミダゾール、2-アルキルジチオベンゾチアゾール、2-(N,N-ジアルキルチオカルバモイル)ベンゾチアゾール、2,5-ビス(アルキルジチオ)-1,3,4-チアジアゾール、2,5-ビス(N,N-ジアルキルチオカルバモイル)-1,3,4-チアジアゾール等が挙げられる。金属不活性化剤の好ましい配合量は、潤滑油組成物全体に対して0.01~5質量%程度である。
〔消泡剤〕
 消泡剤としては、例えば、ポリジメチルシリコーン、トリフルオロプロピルメチルシリコーン、コロイダルシリカ、ポリアルキルアクリレート、ポリアルキルメタクリレート、アルコールエトキシ/プロポキシレート、脂肪酸エトキシ/プロポキシレート、ソルビタン部分脂肪酸エステル等が挙げられる。消泡剤の好ましい配合量は、潤滑油組成物全体に対して1~1000質量ppm程度である。
〔固体潤滑剤〕
 固体潤滑剤としては、例えば、グラファイト、二硫化モリブデン、ポリテトラフルオロエチレン、脂肪酸アルカリ土類金属塩、雲母、二塩化カドミウム、二ヨウ化カドミウム、フッ化カルシウム、ヨウ化鉛、酸化鉛、チタンカーバイド、窒化チタン、ケイ酸アルミニウム、酸化アンチモン、フッ化セリウム、ポリエチレン、ダイアモンド粉末、窒化ケイ素、窒化ホウ素フッ化炭素、メラミンイソシアヌレート等が挙げられる。固体潤滑剤の好ましい配合量は、潤滑油組成物全体に対して0.005~2質量%程度である。0.005質量%未満では添加効果は得られず、2質量%を超えると、エンジン油の流動性に悪影響を与える場合がある。
 本発明のモリブデンジチオカルバメートを潤滑性添加剤として用いた潤滑油組成物は、内燃機関用潤滑油(例えば、自動車やオートバイ等のガソリンエンジン油、ディーゼルエンジン油等)、工業用潤滑油(例えば、ギヤ油、タービン油、油膜軸受油、冷凍機用潤滑油、真空ポンプ油、圧縮用潤滑油、多目的潤滑油等)等に使用することができる。中でも、本発明の効果が得られやすいことから、ガソリンエンジンやディーセルエンジン等の内燃機関用潤滑油用の潤滑性添加剤として使用することが好ましい。
 本発明のモリブデンジチオカルバメートを基油に添加してグリース組成物とする場合は、必要に応じて、公知の添加剤を併用してもよい。添加剤としては、アミン系酸化防止剤、フェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤等の酸化防止剤;カルシウム、マグネシウム、バリウムなどのスルホネート、フェネート、サリシレート、ホスフェート及びこれらの過塩基性塩等の清浄剤;高級アルコール類、高級脂肪酸類、高級脂肪酸グリセリンエステル類、高級脂肪酸アミド類、高級アルキルアミン類等の油性向上剤;アルケニルコハク酸イミド等の分散剤;リン酸エステル、亜鉛ジアルキルジチオフォスフェート(ZnDTP)、亜鉛ジアルキルジチオカルバメート等の極圧剤;ジアルキルジチオフォスフェート、モリブデン長鎖アミン塩、モリブデンアルケニルコハク酸イミド錯体等の他の有機モリブデン化合物;粘度指数向上剤、流動点降下剤、防錆剤、腐食防止剤、消泡剤等が挙げられる。またこれらの添加剤は、本発明のモリブデンジチオカルバメートと配合し、添加剤組成物としてから、グリースに使用してもよい。
 本発明のモリブデンジチオカルバメートを基油に添加してグリース組成物とする場合の基油としては、例えば、潤滑油組成物の場合に例示した基油が挙げられる。グリース組成物に使用する基油としては、モリブデンジチオカルバメートの潤滑性向上効果が出やすいことから、少なくとも鉱物油又は炭化水素系合成油を含むことが好ましく、パラフィン系の高度精製鉱物油、ポリ-α-オレフィン系又はGTL系の化学合成基油ならびにこれらの混合基油を含む基油を使用することが更に好ましい。このとき、基油の全量のうちこれらの基油を50質量%以上含むことで、モリブデンジチオカルバメートの特性をより発揮できるため好ましく、基油の全量のうち90質量%以上含むことがさらに好ましい。
 本発明のモリブデンジチオカルバメートを基油に添加してグリース組成物とする場合、増稠剤を更に含有してもよい。増稠剤としては、石鹸系又はコンプレックス石鹸系増稠剤、有機非石鹸系増稠剤、無機非石鹸系増稠剤等が挙げられる。なお、基油と増稠剤からなり、他の添加剤を含有しないグリースを基グリースという場合がある。
 石鹸系増稠剤としては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、12-ヒドロキシステアリン酸、アラキン酸、ベヘン酸、ゾーマリン酸、オレイン酸、リノール酸、リノレン酸、リシノレイン酸等の高級脂肪酸とリチウム、ナトリウム、カリウム、アルミニウム、バリウム、カルシウム等の塩基を反応させた石鹸や、上記脂肪酸と塩基に更に酢酸、安息香酸、セバシン酸、アゼライン酸、リン酸、ホウ酸等を反応させたコンプレックス石鹸増稠剤等が挙げられる。
 有機非石鹸系増稠剤としては、例えば、テレフタレメート系増稠剤、ウレア系増稠剤、ポリテトラフルオロエチレン、フルオロ化エチレン-プロピレン共重合体等のフッ素系等が挙げられるが、ウレア系増稠剤が好ましい。ウレア系増稠剤としては、例えば、モノイソシアネートとモノアミンを反応させたモノウレア系化合物、ジイソシアネートとモノアミンを反応させたジウレア系化合物、ジイソシアネートとモノアミンとモノオールを反応させたウレアウレタン系化合物、ジイソシアネートとジアミンとモノイソシアネートを反応させたテトラウレア系化合物等が挙げられる。
 本発明のモリブデンジチオカルバメートのグリース組成物に対する添加量があまりに少ない場合は十分な摩擦低減性及び磨耗防止性が得られず、またあまりに多い場合には、添加量に見合う性能の向上が得られないだけでなく、グリース組成物の物性に悪影響を与える場合がある。本発明のモリブデンジチオカルバメートの添加量は、グリース組成物全量に対して、0.1~10質量%が好ましく、0.2~7質量%が更に好ましく、0.3~5質量%が最も好ましい。
 以下、実施例により本発明を更に具体的に説明する。尚、以下の実施例中、%は特に記載が無い限り質量基準である。
<実施例1> 
 攪拌機、温度計、窒素管及び還流冷却器を取り付けたフラスコに、三酸化モリブデン144g(1.00モル)を水500mlに懸濁させ攪拌した。これに30%硫化ソーダ水溶液280g(1.50モル)を加えて溶解させた後、無水重亜硫酸ソーダ24g(0.13モル)を添加した。次いで、ジアルキルアミン原料として、ジ-トリデシルアミン(トリデシル基は、β位に分岐を有する分岐数1のトリデシル基である)400g(1.05モル)及び二硫化炭素80g(1.05モル)を常温で加えて2時間反応させた後、35%希硫酸154g(0.55モル)で中和し、80℃で5時間還流させた。これを冷却して水層を除去した後、温水で洗浄し、脱水、ろ過して茶褐色粘稠液体560gを得た。ハンドリング改善のためにナフテン油で希釈し、Mo元素含有比率が9.8%のサンプルを得た。得られたモリブデンジチオカルバメートは、一般式(1)で表され、R1=R2=R3=R4=分岐数1のトリデシル基であり、X1~X4が酸素原子:硫黄原子を2:2のモル比率で含有する構造のモリブデンジチオカルバメートであった。
<実施例2> 
 ジアルキルアミン原料として、ジ-トリデシルアミン(トリデシル基は、β位に分岐を有する分岐数1のトリデシル基である)200g(0.53モル)とジ-2-エチルヘキシルアミン127g(0.53モル)とを用いた以外は実施例1と同様の方法によりモリブデンジチオカルバメートを製造した。得られたモリブデンジチオカルバメートは、一般式(1)又は一般式(4)で表される下記3種類のモリブデンジチオカルバメートの下記モル比率の混合物(それぞれ、X1~X4又はX5~X8が酸素原子:硫黄原子を2:2のモル比率で含有する)であり、本発明のモリブデンジチオカルバメートを75モル%含有するモリブデンジチオカルバメート組成物(全アルキル基の分岐数の平均値は1.0である)であり、Mo元素含有比率は9.9%であった。
 25% R1=R2=R3=R4=分岐数1のβ分岐トリデシル基
 50% R1=R2=分岐数1のβ分岐トリデシル基、
     R3=R4=分岐数1の2-エチルヘキシル基
 25% R5=R6=R7=R8=分岐数1の2-エチルヘキシル基
<比較例1> 
 ジアルキルアミン原料として、日本国特許公開公報である特開昭62-081396号に記載のジ-イソトリデシルアミン(イソトリデシル基は、分岐数2のイソトリデシル基60モル%と分岐数3のイソトリデシル基40モル%からなる)を用いた以外は実施例1と同様の方法によりモリブデンジチオカルバメートを製造した。得られたモリブデンジチオカルバメートは、一般式(4)で表され、R5=R6=R7=R8=分岐数2又は3のイソトリデシル基であり、X5~X8が酸素原子:硫黄原子を2:2のモル比率で含有する構造のモリブデンジチオカルバメート組成物(全アルキル基の分岐数の平均値は2.4)であり、Mo元素含有比率は10.0%であった。
<比較例2>
 ジアルキルアミン原料として、ジ-2-エチルヘキシルアミンとジ-イソトリデシルアミン(イソトリデシル基は、分岐数2のイソトリデシル基60モル%と分岐数3のイソトリデシル基40モル%からなる)とを1:1のモル比で用いた以外は実施例1と同様の方法によりモリブデンジチオカルバメートを製造した。得られたモリブデンジチオカルバメートは、一般式(4)で表される下記3種類のモリブデンジチオカルバメートの下記モル比率のモリブデンジチオカルバメート組成物(全アルキル基の分岐数の平均値は1.7である)であり、X5~X8が酸素原子:硫黄原子を2:2のモル比率で含有し、Mo元素含有比率は9.9%であった。
  25% R5=R6=R7=R8=分岐数2又は3のイソトリデシル基
  50% R5=R6=分岐数2又は3のイソトリデシル基、
      R7=R8=分岐数1の2-エチルヘキシル基
  25% R5=R6=R7=R8=分岐数1の2-エチルヘキシル基
<エンジントルク試験>
 得られたモリブデンジチオカルバメート(MoDTC)を用い、潤滑油組成物1~4及び基油のみからなる基準油を調製し、下記試験条件でエンジントルク試験を行った。各エンジン回転数での電動モーターにかかるトルクをトルクメーターで測定し、基準油にて測定されたトルク値を基準値(トルク低減率0%)として、基準値に対する潤滑油組成物1~4のトルクの減少率(%)をそれぞれ計算により求め、トルク低減率とした。これらの結果を表1及び表2に示す。なお、トルク低減率が高いほど、すなわちトルクが低いほど、摩擦低減特性が高い省燃費油であることを示す。
<試験条件1>
 試験エンジン:直列4気筒1.8L ガソリンエンジン(トヨタ自動車製)
 基油:基油1(トヨタ純正キャッスルモーターオイル SN 0W-20)
     合成油ベース(100℃動粘度 8.7mm2/s)
     MoDTC以外の化合物に由来するMoを100ppm含む
 エンジン回転方法:電動モーターによる回転
 測定条件:無負荷、定置試験
 オイル温度:80℃
 測定エンジン回転数:800rpm、1200rpm、1600rpm
Figure JPOXMLDOC01-appb-T000007
<試験条件2>
 試験エンジン:直列4気筒2.0L ガソリンエンジン(日産自動車製)
 基油:基油2(トヨタ純正キャッスルモーターオイル 0W-16)
    合成油ベース(100℃動粘度 7.1mm2/s)
    MoDTC以外の化合物に由来するMoを100ppm含む
 エンジン回転方法:電動モーターによる回転
 測定条件:無負荷、定置試験
 オイル温度:80℃
 測定エンジン回転数:800rpm、1200rpm、1600rpm
Figure JPOXMLDOC01-appb-T000008
 表1~2から明らかなように、本発明のモリブデンジチオカルバメート及びモリブデンジチオカルバメート組成物は、トルク低減率が従来のモリブデンジチオカルバメートに比べて高く、各種条件下で摩擦低減効果が高いことがわかる。特に、本発明のモリブデンジチオカルバメートは、内燃機関用潤滑油において摩擦低減効果が高いとされるエンジン回転数の低い潤滑領域のみならず、潤滑条件がマイルドであり、最も使用頻度の高い回転領域(1200rpm、1600rpm)でも高いトルク低減率を示すことから、従来のモリブデンジチオカルバメートに比べて幅広い使用条件下で摩擦損失を低減することができ、例えば内燃機関用潤滑油用添加剤として、優れた省燃費効果を発揮することができることがわかる。
 本明細書中に引用される文献は、参照により、それらのすべての開示が、明確に本明細書に援用されているとみなされるべきであって、当業者は、本明細書の文脈に従って、本発明の精神及び範囲を逸脱することなく、それらの文献における関連する開示内容を、本明細書の一部として援用して理解できる。

Claims (8)

  1.  下記の一般式(1)で表されるモリブデンジチオカルバメート。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は炭素数10~14の直鎖又は分岐アルキル基を表し、R2~R4はそれぞれ同一であっても異なっていてもよい炭素数8~14の直鎖又は分岐アルキル基を表し、R1~R4の分岐数の平均値は0.75~1.25であり、X1~X4はそれぞれ独立して酸素原子又は硫黄原子を表す。)
  2.  一般式(1)のR1が、炭素数13の直鎖又は分岐アルキル基である、請求項1に記載のモリブデンジチオカルバメート。
  3.  一般式(1)のR1のアルキル基の分岐数が1である、請求項1又は2に記載のモリブデンジチオカルバメート。
  4.  一般式(1)のR2~R4が、それぞれ同一であっても異なっていてもよい炭素数8又は13の直鎖又は分岐アルキル基である、請求項1~3のいずれか1項に記載のモリブデンジチオカルバメート。
  5.  一般式(1)において、R1とR2が同一のアルキル基であり、R3とR4が同一のアルキル基である、請求項1~4のいずれか1項に記載のモリブデンジチオカルバメート。
  6.  請求項1~5のいずれか1項に記載のモリブデンジチオカルバメートを25モル%以上含有する、モリブデンジチオカルバメート組成物。
  7.  6価のモリブデン化合物を還元処理する工程と、分岐数が1である炭素数10~14のアルキル基を有するジアルキルアミンと二硫化炭素とを還元処理されたモリブデン化合物と反応させる工程とを含む、モリブデンジチオカルバメートの製造方法。
  8.  ジアルキルアミンのアルキル基の分岐位置がβ位である請求項7に記載のモリブデンジチオカルバメートの製造方法。
PCT/JP2019/016129 2018-04-27 2019-04-15 モリブデンジチオカルバメート及びモリブデンジチオカルバメートの製造方法 WO2019208301A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018086378A JP7168342B2 (ja) 2018-04-27 2018-04-27 モリブデンジチオカルバメート組成物及びモリブデンジチオカルバメートの製造方法
JP2018-086378 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019208301A1 true WO2019208301A1 (ja) 2019-10-31

Family

ID=68295559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016129 WO2019208301A1 (ja) 2018-04-27 2019-04-15 モリブデンジチオカルバメート及びモリブデンジチオカルバメートの製造方法

Country Status (2)

Country Link
JP (1) JP7168342B2 (ja)
WO (1) WO2019208301A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113603612A (zh) * 2021-08-10 2021-11-05 长沙望城石油化工有限公司 氨基甲酸钼类化合物及其生产工艺及其润滑剂及其润滑脂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1017586A (ja) * 1996-07-01 1998-01-20 Asahi Denka Kogyo Kk 硫化オキシモリブデンジチオカーバメートの製造方法
JP2011195774A (ja) * 2010-03-23 2011-10-06 Adeka Corp 内燃機関用潤滑油組成物
WO2018003815A1 (ja) * 2016-06-29 2018-01-04 株式会社Adeka 潤滑添加剤組成物、これを含む潤滑性組成物及び該潤滑性組成物からなるエンジン油組成物
WO2018139403A1 (ja) * 2017-01-24 2018-08-02 株式会社Adeka エンジン油組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216378A (ja) * 1994-01-31 1995-08-15 Tonen Corp 潤滑油組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1017586A (ja) * 1996-07-01 1998-01-20 Asahi Denka Kogyo Kk 硫化オキシモリブデンジチオカーバメートの製造方法
JP2011195774A (ja) * 2010-03-23 2011-10-06 Adeka Corp 内燃機関用潤滑油組成物
WO2018003815A1 (ja) * 2016-06-29 2018-01-04 株式会社Adeka 潤滑添加剤組成物、これを含む潤滑性組成物及び該潤滑性組成物からなるエンジン油組成物
WO2018139403A1 (ja) * 2017-01-24 2018-08-02 株式会社Adeka エンジン油組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ENCYCLOPAEDIA DICTIONARY OF CHEMISTRY, 15 August 1989 (1989-08-15), pages 581 *

Also Published As

Publication number Publication date
JP7168342B2 (ja) 2022-11-09
JP2019189575A (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
CN109415646B (zh) 润滑性组合物及包含该润滑性组合物的机油组合物
JP4936692B2 (ja) 潤滑組成物
JP6803344B2 (ja) 多機能性モリブデン含有化合物、製造方法および使用方法、ならびにそれを含む潤滑油組成物
CN101775328A (zh) 作为无灰tbn源的苯胺化合物和含有所述化合物的润滑油组合物
CN1772855A (zh) 用于手动或自动化手动换档变速器的润滑剂
WO2007115042A2 (en) Lubricant oil additive compositions
US20090292137A1 (en) Additive for lubricating oil and fuel oil, lubricating oil composition, and fuel oil composition
JP2017506694A (ja) 金属ナノ粒子をベースとする潤滑剤組成物
JP2022103390A (ja) 潤滑組成物のためのフッ素化ポリアクリレート消泡成分
JP6270226B2 (ja) 内燃機関用潤滑油組成物
JP7336916B2 (ja) 潤滑油組成物
KR20150142670A (ko) 아민화 화합물 기반의 윤활유 조성물
WO2021149323A1 (ja) 潤滑油組成物および内燃機関用潤滑油組成物
JP7168342B2 (ja) モリブデンジチオカルバメート組成物及びモリブデンジチオカルバメートの製造方法
JPWO2009004893A1 (ja) 潤滑油添加剤および潤滑油組成物
WO2020189434A1 (ja) モリブデンジチオカルバメートおよびそれを含有する潤滑剤組成物
JP2009067997A (ja) 耐磨耗特性の改善された添加剤および潤滑剤組成物
WO2020131603A1 (en) Lubricating composition comprising a sulfur-containing carboxylic acid or ester additive
JPWO2014156325A1 (ja) 潤滑油組成物
JP6857317B2 (ja) 潤滑油組成物
JP2004018605A (ja) 亜鉛ジチオホスフェート及び、亜鉛ジチオホスフェートを含有する潤滑性組成物
JP2001200282A (ja) 潤滑性組成物
JP2021075582A (ja) 潤滑油組成物
JP2009084263A (ja) メルカプトアルカンカルボン酸エステル亜鉛塩およびその製造方法、潤滑油添加剤、および潤滑油組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793112

Country of ref document: EP

Kind code of ref document: A1