WO2019206183A1 - 一种新型半加成法3d精细电路制作工艺 - Google Patents

一种新型半加成法3d精细电路制作工艺 Download PDF

Info

Publication number
WO2019206183A1
WO2019206183A1 PCT/CN2019/084094 CN2019084094W WO2019206183A1 WO 2019206183 A1 WO2019206183 A1 WO 2019206183A1 CN 2019084094 W CN2019084094 W CN 2019084094W WO 2019206183 A1 WO2019206183 A1 WO 2019206183A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
laser
ink
additive
line
Prior art date
Application number
PCT/CN2019/084094
Other languages
English (en)
French (fr)
Inventor
朱元昊
朱刚
Original Assignee
Zhu Yuanhao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhu Yuanhao filed Critical Zhu Yuanhao
Publication of WO2019206183A1 publication Critical patent/WO2019206183A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/108Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by semi-additive methods; masks therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0502Patterning and lithography
    • H05K2203/052Magnetographic patterning

Definitions

  • the invention relates to the technical field of circuit board laser processing technology, in particular to a novel semi-additive 3D fine circuit manufacturing process with high processing efficiency, high precision and environmental protection.
  • etching technology is usually used when manufacturing the circuit board, when the circuit board is etched.
  • the conductive layer of the circuit board needs to be stably and uniformly etched according to the line size in the circuit board design data.
  • the inventors have found that at least the following problems exist in the prior art: the top end of the edge of the conductive layer is externally located during etching.
  • the etchant is washed in multiple directions, so that there is a multi-directional side etching effect, and the corrosion intensity will exceed the bottom of the edge of the conductive layer, eventually causing the tip of the edge of the conductive layer to be etched after etching, resulting in the top of the edge of the conductive layer after etching and the drawing.
  • the design shape is too different, and the area of the top of the conductive layer is too small, which ultimately affects the pad area and the line width.
  • the conventional method is to use chemical stripping to remove the film. This processing method is not only The expected line accuracy is not achieved, and it will cause large pollution, environmental protection, and poor removal effect.
  • the present invention provides a novel semi-additive 3D fine circuit manufacturing process with high processing efficiency, high fineness and environmental protection.
  • the solution to solve the technical problem of the present invention is to provide a novel semi-additive 3D fine circuit manufacturing process, including the following steps.
  • step S2 performing copper plating on the whole substrate of the circuit board substrate cleaned in step S1, and performing electroless plating, electroplating, vacuum sputtering, vacuum ion plating, or the like;
  • S4 three-dimensional exposure development, reading the three-dimensional vector of the object to be processed and the three-dimensional line; calculating the three-dimensional exposure path of the object to be processed according to the three-dimensional vector information, controlling the three-dimensional dynamic focusing galvanometer in the three-dimensional ultraviolet laser exposure device, and passing two The deflection of the galvanometer and the focusing lens of the galvanometer achieve precise focusing on the surface of the workpiece, and the precise exposure trajectory on the curved surface is realized by the movement of the motor of the table; the three-dimensional exposure of the photosensitive ink in the area other than the line is used, and the developer is used. Exposure curing of the ink to be generated in the area of the line to be removed, such that these areas bare exposed copper;
  • S6 removing the exposed ink layer, using a stripping agent to remove the exposed cured ink layer of the non-line portion; using a laser to remove the exposed ink layer for a line having a line width and a pitch of less than 25 ⁇ m to avoid residual ink;
  • a three-dimensional ultraviolet focusing optical electromechanical system is installed in the three-dimensional ultraviolet laser exposure device, and the system is electrically connected to the controller inside the device, and the ultraviolet laser is dynamically focused to the three-dimensional image according to a control command from the controller. 3D exposure on the surface.
  • the three-dimensional dynamic focusing system in the step S4 comprises a laser for emitting a laser beam, and the beam emitted by the laser firstly faces the three-dimensional dynamic focusing system, finally reaches the scanning galvanometer region, and forms a three-dimensional focusing on the object to be processed. surface.
  • the laser in step S4 is an ultraviolet laser
  • the laser in step S6 is a carbon dioxide laser.
  • the circuit board substrate has a copper surface for surface cleaning and drying treatment.
  • two mirrors for changing the direction of light propagation are disposed.
  • the novel semi-additive 3D fine circuit manufacturing process of the invention reduces the cost and simplifies the structure, and is verified by multiple experiments, and finally designed to adjust the vibration device under the three-dimensional dynamic focusing galvanometer.
  • the spacing of the beam expander is not only effective, but also has high reliability and high adjustment accuracy.
  • the traditional release film dewatering film is converted into a laser with laser Membrane, such processing method can not only achieve the expected line accuracy well, but also does not cause pollution, environmental protection, good removal effect, and is very suitable for a wide range of popularization applications.
  • FIG. 1 is a schematic flow chart of a novel semi-additive 3D fine circuit fabrication process of the present invention.
  • FIGS. 2 to 8 are schematic views showing a manufacturing process of a novel semi-additive 3D fine circuit of the present invention.
  • a novel semi-additive 3D fine circuit manufacturing process 1 of the present invention includes the following steps.
  • step S2 performing copper plating on the whole substrate of the circuit board substrate cleaned in step S1, using electroless plating, electroplating, vacuum sputtering, vacuum ion plating; on the circuit board substrate, the whole is plated with a layer of about 3 um Bottom copper
  • S4 three-dimensional exposure development, reading the three-dimensional vector of the object to be processed and the three-dimensional line; calculating the three-dimensional exposure path of the object to be processed according to the three-dimensional vector information, controlling the three-dimensional dynamic focusing galvanometer in the three-dimensional ultraviolet laser exposure device, and passing two The deflection of the galvanometer and the focusing lens of the galvanometer achieve precise focusing on the surface of the workpiece, and the precise exposure trajectory on the curved surface is realized by the movement of the motor of the table; the three-dimensional exposure of the photosensitive ink in the area other than the line is used, and the developer is used.
  • Exposure curing of the ink to be generated in the area of the line to be removed, such that the exposed copper is exposed in these areas Exposure curing of the non-line area of the photosensitive ink, development of the uncured photosensitive adhesive in the removal line area, bare bottom line of the line area;
  • S6 removing the exposed ink layer, using a release agent to remove the exposed cured ink layer of the non-line portion; using a laser to remove the exposed ink layer for lines having a line width and a pitch of less than 25 um to avoid residual ink, and not Will cause pollution, environmental protection, and good removal effect;
  • the additive method 3D fine circuit manufacturing process is designed to verify the distance between the mirror and the beam expander under the three-dimensional dynamic focusing galvanometer, which is not only effective, but also High reliability and high adjustment accuracy. Further, in order to ensure the fineness of the final line and not pollute the environment, the traditional release film dewatering film is converted into a laser to remove the film by laser, so that the processing method is not only good. It can achieve the expected line accuracy, and will not cause pollution, environmental protection, good removal effect, and is very suitable for a wide range of popularization and application.
  • a three-dimensional ultraviolet focusing optical electromechanical system is installed in the three-dimensional ultraviolet laser exposure device, and the system is electrically connected to the controller inside the device, and the ultraviolet laser is dynamically focused to the three-dimensional image according to a control command from the controller. 3D exposure on the surface.
  • the three-dimensional dynamic focusing system in the step S4 comprises a laser for emitting a laser beam, and the beam emitted by the laser firstly faces the three-dimensional dynamic focusing system, finally reaches the scanning galvanometer region, and forms a three-dimensional focusing on the object to be processed. surface.
  • the laser in step S4 is an ultraviolet laser
  • the laser in step S6 is a carbon dioxide laser.
  • the circuit board substrate has a copper surface for surface cleaning and drying treatment.
  • two mirrors for changing the direction of light propagation are disposed.
  • the novel semi-additive 3D fine circuit manufacturing process 1 of the present invention is designed to reduce the cost and simplify the structure, and is verified by multiple experiments, and finally designed to adjust the transmission device under the three-dimensional dynamic focusing galvanometer to adjust
  • the distance from the beam expander is not only good, but also high in reliability and high in adjustment accuracy.
  • the traditional release film dewatering film is converted into a laser. Stripping, such processing and processing methods can not only achieve the expected line accuracy, but also will not cause pollution, environmental protection, good removal effect, and is very suitable for a wide range of popularization and application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

本发明提供一种新型半加成法3D精细电路制作工艺,包括以下步骤,S1:预备三维电路板基材,对基材表面进行清洁加工处理,S2:镀底铜,对步骤S1清洁完成的电路板基材整体镀底铜处理,S3:对电路板基材涂覆感光油墨;S4:三维曝光显影;读取待加工物件和三维线路的三维矢量图,对需保留的线路以外的感光油墨进行三维曝光,使用显影剂将未曝光固化的待生成线路区域的油墨祛除,S5:电镀增厚,对经过S4处理的工件进行电镀,使得裸露出底铜的线路部分的铜层增厚,S6:祛除已曝光的油墨层,使用脱膜剂将非线路部分的已曝光固化的油墨层脱除,不会造成污染,环保,去除效果好,祛除非线路部分的底铜,得到最终的三维线路成品。

Description

一种新型半加成法3D精细电路制作工艺 [技术领域]
本发明涉及电路板激光加工工艺技术领域,尤其涉及一种加工效率高,精细度高,且环保的新型半加成法3D精细电路制作工艺。
[背景技术]
随着电子电路行业的高速发展,人们对于电路板的设计精度的要求越来越高,为了达到这一要求,在制作电路板的时候,通常都会用到蚀刻的技术,在进行电路板蚀刻时,需要根据电路板设计资料中的线路尺寸对电路板的导电层进行稳定、均匀的蚀刻加工,但是,发明人发现现有技术至少存在以下问题:蚀刻时导电层边缘的顶端由于位置靠外且受蚀刻液多方向冲刷,从而存在多方向侧蚀效应,受到的腐蚀强度会超出导电层边缘的底部,最终造成蚀刻后导电层边缘的顶端异形,导致蚀刻完成后的导电层边缘的顶端与图纸设计形状相差过大,而导电层顶端的面积过小,最终影响焊盘面积和线路宽度,在脱干膜的过程中,常规的方式是采用脱膜药水进行化学脱膜,这样的加工方式不仅达不到预期的线路精度,而且会造成较大的污染,不环保,去除效果也不好。
基于此,为了对现有的半加成电路板制作工艺进行更好的改善,提高生产效率和质量,制备得到精细的3D电路,本领域的技术人员进行了大量的研发和实验,并取得了较好的成绩。
[发明内容]
为克服现有技术所存在的问题,本发明提供一种加工效率高,精细度高,且环保的新型半加成法3D精细电路制作工艺。
本发明解决技术问题的方案是提供一种新型半加成法3D精细电路制作工艺,包括以下步骤,
S1:预备电路板基材,对基材表面进行清洁加工处理;
S2:对步骤S1清洁完成的电路板基材整板进行镀底铜处理,可使用化学镀、电镀、真空溅射、真空离子镀等方式;
S3:涂覆感光油墨,将整个三维电路基材表面喷涂一层均匀的感光油墨;
S4:三维曝光显影,读取待加工物件和三维线路的三维矢量图;根据三维矢量图信息计算待加工物件的三维曝光路径,控制三维紫外激光曝光设备中的三维动态聚焦振镜,并通过两片振镜的偏转和平场聚焦透镜实现在工件曲面上的精确聚焦,配合工作台电机的运动实现在曲面上的精确曝光轨迹;对线路以外的区域的感光油墨进行三维曝光,使用显影剂将未曝光固化的待生成线路区域的油墨祛除,使得这些区域裸露出底铜;
S5:电镀增厚,对经过S4处理的工件进行电镀,使得裸露出底铜的线路部分的铜层增厚;
S6:祛除已曝光的油墨层,使用脱膜剂将非线路部分的已曝光固化的油墨层脱除;对于线宽与间距小于25um的线路使用激光祛除已曝光的油墨层避免残留油墨;
S7:祛除非线路部分的底铜,使用快速刻蚀液蚀刻清除非线路部分的底铜,清洗,得到最终电路板成品。
优选地,所述步骤S4中,三维紫外激光曝光设备中安装有三维动态聚焦光学机电系统,该系统与设备内部的控制器电性相连,根据来自控制器的控制指令驱动紫外激光动态聚焦到三维曲面上实现三维曝光。
优选地,所述步骤S4中三维动态聚焦系统包括用于发射激光光束的激光器,由激光器发射的光束首先射向三维动态聚焦系统,最后到达扫描振镜区域,并在待加工物件上形成三维聚焦面。
优选地,所述步骤S4中的激光器为紫外激光器,所述步骤S6中的激光器为二氧化碳激光器。
优选地,所述步骤S3涂覆感光油墨之前,对电路板基材有铜面作表面清洁、烘干处理。
优选地,所述平场聚焦透镜与三维动态聚焦振镜之间设置有用于改变光线传播方向的两个反光镜。
与现有技术相比,本发明一种新型半加成法3D精细电路制作工艺为了降低成本,简化结构,通过多次实验验证,最终设计为在三维动态聚焦振镜下方设置传动装置来调节与扩束镜的间距,不仅效果好,而且可靠度高,调节精确度高,进一步地,为了保证最终线路的精细,且不污染环境,将传统的脱膜药水脱干膜转换成为采用激光器激光脱膜,这样的加工处理方式不仅可以很好的达到预期的线路精度,而且不会造成污染,环保,去除效果好,非常适合广泛的推广应用。
[附图说明]
图1是本发明一种新型半加成法3D精细电路制作工艺的流程示意图。
图2至图8是本发明一种新型半加成法3D精细电路制作工艺示意图。
[具体实施方式]
为使本发明的目的,技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定此发明。
请参阅图1,本发明一种新型半加成法3D精细电路制作工艺1,包括以下步骤,
S1:预备电路板基材,对基材表面进行清洁加工处理;
S2:对步骤S1清洁完成的电路板基材整板进行镀底铜处理,可使用化学镀、电镀、真空溅射、真空离子镀方式;在电路板基材上,整体镀上一层3um左右的底铜;
S3:涂覆感光油墨,将整个三维电路基材表面喷涂一层均匀的感光油墨;
S4:三维曝光显影,读取待加工物件和三维线路的三维矢量图;根据三维矢量图信息计算待加工物件的三维曝光路径,控制三维紫外激光曝光设备中的三维动态聚焦振镜,并通过两片振镜的偏转和平场聚焦透镜实现在工件曲面上的精确聚焦,配合工作台电机的运动实现在曲面上的精确曝光轨迹;对线路以外的区域的感光油墨进行三维曝光,使用显影剂将未曝光固化的待生成线路区域的油墨祛除,使得这些区域裸露出底铜(曝光固化非 线路区域的感光油墨,显影清除线路区域的未固化的感光胶,裸露出线路区域的底铜);
S5:电镀增厚,对经过S4处理的工件进行电镀,使得裸露出底铜的线路部分的铜层增厚;
S6:祛除已曝光的油墨层,使用脱膜剂将非线路部分的已曝光固化的油墨层脱除;对于线宽与间距小于25um的线路使用激光祛除已曝光的油墨层避免残留油墨,且不会造成污染,环保,去除效果好;
S7:祛除非线路部分的底铜,使用快速刻蚀液蚀刻清除非线路部分的底铜,清洗,得到最终电路板成品。由于底铜相对于增厚的线路部分很薄,短时间内可清除底铜又能保留完整的线路部分,得到最终的3D线路。
本申请加成法3D精细电路制作工艺为了降低成本,简化结构,通过多次实验验证,最终设计为在三维动态聚焦振镜下方设置传动装置来调节与扩束镜的间距,不仅效果好,而且可靠度高,调节精确度高,进一步地,为了保证最终线路的精细,且不污染环境,将传统的脱膜药水脱干膜转换成为采用激光器激光脱膜,这样的加工处理方式不仅可以很好的达到预期的线路精度,而且不会造成污染,环保,去除效果好,非常适合广泛的推广应用。
优选地,所述步骤S4中,三维紫外激光曝光设备中安装有三维动态聚焦光学机电系统,该系统与设备内部的控制器电性相连,根据来自控制器的控制指令驱动紫外激光动态聚焦到三维曲面上实现三维曝光。
优选地,所述步骤S4中三维动态聚焦系统包括用于发射激光光束的激光器,由激光器发射的光束首先射向三维动态聚焦系统,最后到达扫描振镜区域,并在待加工物件上形成三维聚焦面。
优选地,所述步骤S4中的激光器为紫外激光器,所述步骤S6中的激光器为二氧化碳激光器。
优选地,所述步骤S3涂覆感光油墨之前,对电路板基材有铜面作表面清洁、烘干处理。
优选地,所述平场聚焦透镜与三维动态聚焦振镜之间设置有用于改变光线传播方向的两个反光镜。
与现有技术相比,本发明一种新型半加成法3D精细电路制作工艺1为了降低成本,简化结构,通过多次实验验证,最终设计为在三维动态聚焦振镜下方设置传动装置来调节与扩束镜的间距,不仅效果好,而且可靠度高,调节精确度高,进一步地,为了保证最终线路的精细,且不污染环境,将传统的脱膜药水脱干膜转换成为采用激光器激光脱膜,这样的加工处理方式不仅可以很好的达到预期的线路精度,而且不会造成污染,环保,去除效果好,非常适合广泛的推广应用。
以上所述的本发明实施方式,并不构成对本发明保护范围的限定。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明的权利要求保护范围之内。

Claims (6)

  1. 一种半加成法3D精细电路制作工艺,其特征在于:包括以下步骤,S1:预
    备电路板基材,对基材表面进行清洁加工处理;
    S2:对步骤S1清洁完成的电路板基材整板进行镀底铜处理,使用化学镀、电镀、真空溅射或真空离子镀方式;
    S3:涂覆感光油墨,将整个三维电路基材表面喷涂一层均匀的感光油墨;
    S4:三维曝光显影,读取待加工物件和三维线路的三维矢量图;根据三维矢量图信息计算待加工物件的三维曝光路径,控制三维紫外激光曝光设备中的三维动态聚焦振镜,三维动态聚焦振镜下方设置传动装置来调节与扩束镜的间距,并通过两片振镜的偏转和平场聚焦透镜实现在工件曲面上的精确聚焦,配合工作台电机的运动实现在曲面上的精确曝光轨迹;对线路以外的区域的感光油墨进行三维曝光,使用显影剂将未曝光固化的待生成线路区域的油墨祛除,使得这些区域裸露出底铜;
    S5:电镀增厚,对经过S4处理的工件进行电镀,使得裸露出底铜的线路部分的铜层增厚;
    S6:祛除已曝光的油墨层,使用脱膜剂将非线路部分的已曝光固化的油墨层脱除;对于线宽与间距小于25um的线路使用激光祛除已曝光的油墨层避免残留油墨;
    S7:祛除非线路部分的底铜,使用快速刻蚀液蚀刻清除非线路部分的底铜,清洗,得到最终电路板成品。
  2. 如权利要求1所述的一种半加成法3D精细电路制作工艺,其特征在于:所述步骤S4中,三维紫外激光曝光设备中安装有三维动态聚焦光学机电系统,该系统与设备内部的控制器电性相连,根据来自控制器的控制指令驱动紫外激光动态聚焦到三维曲面上实现三维曝光。
  3. 如权利要求1所述的一种半加成法3D精细电路制作工艺,其特征在于:所述步骤S4中三维动态聚焦系统包括用于发射激光光束的激光器,由激光器发射的光束首先射向三维动态聚焦系统,最后到达扫描振镜区域,并在待加工物件上形成三维聚焦面。
  4. 如权利要求1至3中任意一项权利要求所述的一种半加成法3D精细电路制作工艺,其特征在于:所述步骤S4中的激光器为紫外激光器,所述步骤S6中的激光器为二氧化碳激光器。
  5. 如权利要求1或3所述的一种半加成法3D精细电路制作工艺,其特征在于:所述步骤S3涂覆感光油墨之前,对电路板基材有铜面作表面清洁、烘干处理。
  6. 如权利要求1所述的一种半加成法3D精细电路制作工艺,其特征在于:所述平场聚焦透镜与三维动态聚焦振镜之间设置有用于改变光线传播方向的两个反光镜。
PCT/CN2019/084094 2018-04-24 2019-04-24 一种新型半加成法3d精细电路制作工艺 WO2019206183A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810371444.4 2018-04-24
CN201810371444.4A CN108513445A (zh) 2018-04-24 2018-04-24 一种新型半加成法3d精细电路制作工艺

Publications (1)

Publication Number Publication Date
WO2019206183A1 true WO2019206183A1 (zh) 2019-10-31

Family

ID=63383378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084094 WO2019206183A1 (zh) 2018-04-24 2019-04-24 一种新型半加成法3d精细电路制作工艺

Country Status (2)

Country Link
CN (1) CN108513445A (zh)
WO (1) WO2019206183A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108513445A (zh) * 2018-04-24 2018-09-07 朱元昊 一种新型半加成法3d精细电路制作工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101449633A (zh) * 2006-03-24 2009-06-03 宇部兴产株式会社 用于制备铜布线聚酰亚胺膜的方法和铜布线聚酰亚胺膜
CN102612271A (zh) * 2012-04-09 2012-07-25 深圳市泛友科技有限公司 结构件上的立体电路及其制作方法
US20140123487A1 (en) * 2012-11-08 2014-05-08 Boardtek Electronics Corporation Printed circuit board manufacturing method
CN107024837A (zh) * 2017-05-19 2017-08-08 深圳市斯普莱特激光科技有限公司 一种高精度三维激光曝光固化工艺
CN108513445A (zh) * 2018-04-24 2018-09-07 朱元昊 一种新型半加成法3d精细电路制作工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102711385A (zh) * 2012-06-26 2012-10-03 北京凯迪思电路板有限公司 一种加成法制作线路板的方法
CN104411106B (zh) * 2014-11-14 2017-11-17 电子科技大学 一种印制电路板精细线路的制作方法
CN106852002A (zh) * 2017-02-07 2017-06-13 苏州维信电子有限公司 一种细线路层横截面形状方正柔性线路板的制造方法
CN106961803A (zh) * 2017-04-07 2017-07-18 安捷利电子科技(苏州)有限公司 一种提升pcb线路高宽比的制作方法
CN106950804B (zh) * 2017-05-19 2018-05-08 深圳市斯普莱特激光科技有限公司 一种新型高精度三维激光曝光固化设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101449633A (zh) * 2006-03-24 2009-06-03 宇部兴产株式会社 用于制备铜布线聚酰亚胺膜的方法和铜布线聚酰亚胺膜
CN102612271A (zh) * 2012-04-09 2012-07-25 深圳市泛友科技有限公司 结构件上的立体电路及其制作方法
US20140123487A1 (en) * 2012-11-08 2014-05-08 Boardtek Electronics Corporation Printed circuit board manufacturing method
CN107024837A (zh) * 2017-05-19 2017-08-08 深圳市斯普莱特激光科技有限公司 一种高精度三维激光曝光固化工艺
CN108513445A (zh) * 2018-04-24 2018-09-07 朱元昊 一种新型半加成法3d精细电路制作工艺

Also Published As

Publication number Publication date
CN108513445A (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
US6156484A (en) Gray scale etching for thin flexible interposer
CN103002660B (zh) 一种线路板及其加工方法
CN101266409A (zh) 激光加工装置
JP2007167957A (ja) レーザビームを利用したビアホールの形成方法
WO2019206183A1 (zh) 一种新型半加成法3d精细电路制作工艺
JP2009004669A (ja) 金属配線基板の製造方法およびそれを用いて形成した金属配線基板
US4724465A (en) Photofabrication using laser light to expose photoresist
KR101888511B1 (ko) 임프린팅 공정을 이용한 연성동박적층필름의 마이크로 패턴 제작 방법
CN110678001A (zh) 形成cof细密电路的方法及系统、cof及其加工方法
CN107218326A (zh) 一种vcm弹片的制作方法
CN201497852U (zh) 大幅面导电基板粗线路直写装置
JPS6115426B2 (zh)
JP2021090020A (ja) インプリント用のテンプレート、テンプレートを用いたインプリント方法
CN104345548A (zh) 亚微米级掩模版的制造方法
KR100648465B1 (ko) 인쇄회로기판의 미세 회로 형성 방법
CN107770968B (zh) 一种激光直写加工软介质高频微波电路的方法
JP2002075849A (ja) 電子ビーム露光装置、荷電粒子線を整形する部材及びその製造方法
JP2005181699A (ja) 微細突起アレイの製造方法、微細突起アレイ、微細凹面アレイ及び微細凹面アレイの製造方法
KR102008983B1 (ko) 극미세 금속 부품의 제조방법과 그에 의한 극미세 금속 부품
JPS63182889A (ja) プリント配線板の製造方法
CN113473718B (zh) 一种电路板阻焊图案的制作方法
JPH04116887A (ja) 回路パターンの形成方法
KR20190040159A (ko) 충진부와 회로부가 일체로 된 극미세 회로기판
JPH08148809A (ja) 回路形成方法及び導電回路形成部品
JP2001350269A (ja) 半田印刷用マスクの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19791713

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01.03.2021)