WO2019207810A1 - 難燃性樹脂組成物、これを用いた成形体、絶縁電線、ケーブル及び光ファイバケーブル - Google Patents

難燃性樹脂組成物、これを用いた成形体、絶縁電線、ケーブル及び光ファイバケーブル Download PDF

Info

Publication number
WO2019207810A1
WO2019207810A1 PCT/JP2018/017351 JP2018017351W WO2019207810A1 WO 2019207810 A1 WO2019207810 A1 WO 2019207810A1 JP 2018017351 W JP2018017351 W JP 2018017351W WO 2019207810 A1 WO2019207810 A1 WO 2019207810A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
mass
flame retardant
retardant resin
general formula
Prior art date
Application number
PCT/JP2018/017351
Other languages
English (en)
French (fr)
Inventor
成一 平
近藤 智紀
中村 詳一郎
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to JP2018552885A priority Critical patent/JP6454827B1/ja
Priority to PCT/JP2018/017351 priority patent/WO2019207810A1/ja
Priority to EP18916345.4A priority patent/EP3763784A4/en
Priority to JP2018557958A priority patent/JP6454829B1/ja
Priority to PCT/JP2018/038538 priority patent/WO2019207819A1/ja
Priority to CN201880092285.2A priority patent/CN111971337B/zh
Priority to US17/050,735 priority patent/US20210122912A1/en
Priority to JP2018235350A priority patent/JP6498836B1/ja
Priority to JP2018235351A priority patent/JP6573707B1/ja
Priority to JP2019076041A priority patent/JP2019189859A/ja
Publication of WO2019207810A1 publication Critical patent/WO2019207810A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/4436Heat resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • C08K5/5333Esters of phosphonic acids
    • C08K5/5357Esters of phosphonic acids cyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/322Ammonium phosphate
    • C08K2003/323Ammonium polyphosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Definitions

  • the present invention relates to a flame retardant resin composition, a molded body using the same, an insulated wire, a cable, and an optical fiber cable.
  • a flame retardant resin composition in which a phosphate compound is blended with a polyolefin resin is known (see Patent Document 1 below).
  • the flame retardant resin composition described in Patent Document 1 exhibits excellent flame retardancy.
  • the flame retardant resin composition described in Patent Document 1 has room for improvement in terms of workability.
  • the present invention has been made in view of the above circumstances, a flame retardant resin composition capable of improving processability while ensuring excellent flame retardancy, a molded body using the same, an insulated wire, and a cable And an optical fiber cable.
  • the present invention includes a polyolefin resin (A), a phosphate compound (B), and an organic phosphorus compound (C), and the phosphate compound (B) is represented by the following general formula (1).
  • the organic phosphorus compound (C) is a flame retardant resin composition represented by the following general formula (2), which includes a salt of phosphoric acid and an amine compound having at least one amino group in the molecule. .
  • m represents an integer of 1 to 100.
  • X 1 and X 2 are the same or different and are represented by the following general formula (3).
  • AL is a branched or straight chain aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • Ar is a phenyl group, naphthyl group or anthryl group which may have a substituent. And is bonded to any carbon atom in AL.
  • N represents an integer of 1 to 3.
  • the flame-retardant resin composition of the present invention processability can be improved while ensuring excellent flame retardancy.
  • the present inventors have inferred the reason why excellent flame retardancy can be ensured by the flame retardant resin composition of the present invention as follows.
  • the phosphate compound contains a salt of phosphoric acid represented by the above general formula (1) and an amine compound having at least one amino group in the molecule.
  • a dense foam insulation layer is produced during combustion. For this reason, combustion of polyolefin resin is suppressed and self-extinguishing property is provided to a flame-retardant resin composition.
  • other flame retardants such as a metal hydroxide and a silicone compound are used in combination with the phosphate compound, the formation of a dense foam heat insulating layer is inhibited.
  • the organophosphorus compound represented by the general formula (2) is considered to suppress the combustion of the polyolefin resin by a radical trapping action in the solid phase.
  • the said organic phosphorus compound has a phosphonic acid compound in frame
  • the organophosphorus compound has a pentaerythritol ester that promotes carbonization during combustion in its skeleton, so unlike other flame retardants such as metal hydroxides and silicone compounds, it produces a dense foam insulation layer. It is thought that it is hard to inhibit.
  • the flame-retardant resin composition of the present invention it is considered that the temperature at which the radical trap action is exhibited and the temperature at which the dense foam heat insulating layer is formed are close. From the above, it is considered that excellent flame retardancy is ensured by the flame retardant resin composition of the present invention.
  • the organophosphorus compound has a planar structure and is less sterically hindered, when the flame retardant resin composition is processed by using the phosphate compound and the organophosphorus compound in combination. It is thought that the fluidity can be improved. Therefore, it is thought that the workability of the flame retardant resin composition can be improved.
  • the said phosphate compound (B) is mix
  • the said organophosphorus compound (C) is mix
  • X 1 and X 2 in the general formula (2) is a benzyl group.
  • m in the general formula (1) is 1 to 2
  • the amine compound includes an amine compound including a triazine ring, an amine compound including a piperazine ring, and an amine including a triazine ring. It is preferably composed of a mixture with a compound, ammonia, or guanidyl urea.
  • the flame retardancy of the flame retardant resin composition is effectively improved.
  • the amine compound is preferably composed of a mixture of an amine compound containing a piperazine ring and an amine compound containing a triazine ring.
  • the flame retardancy of the flame retardant resin composition is further improved as compared with the case where the amine compound is not composed of the above mixture.
  • a fluorine-type anti-drip agent (D) is further mix
  • the polyolefin resin (A) preferably contains a polypropylene resin.
  • the flame-retardant resin composition is more excellent in heat resistance than when the polyolefin resin (A) does not contain a polypropylene resin.
  • the polyolefin resin (A) preferably contains an elastomer.
  • the flame retardant resin composition is more excellent in impact resistance and cold resistance than in the case where the polyolefin resin (A) does not contain an elastomer.
  • the content of the elastomer in the polyolefin resin (A) is preferably 60% by mass or less.
  • the flame retardancy of the flame retardant resin composition can be further improved as compared with the case where the content of the elastomer in the polyolefin resin (A) exceeds 60% by mass.
  • this invention is a molded object containing the said flame retardant resin composition.
  • this molded body includes a flame retardant resin composition that can improve processability while ensuring excellent flame retardancy, various molded products that require both excellent flame retardancy and excellent processability are required. Applicable for use.
  • this invention is an insulated wire provided with the conductor and the insulating layer which coat
  • the insulated wire of the present invention includes an insulating layer composed of a flame retardant resin composition capable of improving workability while ensuring excellent flame retardancy, and thus has excellent flame retardancy and good appearance. It is possible to have
  • the present invention also includes a conductor, an insulated wire having an insulating layer covering the conductor, and a covering layer covering the insulated wire, wherein at least one of the insulating layer and the covering layer is the flame retardant. It is a cable comprised with a conductive resin composition.
  • the cable of the present invention has an excellent flame retardancy because at least one of the insulating layer and the coating layer is composed of a flame retardant resin composition capable of improving processability while ensuring excellent flame retardancy. , And a good appearance.
  • the present invention includes an optical fiber and a covering portion that covers the optical fiber, the covering portion includes an insulator that covers the optical fiber, and the insulator includes the above-described flame-retardant resin composition. It is an optical fiber cable composed of objects.
  • the optical fiber cable of the present invention is composed of a flame retardant resin composition that can improve workability while ensuring excellent flame retardancy, the insulator that covers the optical fiber in the coating portion, It becomes possible to have excellent flame retardancy and good appearance.
  • a flame retardant resin composition capable of improving workability while ensuring excellent flame retardancy, a molded body, an insulated wire, a cable and an optical fiber cable using the same.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. It is sectional drawing which shows one Embodiment of the optical fiber cable of this invention.
  • the flame retardant resin composition of the present invention includes a polyolefin resin (A) and a flame retardant, and the flame retardant includes a phosphate compound (B) and an organic phosphorus compound (C).
  • the phosphate compound (B) contains a salt of phosphoric acid represented by the following general formula (1) and an amine compound having at least one amino group in the molecule, and an organic phosphorus compound (C) Is represented by the following general formula (2).
  • m represents an integer of 1 to 100.
  • X 1 and X 2 are the same or different and are represented by the following general formula (3).
  • AL is a branched or straight chain aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • Ar is a phenyl group, naphthyl group or anthryl group which may have a substituent. And is bonded to any carbon atom in AL.
  • N represents an integer of 1 to 3.
  • the flame-retardant resin composition of the present invention processability can be improved while ensuring excellent flame retardancy.
  • a polyolefin resin has a structural unit derived from an olefin (unsaturated aliphatic hydrocarbon) in the molecule, and the polyolefin resin includes a homopolymer of olefin and a co-polymer of different olefins. In addition to coalescence, copolymers of olefins and non-olefins are also included.
  • polystyrene resin examples include, for example, polyethylene (PE), polypropylene (PP), ethylene-ethyl acrylate copolymer (EEA), ethylene-vinyl acetate copolymer (EVA), ethylene-propylene copolymer, and elastomer. Etc. These can be used alone or in combination of two or more.
  • elastomer examples include styrene-butadiene rubber (SBR), styrene-ethylene-butadiene-styrene copolymer (SEBS copolymer), styrene-propylene-butadiene-styrene copolymer (SPBS copolymer), and styrene-butadiene.
  • SBR styrene-butadiene rubber
  • SEBS copolymer styrene-ethylene-butadiene-styrene copolymer
  • SPBS copolymer styrene-propylene-butadiene-styrene copolymer
  • SIS copolymer styrene-butadiene copolymer
  • Block copolymers with styrene, and hydrogenated products modified by hydrogenation (hydrogenated SBR, hydrogenated SEBS copolymer, hydrogenated SPBS copolymer, hydrogenated SBS copolymer, hydrogenated) SIS copolymer). These can be used alone or in combination of two or more.
  • the polyolefin resin (A) preferably contains a polypropylene resin among the above specific examples. In this case, compared with the case where polyolefin resin (A) does not contain polypropylene resin, a flame-retardant resin composition is more excellent in heat resistance.
  • the polyolefin resin (A) preferably contains an elastomer among the above specific examples.
  • a flame-retardant resin composition is more excellent in impact resistance and cold resistance.
  • the polyolefin resin (A) preferably further contains an elastomer in addition to the polypropylene resin.
  • a flame-retardant resin composition is more excellent in impact resistance and cold resistance.
  • a flame-retardant resin composition is more excellent in heat resistance.
  • the content of the elastomer in the polyolefin resin (A) is not particularly limited, but is preferably 60% by mass or less. In this case, compared with the case where the content rate of the elastomer in polyolefin resin (A) exceeds 60 mass%, the flame retardance of a flame-retardant resin composition can be improved more. Further, the content of the elastomer in the polyolefin resin (A) is more preferably less than 40% by mass. In this case, compared with the case where the content rate of the elastomer in polyolefin resin (A) is 40 mass% or more, the flame retardance of a flame-retardant resin composition can be improved more.
  • the content of the elastomer in the polyolefin resin (A) is particularly preferably 20% by mass or less. In this case, compared with the case where the content rate of the elastomer in polyolefin resin (A) exceeds 20 mass%, the flame retardance of a flame retardant resin composition can be improved more.
  • the content of the elastomer in the polyolefin resin (A) is preferably 10% by mass or more. In this case, the processability of the flame retardant resin composition can be further improved as compared with the case where the elastomer content in the polyolefin resin (A) is less than 10% by mass.
  • the phosphate compound includes a salt of phosphoric acid represented by the general formula (1) and an amine compound having at least one amino group in the molecule. It is a phosphoric acid amine salt compound.
  • the “amino group” includes not only —NH 2 but also —NH—.
  • m is preferably 1 or 2. In this case, compared with the case where m is 3 or more, the flame-retardant resin composition has more excellent flame retardancy.
  • phosphoric acid represented by the general formula (1) examples include polyphosphoric acid such as pyrophosphoric acid and triphosphoric acid, and monophosphoric acid such as orthophosphoric acid.
  • amine compound examples include aliphatic diamines, amine compounds containing piperazine rings, amine compounds containing triazine rings, ammonia, and guanylurea. These can be used alone or in combination of two or more.
  • aliphatic diamine those having 1 to 15 carbon atoms are preferably used.
  • examples of such aliphatic diamines include N, N, N ′, N′-tetramethyldiaminomethane, ethylenediamine, N, N′-dimethylethylenediamine, N, N′-diethylethylenediamine, N, N-dimethylethylenediamine, N, N-diethylethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-diethylethylenediamine, 1,2-propanediamine, 1,3-propanediamine, tetramethylene
  • Examples include diamine, pentamethylenediamine, hexamethylenediamine, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane and 1,10-diaminodecane. These can be used
  • Examples of the amine compound containing a piperazine ring include piperazine, trans-2,5-dimethylpiperazine, 1,4-bis (2-aminoethyl) piperazine, and 1,4-bis (3-aminopropyl) piperazine. These can be used alone or in combination of two or more.
  • Examples of amine compounds containing a triazine ring include melamine, acetoguanamine, benzoguanamine, acrylic guanamine, 2,4-diamino-6-nonyl-1,3,5-triazine, 2,4-diamino-6-hydroxy-1, 3,5-triazine, 2-amino-4,6-dihydroxy-1,3,5-triazine, 2,4-diamino-6-methoxy-1,3,5-triazine, 2,4-diamino-6 -Ethoxy-1,3,5-triazine, 2,4-diamino-6-propoxy-1,3,5-triazine, 2,4-diamino-6-isopropoxy-1,3,5-triazine, 2, 4-diamino-6-mercapto-1,3,5-triazine, 2-amino-4,6-dimercapto-1,3,5-triazine, and melam and melem Etc.
  • the amine compound includes an amine compound containing a triazine ring, a mixture of an amine compound containing a piperazine ring and an amine compound containing a triazine ring.
  • Ammonia or guanidylurea is preferable. In this case, the flame retardancy of the flame retardant resin composition is effectively improved.
  • the amine compound is preferably composed of a mixture of an amine compound containing a piperazine ring and an amine compound containing a triazine ring.
  • the flame retardance of a flame-retardant resin composition improves more.
  • the content of the amine compound containing a piperazine ring in the mixture is preferably 20 to 55% by mass. In this case, more excellent flame retardancy can be obtained in the flame retardant resin composition as compared with the case where the content of the amine compound including the piperazine ring in the mixture is out of the above range.
  • the blending ratio of the phosphate compound (B) to 100 parts by mass of the polyolefin resin (A) is preferably more than 0 parts by mass and 120 parts by mass or less. In this case, more excellent flame retardancy is obtained in the flame retardant resin composition as compared with the case where the blending ratio of the phosphate compound to 100 parts by mass of the polyolefin resin (A) is 0 part by mass. Moreover, workability can be improved more compared with the case where the compounding ratio of the phosphate compound with respect to 100 parts by mass of the polyolefin resin (A) exceeds 120 parts by mass.
  • the blending ratio of the phosphate compound (B) is more preferably 5 parts by mass or more, still more preferably 15 parts by mass or more, and particularly preferably 20 parts by mass or more.
  • the blending ratio of the phosphate compound (B) to 100 parts by mass of the polyolefin resin (A) is more preferably 90 parts by mass or less.
  • the workability of the flame retardant resin composition can be further improved as compared with the case where the blending ratio of the phosphate compound (B) with respect to 100 parts by mass of the polyolefin resin (A) exceeds 90 parts by mass.
  • the blending ratio of the phosphate compound (B) to 100 parts by mass of the polyolefin resin (A) is more preferably 70 parts by mass or less.
  • the blending ratio of the phosphate compound (B) to 100 parts by mass of the polyolefin resin (A) is preferably 50 parts by mass or less, and 40 parts by mass. More preferably, it is at most parts.
  • Organophosphorus compound (C) Organophosphorus compound As described above, the organophosphorus compound (C) is represented by the above general formula (2).
  • X 1 and X 2 in the general formula (2) are represented by the general formula (3).
  • X 1 and X 2 may be the same as or different from each other.
  • AL in the general formula (3) is a branched or straight chain aliphatic hydrocarbon group having 1 to 5 carbon atoms, and the aliphatic hydrocarbon group may have 1 or 2 carbon atoms.
  • Ar in the general formula (3) is a phenyl group, a naphthyl group or an anthryl group which may have a substituent, and is bonded to any carbon atom in AL. Among these, as Ar, a phenyl group is preferable.
  • n is an integer of 1 to 3, but n is preferably 1 or 2.
  • X 1 and X 2 in the general formula (2) are particularly preferably a benzyl group (phenylmethyl group). In this case, more excellent processability is obtained in the flame-retardant resin composition than in the case where X 1 and X 2 in the general formula (2) are not benzyl groups.
  • the organophosphorus compound (C) is preferably blended at a ratio of more than 0 parts by mass and 50 parts by mass or less with respect to 100 parts by mass of the polyolefin resin (A).
  • the workability of the flame retardant resin composition is compared with the case where the blending ratio of the organophosphorus compound (C) to 100 parts by mass of the polyolefin resin (A) is 0 parts by mass or more than 50 parts by mass. And flame retardance can be improved more.
  • the blending ratio of the organophosphorus compound (C) to 100 parts by mass of the polyolefin resin (A) is preferably 1 part by mass or more.
  • the blending ratio of the organophosphorus compound (C) to 100 parts by mass of the polyolefin resin (A) is 2.5 parts by mass or more from the viewpoint of further improving the workability and flame retardancy of the flame retardant resin composition. Is more preferably 5 parts by mass or more, and particularly preferably 10 parts by mass or more.
  • the blending ratio of the organophosphorus compound (C) to 100 parts by mass of the polyolefin resin (A) is preferably 45 parts by mass or less. In this case, the processability and flame retardancy of the flame retardant resin composition are further improved as compared with the case where the blending ratio of the organophosphorus compound (C) with respect to 100 parts by mass of the polyolefin resin (A) exceeds 45 parts by mass. Can do.
  • the blending ratio of the organophosphorus compound (C) to 100 parts by mass of the polyolefin resin (A) is more preferably 40 parts by mass or less. It is still more preferable that it is below mass part, and it is especially preferable that it is below 20 mass part.
  • the flame-retardant resin composition of the present invention may further contain a fluorine-based drip inhibitor (D) in addition to the polyolefin resin (A), the phosphate compound (B) and the organic phosphorus compound (C). .
  • a fluorine-based drip inhibitor (D) in addition to the polyolefin resin (A), the phosphate compound (B) and the organic phosphorus compound (C).
  • the fluorine-based anti-drip agent (D) may contain any fluorine-containing compound containing fluorine and can prevent dripping during combustion.
  • fluorine-containing compounds include fluorine resins such as polytetrafluoroethylene (hereinafter referred to as “PTFE”), polyvinylidene fluoride, and polyhexafluoropropylene.
  • PTFE polytetrafluoroethylene
  • the fluorine-containing compound may be an unmodified fluorine-containing compound or a modified fluorine-containing compound, but is preferably modified.
  • the fluorine-containing compound is efficiently fibrillated, and the dispersibility in the flame-retardant resin composition is further improved.
  • the anti-drip function of the anti-drip agent (D) can be further improved.
  • the melt tension of the flame retardant resin composition becomes larger, the processability and moldability of the flame retardant resin composition can be further improved.
  • the fluorine-containing compound that has been modified include acid-modified polytetrafluoroethylene.
  • the fluorine-based anti-drip agent (D) is preferably blended at a ratio of more than 0 parts by mass and 5 parts by mass or less with respect to 100 parts by mass of the polyolefin resin (A). In this case, unlike the case where the blending ratio of the fluorine-based anti-drip agent (D) with respect to 100 parts by mass of the polyolefin resin (A) is 0 part by mass, anti-drip performance is exhibited, and fluorine with respect to 100 parts by mass of the polyolefin resin (A).
  • the melt viscosity of the flame retardant resin composition is more sufficiently suppressed and the processing of the flame retardant resin composition is suppressed.
  • the sex is improved.
  • the blending ratio of the fluorine-based anti-drip agent (D) to 100 parts by mass of the polyolefin resin (A) is more preferably 0.2 parts by mass or more.
  • the flame retardant resin composition is more excellent in flame retardant resin composition. Is obtained.
  • the blending ratio of the fluorine-based anti-drip agent (D) with respect to 100 parts by mass of the polyolefin resin (A) is more preferably 2 parts by mass or more.
  • the flame retardant resin composition is an antioxidant, thermal degradation inhibitor, ultraviolet absorber, ultraviolet degradation inhibitor, antifogging agent, crosslinking agent, and foaming agent as long as flame retardancy and processability are not affected. Further, a conductive filler, a heat dissipation agent, a color pigment, and the like may be further included as necessary.
  • the flame retardant resin composition is obtained by kneading a polyolefin resin (A), a phosphate compound (B), an organic phosphate compound (C), and, if necessary, a fluorine-based anti-drip agent (D). be able to.
  • the kneading is for dispersing the heat necessary for melting the polyolefin resin (A), the phosphate compound (B), the organic phosphate compound (C), and, if necessary, the anti-drip agent (D). It can be carried out using a kneader that can be processed with the necessary shear.
  • a kneading machine for example, an open roll, a twin screw extruder, a Banbury mixer, a pressure kneader, or the like can be used.
  • the molded product of the present invention contains the above-mentioned flame retardant resin composition. Since this molded body includes a flame retardant resin composition that can improve processability while ensuring excellent flame retardancy, various molded products that require both excellent flame retardancy and excellent processability are required. Applicable for use. Examples of such applications include TV back panels, capacitor cases, insulation films inside keyboards, heater internal panels, building flame retardant sheets, automobile dashboards, packaging materials, and home appliance housings. It is done.
  • Examples of the shape of the molded body of the present invention include a sheet shape and a plate shape, but the shape of the molded body is preferably a sheet shape.
  • the thickness of the molded body is not particularly limited, but the molded body of the present invention can improve workability while ensuring excellent flame retardancy even when the molded body thickness is 5 mm or less. it can.
  • the molded body can be obtained by molding a flame retardant resin composition using, for example, an extrusion molding method, an injection molding method, a vacuum molding method, a press molding method, or the like.
  • the molded body may be composed of a flame retardant resin composition alone, or may be composed of a combination of a flame retardant resin composition and a reinforcing material such as glass cloth or paper depending on the application.
  • FIG. 1 is a partial side view showing an embodiment of a cable according to the present invention.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • the cable 10 includes an insulated wire 4 and a tubular covering layer 3 that covers the insulated wire 4.
  • the insulated wire 4 includes a conductor 1 and a tubular insulating layer 2 that covers the conductor 1.
  • the tubular insulating layer 2 and the coating layer 3 are composed of the above-described flame-retardant resin composition, and the above-mentioned flame-retardant resin composition improves workability while ensuring excellent flame retardancy. be able to. For this reason, it becomes possible for the insulating layer 2 and the coating layer 3 comprised with the said flame-retardant resin composition to have the outstanding flame retardance and a favorable external appearance. Therefore, the cable 10 can have excellent flame retardancy and a good appearance.
  • the conductor 1 may be configured by only one strand, or may be configured by bundling a plurality of strands. Moreover, the conductor 1 is not specifically limited about a conductor diameter, the material of a conductor, etc., It can determine suitably according to a use. As a material of the conductor 1, for example, copper, aluminum, or an alloy containing them is preferable, but a conductive substance such as a carbon material can also be used as appropriate.
  • the covering layer 3 is a so-called sheath and protects the insulating layer 2 from physical or chemical damage.
  • FIG. 3 is a cross-sectional view showing an embodiment of the optical fiber cable of the present invention.
  • the optical fiber cable 20 includes two tension members 22, 23, an optical fiber 24, and a covering portion 25 for covering them.
  • the optical fiber 24 is provided so as to penetrate the coating portion 25.
  • coated part 25 is comprised with the insulator which coat
  • coated part 25 may coat
  • the covering portion 25 is composed of the above-mentioned flame-retardant resin composition, and the above-mentioned flame-retardant resin composition can improve workability while ensuring excellent flame retardancy. For this reason, the coating
  • the present invention is not limited to the above embodiment.
  • the cable 10 having one insulated wire 4 is used as the cable, but the cable of the present invention is not limited to the cable having one insulated wire 4, and the covering layer 3 It may be a cable having two or more insulated wires 4 inside.
  • a resin portion made of polypropylene or the like may be provided between the covering layer 3 and the insulated wire 4.
  • the insulating layer 2 and the coating layer 3 of the insulated wire 4 are comprised with said flame-retardant resin composition
  • the insulating layer 2 is comprised with normal insulation resin, and only the coating layer 3 is comprised.
  • the flame retardant resin composition may be used.
  • the covering portion 25 is made of an insulator, but the covering portion 25 may further include a covering body that covers the insulator.
  • a covering may be comprised with the flame-retardant resin composition which comprises the insulating layer 2 and the coating layer 3 of the insulated wire 4 in the said embodiment, It is not necessary to be comprised, However, The said implementation It is preferable that it is comprised with the flame retardant resin composition which comprises the insulating layer 2 and the coating layer 3 of the insulated wire 4 in a form.
  • the optical fiber cable 20 has the tension members 22 and 23.
  • the tension member is not always necessary and can be omitted.
  • Examples 1-112 and Comparative Examples 1-46 A polyolefin resin (A), a phosphate compound (B), an organic phosphorus compound (C), and a fluorine-based anti-drip agent (D) are blended in the blending amounts shown in Tables 1 to 22, and 180 using an open roll. The mixture was kneaded at 0 ° C. to obtain a flame retardant resin composition. In Tables 1 to 22, the unit of the blending amount of each blending component is part by mass.
  • polyolefin resin (A), phosphate compound (B), organic phosphorus compound (C), and anti-drip agent (D) were as follows.
  • A) Polyolefin resin (A1) Block copolymer of ethylene and propylene (b-EP-1, manufactured by Prime Polymer Co., Ltd., MFR 3.5 g / 10 min)
  • A2) Block copolymer of ethylene and propylene (b-EP-2, manufactured by Prime Polymer Co., Ltd., MFR 30 g / 10 min)
  • a flame retardant composed of melamine, melam, melem polyphosphate is a salt (double salt) of polyphosphoric acid, melamine, melam, and melem.
  • Polyphosphoric acid has a general formula (1) m in which phosphor is 3 or more.
  • C Organophosphorus compound (C1) Phosphonic acid-pentaerythritol ester flame retardant (a flame retardant in which X 1 and X 2 are benzyl groups (phenylmethyl groups) in general formula (2)) (C2) Phosphonic acid-pentaerythritol ester flame retardant (a flame retardant in which X 1 and X 2 in the general formula (2) are phenylethyl groups) (C3) Phosphonic acid-pentaerythritol ester flame retardant (a flame retardant in which X 1 and X 2 are phenylpropyl groups in the general formula (2)) (C4) Phosphonic acid-pentaerythritol ester flame retardant (a flame retardant in which X 1 and X 2 are phenylbutyl groups in the general formula (2)) (C5) Phosphonic acid-pentaerythritol ester flame retardant (a flame retardant in which X 1 and X 2
  • the grade of V-0 was further subjected to UL94 5V test in order to examine the difference in flame retardancy between these examples.
  • the UL94 5V test consists of a strip test and a flat plate test.
  • a strip-shaped test piece (length 125 mm ⁇ width 13 mm ⁇ thickness 2 mm) is used, and in the flat plate test, a flat plate is used.
  • a test piece (length 150 mm ⁇ width 150 mm ⁇ thickness 2 mm) was used.
  • the MFR increase rate based on the MFR of the resin composition in which only the blending amount of the organophosphorus compound (C) was 0 parts by mass was a positive value. It was found that the MFR increased.
  • the MFR increase rate based on the MFR of the resin composition in which only the amount of the organophosphorus compound (C) was 0 parts by mass was 0% or less. It was found that MFR did not increase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Insulated Conductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

ポリオレフィン樹脂(A)と、リン酸塩化合物(B)と、有機リン化合物(C)とを少なくとも含む難燃性樹脂組成物が開示されている。リン酸塩化合物(B)は下記一般式(1)で表されるリン酸と、分子内に少なくとも1個のアミノ基を有するアミン化合物との塩を含み、有機リン化合物(C)は下記一般式(2)で表される。 (上記一般式(1)中、mは1~100の整数を表す。) (上記一般式(2)中、X及びXは同一又は異なるものであり、下記一般式(3)で表される。) (上記一般式(3)中、ALは炭素数1~5の分岐状又は直鎖状の脂肪族炭化水素基であり、Arは、置換基を有してもよいフェニル基、ナフチル基又はアントリル基であり、AL中の任意の炭素原子に結合する。nは1~3の整数を示す。)

Description

難燃性樹脂組成物、これを用いた成形体、絶縁電線、ケーブル及び光ファイバケーブル
 本発明は、難燃性樹脂組成物、これを用いた成形体、絶縁電線、ケーブル及び光ファイバケーブルに関する。
 近年、テレビ、パソコン、プリンタなどのOA機器、建材、自動車の内装材、電子部品、メタルケーブル、光ファイバケーブルなどにおいては、火災防止の観点から難燃性に対する要求が厳しくなってきている。そのため、これらには、高い難燃性を有する材料が使用されるようになっている。
 このような高い難燃性を有する材料として、ポリオレフィン樹脂に対し、リン酸塩化合物を配合した難燃性樹脂組成物が知られている(下記特許文献1参照)。
特開2014-65822号公報
 上記特許文献1に記載の難燃性樹脂組成物は、優れた難燃性を示す。しかし、上記特許文献1に記載の難燃性樹脂組成物は、加工性の点で改善の余地を有していた。
 このため、優れた難燃性を確保しつつ加工性を改善させることができる難燃性樹脂組成物が求められていた。
 本発明は、上記事情に鑑みてなされたものであり、優れた難燃性を確保しつつ加工性を改善させることができる難燃性樹脂組成物、これを用いた成形体、絶縁電線、ケーブル及び光ファイバケーブルを提供することを目的とする。
 本発明者らは上記課題を解決するため検討を重ねた。その結果、ポリオレフィン樹脂に対し特定のリン酸塩化物および特定の有機リン化合物を各々特定の割合で配合した難燃性樹脂組成物によって、上記課題を解決し得ることを見出した。
 すなわち本発明は、ポリオレフィン樹脂(A)と、リン酸塩化合物(B)と、有機リン化合物(C)とを含み、前記リン酸塩化合物(B)が、下記一般式(1)で表されるリン酸と、分子内に少なくとも1個のアミノ基を有するアミン化合物との塩を含み、前記有機リン化合物(C)が下記一般式(2)で表される難燃性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000004
(上記一般式(1)中、mは1~100の整数を表す。)
Figure JPOXMLDOC01-appb-C000005
(上記一般式(2)中、X及びXは同一又は異なるものであり、下記一般式(3)で表される。)
Figure JPOXMLDOC01-appb-C000006
 
(上記一般式(3)中、ALは炭素数1~5の分岐状又は直鎖状の脂肪族炭化水素基であり、Arは、置換基を有してもよいフェニル基、ナフチル基又はアントリル基であり、AL中の任意の炭素原子に結合する。nは1~3の整数を示す。)
 本発明の難燃性樹脂組成物によれば、優れた難燃性を確保しつつ加工性を改善させることができる。
 なお、本発明者らは、本発明の難燃性樹脂組成物によって、優れた難燃性が確保できる理由については以下のように推察している。
 すなわち、リン酸塩化合物は、上記一般式(1)で表されるリン酸と、分子内に少なくとも1個のアミノ基を有するアミン化合物との塩を含んでおり、難燃性樹脂組成物の燃焼時に緻密な発泡断熱層を生成する。このため、ポリオレフィン樹脂の燃焼が抑制され、難燃性樹脂組成物に自己消火性が付与される。ここで、上記リン酸塩化合物に対して、金属水酸化物やシリコーン系化合物などの他の難燃剤を併用すると、緻密な発泡断熱層の生成が阻害される。これに対し、上記一般式(2)で表される有機リン化合物は、固相でラジカルトラップ作用によりポリオレフィン樹脂の燃焼を抑制するものと考えられる。しかも、上記有機リン化合物は、ホスホン酸化合物を骨格に持つので、リン酸塩化合物からなる難燃剤と相性が良いものと考えられる。また、上記有機リン化合物は、燃焼時に炭化を促進する作用を有するペンタエリスリトールエステルを骨格に持つので、金属水酸化物やシリコーン系化合物などの他の難燃剤と異なり、緻密な発泡断熱層の生成を阻害しにくいものと考えられる。さらに本発明の難燃性樹脂組成物では、ラジカルトラップ作用を発現する温度と、緻密な発泡断熱層の生成温度とが近いと考えられる。以上のことから、本発明の難燃性樹脂組成物によって、優れた難燃性が確保されるものと考えられる。
 また、本発明の難燃性樹脂組成物によって、加工性が改善される理由について定かではないが、本発明者らは以下のように推察している。
 すなわち、上記有機リン化合物は分子構造が平面構造であり、立体的な障害が少ないため、上記リン酸塩化合物及び上記有機リン化合物を併用することで、難燃性樹脂組成物の加工を行う際にその流動性を向上させることができると考えられる。そのため、難燃性樹脂組成物の加工性を改善させることができるのではないかと考えられる。
 上記難燃性樹脂組成物においては、前記リン酸塩化合物(B)が、前記ポリオレフィン樹脂(A)100質量部に対して0質量部より多く120質量部以下の割合で配合されていることが好ましい。
 この場合、ポリオレフィン樹脂(A)100質量部に対するリン酸塩化合物の配合割合が0質量部である場合に比べて、難燃性樹脂組成物において、より優れた難燃性が得られる。また、ポリオレフィン樹脂(A)100質量部に対するリン酸塩化合物の配合割合が120質量部を超える場合に比べて、加工性をより向上させることができる。
 上記難燃性樹脂組成物においては、前記有機リン化合物(C)が、前記ポリオレフィン樹脂(A)100質量部に対して0質量部より多く50質量部以下の割合で配合されていることが好ましい。
 この場合、ポリオレフィン樹脂(A)100質量部に対する有機リン化合物(C)の配合割合が0質量部である場合、又は50質量部より多い場合に比べて、難燃性樹脂組成物の加工性及び難燃性をより向上させることができる。
 上記難燃性樹脂組成物においては、前記一般式(2)中のX及びXがベンジル基であることが好ましい。
 この場合、一般式(2)中のX及びXがベンジル基でない場合に比べて、難燃性樹脂組成物においてより優れた加工性が得られる。
 上記難燃性樹脂組成物においては、前記一般式(1)中のmが1~2であり、前記アミン化合物が、トリアジン環を含むアミン化合物、ピペラジン環を含むアミン化合物とトリアジン環を含むアミン化合物との混合物、アンモニア、又は、グアニジル尿素で構成されることが好ましい。
 この場合、難燃性樹脂組成物の難燃性が効果的に向上する。
 上記難燃性樹脂組成物においては、前記アミン化合物が、ピペラジン環を含むアミン化合物とトリアジン環を含むアミン化合物との混合物で構成されることが好ましい。
 この場合、アミン化合物が上記混合物で構成されていない場合に比べて、難燃性樹脂組成物の難燃性がより向上する。
 上記難燃性樹脂組成物においては、フッ素系ドリップ防止剤(D)が前記ポリオレフィン樹脂(A)100質量部に対して0質量部より多く5質量部以下の割合でさらに配合されることが好ましい。
 この場合、ポリオレフィン樹脂(A)100質量部に対するフッ素系ドリップ防止剤(D)の配合割合が0質量部である場合と異なってドリップ防止性能が発現し、ポリオレフィン樹脂(A)100質量部に対するフッ素系ドリップ防止剤(D)の配合割合が5質量部を超える場合に比べて、難燃性樹脂組成物の溶融粘度が高くなり過ぎることがより十分に抑制され、難燃性樹脂組成物の加工性がより改善する。
 上記難燃性樹脂組成物においては、前記ポリオレフィン樹脂(A)が、ポリプロピレン樹脂を含むことが好ましい。
 この場合、ポリオレフィン樹脂(A)がポリプロピレン樹脂を含まない場合と比べて、難燃性樹脂組成物がより耐熱性に優れる。
 上記難燃性樹脂組成物においては、前記ポリオレフィン樹脂(A)がエラストマを含むことが好ましい。
 この場合、ポリオレフィン樹脂(A)がエラストマを含まない場合と比べて、難燃性樹脂組成物がより耐衝撃性及び耐寒性に優れる。
 上記難燃性樹脂組成物においては、前記ポリオレフィン樹脂(A)中の前記エラストマの含有率が60質量%以下であることが好ましい。
 この場合、ポリオレフィン樹脂(A)中のエラストマの含有率が60質量%を超える場合に比べて、難燃性樹脂組成物の難燃性をより向上させることができる。
 また本発明は、上記難燃性樹脂組成物を含む成形体である。
 この成形体は、優れた難燃性を確保しつつ加工性を改善させることができる難燃性樹脂組成物を含むため、優れた難燃性と優れた加工性との両立が必要な種々の用途に適用可能である。
 また本発明は、導体と、前記導体を被覆する絶縁層とを備え、前記絶縁層が、上述した難燃性樹脂組成物で構成される絶縁電線である。
 本発明の絶縁電線は、優れた難燃性を確保しつつ加工性を改善させることができる難燃性樹脂組成物で構成される絶縁層を含むため、優れた難燃性、及び良好な外観を有することが可能となる。
 また、本発明は、導体、及び、前記導体を被覆する絶縁層を有する絶縁電線と、前記絶縁電線を被覆する被覆層とを備え、前記絶縁層及び前記被覆層の少なくとも一方が、上記難燃性樹脂組成物で構成されるケーブルである。
 本発明のケーブルは、絶縁層及び被覆層の少なくとも一方が、優れた難燃性を確保しつつ加工性を改善させることができる難燃性樹脂組成物で構成されるため、優れた難燃性、及び良好な外観を有することが可能となる。
 さらに本発明は、光ファイバと、前記光ファイバを被覆する被覆部とを備え、前記被覆部が、前記光ファイバを被覆する絶縁体を有し、前記絶縁体が、上述した難燃性樹脂組成物で構成される光ファイバケーブルである。
 本発明の光ファイバケーブルは、被覆部のうち光ファイバを被覆する絶縁体が、優れた難燃性を確保しつつ加工性を改善させることができる難燃性樹脂組成物で構成されるため、優れた難燃性、及び良好な外観を有することが可能となる。
 本発明によれば、優れた難燃性を確保しつつ加工性を改善させることができる難燃性樹脂組成物、これを用いた成形体、絶縁電線、ケーブル及び光ファイバケーブルが提供される。
本発明のケーブルの一実施形態を示す部分側面図である。 図1のII-II線に沿った断面図である。 本発明の光ファイバケーブルの一実施形態を示す断面図である。
 以下、本発明の実施形態について詳細に説明する。
 <難燃性樹脂組成物>
 本発明の難燃性樹脂組成物は、ポリオレフィン樹脂(A)と難燃剤とを含み、難燃剤は、リン酸塩化合物(B)と、有機リン化合物(C)とを含む。ここで、リン酸塩化合物(B)が下記一般式(1)で表されるリン酸と、分子内に少なくとも1個のアミノ基を有するアミン化合物との塩を含み、有機リン化合物(C)が下記一般式(2)で表される。
Figure JPOXMLDOC01-appb-C000007
(上記一般式(1)中、mは1~100の整数を表す。)
Figure JPOXMLDOC01-appb-C000008
(上記一般式(2)中、X及びXは同一又は異なるものであり、下記一般式(3)で表される。)
Figure JPOXMLDOC01-appb-C000009
 
(上記一般式(3)中、ALは炭素数1~5の分岐状又は直鎖状の脂肪族炭化水素基であり、Arは、置換基を有してもよいフェニル基、ナフチル基又はアントリル基であり、AL中の任意の炭素原子に結合する。nは1~3の整数を示す。)
 本発明の難燃性樹脂組成物によれば、優れた難燃性を確保しつつ加工性を改善させることができる。
 以下、ポリオレフィン樹脂(A)、リン酸塩化合物(B)及び有機リン化合物(C)について詳細に説明する。
 (A)ポリオレフィン樹脂
 ポリオレフィン樹脂は、オレフィン(不飽和脂肪族炭化水素)に由来する構造単位を分子中に有するものであり、ポリオレフィン樹脂には、オレフィンの単独重合体、互いに異なるオレフィン同士の共重合体のほか、オレフィンと非オレフィンとの共重合体も含まれる。ポリオレフィン樹脂の具体例としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、エチレン-アクリル酸エチル共重合体(EEA)、エチレン-酢酸ビニル共重合体(EVA)、エチレン-プロピレン共重合体及びエラストマなどが挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。
 エラストマとしては、例えばスチレン-ブタジエンゴム(SBR)、スチレン-エチレン-ブタジエン-スチレン共重合体(SEBS共重合体)、スチレン-プロピレン-ブタジエン-スチレン共重合体(SPBS共重合体)、スチレン-ブタジエン-スチレン共重合体(SBS共重合体)、オレフィン結晶-エチレン-ブチレン-オレフィン結晶共重合体(CEBC共重合体)、スチレン-イソプレン-スチレン共重合体(SIS共重合体)などの、オレフィンとスチレンとのブロック共重合体、及び、これらに水素添加して改質した水添物(水添SBR、水添SEBS共重合体、水添SPBS共重合体、水添SBS共重合体、水添SIS共重合体)などが挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。
 ポリオレフィン樹脂(A)は、上記具体例のうちポリプロピレン樹脂を含むことが好ましい。この場合、ポリオレフィン樹脂(A)がポリプロピレン樹脂を含まない場合と比べて、難燃性樹脂組成物がより耐熱性に優れる。
 ポリオレフィン樹脂(A)は、上記具体例のうちエラストマを含むことが好ましい。この場合、ポリオレフィン樹脂(A)がエラストマを含まない場合と比べて、難燃性樹脂組成物がより耐衝撃性及び耐寒性に優れる。
 ポリオレフィン樹脂(A)は、ポリプロピレン樹脂に加えて、エラストマをさらに含むことが好ましい。この場合、ポリオレフィン樹脂(A)がエラストマを含まない場合と比べて、難燃性樹脂組成物がより耐衝撃性及び耐寒性に優れる。また、ポリオレフィン樹脂(A)がポリプロピレン樹脂を含まない場合と比べて、難燃性樹脂組成物がより耐熱性に優れる。
 この場合、ポリオレフィン樹脂(A)中のエラストマの含有率は、特に制限されるものではないが、60質量%以下であることが好ましい。この場合、ポリオレフィン樹脂(A)中のエラストマの含有率が60質量%を超える場合に比べて、難燃性樹脂組成物の難燃性をより向上させることができる。また、ポリオレフィン樹脂(A)中のエラストマの含有率は40質量%未満であることがより好ましい。この場合、ポリオレフィン樹脂(A)中のエラストマの含有率が40質量%以上である場合に比べて、難燃性樹脂組成物の難燃性をより向上させることができる。ポリオレフィン樹脂(A)中のエラストマの含有率は20質量%以下であることが特に好ましい。この場合、ポリオレフィン樹脂(A)中のエラストマの含有率が20質量%を超える場合に比べて、難燃性樹脂組成物の難燃性をより向上させることができる。但し、ポリオレフィン樹脂(A)中のエラストマの含有率は10質量%以上であることが好ましい。この場合、ポリオレフィン樹脂(A)中のエラストマの含有率が10質量%未満である場合に比べて、難燃性樹脂組成物の加工性をより改善することができる。
 (B)リン酸塩化合物
 リン酸塩化合物は、上述したように、上記一般式(1)で表されるリン酸と、分子内に少なくとも1個のアミノ基を有するアミン化合物との塩を含むリン酸アミン塩化合物である。ここで、「アミノ基」には、-NHだけでなく、-NH-も含まれるものとする。
 上記一般式(1)中、mは1又は2であることが好ましい。この場合、mが3以上である場合と比べて、難燃性樹脂組成物がより優れた難燃性を有する。
 上記一般式(1)で表されるリン酸の具体例としては、例えばピロリン酸、三リン酸などのポリリン酸や、オルトリン酸などのモノリン酸などが挙げられる。
 上記アミン化合物としては、例えば脂肪族ジアミン、ピペラジン環を含むアミン化合物、トリアジン環を含むアミン化合物、アンモニア、および、グアニル尿素が挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。
 脂肪族ジアミンとしては、1~15の炭素原子を有するものが好ましく用いられる。このような脂肪族ジアミンとしては、例えばN,N,N',N'-テトラメチルジアミノメタン、エチレンジアミン、N,N'-ジメチルエチレンジアミン、N,N'-ジエチルエチレンジアミン、N,N-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N,N',N'-テトラメチルエチレンジアミン、N,N,N',N'-ジエチルエチレンジアミン、1,2-プロパンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、1,7-ジアミノへプタン、1,8-ジアミノオクタン、1,9ージアミノノナンおよび1,10-ジアミノデカンが挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。
 ピペラジン環を含むアミン化合物としては、例えばピペラジン、trans-2,5-ジメチルピペラジン、1,4-ビス(2-アミノエチル)ピペラジン、1,4-ビス(3-アミノプロピル)ピペラジンが挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。
 トリアジン環を含むアミン化合物としては、例えばメラミン、アセトグアナミン、ベンゾグアナミン、アクリルグアナミン、2,4-ジアミノ-6-ノニル-1,3,5-トリアジン、2,4-ジアミノ-6-ハイドロキシ-1,3,5-トリアジン、2-アミノ-4,6-ジハイドロキシ-1,3,5-トリアジン、2,4-ジアミノ-6-メトキシ-1,3,5-トリアジン、2,4-ジアミノ-6-エトキシ-1,3,5-トリアジン、2,4-ジアミノ-6-プロポキシ-1,3,5-トリアジン、2,4-ジアミノ-6-イソプロポキシ-1,3,5-トリアジン、2,4-ジアミノ-6-メルカプト-1,3,5-トリアジン、2-アミノ-4,6-ジメルカプト-1,3,5-トリアジン、および、メラム、メレムなどのメラミン縮合物などが挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。
 上記アミン化合物は、リン酸を表す一般式(1)中のmが1~2である場合には、トリアジン環を含むアミン化合物、ピペラジン環を含むアミン化合物とトリアジン環を含むアミン化合物との混合物、アンモニア、又は、グアニジル尿素で構成されることが好ましい。この場合、難燃性樹脂組成物の難燃性が効果的に向上する。
 上記アミン化合物は、ピペラジン環を含むアミン化合物と、トリアジン環を含むアミン化合物との混合物で構成されることが好ましい。この場合、アミン化合物が上記混合物で構成されていない場合に比べて、難燃性樹脂組成物の難燃性がより向上する。ここで、上記混合物中のピペラジン環を含むアミン化合物の含有率は好ましくは20~55質量%である。この場合、上記混合物中のピペラジン環を含むアミン化合物の含有率が上記範囲を外れる場合に比べて、難燃性樹脂組成物において、より優れた難燃性が得られる。
 ポリオレフィン樹脂(A)100質量部に対するリン酸塩化合物(B)の配合割合は0質量部より多く120質量部以下であることが好ましい。この場合、ポリオレフィン樹脂(A)100質量部に対するリン酸塩化合物の配合割合が0質量部である場合に比べて、難燃性樹脂組成物において、より優れた難燃性が得られる。また、ポリオレフィン樹脂(A)100質量部に対するリン酸塩化合物の配合割合が120質量部を超える場合に比べて、加工性をより向上させることができる。
 リン酸塩化合物(B)の配合割合は5質量部以上であることがより一層好ましく、15質量部以上であることがより一層好ましく、20質量部以上であることが特に好ましい。
 ポリオレフィン樹脂(A)100質量部に対するリン酸塩化合物(B)の配合割合は90質量部以下であることがより好ましい。この場合、ポリオレフィン樹脂(A)100質量部に対するリン酸塩化合物(B)の配合割合が90質量部を超える場合に比べて、難燃性樹脂組成物の加工性をより改善させることができる。優れた難燃性を確保しつつ加工性を改善させるためにはポリオレフィン樹脂(A)100質量部に対するリン酸塩化合物(B)の配合割合は70質量部以下であることがより一層好ましい。なお、難燃性樹脂組成物の比重を特に小さくするためには、ポリオレフィン樹脂(A)100質量部に対するリン酸塩化合物(B)の配合割合は50質量部以下であることが好ましく、40質量部以下であることが更に好ましい。
 (C)有機リン化合物
 有機リン化合物(C)は、上述したように、上記一般式(2)で表される。
 上記一般式(2)中のX及びXは上記一般式(3)で表される。X及びXは互いに同一であっても異なるものであってもよい。
 上記一般式(3)中のALは、炭素数1~5の分岐状又は直鎖状の脂肪族炭化水素基であるが、この脂肪族炭化水素基の炭素数は1又は2であることが好ましい。また上記一般式(3)中のArは、置換基を有してもよいフェニル基、ナフチル基又はアントリル基であり、AL中の任意の炭素原子に結合する。中でもArとしては、フェニル基が好ましい。さらに、上記一般式(3)において、nは1~3の整数であるが、nは1又は2であることが好ましい。
 上記一般式(2)中のX及びXは特にベンジル基(フェニルメチル基)であることが好ましい。この場合、一般式(2)中のX及びXがベンジル基でない場合に比べて、難燃性樹脂組成物において、より優れた加工性が得られる。
 有機リン化合物(C)は、ポリオレフィン樹脂(A)100質量部に対して0質量部より多く、50質量部以下の割合で配合されることが好ましい。この場合、ポリオレフィン樹脂(A)100質量部に対する有機リン化合物(C)の配合割合が0質量部である場合、又は、50質量部より多い場合に比べて、難燃性樹脂組成物の加工性及び難燃性をより向上させることができる。
 ポリオレフィン樹脂(A)100質量部に対する有機リン化合物(C)の配合割合は1質量部以上であることが好ましい。この場合、ポリオレフィン樹脂(A)100質量部に対する有機リン化合物(C)の配合割合が1質量部未満である場合に比べて、難燃性樹脂組成物において、より優れた加工性及び難燃性が得られる。ポリオレフィン樹脂(A)100質量部に対する有機リン化合物(C)の配合割合は、難燃性樹脂組成物の加工性及び難燃性をより向上させる観点からは、2.5質量部以上であることがより好ましく、5質量部以上であることがより一層好ましく、10質量部以上であることが特に好ましい。
 ポリオレフィン樹脂(A)100質量部に対する有機リン化合物(C)の配合割合は45質量部以下であることが好ましい。この場合、ポリオレフィン樹脂(A)100質量部に対する有機リン化合物(C)の配合割合が45質量部を超える場合に比べて、難燃性樹脂組成物の加工性及び難燃性をより向上させることができる。なお、難燃性樹脂組成物の比重をより小さくするためには、ポリオレフィン樹脂(A)100質量部に対する有機リン化合物(C)の配合割合は、40質量部以下であることがより好ましく、30質量部以下であることがより一層好ましく、20質量部以下であることが特に好ましい。
 本発明の難燃性樹脂組成物は、上記ポリオレフィン樹脂(A)、リン酸塩化合物(B)及び有機リン化合物(C)のほか、さらにフッ素系ドリップ防止剤(D)を含んでいてもよい。以下、フッ素系ドリップ防止剤(D)について詳細に説明する。
 (D)フッ素系ドリップ防止剤
 フッ素系ドリップ防止剤(D)は、フッ素を含有するフッ素含有化合物を含み、燃焼時の樹脂だれ(ドリップ)を防止することが可能なものであればよい。このようなフッ素含有化合物としては、例えばポリテトラフルオロエチレン(以下、「PTFE」と呼ぶ)、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレンなどのフッ素系樹脂が挙げられる。また、フッ素含有化合物は、変性されていないフッ素含有化合物でも変性されているフッ素含有化合物でもよいが、変性されていることが好ましい。この場合、フッ素含有化合物が変性されていない場合と比較して、フッ素含有化合物が効率よくフィブリル化し、難燃性樹脂組成物における分散性がより向上する。その結果、ドリップ防止剤(D)のドリップ防止機能をより向上させることができる。また、難燃性樹脂組成物の溶融張力がより大きくなるため、難燃性樹脂組成物の加工性及び成形性をより向上させることができる。変性されているフッ素含有化合物としては、例えば、酸変性ポリテトラフルオロエチレンが挙げられる。
 フッ素系ドリップ防止剤(D)は、ポリオレフィン樹脂(A)100質量部に対して0質量部より多く5質量部以下の割合で配合されることが好ましい。この場合、ポリオレフィン樹脂(A)100質量部に対するフッ素系ドリップ防止剤(D)の配合割合が0質量部である場合と異なってドリップ防止性能が発現し、ポリオレフィン樹脂(A)100質量部に対するフッ素系ドリップ防止剤(D)の配合割合が5質量部を超える場合に比べて、難燃性樹脂組成物の溶融粘度が高くなり過ぎることがより十分に抑制され、難燃性樹脂組成物の加工性がより改善する。
 ポリオレフィン樹脂(A)100質量部に対するフッ素系ドリップ防止剤(D)の配合割合は、0.2質量部以上であることがより好ましい。この場合、ポリオレフィン樹脂(A)100質量部に対するフッ素系ドリップ防止剤(D)の配合割合が0.2質量部未満である場合と比べて、難燃性樹脂組成物においてより優れた難燃性が得られる。さらに、ポリオレフィン樹脂(A)100質量部に対するフッ素系ドリップ防止剤(D)の配合割合は、2質量部以上であることがより一層好ましい。
 上記難燃性樹脂組成物は、難燃性や加工性へ影響を与えない範囲で、酸化防止剤、熱劣化防止剤、紫外線吸収剤、紫外線劣化防止剤、防曇剤、架橋剤、発泡剤、導電性充填剤、熱放散剤、着色顔料などを必要に応じてさらに含んでもよい。
 上記難燃性樹脂組成物は、ポリオレフィン樹脂(A)、リン酸塩化合物(B)、有機リン酸化合物(C)、及び必要に応じてフッ素系ドリップ防止剤(D)を混練することにより得ることができる。混練は、ポリオレフィン樹脂(A)を溶融させるために必要な熱と、リン酸塩化合物(B)、有機リン酸化合物(C)、及び必要に応じてドリップ防止剤(D)を分散させるために必要なせん断を与えて加工することが可能な混錬機を用いて行うことができる。混錬機としては、例えばオープンロール、二軸押出機、バンバリーミキサー、加圧ニーダー等を用いることができる。
 <成形体>
 次に、本発明の成形体について説明する。
 本発明の成形体は、上述した難燃性樹脂組成物を含む。この成形体は、優れた難燃性を確保しつつ加工性を改善させることができる難燃性樹脂組成物を含むため、優れた難燃性と優れた加工性との両立が必要な種々の用途に適用可能である。このような用途としては、例えばテレビのバックパネル、コンデンサのケース、キーボード内部の絶縁フィルム、ヒータ内部のパネル、建物の難燃シート、自動車のダッシュボード、包装用資材、家電の筐体などが挙げられる。
 本発明の成形体の形状としては、例えばシート状、板状などが挙げられるが、成形体の形状としては、シート状が好ましい。
 また、成形体の厚さは特に制限されるものではないが、本発明の成形体は、成形体の厚さが5mm以下でも、優れた難燃性を確保しつつ加工性を改善させることができる。
 成形体は、難燃性樹脂組成物を例えば押出成形法、射出成型法、真空成型法、プレス成型法などを用いて成形することによって得ることができる。成形体は、難燃性樹脂組成物単体で構成されてもよく、用途によっては、難燃性樹脂組成物とガラスクロス、紙などの補強材とを組み合わせて構成されてもよい。
 <ケーブル>
 次に、本発明のケーブルについて図1及び図2を参照しながら説明する。図1は、本発明に係るケーブルの一実施形態を示す部分側面図である。図2は、図1のII-II線に沿った断面図である。
 図1及び図2に示すように、ケーブル10は、絶縁電線4と、絶縁電線4を被覆するチューブ状の被覆層3とを備えている。そして、絶縁電線4は、導体1と、導体1を被覆するチューブ状の絶縁層2とを有している。
 ここで、チューブ状の絶縁層2及び被覆層3は上述した難燃性樹脂組成物で構成され、上述した難燃性樹脂組成物は、優れた難燃性を確保しつつ加工性を改善させることができる。このため、上記難燃性樹脂組成物で構成される絶縁層2及び被覆層3は、優れた難燃性、及び良好な外観を有することが可能となる。従って、ケーブル10は、優れた難燃性、及び良好な外観を有することが可能となる。
 (導体)
 導体1は、1本の素線のみで構成されてもよく、複数本の素線を束ねて構成されたものであってもよい。また、導体1は、導体径や導体の材質などについて特に限定されるものではなく、用途に応じて適宜定めることができる。導体1の材料としては、例えば、銅、アルミニウム、又はそれらを含む合金が好ましいが、カーボン材料などの導電性物質も適宜使用できる。
 (被覆層)
 被覆層3は、いわゆるシースであり、絶縁層2を物理的又は化学的な損傷から保護するものである。
 <光ファイバケーブル>
 次に、本発明の光ファイバケーブルについて図3を参照しながら説明する。図3は、本発明の光ファイバケーブルの一実施形態を示す断面図である。
 図3に示すように、光ファイバケーブル20は、2本のテンションメンバ22,23と、光ファイバ24と、これらを被覆する被覆部25とを備えている。ここで、光ファイバ24は、被覆部25を貫通するように設けられている。ここで、被覆部25は、光ファイバ24を被覆する絶縁体で構成され、絶縁体は、上記実施形態において絶縁電線4の絶縁層2及び被覆層3を構成する難燃性樹脂組成物で構成される。なお、被覆部25を構成する絶縁体は、光ファイバ24を直接被覆してもよく(図3参照)、間接的に被覆してもよい。
 ここで、被覆部25は上述した難燃性樹脂組成物で構成され、上述した難燃性樹脂組成物は、優れた難燃性を確保しつつ加工性を改善させることができる。このため、上記難燃性樹脂組成物で構成される被覆部25は、優れた難燃性、及び良好な外観を有することが可能となる。従って、光ファイバケーブル20は、優れた難燃性、及び良好な外観を有することが可能となる。
 本発明は、上記実施形態に限定されるものではない。例えば上記実施形態ではケーブルとして、1本の絶縁電線4を有するケーブル10が用いられているが、本発明のケーブルは1本の絶縁電線4を有するケーブルに限定されるものではなく、被覆層3の内側に絶縁電線4を2本以上有するケーブルであってもよい。また被覆層3と絶縁電線4との間には、ポリプロピレン等からなる樹脂部が設けられていてもよい。
 また上記実施形態では、絶縁電線4の絶縁層2及び被覆層3が上記の難燃性樹脂組成物で構成されているが、絶縁層2が通常の絶縁樹脂で構成され、被覆層3のみが、上記の難燃性樹脂組成物で構成されてもよい。
 なお、光ファイバケーブル20においては、被覆部25が絶縁体で構成されているが、被覆部25は、絶縁体を被覆する被覆体をさらに有していてもよい。ここで、被覆体は、上記実施形態において絶縁電線4の絶縁層2及び被覆層3を構成する難燃性樹脂組成物で構成されてもよいし、構成されていなくてもよいが、上記実施形態において絶縁電線4の絶縁層2及び被覆層3を構成する難燃性樹脂組成物で構成されていることが好ましい。
 また、上記実施形態では、光ファイバケーブル20がテンションメンバ22,23を有しているが、本発明の光ファイバケーブルにおいては、テンションメンバは必ずしも必要なものではなく、省略可能である。
 以下、実施例を用いて本発明の内容をより具体的に説明するが、本発明は、以下の実施例に限定されるものではない。
 (実施例1~112及び比較例1~46)
 ポリオレフィン樹脂(A)、リン酸塩化合物(B)、有機リン化合物(C)、フッ素系ドリップ防止剤(D)を、表1~22に示す配合量で配合し、オープンロールを使用して180℃にて混練し、難燃性樹脂組成物を得た。なお、表1~22において、各配合成分の配合量の単位は質量部である。
 上記ポリオレフィン樹脂(A)、リン酸塩化合物(B)、有機リン化合物(C)及びドリップ防止剤(D)としては具体的には下記のものを用いた。
(A)ポリオレフィン樹脂
(A1)エチレンとプロピレンとのブロック共重合体(b-EP-1、株式会社プライムポリマー製、MFR=3.5g/10min) 
(A2)エチレンとプロピレンとのブロック共重合体(b-EP-2、株式会社プライムポリマー製、MFR=30g/10min)
(A3)ホモ-ポリプロピレン(h-PP、株式会社プライムポリマー製)
(A4)高密度ポリエチレン(HDPE、日本ポリエチレン株式会社製)
(A5)直鎖状低密度ポリエチレン(LLDPE、住友化学株式会社製)
(A6)改質ポリプロピレン樹脂(PPエラストマ、三井化学株式会社製)
(A7)水添スチレンブタジエンゴム(水添SBR、JSR株式会社製)
(A8)オレフィン結晶エチレンブチレンオレフィン結晶ブロック共重合体(CEBC、JSR株式会社製)
(B)リン酸塩化合物
(B1)ピロリン酸ピペラジンとピロリン酸メラミンとで構成される難燃剤
(B2)ピロリン酸ピペラジンとピロリン酸メラミンと酸化亜鉛とで構成される難燃剤
(B3)ピロリン酸メラミンで構成される難燃剤
(B4)オルトリン酸メラミンで構成される難燃剤
(B5)ポリリン酸メラミンで構成される難燃剤
ポリリン酸メラミンはポリリン酸とメラミンとの塩であり、ポリリン酸は、一般式(1)中のmが3以上であるリン酸である。
(B6)ポリリン酸アンモニウムで構成される難燃剤
ポリリン酸アンモニウムはポリリン酸とアンモニアとの塩であり、ポリリン酸は、一般式(1)中のmが3以上であるリン酸である。
(B7)リン酸グアニル尿素で構成される難燃剤
リン酸グアニル尿素はリン酸とグアニル尿素との塩であり、リン酸は、一般式(1)中のmが1であるリン酸である。
(B8)ポリリン酸メラミン・メラム・メレムで構成される難燃剤
ポリリン酸メラミン・メラム・メレムは、ポリリン酸と、メラミン、メラム及びメレムとの塩(複塩)であり、ポリリン酸は、一般式(1)中のmが3以上であるリン酸である。
(C)有機リン化合物
(C1)ホスホン酸-ペンタエリスリトールエステル系難燃剤(一般式(2)において、X及びXがベンジル基(フェニルメチル基)である難燃剤)
(C2)ホスホン酸-ペンタエリスリトールエステル系難燃剤(一般式(2)において、X及びXがフェニルエチル基である難燃剤)
(C3)ホスホン酸-ペンタエリスリトールエステル系難燃剤(一般式(2)において、X及びXがフェニルプロピル基である難燃剤)
(C4)ホスホン酸-ペンタエリスリトールエステル系難燃剤(一般式(2)において、X及びXがフェニルブチル基である難燃剤)
(C5)ホスホン酸-ペンタエリスリトールエステル系難燃剤(一般式(2)において、X及びXがフェニルペンチル基である難燃剤)
(C6)ホスホン酸-ペンタエリスリトールエステル系難燃剤(一般式(2)において、X及びXがフェニルイソプロピル基である難燃剤)
(C7)ホスホン酸-ペンタエリスリトールエステル系難燃剤(一般式(2)において、X及びXがナフチルメチル基である難燃剤)
(C8)ホスホン酸-ペンタエリスリトールエステル系難燃剤(一般式(2)において、X及びXがアントリルメチル基である難燃剤)
(C9)ホスホン酸-ペンタエリスリトールエステル系難燃剤(一般式(2)において、Xがフェニルメチル基、Xがナフチルメチル基である難燃剤)
(D)フッ素系ドリップ防止剤
(D1)酸変性ポリテトラフルオロエチレン粒子(変性PTFE)
(D2)変性されていないポリテトラフルオロエチレン粒子(非変性PTFE)

Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
 
 上記のようにして得られた実施例1~112及び比較例1~46の難燃性樹脂組成物について、以下のようにして難燃性及び加工性についての評価を行った。
 <難燃性>
 実施例1~112及び比較例1~46の難燃性樹脂組成物を180℃で熱プレスすることで得られた厚さ0.2mm、0.4mm、0.8mm、1.6mm、3mm、4mm、5mmの7種類のシートについて、UL94垂直燃焼試験を行い、難燃性を評価した。そして、7種類のシートのうち最も高い難燃グレードを有するシートのグレードをその実施例又は比較例の難燃性の評価結果とした。結果を表1~22に示す。なお、表1~22において、括弧内の数値は、同一の難燃グレードのシートの厚さのうち最小のシートの厚さを表す。また、表1~22において、難燃性の合否基準は以下の通りとした。
 
合格・・・・V-0、V-1又はV-2
不合格・・・全焼
 
 なお、実施例1~112のうちグレードがV-0である実施例については、これらの実施例間の難燃性の差を調べるために、さらにUL94の5V試験を行った。UL94の5V試験は、短冊試験及び平板試験で構成されるものであり、短冊試験においては、短冊状試験片(長さ125mm×幅13mm×厚さ2mm)を使用し、平板試験においては、平板試験片(縦150mm×横150mm×厚さ2mm)を使用した。
 そして、短冊試験及び平板試験の両方の試験に合格した実施例については「5VA」と判定し、短冊試験のみに合格し、平板試験には不合格であった実施例については「5VB」と判定し、短冊試験及び平板試験に合格しなかった場合には「全焼」と判定した。結果を表1~22に示す。なお、グレードがV-0である実施例の中でも、「5VA」と判定された実施例は、「5VB」と判定された実施例よりも高い難燃グレードを有し、「5VB」と判定された実施例は、「全焼」と判定された実施例よりも高い難燃グレードを有することになる。また、表1~22において、「-」はUL94の5V試験を行っていないことを意味する。
 <加工性>
 実施例1~112及び比較例1~46の難燃性樹脂組成物について、JIS K7210に準拠し、温度230℃、荷重2.16kgfの条件下でMFRを測定した。また、各実施例及び比較例について、ポリオレフィン樹脂(A)100質量部に対する有機リン化合物(C)の配合量を0質量部とした樹脂組成物のMFRに対するMFRの増加率を下記の式に基づいて算出した。
Figure JPOXMLDOC01-appb-M000032
結果を表1~22に示す。なお、表1~22において、MFRの単位はg/10minである。
 <比重>
 実施例1~112及び比較例1~46の難燃性樹脂組成物について、電子比重計(アルファ・ミラージュ社製)を用いて比重を測定した。結果を表1~22に示す。
 表1~22に示す結果より、実施例1~112では、難燃性の評価結果がV-0、V-1又はV-2であり、実施例1~112は難燃性の点で合格基準を満たしていることが分かった。これに対し、比較例1~46では難燃性の評価結果が全焼であり、比較例1~46は難燃性の点で合格基準を満たしていないことが分かった。
 また、実施例1~112及び比較例25~28では、各々において有機リン化合物(C)の配合量のみを0質量部とした樹脂組成物のMFRを基準としたMFRの増加率が正の値であり、MFRが増加していることが分かった。これに対し、比較例1~24、29~46の各々において有機リン化合物(C)の配合量のみを0質量部とした樹脂組成物のMFRを基準としたMFRの増加率が0%以下となっており、MFRが増加していないことが分かった。
 以上のことから、本発明の難燃性樹脂組成物によれば、上記リン酸塩化合物と上記有機リン化合物とを併用することで、上記リン酸塩化合物を単独で使用する場合に比べて、優れた難燃性を確保しつつ加工性を改善させることができることが確認された。
 1…導体
 2…絶縁層
 3…被覆層
 4…絶縁電線
 10…ケーブル
 20…光ファイバケーブル
 24…光ファイバ
 25…被覆部(絶縁体)

Claims (14)

  1.  ポリオレフィン樹脂(A)と、
     リン酸塩化合物(B)と、
     有機リン化合物(C)とを含み、
     前記リン酸塩化合物(B)が、下記一般式(1)で表されるリン酸と、分子内に少なくとも1個のアミノ基を有するアミン化合物との塩を含み、
     前記有機リン化合物(C)が下記一般式(2)で表される難燃性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(1)中、mは1~100の整数を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (上記一般式(2)中、X及びXは同一又は異なるものであり、下記一般式(3)で表される。)
    Figure JPOXMLDOC01-appb-C000003
     
    (上記一般式(3)中、ALは炭素数1~5の分岐状又は直鎖状の脂肪族炭化水素基であり、Arは、置換基を有してもよいフェニル基、ナフチル基又はアントリル基であり、AL中の任意の炭素原子に結合する。nは1~3の整数を示す。)
  2.  前記リン酸塩化合物(B)が、前記ポリオレフィン樹脂(A)100質量部に対して0質量部より多く120質量部以下の割合で配合されている、請求項1に記載の難燃性樹脂組成物。
  3.  前記有機リン化合物(C)が、前記ポリオレフィン樹脂(A)100質量部に対して0質量部より多く50質量部以下の割合で配合されている、請求項1又は2に記載の難燃性樹脂組成物。
  4.  前記一般式(2)中のX及びXがベンジル基である、請求項1~3のいずれか一項に記載の難燃性樹脂組成物。
  5.  前記一般式(1)中のmが1~2であり、
     前記アミン化合物が、トリアジン環を含むアミン化合物、ピペラジン環を含むアミン化合物とトリアジン環を含むアミン化合物との混合物、アンモニア、又は、グアニジル尿素で構成される、請求項1~4のいずれか一項に記載の難燃性樹脂組成物。
  6.  前記アミン化合物が、ピペラジン環を含むアミン化合物とトリアジン環を含むアミン化合物との混合物で構成される請求項1~5のいずれか一項に記載の難燃性樹脂組成物。
  7.  フッ素系ドリップ防止剤(D)が前記ポリオレフィン樹脂(A)100質量部に対して0質量部より多く5質量部以下の割合でさらに配合される請求項1~6のいずれか一項に記載の難燃性樹脂組成物。
  8.  前記ポリオレフィン樹脂(A)がポリプロピレン樹脂を含む、請求項1~7のいずれか一項に記載の難燃性樹脂組成物。
  9.  前記ポリオレフィン樹脂(A)がエラストマを含む、請求項1~8のいずれか一項に記載の難燃性樹脂組成物。
  10.  前記ポリオレフィン樹脂(A)中の前記エラストマの含有率が60質量%以下である、請求項9に記載の難燃性樹脂組成物。
  11.  請求項1~10のいずれか一項に記載の難燃性樹脂組成物を含む成形体。
  12.  導体と、
     前記導体を被覆する絶縁層とを備え、
     前記絶縁層が、請求項1~10のいずれか一項に記載の難燃性樹脂組成物で構成される絶縁電線。
  13.  導体、及び、前記導体を被覆する絶縁層を有する絶縁電線と、
     前記絶縁電線を被覆する被覆層とを備え、
     前記絶縁層及び前記被覆層の少なくとも一方が、請求項1~10のいずれか一項に記載の難燃性樹脂組成物で構成されるケーブル。
  14.  光ファイバと、
     前記光ファイバを被覆する被覆部とを備え、
     前記被覆部が、前記光ファイバを被覆する絶縁体を有し、
     前記絶縁体が、請求項1~10のいずれか一項に記載の難燃性樹脂組成物で構成される光ファイバケーブル。
PCT/JP2018/017351 2018-04-27 2018-04-27 難燃性樹脂組成物、これを用いた成形体、絶縁電線、ケーブル及び光ファイバケーブル WO2019207810A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2018552885A JP6454827B1 (ja) 2018-04-27 2018-04-27 難燃性樹脂組成物、これを用いた成形体、絶縁電線、ケーブル及び光ファイバケーブル
PCT/JP2018/017351 WO2019207810A1 (ja) 2018-04-27 2018-04-27 難燃性樹脂組成物、これを用いた成形体、絶縁電線、ケーブル及び光ファイバケーブル
EP18916345.4A EP3763784A4 (en) 2018-04-27 2018-10-16 COMPOSITION OF FIRE-RETARDANT RESIN, MOLDED OBJECT INCLUDING IT, INSULATED ELECTRICAL WIRE, CABLE, AND OPTICAL FIBER CABLE
JP2018557958A JP6454829B1 (ja) 2018-04-27 2018-10-16 難燃性樹脂組成物、これを用いた成形体、絶縁電線、ケーブル及び光ファイバケーブル
PCT/JP2018/038538 WO2019207819A1 (ja) 2018-04-27 2018-10-16 難燃性樹脂組成物、これを用いた成形体、絶縁電線、ケーブル及び光ファイバケーブル
CN201880092285.2A CN111971337B (zh) 2018-04-27 2018-10-16 阻燃性树脂组合物、使用其的成型体、绝缘电线、线缆以及光纤线缆
US17/050,735 US20210122912A1 (en) 2018-04-27 2018-10-16 Flame retardant resin composition, molded body, insulated wire, cable and optical fiber cable using the same
JP2018235350A JP6498836B1 (ja) 2018-04-27 2018-12-17 難燃性樹脂組成物、これを用いた成形体、絶縁電線、ケーブル及び光ファイバケーブル
JP2018235351A JP6573707B1 (ja) 2018-04-27 2018-12-17 難燃性樹脂組成物、これを用いた成形体、絶縁電線、ケーブル及び光ファイバケーブル
JP2019076041A JP2019189859A (ja) 2018-04-27 2019-04-12 難燃性樹脂組成物、これを用いた成形体、絶縁電線、ケーブル及び光ファイバケーブル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017351 WO2019207810A1 (ja) 2018-04-27 2018-04-27 難燃性樹脂組成物、これを用いた成形体、絶縁電線、ケーブル及び光ファイバケーブル

Publications (1)

Publication Number Publication Date
WO2019207810A1 true WO2019207810A1 (ja) 2019-10-31

Family

ID=65020539

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/017351 WO2019207810A1 (ja) 2018-04-27 2018-04-27 難燃性樹脂組成物、これを用いた成形体、絶縁電線、ケーブル及び光ファイバケーブル
PCT/JP2018/038538 WO2019207819A1 (ja) 2018-04-27 2018-10-16 難燃性樹脂組成物、これを用いた成形体、絶縁電線、ケーブル及び光ファイバケーブル

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038538 WO2019207819A1 (ja) 2018-04-27 2018-10-16 難燃性樹脂組成物、これを用いた成形体、絶縁電線、ケーブル及び光ファイバケーブル

Country Status (5)

Country Link
US (1) US20210122912A1 (ja)
EP (1) EP3763784A4 (ja)
JP (4) JP6454827B1 (ja)
CN (1) CN111971337B (ja)
WO (2) WO2019207810A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187493A1 (ja) * 2020-03-16 2021-09-23 株式会社Adeka 難燃剤組成物、難燃性樹脂組成物、成形品及び成形品の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3124760A1 (fr) * 2021-07-02 2023-01-06 Nexans câble comprenant une gaine compacte retardante au feu

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4257931A (en) * 1980-01-29 1981-03-24 American Cyanamid Company Flame retardant poly(butylene terephthalate) compositions comprising melamine pyrophosphate and a phosphonate
JP2009074030A (ja) * 2007-08-31 2009-04-09 Teijin Ltd 電気・電子機器外装部品
JP2015525252A (ja) * 2012-05-23 2015-09-03 積水化学工業株式会社 難燃性ポリオレフィン発泡体及びその製造方法
JP2017031351A (ja) * 2015-08-04 2017-02-09 株式会社Adeka 難燃性樹脂組成物
JP2018095832A (ja) * 2016-11-16 2018-06-21 株式会社フジクラ 難燃性樹脂組成物、これを用いた成形体、絶縁電線、メタルケーブル及び光ファイバケーブル

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4174343A (en) * 1978-05-05 1979-11-13 American Cyanamid Company Pentaerythrityl diphosphonate-ammonium polyphosphate combinations as flame retardants for olefin polymers
US5246783A (en) * 1991-08-15 1993-09-21 Exxon Chemical Patents Inc. Electrical devices comprising polymeric insulating or semiconducting members
JP2988080B2 (ja) * 1991-11-13 1999-12-06 ジェイエスアール株式会社 熱可塑性重合体組成物
US6496629B2 (en) * 1999-05-28 2002-12-17 Tycom (Us) Inc. Undersea telecommunications cable
JP4753498B2 (ja) * 2001-07-17 2011-08-24 株式会社Adeka 難燃性合成樹脂組成物
JP3448581B2 (ja) * 2001-10-19 2003-09-22 リケンテクノス株式会社 熱可塑性エラストマー組成物、それを用いた成形体及び複合成形体
JP2003226818A (ja) * 2001-11-30 2003-08-15 Polyplastics Co 難燃性樹脂組成物
JP4210218B2 (ja) * 2001-11-30 2009-01-14 ポリプラスチックス株式会社 難燃性樹脂組成物
US6714707B2 (en) * 2002-01-24 2004-03-30 Alcatel Optical cable housing an optical unit surrounded by a plurality of gel layers
EP2450401B1 (de) * 2008-09-05 2013-04-17 THOR GmbH Flammschutzzusammensetzung enthaltend ein Phosphonsäurederivat
CN102762653B (zh) * 2009-12-31 2015-11-25 陶氏环球技术有限责任公司 用于电线和电缆应用的无卤素阻燃热塑性组合物
JP5784894B2 (ja) * 2010-10-27 2015-09-24 帝人株式会社 難燃性樹脂組成物およびそれからの成形品
JP5793068B2 (ja) * 2011-12-06 2015-10-14 株式会社Adeka 難燃性ポリオレフィン系樹脂組成物
JP5243653B1 (ja) * 2012-09-26 2013-07-24 株式会社フジクラ 難燃性樹脂組成物、及び、これを用いた成形体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4257931A (en) * 1980-01-29 1981-03-24 American Cyanamid Company Flame retardant poly(butylene terephthalate) compositions comprising melamine pyrophosphate and a phosphonate
JP2009074030A (ja) * 2007-08-31 2009-04-09 Teijin Ltd 電気・電子機器外装部品
JP2015525252A (ja) * 2012-05-23 2015-09-03 積水化学工業株式会社 難燃性ポリオレフィン発泡体及びその製造方法
JP2017031351A (ja) * 2015-08-04 2017-02-09 株式会社Adeka 難燃性樹脂組成物
JP2018095832A (ja) * 2016-11-16 2018-06-21 株式会社フジクラ 難燃性樹脂組成物、これを用いた成形体、絶縁電線、メタルケーブル及び光ファイバケーブル

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187493A1 (ja) * 2020-03-16 2021-09-23 株式会社Adeka 難燃剤組成物、難燃性樹脂組成物、成形品及び成形品の製造方法

Also Published As

Publication number Publication date
WO2019207819A1 (ja) 2019-10-31
JP2019189847A (ja) 2019-10-31
JP6454827B1 (ja) 2019-01-16
JP2019189859A (ja) 2019-10-31
EP3763784A4 (en) 2021-06-02
JP2019189846A (ja) 2019-10-31
US20210122912A1 (en) 2021-04-29
CN111971337A (zh) 2020-11-20
JPWO2019207810A1 (ja) 2020-05-07
JP6498836B1 (ja) 2019-04-10
EP3763784A1 (en) 2021-01-13
JP6573707B1 (ja) 2019-09-11
CN111971337B (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
JP2018095832A (ja) 難燃性樹脂組成物、これを用いた成形体、絶縁電線、メタルケーブル及び光ファイバケーブル
EP2652033A1 (en) Halogen-free, flame retardant composition for wire and cable applications
JP6498836B1 (ja) 難燃性樹脂組成物、これを用いた成形体、絶縁電線、ケーブル及び光ファイバケーブル
EP3505595B1 (en) Flame retardant composition and flame retardant synthetic resin composition
JP2020125366A (ja) 難燃性ポリエチレン樹脂組成物
JP6498835B1 (ja) 難燃性樹脂組成物、これを用いた成形体、絶縁電線、ケーブル及び光ファイバケーブル
JP6454829B1 (ja) 難燃性樹脂組成物、これを用いた成形体、絶縁電線、ケーブル及び光ファイバケーブル
JP5243653B1 (ja) 難燃性樹脂組成物、及び、これを用いた成形体
JP7090485B2 (ja) 難燃性樹脂組成物、これを用いた成形体、絶縁電線、ケーブル及び光ファイバケーブル
TWI680154B (zh) 難燃性樹脂組成物、使用其之成形體、絕緣電線、電纜及光纖電纜
JP7090483B2 (ja) 難燃性樹脂組成物、これを用いた成形体、絶縁電線、ケーブル及び光ファイバケーブル
JP5637177B2 (ja) 耐ワニス性電線・耐ワニス性ケーブル
JP2014179327A (ja) 難燃性樹脂組成物を用いた電線・ケーブル
JP2007084681A (ja) 難燃性ポリオレフィ系樹脂フィルム
JP2007126538A (ja) 難燃性ポリオレフィン系樹脂組成物
JP2010254817A (ja) 難燃性樹脂組成物
JP2011068717A (ja) 難燃性樹脂組成物
JP2001151949A (ja) 難燃性樹脂組成物およびその成形品
JPH11315173A (ja) 難燃性ポリオレフィン系樹脂組成物
JP2022098792A (ja) ポリエチレン系樹脂組成物、架橋ポリエチレン系樹脂および電線ケーブル
JP2006143896A (ja) 難燃性ポリオレフィン系樹脂組成物
JP2013149473A (ja) 難燃性電線・ケーブル
JP2014049182A (ja) 難燃性耐熱絶縁電線

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018552885

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916417

Country of ref document: EP

Kind code of ref document: A1