WO2019203143A1 - 電力変換装置 - Google Patents
電力変換装置 Download PDFInfo
- Publication number
- WO2019203143A1 WO2019203143A1 PCT/JP2019/015922 JP2019015922W WO2019203143A1 WO 2019203143 A1 WO2019203143 A1 WO 2019203143A1 JP 2019015922 W JP2019015922 W JP 2019015922W WO 2019203143 A1 WO2019203143 A1 WO 2019203143A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transistor
- power supply
- voltage
- circuit
- collector
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/44—Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/12—Arrangements for reducing harmonics from ac input or output
- H02M1/123—Suppression of common mode voltage or current
Definitions
- the present invention relates to a power converter having a function of flowing a compensation current that cancels a leakage current when an alternating current having an arbitrary frequency is supplied to a load by an inverter circuit.
- Hybrid vehicles and electric vehicles have been developed in recent years due to the emergence of global environmental problems.
- an air conditioner for air conditioning the interior of these vehicles an in-vehicle battery (instead of an engine-driven compressor)
- An electric compressor fed from a DC power source is used.
- an inverter circuit composed of a plurality of switching elements such as IGBTs the DC voltage of the battery is converted into an AC voltage of an arbitrary frequency by PWM modulation, and the winding of the motor driving the electric compressor is used. Supply.
- the pulse between the motor winding and the casing of the electric compressor is applied along with the pulsed voltage application to the motor winding by the high-speed switching of each switching element.
- High-frequency leakage current (common mode current) flows back through the ground (vehicle body) path via parasitic capacitance, and common mode noise is generated.
- An active EMI filter has been developed as a device for reducing this common mode current (the amount of leakage current flowing from the motor winding to the casing of the electric compressor that actually flows to the ground).
- This active EMI filter detects an unbalanced portion of the differential mode current flowing in the common mode coil, that is, a detection coil in which the common mode current is added to the common mode coil.
- the output current of this detection coil is amplified by passing it through the base of a complementary transistor connected between the DC power sources.
- this complementary transistor the base and emitter of an NPN type transistor and a PNP type transistor are connected in common, and the compensation current amplified by each transistor is set so as to cancel the leakage current from the winding of the motor. Supply to the ground in reverse phase to the leakage current from the winding of the motor.
- the feedback operation is performed so that the canceled leakage current, that is, the common mode current and the compensation result by the common mode current detected by the detection coil are balanced (for example, Patent Document 1, Patent Document). 2).
- the present invention has been made to solve the conventional technical problem, and is obtained without using a high-voltage transistor as a complementary transistor that uses a high voltage such as DC400V or DC600V as a power input.
- An object of the present invention is to provide a power conversion device capable of smoothly supplying a compensation current that cancels a leakage current from a load with a relatively simple configuration.
- the power conversion device of the present invention converts a DC voltage supplied from a DC power source into an AC voltage of an arbitrary frequency by switching of an inverter circuit and supplies it to a load, and detects a leakage current flowing from the load to the ground. And an active EMI filter circuit having a compensation current supply circuit for flowing a compensation current having a phase opposite to that of the leakage current so as to cancel the leakage current.
- a complementary transistor having an emitter commonly connected to the base, a resistance voltage dividing circuit for dividing the DC power supply to apply between the emitter and collector of each transistor constituting the complementary transistor, and the DC power supply and each transistor Coupling capacitors connected between the collectors Characterized in that it.
- the power conversion device wherein the complementary transistors are composed of an NPN positive side transistor and a PNP negative side transistor, and the collector of the positive side transistor is connected to the positive side of the DC power supply via a coupling capacitor.
- the collector of the negative transistor is connected to the negative power supply line of the DC power supply via a coupling capacitor, and a resistance is distributed between the positive power supply line and the negative power supply line and the emitter of each transistor.
- a voltage circuit is connected to each other, and a connection point of a plurality of resistors constituting each resistance voltage dividing circuit is connected to a connection point between a collector of each transistor and a coupling capacitor.
- a power converter according to any one of the above-mentioned inventions, wherein the DC power source is a battery mounted on the vehicle, and the load is an electric motor that drives an electric compressor of an air conditioner for air-conditioning the interior of the vehicle. It is characterized by being.
- a power converter that converts a DC voltage supplied from a DC power source into an AC voltage of an arbitrary frequency by switching an inverter circuit and supplies the AC voltage to a load, a leakage current (common mode current) flowing from the load to the ground ) And an active EMI filter circuit having a compensation current supply circuit for flowing a compensation current having a phase opposite to that of the leakage current so as to cancel the leakage current.
- the complementary transistor has a base connected in common and an emitter connected in common, the compensation transistor cancels the leakage current flowing from the load to the ground by the operation of the complementary transistor. Reduces the common mode current that flows to the ground. , It is possible to reduce the noise generated by the common mode current.
- the compensation current supply circuit is provided with a resistance voltage dividing circuit for applying a voltage between the emitter and the collector of each transistor constituting the complementary transistor by dividing the DC power supply, so that the transistor constituting the complementary transistor is provided.
- the voltage of the DC power source is divided and applied between the emitter and the collector by the resistance voltage dividing circuit, so that it is not necessary to prepare a transistor having a high withstand voltage as a transistor constituting the complementary transistor.
- the complementary transistor is composed of an NPN positive transistor and a PNP negative transistor, and the collector of the positive transistor is connected to the positive side of the DC power supply via a coupling capacitor.
- Connect to the power supply line connect the collector of the negative transistor to the negative power supply line of the DC power supply through a coupling capacitor, and connect the resistance divider between the positive power supply line and the negative power supply line and the emitter of each transistor Are connected to each other, and a connection point of a plurality of resistors constituting each resistance voltage dividing circuit is connected to a connection point between a collector of each transistor and a coupling capacitor.
- FIG. 2 is an electric circuit diagram of the active EMI filter circuit of FIG. 1.
- FIG. 3 is an electric circuit diagram of the compensation current supply circuit of FIG. 2. It is a figure which shows the relationship between the leakage current which flows into the housing
- FIG. 1 shows an electric circuit diagram of a power converter 1 according to an embodiment of the present invention.
- the power conversion device 1 according to the embodiment is mounted on a vehicle such as an electric vehicle or a hybrid vehicle, and is loaded with an electric motor 2 of an electric compressor that constitutes a refrigerant circuit of a vehicle air conditioner that air-conditions the vehicle interior.
- a DC voltage from a battery 3 mounted on the vehicle is converted into an AC voltage having an arbitrary frequency and supplied to the electric motor 2 for operation.
- the power converter device 1 of this invention is applicable not only to the above but the normal motor vehicle which drive
- the power conversion apparatus 1 includes an active EMI filter circuit 8 connected to a positive power supply line 6 (+) and a negative power supply line 7 ( ⁇ ) of a battery 3, and the active EMI filter circuit 8. And a three-phase inverter circuit 11 connected to the smoothing capacitor 9, and the inverter circuit 11 includes three-phase stator windings 2U, 2V, and 2W of the electric motor 2. It is connected.
- C1 is a parasitic capacitance existing between the windings 2U to 2W and the casing of the electric compressor.
- the casing of the electric compressor is connected to the vehicle body, and the vehicle body becomes the ground.
- the inverter circuit 11 is composed of six switching elements 12 such as IGBTs connected in a three-phase bridge, and a rectangular wave voltage whose pulse width is controlled by PWM modulation control of each switching element 12 by a gate drive circuit (not shown). This is supplied to the windings 2U to 2W of each phase of the electric motor 2.
- the parasitic capacitance C1 exists between the windings 2U to 2W of the electric motor 2 and the casing of the electric compressor. Therefore, when a pulse voltage is applied to each winding 2U to 2W of the electric motor 2 in accordance with ON / OFF of each switching element 12 of the inverter circuit 11, a pulse is also generated between each winding 2U to 2W and the ground (vehicle body). Voltage is applied. Due to the voltage change rate at this time, a leakage current I1 flows through the parasitic capacitance C1 between the windings 2U to 2W and the casing of the electric compressor. This leakage current I1 becomes a common mode current I3 which is a noise current, passes through the ground (vehicle body), and returns to the DC power source side.
- an active EMI filter circuit 8 For the purpose of reducing the common mode current I3, an active EMI filter circuit 8 is provided. A specific electric circuit of the active EMI filter circuit 8 in the present invention is shown in FIG.
- the active EMI filter circuit 8 of the embodiment has a common mode coil 16 (common mode current detector), a compensation current supply circuit 17 to which the present invention is applied, and a coupling capacitor Co.
- the common mode coil 16 is a common mode transformer including two primary windings L1 and L2 and a secondary winding L3 (detection coil), and a difference in current between the positive power supply line 6 and the negative power supply line 7; That is, the common mode current I3 consisting of an unbalanced portion of the differential mode current is detected. Therefore, the two primary windings L 1 and L 2 are connected in series to the positive power supply line 6 and the negative power supply line 7. The output current I4 flows through the secondary winding L3 (detection coil).
- the compensation current supply circuit 17 includes a first transistor Tr1 and a negative transistor Tr2 constituting a complementary transistor 18, first and second diodes D1 and D2, and resistors R1 and R2.
- the resistor divider circuit 21 is composed of a resistor divider circuit 21, a second resistor divider circuit 22 composed of resistors R3 and R4, and two coupling capacitors Cs.
- the positive side transistor Tr1 is an NPN type transistor
- the negative side transistor Tr2 is a PNP type transistor. Therefore, the positive side transistor Tr1 and the negative side transistor Tr2 have opposite polarities.
- the emitters of the positive side transistor Tr1 and the negative side transistor Tr2 are connected in common, and are connected to the casing of the electric compressor via the connection point E and the coupling capacitor Co.
- the first resistance voltage dividing circuit 21 is connected via the connection point C between the emitter of the positive transistor Tr1 and the positive power supply line 6 of the battery 3 (DC power supply). Further, the coupling capacitor Cs is connected via a connection point C between the collector of the positive transistor Tr1 and the positive power supply line 6. The connection point between the resistors R1 and R2 of the first resistance voltage dividing circuit 21 is connected to the connection point between the collector of the positive transistor Tr1 and the coupling capacitor Cs.
- the first diode D1 has an antiparallel relationship with the positive transistor Tr1 between the emitter of the positive transistor Tr1 and the connection point C side of the coupling capacitor Cs. It is connected.
- the second resistance voltage dividing circuit 22 is connected via the connection point D between the emitter of the negative transistor Tr2 and the negative power supply line 7 of the battery 3 (DC power supply). Furthermore, another coupling capacitor Cs is connected via a connection point D between the collector of the negative transistor Tr2 and the negative power supply line 7. The connection point between the resistors R3 and R4 of the second resistance voltage dividing circuit 22 is connected to the connection point between the collector of the negative transistor Tr2 and the coupling capacitor Cs.
- a value (voltage) obtained by dividing the voltage of the negative power supply line 7 of the battery 3 (DC power supply) by the resistors R3 and R4 is also applied between the emitter and collector of the negative transistor Tr2.
- the second diode D2 has an anti-parallel relationship with the negative transistor Tr2 between the emitter of the negative transistor Tr2 and the connection point D side of the coupling capacitor Cs in order to protect the negative transistor Tr2. It is connected.
- the bases of the positive side transistor Tr1 and the negative side transistor Tr2 constituting the complementary transistor 18 are connected in common, and the commonly connected base is connected to the secondary winding L3 of the common mode coil 16 via the connection point B.
- One output line of the (detection coil) is connected, and an output current I4 flows therethrough, and the commonly connected emitters of the positive side transistor Tr1 and the negative side transistor Tr2 are connected via a connection point A. It is connected to the other output line of the next winding L3. Therefore, the positive side transistor Tr1 and the negative side transistor Tr2 operate in the opposite directions according to the output polarity of the secondary winding L3.
- the output (DC) of the battery 3 is smoothed by the smoothing capacitor 9 and becomes the input voltage of the inverter circuit 11.
- the six switching elements 12 of the inverter circuit 11 are ON / OFF controlled by known PWM pulses.
- the electric motor 2 is driven by the output voltage of the inverter circuit 11.
- the parasitic capacitance C1 exists between the windings 2U to 2W of the electric motor 2 as a load and the casing of the electric compressor. Therefore, every time a voltage is applied in a pulsed manner from the inverter circuit 11, the leakage current I1 flows to the casing of the electric compressor through the parasitic capacitance C1, and this flows as a common mode current I3 to the ground (vehicle body).
- the common mode coil 16 of the active EMI filter circuit 8 detects the common mode current I3 in the positive power supply line 6 and the negative power supply line 7, and the primary windings L1 and L2 and the secondary winding L3 are connected to the secondary winding L3.
- the output current I4 is output in accordance with the winding ratio to drive the positive side transistor Tr1 and the negative side transistor Tr2 constituting the complementary transistor 18 of the compensation current supply circuit 17.
- the output current I4 of the common mode coil 16 flows into the bases of the positive side transistor Tr1 and the negative side transistor Tr2, this is amplified by the transistors Tr1 and Tr2.
- the compensation current I2 flows toward the ground (vehicle body) through the path formed by the coupling capacitor Cs, the positive side transistor Tr1, the coupling capacitor Co, and the parasitic capacitance C1 of the electric motor 2, and the electric motor 2
- the common mode current I3 flowing through the ground (vehicle body) becomes extremely small.
- the compensation current I2 flows from the ground (vehicle body) toward the casing of the electric compressor through a path including the coupling capacitor Co, the negative transistor Tr2, and the coupling capacitor Cs.
- the effect of reducing the common mode current I3 by the compensation current I2 occurs in the same manner as when the positive transistor Tr1 is ON.
- the compensation current supply circuit 17 performs an operation of actively compensating the leakage current I1 by feeding back the result of the common mode current I3 obtained by canceling the leakage current I1 with the compensation current I2.
- the common mode coil 16 for detecting the common mode current I3 of the leakage current I1 flowing from the electric motor 2 to the casing of the electric compressor, and the leakage current I1 are canceled out.
- An active EMI filter circuit 8 having a compensation current supply circuit 17 for flowing a compensation current I2 having a phase opposite to that of the leakage current I1 to the ground is provided, and the compensation current supply circuit 8 is connected to a commonly connected base and an emitter commonly connected.
- the compensation current supply circuit 17 is divided into a first voltage for dividing the battery 3 (DC power supply) and applying the voltage between the emitter and collector of the positive transistor Tr1 and the negative transistor Tr2 constituting the complementary transistor 18, respectively.
- the second resistance voltage dividing circuits 21 and 22 are provided, the voltage of the battery 3 is connected between the emitter-collector of the positive side transistor Tr1 and the negative side transistor Tr2 constituting the complementary transistor 18, and the resistance voltage dividing circuits 21 and 22 are provided. The voltage is divided and applied.
- the battery 3 mounted in the vehicle as in the embodiment is used as a DC power source, and the electric motor 2 that drives the electric compressor is loaded in the casing of the electric compressor. Since the installation space of the power converter 1 is also limited, the present invention is extremely suitable.
- the electric motor 2 of the electric compressor constituting the refrigerant circuit of the vehicle air conditioner is used as a load, and a DC voltage from a battery mounted on the vehicle as a DC power source is converted into an AC voltage of an arbitrary frequency.
- the present invention is applied to the power conversion device supplied to the electric motor, the inventions of the first and second aspects are not limited thereto, and a commercial AC power supply is rectified to be a DC power supply, and a load such as an electric motor is driven by an inverter circuit.
- the present invention is also effective for home / business equipment.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Inverter Devices (AREA)
- Power Conversion In General (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
【課題】コンプリメンタリトランジスタとして特別に高耐圧のトランジスタを用いること無く、入手可能で比較的簡単な構成で負荷からの漏れ電流を打ち消す補償電流を円滑に供給することができる電力変換装置を提供する。 【解決手段】補償電流供給回路17は、共通接続されたベースと共通接続されたエミッタを有するコンプリメンタリトランジスタ18と、直流電源を分圧してコンプリメンタリトランジスタ18を構成する各トランジスタTr1、Tr2のエミッタ-コレクタ間にそれぞれ印加するための抵抗分圧回路21、22と、直流電源と各トランジスタのコレクタ間にそれぞれ接続されたカップリングコンデンサCsを有する。
Description
本発明は、インバータ回路により負荷に任意の周波数の交流を供給する際に、漏れ電流を打ち消す補償電流を流す機能を有する電力変換装置に関するものである。
近年の地球環境問題の顕在化から、ハイブリッド自動車や電気自動車が開発されて来ているが、これら自動車の車室内を空調するための空気調和装置では、エンジン駆動の圧縮機に代わり、車載バッテリ(直流電源)から給電される電動圧縮機が使用される。そして、通常はIGBT等の複数のスイッチング素子から構成されたインバータ回路を用い、バッテリの直流電圧をPWM変調により任意の周波数の交流電圧に変換して、電動圧縮機を駆動する電動機の巻線に供給する。
また、このようなインバータ回路を用いた電動機の駆動系では、各スイッチング素子の高速スイッチングによる電動機の巻線へのパルス的な電圧印加に伴い、電動機の巻線と電動圧縮機の筐体との寄生容量を介し、グランド(車体)経路で高周波の漏れ電流(コモンモード電流)が還流し、コモンモードのノイズが発生する。
このコモンモード電流(電動機の巻線から電動圧縮機の筐体に流れる漏れ電流のうち、実際にグランドに流れる分)を低減する装置として、アクティブEMIフィルタが開発されている。このアクティブEMIフィルタは、コモンモードコイルに流れるディファレンシャルモード電流の不平衡分、即ち、コモンモード電流をコモンモードコイルに付加した検出コイルで検出する。
そして、この検出コイルの出力電流を、直流電源間に接続したコンプリメンタリトランジスタのベースに流して増幅する。このコンプリメンタリトランジスタは、NPN型のトランジスタとPNP型のトランジスタのベースとエミッタが共通接続されたものであり、電動機の巻線からの漏れ電流を打ち消すように、各トランジスタで増幅された補償電流を、電動機の巻線からの漏れ電流とは逆相でグランドに対して供給する。
そして、打ち消された漏れ電流、即ち、コモンモード電流と、検出コイルで検出されるコモンモード電流による補償結果とがバランスするように、フィードバック動作するものであった(例えば、特許文献1、特許文献2参照)。
しかしながら、電気自動車の如く電圧がDC400Vや600Vとなるバッテリが用いられる場合、特許文献1のようなコンプリメンタリトランジスタを構成するNPN型及びPNP型のトランジスタが相互にOFFする際に、各トランジスタのエミッタ-コレクタ間には直流電源の高電圧が印加されるため、各トランジスタとしては特別に高耐圧のものを使用しなければならず、素子の選定や部品の入手が困難となる。
また、これを解消するために特許文献2のようにコンプリメンタリトランジスタ用の低電圧の電源を別途設けることも考えられるが、回路構成が複雑化するため、基板面積上の問題と、コストが高騰する問題が発生する。
本発明は、係る従来の技術的課題を解決するために成されたものであり、DC400VやDC600Vなどの高電圧を電源入力とするコンプリメンタリトランジスタとして、特別に高耐圧のトランジスタを用いること無く、入手可能で比較的簡単な構成で負荷からの漏れ電流を打ち消す補償電流を円滑に供給することができる電力変換装置を提供することを目的とする。
本発明の電力変換装置は、直流電源から供給される直流電圧をインバータ回路のスイッチングにより任意の周波数の交流電圧に変換して負荷に供給するものであって、負荷からグランドに流れる漏れ電流を検出するためのコモンモードコイルと、漏れ電流を打ち消すように、当該漏れ電流とは逆相の補償電流を流すための補償電流供給回路を有するアクティブEMIフィルタ回路を備え、補償電流供給回路は、共通接続されたベースと共通接続されたエミッタを有するコンプリメンタリトランジスタと、直流電源を分圧してコンプリメンタリトランジスタを構成する各トランジスタのエミッタ-コレクタ間にそれぞれ印加するための抵抗分圧回路と、直流電源と各トランジスタのコレクタ間にそれぞれ接続されたカップリングコンデンサを有することを特徴とする。
請求項2の発明の電力変換装置は、上記発明においてコンプリメンタリトランジスタは、NPN型の正側トランジスタとPNP型の負側トランジスタから成り、正側トランジスタのコレクタがカップリングコンデンサを介して直流電源の正側電源ラインに接続され、負側トランジスタのコレクタがカップリングコンデンサを介して直流電源の負側電源ラインに接続されており、正側電源ライン及び負側電源ラインと各トランジスタのエミッタ間に抵抗分圧回路がそれぞれ接続され、各抵抗分圧回路を構成する複数の抵抗の接続点が各トランジスタのコレクタとカップリングコンデンサとの接続点にそれぞれ接続されていることを特徴とする。
請求項3の発明の電力変換装置は、上記各発明において直流電源は車両に搭載されたバッテリであり、負荷は車両の車室内を空調するための空気調和装置の電動圧縮機を駆動する電動機であることを特徴とする。
本発明によれば、直流電源から供給される直流電圧をインバータ回路のスイッチングにより任意の周波数の交流電圧に変換して負荷に供給する電力変換装置において、負荷からグランドに流れる漏れ電流(コモンモード電流)を検出するためのコモンモードコイルと、漏れ電流を打ち消すように、当該漏れ電流とは逆相の補償電流を流すための補償電流供給回路を有するアクティブEMIフィルタ回路を設け、補償電流供給回路を、共通接続されたベースと共通接続されたエミッタを有するコンプリメンタリトランジスタから構成したので、コンプリメンタリトランジスタの働きによって、負荷からグランドに流れる漏れ電流を打ち消す補償電流をグランドに対し流し、漏れ電流のうち、実際にグランドに流れるコモンモード電流を低減して、このコモンモード電流により発生するノイズを低減することができるようになる。
特に、本発明では補償電流供給回路に、直流電源を分圧してコンプリメンタリトランジスタを構成する各トランジスタのエミッタ-コレクタ間にそれぞれ印加するための抵抗分圧回路を設けたので、コンプリメンタリトランジスタを構成するトランジスタのエミッタ-コレクタ間には直流電源の電圧が抵抗分圧回路で分圧されて印加されることになり、コンプリメンタリトランジスタを構成するトランジスタとして特別に高耐圧のものを用意する必要が無くなる。
また、特許文献2にあるような補償電流供給用に格別な低電圧電源を設ける必要も無くなるので、構造も簡素化され、回路面積の縮小とコストの削減を図ることが可能となる。更に、直流電源と各トランジスタのコレクタ間にはカップリングコンデンサをそれぞれ接続しているので、グランドへの補償電流の経路も支障無く確保されるものである。
具体的には、請求項2の発明の如くコンプリメンタリトランジスタを、NPN型の正側トランジスタとPNP型の負側トランジスタから構成し、正側トランジスタのコレクタをカップリングコンデンサを介して直流電源の正側電源ラインに接続し、負側トランジスタのコレクタをカップリングコンデンサを介して直流電源の負側電源ラインに接続すると共に、正側電源ライン及び負側電源ラインと各トランジスタのエミッタ間に抵抗分圧回路をそれぞれ接続し、各抵抗分圧回路を構成する複数の抵抗の接続点を各トランジスタのコレクタとカップリングコンデンサとの接続点にそれぞれ接続する。
特に、請求項3の発明の如く車両に搭載されたバッテリを直流電源とし、電動圧縮機を駆動する電動機を負荷として車両の車室内を空調する空気調和装置では、電動圧縮機筐体内における電力変換装置の設置スペースも制限されるため、上記本発明は極めて好適なものとなる。
以下、本発明の実施の形態について、図面に基づいて詳細に説明する。図1は本発明の一実施例の電力変換装置1の電気回路図を示している。実施例の電力変換装置1は、電気自動車やハイブリッド自動車等の車両に搭載されて車室内を空調する車両用空気調和装置の冷媒回路を構成する電動圧縮機の電動機2を負荷とし、直流電源として車両に搭載されたバッテリ3からの直流電圧を任意の周波数の交流電圧に変換して電動機2に供給し、運転するものである。
尚、適用する車両としては上記に限らず、エンジンで走行する通常の自動車にも本発明の電力変換装置1は適用可能である。
図1において、実施例の電力変換装置1は、バッテリ3の正側電源ライン6(+)と負側電源ライン7(-)に接続されたアクティブEMIフィルタ回路8と、このアクティブEMIフィルタ回路8に接続された平滑コンデンサ9と、この平滑コンデンサ9に接続された三相のインバータ回路11とから構成されており、このインバータ回路11に電動機2の三相のステータ巻線2U、2V、2Wが接続されている。
尚、図中C1は、これら巻線2U~2Wと電動圧縮機の筐体間に存在する寄生容量である。また、車両では電動圧縮機の筐体が車体に接続されて車体がグランドとなる。
上記インバータ回路11は、三相ブリッジ接続されたIGBT等の6個のスイッチング素子12から成り、図示しないゲート駆動回路により各スイッチング素子12のPWM変調制御により、パルス幅制御された矩形波の電圧を電動機2の各相の巻線2U~2Wに供給するものである。
前述した如く電動機2の各巻線2U~2Wと電動圧縮機の筐体の間には寄生容量C1が存在する。そのため、インバータ回路11の各スイッチング素子12のON/OFFに伴い、バルス状の電圧が電動機2の各巻線2U~2Wに印加されると、各巻線2U~2Wとグランド(車体)間にもパルス的な電圧が印加される。このときの電圧変化率により、巻線2U~2Wと電動圧縮機の筐体との間で寄生容量C1を通じて漏れ電流I1が流れる。この漏れ電流I1はノイズ電流であるコモンモード電流I3となってグランド(車体)を通り、直流電源側に還流する。
このコモンモード電流I3を低減する目的で、アクティブEMIフィルタ回路8が設けられている。本発明におけるアクティブEMIフィルタ回路8の具体的な電気回路を図2に示す。実施例のアクティブEMIフィルタ回路8は、コモンモードコイル16(コモンモード電流検出器)と、本発明を適用した補償電流供給回路17と、カップリングコンデンサCoを有している。
コモンモードコイル16は、二つの一次巻線L1、L2と、二次巻線L3(検出コイル)から成るコモンモードトランスであって、正側電源ライン6と負側電源ライン7の電流の差、即ち、ディファレンシャルモード電流の不平衡分から成るコモンモード電流I3を検出する。そのため、二つの一次巻線L1、L2は正側電源ライン6と負側電源ライン7に直列に接続されている。そして、二次巻線L3(検出コイル)に出力電流I4が流れる構成とされている。
一方、補償電流供給回路17の具体的な電気回路を図3に示す。尚、図3中のA~Eで示す接続点は、図2中のA~Eの接続点に対応している。実施例の場合、補償電流供給回路17は、コンプリメンタリトランジスタ18を構成する正側トランジスタTr1及び負側トランジスタTr2と、第1及び第2のダイオードD1、D2と、抵抗R1とR2から成る第1の抵抗分圧回路21と、抵抗R3とR4から成る第2の抵抗分圧回路22と、二つのカップリングコンデンサCsとから構成されている。
この場合、正側トランジスタTr1はNPN型のトランジスタであり、負側トランジスタTr2はPNP型のトランジスタである。従って、正側トランジスタTr1と負側トランジスタTr2は互いに逆の極性を有する。そして、正側トランジスタTr1と負側トランジスタTr2のエミッタは共通接続され、接続点E及びカップリングコンデンサCoを介し、電動圧縮機の筐体に接続されている。
また、第1の抵抗分圧回路21は、正側トランジスタTr1のエミッタとバッテリ3(直流電源)の正側電源ライン6との間に接続点Cを介して接続されている。更に、カップリングコンデンサCsは正側トランジスタTr1のコレクタと正側電源ライン6との間に接続点Cを介して接続されている。そして、第1の抵抗分圧回路21の抵抗R1とR2の接続点が正側トランジスタTr1のコレクタとカップリングコンデンサCsとの接続点に接続されている。
これにより、正側トランジスタTr1のエミッタ-コレクタ間には、バッテリ3(直流電源)の正側電源ライン6の電圧を抵抗R1とR2で分圧した値(電圧)が印加されることになる。尚、第1のダイオードD1は正側トランジスタTr1を保護するために、正側トランジスタTr1のエミッタとカップリングコンデンサCsの接続点C側との間に、正側トランジスタTr1とは逆並列の関係で接続されている。
また、第2の抵抗分圧回路22は、負側トランジスタTr2のエミッタとバッテリ3(直流電源)の負側電源ライン7との間に接続点Dを介して接続されている。更に、もう一つのカップリングコンデンサCsは負側トランジスタTr2のコレクタと負側電源ライン7との間に接続点Dを介して接続されている。そして、第2の抵抗分圧回路22の抵抗R3とR4の接続点が負側トランジスタTr2のコレクタとカップリングコンデンサCsとの接続点に接続されている。
これにより、負側トランジスタTr2のエミッタ-コレクタ間にも、バッテリ3(直流電源)の負側電源ライン7の電圧を抵抗R3とR4で分圧した値(電圧)が印加されることになる。尚、第2のダイオードD2は負側トランジスタTr2を保護するために、負側トランジスタTr2のエミッタとカップリングコンデンサCsの接続点D側との間に、負側トランジスタTr2とは逆並列の関係で接続されている。
コンプリメンタリトランジスタ18を構成する上記正側トランジスタTr1と負側トランジスタTr2のベースは共通接続されており、この共通接続されたベースには、接続点Bを介してコモンモードコイル16の二次巻線L3(検出コイル)の一方の出力ラインが接続され、ここに出力電流I4が流れる構成とされると共に、正側トランジスタTr1と負側トランジスタTr2の共通接続されたエミッタは、接続点Aを介して二次巻線L3の他方の出力ラインに接続されている。従って、正側トランジスタTr1と負側トランジスタTr2は、二次巻線L3の出力極性に応じて、互いに逆に動作することになる。
次に、実施例の電力変換装置1の動作を説明する。バッテリ3の出力(直流)は平滑コンデンサ9で平滑されてインバータ回路11の入力電圧となる。インバータ回路11の6個のスイッチング素子12は周知のPWMパルスでON/OFF制御される。電動機2はこのインバータ回路11の出力電圧で駆動される。
前述したように負荷としての電動機2の巻線2U~2Wと電動圧縮機の筐体との間には寄生容量C1が存在する。従って、インバータ回路11からパルス的に電圧が印加される毎に寄生容量C1を通って漏れ電流I1が電動圧縮機の筐体へ流れ、これがコモンモード電流I3となってグランド(車体)に流れる。
アクティブEMIフィルタ回路8のコモンモードコイル16は正側電源ライン6及び負側電源ライン7においてコモンモード電流I3を検出し、二次巻線L3に、一次巻線L1、L2と二次巻線L3との巻線比に応じて出力電流I4を出力し、補償電流供給回路17のコンプリメンタリトランジスタ18を構成する正側トランジスタTr1と負側トランジスタTr2を駆動する。
コモンモードコイル16の出力電流I4が正側トランジスタTr1及び負側トランジスタTr2のベースに流入すると、これが各トランジスタTr1、Tr2で増幅される。正側トランジスタTr1がONのときには、カップリングコンデンサCsと正側トランジスタTr1とカップリングコンデンサCoと電動機2の寄生容量C1とから成る経路で補償電流I2がグランド(車体)に向かって流れ、電動機2の漏れ電流I1を打ち消すことにより、グランド(車体)に流れるコモンモード電流I3は極めて小さくなる。
負側トランジスタTr2がONのときは、カップリングコンデンサCoと負側トランジスタTr2とカップリングコンデンサCsとから成る経路で補償電流I2がグランド(車体)から電動圧縮機の筐体に向かって流れる。この補償電流I2によるコモンモード電流I3の低減効果は正側トランジスタTr1がONのときと同様に生じる。
この様子が図4に示されている。漏れ電流I1とそれとは逆相の補償電流I2の和がコモンモード電流I3となる(I1+I2=I3)。この補償電流供給回路17は、漏れ電流I1が補償電流I2と相殺されたコモンモード電流I3の結果がフィードバックされて、アクティブ的に漏れ電流I1を補償する動作を行う。
以上詳述した如く、本発明では電動機2から電動圧縮機の筐体に流れる漏れ電流I1のうちのコモンモード電流I3を検出するためのコモンモードコイル16と、漏れ電流I1を打ち消すように、当該漏れ電流I1とは逆相の補償電流I2をグランドへ流すための補償電流供給回路17を有するアクティブEMIフィルタ回路8を設け、補償電流供給回路8を、共通接続されたベースと共通接続されたエミッタを有するコンプリメンタリトランジスタ18(Tr1、Tr2)から構成したので、コンプリメンタリトランジスタ18の働きによって、電動機2から電動圧縮機の筐体に流れる漏れ電流I1を打ち消す補償電流I2を流し、漏れ電流I1のうち、実際にグランド(車体)に流れる漏れ電流であるコモンモード電流I3を減少させ、このコモンモード電流I3により発生するノイズを低減することができるようになる。
特に、本発明では補償電流供給回路17に、バッテリ3(直流電源)を分圧してコンプリメンタリトランジスタ18を構成する正側トランジスタTr1及び負側トランジスタTr2のエミッタ-コレクタ間にそれぞれ印加するための第1及び第2の抵抗分圧回路21、22を設けたので、コンプリメンタリトランジスタ18を構成する正側トランジスタTr1及び負側トランジスタTr2のエミッタ-コレクタ間にはバッテリ3の電圧が抵抗分圧回路21、22で分圧されて印加されることになる。
これにより、コンプリメンタリトランジスタ18を構成する正側トランジスタTr1と負側トランジスタTr2として特別に高耐圧のものを用意する必要が無くなる。また、従来技術の如く補償電流供給用に格別な低電圧電源を設ける必要も無くなるので、構造も簡素化され、回路面積の縮小とコストの削減を図ることが可能となる。更に、バッテリ3(直流電源)と正側トランジスタTr1及び負側トランジスタTr2のコレクタ間にはカップリングコンデンサCsをそれぞれ接続しているので、グランド(車体)への補償電流の経路も支障無く確保されることになる。
特に、車両の車室内を空調する空気調和装置において、実施例の如く車両に搭載されたバッテリ3を直流電源とし、電動圧縮機を駆動する電動機2を負荷とする電動圧縮機の筐体内での電力変換装置1の設置スペースも制限されるため、本発明は極めて好適なものとなる。
尚、実施例では車両用空気調和装置の冷媒回路を構成する電動圧縮機の電動機2を負荷とし、直流電源として車両に搭載されたバッテリからの直流電圧を任意の周波数の交流電圧に変換して電動機に供給する電力変換装置に本発明を適用したが、請求項1及び請求項2の発明ではそれに限らず、商用交流電源を整流して直流電源とし、インバータ回路で電動機等の負荷を駆動する家庭用/業務用の機器にも本発明は有効である。
1 電力変換装置
2 電動機(負荷)
3 バッテリ(直流電源)
6 正側電源ライン
7 負側電源ライン
8 アクティブEMIフィルタ回路
11 インバータ回路
12 スイッチング素子
16 コモンモードコイル
17 補償電流供給回路
18 コンプリメンタリトランジスタ
21、22 抵抗分圧回路
Cs カップリングコンデンサ
Tr1 正側トランジスタ
Tr2 負側トランジスタ
2 電動機(負荷)
3 バッテリ(直流電源)
6 正側電源ライン
7 負側電源ライン
8 アクティブEMIフィルタ回路
11 インバータ回路
12 スイッチング素子
16 コモンモードコイル
17 補償電流供給回路
18 コンプリメンタリトランジスタ
21、22 抵抗分圧回路
Cs カップリングコンデンサ
Tr1 正側トランジスタ
Tr2 負側トランジスタ
Claims (3)
- 直流電源から供給される直流電圧をインバータ回路のスイッチングにより任意の周波数の交流電圧に変換して負荷に供給する電力変換装置において、
前記負荷からグランドに流れる漏れ電流を検出するためのコモンモードコイルと、前記漏れ電流を打ち消すように、当該漏れ電流とは逆相の補償電流を流すための補償電流供給回路を有するアクティブEMIフィルタ回路を備え、
前記補償電流供給回路は、共通接続されたベースと共通接続されたエミッタを有するコンプリメンタリトランジスタと、
前記直流電源を分圧して前記コンプリメンタリトランジスタを構成する各トランジスタのエミッタ-コレクタ間にそれぞれ印加するための抵抗分圧回路と、
前記直流電源と前記各トランジスタのコレクタ間にそれぞれ接続されたカップリングコンデンサを有することを特徴とする電力変換装置。 - 前記コンプリメンタリトランジスタは、NPN型の正側トランジスタとPNP型の負側トランジスタから成り、
前記正側トランジスタのコレクタが前記カップリングコンデンサを介して前記直流電源の正側電源ラインに接続され、前記負側トランジスタのコレクタが前記カップリングコンデンサを介して前記直流電源の負側電源ラインに接続されており、
前記正側電源ライン及び前記負側電源ラインと前記各トランジスタのエミッタ間に前記抵抗分圧回路がそれぞれ接続され、各抵抗分圧回路を構成する複数の抵抗の接続点が前記各トランジスタのコレクタと前記カップリングコンデンサとの接続点にそれぞれ接続されていることを特徴とする請求項1に記載の電力変換装置。 - 前記直流電源は車両に搭載されたバッテリであり、前記負荷は前記車両の車室内を空調するための空気調和装置の電動圧縮機を駆動する電動機であることを特徴とする請求項1又は請求項2に記載の電力変換装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112019001972.4T DE112019001972T5 (de) | 2018-04-16 | 2019-04-12 | Stromwandlervorrichtung |
CN201980020274.8A CN111869070B (zh) | 2018-04-16 | 2019-04-12 | 功率转换装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018078467A JP7009292B2 (ja) | 2018-04-16 | 2018-04-16 | 電力変換装置 |
JP2018-078467 | 2018-04-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019203143A1 true WO2019203143A1 (ja) | 2019-10-24 |
Family
ID=68240179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/015922 WO2019203143A1 (ja) | 2018-04-16 | 2019-04-12 | 電力変換装置 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7009292B2 (ja) |
CN (1) | CN111869070B (ja) |
DE (1) | DE112019001972T5 (ja) |
WO (1) | WO2019203143A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4834445B1 (ja) * | 1969-03-05 | 1973-10-22 | ||
JPS62128470A (ja) * | 1985-11-28 | 1987-06-10 | 株式会社東芝 | 誘導加熱調理器 |
JP3044650B2 (ja) * | 1996-03-27 | 2000-05-22 | 勲 高橋 | 電力変換装置のノイズ低減装置 |
WO2007125989A1 (ja) * | 2006-04-27 | 2007-11-08 | Sanken Electric Co., Ltd. | ノイズ低減用リアクトル及びノイズ低減装置 |
JP2008187759A (ja) * | 2007-01-26 | 2008-08-14 | Funai Electric Co Ltd | スイッチング電源回路 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1220432A3 (en) * | 2000-12-19 | 2003-01-29 | Fuji Electric Co., Ltd. | Noise reduction apparatus for electric power conversion apparatus |
KR100403541B1 (ko) * | 2001-06-29 | 2003-10-30 | 설승기 | 전도성 전자파장애 제거를 위한 능동형 공통모드 이엠아이 필터 |
JP2004364344A (ja) * | 2003-06-02 | 2004-12-24 | Hitachi Home & Life Solutions Inc | 漏れ電流キャンセラ回路 |
CN100442647C (zh) * | 2006-03-14 | 2008-12-10 | 西安交通大学 | 一种无变压器的串联有源交流电压质量调节器及控制方法 |
JP4834445B2 (ja) | 2006-04-07 | 2011-12-14 | 興和株式会社 | 眼圧測定装置 |
JP5093452B2 (ja) * | 2007-03-07 | 2012-12-12 | 学校法人同志社 | 電力変換機器に適用されるコモンモード漏れ電流抑制回路 |
US8957662B2 (en) * | 2009-11-25 | 2015-02-17 | Lutron Electronics Co., Inc. | Load control device for high-efficiency loads |
CN103155388B (zh) * | 2010-08-26 | 2016-02-17 | 三菱电机株式会社 | 泄漏电流降低装置 |
JP5316656B2 (ja) * | 2012-01-27 | 2013-10-16 | ダイキン工業株式会社 | 電力変換回路 |
CN103595243B (zh) * | 2013-11-23 | 2015-12-30 | 大连尚能科技发展有限公司 | 适用于抑制风力发电机驱动系统中共模电磁干扰的方法 |
CN203984392U (zh) * | 2013-11-27 | 2014-12-03 | 苏州贝克微电子有限公司 | 一种传输时间控制的线驱动器 |
CN203982242U (zh) * | 2013-11-28 | 2014-12-03 | 苏州贝克微电子有限公司 | 一种稳压器饱和电流的控制电路 |
-
2018
- 2018-04-16 JP JP2018078467A patent/JP7009292B2/ja active Active
-
2019
- 2019-04-12 DE DE112019001972.4T patent/DE112019001972T5/de active Pending
- 2019-04-12 WO PCT/JP2019/015922 patent/WO2019203143A1/ja active Application Filing
- 2019-04-12 CN CN201980020274.8A patent/CN111869070B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4834445B1 (ja) * | 1969-03-05 | 1973-10-22 | ||
JPS62128470A (ja) * | 1985-11-28 | 1987-06-10 | 株式会社東芝 | 誘導加熱調理器 |
JP3044650B2 (ja) * | 1996-03-27 | 2000-05-22 | 勲 高橋 | 電力変換装置のノイズ低減装置 |
WO2007125989A1 (ja) * | 2006-04-27 | 2007-11-08 | Sanken Electric Co., Ltd. | ノイズ低減用リアクトル及びノイズ低減装置 |
JP2008187759A (ja) * | 2007-01-26 | 2008-08-14 | Funai Electric Co Ltd | スイッチング電源回路 |
Also Published As
Publication number | Publication date |
---|---|
JP7009292B2 (ja) | 2022-01-25 |
CN111869070A (zh) | 2020-10-30 |
CN111869070B (zh) | 2024-07-05 |
DE112019001972T5 (de) | 2020-12-31 |
JP2019187176A (ja) | 2019-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6459597B1 (en) | Electric power conversion apparatus with noise reduction device | |
US8432710B2 (en) | Power conversion apparatus | |
JP6491349B2 (ja) | 電力変換装置 | |
US20110317455A1 (en) | Leakage current reduction apparatus | |
JPWO2011021485A1 (ja) | 出力フィルタとそれを備えた電動機駆動システム | |
US9979291B2 (en) | Inverter apparatus | |
US20170310238A1 (en) | Apparatus and method for an active-switched inverter | |
KR20030026977A (ko) | 교류 라인에 연결된 능동 공통 모드 필터 | |
JP3912096B2 (ja) | 電力変換装置のノイズ低減装置 | |
US9979298B2 (en) | Rectifier bridge circuit, corresponding apparatus and method | |
US20150207426A1 (en) | Non-isolated AC input DC Driver | |
KR20210024125A (ko) | 전력 변환 장치 | |
US8310278B2 (en) | Voltage detection device | |
JP3277166B2 (ja) | 電力変換装置 | |
US20080130337A1 (en) | Voltage Generating Circuit | |
WO2019203143A1 (ja) | 電力変換装置 | |
JP3656705B2 (ja) | 電圧形インバータ | |
US6711037B2 (en) | Power supply apparatus | |
US7916509B2 (en) | Power supply with reduced switching losses by decreasing the switching frequency | |
JP2015126593A (ja) | 漏れ電流抑制回路、太陽光発電システム及びモータ制御装置 | |
JP2009296856A (ja) | 電力変換装置のノイズ低減装置 | |
WO2018079299A1 (ja) | 電力変換装置 | |
JP2001103741A (ja) | スイッチング電源装置 | |
US8054659B2 (en) | Power supply with reduced switching losses by blocking a feedback comparator's control signal | |
KR101946373B1 (ko) | 전력 변환 장치 및 이를 포함하는 공기 조화기 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19787578 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19787578 Country of ref document: EP Kind code of ref document: A1 |