WO2019205653A1 - 一种镜头模组及照相机 - Google Patents
一种镜头模组及照相机 Download PDFInfo
- Publication number
- WO2019205653A1 WO2019205653A1 PCT/CN2018/120211 CN2018120211W WO2019205653A1 WO 2019205653 A1 WO2019205653 A1 WO 2019205653A1 CN 2018120211 W CN2018120211 W CN 2018120211W WO 2019205653 A1 WO2019205653 A1 WO 2019205653A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical axis
- refractive
- lens module
- optical
- plane mirror
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 340
- 230000008859 change Effects 0.000 claims description 28
- 230000000694 effects Effects 0.000 abstract description 2
- 230000006870 function Effects 0.000 description 43
- 238000000034 method Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000012905 input function Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0055—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
- G02B13/0065—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B17/00—Details of cameras or camera bodies; Accessories therefor
- G03B17/02—Bodies
- G03B17/17—Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/64—Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
- G02B27/646—Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/04—Prisms
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/0883—Mirrors with a refractive index gradient
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/04—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
- G02B7/08—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B30/00—Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/55—Optical parts specially adapted for electronic image sensors; Mounting thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/68—Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
- H04N23/682—Vibration or motion blur correction
- H04N23/685—Vibration or motion blur correction performed by mechanical compensation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/68—Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
- H04N23/682—Vibration or motion blur correction
- H04N23/685—Vibration or motion blur correction performed by mechanical compensation
- H04N23/687—Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/64—Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
Definitions
- the present application relates to the field of camera devices, and in particular, to a lens module and a camera.
- the camera on the terminal device adopts a folding structure, and the incident light is first reflected by the optical element and then injected into the refractive element in the lens module, and the optical axis of the refractive element is perpendicular to the height direction of the refractive element.
- the effective aperture of the refractive element is small, the aperture that can be achieved is small, resulting in difficulty in capturing a large aperture, and the user experience is poor.
- the embodiment of the present application provides a lens module and a camera, which are more likely to take a large aperture and improve the user experience.
- the first aspect of the present application provides a lens module, including: a first refractive element, a second refractive element, a reflective element, and a photosensitive element, wherein the first refractive element and the reflective element Provided along a direction of the first optical axis, the second refractive element and the reflective element are disposed along a direction of the second optical axis, the first optical axis being an optical axis of the first refractive element, the second An optical axis is an optical axis of the second refractive element, and the first optical axis is perpendicular to the second optical axis, and the second refractive element is disposed in parallel with the photosensitive element, in the lens module In the height direction, an effective aperture of the first refractive element is greater than an effective aperture of the second refractive element, the first optical axis is parallel to a height direction of the lens module, and the second optical axis is The height direction of the lens module is vertical;
- the first refractive element is configured to refract a beam of light from an exterior of the lens module
- the reflective element is configured to reflect a beam of light refracted by the first refractive element
- the second refractive element is configured to refract a beam of light reflected by the reflective element
- the photosensitive element is configured to receive light refracted by the second refractive element and generate an electronic image.
- the light from the outside of the lens module is first incident on the first refractive element. Since the first optical axis is parallel to the height direction of the lens module, the second optical axis is perpendicular to the height direction of the lens module. That is to say, the effective aperture of the second refractive component is limited by the height of the lens module, and the effective aperture of the first refractive component is not limited by the height of the lens module, and the effective aperture of the first refractive component is greater than the effective of the second refractive component.
- the caliber makes the aperture of the lens module increase, making it easier to shoot a large aperture and improving the user experience.
- a second aspect of the present application provides a lens module, including: a first refractive element, a second refractive element, a reflective element, a photosensitive element, a target optical element, and a motor, wherein the first refractive element and the a reflective element disposed along a direction of the first optical axis, the second refractive element, the reflective element being disposed in a direction of the second optical axis, the second refractive element being located between the reflective element and the target optical element
- the first optical axis is an optical axis of the first refractive element
- the second optical axis is an optical axis of the second refractive element
- the first optical axis is perpendicular to the second optical axis
- An effective aperture of the first refractive component is greater than an effective aperture of the second refractive component in a height direction of the lens module, and the first optical axis is parallel to a height direction of the lens module.
- the second optical axis is perpendicular to
- the first refractive element is configured to refract a beam of light from an exterior of the lens module
- the reflective element is configured to reflect a beam of light refracted by the first refractive element
- the second refractive element is configured to refract a beam of light reflected by the reflective element
- the motor for adjusting a position of the target optical element to change an optical path between the second refractive element and the photosensitive element
- the photosensitive element is configured to receive light emitted from the target optical element and generate an electronic image.
- the light from the outside of the lens module is first incident on the first refractive element. Since the first optical axis is parallel to the height direction of the lens module, the second optical axis is perpendicular to the height direction of the lens module. That is to say, the effective aperture of the second refractive component is limited by the height of the lens module, and the effective aperture of the first refractive component is not limited by the height of the lens module, and the effective aperture of the first refractive component is greater than the effective of the second refractive component.
- the caliber makes the aperture of the lens module increase, making it easier to shoot a large aperture and improving the user experience.
- the motor can adjust the position of the target optical component to change the second refractive component and the photosensitive element. The optical path between the two can eliminate the need to change the position of other components in the lens module to achieve focus or anti-shake function, which improves the practicality of the solution.
- the target optical component includes a first wedge prism and a second wedge prism, the second refractive component, the target An optical element, the photosensitive element is disposed along a direction of the second optical axis, the first wedge prism and the second wedge prism being located between the second refractive element and the photosensitive element, the motor specific A position for adjusting the first wedge prism and/or the second wedge prism to change an optical path of light in the target optical element.
- the embodiment of the present application provides a specific form of the target optical component for implementing the focusing function of the lens module, which improves the achievability of the solution.
- the target optical component includes a first plane mirror and a second plane mirror, the first plane mirror being perpendicular to the second plane mirror Providing that the second refractive element, the first plane mirror is disposed along a direction of the second optical axis, and the second refractive element is located between the reflective element and the first plane mirror, the second a plane mirror and the photosensitive element are disposed along a direction of the third optical axis; the third optical axis is parallel to the second optical axis; an angle between the first planar mirror and the second optical axis is 45°, An angle between the second plane mirror and the second optical axis is 45°, such that light refracted by the second refractive element is sequentially projected on the photosensitive element after being reflected by the first plane mirror and the second plane mirror
- the motor is specifically configured to adjust a position of the first plane mirror and/or the second plane mirror to change an optical path of the
- the embodiment of the present application provides another specific form of the target optical component for implementing the focusing function of the lens module, which improves the flexibility of the solution.
- the target optical component includes a first plane mirror and a second plane mirror, the first plane mirror being parallel to the second plane mirror Providing that the second refractive element, the first plane mirror is disposed along a direction of the second optical axis, and the second refractive element is located between the reflective element and the first plane mirror, the second a plane mirror and the photosensitive element are disposed along a direction of a third optical axis, the third optical axis is parallel to the second optical axis, and an angle between the first planar mirror and the second optical axis is 45°, An angle between the second plane mirror and the second optical axis is 45°, such that light refracted by the second refractive element is sequentially projected on the photosensitive element after being reflected by the first plane mirror and the second plane mirror
- the motor is specifically configured to adjust the position of the first plane mirror and/or the second plane mirror to change the optical path of the light in
- the embodiment of the present application provides another specific form of the target optical component for implementing the focusing function of the lens module, which improves the flexibility of the solution.
- the target optical component includes a triangular prism, and the second refractive component is disposed along a direction of the second optical axis.
- the photosensitive element is disposed along a direction of a third optical axis, the third optical axis is parallel to the second optical axis, and the triangular prism is disposed on a side of the second refractive element and the photosensitive element, the triangular prism a bottom surface parallel to the second refractive element and the photosensitive element, such that light refracted by the second refractive element is projected onto the photosensitive element after being reflected by the triangular prism, and the motor is specifically used to adjust the prism Position to change the optical path of the light in the target optical element.
- the embodiment of the present application provides another specific form of the target optical component for implementing the focusing function of the lens module, which improves the flexibility of the solution.
- the motor when the lens module is shaken, is specifically configured to adjust the first The position of the plane mirror and the second plane mirror to change the optical path of the light in the target optical element.
- the embodiment of the present application provides a specific form of the target optical component for implementing the anti-shake function of the lens module, which improves the achievability of the solution.
- the motor when the lens module is shaken, is specifically configured to adjust the first The position of the plane mirror and the second plane mirror to change the optical path of the light in the target optical element.
- the embodiment of the present application provides another specific form of the target optical component for implementing the anti-shake function of the lens module, which improves the flexibility of the solution.
- the motor is specifically configured to adjust the prism Position to change the optical path of the light in the target optical element.
- the embodiment of the present application provides another specific form of the target optical component for implementing the anti-shake function of the lens module, which improves the flexibility of the solution.
- the first refractive element comprises at least one refractive lens
- the second refractive element comprises at least one refractive lens
- the first refractive element and the second refractive element each include at least one refractive lens, that is, the first refractive element and the second refractive element have the possibility of being composed of a plurality of refractive lenses, which enriches the implementation of the solution. The possibility.
- the first embodiment of the second aspect of the embodiment of the present application, the second embodiment of the second aspect of the embodiment of the present application, and the third embodiment of the second aspect of the embodiment of the present application The fourth embodiment of the second aspect of the embodiment of the present application, the fifth embodiment of the second aspect of the embodiment of the present application, the sixth embodiment of the second aspect of the embodiment of the present application, and the second aspect of the embodiment of the present application.
- the seventh embodiment of the second aspect of the second aspect of the present application the reflective element is a plane mirror, and the motor is specifically used to adjust the plane mirror and the camera when the lens module is shaken An angle between the first refractive elements to change an optical path between the first refractive element and the second refractive element.
- the embodiment of the present application provides a specific form of a reflective element for implementing the anti-shake function of the lens module, which improves the achievability of the solution.
- the reflective element is a prism
- the motor is specifically used to adjust the prism and the ground when the lens module is shaken. An angle between the first refractive elements to change an optical path between the first refractive element and the second refractive element.
- the embodiment of the present application provides another specific form of the reflective element for implementing the anti-shake function of the lens module, which improves the flexibility of the solution.
- the first embodiment of the second aspect of the embodiment of the present application, the second embodiment of the second aspect of the embodiment of the present application, and the third embodiment of the second aspect of the embodiment of the present application The fourth embodiment of the second aspect of the embodiment of the present application, the fifth embodiment of the second aspect of the embodiment of the present application, the sixth embodiment of the second aspect of the embodiment of the present application, and the second aspect of the embodiment of the present application
- the physical focal length of the lens module is greater than or equal to 9 mm
- the optical magnification of the lens module is greater than or equal to 2.5.
- the embodiment of the present application provides a set of specific parameters about the focal length and optical magnification of the lens module, which improves the practicability of the solution.
- the lens module further includes an infrared filter, the infrared filter is located at the target optical component and the Between the photosensitive elements.
- a third aspect of the embodiments of the present application provides a camera, including a processor, a controller, a memory, a bus, and a lens module, wherein the processor, the controller, the memory, and the lens module Interconnected by the bus, wherein the memory is for storing programs and instructions, the processor is for calling programs and instructions stored in the memory, and the processor is further configured to The lens module is controlled;
- the lens module includes: a first refractive element, a second refractive element, a reflective element, and a photosensitive element, wherein the first refractive element and the reflective element are disposed along a direction of the first optical axis, and the second refractive An element and the reflective element are disposed along a direction of a second optical axis, the first optical axis being an optical axis of the first refractive element, and the second optical axis being an optical axis of the second refractive element, and The first optical axis is perpendicular to the second optical axis, and the second refractive element is disposed in parallel with the photosensitive element, and an effective aperture of the first refractive component is greater than a height direction of the lens module An effective aperture of the second refractive component, the first optical axis is parallel to a height direction of the lens module, and the second optical axis is perpendicular to a height direction of the lens module;
- the first refractive element is configured to refract a beam of light from an exterior of the lens module
- the reflective element is configured to reflect a beam of light refracted by the first refractive element
- the second refractive element is configured to refract a beam of light reflected by the reflective element
- the photosensitive element is configured to receive light refracted by the second refractive element and generate an electronic image.
- a fourth aspect of the embodiments of the present application provides a camera, including a processor, a controller, a memory, a bus, and a lens module, wherein the processor, the controller, the memory, and the lens module Interconnected by the bus, wherein the memory is for storing programs and instructions, the processor is for calling programs and instructions stored in the memory, and the processor is further configured to The lens module is controlled;
- the lens module includes: a first refractive element, a second refractive element, a reflective element, a photosensitive element, a target optical element, and a motor, wherein the first refractive element and the reflective element are disposed along a direction of the first optical axis
- the second refractive element, the reflective element is disposed along a direction of a second optical axis, the second refractive element is located between the reflective element and the target optical element, and the first optical axis is An optical axis of the first refractive element, the second optical axis is an optical axis of the second refractive element, and the first optical axis is perpendicular to the second optical axis, in a height direction of the lens module
- the effective diameter of the first refractive element is greater than the effective aperture of the second refractive element, the first optical axis is parallel to the height direction of the lens module, and the second optical axis and the lens module
- the height direction of the group is vertical;
- the first refractive element is configured to refract a beam of light from an exterior of the lens module
- the reflective element is configured to reflect a beam of light refracted by the first refractive element
- the second refractive element is configured to refract a beam of light reflected by the reflective element
- the motor for adjusting a position of the target optical to change an optical path between the second refractive element and the photosensitive element
- the photosensitive element is configured to receive light emitted from the target optical element and generate an electronic image.
- the embodiments of the present application have the following advantages:
- the lens module includes a first refractive element, a second refractive element, a reflective element, and a photosensitive element, wherein the first refractive element and the reflective element are disposed along a direction of the first optical axis, a second refractive element and the reflective element are disposed along a direction of a second optical axis, the first optical axis being an optical axis of the first refractive element, and the second optical axis being light of the second refractive element a shaft, and the first optical axis is perpendicular to the second optical axis, and the second refractive element is disposed in parallel with the photosensitive element, in a height direction of the lens module, the first refractive element
- the effective aperture is larger than the effective aperture of the second refractive component, the first optical axis is parallel to the height direction of the lens module, and the second optical axis is perpendicular to the height direction of the lens module, the first a refractive element for refrac
- the light from the outside of the lens module first enters the first refractive component, and the second optical axis is parallel to the height direction of the lens module, and the second optical axis and the height direction of the lens module are Vertically, that is, the effective aperture of the second refractive component is limited by the height of the lens module, and the effective aperture of the first refractive component is not limited by the height of the lens module, and the effective aperture of the first refractive component is greater than the second refractive index
- the effective aperture of the component makes the aperture of the lens module increase, making it easier to shoot a large aperture and improving the user experience.
- FIG. 1 is a schematic diagram of a photographing system applied to a terminal device
- FIG. 2 is a schematic view of an embodiment of a camera of the present application
- Figure 3 is a schematic view of another embodiment of the camera of the present application.
- Figure 4 (a) is a schematic view of another embodiment of the camera of the present application.
- FIG. 4(b) is a schematic view showing another embodiment of the camera of the present application.
- Figure 5 (a) is a schematic view of another embodiment of the camera of the present application.
- Figure 5 (b) is a schematic view of another embodiment of the camera of the present application.
- Figure 6 (a) is a schematic view of another embodiment of the camera of the present application.
- Figure 6 (b) is a schematic view showing another embodiment of the camera of the present application.
- Figure 7 (a) is a schematic view of another embodiment of the camera of the present application.
- Figure 7 (b) is a schematic view of another embodiment of the camera of the present application.
- Figure 8 is a schematic view of another embodiment of the camera of the present application.
- Figure 9 is a schematic view of another embodiment of the camera of the present application.
- Figure 10 is a schematic view of another embodiment of the camera of the present application.
- FIG. 11 is a schematic diagram of an embodiment of an anti-shake function of adjusting a reflective element in a camera of the present application
- FIG. 12 is a schematic diagram of another embodiment of an anti-shake function of adjusting a reflective element in a camera of the present application
- FIG. 13 is a schematic structural diagram of a terminal device according to the present application.
- the embodiment of the present application provides a lens module and a camera, which are more likely to take a large aperture and improve the user experience.
- the embodiment of the present application can be applied to a camera including a lens module, wherein the camera can be integrated on the terminal device, and the terminal device can be specifically a mobile phone, a tablet computer, a wearable device, an augmented reality (AR), and a virtual reality.
- AR augmented reality
- VR virtual reality
- VR virtual reality
- notebook computer notebook computer
- ultra-mobile personal computer UMPC
- netbook netbook
- PDA personal digital assistant
- the camera includes at least a lens control module, a system control device, an image processing device, a memory, and a display device.
- the system control device may further include a photographing control module, a focus control module, and an anti-shake control module, wherein the photographing control module is configured to set a photographing mode of the camera, such as a black and white mode, a high dynamic mode, etc.; the focus control module is configured to control the focus motor adjustment The position of each optical component in the camera is used to capture objects of different distances; the anti-shake control module is used to control the anti-shake motor to adjust the position of each optical component in the camera so that the image is not blurred due to user hand shake or the like.
- a photographing control module is configured to set a photographing mode of the camera, such as a black and white mode, a high dynamic mode, etc.
- the focus control module is configured to control the focus motor adjustment
- the position of each optical component in the camera is used to capture objects of different distances
- the anti-shake control module is used to control the anti-shake motor to adjust the position of each optical component in the camera so that the image is not blurred due to user hand shake or
- the image processing device can perform denoising on the original image acquired by the camera, enhance or split the blurring process, and enrich the user experience.
- the memory can store photos processed by the image processing device and program codes for controlling the operation of the camera.
- the display device can present the final picture taken by the camera to the user through the display screen.
- the thickness of the whole mobile phone is getting thinner and thinner, so the height of the camera on the mobile phone will also be limited by the overall thickness of the mobile phone, that is, the optical components in the lens module.
- the effective aperture is limited, and the focal length and optical magnification of the camera cannot be made larger. It is difficult for the camera to shoot distant objects, and it is not easy to take a photo with a large aperture effect.
- the embodiment of the present application provides a lens module.
- the lens module in the embodiment of the present application is described in detail below with reference to the accompanying drawings.
- FIG. 2 illustrates an embodiment of a lens module according to an embodiment of the present application.
- the lens module includes a first refractive component, a second refractive component, a reflective component, and a photosensitive component, wherein the first refractive component and the reflective component are along a direction of the first optical axis, the second refractive element and the reflective element are disposed along a direction of the second optical axis, the first optical axis is an optical axis of the first refractive element, and the second optical axis is an optical axis of the second refractive element, The first optical axis is perpendicular to the second optical axis, and the second refractive element is disposed in parallel with the photosensitive element.
- the effective aperture of the first refractive component is greater than the effective aperture of the second refractive component, and the first light
- the axis is parallel to the height direction of the lens module, and the second optical axis is perpendicular to the height direction of the lens module.
- first refractive element, the reflective element, and the second refractive element may be composed of a plastic material, and other transparent optical materials may also be used. Also, the first refractive element and the second refractive element may be composed of materials having different optical characteristics such as different dispersion coefficients and/or different refractive indices.
- the effective aperture of the optical component refers to the physical aperture of the optical component for refracting or reflecting light, which is different from the outer diameter of the optical component, for example, an optical component having a diameter of 10 mm, and having an outer diameter of 10 mm.
- the effective diameter can be 6mm.
- first refractive element and the second refractive element in this embodiment may have other shapes, such as an elliptical shape, a rectangular shape, or a rectangular shape with rounded corners, etc., and are not limited herein. .
- the height direction of the lens module is the direction of the first optical axis, that is, the plane of the first refractive component and the lens module.
- the height direction is vertical, so the effective aperture of the first refractive element can be independent of the height of the lens module.
- the lens module in the embodiment of the present application adopts a folded structure, and the plane of the first refractive component is perpendicular to the plane of the second component. Therefore, the lens module also needs to be provided with a reflective component, which will pass through the first refractive component. The refracted light is reflected and incident on the second refractive element. Specifically, the angle between the plane of the reflective element and the plane of the first refractive element may be 45°.
- the first refractive component is used to refract light incident outside the lens module.
- the axis of symmetry of the incident light beam may coincide or be parallel to the first optical axis.
- the reflective component may undergo first refraction.
- the light refracted by the element is reflected on the second refractive element.
- the symmetry axis of the reflected light beam may coincide or be parallel with the second optical axis, and then the light refracted by the second refractive element may finally be projected onto the photosensitive element. And generate an electronic image.
- the reflective element may be a flat mirror as shown in FIG. 2, and may be in other forms, such as the prism shown in FIG. 3, the slope of the prism serves as a reflective surface, and the specific form of the reflective element is not made here. limited.
- the lens module has a physical focal length greater than or equal to 9 mm, and the lens module has a light magnification greater than or equal to 2.5.
- the first refractive element and the second refractive element in this embodiment are not necessarily a single refractive element, but may also be a combination of multiple refractive elements.
- both the first refractive element and the second refractive element may be It consists of a plurality of mutually parallel lenses arranged in sequence.
- the photosensitive element is used for photoelectrically converting the acquired light to generate a digital image
- the photosensitive element may be a charge coupled device (CCD) or a metal oxide semiconductor element (complementary metal-oxide).
- CCD charge coupled device
- CMOS complementary metal-oxide
- Semiconductor, CMOS which is not limited here.
- the lens module may also, but not necessarily, include an infrared filter between the second refractive element and the photosensitive element, and the infrared filter may be composed of a fiberglass material.
- the lens module may also include Other components than those illustrated and described.
- the light from the outside of the lens module first enters the first refractive component. Since the first optical axis is parallel to the height direction of the lens module, the second optical axis is perpendicular to the height direction of the lens module. That is to say, the effective aperture of the second refractive component is limited by the height of the lens module, and the effective aperture of the first refractive component is not limited by the height of the lens module, and the effective aperture of the first refractive component is greater than that of the second refractive component.
- the effective aperture makes the aperture of the lens module increase, making it easier to shoot large apertures and improving the user experience.
- the lens module structure in this embodiment makes the optical path between the optical elements in the lens module more complicated, so it is difficult to realize the function of focusing and anti-shake by moving the optical element shown in FIG. 2 or FIG.
- the lens module of the present solution can also be provided with the target optical component and the motor on the basis of FIG. 2 or FIG. 3, wherein the second refractive component is located between the reflective component and the target optical component, and can be pushed by the motor. Adjusting the position of the optical element, thereby changing the optical path between the second refractive element and the photosensitive element, thereby achieving the focus and anti-shake function of the lens module.
- the target optical element may include a first wedge prism and a second wedge prism, wherein the second refractive element, the target optical element, and the photosensitive element are disposed along a direction of the second optical axis, the first wedge prism And the second wedge prism is located between the second refractive element and the photosensitive element.
- the first wedge prism and the second wedge prism can be regarded as two parts obtained by cutting one rectangular parallelepiped, and the inclined surface of the first wedge prism. A space needs to be left between the slopes of the second wedge prism to prevent the motor from rubbing against each other when pushing the first wedge prism or the second wedge prism.
- the effective path of the light passing through the first wedge prism and the second wedge prism can be changed, that is, the light path of the light in the target optical element is changed, for example,
- the position of the second wedge prism is kept fixed, and the motor pushes the first wedge prism to move along the direction of the slope of the slope to realize the focusing function, as shown in FIG. 4(b).
- the refractive index of the first wedge prism and the second wedge prism material is much larger than that of the air.
- the convergence angle of the light in the first wedge prism and the second wedge prism is in the air.
- the convergence angle is different, so that the light converges at a point to change the focus to achieve focusing at different distances.
- the effective path of the light passing through the first wedge prism and the second wedge prism is shortened (reducing the overall thickness of the target optical element) ), when the telephoto focuses, increasing the effective path of light passing through the first wedge prism and the second wedge prism (increasing the overall thickness of the target optical element).
- the first wedge prism may also be kept stationary, and the motor pushes the second wedge prism to move along the direction of the slope of the slope, thereby changing the optical path of the light in the target optical component to achieve the focusing function.
- the motor can also simultaneously push the first wedge prism and the second wedge prism to move along the direction of the slope of the slope to change the relative positions of the two wedge prisms, thereby changing the optical path of the light in the target optical component. Focus function.
- the target optical component may further include a first plane mirror and a second plane mirror, wherein the first plane mirror is perpendicular to the second plane mirror, and the second refractive element and the first plane mirror are disposed along the direction of the second optical axis a second refractive element is disposed between the reflective element and the first planar mirror, the second planar mirror and the photosensitive element are disposed along a direction of the third optical axis, the third optical axis is parallel to the second optical axis, and the first planar mirror and the second optical axis are The angle between the second plane mirror and the second optical axis is 45°.
- the light refracted by the second refractive element is sequentially reflected by the first plane mirror and the second plane mirror and projected onto the photosensitive element.
- the axis of symmetry of the beam of light between the second plane mirror and the photosensitive element may coincide or be parallel to the third optical axis.
- the second refractive element and the photosensitive element may be parallel to each other or may be in the same plane, which is not limited herein.
- the motor can push the first plane mirror and the second plane mirror to move synchronously along the second optical axis to change the effective length of the optical path between the second refractive element and the photosensitive element, thereby achieving the focusing function. Specifically, it can be as shown in FIG. 5(b).
- the first plane mirror can also be kept stationary, and the second plane mirror is moved along the second optical axis under the pushing of the motor, thereby changing the effective length of the optical path between the second refractive element and the photosensitive element. And use this to achieve the focus function.
- the second plane mirror can also be kept stationary, and the first plane mirror is moved along the second optical axis under the pushing of the motor, thereby changing the effective length of the optical path between the second refractive element and the photosensitive element. And use this to achieve the focus function.
- the target optical component may further include a first plane mirror and a second plane mirror, wherein the first plane mirror is parallel to the second plane mirror, and the second refractive element and the first plane mirror are disposed along the direction of the second optical axis a second refractive element is disposed between the reflective element and the first planar mirror, the second planar mirror and the photosensitive element are disposed along a direction of the third optical axis, the third optical axis is parallel to the second optical axis, and the first planar mirror and the second optical axis are The angle between the second plane mirror and the second optical axis is 45°, and the first plane mirror and the second plane mirror are located between the second refractive element and the photosensitive element, specifically, the second refractive element is refracted
- the light rays are sequentially projected on the photosensitive element after being reflected by the first plane mirror and the second plane mirror, wherein the symmetry axis of the light beam between the second plane mirror and the photosensitive element may coincide or be
- the motor can push the first plane mirror to move along the direction of the target axis, wherein the target axis is perpendicular to the first optical axis and also perpendicular to the second optical axis.
- the first optical axis is The Y axis
- the second optical axis is the X axis
- the target axis is the Z axis, that is, the first plane mirror does not move in one plane, but moves in three dimensions, so that the first plane mirror and the second plane mirror can be changed.
- the distance between the second refractive element and the photosensitive element can be changed to achieve the focusing function, as shown in FIG. 6(b).
- the second plane mirror can also be moved along the direction of the target axis under the pushing of the motor, thereby changing the effective length of the optical path between the second refractive element and the photosensitive element, and thereby achieving the focusing function.
- the first plane mirror and the second plane mirror are both moved along the direction of the target axis under the pushing of the motor to change the distance between the first plane mirror and the second plane mirror, thereby changing the second refractive component.
- the effective length of the optical path between the photosensitive element and the focusing function is used to achieve the focusing function.
- the target optical component may further include a triangular prism
- the second refractive component is disposed along a direction of the second optical axis
- the photosensitive element is disposed along a direction of the third optical axis
- the triangular prism is disposed on the same side of the second refractive element and the photosensitive element
- the bottom surface of the triangular prism is parallel to the second refractive element and the photosensitive element, wherein the symmetry axis of the light beam between the triangular prism and the photosensitive element can coincide with the third optical axis Or parallel.
- the light refracted by the second refractive element first passes through the bottom surface of the triangular prism and then is reflected by the two inclined surfaces of the triangular prism and finally projected onto the photosensitive element, and the triangular prism is moved along the second optical axis under the pushing of the motor.
- the effective length of the optical path between the second refractive element and the photosensitive element can be changed, and the focusing function can be realized by using the focusing function, as shown in FIG. 7(b).
- the second refractive element and the photosensitive element may be parallel to each other or may be in the same plane, which is not limited herein.
- the target optical component may be in the form shown in FIG. 5(a), that is, the target optical component may include a first plane mirror and a second plane mirror, wherein the first plane mirror is perpendicular to the second plane mirror, and the second The refractive element and the first plane mirror are disposed along a direction of the second optical axis, the second refractive element is located between the reflective element and the first plane mirror, the second plane mirror and the photosensitive element are disposed along a direction of the third optical axis, and the third optical axis and the third optical axis The two optical axes are parallel, the angle between the first plane mirror and the second optical axis is 45°, and the angle between the second plane mirror and the second optical axis is 45°.
- the light refracted by the second refractive element passes through the first The reflection of a plane mirror and the second plane mirror is projected on the photosensitive element, wherein an axis of symmetry of the light beam between the second plane mirror and the photosensitive element may coincide or be parallel to the third optical axis.
- the motor can push the first plane mirror and the second plane mirror to move synchronously along the target axis, wherein the target axis is perpendicular to the first optical axis, and the target axis is also It is perpendicular to the second optical axis, that is, the optical path that changes due to the dithering can be compensated in the above manner, thereby reducing the degree of blurring of the imaging.
- the target optical component may also be in the form shown in FIG. 6(a), that is, the target optical component may include a first plane mirror and a second plane mirror, wherein the first plane mirror is parallel to the second plane mirror, The two refractive elements and the first plane mirror are disposed along a direction of the second optical axis, the second refractive element is located between the reflective element and the first plane mirror, the second plane mirror and the photosensitive element are disposed along a direction of the third optical axis, and the third optical axis is The second optical axis is parallel, the angle between the first plane mirror and the second optical axis is 45°, the angle between the second plane mirror and the second optical axis is 45°, and the first plane mirror and the second plane mirror are located at the second refraction Between the element and the photosensitive element, specifically, the light refracted by the second refractive element is sequentially reflected by the first plane mirror and the second plane mirror and projected onto the photosensitive element, wherein the ray of the light beam between the
- the motor can push the first plane mirror and the second plane mirror to move synchronously along the target axis, wherein the target axis is perpendicular to the first optical axis, and the target axis is also It is perpendicular to the second optical axis, that is, the optical path that changes due to the dithering can be compensated in the above manner, thereby reducing the degree of blurring of the imaging.
- the target optical component may also be in the form shown in FIG. 7(a), that is, the target optical component may further include a triangular prism, and the second refractive component is disposed along a direction of the second optical axis, and the photosensitive component is along the first
- the third optical axis is parallel to the second optical axis
- the triangular prism is disposed on the same side of the second refractive element and the photosensitive element
- the bottom surface of the triangular prism is parallel to the second refractive component and the photosensitive element, wherein the triangular prism and the photosensitive element
- the axis of symmetry of the bundle of rays between the elements may coincide or be parallel to the third optical axis.
- the motor can push the prism to move along the direction of the target axis, wherein the target axis is perpendicular to the first optical axis, and the target axis is also perpendicular to the second optical axis. That is to say, the optical path that changes due to the dithering can be compensated in the above manner, thereby reducing the degree of blurring of the imaging.
- the lens module in which the target optical element is added may also, but does not necessarily, include an infrared filter between the target optical element and the photosensitive element, and the infrared filter may be composed of a glass fiber material.
- the anti-shake function of the lens module can also be realized by adjusting the reflective element, which will be described below with reference to the accompanying drawings.
- the reflective component may be a plane mirror.
- the angle between the plane mirror and the first refractive component is changed under the pushing of the motor, that is, the above manner can be used because The optical path that changes and shakes is compensated, thereby reducing the degree of blurring of the image.
- the reflective element may also be a prism.
- the angle between the inclined surface of the prism and the first refractive element is changed under the pushing of the motor, that is, by the above manner. It is possible to compensate for the optical path that changes due to jitter, thereby reducing the degree of blurring of the imaging.
- the motor mentioned in the above embodiments may be the same motor in practical applications, that is, the motor is controlled to push the relevant optical components to achieve the function of focusing and anti-shake, or different motors may be used.
- it is divided into a focus motor that implements the focus function and an anti-shake motor that implements the anti-shake function, that is, the focus motor is activated to control the relevant optical components when controlling the focus, and the anti-shake motor is activated to control the anti-shake when the anti-shake is controlled.
- Optical components Optical components.
- the embodiment of the present application further provides a camera, and the camera may be an integral part of the terminal device.
- the terminal device is a mobile phone:
- FIG. 13 is a block diagram showing a part of the structure of a mobile phone related to the camera provided by the embodiment of the present application.
- the mobile phone includes components such as a memory 1320, an input unit 1330, a display unit 1340, a controller 1350, a lens module 1360, a processor 1370, and a power source 1380.
- the structure of the handset shown in FIG. 13 does not constitute a limitation to the handset, and may include more or less components than those illustrated, or some components may be combined, or different components may be arranged.
- the memory 1320 can be used to store software programs and modules, and the processor 1380 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 1320.
- the memory 1320 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
- memory 1320 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
- the input unit 1330 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function controls of the handset.
- the input unit 1330 may include a touch panel 1331 and other input devices 1332.
- the touch panel 1331 also referred to as a touch screen, can collect touch operations on or near the user (such as a user using a finger, a stylus, or the like on the touch panel 1331 or near the touch panel 1331. Operation), and drive the corresponding connecting device according to a preset program.
- the touch panel 1331 may include two parts: a touch detection device and a touch controller.
- the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
- the processor 1380 is provided and can receive commands from the processor 1380 and execute them.
- the touch panel 1331 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
- the input unit 1330 may further include other input devices 1332.
- other input devices 1332 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
- the display unit 1340 can be used to display information input by the user or information provided to the user and various menus of the mobile phone, and is mainly used to display the captured image in the embodiment of the present application.
- the display unit 1340 can include a display panel 1341.
- the display panel 1341 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
- the touch panel 1331 may cover the display panel 1341. After the touch panel 1331 detects a touch operation thereon or nearby, the touch panel 1331 transmits to the processor 1380 to determine the type of the touch event, and then the processor 1380 according to the touch event. The type provides a corresponding visual output on the display panel 1341.
- the touch panel 1331 and the display panel 1341 are used as two independent components to implement the input and input functions of the mobile phone, in some embodiments, the touch panel 1331 and the display panel 1341 may be integrated. Realize the input and output functions of the phone.
- the controller 1350 can be used to control the focus motor and the anti-shake motor of the lens module to push the relevant optical components to achieve camera focusing and anti-shake functions.
- the lens module 1360 can be the lens module described in any of the above embodiments corresponding to FIG. 2 to FIG.
- the processor 1370 is a control center for the handset that connects various portions of the entire handset using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 1320, and invoking data stored in the memory 1320,
- the processor is mainly used to call a program and an instruction stored in the memory and control the lens module through the controller.
- the processor 1370 may include one or more processing units; preferably, the processor 1370 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
- the modem processor primarily handles wireless communications. It can be understood that the above-mentioned modulation and demodulation processor may not be integrated into the processor 1370.
- the processor 1370 may also be used for performing denoising, enhancement, segmentation, and the like on the image.
- the handset also includes a power source 1380 (such as a battery) that supplies power to the various components.
- a power source 1380 (such as a battery) that supplies power to the various components.
- the power source can be logically coupled to the processor 1370 via a power management system to manage charging, discharging, and power management functions through the power management system.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Studio Devices (AREA)
- Lenses (AREA)
Abstract
一种镜头模组及照相机,更容易拍出大光圈的效果,提升了用户体验。镜头模组包括:第一折射元件、第二折射元件、反射元件及感光元件,其中,第一折射元件与反射元件沿第一光轴的方向设置,第二折射元件与反射元件沿第二光轴的方向设置,第一光轴为第一折射元件的光轴,第二光轴为第二折射元件的光轴,且第一光轴与第二光轴垂直,第二折射元件与感光元件平行设置,在镜头模组的高度方向上,第一折射元件的有效口径大于第二折射元件的有效口径,第一光轴与镜头模组的高度方向平行,第二光轴与镜头模组的高度方向垂直。
Description
本申请要求于2018年04月25日提交中国专利局、申请号为201810382951.8、发明名称为“一种镜头模组及照相机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及拍照设备技术领域,尤其涉及一种镜头模组及照相机。
随着终端设备的不断普及,拍照已成为终端设备必不可少的功能,由于当前终端设备的整体厚度在向越来越薄的方向发展,终端设备上照相机的整体高度会相应的受到限制。
目前,终端设备上的照相机有采用一种折叠式结构,入射光线会先经过光学元件的反射再射入镜头模组中的折射元件,折射元件的光轴与折射元件的高度方向垂直。
然而,由于照相机的高度会受到终端设备整体厚度的限制,折射元件的有效口径较小,可实现的光圈较小,导致难以拍出大光圈的效果,用户体验较差。
发明内容
本申请实施例提供了一种镜头模组及照相机,更容易拍出大光圈的效果,提升了用户体验。
有鉴于此,本申请实施例第一方面提供了一种镜头模组,包括:第一折射元件、第二折射元件、反射元件及感光元件,其中,所述第一折射元件与所述反射元件沿第一光轴的方向设置,所述第二折射元件与所述反射元件沿第二光轴的方向设置,所述第一光轴为所述第一折射元件的光轴,所述第二光轴为所述第二折射元件的光轴,且所述第一光轴与所述第二光轴垂直,所述第二折射元件与所述感光元件平行设置,在所述镜头模组的高度方向上,所述第一折射元件的有效口径大于所述第二折射元件的有效口径,所述第一光轴与所述镜头模组的高度方向平行,所述第二光轴与所述镜头模组的高度方向垂直;
所述第一折射元件,用于折射来自所述镜头模组的外部的光线束;
所述反射元件,用于反射经过所述第一折射元件折射的光线束;
所述第二折射元件,用于折射经过所述反射元件反射的光线束;
所述感光元件,用于接收经过所述第二折射元件折射的光线,并生成电子图像。
通过上述方式,来自镜头模组外部的光线首先会射入第一折射元件,由于第一光轴与镜头模组的高度方向平行,第二光轴与所述镜头模组的高度方向垂直,也就是说,第二折射元件的有效口径会受到镜头模组高度的限制,而第一折射元件的有效口径不受镜头模组高度的限制,第一折射元件的有效口径大于第二折射元件的有效口径,使得镜头模组可实现的光圈增大,更容易拍出大光圈的效果,提升了用户体验。
本申请实施例第二方面提供了一种镜头模组,包括:第一折射元件、第二折射元件、反射元件、感光元件、目标光学元件及马达,其中,所述第一折射元件与所述反射元件沿 第一光轴的方向设置,所述第二折射元件、所述反射元件沿第二光轴的方向设置,所述第二折射元件位于所述反射元件与所述目标光学元件之间,所述第一光轴为所述第一折射元件的光轴,所述第二光轴为所述第二折射元件的光轴,且所述第一光轴与所述第二光轴垂直,在所述镜头模组的高度方向上,所述第一折射元件的有效口径大于所述第二折射元件的有效口径,所述第一光轴与所述镜头模组的高度方向平行,所述第二光轴与所述镜头模组的高度方向垂直;
所述第一折射元件,用于折射来自所述镜头模组的外部的光线束;
所述反射元件,用于反射经过所述第一折射元件折射的光线束;
所述第二折射元件,用于折射经过所述反射元件反射的光线束;
所述马达,用于调整所述目标光学元件的位置,以改变所述第二折射元件与所述感光元件之间的光路;
所述感光元件,用于接收从所述目标光学元件射出的光线,并生成电子图像。
通过上述方式,来自镜头模组外部的光线首先会射入第一折射元件,由于第一光轴与镜头模组的高度方向平行,第二光轴与所述镜头模组的高度方向垂直,也就是说,第二折射元件的有效口径会受到镜头模组高度的限制,而第一折射元件的有效口径不受镜头模组高度的限制,第一折射元件的有效口径大于第二折射元件的有效口径,使得镜头模组可实现的光圈增大,更容易拍出大光圈的效果,提升了用户体验,另外,马达可以调整目标光学元件的位置,以此来改变第二折射元件与感光元件之间的光路,即不需要改变镜头模组中其他元件的位置就可以实现对焦或防抖功能,提高了本方案的实用性。
结合本申请实施例第二方面,本申请实施例第二方面的第一种实施方式中,所述目标光学元件包括第一楔形棱镜和第二楔形棱镜,所述第二折射元件、所述目标光学元件、所述感光元件沿所述第二光轴的方向设置,所述第一楔形棱镜和所述第二楔形棱镜位于所述第二折射元件与所述感光元件之间,所述马达具体用于调整所述第一楔形棱镜和/或所述第二楔形棱镜的位置,以改变光线在所述目标光学元件中的光路。
本申请实施例提供了一种目标光学元件的具体形式用于实现所述镜头模组的对焦功能,提高了本方案的可实现性。
结合本申请实施例第二方面,本申请实施例第二方面的第二种实施方式中,所述目标光学元件包括第一平面镜和第二平面镜,所述第一平面镜与所述第二平面镜垂直设置,所述第二折射元件、所述第一平面镜沿所述第二光轴的方向设置,且所述第二折射元件位于所述反射元件和所述第一平面镜之间,所述第二平面镜与所述感光元件沿第三光轴的方向设置;所述第三光轴与所述第二光轴平行;所述第一平面镜与所述第二光轴之间夹角为45°,所述第二平面镜与所述第二光轴之间夹角为45°,使得第二折射元件折射的光线依次经过所述第一平面镜和所述第二平面镜的反射后投射在所述感光元件上;所述马达具体用于调整所述第一平面镜和/或所述第二平面镜的位置,以改变光线在所述目标光学元件中的光路。
本申请实施例提供了另一种目标光学元件的具体形式用于实现所述镜头模组的对焦功能,提高了本方案的灵活性。
结合本申请实施例第二方面,本申请实施例第二方面的第三种实施方式中,所述目标 光学元件包括第一平面镜和第二平面镜,所述第一平面镜与所述第二平面镜平行设置,所述第二折射元件、所述第一平面镜沿所述第二光轴的方向设置,且所述第二折射元件位于所述反射元件和所述第一平面镜之间,所述第二平面镜与所述感光元件沿第三光轴的方向设置,所述第三光轴与所述第二光轴平行,所述第一平面镜与所述第二光轴之间夹角为45°,所述第二平面镜与所述第二光轴之间夹角为45°,使得第二折射元件折射的光线依次经过所述第一平面镜和所述第二平面镜的反射后投射在所述感光元件上,所述马达具体用于调整所述第一平面镜和/或所述第二平面镜的位置,以改变光线在所述目标光学元件中的光路。
本申请实施例提供了另一种目标光学元件的具体形式用于实现所述镜头模组的对焦功能,提高了本方案的灵活性。
结合本申请实施例第二方面,本申请实施例第二方面的第四种实施方式中,所述目标光学元件包括三棱镜,所述第二折射元件沿所述第二光轴的方向设置,所述感光元件沿第三光轴的方向设置,所述第三光轴与所述第二光轴平行,所述三棱镜设置于所述第二折射元件和所述感光元件的同侧,所述三棱镜的底面平行于所述第二折射元件及所述感光元件,使得第二折射元件折射的光线经过所述三棱镜的反射后投射在所述感光元件上,所述马达具体用于调整所述三棱镜的位置,以改变光线在所述目标光学元件中的光路。
本申请实施例提供了另一种目标光学元件的具体形式用于实现所述镜头模组的对焦功能,提高了本方案的灵活性。
结合本申请实施例第二方面的第二种实施方式,本申请实施例第二方面的第五种实施方式中,在所述镜头模组抖动时,所述马达具体用于调整所述第一平面镜及所述第二平面镜的位置,以改变光线在所述目标光学元件中的光路。
本申请实施例提供了一种目标光学元件的具体形式用于实现所述镜头模组的防抖功能,提高了本方案的可实现性。
结合本申请实施例第二方面的第三种实施方式,本申请实施例第二方面的第六种实施方式中,在所述镜头模组抖动时,所述马达具体用于调整所述第一平面镜及所述第二平面镜的位置,以改变光线在所述目标光学元件中的光路。
本申请实施例提供了另一种目标光学元件的具体形式用于实现所述镜头模组的防抖功能,提高了本方案的灵活性。
结合本申请实施例第二方面的第四种实施方式,本申请实施例第二方面的第七种实施方式中,在所述镜头模组抖动时,所述马达具体用于调整所述三棱镜的位置,以改变光线在所述目标光学元件中的光路。
本申请实施例提供了另一种目标光学元件的具体形式用于实现所述镜头模组的防抖功能,提高了本方案的灵活性。
结合本申请实施例第二方面,本申请实施例第二方面的第一种实施方式,本申请实施例第二方面的第二种实施方式,本申请实施例第二方面的第三种实施方式,本申请实施例第二方面的第四种实施方式,本申请实施例第二方面的第五种实施方式,本申请实施例第二方面的第六种实施方式,本申请实施例第二方面的第七种实施方式,本申请实施例第二方面的第八种实施方式中,所述第一折射元件至少包含一个折射透镜,所述第二折射元件 至少包含一个折射透镜,其中,所述第一折射元件中的每个折射透镜互相平行,所述第二折射元件中的每个折射透镜互相平行。
通过本申请实施例提供的方案,第一折射元件及第二折射元件均包含至少一个折射透镜,即第一折射元件及第二折射元件存在由多个折射透镜组成的可能,丰富了实现本方案的可能性。
结合本申请实施例第二方面,本申请实施例第二方面的第一种实施方式,本申请实施例第二方面的第二种实施方式,本申请实施例第二方面的第三种实施方式,本申请实施例第二方面的第四种实施方式,本申请实施例第二方面的第五种实施方式,本申请实施例第二方面的第六种实施方式,本申请实施例第二方面的第七种实施方式,本申请实施例第二方面的第九种实施方式中,所述反射元件为平面镜,在所述镜头模组抖动时,所述马达具体用于调整所述平面镜与所述第一折射元件之间的夹角,以改变所述第一折射元件与所述第二折射元件之间的光路。
本申请实施例提供了一种反射元件的具体形式用于实现所述镜头模组的防抖功能,提高了本方案的可实现性。
结合本申请实施例第二方面,本申请实施例第二方面的第一种实施方式,本申请实施例第二方面的第二种实施方式,本申请实施例第二方面的第三种实施方式,本申请实施例第二方面的第四种实施方式,本申请实施例第二方面的第五种实施方式,本申请实施例第二方面的第六种实施方式,本申请实施例第二方面的第七种实施方式,本申请实施例第二方面的第十种实施方式中,所述反射元件为棱镜,在所述镜头模组抖动时,所述马达具体用于调整所述棱镜与所述第一折射元件之间的夹角,以改变所述第一折射元件与所述第二折射元件之间的光路。
本申请实施例提供了另一种反射元件的具体形式用于实现所述镜头模组的防抖功能,提高了本方案的灵活性。
结合本申请实施例第二方面,本申请实施例第二方面的第一种实施方式,本申请实施例第二方面的第二种实施方式,本申请实施例第二方面的第三种实施方式,本申请实施例第二方面的第四种实施方式,本申请实施例第二方面的第五种实施方式,本申请实施例第二方面的第六种实施方式,本申请实施例第二方面的第七种实施方式,本申请实施例第二方面的第十一种实施方式中,所述镜头模组的物理焦距大于或等于9mm,所述镜头模组的光学倍率大于或等于2.5。
本申请实施例提供了一组关于所述镜头模组焦距以及光学倍率的具体参数,提高了本方案的实用性。
结合本申请实施例第二方面,本申请实施例第二方面的第一种实施方式,本申请实施例第二方面的第二种实施方式,本申请实施例第二方面的第三种实施方式,本申请实施例第二方面的第四种实施方式,本申请实施例第二方面的第五种实施方式,本申请实施例第二方面的第六种实施方式,本申请实施例第二方面的第七种实施方式,本申请实施例第二方面的第十二种实施方式中,所述镜头模组还包括红外滤光片,所述红外滤光片位于所述目标光学元件与所述感光元件之间。
本申请实施例第三方面提供了一种照相机,包括处理器、控制器、存储器、总线及镜头模组,其中,所述处理器、所述控制器、所述存储器及所述镜头模组之间通过所述总线互相连接,其中,所述存储器用于存储程序与指令,所述处理器用于调用所述存储器中存储的程序与指令,所述处理器还用于通过所述控制器对所述镜头模组进行控制;
所述镜头模组包括:第一折射元件、第二折射元件、反射元件及感光元件,其中,所述第一折射元件与所述反射元件沿第一光轴的方向设置,所述第二折射元件与所述反射元件沿第二光轴的方向设置,所述第一光轴为所述第一折射元件的光轴,所述第二光轴为所述第二折射元件的光轴,且所述第一光轴与所述第二光轴垂直,所述第二折射元件与所述感光元件平行设置,在所述镜头模组的高度方向上,所述第一折射元件的有效口径大于所述第二折射元件的有效口径,所述第一光轴与所述镜头模组的高度方向平行,所述第二光轴与所述镜头模组的高度方向垂直;
所述第一折射元件,用于折射来自所述镜头模组的外部的光线束;
所述反射元件,用于反射经过所述第一折射元件折射的光线束;
所述第二折射元件,用于折射经过所述反射元件反射的光线束;
所述感光元件,用于接收经过所述第二折射元件折射的光线,并生成电子图像。
本申请实施例第四方面提供了一种照相机,包括处理器、控制器、存储器、总线及镜头模组,其中,所述处理器、所述控制器、所述存储器及所述镜头模组之间通过所述总线互相连接,其中,所述存储器用于存储程序与指令,所述处理器用于调用所述存储器中存储的程序与指令,所述处理器还用于通过所述控制器对所述镜头模组进行控制;
所述镜头模组包括:第一折射元件、第二折射元件、反射元件、感光元件、目标光学元件及马达,其中,所述第一折射元件与所述反射元件沿第一光轴的方向设置,所述第二折射元件、所述反射元件沿第二光轴的方向设置,所述第二折射元件位于所述反射元件与所述目标光学元件之间,所述第一光轴为所述第一折射元件的光轴,所述第二光轴为所述第二折射元件的光轴,且所述第一光轴与所述第二光轴垂直,在所述镜头模组的高度方向上,所述第一折射元件的有效口径大于所述第二折射元件的有效口径,所述第一光轴与所述镜头模组的高度方向平行,所述第二光轴与所述镜头模组的高度方向垂直;
所述第一折射元件,用于折射来自所述镜头模组的外部的光线束;
所述反射元件,用于反射经过所述第一折射元件折射的光线束;
所述第二折射元件,用于折射经过所述反射元件反射的光线束;
所述马达,用于调整所述目标光学的位置,以改变所述第二折射元件与所述感光元件之间的光路;
所述感光元件,用于接收从所述目标光学元件射出的光线,并生成电子图像。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例中,镜头模组包括第一折射元件、第二折射元件、反射元件及感光元件,其中,所述第一折射元件与所述反射元件沿第一光轴的方向设置,所述第二折射元件与所述反射元件沿第二光轴的方向设置,所述第一光轴为所述第一折射元件的光轴,所述第二光轴为所述第二折射元件的光轴,且所述第一光轴与所述第二光轴垂直,所述第二折射元 件与所述感光元件平行设置,在所述镜头模组的高度方向上,所述第一折射元件的有效口径大于所述第二折射元件的有效口径,所述第一光轴与所述镜头模组的高度方向平行,所述第二光轴与所述镜头模组的高度方向垂直,所述第一折射元件,用于折射来自所述镜头模组的外部的光线束;所述反射元件,用于反射经过所述第一折射元件折射的光线束;所述第二折射元件,用于折射经过所述反射元件反射的光线束;所述感光元件,用于接收经过所述第二折射元件折射的光线,并生成电子图像。通过上述方式可以看出,来自镜头模组外部的光线首先会射入第一折射元件,由于第一光轴与镜头模组的高度方向平行,第二光轴与所述镜头模组的高度方向垂直,也就是说,第二折射元件的有效口径会受到镜头模组高度的限制,而第一折射元件的有效口径不受镜头模组高度的限制,第一折射元件的有效口径大于第二折射元件的有效口径,使得镜头模组可实现的光圈增大,更容易拍出大光圈的效果,提升了用户体验。
图1为应用于终端设备的拍照系统示意图;
图2为本申请照相机的一个实施例示意图;
图3为本申请照相机另一个实施例示意图;
图4(a)为本申请照相机另一个实施例示意图;
图4(b)为本申请照相机另一个实施例示意图;
图5(a)为本申请照相机另一个实施例示意图;
图5(b)为本申请照相机另一个实施例示意图;
图6(a)为本申请照相机另一个实施例示意图;
图6(b)为本申请照相机另一个实施例示意图;
图7(a)为本申请照相机另一个实施例示意图;
图7(b)为本申请照相机另一个实施例示意图;
图8为本申请照相机另一个实施例示意图;
图9为本申请照相机另一个实施例示意图;
图10为本申请照相机另一个实施例示意图;
图11为本申请照相机中调整反射元件实现防抖功能的一个实施例示意图;
图12为本申请照相机中调整反射元件实现防抖功能的另一个实施例示意图;
图13为本申请终端设备的结构示意图。
本申请实施例提供了一种镜头模组及照相机,更容易拍出大光圈的效果,提升了用户体验。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这 里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例可应用于包含有镜头模组的照相机,其中,照相机可以集成在终端设备上,终端设备具体可以是手机、平板电脑、可穿戴设备、增强现实(augmented reality,AR)\虚拟现实(virtual reality,VR)设备、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、个人数字助理(personal digital assistant,PDA)等具有拍摄功能的用户设备,本申请实施例对此不作任何限制。
请参阅图1,该照相机除了包含镜头模组外,至少还应包括系统控制装置、图像处理装置、存储器及显示装置。
系统控制装置还可以包括拍照控制模块、对焦控制模块及防抖控制模块,其中,拍照控制模块用于设置照相机的拍照模式,例如黑白模式、高动态模式等;对焦控制模块用于控制对焦马达调整照相机中各光学元件的位置来拍摄不同距离的物体;防抖控制模块用于控制防抖马达调整照相机中各光学元件的位置使拍摄物体不会因为用户手抖动等原因造成图像模糊。
图像处理装置可以对照相机获取到的原始图像进行去噪,增强或分割虚化等处理,丰富用户的体验。
存储器可以存储经过图像处理装置处理后的照片以及用于控制照相机的操作的程序代码。
显示装置可以将照相机拍摄得到的最终图片通过显示屏幕呈现给用户。
如今由于手机在不断向着更加轻薄和便携的方向发展,手机的整机厚度越来越薄,所以手机上照相机的高度也将受到手机整体厚度的限制,也就是说,镜头模组中光学元件的有效口径受到限制,导致照相机的焦距及光学倍率无法做到更大,照相机很难对远距离的物体进行拍摄,并且也不容易拍出大光圈效果的照片。
为此,本申请实施例提供了一种镜头模组,下面结合附图对本申请实施例中的镜头模组进行详细描述。
请参阅图2,图2本申请实施例中镜头模组的一个实施例,镜头模组包括第一折射元件、第二折射元件、反射元件及感光元件,其中,第一折射元件与反射元件沿第一光轴的方向设置,第二折射元件与反射元件沿第二光轴的方向设置,第一光轴为第一折射元件的光轴,第二光轴为第二折射元件的光轴,且第一光轴与第二光轴垂直,第二折射元件与感光元件平行设置,在镜头模组的高度方向上,第一折射元件的有效口径大于第二折射元件的有效口径,第一光轴与镜头模组的高度方向平行,第二光轴与镜头模组的高度方向垂直。
需要说明的是,第一折射元件、反射元件及第二折射元件可以由塑性材料构成,此外,其它的透明光学材料也可以被使用。并且,第一折射元件及第二折射元件可以由具有不同的光学特性(例如不同的色散系数和/或不同的折射率)的材料构成。
需要说明的是,光学元件的有效口径指该光学元件用于对光线进行折射或反射的物理 口径,其区别于光学元件的外形口径,例如,直径为10mm的光学元件,其外形口径为10mm,而其有效口径可以为6mm。
另外,本实施例中的第一折射元件及第二折射元件除了可以为圆形的透镜,也可以具有其它的形状,例如椭圆形、矩形或者具有圆角的矩形等,具体此处不做限定。
可以理解的是,来自镜头模组外部的光线首先会射入第一折射元件,镜头模组的高度方向即为第一光轴的方向,也就是说,第一折射元件所在平面与镜头模组的高度方向是垂直的,因此第一折射元件的有效口径可以不受镜头模组高度的限制。
此外,本申请实施例中的镜头模组采用了折叠式的结构,第一折射元件所在平面与第二元件所在平面垂直,因此,镜头模组中还需要设置反射元件,将经过第一折射元件折射的光线反射并射入到第二折射元件上,具体的,该反射元件所在平面与第一折射元件所在平面之间夹角可以为45°。
需要说明的是,第一折射元件用于折射镜头模组外部射入的光线,具体地,入射光线束的对称轴可以与第一光轴重合或平行,之后,反射元件可以将经过第一折射元件折射的光线反射到第二折射元件上,具体地,反射后的光线束的对称轴可以与第二光轴重合或平行,进而,经过第二折射元件折射的光线最终可以投射到感光元件上,并生成电子图像。
可选地,反射元件除了可以是如图2所示的平面镜,也可以是其他形式,例如图3中所示的棱镜,该棱镜的斜面作为反射面,关于反射元件的具体形式此处不做限定。
可选地,该镜头模组的物理焦距大于或等于9mm,该镜头模组的光线倍率大于或等于2.5。
可选地,本实施例中的第一折射元件及第二折射元件并不一定是单一的折射元件,也可是多个折射元件的组合,例如,第一折射元件及第二折射元件都可以是由多个相互平行的透镜依次排列组成的。
可以理解的是,感光元件用于将获取到的光线进行光电转换生成数字图像,该感光元件可以是电荷耦合元件(charge coupled device,CCD),也可以是金属氧化物半导体元件(complementary metal-oxide semiconductor,CMOS),具体此处不做限定。
需要说明的是,镜头模组也可以但是未必包括位于第二折射元件与感光元件之间的红外滤光片,该红外滤光片可以由玻璃纤维材料构成,此外,该镜头模组也可以包括除了图示和描述的组件外的其它的组件。
通过上述方式可以看出,来自镜头模组外部的光线首先会射入第一折射元件,由于第一光轴与镜头模组的高度方向平行,第二光轴与镜头模组的高度方向垂直,也就是说,第二折射元件的有效口径会受到镜头模组高度的限制,而第一折射元件的有效口径不受镜头模组高度的限制,第一折射元件的有效口径大于第二折射元件的有效口径,使得镜头模组可实现的光圈增大,更容易拍出大光圈的效果,提升了用户体验。
本实施例中的镜头模组结构使得镜头模组中各光学元件之间的光路较为复杂,所以想要通过移动图2或图3中所示的光学元件来实现对焦和防抖的功能较为困难,为此,本方案的镜头模组在图2或图3的基础上还可以设置目标光学元件及马达,其中,第二折射元件位于反射元件与目标光学元件之间,在马达的推动下可以调整该光学元件的位置,进而 改变第二折射元件与感光元件之间的光路,以此来实现镜头模组的对焦和防抖功能。
下面结合附图对该目标光学元件的具体形式分别进行描述:
请参阅图4(a),该目标光学元件可以包括第一楔形棱镜和第二楔形棱镜,其中,第二折射元件、目标光学元件、感光元件沿第二光轴的方向设置,第一楔形棱镜及第二楔形棱镜位于第二折射元件与感光元件之间,可以理解的是,第一楔形棱镜及第二楔形棱镜可以看做是将一个长方体进行切割得到的两部分,第一楔形棱镜的斜面及第二楔形棱镜的斜面之间需要留一定的空间,以避免马达在推动第一楔形棱镜或第二楔形棱镜移动时使二者相互摩擦。
需要说明的是,通过调整第一楔形棱镜和第二楔形棱镜的相对位置可以改变光线经过第一楔形棱镜及第二楔形棱镜时的有效路径,即改变了光线在目标光学元件中的光路,例如,保持第二楔形棱镜位置不动,马达推动第一楔形棱镜沿着自身斜面的方向移动以此来实现对焦功能,具体可以如图4(b)所示。
可以理解的是,第一楔形棱镜以及第二楔形棱镜材质的折射率比空气大很多,在界面处发生折射时,光线在第一楔形棱镜以及第二楔形棱镜里面的汇聚角度与光线在空气中汇聚角度不同,使得光线汇聚在一点的路径改变从而实现不同距离物距下的对焦,近焦对焦时,缩短光线经过第一楔形棱镜以及第二楔形棱镜的有效路径(减少目标光学元件的整体厚度),远焦对焦时,增加光线经过第一楔形棱镜以及第二楔形棱镜的有效路径(增加目标光学元件的整体厚度)。
可选地,本方案中也可以保持第一楔形棱镜不动,马达推动第二楔形棱镜沿着自身斜面的方向移动,从而改变光线在目标光学元件中的光路以此来实现对焦功能。
可选地,本方案中马达也可以同时推动第一楔形棱镜与第二楔形棱镜沿着自身斜面的方向移动来改变二者的相对位置,从而改变光线在目标光学元件中的光路以此来实现对焦功能。
请参阅图5(a),该目标光学元件还可以包括第一平面镜和第二平面镜,其中,第一平面镜与第二平面镜垂直,第二折射元件及第一平面镜沿第二光轴的方向设置,第二折射元件位于反射元件和第一平面镜之间,第二平面镜与感光元件沿第三光轴的方向设置,第三光轴与第二光轴平行,第一平面镜与第二光轴之间夹角为45°,第二平面镜与第二光轴之间夹角为45°,具体地,第二折射元件折射的光线依次经过第一平面镜和第二平面镜的反射后投射在感光元件上,其中,第二平面镜与感光元件之间的光线束的对称轴可以与第三光轴重合或平行。
可选地,第二折射元件与感光元件可以相互平行,也可以在同一平面内,具体此处不做限定。
需要说明的是,马达可以推动第一平面镜及第二平面镜同步沿着第二光轴的方向移动,以改变第二折射元件和感光元件之间光路的有效长度,并以此来实现对焦功能,具体可以如图5(b)所示。
可选地,本方案中也可以保持第一平面镜不动,在马达的推动下使第二平面镜沿着第二光轴的方向移动,从而改变第二折射元件和感光元件之间光路的有效长度,并以此来实 现对焦功能。
可选地,本方案中也可以保持第二平面镜不动,在马达的推动下使第一平面镜沿着第二光轴的方向移动,从而改变第二折射元件和感光元件之间光路的有效长度,并以此来实现对焦功能。
请参阅图6(a),该目标光学元件还可以包括第一平面镜和第二平面镜,其中,第一平面镜与第二平面镜平行,第二折射元件及第一平面镜沿第二光轴的方向设置,第二折射元件位于反射元件和第一平面镜之间,第二平面镜与感光元件沿第三光轴的方向设置,第三光轴与第二光轴平行,第一平面镜与第二光轴之间夹角为45°,第二平面镜与第二光轴之间夹角为45°,并且第一平面镜及第二平面镜位于第二折射元件和感光元件之间,具体地,第二折射元件折射的光线依次经过第一平面镜和第二平面镜的反射后投射在感光元件上,其中,第二平面镜与感光元件之间的光线束的对称轴可以与第三光轴重合或平行。
需要说明的是,马达可以推动第一平面镜沿着目标轴的方向移动,其中,目标轴与第一光轴垂直,同时也与第二光轴垂直,可以理解的是,如果第一光轴为Y轴,第二光轴为X轴,那么目标轴就为Z轴,即第一平面镜并非在一个平面内移动,而是在三维空间内移动,这样一来可以改变第一平面镜与第二平面镜之间的距离,也就是可以改变第二折射元件与感光元件之间光路的有效长度,并以此来实现对焦功能,具体可以如图6(b)所示。
可选地,本方案中也可以在马达的推动下使第二平面镜沿着目标轴的方向移动,从而改变第二折射元件与感光元件之间光路的有效长度,并以此来实现对焦功能。
可选地,本方案中也可以在马达的推动下使第一平面镜及第二平面镜都沿着目标轴的方向移动来改变第一平面镜与第二平面镜之间的距离,从而改变第二折射元件与感光元件之间光路的有效长度,并以此来实现对焦功能。
请参阅图7(a),该目标光学元件还可以包括三棱镜,第二折射元件沿第二光轴的方向设置,感光元件沿第三光轴的方向设置,第三光轴与第二光轴平行,三棱镜设置于第二折射元件和感光元件的同侧,三棱镜的底面平行于第二折射元件及感光元件,其中,三棱镜与感光元件之间的光线束的对称轴可以与第三光轴重合或平行。
需要说明的是,第二折射元件折射的光线先经过三棱镜的底面随后再经过三棱镜两个斜面的反射并最终投射到感光元件上,在马达的推动下使三棱镜沿着第二光轴的方向移动,可以改变第二折射元件与感光元件之间光路的有效长度,并以此来实现对焦功能,具体可以如图7(b)所示。
可选地,第二折射元件与感光元件可以相互平行,也可以在同一平面内,具体此处不做限定。
上面介绍了几种目标光学元件的具体形式用于实现镜头模组的对焦功能,下面结合附图介绍几种目标光学元件的具体形式用于实现镜头模组的防抖功能。
请参阅图8,该目标光学元件可以是如图5(a)所示的形式,即该目标光学元件可以包括第一平面镜和第二平面镜,其中,第一平面镜与第二平面镜垂直,第二折射元件及第一平面镜沿第二光轴的方向设置,第二折射元件位于反射元件和第一平面镜之间,第二平面镜与感光元件沿第三光轴的方向设置,第三光轴与第二光轴平行,第一平面镜与第二光 轴之间夹角为45°,第二平面镜与第二光轴之间夹角为45°,具体地,第二折射元件折射的光线依次经过第一平面镜和第二平面镜的反射后投射在感光元件上,其中,第二平面镜与感光元件之间的光线束的对称轴可以与第三光轴重合或平行。
需要说明的是,在镜头模组因为外界原因发生抖动时,马达可以推动第一平面镜及第二平面镜同步沿着目标轴的方向移动,其中,目标轴与第一光轴垂直,同时目标轴也与第二光轴垂直,也就是说,通过上述方式可以对因为抖动而发生改变的光路进行补偿,从而减少成像的模糊程度。
请参阅图9,该目标光学元件还可以是如图6(a)所示的形式,即该目标光学元件可以包括第一平面镜和第二平面镜,其中,第一平面镜与第二平面镜平行,第二折射元件及第一平面镜沿第二光轴的方向设置,第二折射元件位于反射元件和第一平面镜之间,第二平面镜与感光元件沿第三光轴的方向设置,第三光轴与第二光轴平行,第一平面镜与第二光轴之间夹角为45°,第二平面镜与第二光轴之间夹角为45°,并且第一平面镜及第二平面镜位于第二折射元件和感光元件之间,具体地,第二折射元件折射的光线依次经过第一平面镜和第二平面镜的反射后投射在感光元件上,其中,第二平面镜与感光元件之间的光线束的对称轴可以与第三光轴重合或平行。
需要说明的是,在镜头模组因为外界原因发生抖动时,马达可以推动第一平面镜及第二平面镜同步沿着目标轴的方向移动,其中,目标轴与第一光轴垂直,同时目标轴也与第二光轴垂直,也就是说,通过上述方式可以对因为抖动而发生改变的光路进行补偿,从而减少成像的模糊程度。
请参阅图10,该目标光学元件还可以是如图7(a)所示的形式,即该目标光学元件还可以包括三棱镜,第二折射元件沿第二光轴的方向设置,感光元件沿第三光轴的方向设置,第三光轴与第二光轴平行,三棱镜设置于第二折射元件和感光元件的同侧,三棱镜的底面平行于第二折射元件及感光元件,其中,三棱镜与感光元件之间的光线束的对称轴可以与第三光轴重合或平行。
需要说明的是,在镜头模组因为外界原因发生抖动时,马达可以推动三棱镜沿着目标轴的方向移动,其中,目标轴与第一光轴垂直,同时目标轴也与第二光轴垂直,也就是说,通过上述方式可以对因为抖动而发生改变的光路进行补偿,从而减少成像的模糊程度。
需要说明的是,在增加了目标光学元件的镜头模组中也可以但是未必包括位于目标光学元件与感光元件之间的红外滤光片,该红外滤光片可以由玻璃纤维材料构成。
另外,除了可以通过以上方式实现镜头模组的防抖功能外,还可以通过调整反射元件来实现镜头模组的防抖功能,下面结合附图进行介绍。
请参阅图11,反射元件可以是平面镜,在镜头模组因为外界原因发生抖动时,在马达的推动下改变平面镜与第一折射元件之间的夹角,也就是说,通过上述方式可以对因为抖动而发生改变的光路进行补偿,从而减少成像的模糊程度。
请参阅图12,反射元件也可以是棱镜,在镜头模组因为外界原因发生抖动时,在马达的推动下改变棱镜的斜面与第一折射元件之间的夹角,也就是说,通过上述方式可以对因为抖动而发生改变的光路进行补偿,从而减少成像的模糊程度。
需要说明的是,上述实施例中提到的马达在实际应用中可以是同一个马达,即控制该马达来推动相关的光学元件来实现对焦及防抖的功能,此外,也可是不同的马达,例如,分为实现对焦功能的对焦马达以及实现防抖功能的防抖马达,也就是说,在控制对焦时启动对焦马达来推动相关的光学元件,在控制防抖时启动防抖马达来推动相关的光学元件。
本申请实施例还提供了一种照相机,并且该照相机可以是终端设备的组成部分,下面以该终端设备是手机为例进行介绍:
图13示出的是与本申请实施例提供的照相机相关的手机的部分结构的框图。参考图13,手机包括:存储器1320、输入单元1330、显示单元1340、控制器1350、镜头模组1360、处理器1370、以及电源1380等部件。本领域技术人员可以理解,图13中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图13对手机的各个构成部件进行具体的介绍:
存储器1320可用于存储软件程序以及模块,处理器1380通过运行存储在存储器1320的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器1320可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1320可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元1330可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元1330可包括触控面板1331以及其他输入设备1332。触控面板1331,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1331上或在触控面板1331附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板1331可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1380,并能接收处理器1380发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1331。除了触控面板1331,输入单元1330还可以包括其他输入设备1332。具体地,其他输入设备1332可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元1340可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单,在本申请实施例中主要用于显示拍摄到的图像。显示单元1340可包括显示面板1341,可选的,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1341。进一步的,触控面板1331可覆盖显示面板1341,当触控面板1331检测到在其上或附近的触摸操作后,传送给处理器1380以确定触摸事件的类型,随后处理器1380根据触摸事件的类型在显示面板1341上 提供相应的视觉输出。虽然在图13中,触控面板1331与显示面板1341是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板1331与显示面板1341集成而实现手机的输入和输出功能。
控制器1350可用于控制镜头模组的对焦马达和防抖马达来推动相关的光学元件从而实现照相机对焦和防抖的功能。
镜头模组1360可以为上述图2至图10对应的任一个实施例中所描述的镜头模组。
处理器1370是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器1320内的软件程序和/或模块,以及调用存储在存储器1320内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控,在本申请实施例中处理器主要用于调用存储器中存储的程序与指令并通过控制器对镜头模组进行控制。可选的,处理器1370可包括一个或多个处理单元;优选的,处理器1370可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1370中,在本申请实施例中处理器1370还可以用于对图像进行去噪,增强,分割虚化等处理。
手机还包括给各个部件供电的电源1380(比如电池),优选的,电源可以通过电源管理系统与处理器1370逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
Claims (16)
- 一种镜头模组,其特征在于,包括:第一折射元件、第二折射元件、反射元件及感光元件,其中,所述第一折射元件与所述反射元件沿第一光轴的方向设置,所述第二折射元件与所述反射元件沿第二光轴的方向设置,所述第一光轴为所述第一折射元件的光轴,所述第二光轴为所述第二折射元件的光轴,且所述第一光轴与所述第二光轴垂直,所述第二折射元件与所述感光元件平行设置,在所述镜头模组的高度方向上,所述第一折射元件的有效口径大于所述第二折射元件的有效口径,所述第一光轴与所述镜头模组的高度方向平行,所述第二光轴与所述镜头模组的高度方向垂直;所述第一折射元件,用于折射来自所述镜头模组的外部的光线束;所述反射元件,用于反射经过所述第一折射元件折射的光线束;所述第二折射元件,用于折射经过所述反射元件反射的光线束;所述感光元件,用于接收经过所述第二折射元件折射的光线,并生成电子图像。
- 一种镜头模组,其特征在于,包括:第一折射元件、第二折射元件、反射元件、感光元件、目标光学元件及马达,其中,所述第一折射元件与所述反射元件沿第一光轴的方向设置,所述第二折射元件、所述反射元件沿第二光轴的方向设置,所述第二折射元件位于所述反射元件与所述目标光学元件之间,所述第一光轴为所述第一折射元件的光轴,所述第二光轴为所述第二折射元件的光轴,且所述第一光轴与所述第二光轴垂直,在所述镜头模组的高度方向上,所述第一折射元件的有效口径大于所述第二折射元件的有效口径,所述第一光轴与所述镜头模组的高度方向平行,所述第二光轴与所述镜头模组的高度方向垂直;所述第一折射元件,用于折射来自所述镜头模组的外部的光线束;所述反射元件,用于反射经过所述第一折射元件折射的光线束;所述第二折射元件,用于折射经过所述反射元件反射的光线束;所述马达,用于调整所述目标光学元件的位置,以改变所述第二折射元件与所述感光元件之间的光路;所述感光元件,用于接收从所述目标光学元件射出的光线,并生成电子图像。
- 根据权利要求2所述的镜头模组,其特征在于,所述目标光学元件包括第一楔形棱镜和第二楔形棱镜,所述第二折射元件、所述目标光学元件、所述感光元件沿所述第二光轴的方向设置,所述第一楔形棱镜和所述第二楔形棱镜位于所述第二折射元件与所述感光元件之间,所述马达具体用于调整所述第一楔形棱镜和/或所述第二楔形棱镜的位置,以改变光线在所述目标光学元件中的光路。
- 根据权利要求2所述的镜头模组,其特征在于,所述目标光学元件包括第一平面镜和第二平面镜,所述第一平面镜与所述第二平面镜垂直设置,所述第二折射元件、所述第一平面镜沿所述第二光轴的方向设置,且所述第二折射元件位于所述反射元件和所述第一平面镜之间,所述第二平面镜与所述感光元件沿第三光轴的方向设置;所述第三光轴与所述第二光轴平行;所述第一平面镜与所述第二光轴之间夹角为45°,所述第二平面镜与所述第二光轴之间夹角为45°,使得第二折射元件折射的光线依次经过所述第一平面镜和所 述第二平面镜的反射后投射在所述感光元件上;所述马达具体用于调整所述第一平面镜和/或所述第二平面镜的位置,以改变光线在所述目标光学元件中的光路。
- 根据权利要求2所述的镜头模组,其特征在于,所述目标光学元件包括第一平面镜和第二平面镜,所述第一平面镜与所述第二平面镜平行设置,所述第二折射元件、所述第一平面镜沿所述第二光轴的方向设置,且所述第二折射元件位于所述反射元件和所述第一平面镜之间,所述第二平面镜与所述感光元件沿第三光轴的方向设置,所述第三光轴与所述第二光轴平行,所述第一平面镜与所述第二光轴之间夹角为45°,所述第二平面镜与所述第二光轴之间夹角为45°,使得第二折射元件折射的光线依次经过所述第一平面镜和所述第二平面镜的反射后投射在所述感光元件上,所述马达具体用于调整所述第一平面镜和/或所述第二平面镜的位置,以改变光线在所述目标光学元件中的光路。
- 根据权利要求2所述的镜头模组,其特征在于,所述目标光学元件包括三棱镜,所述第二折射元件沿所述第二光轴的方向设置,所述感光元件沿第三光轴的方向设置,所述第三光轴与所述第二光轴平行,所述三棱镜设置于所述第二折射元件和所述感光元件的同侧,所述三棱镜的底面平行于所述第二折射元件及所述感光元件,使得第二折射元件折射的光线经过所述三棱镜的反射后投射在所述感光元件上,所述马达具体用于调整所述三棱镜的位置,以改变光线在所述目标光学元件中的光路。
- 根据权利要求4所述的镜头模组,其特征在于,在所述镜头模组抖动时,所述马达具体用于调整所述第一平面镜及所述第二平面镜的位置,以改变光线在所述目标光学元件中的光路。
- 根据权利要求5所述的镜头模组,其特征在于,在所述镜头模组抖动时,所述马达具体用于调整所述第一平面镜及所述第二平面镜的位置,以改变光线在所述目标光学元件中的光路。
- 根据权利要求6所述的镜头模组,其特征在于,在所述镜头模组抖动时,所述马达具体用于调整所述三棱镜的位置,以改变光线在所述目标光学元件中的光路。
- 根据权利要求2至9中任一项所述的镜头模组,其特征在于,所述第一折射元件至少包含一个折射透镜,所述第二折射元件至少包含一个折射透镜,其中,所述第一折射元件中的每个折射透镜互相平行,所述第二折射元件中的每个折射透镜互相平行。
- 根据权利要求2至9中任一项所述的镜头模组,其特征在于,所述反射元件为平面镜,在所述镜头模组抖动时,所述马达具体用于调整所述平面镜与所述第一折射元件之间的夹角,以改变所述第一折射元件与所述第二折射元件之间的光路。
- 根据权利要求2至9中任一项所述的镜头模组,其特征在于,所述反射元件为棱镜,在所述镜头模组抖动时,所述马达具体用于调整所述棱镜与所述第一折射元件之间的夹角,以改变所述第一折射元件与所述第二折射元件之间的光路。
- 根据权利要求2至9中任一项所述的镜头模组,其特征在于,所述镜头模组的物理焦距大于或等于9mm,所述镜头模组的光学倍率大于或等于2.5。
- 根据权利要求2至9中任一项所述的镜头模组,其特征在于,所述镜头模组还包括红外滤光片,所述红外滤光片位于所述目标光学元件与所述感光元件之间。
- 一种照相机,其特征在于,包括处理器、控制器、存储器、总线及镜头模组,其中,所述处理器、所述控制器、所述存储器及所述镜头模组之间通过所述总线互相连接,其中,所述存储器用于存储程序与指令,所述处理器用于调用所述存储器中存储的程序与指令,所述处理器还用于通过所述控制器对所述镜头模组进行控制;所述镜头模组包括:第一折射元件、第二折射元件、反射元件及感光元件,其中,所述第一折射元件与所述反射元件沿第一光轴的方向设置,所述第二折射元件与所述反射元件沿第二光轴的方向设置,所述第一光轴为所述第一折射元件的光轴,所述第二光轴为所述第二折射元件的光轴,且所述第一光轴与所述第二光轴垂直,所述第二折射元件与所述感光元件平行设置,在所述镜头模组的高度方向上,所述第一折射元件的有效口径大于所述第二折射元件的有效口径,所述第一光轴与所述镜头模组的高度方向平行,所述第二光轴与所述镜头模组的高度方向垂直;所述第一折射元件,用于折射来自所述镜头模组的外部的光线束;所述反射元件,用于反射经过所述第一折射元件折射的光线束;所述第二折射元件,用于折射经过所述反射元件反射的光线束;所述感光元件,用于接收经过所述第二折射元件折射的光线,并生成电子图像。
- 一种照相机,其特征在于,包括处理器、控制器、存储器、总线及镜头模组,其中,所述处理器、所述控制器、所述存储器及所述镜头模组之间通过所述总线互相连接,其中,所述存储器用于存储程序与指令,所述处理器用于调用所述存储器中存储的程序与指令,所述处理器还用于通过所述控制器对所述镜头模组进行控制;所述镜头模组包括:第一折射元件、第二折射元件、反射元件、感光元件、目标光学元件及马达,其中,所述第一折射元件与所述反射元件沿第一光轴的方向设置,所述第二折射元件、所述反射元件沿第二光轴的方向设置,所述第二折射元件位于所述反射元件与所述目标光学元件之间,所述第一光轴为所述第一折射元件的光轴,所述第二光轴为所述第二折射元件的光轴,且所述第一光轴与所述第二光轴垂直,在所述镜头模组的高度方向上,所述第一折射元件的有效口径大于所述第二折射元件的有效口径,所述第一光轴与所述镜头模组的高度方向平行,所述第二光轴与所述镜头模组的高度方向垂直;所述第一折射元件,用于折射来自所述镜头模组的外部的光线束;所述反射元件,用于反射经过所述第一折射元件折射的光线束;所述第二折射元件,用于折射经过所述反射元件反射的光线束;所述马达,用于调整所述目标光学的位置,以改变所述第二折射元件与所述感光元件之间的光路;所述感光元件,用于接收从所述目标光学元件射出的光线,并生成电子图像。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18916299.3A EP3779550A4 (en) | 2018-04-25 | 2018-12-11 | LENS MODULE AND CAMERA |
US17/077,247 US12047663B2 (en) | 2018-04-25 | 2020-10-22 | Lens module and camera |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810382951.8A CN110398872A (zh) | 2018-04-25 | 2018-04-25 | 一种镜头模组及照相机 |
CN201810382951.8 | 2018-04-25 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/077,247 Continuation US12047663B2 (en) | 2016-02-25 | 2020-10-22 | Lens module and camera |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019205653A1 true WO2019205653A1 (zh) | 2019-10-31 |
Family
ID=68294825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/120211 WO2019205653A1 (zh) | 2018-04-25 | 2018-12-11 | 一种镜头模组及照相机 |
Country Status (4)
Country | Link |
---|---|
US (1) | US12047663B2 (zh) |
EP (1) | EP3779550A4 (zh) |
CN (1) | CN110398872A (zh) |
WO (1) | WO2019205653A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110879454A (zh) * | 2019-12-25 | 2020-03-13 | Oppo广东移动通信有限公司 | 摄像头模组、潜望式摄像头模组、摄像头组件及电子装置 |
CN111367054A (zh) * | 2020-04-21 | 2020-07-03 | 厦门力鼎光电股份有限公司 | 一种小型高清的光学成像镜头 |
EP3842848A1 (en) * | 2019-12-25 | 2021-06-30 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Camera module, camera assembly, and electronic device |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11528396B2 (en) | 2019-10-08 | 2022-12-13 | Sintai Optical (Shenzhen) Co., Ltd. | Lens device |
CN112824964B (zh) * | 2019-11-15 | 2022-10-21 | 宁波舜宇光电信息有限公司 | 潜望式摄像模组及其组装方法 |
CN111308643B (zh) * | 2019-12-25 | 2024-04-12 | Oppo广东移动通信有限公司 | 摄像头模组、潜望式摄像头模组、摄像头组件及电子装置 |
WO2021168784A1 (zh) * | 2020-02-28 | 2021-09-02 | 南昌欧菲光电技术有限公司 | 防抖组件、摄像模组及电子装置 |
CN113645374B (zh) * | 2020-04-24 | 2023-09-08 | 宁波舜宇光电信息有限公司 | 潜望式摄像模组、多摄摄像模组和摄像模组的组装方法 |
CN113556444B (zh) * | 2020-04-24 | 2022-09-30 | 宁波舜宇光电信息有限公司 | 潜望式摄像模组、多摄摄像模组和摄像模组的驱动方法 |
CN111432107A (zh) * | 2020-04-30 | 2020-07-17 | 南昌欧菲光电技术有限公司 | 摄像头模组以及电子设备 |
WO2021226792A1 (zh) * | 2020-05-11 | 2021-11-18 | 南昌欧菲光电技术有限公司 | 镜头、摄像模组及电子设备 |
CN111474680A (zh) * | 2020-05-13 | 2020-07-31 | Oppo广东移动通信有限公司 | 光学镜头、相机模组及电子装置 |
FI20215648A1 (en) * | 2020-07-31 | 2022-02-01 | Kaahre Jan | Refractometer |
CN114726970B (zh) * | 2021-01-04 | 2024-03-05 | 宁波舜宇光电信息有限公司 | 摄像模组、制造方法以及移动终端 |
TWI793978B (zh) | 2021-12-02 | 2023-02-21 | 大陽科技股份有限公司 | 攝影模組與電子裝置 |
CN114911025B (zh) * | 2022-05-31 | 2024-05-17 | 上海比路电子股份有限公司 | 一种潜望式镜头驱动装置、摄像装置及移动终端 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000292692A (ja) * | 1999-02-01 | 2000-10-20 | Olympus Optical Co Ltd | 撮影光学系 |
CN201174018Y (zh) * | 2008-02-01 | 2008-12-31 | 崔雁行 | 交换镜头相机机身防抖组件 |
JP2009300620A (ja) * | 2008-06-11 | 2009-12-24 | Sanyo Electric Co Ltd | レンズ装置および撮影装置 |
CN102819097A (zh) * | 2011-06-10 | 2012-12-12 | 佳能株式会社 | 变焦透镜和配有变焦透镜的图像拾取装置 |
CN105785556A (zh) * | 2016-05-20 | 2016-07-20 | 深圳众瑞光科技有限公司 | 薄形化直角转折成像透镜组及其拼合结构和调焦装置 |
CN106950792A (zh) * | 2017-04-25 | 2017-07-14 | 中山联合光电科技股份有限公司 | 一种反射光学成像系统 |
CN207051573U (zh) * | 2017-07-27 | 2018-02-27 | 歌尔科技有限公司 | 一种微型全景摄像模组 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3468229A (en) * | 1967-05-17 | 1969-09-23 | Polaroid Corp | Photographic camera including a scanning exposure system with compensation for cylindrical perspective distortion by optical path length changes |
US4258395A (en) * | 1979-09-12 | 1981-03-24 | The Mead Corporation | Document scanning system |
JP2000515255A (ja) * | 1996-06-18 | 2000-11-14 | シェーリング・ヘアマン | 光学式画像記録装置及び関連する処理装置 |
JP3861815B2 (ja) * | 2003-01-17 | 2006-12-27 | コニカミノルタフォトイメージング株式会社 | 手振れ補正機能付きカメラ |
JP4330489B2 (ja) * | 2004-05-17 | 2009-09-16 | コニカミノルタビジネステクノロジーズ株式会社 | レーザー走査装置 |
WO2006018885A1 (ja) * | 2004-08-19 | 2006-02-23 | Mitsubishi Denki Kabushiki Kaisha | 結像光学系およびこれを搭載したカメラ |
JP2007047547A (ja) | 2005-08-11 | 2007-02-22 | Sharp Corp | 手ブレ補正機能付き電子撮像装置およびカメラ付き携帯電子機器 |
JP2007206545A (ja) | 2006-02-03 | 2007-08-16 | Matsushita Electric Ind Co Ltd | ズームレンズ系、レンズ鏡筒、撮像装置及びカメラ |
US20090122406A1 (en) | 2006-02-06 | 2009-05-14 | Jarkko Rouvinen | Optical Image Stabilizer Using Gimballed Prism |
US20080144171A1 (en) * | 2006-12-15 | 2008-06-19 | Nokia Corporation | Optical zoom system and devices having same |
JP4917060B2 (ja) * | 2007-02-26 | 2012-04-18 | Hoya株式会社 | 撮像ユニット及び携帯用電子機器 |
JP5245320B2 (ja) | 2007-08-13 | 2013-07-24 | 株式会社ニコン | ズームレンズ、これを用いた光学機器及び結像方法 |
JP2009192771A (ja) * | 2008-02-14 | 2009-08-27 | Sony Corp | ズームレンズおよび撮像装置ならびにズームレンズの制御方法 |
WO2013125603A1 (ja) * | 2012-02-20 | 2013-08-29 | コニカミノルタ株式会社 | ズームレンズ、撮像装置及び携帯端末 |
WO2014072818A2 (en) | 2012-11-08 | 2014-05-15 | Dynaoptics Pte Ltd. | Miniature optical zoom lens |
US9285566B2 (en) * | 2013-08-08 | 2016-03-15 | Apple Inc. | Mirror tilt actuation |
US9274311B2 (en) * | 2014-01-13 | 2016-03-01 | Genius Electronic Optical Co., Ltd. | Compact narrow field of view lenses for mobile devices |
CN208569183U (zh) * | 2015-12-25 | 2019-03-01 | 富士胶片株式会社 | 防振装置及双筒望远镜 |
US10437023B2 (en) * | 2016-03-28 | 2019-10-08 | Apple Inc. | Folded lens system with three refractive lenses |
CN116068731A (zh) | 2016-03-28 | 2023-05-05 | 苹果公司 | 具有四个折射透镜的折叠透镜系统 |
US11516391B2 (en) * | 2020-06-18 | 2022-11-29 | Qualcomm Incorporated | Multiple camera system for wide angle imaging |
EP4180869A4 (en) * | 2021-08-17 | 2024-03-27 | Samsung Electronics Co., Ltd. | CAMERA MODULE WITH FOLDED OPTICAL SYSTEM |
KR20240036966A (ko) * | 2022-09-14 | 2024-03-21 | 삼성전기주식회사 | 촬상 광학계 |
-
2018
- 2018-04-25 CN CN201810382951.8A patent/CN110398872A/zh active Pending
- 2018-12-11 EP EP18916299.3A patent/EP3779550A4/en active Pending
- 2018-12-11 WO PCT/CN2018/120211 patent/WO2019205653A1/zh unknown
-
2020
- 2020-10-22 US US17/077,247 patent/US12047663B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000292692A (ja) * | 1999-02-01 | 2000-10-20 | Olympus Optical Co Ltd | 撮影光学系 |
CN201174018Y (zh) * | 2008-02-01 | 2008-12-31 | 崔雁行 | 交换镜头相机机身防抖组件 |
JP2009300620A (ja) * | 2008-06-11 | 2009-12-24 | Sanyo Electric Co Ltd | レンズ装置および撮影装置 |
CN102819097A (zh) * | 2011-06-10 | 2012-12-12 | 佳能株式会社 | 变焦透镜和配有变焦透镜的图像拾取装置 |
CN105785556A (zh) * | 2016-05-20 | 2016-07-20 | 深圳众瑞光科技有限公司 | 薄形化直角转折成像透镜组及其拼合结构和调焦装置 |
CN106950792A (zh) * | 2017-04-25 | 2017-07-14 | 中山联合光电科技股份有限公司 | 一种反射光学成像系统 |
CN207051573U (zh) * | 2017-07-27 | 2018-02-27 | 歌尔科技有限公司 | 一种微型全景摄像模组 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3779550A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110879454A (zh) * | 2019-12-25 | 2020-03-13 | Oppo广东移动通信有限公司 | 摄像头模组、潜望式摄像头模组、摄像头组件及电子装置 |
EP3842848A1 (en) * | 2019-12-25 | 2021-06-30 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Camera module, camera assembly, and electronic device |
US11693221B2 (en) | 2019-12-25 | 2023-07-04 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Camera module, camera assembly, and electronic device |
CN111367054A (zh) * | 2020-04-21 | 2020-07-03 | 厦门力鼎光电股份有限公司 | 一种小型高清的光学成像镜头 |
Also Published As
Publication number | Publication date |
---|---|
EP3779550A4 (en) | 2021-12-08 |
CN110398872A (zh) | 2019-11-01 |
US20210044729A1 (en) | 2021-02-11 |
EP3779550A1 (en) | 2021-02-17 |
US12047663B2 (en) | 2024-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019205653A1 (zh) | 一种镜头模组及照相机 | |
US11683574B2 (en) | Macro imaging method and terminal | |
TWI635349B (zh) | 藉由組合攝影機及攝影機圖符功能性最大化行動裝置之顯示區的設備與方法 | |
CN111901503B (zh) | 一种摄像模组、终端设备、成像方法及成像装置 | |
US12066644B2 (en) | Optical prism with interlock | |
KR102613371B1 (ko) | 광-흡수 플랜지 렌즈들 | |
TW201728155A (zh) | 最大化行動裝置之顯示區的設備與方法(一) | |
TWM542775U (zh) | 透鏡系統 | |
CN107219710A (zh) | 多镜头系统及具有该多镜头系统的便携式电子装置 | |
CN214675328U (zh) | 摄像头模组及电子设备 | |
KR102606609B1 (ko) | 카메라 모듈, 단말 디바이스, 촬상 방법 및 촬상 장치 | |
JP2006276808A (ja) | ズーム光学系及びそれを有する電子撮像装置 | |
WO2022089113A1 (zh) | 镜头组件及电子设备、深度检测方法、存储介质 | |
JP2006505820A (ja) | ズームレンズ | |
US12032146B2 (en) | Camera lens system | |
US11350025B2 (en) | Optical device and mobile terminal comprising same | |
CN106791321B (zh) | 一种基于前置摄像头的图像处理方法和移动终端 | |
CN103428414A (zh) | 用于便携式终端的摄像装置 | |
US20240272409A1 (en) | Zoom Lens and Imaging Apparatus | |
CN219143130U (zh) | 一种用于电子设备的超透镜、摄像头模组及电子设备 | |
TW201224953A (en) | Fingerprint image capturing apparatus | |
CN115209007A (zh) | 摄像头模组及电子设备、拍摄方法 | |
TW202316226A (zh) | 電子裝置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18916299 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018916299 Country of ref document: EP Effective date: 20201104 |