WO2019207947A1 - 作業機械およびその制御方法 - Google Patents

作業機械およびその制御方法 Download PDF

Info

Publication number
WO2019207947A1
WO2019207947A1 PCT/JP2019/007334 JP2019007334W WO2019207947A1 WO 2019207947 A1 WO2019207947 A1 WO 2019207947A1 JP 2019007334 W JP2019007334 W JP 2019007334W WO 2019207947 A1 WO2019207947 A1 WO 2019207947A1
Authority
WO
WIPO (PCT)
Prior art keywords
front wheel
work machine
speed
turning radius
wheel
Prior art date
Application number
PCT/JP2019/007334
Other languages
English (en)
French (fr)
Inventor
慎太郎 小林
優樹 荒井
健志 上前
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to US16/971,530 priority Critical patent/US11873623B2/en
Priority to CN201980016387.0A priority patent/CN111801269B/zh
Publication of WO2019207947A1 publication Critical patent/WO2019207947A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/7636Graders with the scraper blade mounted under the tractor chassis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/36Arrangement or mounting of transmissions in vehicles for driving tandem wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D12/00Steering specially adapted for vehicles operating in tandem or having pivotally connected frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/02Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to vehicle speed
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/80Component parts
    • E02F3/84Drives or control devices therefor, e.g. hydraulic drive systems
    • E02F3/841Devices for controlling and guiding the whole machine, e.g. by feeler elements and reference lines placed exteriorly of the machine
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0841Articulated frame, i.e. having at least one pivot point between two travelling gear units
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/225Control of steering, e.g. for hydraulic motors driving the vehicle tracks
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2289Closed circuit
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/411Bulldozers, Graders
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/7663Graders with the scraper blade mounted under a frame supported by wheels, or the like

Definitions

  • This disclosure relates to a work machine and a control method thereof.
  • Patent Document 1 in a work machine such as a motor grader, the speed of a front wheel is independently adjusted based on a steering angle or a combination of a steering angle and an articulate angle. It is described. Thus, by independently controlling the left and right front wheels during turning of the work machine, loss of traction force from at least one front wheel during turning is suppressed.
  • An object of the present disclosure is to provide a working machine that can suppress the loss of traction force from the front wheels and that does not easily cause a failure of the measuring device, and a control method thereof.
  • the work machine of the present disclosure includes a right front wheel and a left front wheel, a speed sensor, a measuring device, a first drive source, a second drive source, and a control unit.
  • the speed sensor measures the moving speed of the work machine.
  • the measuring device measures a turning angular velocity acting on the work machine when the work machine is moved.
  • the first driving source applies driving force to the right front wheel.
  • the second driving source applies a driving force to the left front wheel.
  • the control unit controls each of the right front wheel and the left front wheel by controlling the first drive source and the second drive source based on the moving speed of the work machine measured by the speed sensor and the turning angular speed measured by the measuring device. Control the speed independently.
  • the control method for a work machine is a control method for a work machine having a right front wheel and a left front wheel, and includes the following steps.
  • the moving speed of the work machine is measured.
  • a turning angular velocity acting on the work machine when the work machine is moved is measured.
  • the rotational speeds of the right front wheel and the left front wheel are independently controlled based on the measured moving speed and the turning angular speed.
  • FIG. 1 is a perspective view schematically showing a configuration of a motor grader in one embodiment.
  • the motor grader 1 of the present embodiment mainly includes traveling wheels 11 and 12, a body frame 2, a cab 3, and a work implement 4.
  • the motor grader 1 includes components such as an engine disposed in the engine room 6.
  • the work machine 4 includes, for example, a blade 42.
  • the motor grader 1 can perform operations such as leveling work, snow removal work, and material mixing with the blade 42.
  • the direction in which the motor grader 1 travels straight is referred to as the front-rear direction of the motor grader 1.
  • the front-rear direction of the motor grader 1 the side on which the front wheels 11 are disposed with respect to the work implement 4 is defined as the front direction.
  • the front-rear direction of the motor grader 1 the side on which the rear wheel 12 is disposed with respect to the work implement 4 is defined as the rear direction.
  • the left-right direction of the motor grader 1 is a direction orthogonal to the front-rear direction in plan view. When viewed from the front, the right and left sides in the left-right direction are the right direction and the left direction, respectively.
  • the vertical direction of the motor grader 1 is a direction orthogonal to a plane defined by the front-rear direction and the left-right direction. In the vertical direction, the side with the ground is the lower side, and the side with the sky is the upper side.
  • the traveling wheels 11 and 12 include a front wheel 11 and a rear wheel 12.
  • the front wheel 11 has one wheel on each of the left and right sides, and includes a right front wheel 11R and a left front wheel 11L.
  • the rear wheel 12 has two wheels on each of the left and right sides, and includes two right rear wheels 12R and two left rear wheels 12L (FIG. 2).
  • the number and arrangement of the front wheels 11 and the rear wheels 12 are not limited to the example shown in FIG.
  • the body frame 2 extends in the front-rear direction.
  • the vehicle body frame 2 includes a rear frame 21 and a front frame 22.
  • the rear frame 21 supports the exterior cover 25 and components such as an engine disposed in the engine compartment 6.
  • the exterior cover 25 covers the engine chamber 6.
  • each of the four rear wheels 12 described above is attached to the rear frame 21.
  • Each of the four rear wheels 12 can be rotationally driven by a driving force from the engine.
  • the front frame 22 is attached in front of the rear frame 21.
  • the front frame 22 is rotatably connected to the rear frame 21.
  • the front frame 22 extends in the front-rear direction.
  • the front frame 22 has a proximal end connected to the rear frame 21 and a distal end opposite to the proximal end.
  • the base end portion of the front frame 22 is connected to the front end portion of the rear frame 21 by a vertical center pin.
  • the front frame 22 is composed of a single beam.
  • An articulating cylinder 23 is attached between the front frame 22 and the rear frame 21.
  • the front frame 22 is provided so as to be rotatable (articulate) with respect to the rear frame 21 by expansion and contraction of the articulate cylinder 23.
  • the two front wheels 11 described above are rotatably attached to the front end portion of the front frame 22.
  • the front wheel 11 is attached to the front frame 22 so as to be turnable by expansion and contraction of the steering cylinder 7.
  • the motor grader 1 can change the traveling direction by expansion and contraction of the steering cylinder 7.
  • a counterweight 51 is attached to the front end 2F of the body frame 2.
  • the counterweight 51 is a kind of attachment attached to the front frame 22.
  • the counterweight 51 is attached to the front frame 22 in order to increase the downward load applied to the front wheel 11 to enable steering and to increase the pressing load of the blade 42.
  • the cab 3 is placed on the front frame 22, for example. Inside the cab 3 are provided operating portions (not shown) such as a handle, a speed change lever, an operation lever of the work machine 4, a brake, an accelerator pedal, an inching pedal, and the like.
  • the cab 3 may be placed on the rear frame 21.
  • the traveling wheels 11, 12, the body frame 2, and the cab 3 constitute a vehicle main body (machine main body).
  • the work machine 4 mainly has, for example, a draw bar 40, a turning circle 41, and a blade 42.
  • the draw bar 40 is disposed below the front frame 22.
  • the front end portion of the draw bar 40 is connected to the front end portion of the front frame 22 using a ball shaft portion.
  • a front end portion of the draw bar 40 is swingably attached to a front end portion of the front frame 22.
  • the rear end of the draw bar 40 is supported by the front frame 22 (a part of the vehicle body) by a pair of lift cylinders 44 and 45.
  • the pair of lift cylinders 44 and 45 By extending and contracting the pair of lift cylinders 44 and 45, the rear end portion of the draw bar 40 can be moved up and down with respect to the front frame 22.
  • the draw bar 40 can swing around an axis extending in the front-rear direction by different expansion and contraction of the pair of lift cylinders 44 and 45.
  • the turning circle 41 is disposed below the front frame 22.
  • the turning circle 41 is disposed below the draw bar 40.
  • the turning circle 41 is attached to the rear end portion of the draw bar 40 so as to be capable of turning (rotating).
  • the turning circle 41 can be turned by the hydraulic motor 49 in both the clockwise direction and the counterclockwise direction when viewed from above the vehicle with respect to the draw bar 40.
  • the blade 42 is disposed in the turning circle 41.
  • the blade propulsion angle of the blade 42 is adjusted by the turning drive of the turning circle 41.
  • the blade propulsion angle is an inclination angle of the blade 42 with respect to the front-rear direction of the motor grader 1 as viewed from above the vehicle.
  • the blade 42 is disposed between the front wheel 11 and the rear wheel 12.
  • the front wheel 11 is disposed in front of the blade 42.
  • the rear wheel 12 is disposed behind the blade 42.
  • the blade 42 is disposed between the front end 2F of the vehicle body frame 2 and the rear end 2R of the vehicle body frame 2.
  • the blade 42 is supported by the turning circle 41.
  • the blade 42 is supported by the draw bar 40 via the turning circle 41.
  • the blade 42 is supported by the front frame 22 via the draw bar 40.
  • the pair of lift cylinders 44 and 45 suspends (suspends) the draw bar 40 from the vehicle body. Specifically, the pair of lift cylinders 44 and 45 support the blade 42 positioned below the front frame 22 (a part of the vehicle main body) via the draw bar 40. The height of the draw bar 40 and the blade 42 can be changed by extending and contracting the pair of lift cylinders 44 and 45.
  • the blade 42 is configured to be capable of moving up and down with respect to the vehicle and swinging about the axis extending in the front-rear direction via the draw bar 40 and the turning circle 41. .
  • FIG. 2 is a diagram schematically showing a configuration relating to drive control of traveling wheels in the motor grader according to the embodiment.
  • the motor grader 1 according to the present embodiment includes traveling wheels 11 and 12, an engine 31, a transmission 32, a final reduction gear 33, tandem devices 34R and 34L, and a first drive source 35R. And a second drive source 35L.
  • the engine 31 is supported by the rear frame 21 shown in FIG.
  • a final reduction gear 33 is connected to one output side of the engine 31 via a transmission 32.
  • a right tandem device 34R and a left tandem device 34L are connected to the final reduction gear 33.
  • a pair of right rear wheels 12R are connected to the right tandem device 34R.
  • a pair of left rear wheels 12L is connected to the left tandem device 34L.
  • the engine 31 drives the right rear wheel 12R and the left rear wheel 12L via the transmission 32, the final reduction gear 33, and the tandem devices 34R, 34L.
  • a first drive source 35R and a second drive source 35L are connected to the other output side of the engine 31.
  • Each of the first drive source 35R and the second drive source 35L is a hydraulic system.
  • the first drive source 35R drives the right front wheel 11R.
  • the second drive source 35L drives the left front wheel 11L.
  • the first drive source 35R includes a right hydraulic pump 35PR and a right hydraulic motor 35MR (first motor).
  • the second drive source 35L includes a left hydraulic pump 35PL and a left hydraulic motor 35ML (second motor).
  • Each of the right hydraulic pump 35PR and the left hydraulic pump 35PL is driven by the output of the engine 31 being transmitted.
  • Each of the right hydraulic pump 35PR and the left hydraulic pump 35PL is, for example, a swash plate type axial pump.
  • the right hydraulic motor 35MR is driven by hydraulic oil discharged from the right hydraulic pump 35PR, and applies a driving force to the right front wheel 11R.
  • the left hydraulic motor 35ML is driven by hydraulic oil discharged from the left hydraulic pump 35PL, and applies a driving force to the left front wheel 11L.
  • Each of the hydraulic motors 35MR and 35ML is, for example, a swash plate type axial motor.
  • Each of the hydraulic motors 35MR and 35ML may be a radial piston type motor.
  • the motor grader 1 of this embodiment further includes an IMU (Inertial Measurement Unit) 26, a speed sensor 36, solenoids 37R, 37L, 38R, and 38L, an articulate sensor 39, and a control unit 50.
  • IMU Inertial Measurement Unit
  • the speed sensor 36 detects a moving speed (traveling speed) when the motor grader 1 moves (running), and generates a signal of the moving speed. A signal of the moving speed generated by the speed sensor 36 is output to the control unit 50.
  • the speed sensor 36 measures the rotational speed of the output shaft of the transmission 32, for example.
  • the speed sensor 36 may detect the moving speed of the motor grader 1 using, for example, GPS (Global Positioning System).
  • the IMU 26 detects the turning angular velocity acting on the motor grader 1 when the motor grader 1 moves (runs) and generates a signal of the turning angular velocity.
  • the turning angular velocity signal generated by the IMU 26 is output to the control unit 50.
  • the IMU 26 When the IMU 26 is attached to a portion that operates relative to the vehicle body frame 2 such as the work machine 4 and the tandem devices 34R and 34L, it is impossible to measure the turning angular velocity of the motor grader 1 by the IMU 26. Therefore, the IMU 26 is attached to the body frame 2 of the motor grader 1 or a portion that does not operate relative to the body frame 2.
  • the IMU 26 In order to make the IMU 26 less susceptible to the influence of earth and sand, it is preferable to dispose the IMU 26 at a position away from the traveling wheels 11, 12 and the work machine 4. From the viewpoint that the IMU 26 is not easily affected by earth and sand, the IMU 26 is preferably attached to the front frame 22 as shown in FIG. 1, for example. It is particularly preferred that the IMU 26 is attached to the upper surface of the front frame 22.
  • the right pump solenoid 37R controls the amount of hydraulic oil discharged from the right hydraulic pump 35PR to the right hydraulic motor 35MR by changing the angle of the pump swash plate in the right hydraulic pump 35PR.
  • the left pump solenoid 37L controls the amount of hydraulic oil discharged from the left hydraulic pump 35PL to the left hydraulic motor 35ML by changing the angle of the pump swash plate in the left hydraulic pump 35PL.
  • the solenoids 37R and 37L control the hydraulic pumps 35PR and 35PL, respectively, based on a control signal given from the control unit 50.
  • the right motor solenoid 38R controls the rotation speed of the right front wheel 11R by changing the angle of the motor swash plate in the right hydraulic motor 35MR.
  • the left motor solenoid 38L controls the rotational speed of the left front wheel 11L by changing the angle of the motor swash plate in the left hydraulic motor 35ML.
  • the solenoids 38R and 38L control the hydraulic motors 35MR and 35ML, respectively, based on a control signal given from the control unit 50.
  • the front wheel 11R can be changed by changing the number of pistons to which hydraulic oil is supplied among a plurality of radially extending pistons arranged along the circumferential direction. , 11L rotation speed is controlled.
  • the articulate sensor 39 detects an articulate angle (connection angle) between the front frame 22 and the rear frame 21, and generates an articulate angle signal.
  • the articulate angle signal generated by the articulate sensor 39 is output to the control unit 50.
  • FIG. 3 is a functional block diagram illustrating functions of the control unit 50 in the motor grader according to the embodiment.
  • the control unit 50 includes a rear wheel turning radius calculation unit 50a, a front wheel turning radius calculation unit 50b, a target front wheel rotation speed calculation unit 50c, a right front wheel rotation speed command unit 50dR, and a left front wheel.
  • a rotation speed command unit 50dL and a storage unit 50e are provided.
  • the rear-wheel turning radius calculation unit 50a determines the turning radius of the rear wheel 12 including the right rear wheel 12R and the left rear wheel 12L based on the moving speed of the motor grader 1 measured by the speed sensor 36 and the turning angular speed measured by the IMU 26. Is calculated.
  • the rear wheel turning radius calculation unit 50a outputs the calculated turning radius of the rear wheel 12 to the front wheel turning radius calculation unit 50b.
  • the front wheel turning radius calculation unit 50b determines the turning radius and left of the right front wheel 11R based on the turning radius of the rear wheel 12 calculated by the rear wheel turning radius calculation unit 50a and the articulate angle detected by the articulate sensor 39.
  • the turning radius of the front wheel 11L is calculated.
  • the front wheel turning radius calculation unit 50b is detected by the calculated turn radius of each of the right front wheel 11R and the left front wheel 11L, the turning radius of the rear wheel 12 calculated by the rear wheel turning radius calculation unit 50a, and the articulate sensor 39.
  • a front wheel acceleration ratio table (FIG. 6) is created based on the articulate angle.
  • the front wheel turning radius calculation unit 50b outputs the created front wheel acceleration ratio table to the storage unit 50e.
  • the storage unit 50e stores (stores) the front wheel acceleration ratio table.
  • the front wheel acceleration ratio table defines the front wheel acceleration ratio corresponding to the rear wheel turning radius and the articulate angle. Details of the front wheel acceleration ratio table will be described later.
  • the front wheel acceleration ratio is a value obtained by dividing the front wheel turning radius by the rear wheel turning radius (front wheel turning radius / rear wheel turning radius).
  • the storage unit 50e may be outside the control unit 50.
  • the target front wheel rotation speed calculation unit 50c calculates the target front wheel rotation speed of each of the right front wheel 11R and the left front wheel 11L. Specifically, it is as follows.
  • the target front wheel rotational speed calculation unit 50c calculates a target turning radius (target front wheel turning radius) for each of the right front wheel 11R and the left front wheel 11L from the determined target front wheel acceleration ratio and the rear wheel turning radius.
  • the target front wheel rotation speed calculation unit 50c is configured for each of the right front wheel 11R and the left front wheel 11L.
  • the target rotational speed (target front wheel rotational speed) is calculated.
  • the target front wheel rotation speed calculation unit 50c outputs the calculated target front wheel rotation speed of the right front wheel 11R to the right front wheel rotation speed command unit 50dR. Further, the target front wheel rotation speed calculation unit 50c outputs the calculated target front wheel rotation speed of the left front wheel 11L to the left front wheel rotation speed command unit 50dL.
  • the right front wheel rotation speed command unit 50dR controls the first drive source 35R of the right front wheel 11R based on the target front wheel rotation speed signal of the right front wheel 11R output from the target front wheel rotation speed calculation unit 50c.
  • the left front wheel rotation speed command unit 50dL controls the second drive source 35L of the left front wheel 11L based on the target front wheel rotation speed signal of the left front wheel 11L output from the target front wheel rotation speed calculation unit 50c.
  • control unit 50 controls the first driving source 35R and the second driving source 35L based on the moving speed measured by the speed sensor 36 and the turning angular speed measured by the IMU 26, whereby the right front wheel 11R and the left front wheel 11L.
  • the rotation speed of each is controlled independently.
  • FIG. 4 is a diagram for explaining the turning radius of the rear wheel.
  • FIG. 5 is a diagram for explaining a formula for calculating the turning radius of the front wheels.
  • the turning radius at the center of the rear wheel is obtained as the turning radius of the rear wheel.
  • the turning radius at the center of the rear wheel means the turning radius R of the center (rear wheel center) C1 between the right rear wheel 12R and the left rear wheel 12L, as shown in FIG. FIG. 4 shows a state where the rotational speed v r of the right rear wheel 12R is lower than the rotational speed v l of the left rear wheel 12L and the motor grader 1 is turning right.
  • the turning radius R of the rear wheel center C1 is calculated by dividing the moving speed of the motor grader 1 measured by the speed sensor 36 by the turning angular speed measured by the IMU 26. That is, the turning radius R of the rear wheel center C1 is calculated by the following equation.
  • Turning radius R of rear wheel center C1 (moving speed measured by speed sensor 36) / (turning angular speed measured by IMU 26) Expression (A)
  • the state in which the motor grader 1 is turning right has been described.
  • the turning radius at the center of the rear wheel is similarly obtained when turning left.
  • the turning radius R r of the right front wheel 11R is calculated by substituting the turning radius R of the rear wheel center C1 into the following equation (1). Further by substituting the turning radius R of the rear wheel center C1 to the following equation (2), the turning radius R l of the left front wheel 11L is calculated.
  • each of x r , y r , x l and y l shown in the above formula 1 and formula 2 is represented by the following formula 3, formula 4, formula 5 and formula 6.
  • L 1 in the above formula 3, formula 4, formula 5 and formula 6 is the distance between the rear wheel center C1 and the articulate center 24 as shown in FIG.
  • L 2 is the distance between the articulate center 24 and the front accelerator center pin.
  • L 3 is a tread width between the right front wheel 11R and the left front wheel 11L.
  • ⁇ a is the articulate angle.
  • Each of L 1 , L 2 and L 3 is a numerical value determined by the model of the work machine 1.
  • the turning radius R of the rear wheel center C1 is calculated by using the above formula (A). Further, the turning radius R r of the right front wheel 11R is calculated by using the above equation (1). The turning radius R l of the left front wheel 11L by using the above Equation 2 is calculated.
  • FIG. 6 is a view showing a front wheel acceleration ratio table for obtaining the front wheel acceleration ratio of the left and right front wheels from the turning radius of the rear wheel and the articulate angle.
  • the front wheel acceleration ratio table shown in FIG. 6 the relationship between the turning radius of the rear wheels, the articulate angle, and the front wheel acceleration ratio is defined.
  • the “rear wheel turning radius” item is divided into “right turn”, “neutral (straight)”, and “left turn” items.
  • the “right turn” item is divided into four items, for example, “small”, “ ⁇ ”, “ ⁇ ”, and “large”.
  • the “large” item for “right turn” defines a relatively large turning radius value for right turning
  • the “small” item defines a relatively small turning radius value for right turning. Is done.
  • Each of “ ⁇ ” and “ ⁇ ” of “right turn” is defined with a numerical value smaller than the “large” turning radius and larger than the “small” turning radius.
  • “ ⁇ ” for “turn right” is defined to be closer to “small” for “turn right” than “ ⁇ ” for “turn right”.
  • the “left turn” item is divided into four items, for example, “small”, “ ⁇ ”, “ ⁇ ”, and “large”.
  • the “large” item of “left turn” defines a relatively large turning radius value for left turning
  • the “small” item defines a relatively small turning radius value for left turning.
  • Each of “ ⁇ ” and “ ⁇ ” of “left turn” is defined with a numerical value smaller than the “large” turning radius and larger than the “small” turning radius.
  • “ ⁇ ” for “turn left” is defined to be closer to “small” for “turn left” than “ ⁇ ” for “turn left”.
  • the “articulate angle” item is divided into “left articulate”, “neutral” and “right articulate” items.
  • the item “left articulate” is divided into, for example, three items “small”, “medium”, and “large”.
  • a relatively large articulate angle during left articulation is defined.
  • a relatively small articulate angle at the time of left articulation is defined.
  • an articulate angle between “large” and “small” of “left articulate” is defined.
  • the “right articulate” item is divided into, for example, “small”, “medium”, and “large” items.
  • a relatively large articulate angle during right articulation is defined.
  • a relatively small articulate angle at the time of right articulation is defined.
  • the item “middle” of “right articulate” defines an articulate angle between “large” and “small” of “right articulate”.
  • the numerical value of “1.00” in the front wheel acceleration ratio table shown in FIG. 6 is the target front wheel acceleration ratio. Further, each of L01 to L03, L11 to L13, L21 to L23, L31 to L34, R01 to R03, R11 to LR3, R21 to R23, and R31 to R34 has a target front wheel speed increase ratio corresponding to each model. Numerical values are defined.
  • the front wheel acceleration ratio table shown in FIG. 6 is created for both the right front wheel 11R and the left front wheel 11L, and is stored in the storage unit 50e shown in FIG.
  • each of “right turn” and “left turn” is divided into four items, but these items may be divided into three or less, Moreover, you may divide into five or more.
  • each of the “left articulate” and “right articulate” items is divided into three items, but these items may be divided into two or less, or may be divided into four or more. .
  • the front wheel acceleration ratio table shown in FIG. 6 includes the rear wheel turning radius calculated by the rear wheel turning radius calculation unit 50a shown in FIG. 3, the articulate angle measured by the articulate sensor 39, and the front wheel turning radius calculation. It is created based on the front wheel turning radius calculated by the unit 50b. Specifically, the rear wheel turning radius, the articulate angle, and the front wheel acceleration ratio calculated by dividing the front wheel turning radius by the rear wheel turning radius are created.
  • the front wheel acceleration ratio table is created by the front wheel turning radius calculation unit 50b shown in FIG. 3, and after being created, the front wheel turning radius calculation unit 50b outputs the storage to the storage unit 50e and stores it in the storage unit 50e.
  • the calculation of the target front wheel rotation speed is performed in the target front wheel rotation speed calculation unit 50c shown in FIG.
  • the target front wheel rotation speed calculation unit 50c refers to the front wheel acceleration ratio table (FIG. 6) stored in the storage unit 50e, and the turning radius of the rear wheel 12 calculated by the rear wheel turning radius calculation unit 50a, Based on the articulate angle measured by the articulate sensor 39, the target front wheel acceleration ratio of each of the right front wheel 11R and the left front wheel 11L is determined.
  • the articulate angle of the motor grader 1 shown in FIGS. 4 and 5 is “large” of “right articulate” shown in FIG. 6, for example, and the rear-wheel turning radius is shown in FIG. In the case of “right” of “right turn”, the target front wheel acceleration ratio is determined to be a value defined in “R31”.
  • the target front wheel acceleration ratio determined as described above is a value obtained by dividing the target front wheel turning radius (target front wheel turning radius) by the rear wheel turning radius.
  • the method for calculating the target front wheel rotation speed using the front wheel acceleration ratio table has been described.
  • the target front wheel rotation speed may be calculated without using the front wheel acceleration ratio table.
  • FIG. 7 is a flowchart showing a method of controlling the traveling wheels 11 and 12 in the motor grader according to the embodiment.
  • the speed sensor 36 measures the moving speed of the motor grader 1 (step S1a: FIG. 7). Further, the turning angular velocity in the moving motor grader 1 is measured by the IMU 26 (step S1b: FIG. 7). Further, the articulate angle is measured by the articulate sensor 39 (step S1c: FIG. 7).
  • the signal of the moving speed measured by the speed sensor 36 and the signal of the turning angular velocity measured by the IMU 26 are output to the rear wheel turning radius calculation unit 50a of the control unit 50.
  • the rear wheel turning radius calculation unit 50a calculates the turning radius of the rear wheel (step S2: FIG. 7). Specifically, the turning radius R of the rear wheel center C1 is calculated by substituting the signal of the moving speed measured by the speed sensor 36 and the turning angular speed measured by the IMU 26 into the equation (A). .
  • the turning radius of the rear wheel 12 calculated by the rear wheel turning radius calculation unit 50a is output to the target front wheel rotation speed calculation unit 50c. Further, the articulate angle measured by the articulate sensor 39 is also output to the target front wheel rotational speed calculation unit 50c.
  • the target front wheel rotational speed calculation unit 50c determines the target front wheel rotational speed with reference to the front wheel acceleration ratio table stored in the storage unit 50e (step S3: FIG. 7). Specifically, the target front wheel rotational speed calculation unit 50c refers to the front wheel acceleration ratio table stored in the storage unit 50e, and the turning radius of the rear wheel 12 calculated by the rear wheel turning radius calculation unit 50a; Based on the articulate angle detected by the articulate sensor 39, the target front wheel acceleration ratio of each of the right front wheel 11R and the left front wheel 11L is determined.
  • the target front wheel acceleration ratio determined as described above is a value obtained by dividing the target front wheel turning radius by the rear wheel turning radius. Therefore, the target front wheel rotation speed is calculated based on the target front wheel acceleration ratio and the moving speed.
  • the target front wheel rotation speed of the right front wheel 11R calculated by the target front wheel rotation speed calculation unit 50c is output to the right front wheel rotation speed command unit 50dR.
  • the target front wheel rotation speed of the left front wheel 11L calculated by the target front wheel rotation speed calculation unit 50c is output to the left front wheel rotation speed command unit 50dL.
  • the right front wheel rotation speed command unit 50dR controls the rotation speed of the right front wheel 11R based on the target front wheel rotation speed of the right front wheel 11R
  • the left front wheel rotation speed command unit 50dL controls the left front wheel based on the target front wheel rotation speed of the left front wheel 11L.
  • the rotation speed of 11L is controlled (step S4: FIG. 7).
  • the right front wheel rotation speed command unit 50dR outputs a rotation control signal for the right front wheel 11R to at least one of the right pump solenoid 37R and the right motor solenoid 38R shown in FIG.
  • the right pump solenoid 37R changes the angle of the pump swash plate of the right hydraulic pump 35PR.
  • the right motor solenoid 38R that has received the signal changes the angle of the motor swash plate of the right hydraulic motor 35MR.
  • the rotational speed of the right front wheel 11R is controlled by changing at least one angle of the pump swash plate of the right hydraulic pump 35PR and the motor swash plate of the right hydraulic motor 35MR.
  • the left front wheel rotation speed command unit 50dL outputs a rotation control signal for the left front wheel 11L to at least one of the left pump solenoid 37L and the left motor solenoid 38L shown in FIG.
  • the left pump solenoid 37L that has received the signal changes the angle of the pump swash plate of the left hydraulic pump 35PL.
  • the left motor solenoid 38L that has received the signal changes the angle of the motor swash plate of the left hydraulic motor 35ML.
  • the rotational speed of the left front wheel 11L is controlled by changing at least one angle of the pump swash plate of the left hydraulic pump 35PL and the motor swash plate of the left hydraulic motor 35ML.
  • the rotational speed of the right front wheel 11R and the rotational speed of the left front wheel 11L are independently controlled based on the moving speed and the turning angular speed of the motor grader 1.
  • the rotational speed of the right front wheel 11R and the rotational speed of the left front wheel 11L are independently controlled based on the moving speed and the turning angular speed of the motor grader 1. Loss of traction force from the front wheel 11 can be suppressed.
  • the turning angular velocity of the motor grader 1 is measured by the IMU 26.
  • the IMU 26 can measure the turning angular velocity of the motor grader 1 basically when it is attached to any part of the motor grader 1. For this reason, it becomes possible to arrange the IMU 26 at a position that is not easily affected by earth and sand, for example, away from the traveling wheels 11 and 12 and the work implement 4. Thereby, it is possible to realize a work machine and a control method thereof in which the IMU 26 is unlikely to fail.
  • the control unit 50 controls the right rear wheel 12 ⁇ / b> R and the left rear wheel 12 ⁇ / b> L based on the moving speed measured by the speed sensor 36 and the turning angular speed measured by the IMU 26. And the turning radius of the rear wheel 12 is calculated. Based on the calculated turning radius of the rear wheel 12, the target front wheel rotational speed of each of the right front wheel 11R and the left front wheel 11L can be calculated.
  • the control unit 50 controls the calculated turning radius of the rear wheel 12 and the articulate detected by the articulate sensor 39 in the target front wheel rotational speed calculation unit 50 c. Based on the angle, a target front wheel turning radius of the right front wheel 11R and a target front wheel turning radius of the left front wheel 11L are determined. Based on the determined target front wheel turning radius of the right front wheel 11R and the target front wheel turning radius of the left front wheel 11L, the target front wheel rotation speeds of the right front wheel 11R and the left front wheel 11L can be calculated.
  • the control unit 50 controls the first drive source 35R so that the right front wheel rotation speed command unit 50dR has the target front wheel rotation speed of the right front wheel 11R, and In the left front wheel rotation speed command unit 50dL, the second drive source 35L is controlled so as to achieve the target front wheel rotation speed of the left front wheel 11L.
  • the rotational speeds of the right front wheel 11R and the left front wheel 11L can be controlled independently, and loss of tractive force from the front wheel 11 is suppressed.
  • the IMU 26 is attached to the front frame 22 as shown in FIG. Thereby, it becomes possible to arrange
  • the first drive source 35R includes a right hydraulic motor 35MR
  • the second drive source 35L includes a left hydraulic motor 35ML.
  • the rotation speed of the right front wheel 11R is controlled by the right hydraulic motor 35MR
  • the rotation speed of the left front wheel 11L is controlled by the left hydraulic motor 35ML. Therefore, the rotation speed of the right front wheel 11R and the rotation speed of the left front wheel 11L can be controlled independently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Operation Control Of Excavators (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

制御部(50)は、速度センサ(36)で測定したモータグレーダ(1)の移動速度とIMU(26)で測定したモータグレーダ(1)の旋回角速度とに基づいて第1駆動源(35R)および第2駆動源(35L)を制御することにより、右前輪(11R)および左前輪(11L)の各々の回転速度を独立して制御する。

Description

作業機械およびその制御方法
 本開示は、作業機械およびその制御方法に関するものである。
 米国特許出願公開第2006/0042838号明細書(特許文献1)には、モータグレーダなどの作業機械において、操舵角または操舵角とアーティキュレート角度との組合せに基づいて前輪の速度を独立に調整することが記載されている。このように作業機械の旋回時に左右の前輪を独立して制御することにより、旋回中に少なくとも1つの前輪から牽引力が失われることが抑制されている。
米国特許出願公開第2006/0042838号明細書
 しかしながら上記文献に記載の作業車両では、操舵角センサが前輪の近傍に設置されるため、土砂などにより故障しやすい。
 本開示の目的は、前輪から牽引力が失われることを抑制でき、かつ測定装置が故障しにくい作業機械およびその制御方法を提供することである。
 本開示の作業機械は、右前輪および左前輪と、速度センサと、測定装置と、第1駆動源と、第2駆動源と、制御部とを備える。速度センサは、作業機械の移動速度を測定する。測定装置は、作業機械の移動時に作業機械に作用する旋回角速度を測定する。第1駆動源は、右前輪に駆動力を付与する。第2駆動源は、左前輪に駆動力を付与する。制御部は、速度センサで測定した作業機械の移動速度と測定装置で測定した旋回角速度とに基づいて第1駆動源および第2駆動源を制御することにより、右前輪および左前輪の各々の回転速度を独立して制御する。
 本開示の作業機械の制御方法は、右前輪および左前輪を有する作業機械の制御方法であって、以下の工程を備える。
 作業機械の移動速度が測定される。作業機械の移動時に作業機械に作用する旋回角速度が測定される。測定した移動速度と前記旋回角速度とに基づいて右前輪および左前輪の各々の回転速度が独立して制御される。
 本開示によれば、前輪から牽引力が失われることを抑制でき、かつ測定装置が故障しにくい作業機械およびその制御方法を実現することができる。
一実施形態におけるモータグレーダの構成を概略的に示す斜視図である。 一実施形態におけるモータグレーダにおける走行輪の駆動制御に関する構成を概略的に示す図である。 一実施形態におけるモータグレーダにおける制御部の機能を示す機能ブロック図である。 後輪の旋回半径を説明するための図である。 前輪の旋回半径の計算式を説明するための図である。 後輪の旋回半径とアーティキュレート角度とから、右前輪および左前輪の各々の目標前輪増速比を決定するための前輪増速比テーブルを示す図である。 一実施形態におけるモータグレーダにおける走行輪の制御方法を示すフロー図である。
 以下、本開示の実施形態に係る作業機械について、図に基づいて説明する。以下の説明では、同一部品には、同一の符号を付している。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
 <モータグレーダの構成>
 まず、本開示の思想を適用可能な作業機械の一例であるモータグレーダの構成について説明する。
 図1は、一実施形態におけるモータグレーダの構成を概略的に示す斜視図である。図1に示されるように、本実施形態のモータグレーダ1は、走行輪11、12と、車体フレーム2と、キャブ3と、作業機4とを主に有している。また、モータグレーダ1は、エンジン室6に配置されたエンジンなどの構成部品を備えている。作業機4は、たとえばブレード42を含んでいる。モータグレーダ1は、ブレード42で整地作業、除雪作業、材料混合などの作業を行なうことができる。
 なお以下の図の説明において、モータグレーダ1が直進走行する方向を、モータグレーダ1の前後方向という。モータグレーダ1の前後方向において、作業機4に対して前輪11が配置されている側を、前方向とする。モータグレーダ1の前後方向において、作業機4に対して後輪12が配置されている側を、後方向とする。モータグレーダ1の左右方向とは、平面視において前後方向と直交する方向である。前方向を見て左右方向の右側、左側が、それぞれ右方向、左方向である。モータグレーダ1の上下方向とは、前後方向および左右方向によって定められる平面に直交する方向である。上下方向において地面のある側が下側、空のある側が上側である。
 走行輪11、12は、前輪11と後輪12とを含んでいる。前輪11は、左右の片側において1輪ずつを有し、右前輪11Rと、左前輪11Lとを含んでいる。後輪12は、左右の片側において2輪ずつを有し、2つの右後輪12Rと、2つの左後輪12L(図2)とを含んでいる。前輪11および後輪12の数および配置は、図1に示す例に限られるものではない。
 車体フレーム2は、前後方向に延びている。車体フレーム2は、リアフレーム21と、フロントフレーム22とを含んでいる。
 リアフレーム21は、外装カバー25と、エンジン室6に配置されたエンジンなどの構成部品とを支持している。外装カバー25はエンジン室6を覆っている。リアフレーム21には、上記のたとえば4つの後輪12の各々が取り付けられている。4つの後輪12の各々は、エンジンからの駆動力によって回転駆動可能である。
 フロントフレーム22は、リアフレーム21の前方に取り付けられている。フロントフレーム22は、リアフレーム21に、回動可能に連結されている。フロントフレーム22は、前後方向に延びている。フロントフレーム22は、リアフレーム21に連結されている基端部と、基端部と反対側の先端部とを有している。フロントフレーム22の基端部は、鉛直なセンタピンにより、リアフレーム21の先端部と連結されている。フロントフレーム22は、1本の梁で構成されている。
 フロントフレーム22とリアフレーム21との間には、アーティキュレートシリンダ23が取り付けられている。フロントフレーム22は、アーティキュレートシリンダ23の伸縮により、リアフレーム21に対して回動(アーティキュレート)可能に設けられている。
 フロントフレーム22の先端部には、上記のたとえば2つの前輪11が回転可能に取り付けられている。前輪11は、ステアリングシリンダ7の伸縮によって、フロントフレーム22に対して旋回可能に取り付けられている。モータグレーダ1は、ステアリングシリンダ7の伸縮によって、進行方向を変更することが可能である。
 車体フレーム2の前端2Fには、カウンタウェイト51が取り付けられている。カウンタウェイト51は、フロントフレーム22に取り付けられるアタッチメントの一種である。カウンタウェイト51は、前輪11に負荷される下向きの荷重を増加して、操舵を可能にするとともにブレード42の押付荷重を増加するために、フロントフレーム22に装着されている。
 キャブ3はたとえばフロントフレーム22に載置されている。キャブ3の内部には、ハンドル、変速レバー、作業機4の操作レバー、ブレーキ、アクセルペダル、インチングペダルなどの操作部(図示せず)が設けられている。なお、キャブ3は、リアフレーム21に載置されていてもよい。走行輪11、12と、車体フレーム2と、キャブ3とにより車両本体(機械本体)が構成されている。
 作業機4は、たとえばドローバ40と、旋回サークル41と、ブレード42とを主に有している。ドローバ40は、フロントフレーム22の下方に配置されている。ドローバ40の前端部は、フロントフレーム22の先端部に、玉軸部を用いて連結されている。ドローバ40の前端部は、フロントフレーム22の先端部に揺動可能に取付けられている。
 ドローバ40の後端部は、一対のリフトシリンダ44、45によってフロントフレーム22(車両本体の一部)に支持されている。一対のリフトシリンダ44、45の伸縮によって、ドローバ40の後端部がフロントフレーム22に対して上下に昇降可能である。また、ドローバ40は、一対のリフトシリンダ44、45の互いに異なる伸縮によって、前後方向に延びる軸を中心に揺動可能である。
 旋回サークル41は、フロントフレーム22の下方に配置されている。旋回サークル41は、ドローバ40の下方に配置されている。旋回サークル41は、ドローバ40の後端部に旋回(回転)可能に取り付けられている。旋回サークル41は、油圧モータ49によって、ドローバ40に対し、車両上方から見て時計方向と反時計方向との両方に、旋回駆動可能である。ブレード42は、旋回サークル41に配設されている。旋回サークル41の旋回駆動によって、ブレード42のブレード推進角が調整される。ブレード推進角とは、車両上方から見た視点におけるモータグレーダ1の前後方向に対するブレード42の傾斜角度である。
 ブレード42は、前輪11と後輪12との間に配置されている。前輪11は、ブレード42よりも前方に配置されている。後輪12は、ブレード42よりも後方に配置されている。ブレード42は、車体フレーム2の前端2Fと、車体フレーム2の後端2Rとの間に配置されている。ブレード42は、旋回サークル41に支持されている。ブレード42は、旋回サークル41を介して、ドローバ40に支持されている。ブレード42は、ドローバ40を介して、フロントフレーム22に支持されている。
 一対のリフトシリンダ44、45はドローバ40を車両本体に対してつり下げている(懸架している)。具体的には一対のリフトシリンダ44、45は、ドローバ40を介して、フロントフレーム22(車両本体の一部)の下方に位置するブレード42を支持している。一対のリフトシリンダ44、45を伸縮させることにより、ドローバ40およびブレード42の高さを変更することができる。
 以上のように、ブレード42は、ドローバ40と、旋回サークル41とを介して、車両に対する上下の昇降と、前後方向に延びる軸を中心とする揺動とを行なうことが可能に構成されている。
 図2は、一実施形態におけるモータグレーダにおける走行輪の駆動制御に関する構成を概略的に示す図である。図2に示されるように、本実施形態のモータグレーダ1は、走行輪11、12と、エンジン31と、変速機32と、終減速装置33と、タンデム装置34R、34L、第1駆動源35Rと、第2駆動源35Lとを有している。
 エンジン31は、図1に示すリアフレーム21に支持されている。エンジン31の一方の出力側には、変速機32を介在して終減速装置33が接続されている。終減速装置33には、右タンデム装置34Rおよび左タンデム装置34Lが接続されている。
 右タンデム装置34Rには、一対の右後輪12Rが接続されている。左タンデム装置34Lには、一対の左後輪12Lが接続されている。エンジン31は、変速機32、終減速装置33およびタンデム装置34R、34Lを介して、右後輪12Rと左後輪12Lとを駆動する。
 エンジン31の他方の出力側には、第1駆動源35Rおよび第2駆動源35Lが接続されている。第1駆動源35Rおよび第2駆動源35Lの各々は、油圧システムである。第1駆動源35Rは、右前輪11Rを駆動する。第2駆動源35Lは、左前輪11Lを駆動する。
 第1駆動源35Rは、右油圧ポンプ35PRと、右油圧モータ35MR(第1モータ)とを有している。第2駆動源35Lは、左油圧ポンプ35PLと、左油圧モータ35ML(第2モータ)とを有している。右油圧ポンプ35PRおよび左油圧ポンプ35PLの各々は、エンジン31の出力が伝達されて駆動される。右油圧ポンプ35PRおよび左油圧ポンプ35PLの各々は、たとえば斜板式アキシャル形のポンプである。
 右油圧モータ35MRは、右油圧ポンプ35PRから吐出する作動油で駆動されて、右前輪11Rに駆動力を付与する。左油圧モータ35MLは、左油圧ポンプ35PLから吐出する作動油で駆動されて、左前輪11Lに駆動力を付与する。油圧モータ35MR、35MLの各々は、たとえば斜板式アキシャル形のモータである。なお油圧モータ35MR、35MLの各々は、ラジアルピストン式のモータであってもよい。
 本実施形態のモータグレーダ1は、IMU(Inertial Measurement Unit)26と、速度センサ36と、ソレノイド37R、37L、38R、38Lと、アーティキュレートセンサ39と、制御部50とをさらに有している。
 速度センサ36は、モータグレーダ1の移動時(走行時)の移動速度(走行速度)を検出し、その移動速度の信号を発生する。速度センサ36で発生した移動速度の信号は制御部50へ出力される。
 速度センサ36は、たとえば変速機32の出力軸の回転速度を測定する。また速度センサ36は、たとえばGPS(Global Positioning System)を利用してモータグレーダ1の移動速度を検出してもよい。
 IMU26(測定装置)は、モータグレーダ1の移動時(走行時)にモータグレーダ1に作用する旋回角速度を検出し、その旋回角速度の信号を発生する。IMU26で発生した旋回角速度の信号は制御部50へ出力される。
 作業機4、タンデム装置34R、34Lなどの車体フレーム2に対して相対的に作動する部分にIMU26が取り付けられた場合、IMU26によりモータグレーダ1の旋回角速度の測定を行うことは不可能である。このためIMU26は、モータグレーダ1の車体フレーム2、または車体フレーム2に対して相対的に作動しない部分に取り付けられている。
 IMU26が土砂などの影響を受けにくくするためには、IMU26を走行輪11、12および作業機4から離れた位置に配置することが好ましい。IMU26が土砂などの影響を受けにくいという観点からは、IMU26は、たとえば図1に示されるようにフロントフレーム22に取り付けられることが好ましい。IMU26がフロントフレーム22の上面に取り付けられることが特に好ましい。
 右ポンプソレノイド37Rは、右油圧ポンプ35PRにおけるポンプ斜板の角度を変えることにより右油圧ポンプ35PRから右油圧モータ35MRへ吐出される作動油の量を制御する。左ポンプソレノイド37Lは、左油圧ポンプ35PLにおけるポンプ斜板の角度を変えることにより左油圧ポンプ35PLから左油圧モータ35MLへ吐出される作動油の量を制御する。各ソレノイド37R、37Lは、制御部50から与えられる制御信号に基づいて油圧ポンプ35PR、35PLのそれぞれを制御する。
 右モータソレノイド38Rは、右油圧モータ35MRにおけるモータ斜板の角度を変えることにより右前輪11Rの回転速度を制御する。左モータソレノイド38Lは、左油圧モータ35MLにおけるモータ斜板の角度を変えることにより左前輪11Lの回転速度を制御する。各ソレノイド38R、38Lは、制御部50から与えられる制御信号に基づいて油圧モータ35MR、35MLのそれぞれを制御する。
 なお油圧モータ35MR、35MLの各々がラジアルピストン式のモータである場合、周方向に沿って複数個配置された放射状に延びるピストンのうち作動油を供給されるピストンの個数を変えることにより、前輪11R、11Lの回転速度が制御される。
 アーティキュレートセンサ39は、フロントフレーム22とリアフレーム21とのアーティキュレート角度(連結角度)を検出し、アーティキュレート角度信号を発生する。アーティキュレートセンサ39で発生したアーティキュレート角度信号は制御部50へ出力される。
 <制御部50の構成>
 図3は、一実施形態におけるモータグレーダにおける制御部50の機能を示す機能ブロック図である。図3に示されるように、制御部50は、後輪旋回半径算出部50aと、前輪旋回半径算出部50bと、目標前輪回転速度算出部50cと、右前輪回転速度指令部50dRと、左前輪回転速度指令部50dLと、記憶部50eとを有している。
 後輪旋回半径算出部50aは、速度センサ36で測定したモータグレーダ1の移動速度とIMU26で測定した旋回角速度とに基づいて右後輪12Rと左後輪12Lとを含む後輪12の旋回半径を算出する。後輪旋回半径算出部50aは、算出した後輪12の旋回半径を前輪旋回半径算出部50bへ出力する。
 前輪旋回半径算出部50bは、後輪旋回半径算出部50aにより算出された後輪12の旋回半径と、アーティキュレートセンサ39により検知されたアーティキュレート角度とに基づいて右前輪11Rの旋回半径と左前輪11Lの旋回半径とを算出する。前輪旋回半径算出部50bは、算出した右前輪11Rおよび左前輪11Lの各々の旋回半径と、後輪旋回半径算出部50aにより算出された後輪12の旋回半径と、アーティキュレートセンサ39により検知されたアーティキュレート角度とに基づいて前輪増速比テーブル(図6)を作成する。前輪旋回半径算出部50bは、作成した前輪増速比テーブルを記憶部50eへ出力する。
 記憶部50eは、上記前輪増速比テーブルを格納(記憶)している。前輪増速比テーブルは、たとえば図6に示されるように、後輪旋回半径とアーティキュレート角度とに対応した前輪増速比を規定するものである。この前輪増速比テーブルの詳細については後述する。また前輪増速比とは、前輪旋回半径を後輪旋回半径で除した値(前輪旋回半径/後輪旋回半径)である。この記憶部50eは、制御部50の外部にあってもよい。
 目標前輪回転速度算出部50cは、右前輪11Rおよび左前輪11Lの各々の目標前輪回転速度を算出する。具体的には以下のとおりである。
 目標前輪回転速度算出部50cは、決定された目標前輪増速比と後輪旋回半径とから右前輪11Rおよび左前輪11Lの各々の目標となる旋回半径(目標前輪旋回半径)を算出する。
 目標前輪回転速度算出部50cは、速度センサ36の速度と上記により算出された右前輪11Rおよび左前輪11Lの各々の目標前輪増速比とに基づいて、右前輪11Rおよび左前輪11Lの各々の目標となる回転速度(目標前輪回転速度)を算出する。
 目標前輪回転速度算出部50cは、算出した右前輪11Rの目標前輪回転速度を右前輪回転速度指令部50dRへ出力する。また目標前輪回転速度算出部50cは、算出した左前輪11Lの目標前輪回転速度を左前輪回転速度指令部50dLへ出力する。
 右前輪回転速度指令部50dRは、目標前輪回転速度算出部50cから出力された右前輪11Rの目標前輪回転速度信号に基づいて右前輪11Rの第1駆動源35Rを制御する。また左前輪回転速度指令部50dLは、目標前輪回転速度算出部50cから出力された左前輪11Lの目標前輪回転速度信号に基づいて左前輪11Lの第2駆動源35Lを制御する。
 以上により制御部50は、速度センサ36で測定した移動速度とIMU26で測定した旋回角速度とに基づいて第1駆動源35Rおよび第2駆動源35Lを制御することにより、右前輪11Rおよび左前輪11Lの各々の回転速度を独立して制御する。
 <後輪の旋回半径と前輪の旋回半径とを算出する方法>
 次に、後輪の旋回半径と前輪の旋回半径とを算出する方法について図4および図5を用いて説明する。
 図4は、後輪の旋回半径を説明するための図である。図5は、前輪の旋回半径の計算式を説明するための図である。
 後輪の旋回半径として、後輪中心の旋回半径が求められる。ここで後輪中心の旋回半径とは、図4に示されるように、右後輪12Rと左後輪12Lとの中心(後輪中心)C1の旋回半径Rを意味する。なお図4には、右後輪12Rの回転速度vrが、左後輪12Lの回転速度vlよりも小さく、モータグレーダ1が右旋回している状態が示されている。
 上記状態において後輪中心C1の旋回半径Rは、速度センサ36で測定したモータグレーダ1の移動速度をIMU26で測定した旋回角速度で除すことにより算出される。つまり後輪中心C1の旋回半径Rは、以下の式により算出される。
 後輪中心C1の旋回半径R=(速度センサ36で測定した移動速度)/(IMU26で測定した旋回角速度) ・・・式(A)
 なお上記においてはモータグレーダ1が右旋回している状態について説明したが、左旋回している時においても同様に後輪中心の旋回半径が求められる。
 また上記後輪中心C1の旋回半径Rを以下の数1式に代入することにより、右前輪11Rの旋回半径Rrが算出される。また上記後輪中心C1の旋回半径Rを以下の数2式に代入することにより、左前輪11Lの旋回半径Rlが算出される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 また上記数1式および数2式に示されるxr、yr、xlおよびylのそれぞれは、以下の数3式、数4式、数5式および数6式で表わされる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 上記数3式、数4式、数5式および数6式におけるL1は、図5に示されるように、後輪中心C1とアーティキュレート中心24との距離である。L2は、アーティキュレート中心24とフロントアクセルセンタピンとの距離である。L3は、右前輪11Rと左前輪11Lとのトレッド幅である。θaは、アーティキュレート角度である。L1、L2およびL3の各々は、作業機械1の機種によって決まる数値である。
 以上より、上記式(A)を用いることによって後輪中心C1の旋回半径Rが算出される。また上記数1式を用いることによって右前輪11Rの旋回半径Rrが算出される。また上記数2式を用いることによって左前輪11Lの旋回半径Rlが算出される。
 <前輪増速比テーブル>
 次に、前輪増速比テーブルについて図6を用いて説明する。
 図6は、後輪の旋回半径とアーティキュレート角度とから、左右前輪の各前輪増速比を求めるための前輪増速比テーブルを示す図である。図6に示される前輪増速比テーブルには、後輪の旋回半径、アーティキュレート角度および前輪増速比の関係が規定されている。
 前輪増速比テーブルにおける「後輪旋回半径」の項目は、「右旋回」、「中立(直進)」および「左旋回」の項目に分けられている。「右旋回」の項目は、たとえば「小」、「↑」、「↓」、「大」の4つの項目に分かれている。「右旋回」の「大」の項目には右旋回時の比較的大きい旋回半径の数値が規定され、「小」の項目には右旋回時の比較的小さい旋回半径の数値が規定される。また「右旋回」の「↑」および「↓」の各々には「大」の旋回半径よりも小さく、かつ「小」の旋回半径よりも大きい数値が規定される。また「右旋回」の「↑」は「右旋回」の「↓」よりも「右旋回」の「小」に近い数値が規定される。
 「左旋回」の項目は、たとえば「小」、「↑」、「↓」、「大」の4つの項目に分かれている。「左旋回」の「大」の項目には比較的大きい左旋回時の旋回半径の数値が規定され、「小」の項目には比較的小さい左旋回時の旋回半径の数値が規定される。また「左旋回」の「↑」および「↓」の各々には「大」の旋回半径よりも小さく、かつ「小」の旋回半径よりも大きい数値が規定される。また「左旋回」の「↑」は「左旋回」の「↓」よりも「左旋回」の「小」に近い数値が規定される。
 また「アーティキュレート角度」の項目は、「左アーティキュレート」、「中立」および「右アーティキュレート」の項目に分けられている。「左アーティキュレート」の項目は、たとえば「小」、「中」、「大」の3つの項目に分かれている。「左アーティキュレート」の「大」の項目には左アーティキュレート時の比較的大きいアーティキュレート角度が規定される。「左アーティキュレート」の「小」の項目には左アーティキュレート時の比較的小さいアーティキュレート角度が規定される。「左アーティキュレート」の「中」の項目には「左アーティキュレート」の「大」と「小」との間のアーティキュレート角度が規定される。
 「右アーティキュレート」の項目は、たとえば「小」、「中」、「大」の3つの項目に分かれている。「右アーティキュレート」の「大」の項目には右アーティキュレート時の比較的大きいアーティキュレート角度が規定される。「右アーティキュレート」の「小」の項目には右アーティキュレート時の比較的小さいアーティキュレート角度が規定される。「右アーティキュレート」の「中」の項目には「右アーティキュレート」の「大」と「小」との間のアーティキュレート角度が規定される。
 図6に示される前輪増速比テーブル内における「1.00」の数値は目標前輪増速比である。また、L01~L03、L11~L13、L21~L23、L31~L34、R01~R03、R11~LR3、R21~R23、およびR31~R34の各々には、各機種に対応した目標前輪増速比の数値が規定される。
 この図6に示される前輪増速比テーブルが、右前輪11Rに対するものと、左前輪11Lに対するものとの双方について作成され、図3に示される記憶部50eに格納されている。なお図6に示される前輪増速比テーブルでは、「右旋回」および「左旋回」の各々が4つの項目に分けられているが、これらの項目は3つ以下に分けられてもよく、また5つ以上に分けられてもよい。また「左アーティキュレート」および「右アーティキュレート」の項目の各々が3つの項目分けられているが、これらの項目は2つ以下に分けられてもよく、また4つ以上に分けられてもよい。
 <前輪増速比テーブルの作成>
 図6に示す前輪増速比テーブルは、図3に示される後輪旋回半径算出部50aにより算出された後輪旋回半径と、アーティキュレートセンサ39により測定されたアーティキュレート角度と、前輪旋回半径算出部50bにより算出された前輪旋回半径とに基づいて作成される。具体的には、上記後輪旋回半径と、上記アーティキュレート角度と、上記前輪旋回半径を上記後輪旋回半径で除すことにより算出された前輪増速比とにより作成される。
 この前輪増速比テーブルは、図3に示される前輪旋回半径算出部50bにおいて作成され、作成された後は前輪旋回半径算出部50bから記憶部50eへ出力され、記憶部50eに格納される。
 <目標前輪回転速度を算出する方法>
 次に、目標前輪回転速度を算出する方法について説明する。
 目標前輪回転速度の算出は、図3に示される目標前輪回転速度算出部50cにおいて行われる。この目標前輪回転速度算出部50cは、記憶部50eに格納された前輪増速比テーブル(図6)を参照して、後輪旋回半径算出部50aにより算出された後輪12の旋回半径と、アーティキュレートセンサ39により測定されたアーティキュレート角度とに基づいて右前輪11Rおよび左前輪11Lの各々の目標前輪増速比を決定する。具体的には、図4および図5に示されるモータグレーダ1のアーティキュレート角度がたとえば図6に示す「右アーティキュレート」の「大」であり、かつ後輪旋回半径がたとえば図6に示す「右旋回」の「大」である場合には、目標前輪増速比は「R31」に規定された数値に決定される。
 上記のように決定された目標前輪増速比は、目標となる前輪旋回半径(目標前輪旋回半径)を後輪旋回半径で除した値である。
 なお上記においては前輪増速比テーブルを用いて目標前輪回転速度を算出する方法について説明したが、目標前輪回転速度は前輪増速比テーブルを用いずに計算により算出されてもよい。
 <走行輪11、12の制御方法>
 次に、一実施形態におけるモータグレーダにおける走行輪11、12の制御方法について図7を用いて説明する。
 図7は、一実施形態におけるモータグレーダにおける走行輪11、12の制御方法を示すフロー図である。図3および図7に示されるように、速度センサ36によりモータグレーダ1の移動速度が測定される(ステップS1a:図7)。またIMU26により移動中のモータグレーダ1における旋回角速度が測定される(ステップS1b:図7)。またアーティキュレートセンサ39によりアーティキュレート角度が測定される(ステップS1c:図7)。
 この後、図3に示されるように、速度センサ36で測定された移動速度の信号とIMU26で測定された旋回角速度の信号とが制御部50の後輪旋回半径算出部50aへ出力される。
 後輪旋回半径算出部50aでは、後輪の旋回半径が算出される(ステップS2:図7)。具体的には、上記式(A)に、速度センサ36で測定された移動速度の信号とIMU26で測定された旋回角速度とを代入することにより、後輪中心C1の旋回半径Rが算出される。
 この後、図3に示されるように、後輪旋回半径算出部50aで算出された後輪12の旋回半径が目標前輪回転速度算出部50cへ出力される。またアーティキュレートセンサ39により測定されたアーティキュレート角度も目標前輪回転速度算出部50cへ出力される。
 目標前輪回転速度算出部50cでは、記憶部50eに格納された前輪増速比テーブルを参照して目標前輪回転速度が決定される(ステップS3:図7)。具体的には、目標前輪回転速度算出部50cは、記憶部50eに格納された前輪増速比テーブルを参照して、後輪旋回半径算出部50aにより算出された後輪12の旋回半径と、アーティキュレートセンサ39により検知されたアーティキュレート角度とに基づいて右前輪11Rおよび左前輪11Lの各々の目標前輪増速比を決定する。
 上記のように決定された目標前輪増速比は、目標前輪旋回半径を後輪旋回半径で除した値である。このため目標前輪増速比と、移動速度とに基づいて目標前輪回転速度が算出される。
 目標前輪回転速度算出部50cにより算出された右前輪11Rの目標前輪回転速度は右前輪回転速度指令部50dRへ出力される。また目標前輪回転速度算出部50cにより算出された左前輪11Lの目標前輪回転速度は左前輪回転速度指令部50dLへ出力される。
 右前輪回転速度指令部50dRは右前輪11Rの目標前輪回転速度に基づいて右前輪11Rの回転速度を制御し、左前輪回転速度指令部50dLは左前輪11Lの目標前輪回転速度に基づいて左前輪11Lの回転速度を制御する(ステップS4:図7)。
 具体的には右前輪回転速度指令部50dRは、図2に示される右ポンプソレノイド37Rおよび右モータソレノイド38Rの少なくとも1つに右前輪11Rの回転制御の信号を出力する。上記信号を受けた右ポンプソレノイド37Rは、右油圧ポンプ35PRのポンプ斜板の角度を変更する。また上記信号を受けた右モータソレノイド38Rは、右油圧モータ35MRのモータ斜板の角度を変更する。上記の右油圧ポンプ35PRのポンプ斜板および右油圧モータ35MRのモータ斜板の少なくとも1つの角度が変更されることにより右前輪11Rの回転速度が制御される。
 また左前輪回転速度指令部50dLは、図2に示される左ポンプソレノイド37Lおよび左モータソレノイド38Lの少なくとも1つに左前輪11Lの回転制御の信号を出力する。上記信号を受けた左ポンプソレノイド37Lは、左油圧ポンプ35PLのポンプ斜板の角度を変更する。また上記信号を受けた左モータソレノイド38Lは、左油圧モータ35MLのモータ斜板の角度を変更する。上記の左油圧ポンプ35PLのポンプ斜板および左油圧モータ35MLのモータ斜板の少なくとも1つの角度が変更されることにより左前輪11Lの回転速度が制御される。
 上記により、モータグレーダ1の移動速度と旋回角速度とに基づいて、右前輪11Rの回転速度と左前輪11Lの回転速度とが独立して制御される。
 <本実施形態における効果>
 次に、本実施形態における効果について説明する。
 本実施形態においては、図2に示されるように、モータグレーダ1の移動速度と旋回角速度とに基づいて、右前輪11Rの回転速度と左前輪11Lの回転速度とが独立して制御される。前輪11から牽引力が失われることを抑制することができる。
 また本実施形態においては、図2に示されるように、モータグレーダ1の旋回角速度がIMU26により測定される。IMU26は、基本的にはモータグレーダ1の如何なる部分に取り付けられた場合でもモータグレーダ1の旋回角速度を測定可能である。このためIMU26を土砂などの影響を受けにくい、たとえば走行輪11、12および作業機4から離れた位置に配置することが可能となる。これによりIMU26が故障しにくい作業機械およびその制御方法を実現することができる。
 また本実施形態においては、図3に示されるように、制御部50は、速度センサ36で測定された移動速度とIMU26で測定された旋回角速度とに基づいて右後輪12Rと左後輪12Lとを含む後輪12の旋回半径を算出する。この算出された後輪12の旋回半径に基づいて、右前輪11Rと左前輪11Lとの各々の目標前輪回転速度を算出することが可能となる。
 また本実施形態においては、図3に示されるように、制御部50は、目標前輪回転速度算出部50cにおいて、算出された後輪12の旋回半径と、アーティキュレートセンサ39により検出されたアーティキュレート角度とに基づいて右前輪11Rの目標前輪旋回半径と左前輪11Lの目標前輪旋回半径とを決定する。この決定された右前輪11Rの目標前輪旋回半径と左前輪11Lの目標前輪旋回半径とに基づいて、右前輪11Rと左前輪11Lとの各々の目標前輪回転速度を算出することが可能となる。
 また本実施形態においては、図3に示されるように、制御部50は、右前輪回転速度指令部50dRにおいて右前輪11Rの目標前輪回転速度となるように第1駆動源35Rを制御し、かつ左前輪回転速度指令部50dLにおいて左前輪11Lの目標前輪回転速度となるように第2駆動源35Lを制御する。これにより、右前輪11Rおよび左前輪11Lの各々の回転速度を独立して制御することが可能となり、前輪11から牽引力が失われることが抑制される。
 また本実施形態においては、図1に示されるように、IMU26はフロントフレーム22に取り付けられている。これにより走行輪11、12および作業機4から離れた位置に配置することが可能となり、IMU26が土砂などにより故障しにくくなる。
 また本実施形態においては、図2に示されるように、第1駆動源35Rは右油圧モータ35MRを含み、かつ第2駆動源35Lは左油圧モータ35MLを含む。これにより右前輪11Rの回転速度が右油圧モータ35MRにより制御され、かつ左前輪11Lの回転速度が左油圧モータ35MLにより制御される。よって右前輪11Rの回転速度と左前輪11Lの回転速度とが独立して制御可能である。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 モータグレーダ、2 車体フレーム、2F 前端、2R 後端、3 キャブ、4 作業機、6 エンジン室、7 ステアリングシリンダ、11 前輪、11L 左前輪、11R 右前輪、12 後輪、12L 左後輪、12R 右後輪、21 リアフレーム、22 フロントフレーム、23 アーティキュレートシリンダ、24 アーティキュレート中心、25 外装カバー、26 IMU、31 エンジン、32 変速機、33 終減速装置、34L 左タンデム装置、34R 右タンデム装置、35L 第2駆動源、35ML 左油圧モータ、35MR 右油圧モータ、35PL 左油圧ポンプ、35PR 右油圧ポンプ、35R 第1駆動源、36 速度センサ、37L 左ポンプソレノイド、37R 右ポンプソレノイド、38L 左モータソレノイド、38R 右モータソレノイド、39 アーティキュレートセンサ、40 ドローバ、41 旋回サークル、42 ブレード、44 リフトシリンダ、49 油圧モータ、50 制御部、50a 後輪旋回半径算出部、50b 前輪旋回半径算出部、50c 目標前輪回転速度算出部、50dL 左前輪回転速度指令部、50dR 右前輪回転速度指令部、50e 記憶部、51 カウンタウェイト、C1 後輪中心。

Claims (7)

  1.  作業機械であって、
     右前輪および左前輪と、
     前記作業機械の移動速度を測定する速度センサと、
     前記作業機械の移動時に前記作業機械に作用する旋回角速度を測定する測定装置と、
     前記右前輪に駆動力を付与する第1駆動源と、
     前記左前輪に駆動力を付与する第2駆動源と、
     前記速度センサで測定した前記作業機械の移動速度と前記測定装置で測定した旋回角速度とに基づいて前記第1駆動源および前記第2駆動源を制御することにより、前記右前輪および前記左前輪の各々の回転速度を独立して制御する制御部とを備えた、作業機械。
  2.  後輪をさらに備え、
     前記制御部は、前記速度センサで測定した前記作業機械の移動速度と前記測定装置で測定した旋回角速度とに基づいて前記後輪の旋回半径を算出する、請求項1に記載の作業機械。
  3.  前記右前輪および前記左前輪が設けられたフロントフレームと、
     前記後輪が設けられ、かつ前記フロントフレームに連結されたリアフレームと、
     前記フロントフレームと前記リアフレームとのアーティキュレート角度を検出するアーティキュレートセンサとをさらに備え、
     前記制御部は、算出された前記後輪の旋回半径と前記アーティキュレートセンサにより検出された前記アーティキュレート角度とに基づいて前記右前輪の目標前輪回転速度と前記左前輪の目標前輪回転速度とを決定する、請求項2に記載の作業機械。
  4.  前記制御部は、前記右前輪の前記目標前輪回転速度となるように前記第1駆動源を制御し、かつ前記左前輪の前記目標前輪回転速度となるように前記第2駆動源を制御する、請求項3に記載の作業機械。
  5.  前記測定装置は前記フロントフレームに取り付けられている、請求項3に記載の作業機械。
  6.  前記第1駆動源は第1モータを含み、かつ前記第2駆動源は第2モータを含む、請求項1に記載の作業機械。
  7.  右前輪および左前輪を有する作業機械の制御方法であって、
     前記作業機械の移動速度を測定する工程と、
     前記作業機械の移動時に前記作業機械に作用する旋回角速度を測定する工程と、
     測定した前記移動速度と前記旋回角速度とに基づいて前記右前輪および前記左前輪の各々の回転速度を独立して制御する工程とを備えた、作業機械の制御方法。
PCT/JP2019/007334 2018-04-26 2019-02-26 作業機械およびその制御方法 WO2019207947A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/971,530 US11873623B2 (en) 2018-04-26 2019-02-26 Work machine and method of controlling the same
CN201980016387.0A CN111801269B (zh) 2018-04-26 2019-02-26 作业机械及其控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018085243A JP7154814B2 (ja) 2018-04-26 2018-04-26 作業機械およびその制御方法
JP2018-085243 2018-04-26

Publications (1)

Publication Number Publication Date
WO2019207947A1 true WO2019207947A1 (ja) 2019-10-31

Family

ID=68294944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007334 WO2019207947A1 (ja) 2018-04-26 2019-02-26 作業機械およびその制御方法

Country Status (4)

Country Link
US (1) US11873623B2 (ja)
JP (1) JP7154814B2 (ja)
CN (1) CN111801269B (ja)
WO (1) WO2019207947A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113529844B (zh) * 2021-07-08 2022-11-11 柳州柳工挖掘机有限公司 负流量挖掘机直行控制系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010405A (ja) * 2000-06-23 2002-01-11 Tcm Corp 産業用車両
JP2003013419A (ja) * 2001-07-03 2003-01-15 Hokuriku Regional Development Bureau Ministry Land Infrastructure & Transport 除雪車両及び除雪車両のブレード自動制御方法
JP2011245988A (ja) * 2010-05-27 2011-12-08 Hitachi Constr Mach Co Ltd ホイールローダ
WO2017061888A1 (en) * 2015-10-06 2017-04-13 Limited Liability Company "Topcon Positioning Systems" Automatic blade control system for a motor grader
JP2017172187A (ja) * 2016-03-23 2017-09-28 株式会社小松製作所 モータグレーダの制御方法、モータグレーダおよびモータグレーダの作業管理システム

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791540A (en) * 1969-11-12 1974-02-12 Hydro Conduit Corp Transport vehicle having lift mechanism and associated extendible and retractable mobile object support
US4204697A (en) * 1978-10-27 1980-05-27 David Santerre Variable wheelbase road truck
JP2524994B2 (ja) 1987-03-03 1996-08-14 日産自動車株式会社 四輪駆動車の駆動力配分制御装置
US5535124A (en) * 1991-10-04 1996-07-09 Caterpillar Inc. Method and apparatus for controlling differentially driven wheel-slip for an articulated machine
US5213177A (en) * 1991-12-19 1993-05-25 Zexel-Gleason Usa, Inc. Traction control system responsive to wheel speed fluctuations
AUPM777594A0 (en) * 1994-08-30 1994-09-22 Van William Concepts Pty Ltd Improvements in motor vehicles
CN1132813A (zh) 1995-04-07 1996-10-09 代纳派克重型设备公司 压路机的转向系统
US5865512A (en) * 1996-09-05 1999-02-02 Caterpillar Inc. Method and apparatus for modifying the feedback gains of a traction control system
US5879124A (en) * 1997-04-14 1999-03-09 Gerardus J. Brouwer Vehicle with retractible rear wheel assembly
US6283237B1 (en) * 1999-06-01 2001-09-04 Caterpillar Inc. Method and apparatus for steering articulated machines using variable speed devices
US6409457B1 (en) * 1999-10-15 2002-06-25 George Korycan Work vehicle
SE525774C2 (sv) 2002-09-13 2005-04-26 Volvo Construction Equipmeny H Förfarande, anordning samt datorprogramprodukt för styrning av ett fordon
US6631320B1 (en) * 2002-11-27 2003-10-07 Caterpillar Inc Electronic traction control system
JP4148017B2 (ja) 2003-05-08 2008-09-10 トヨタ自動車株式会社 車両の駆動制御装置
JP4561189B2 (ja) 2004-06-09 2010-10-13 日産自動車株式会社 車両運動制御装置
US7325636B2 (en) * 2004-08-30 2008-02-05 Caterpillar Inc. Front-wheel drive steering compensation method and system
US7913800B2 (en) * 2006-10-30 2011-03-29 Deere & Company Steering system with variable flow rate amplification ratio and associated method
US8602153B2 (en) * 2007-08-06 2013-12-10 Extendquip Llc Extendable frame work vehicle
WO2009128815A1 (en) * 2008-04-14 2009-10-22 Deere & Company Traction control method and apparatus for a vehicle with independent drives
FR2942430B1 (fr) 2009-02-20 2012-07-27 Renault Sas Procede de commande d'une difference de vitesse entre roues avant et arriere d'un vehicule a quatre roues motrices.
DE102011084765A1 (de) 2011-10-19 2013-04-25 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Kraftfahrzeugs
CN202294951U (zh) 2011-11-03 2012-07-04 杭州鑫鹿机械制造有限公司 装载机的后铰接转向机构
KR101480252B1 (ko) * 2013-10-28 2015-01-12 경북대학교 산학협력단 4륜구동 독립제어 조향시스템의 고장대처장치 및 방법
KR101571629B1 (ko) * 2014-07-01 2015-11-24 경북대학교 산학협력단 4륜 독립제어 조향시스템의 고장대처장치
US9845590B2 (en) * 2015-08-06 2017-12-19 Caterpillar Inc. Hydraulic system for an earth moving machine
CN106114614B (zh) * 2016-08-26 2018-05-18 吉林大学 一种可控液压锁止式左右轮独立转向机构
JP6946131B2 (ja) * 2017-09-21 2021-10-06 株式会社小松製作所 作業車両
DE102018119962A1 (de) * 2018-08-16 2020-02-20 Wirtgen Gmbh Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine
US11173891B2 (en) * 2019-05-20 2021-11-16 Fca Us Llc Torque distribution control to improve steering performance in through-the-road electrified vehicles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010405A (ja) * 2000-06-23 2002-01-11 Tcm Corp 産業用車両
JP2003013419A (ja) * 2001-07-03 2003-01-15 Hokuriku Regional Development Bureau Ministry Land Infrastructure & Transport 除雪車両及び除雪車両のブレード自動制御方法
JP2011245988A (ja) * 2010-05-27 2011-12-08 Hitachi Constr Mach Co Ltd ホイールローダ
WO2017061888A1 (en) * 2015-10-06 2017-04-13 Limited Liability Company "Topcon Positioning Systems" Automatic blade control system for a motor grader
JP2017172187A (ja) * 2016-03-23 2017-09-28 株式会社小松製作所 モータグレーダの制御方法、モータグレーダおよびモータグレーダの作業管理システム

Also Published As

Publication number Publication date
US20210087791A1 (en) 2021-03-25
JP2019189084A (ja) 2019-10-31
CN111801269B (zh) 2022-10-04
CN111801269A (zh) 2020-10-20
US11873623B2 (en) 2024-01-16
JP7154814B2 (ja) 2022-10-18

Similar Documents

Publication Publication Date Title
US6283237B1 (en) Method and apparatus for steering articulated machines using variable speed devices
JP6613185B2 (ja) モータグレーダの制御方法、モータグレーダおよびモータグレーダの作業管理システム
US8055411B2 (en) Steering system and method of steering a machine
JP7317770B2 (ja) 作業機
WO2019207947A1 (ja) 作業機械およびその制御方法
WO2020085232A1 (ja) 作業機械およびその制御方法
JP7358164B2 (ja) 制御システム、作業車両の制御方法、および、作業車両
WO2019207946A1 (ja) 作業機械およびその制御方法
WO2021065193A1 (ja) 作業機械および作業機械の制御方法
JP7478114B2 (ja) 作業機
WO2021186834A1 (ja) 作業車両および制御方法
JP7478113B2 (ja) 作業機
WO2024100957A1 (ja) 作業機械を制御するためのシステム及び方法
JP7459017B2 (ja) 作業機
JP7478111B2 (ja) 作業機
JP7500502B2 (ja) 作業機
JP7496798B2 (ja) 作業機
JP2019002233A (ja) モータグレーダ
JP7500495B2 (ja) 作業機
JP2005224164A (ja) 作業機のローリング制御装置
JP2000160509A (ja) エンドミルカッタ式作業車両
JPH1095242A (ja) クローラー式走行車両の駆動機構
JP2001106113A (ja) クローラ作業車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792356

Country of ref document: EP

Kind code of ref document: A1