WO2019203021A1 - Workpiece processing sheet - Google Patents

Workpiece processing sheet Download PDF

Info

Publication number
WO2019203021A1
WO2019203021A1 PCT/JP2019/015091 JP2019015091W WO2019203021A1 WO 2019203021 A1 WO2019203021 A1 WO 2019203021A1 JP 2019015091 W JP2019015091 W JP 2019015091W WO 2019203021 A1 WO2019203021 A1 WO 2019203021A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing sheet
base material
adhesive layer
substrate
active energy
Prior art date
Application number
PCT/JP2019/015091
Other languages
French (fr)
Japanese (ja)
Inventor
由希 森田
茂之 山下
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to CN201980026145.XA priority Critical patent/CN111989764A/en
Priority to JP2020514077A priority patent/JP7325403B2/en
Priority to KR1020207025469A priority patent/KR20200144090A/en
Publication of WO2019203021A1 publication Critical patent/WO2019203021A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding

Definitions

  • the present invention relates to a workpiece processing sheet, and particularly to a workpiece processing sheet that is suitable when the workpiece is laser-marked.
  • semiconductor devices have been manufactured by a mounting method called a face-down method.
  • a mounting method called a face-down method.
  • the circuit surface side of the semiconductor chip is bonded to a chip mounting portion such as a lead frame. Therefore, the back surface side of the semiconductor chip on which no circuit is formed is exposed.
  • Patent Document 1 discloses a protective film forming and dicing sheet in which a protective film forming layer capable of forming the protective film is formed on a dicing sheet. According to this protective film forming and dicing sheet, after the protective film is formed on the semiconductor wafer, dicing can be subsequently performed, and thus a semiconductor chip with a protective film can be obtained.
  • said dicing sheet itself is equipped with the base material and the adhesive layer provided in the single side
  • an ultraviolet curable pressure-sensitive adhesive whose adhesive strength is reduced by ultraviolet irradiation may be used in order to improve the peelability at the time of picking up the semiconductor chip with a protective film.
  • the above protective film is usually printed in order to display the product number of the semiconductor chip.
  • a laser marking method in which a protective film is irradiated with laser light has become common.
  • the protective film is irradiated with laser light through the dicing sheet of the protective film forming and dicing sheet.
  • the protective film is generally composed of a black resin composition. When laser marking is applied to such a protective film, the protective film is generally good even if the laser output is relatively weak. Can be printed.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a workpiece processing sheet that is excellent in laser marking properties and resistant to laser light.
  • the present invention is a workpiece processing sheet comprising at least a base material and an adhesive layer laminated on the first surface side of the base material,
  • the arithmetic average roughness (Ra) on the second surface of the substrate is 0.01 ⁇ m or more and 0.4 ⁇ m or less, and the maximum height roughness (Rz) on the second surface of the substrate is 0.00.
  • a workpiece processing sheet characterized by having a light transmittance at a wavelength of 532 nm of the substrate of not less than 01 ⁇ m and not more than 2.5 ⁇ m and not less than 40% (Invention 1).
  • the laser beam used for laser marking especially a laser beam with a wavelength of 532 nm is easy to permeate
  • the light transmittance at a wavelength of 400 nm of the substrate is 40% or more (Invention 2).
  • the substrate preferably has a light transmittance of a wavelength of 800 nm of 45% or more (Invention 3).
  • the work processing sheet according to the above invention (Inventions 1 to 3) is preferably used for an application including a step of performing laser marking on the work through the work processing sheet (Invention 4).
  • the work processing sheet according to the above inventions (Inventions 1 to 4) is preferably used for dicing (Invention 5).
  • the workpiece processing sheet according to the above invention (Invention 5) is preferably used for stealth dicing (Invention 6).
  • the work processing sheet according to the present invention is excellent in laser marking properties and resistant to laser light.
  • FIG. 1 is a cross-sectional view of a workpiece processing sheet according to an embodiment of the present invention.
  • a workpiece processing sheet 1 according to the present embodiment includes a base material 2, a pressure-sensitive adhesive layer 3 laminated on the first surface side (upper side in FIG. 1) of the base material 2, And a release sheet 6 laminated on the pressure-sensitive adhesive layer 3.
  • the release sheet 6 is peeled and removed when the workpiece processing sheet 1 is used, and protects the pressure-sensitive adhesive layer 3 until that time, and may be omitted from the workpiece processing sheet 1 according to the present embodiment.
  • the surface of the base material 2 on the pressure-sensitive adhesive layer 3 side is referred to as a “first surface”
  • the opposite surface the lower surface in FIG. 1
  • the workpiece processing sheet 1 is used to hold a workpiece in a laser marking step and a dicing step on a semiconductor wafer or a glass plate as a workpiece, but is not limited thereto. .
  • the laser marking in the present embodiment is also applicable to a member made of an organic material such as a protective film, an adhesive layer, or a surface layer of a package, as well as a member made of an inorganic material such as a semiconductor wafer or a glass plate. It becomes.
  • the workpiece processing sheet 1 according to the present embodiment is usually formed in a long shape, wound into a roll, and used in a roll-to-roll manner.
  • Substrate (1-1) Physical Properties Arithmetic average roughness (Ra) on the second surface of the substrate 2 (hereinafter sometimes referred to as “back surface of the substrate 2”) 0.01 ⁇ m or more and 0.4 ⁇ m or less, and the maximum height roughness (Rz) is 0.01 ⁇ m or more and 2.5 ⁇ m or less. Further, the light transmittance of the substrate 2 at a wavelength of 532 nm is 40% or more.
  • the arithmetic average roughness (Ra) and the maximum height roughness (Rz) in this specification are measured based on JIS B0601: 1999. The light transmittance in this specification is measured by a direct light receiving method using a spectrophotometer as a measuring instrument. In either case, details of the measurement method are as shown in the test examples described later.
  • the workpiece processing sheet 1 is excellent in laser marking properties and resistant to laser light.
  • the base material 2 satisfies the above-described physical properties, the transmittance of the laser beam used in stealth dicing is improved, and the stealth dicing processability is excellent.
  • the upper limit value of the arithmetic average roughness (Ra) on the back surface of the substrate 2 is 0.4 ⁇ m or less, preferably 0.2 ⁇ m or less, and particularly preferably less than 0.1 ⁇ m.
  • the arithmetic average roughness (Ra) exceeds 0.4 ⁇ m, the unevenness on the back surface of the substrate 2 prevents the transmission of laser light.
  • the lower limit of the arithmetic average roughness (Ra) is 0.01 ⁇ m or more, preferably 0.015 ⁇ m or more, from the viewpoint of preventing blocking.
  • the maximum height roughness (Rz) on the back surface of the substrate 2 is 2.5 ⁇ m or less, preferably 1.5 ⁇ m or less, and particularly preferably 0.5 ⁇ m or less, as described above.
  • the maximum height roughness (Rz) exceeds 2.5 ⁇ m, the unevenness on the back surface of the substrate 2 prevents the transmission of laser light.
  • the lower limit of the maximum height roughness (Rz) is 0.01 ⁇ m or more, preferably 0.013 ⁇ m or more, and particularly preferably 0.1 ⁇ m or more from the viewpoint of preventing blocking.
  • the unevenness on the front surface of the base material 2 is filled with the pressure-sensitive adhesive layer 3.
  • the arithmetic average roughness (Ra) and the maximum height roughness (Rz) of the front surface of the substrate 2 are not particularly limited. However, since the unevenness
  • the thickness is preferably 2.5 ⁇ m or less.
  • the lower limit value of the arithmetic average roughness (Ra) of the front surface of the substrate 2 is not particularly limited, but is usually 0.01 ⁇ m or more in view of the film forming method.
  • the maximum height roughness (Rz) of the front surface of the substrate 2 is preferably 2.5 ⁇ m or less as an upper limit value.
  • the lower limit of the maximum height roughness (Rz) of the front surface of the substrate 2 is not particularly limited, but is usually 0.01 ⁇ m or more in terms of the film forming method.
  • the light transmittance of the substrate 2 at a wavelength of 532 nm is 40% or more, preferably 50% or more, particularly preferably 60% or more, and further preferably 75% or more.
  • the energy of laser light especially laser light with a wavelength of 532 nm
  • the upper limit of the light transmittance at a wavelength of 532 nm is not particularly limited, and may be 100%.
  • the light transmittance at a wavelength of 400 nm of the substrate 2 is preferably 40% or more, more preferably 45% or more, particularly preferably 50% or more, and more preferably 75% or more. It is preferable.
  • the light transmittance at a wavelength of 400 nm is 40% or more, visible light can be easily transmitted. Therefore, the printing formed on the workpiece can be performed more favorably through the base material 2 and the workpiece processing sheet 1. It can be visually recognized.
  • the light transmittance at a wavelength of 800 nm of the substrate 2 is preferably 45% or more, more preferably 55% or more, particularly preferably 65% or more, and further 75% or more. It is preferable.
  • the light transmittance at a wavelength of 800 nm is 45% or more, visible light is easily transmitted. Therefore, the printing formed on the work is better performed through the base material 2 and the work processing sheet 1. It can be visually recognized.
  • the thickness of the substrate 2 is not particularly limited as long as it can function properly in each process in which the workpiece processing sheet 1 is used. Specifically, the thickness of the substrate 2 is preferably 20 ⁇ m or more, particularly preferably 25 ⁇ m or more, and more preferably 50 ⁇ m or more. Further, the thickness of the substrate 2 is preferably 450 ⁇ m or less, particularly preferably 400 ⁇ m or less, and more preferably 350 ⁇ m or less. The workability of a workpiece
  • the substrate 2 is preferably composed of a resin film.
  • the resin film constituting the substrate 2 include polyethylene films such as low density polyethylene (LDPE) film, linear low density polyethylene (LLDPE) film, and high density polyethylene (HDPE) film, polypropylene film, and ethylene-propylene.
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • HDPE high density polyethylene
  • Polyolefin films such as copolymer film, polybutene film, polybutadiene film, polymethylpentene film, ethylene-norbornene copolymer film, norbornene resin film; ethylene-vinyl acetate copolymer film, ethylene- (meth) acrylic acid copolymer Polymer films, ethylene copolymer films such as ethylene- (meth) acrylate copolymer films; polyvinyl chloride films such as polyvinyl chloride films and vinyl chloride copolymer films ; Polyurethane film; polyimide film; polystyrene films; polycarbonate film, polyethylene terephthalate film, a polyester film such as polyethylene terephthalate and polybutylene terephthalate film and a fluorine resin film.
  • modified films such as these crosslinked films and ionomer films are also used. Further, it may be a laminated film in which a plurality of the same or different types of the above films are laminated.
  • (meth) acrylic acid in the present specification means both acrylic acid and methacrylic acid. The same applies to other similar terms.
  • polyolefin film polyvinyl chloride film and ethylene copolymer film are preferable.
  • a polyethylene film is preferable, and a low density polyethylene (LDPE) film is particularly preferable.
  • LDPE low density polyethylene
  • a polyvinyl chloride film is particularly preferable, and among the ethylene copolymer films, an ethylene- (meth) acrylic acid copolymer film is particularly preferable.
  • the above-described physical properties are easily satisfied.
  • These resin films are also preferable from the viewpoints of expandability, work stickability, chip peelability, and the like.
  • one surface or both surfaces may be subjected to a surface treatment such as an oxidation method or a concavo-convex method or a primer treatment as desired.
  • a surface treatment such as an oxidation method or a concavo-convex method or a primer treatment as desired.
  • the oxidation method include corona discharge treatment, plasma discharge treatment, chromium oxidation treatment (wet), flame treatment, hot air treatment, ozone, ultraviolet irradiation treatment, and the like.
  • examples include a thermal spraying method.
  • the base material 2 may contain various additives, such as a coloring agent, a flame retardant, a plasticizer, an antistatic agent, a lubricant, a filler, in the said resin film.
  • additives such as a coloring agent, a flame retardant, a plasticizer, an antistatic agent, a lubricant, a filler, in the said resin film.
  • the resin film constituting the substrate 2 can be manufactured by a manufacturing method corresponding to the type of the resin film, but is mainly manufactured by an extrusion T-die method.
  • a resin film having the arithmetic average roughness (Ra), maximum height roughness (Rz), and light transmittance described above it is necessary to prevent air (bubbles) from being involved when the resin film is formed. There is. For example, by performing extrusion molding under reduced pressure, under vacuum, or the like, the entrainment of such air can be suppressed and a resin film having no bubble trace can be produced.
  • the resin film without a bubble trace can be manufactured also by adjusting the surface roughness of each process rolls, such as a cooling roll at the time of film forming.
  • the method for producing the resin film having the arithmetic average roughness (Ra), the maximum height roughness (Rz), and the light transmittance described above is not limited thereto.
  • the pressure-sensitive adhesive layer 3 included in the workpiece processing sheet 1 according to the present embodiment may be formed of an active energy ray non-curable pressure sensitive adhesive or may be formed of an active energy ray curable pressure sensitive adhesive. May be.
  • the active energy ray non-curable adhesive those having desired adhesive strength and removability are preferable.
  • acrylic adhesive, rubber adhesive, silicone adhesive, urethane adhesive, polyester adhesive An agent, a polyvinyl ether adhesive, etc. can be used.
  • an acrylic pressure-sensitive adhesive that can effectively prevent the workpiece or workpiece from falling off in a dicing step or the like is preferable.
  • the active energy ray-curable adhesive is preferably an ultraviolet curable adhesive.
  • the adhesive residue suppression effect mentioned above will be actualized and exhibited.
  • the active energy ray-curable pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 3 may be mainly composed of a polymer having active energy ray curability, or a polymer having no active energy ray curability and an active energy ray.
  • the main component may be a mixture of a curable polyfunctional monomer and / or oligomer.
  • the active energy ray-curable pressure-sensitive adhesive is mainly composed of a polymer having active energy ray-curability.
  • the polymer having active energy ray curability is a (meth) acrylic acid ester (co) polymer (A) in which a functional group having active energy ray curability (active energy ray curable group) is introduced in the side chain (A) It is preferably “active energy ray-curable polymer (A)”.
  • This active energy ray-curable polymer (A) includes a (meth) acrylic copolymer (a1) having a functional group-containing monomer unit, and an unsaturated group-containing compound (a2) having a substituent bonded to the functional group. ) Is preferably obtained.
  • the acrylic copolymer (a1) is composed of a structural unit derived from a functional group-containing monomer and a structural unit derived from a (meth) acrylic acid ester monomer or a derivative thereof.
  • the functional group-containing monomer as a constituent unit of the acrylic copolymer (a1) is a monomer having a polymerizable double bond and a functional group such as a hydroxyl group, an amino group, a substituted amino group, or an epoxy group in the molecule. It is preferable that
  • the functional group-containing monomer examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and the like. These may be used alone or in combination of two or more.
  • Examples of the (meth) acrylic acid ester monomer constituting the acrylic copolymer (a1) include alkyl (meth) acrylates having 1 to 20 carbon atoms in the alkyl group, cycloalkyl (meth) acrylates, and benzyl (meth) acrylates. Is used. Among these, particularly preferred are alkyl (meth) acrylates having an alkyl group having 1 to 18 carbon atoms, such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and n-butyl (meth) acrylate. 2-ethylhexyl (meth) acrylate or the like is used.
  • the acrylic copolymer (a1) usually contains 3 to 100% by mass, preferably 5 to 40% by mass of a structural unit derived from the functional group-containing monomer, and is a (meth) acrylic acid ester monomer or its
  • the structural unit derived from the derivative is usually contained in a proportion of 0 to 97% by mass, preferably 60 to 95% by mass.
  • the acrylic copolymer (a1) can be obtained by copolymerizing a functional group-containing monomer as described above with a (meth) acrylic acid ester monomer or a derivative thereof in a conventional manner. Dimethylacrylamide, vinyl formate, vinyl acetate, styrene and the like may be copolymerized.
  • an active energy ray-curable polymer ( A) is obtained.
  • the substituent of the unsaturated group-containing compound (a2) can be appropriately selected according to the type of functional group of the functional group-containing monomer unit of the acrylic copolymer (a1).
  • the substituent is preferably an isocyanate group or an epoxy group
  • the substituent is an amino group, a carboxyl group or an aziridinyl group. preferable.
  • the unsaturated group-containing compound (a2) contains 1 to 5, preferably 1 to 2 active energy ray polymerizable carbon-carbon double bonds per molecule.
  • Specific examples of such unsaturated group-containing compound (a2) include, for example, 2-methacryloyloxyethyl isocyanate, meta-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, 1,1- ( Bisacryloyloxymethyl) ethyl isocyanate; acryloyl monoisocyanate compound obtained by reaction of diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth) acrylate; diisocyanate compound or polyisocyanate compound, polyol compound, and hydroxyethyl (meth) Acryloyl monoisocyanate compound obtained by reaction with acrylate; glycidyl (meth) acrylate; (meth) acrylic acid,
  • the unsaturated group-containing compound (a2) is usually used in a proportion of 10 to 100 mol%, preferably 20 to 95 mol%, based on the functional group-containing monomer of the acrylic copolymer (a1).
  • the reaction temperature, pressure, solvent, time, presence of catalyst, catalyst can be selected as appropriate.
  • the functional group present in the acrylic copolymer (a1) reacts with the substituent in the unsaturated group-containing compound (a2), so that the unsaturated group is contained in the acrylic copolymer (a1).
  • an active energy ray-curable polymer (A) is obtained.
  • the weight average molecular weight of the active energy ray-curable polymer (A) thus obtained is preferably 10,000 or more, particularly preferably 150,000 to 1,500,000, and more preferably 200,000 to 1,000,000. Preferably there is.
  • the weight average molecular weight (Mw) in this specification is the value of polystyrene conversion measured by the gel permeation chromatography method (GPC method).
  • the active energy ray-curable pressure-sensitive adhesive is mainly composed of a polymer having active energy ray-curability
  • the active energy ray-curable pressure-sensitive adhesive is an active energy ray-curable monomer and / or oligomer (B ) May be further contained.
  • active energy ray-curable monomer and / or oligomer (B) for example, an ester of a polyhydric alcohol and (meth) acrylic acid or the like can be used.
  • Examples of the active energy ray-curable monomer and / or oligomer (B) include monofunctional acrylic esters such as cyclohexyl (meth) acrylate and isobornyl (meth) acrylate, trimethylolpropane tri (meth) acrylate, Pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, polyethylene Polyfunctional acrylic acid esters such as glycol di (meth) acrylate, dimethyloltricyclodecane di (meth) acrylate, polyester oligo (meth) acrylate, polyurethane oligo ( Data) acrylate, and the like.
  • monofunctional acrylic esters such as
  • the content of the active energy ray-curable monomer and / or oligomer (B) in the active energy ray-curable pressure-sensitive adhesive is 5 to 80.
  • the content is preferably mass%, particularly preferably 20 to 60 mass%.
  • a photopolymerization initiator C
  • the polymerization curing time and the amount of light irradiation can be reduced.
  • photopolymerization initiator (C) examples include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, benzoin dimethyl ketal, 2,4-diethylthioxanthone, 1-hydroxycyclohexyl phenyl ketone, benzyldiphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, ⁇ -chloranthraquinone, (2,4 6-trimethylbenzyldiphenyl) phosphine oxide, 2-benzothiazole-N, N-diethyldithiocarbamate, oligo ⁇ 2-hydroxy-2-me Le-1- [4-
  • the photopolymerization initiator (C) is an active energy ray-curable polymer (A) (when an active energy ray-curable monomer and / or oligomer (B) is blended, the active energy ray-curable polymer (A) ) And the active energy ray-curable monomer and / or oligomer (B) in a total amount of 100 parts by mass)
  • a quantity in the range of 0.1 to 10 parts by weight, in particular 0.5 to 6 parts by weight with respect to 100 parts by weight. Is preferably used.
  • active energy ray-curable pressure-sensitive adhesive in addition to the above components, other components may be appropriately blended.
  • other components include a polymer component or oligomer component (D) that does not have active energy ray curability, and a crosslinking agent (E).
  • polymer component or oligomer component (D) having no active energy ray curability examples include polyacrylates, polyesters, polyurethanes, polycarbonates, polyolefins, etc., and have a weight average molecular weight (Mw) of 3,000 to 2.5 million. Polymers or oligomers are preferred.
  • crosslinking agent (E) a polyfunctional compound having reactivity with the functional group of the active energy ray-curable polymer (A) or the like can be used.
  • polyfunctional compounds include isocyanate compounds, epoxy compounds, amine compounds, melamine compounds, aziridine compounds, hydrazine compounds, aldehyde compounds, oxazoline compounds, metal alkoxide compounds, metal chelate compounds, metal salts, ammonium salts, A reactive phenol resin etc. can be mentioned.
  • tackiness and peelability before curing, strength after curing, adhesion to other layers, storage stability Etc. can be improved.
  • the blending amount of these other components is not particularly limited, and is appropriately determined in the range of 0 to 40 parts by mass with respect to 100 parts by mass of the active energy ray-curable polymer (A).
  • the active energy ray-curable pressure-sensitive adhesive is mainly composed of a mixture of a polymer component having no active energy ray curability and an active energy ray-curable polyfunctional monomer and / or oligomer will be described below. .
  • the polymer component having no active energy ray curability for example, the same components as the acrylic copolymer (a1) described above can be used.
  • the content of the polymer component having no active energy ray curability in the active energy ray curable resin composition is preferably 20 to 99.9% by mass, and more preferably 30 to 80% by mass.
  • the active energy ray-curable polyfunctional monomer and / or oligomer the same one as the above-mentioned component (B) is selected.
  • the blending ratio of the polymer component having no active energy ray curability and the active energy ray curable polyfunctional monomer and / or oligomer is 10 to 150 mass parts of the polyfunctional monomer and / or oligomer with respect to 100 parts by mass of the polymer component. Part is preferable, and in particular, 25 to 100 parts by weight is preferable.
  • the photopolymerization initiator (C) and the crosslinking agent (E) can be appropriately blended as described above.
  • the thickness of the pressure-sensitive adhesive layer 3 is not particularly limited as long as it can function properly in each process in which the workpiece processing sheet 1 is used. Specifically, the thickness is preferably 1 to 50 ⁇ m, particularly preferably 2 to 30 ⁇ m, and further preferably 3 to 20 ⁇ m.
  • the release sheet 6 in the present embodiment protects the pressure-sensitive adhesive layer 3 until the work processing sheet 1 is used.
  • the release sheet 6 in the present embodiment is directly laminated on the pressure-sensitive adhesive layer 3, but is not limited to this, and other layers (such as a die bonding film) are laminated on the pressure-sensitive adhesive layer 3,
  • the release sheet 6 may be laminated on the other layer.
  • the configuration of the release sheet 6 is arbitrary, and examples include a plastic film that has been subjected to a release treatment with a release agent or the like.
  • the plastic film include polyester films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, and polyolefin films such as polypropylene and polyethylene.
  • the release agent silicone-based, fluorine-based, long-chain alkyl-based, and the like can be used, and among these, a silicone-based material that is inexpensive and provides stable performance is preferable.
  • the thickness of the release sheet is not particularly limited, but is usually about 20 to 250 ⁇ m.
  • an adhesive layer is laminated on the surface of the pressure-sensitive adhesive layer 3 opposite to the substrate 2 (hereinafter sometimes referred to as “pressure-sensitive surface”). May be.
  • the workpiece processing sheet 1 according to the present embodiment can be used as a dicing die bonding sheet by including the adhesive layer.
  • a dicing die-bonding sheet a workpiece is attached to the surface of the adhesive layer opposite to the pressure-sensitive adhesive layer, and the adhesive layer separated into individual pieces is obtained by dicing the adhesive layer together with the workpiece. Stacked chips can be obtained. The chip can be easily fixed to an object on which the chip is mounted by the separated adhesive layer.
  • thermosetting adhesive component a material containing a thermoplastic resin and a low molecular weight thermosetting adhesive component, a material containing a B-stage (semi-cured) thermosetting adhesive component, or the like is used. It is preferable.
  • a protective film forming layer may be laminated on the adhesive surface of the adhesive layer 3.
  • the workpiece processing sheet 1 according to the present embodiment can be used as a protective film forming and dicing sheet.
  • the workpiece was applied to the surface of the protective film forming layer opposite to the pressure-sensitive adhesive layer, and the protective film forming layer was diced together with the workpiece.
  • a chip on which a protective film forming layer is laminated can be obtained.
  • the material to be cut one having a circuit formed on one side is preferably used.
  • a protective film forming layer is usually laminated on the surface opposite to the surface on which the circuit is formed. .
  • the individual protective film forming layers are cured at a predetermined timing (preferably before the dicing step), whereby a protective film having sufficient durability can be formed on the workpiece or the chip.
  • the protective film forming layer is preferably made of an uncured curable adhesive.
  • the target of laser marking is not the workpiece itself but the adhesive layer or the protective film.
  • the excellent effects of laser marking and laser light resistance described above can be obtained.
  • a pressure-sensitive adhesive containing a pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 3 on the release surface of the release sheet 6 and, if desired, a solvent.
  • a pressure-sensitive adhesive layer 3 is formed by applying a layer coating agent and drying it. Then, the base material 2 is crimped
  • the pressure-sensitive adhesive layer 3 in the present embodiment can be attached to a jig such as a ring frame.
  • a jig such as a ring frame.
  • the laminate of the base material 2 and the pressure-sensitive adhesive layer 3 may be half-cut if desired, and may have a desired shape, for example, a shape corresponding to a workpiece (semiconductor wafer). In this case, an excess portion generated by the half cut may be removed as appropriate.
  • the workpiece processing sheet 1 according to this embodiment is preferably used for dicing.
  • the dicing include blade dicing, stealth dicing, plasma dicing, laser dicing, and water dicing. Among these, blade dicing and stealth dicing are preferable.
  • the work include, but are not limited to, a semiconductor wafer made of an inorganic material, a glass plate, and various packages.
  • a method of manufacturing a chip by blade dicing or stealth dicing from a semiconductor wafer as a work by using the work processing sheet 1 according to the present embodiment will be described below.
  • laminated structure L a laminated structure having a configuration in which the semiconductor wafer 7 and the ring frame 8 are laminated on the surface of the workpiece processing sheet 1 on the pressure-sensitive adhesive layer 3 side is obtained.
  • the laminated structure L is subjected to a laser marking process.
  • the semiconductor wafer 7 is irradiated with laser light through the workpiece processing sheet 1 to perform desired printing on the semiconductor wafer 7.
  • laser light laser light having a wavelength of 532 nm is mainly used.
  • the laser beam is easily transmitted, and thus the printing by laser marking is favorably performed on the workpiece. It is possible to perform printing with high accuracy. Moreover, since the energy of the laser beam is hardly absorbed in the base material 2, it is suppressed that the base material 2 is burnt. Therefore, there is no decrease in light transmittance due to the burning of the base material 2, and the print formed on the work can be viewed well through the work processing sheet 1.
  • the laminated structure L is subjected to a dicing process.
  • chips are obtained by cutting and dividing the semiconductor wafer 7 using a dicing blade. Thereafter, by performing an expanding process for extending the workpiece processing sheet 1, the interval between the chips is widened so that it can be easily picked up in the next pickup process.
  • a laser beam is irradiated to the semiconductor wafer 7 via the workpiece processing sheet 1 using a laser beam splitting apparatus (laser dicer) for dividing the semiconductor wafer 7.
  • laser beam splitting apparatus laser dicer
  • a modified layer is formed on the substrate.
  • the laser light transmittance by the laser dicer is also excellent.
  • an expanding process for extending the workpiece processing sheet 1 is performed to apply a force (tensile force in the main surface direction) to the semiconductor wafer 7.
  • the semiconductor wafer 7 adhered to the workpiece processing sheet 1 is divided to obtain chips.
  • a chip is picked up from the workpiece processing sheet 1 using a pickup device.
  • the adhesive layer 3 of the work processing sheet 1 is made of an active energy ray-curable adhesive
  • the active energy ray is applied to the adhesive layer 3 via the base material 2 before the pickup. Is preferably irradiated. Thereby, the adhesive force of the adhesive layer 3 can be reduced, and the chip can be easily picked up.
  • the active energy ray an ultraviolet ray, an electron beam or the like is usually used, and an ultraviolet ray that is easy to handle is particularly preferable.
  • the dose of ultraviolet ray is illuminance 50 mW / cm 2 or more, and preferably 1000 mW / cm 2 or less.
  • Quantity of ultraviolet light is preferably at 50 mJ / cm 2 or more, particularly preferably at 80 mJ / cm 2 or more, and further preferably not 100 mJ / cm 2 or more.
  • the amount of ultraviolet light is preferably 2000 mJ / cm 2 or less, particularly preferably 1000 mJ / cm 2 or less, and more preferably 500 mJ / cm 2 or less.
  • the pressure-sensitive adhesive layer 3 is excellent even when the adhesive layer 3 is irradiated with ultraviolet rays through the base material 2 as described above. Harden. For this reason, it is difficult for the adhesive residue to adhere to the picked-up chip.
  • other layers may be provided between the base material 2 and the pressure-sensitive adhesive layer 3 in the workpiece processing sheet 1 or on the surface of the base material 2 opposite to the pressure-sensitive adhesive layer 3.
  • Example 1 Fabrication of base material A low-density polyethylene resin composition was extruded by a small T-die extruder (product name “Labo Plast Mill”, manufactured by Toyo Seiki Seisakusho Co., Ltd.) and formed from a resin film having a thickness of 80 ⁇ m. A material was prepared. When the surface roughness (arithmetic mean roughness (Ra) and maximum height roughness (Rz)) of the back surface of the obtained base material was measured by the method described later, it was as shown in Table 1.
  • Ra surface roughness
  • Rz maximum height roughness
  • a release sheet (product name “SP-PET381031”, manufactured by Lintec Corporation) having a silicone release agent layer formed on one side of a 38 ⁇ m thick polyethylene terephthalate film was prepared.
  • the aforementioned adhesive layer coating agent was applied with a knife coater and dried to form an adhesive layer having a thickness of 10 ⁇ m.
  • the front surface of the base material prepared above was stacked and bonded together to obtain a laminate composed of the base material (80 ⁇ m) / pressure-sensitive adhesive layer (10 ⁇ m) / release sheet.
  • the above-obtained laminate was half-cut from the substrate side so as to cut the laminate of the substrate and the pressure-sensitive adhesive layer to form a circular workpiece processing sheet having a diameter of 370 mm.
  • Example 2 The polyvinyl chloride resin composition was extruded using a small T-die extruder (product name “Lab Plast Mill”, manufactured by Toyo Seiki Seisakusho Co., Ltd.) to prepare a substrate made of a resin film having a thickness of 80 ⁇ m.
  • surface roughness (arithmetic mean roughness (Ra) and maximum height roughness (Rz)) of the back surface of the obtained base material was measured by the method described later, it was as shown in Table 1.
  • a work processing sheet was produced in the same manner as in Example 1 except that the above base material was used.
  • Example 3 A resin composition of an ethylene- (meth) acrylic acid copolymer is extruded by a small T-die extruder (product name “Lab Plast Mill”, manufactured by Toyo Seiki Seisakusho Co., Ltd.), and is formed of a resin film having a thickness of 80 ⁇ m. A material was prepared. When the surface roughness (arithmetic mean roughness (Ra) and maximum height roughness (Rz)) of the back surface of the obtained base material was measured by the method described later, it was as shown in Table 1.
  • Ra surface roughness
  • Rz maximum height roughness
  • a work processing sheet was produced in the same manner as in Example 1 except that the above base material was used.
  • a work processing sheet was produced in the same manner as in Example 1 except that the above base material was used.
  • a work processing sheet was produced in the same manner as in Example 1 except that the above base material was used.
  • a work processing sheet was produced in the same manner as in Example 1 except that the above base material was used.
  • a silicon wafer is irradiated with laser light having a wavelength of 532 nm through a workpiece processing sheet, and printing is performed on the silicon wafer by laser marking (character size: 0) 2 mm ⁇ 0.3 mm, character spacing: 0.3 mm, number of characters: 20 characters).
  • the workpiece processing sheet was peeled from the silicon wafer, and the print formed on the silicon wafer was confirmed using a digital microscope (manufactured by Keyence Corporation, product name “Digital Microscope VHX-1000”, magnification: 100 ⁇ ). .
  • the print had no roughness and was formed with high accuracy ⁇ , the print had a slight roughness, but the print was formed with a certain degree of accuracy ⁇ , the print was rough and the accuracy Was evaluated as x.
  • Table 1 The results are shown in Table 1.
  • the work processing sheets obtained in the examples were excellent in laser marking properties and resistant to laser light.
  • the workpiece processing sheet according to the present invention is suitably used for applications including a step of laser marking a workpiece such as a semiconductor wafer or a glass plate over the workpiece processing sheet.

Abstract

A workpiece processing sheet 1 provided with at least a base material 2 and an adhesive agent layer 3 stacked on a first surface side of the base material 2, wherein: the base material 2 on a second surface thereof has an arithmetic-mean coarseness (Ra) of not less than 0.01 μm and not more than 0.4 μm; the base material 2 has on the second surface thereof a maximum height coarseness (Rz) of not less than 0.01 μm and not more than 2.5 μm; and the base material 2 has a light transmittance of not less than 40% with respect to wavelength of 532 nm. The workpiece processing sheet 1 has excellent laser marking property and resistance to laser light.

Description

ワーク加工用シートWork sheet
 本発明は、ワーク加工用シートに関するものであり、特に、ワークがレーザーマーキングされる場合に好適なワーク加工用シートに関するものである。 The present invention relates to a workpiece processing sheet, and particularly to a workpiece processing sheet that is suitable when the workpiece is laser-marked.
 近年、フェイスダウン方式と呼ばれる実装法により半導体装置を製造することが行われている。この方法では、バンプ等の電極が形成された回路面を有する半導体チップを実装する際に、半導体チップの回路面側をリードフレーム等のチップ搭載部に接合している。したがって、回路が形成されていない半導体チップの裏面側が露出する構造となる。 In recent years, semiconductor devices have been manufactured by a mounting method called a face-down method. In this method, when a semiconductor chip having a circuit surface on which electrodes such as bumps are formed is mounted, the circuit surface side of the semiconductor chip is bonded to a chip mounting portion such as a lead frame. Therefore, the back surface side of the semiconductor chip on which no circuit is formed is exposed.
 このため、半導体チップの裏面側には、半導体チップを保護するために、硬質の有機材料からなる保護膜が形成されることが多い。そこで、例えば特許文献1は、上記の保護膜を形成することのできる保護膜形成層がダイシングシート上に形成された保護膜形成兼ダイシング用シートを開示している。この保護膜形成兼ダイシング用シートによれば、半導体ウエハに保護膜を形成した後、続いてダイシングを行うことができ、もって保護膜付き半導体チップを得ることができる。 For this reason, a protective film made of a hard organic material is often formed on the back side of the semiconductor chip in order to protect the semiconductor chip. Thus, for example, Patent Document 1 discloses a protective film forming and dicing sheet in which a protective film forming layer capable of forming the protective film is formed on a dicing sheet. According to this protective film forming and dicing sheet, after the protective film is formed on the semiconductor wafer, dicing can be subsequently performed, and thus a semiconductor chip with a protective film can be obtained.
 なお、上記のダイシングシート自体は、基材およびその片面に設けられた粘着剤層を備えている。粘着剤層の粘着剤としては、保護膜付き半導体チップのピックアップ時の剥離性を向上させるために、紫外線照射によって粘着力が低下する紫外線硬化性の粘着剤が使用されることがある。 In addition, said dicing sheet itself is equipped with the base material and the adhesive layer provided in the single side | surface. As the pressure-sensitive adhesive for the pressure-sensitive adhesive layer, an ultraviolet curable pressure-sensitive adhesive whose adhesive strength is reduced by ultraviolet irradiation may be used in order to improve the peelability at the time of picking up the semiconductor chip with a protective film.
 上記保護膜には、通常、当該半導体チップの品番等を表示するために、印字が施される。その印字方法としては、保護膜に対してレーザー光を照射するレーザーマーキング法が一般化している。保護膜に対してレーザーマーキングを施す場合、保護膜形成兼ダイシング用シートのダイシングシート越しに、保護膜に対してレーザー光を照射することとなる。 The above protective film is usually printed in order to display the product number of the semiconductor chip. As the printing method, a laser marking method in which a protective film is irradiated with laser light has become common. When laser marking is performed on the protective film, the protective film is irradiated with laser light through the dicing sheet of the protective film forming and dicing sheet.
 上記保護膜は、黒色の樹脂組成物からなることが一般的であり、かかる保護膜に対してレーザーマーキングを施す場合、一般的には、レーザーの出力が比較的弱くても、保護膜に良好に印字することができる。 The protective film is generally composed of a black resin composition. When laser marking is applied to such a protective film, the protective film is generally good even if the laser output is relatively weak. Can be printed.
特開2006-140348号公報JP 2006-140348 A
 ところで近年、ワークとしての半導体ウエハやガラス板に対してレーザーマーキングを施すことが提案されている。このように無機材料にレーザーマーキングを施す場合、印字を良好に行うことができず、形成された印字が荒れたものとなり、印字の精度が低くなってしまうという問題が生じ易い。 In recent years, it has been proposed to apply laser marking to a semiconductor wafer or glass plate as a workpiece. As described above, when laser marking is performed on an inorganic material, printing cannot be performed satisfactorily, and the formed printing becomes rough, so that the problem of low printing accuracy tends to occur.
 また、上記のように無機材料にレーザーマーキングを施す場合、レーザーの出力を比較的大きくする必要があり、それにより、ダイシングシートの基材が焼け易くなってしまう。そうなると、その焼けた部分の光線透過率が低下し、ワークに形成された印字を良好に視認することができなくなる。また、ダイシングシートの粘着剤層が紫外線硬化性の場合、当該粘着剤層を紫外線硬化させるときに、基材の焼けた部分における紫外線の透過性が悪くなり、その結果、当該部分の粘着剤層が十分に硬化できず、ピックアップしたチップに粘着剤が付着してしまう糊残りの問題が生じる。 In addition, when laser marking is performed on an inorganic material as described above, it is necessary to relatively increase the output of the laser, which makes it easy to burn the base material of the dicing sheet. If it becomes so, the light transmittance of the burned part will fall and it will become impossible to visually recognize the print formed on the work. In addition, when the pressure-sensitive adhesive layer of the dicing sheet is UV curable, when the pressure-sensitive adhesive layer is UV-cured, the UV transmittance at the burned portion of the substrate is deteriorated. As a result, the pressure-sensitive adhesive layer of the portion However, there is a problem of adhesive residue that cannot be cured sufficiently and the adhesive is attached to the picked-up chip.
 本発明は、上記のような実状に鑑みてなされたものであり、レーザーマーキング性に優れるとともに、レーザー光に対して耐性を有するワーク加工用シートを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a workpiece processing sheet that is excellent in laser marking properties and resistant to laser light.
 上記目的を達成するために、第1に本発明は、少なくとも、基材と、前記基材の第1の面側に積層された粘着剤層とを備えたワーク加工用シートであって、前記基材の第2の面における算術平均粗さ(Ra)が、0.01μm以上、0.4μm以下であり、前記基材の第2の面における最大高さ粗さ(Rz)が、0.01μm以上、2.5μm以下であり、前記基材の波長532nmの光線透過率が、40%以上であることを特徴とするワーク加工用シートを提供する(発明1)。 In order to achieve the above object, first, the present invention is a workpiece processing sheet comprising at least a base material and an adhesive layer laminated on the first surface side of the base material, The arithmetic average roughness (Ra) on the second surface of the substrate is 0.01 μm or more and 0.4 μm or less, and the maximum height roughness (Rz) on the second surface of the substrate is 0.00. Provided is a workpiece processing sheet characterized by having a light transmittance at a wavelength of 532 nm of the substrate of not less than 01 μm and not more than 2.5 μm and not less than 40% (Invention 1).
 上記発明(発明1)においては、基材の物性が上記の通りであることで、レーザーマーキングに使用するレーザー光、特に波長532nmのレーザー光が、基材、ひいてはワーク加工用シートを透過し易いものとなる。これにより、ワークに対してレーザーマーキングによる印字を良好に行うことができ、精度の高い印字を形成することができる。また、基材においてレーザー光のエネルギーが吸収され難く、基材が焼けて印字されてしまうことが抑制される。したがって、基材の焼けに起因する光線透過性の低下がなく、ワークに形成された印字を、ワーク加工用シートを介して良好に視認することができる。 In the said invention (invention 1), since the physical property of a base material is as above, the laser beam used for laser marking, especially a laser beam with a wavelength of 532 nm is easy to permeate | transmit a base material and by extension, the workpiece | work sheet | seat. It will be a thing. Thereby, printing by laser marking can be performed satisfactorily on the workpiece, and high-precision printing can be formed. In addition, it is difficult for the substrate to absorb the energy of the laser beam, and the substrate is prevented from being burned and printed. Therefore, there is no decrease in light transmittance due to the burning of the base material, and the print formed on the work can be satisfactorily viewed through the work processing sheet.
 上記発明(発明1)においては、前記基材の波長400nmの光線透過率が、40%以上であることが好ましい(発明2)。 In the above invention (Invention 1), it is preferable that the light transmittance at a wavelength of 400 nm of the substrate is 40% or more (Invention 2).
 上記発明(発明1,2)においては、前記基材の波長800nmの光線透過率が、45%以上であることが好ましい(発明3)。 In the above inventions (Inventions 1 and 2), the substrate preferably has a light transmittance of a wavelength of 800 nm of 45% or more (Invention 3).
 上記発明(発明1~3)に係るワーク加工用シートは、ワークに対して、前記ワーク加工用シート越しにレーザーマーキングを行う工程を含む用途に用いられることが好ましい(発明4)。 The work processing sheet according to the above invention (Inventions 1 to 3) is preferably used for an application including a step of performing laser marking on the work through the work processing sheet (Invention 4).
 上記発明(発明1~4)に係るワーク加工用シートは、ダイシングに用いられることが好ましい(発明5)。 The work processing sheet according to the above inventions (Inventions 1 to 4) is preferably used for dicing (Invention 5).
 上記発明(発明5)に係るワーク加工用シートは、ステルスダイシングに用いられることが好ましい(発明6)。 The workpiece processing sheet according to the above invention (Invention 5) is preferably used for stealth dicing (Invention 6).
 本発明に係るワーク加工用シートは、レーザーマーキング性に優れるとともに、レーザー光に対して耐性を有する。 The work processing sheet according to the present invention is excellent in laser marking properties and resistant to laser light.
本発明の一実施形態に係るワーク加工用シートの断面図である。It is sectional drawing of the sheet | seat for workpiece | work processing which concerns on one Embodiment of this invention. 本発明の一実施形態に係るワーク加工用シートの使用例、具体的には積層構造体を示す断面図である。It is sectional drawing which shows the usage example of the workpiece | work processing sheet which concerns on one Embodiment of this invention, specifically a laminated structure.
 以下、本発明の実施形態について説明する。
 図1は本発明の一実施形態に係るワーク加工用シートの断面図である。図1に示すように、本実施形態に係るワーク加工用シート1は、基材2と、基材2の第1の面側(図1中、上側)に積層された粘着剤層3と、粘着剤層3上に積層された剥離シート6とを備えて構成される。剥離シート6は、ワーク加工用シート1の使用時に剥離除去され、それまで粘着剤層3を保護するものであり、本実施形態に係るワーク加工用シート1から省略されてもよい。ここで、基材2における粘着剤層3側の面を「第1の面」、その反対側の面(図1中、下面)を「第2の面」という。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a cross-sectional view of a workpiece processing sheet according to an embodiment of the present invention. As shown in FIG. 1, a workpiece processing sheet 1 according to the present embodiment includes a base material 2, a pressure-sensitive adhesive layer 3 laminated on the first surface side (upper side in FIG. 1) of the base material 2, And a release sheet 6 laminated on the pressure-sensitive adhesive layer 3. The release sheet 6 is peeled and removed when the workpiece processing sheet 1 is used, and protects the pressure-sensitive adhesive layer 3 until that time, and may be omitted from the workpiece processing sheet 1 according to the present embodiment. Here, the surface of the base material 2 on the pressure-sensitive adhesive layer 3 side is referred to as a “first surface”, and the opposite surface (the lower surface in FIG. 1) is referred to as a “second surface”.
 本実施形態に係るワーク加工用シート1は、一例として、ワークとしての半導体ウエハやガラス板へのレーザーマーキング工程およびダイシング工程においてワークを保持するために用いられるが、これに限定されるものではない。 As an example, the workpiece processing sheet 1 according to the present embodiment is used to hold a workpiece in a laser marking step and a dicing step on a semiconductor wafer or a glass plate as a workpiece, but is not limited thereto. .
 また、本実施形態におけるレーザーマーキングは、半導体ウエハやガラス板等の無機材料からなる部材の他、それらに積層される保護膜や接着剤層、あるいはパッケージの表層等の有機材料からなる部材も対象となる。 The laser marking in the present embodiment is also applicable to a member made of an organic material such as a protective film, an adhesive layer, or a surface layer of a package, as well as a member made of an inorganic material such as a semiconductor wafer or a glass plate. It becomes.
 本実施形態に係るワーク加工用シート1は、通常、長尺に形成されてロール状に巻き取られ、ロール・トゥ・ロールで使用される。 The workpiece processing sheet 1 according to the present embodiment is usually formed in a long shape, wound into a roll, and used in a roll-to-roll manner.
1.ワーク加工用シートの構成部材
(1)基材
(1-1)物性
 基材2の第2の面(以下「基材2の背面」という場合がある。)における算術平均粗さ(Ra)は、0.01μm以上、0.4μm以下であり、最大高さ粗さ(Rz)は、0.01μm以上、2.5μm以下である。また、基材2の波長532nmの光線透過率は、40%以上である。本明細書における算術平均粗さ(Ra)および最大高さ粗さ(Rz)は、JIS B0601:1999に基づいて測定したものである。また、本明細書における光線透過率は、測定器具として分光光度計を使用し、直接受光法で測定したものである。いずれも、測定方法の詳細は後述する試験例に示す通りである。
1. Components for Workpiece Processing Sheet (1) Substrate (1-1) Physical Properties Arithmetic average roughness (Ra) on the second surface of the substrate 2 (hereinafter sometimes referred to as “back surface of the substrate 2”) 0.01 μm or more and 0.4 μm or less, and the maximum height roughness (Rz) is 0.01 μm or more and 2.5 μm or less. Further, the light transmittance of the substrate 2 at a wavelength of 532 nm is 40% or more. The arithmetic average roughness (Ra) and the maximum height roughness (Rz) in this specification are measured based on JIS B0601: 1999. The light transmittance in this specification is measured by a direct light receiving method using a spectrophotometer as a measuring instrument. In either case, details of the measurement method are as shown in the test examples described later.
 基材2の第2の面の算術平均粗さ(Ra)および最大高さ粗さ(Rz)が上記範囲にあり、かつ、基材2の波長532nmの光線透過率が上記であることにより、レーザーマーキングに使用するレーザー光、特に波長532nmのレーザー光が、基材2、ひいてはワーク加工用シート1を透過し易いものとなる。これにより、ワークに対してレーザーマーキングによる印字を良好に行うことができ、精度の高い印字を形成することができる。また、基材2においてレーザー光のエネルギーが吸収され難く、基材2が焼けて印字されてしまうことが抑制される。したがって、基材2の焼けに起因する光線透過性の低下がなく、ワークに形成された印字を、ワーク加工用シート1を介して良好に視認することができる。さらに、粘着剤層3が紫外線硬化性粘着剤から構成されている場合には、基材2を介して粘着剤層3に紫外線を照射したときに、当該紫外線は問題なく粘着剤層3に到達し、粘着剤層3は良好に硬化する。そのため、ピックアップしたチップに粘着剤が付着してしまう糊残りの問題が発生し難い。すなわち、本実施形態に係るワーク加工用シート1は、レーザーマーキング性に優れるとともに、レーザー光に対して耐性を有する。 When the arithmetic mean roughness (Ra) and the maximum height roughness (Rz) of the second surface of the substrate 2 are in the above range, and the light transmittance at a wavelength of 532 nm of the substrate 2 is as described above, Laser light used for laser marking, in particular laser light having a wavelength of 532 nm, can easily pass through the base material 2 and thus the workpiece processing sheet 1. Thereby, it is possible to satisfactorily perform printing by laser marking on the workpiece, and to form highly accurate printing. Further, it is difficult for the substrate 2 to absorb the energy of the laser beam, and it is suppressed that the substrate 2 is burned and printed. Therefore, there is no decrease in light transmittance due to the burning of the base material 2, and the print formed on the work can be viewed well through the work processing sheet 1. Further, when the pressure-sensitive adhesive layer 3 is composed of an ultraviolet curable pressure-sensitive adhesive, when the pressure-sensitive adhesive layer 3 is irradiated with ultraviolet rays through the substrate 2, the ultraviolet light reaches the pressure-sensitive adhesive layer 3 without any problem. The pressure-sensitive adhesive layer 3 is cured well. For this reason, it is difficult for the adhesive residue to adhere to the picked-up chip. That is, the workpiece processing sheet 1 according to the present embodiment is excellent in laser marking properties and resistant to laser light.
 さらに、基材2が上記物性を満たすことで、ステルスダイシングで使用するレーザー光の透過性も良好となり、ステルスダイシングの加工性が優れたものとなる。 Furthermore, when the base material 2 satisfies the above-described physical properties, the transmittance of the laser beam used in stealth dicing is improved, and the stealth dicing processability is excellent.
 また、基材2の第2の面の算術平均粗さ(Ra)および最大高さ粗さ(Rz)が上記範囲にあることで、ワーク加工用シート1のブロッキングも抑制することができる。すなわち、ワーク加工用シート1の巻取体からの繰り出しを良好に行うことができるとともに、繰り出しの際に意図しない界面での剥離が生じ難い。 In addition, since the arithmetic average roughness (Ra) and the maximum height roughness (Rz) of the second surface of the substrate 2 are in the above ranges, blocking of the workpiece processing sheet 1 can also be suppressed. That is, it is possible to satisfactorily feed the workpiece processing sheet 1 from the winding body, and it is difficult to cause peeling at an unintended interface during feeding.
 基材2の背面における算術平均粗さ(Ra)の上限値は、上記の通り0.4μm以下であり、好ましくは0.2μm以下であり、特に好ましくは0.1μm未満である。算術平均粗さ(Ra)が0.4μmを超えると、基材2の背面の凹凸にてレーザー光の透過が妨げられる。一方、上記算術平均粗さ(Ra)の下限値は、ブロッキング防止の観点から、0.01μm以上であり、好ましくは0.015μm以上である。 As described above, the upper limit value of the arithmetic average roughness (Ra) on the back surface of the substrate 2 is 0.4 μm or less, preferably 0.2 μm or less, and particularly preferably less than 0.1 μm. When the arithmetic average roughness (Ra) exceeds 0.4 μm, the unevenness on the back surface of the substrate 2 prevents the transmission of laser light. On the other hand, the lower limit of the arithmetic average roughness (Ra) is 0.01 μm or more, preferably 0.015 μm or more, from the viewpoint of preventing blocking.
 また、基材2の背面における最大高さ粗さ(Rz)は、上記の通り2.5μm以下であり、好ましくは1.5μm以下であり、特に好ましくは0.5μm以下である。最大高さ粗さ(Rz)が2.5μmを超えると、基材2の背面の凹凸にてレーザー光の透過が妨げられる。一方、上記最大高さ粗さ(Rz)の下限値は、ブロッキング防止の観点から、0.01μm以上であり、好ましくは0.013μm以上であり、特に好ましくは0.1μm以上である。 Also, the maximum height roughness (Rz) on the back surface of the substrate 2 is 2.5 μm or less, preferably 1.5 μm or less, and particularly preferably 0.5 μm or less, as described above. When the maximum height roughness (Rz) exceeds 2.5 μm, the unevenness on the back surface of the substrate 2 prevents the transmission of laser light. On the other hand, the lower limit of the maximum height roughness (Rz) is 0.01 μm or more, preferably 0.013 μm or more, and particularly preferably 0.1 μm or more from the viewpoint of preventing blocking.
 基材2の第1の面(以下「基材2の正面」という場合がある。)には、粘着剤層3が積層され、基材2の正面の凹凸が粘着剤層3によって埋められるため、基材2の正面の算術平均粗さ(Ra)および最大高さ粗さ(Rz)は、特に限定されない。しかしながら、それらの値が大き過ぎると、基材2の正面の凹凸が粘着剤層3によって埋めきれない場合もあり得るため、基材2の正面の算術平均粗さ(Ra)は、上限値として、2.5μm以下であることが好ましい。基材2の正面の算術平均粗さ(Ra)の下限値は、特に限定されないが、フィルムの製膜方法上、通常は0.01μm以上である。また、上記の理由により、基材2の正面の最大高さ粗さ(Rz)は、上限値として、2.5μm以下であることが好ましい。基材2の正面の最大高さ粗さ(Rz)の下限値は、特に限定されないが、フィルムの製膜方法上、通常は0.01μm以上である。 Since the pressure-sensitive adhesive layer 3 is laminated on the first surface of the base material 2 (hereinafter sometimes referred to as “the front surface of the base material 2”), the unevenness on the front surface of the base material 2 is filled with the pressure-sensitive adhesive layer 3. The arithmetic average roughness (Ra) and the maximum height roughness (Rz) of the front surface of the substrate 2 are not particularly limited. However, since the unevenness | corrugation of the front surface of the base material 2 may not be filled with the adhesive layer 3 when those values are too large, arithmetic mean roughness (Ra) of the front surface of the base material 2 is set as an upper limit. The thickness is preferably 2.5 μm or less. The lower limit value of the arithmetic average roughness (Ra) of the front surface of the substrate 2 is not particularly limited, but is usually 0.01 μm or more in view of the film forming method. For the above reason, the maximum height roughness (Rz) of the front surface of the substrate 2 is preferably 2.5 μm or less as an upper limit value. The lower limit of the maximum height roughness (Rz) of the front surface of the substrate 2 is not particularly limited, but is usually 0.01 μm or more in terms of the film forming method.
 基材2の波長532nmの光線透過率は、上記の通り、40%以上であり、好ましくは50%以上であり、特に好ましくは60%以上であり、さらに好ましくは75%以上である。波長532nmの光線透過率が40%未満であると、レーザーマーキングで主として使用されるレーザー光(特に波長532nmのレーザー光)のエネルギーが基材2で吸収され、基材2に焼けが発生し易くなる。なお、波長532nmの光線透過率の上限値は特に限定されず、100%であってもよい。 As described above, the light transmittance of the substrate 2 at a wavelength of 532 nm is 40% or more, preferably 50% or more, particularly preferably 60% or more, and further preferably 75% or more. When the light transmittance at a wavelength of 532 nm is less than 40%, the energy of laser light (especially laser light with a wavelength of 532 nm) mainly used in laser marking is absorbed by the base material 2 and the base material 2 is easily burnt. Become. In addition, the upper limit of the light transmittance at a wavelength of 532 nm is not particularly limited, and may be 100%.
 また、基材2の波長400nmの光線透過率は、40%以上であることが好ましく、45%以上であることがより好ましく、特に50%以上であることが好ましく、さらには75%以上であることが好ましい。波長400nmの光線透過率が40%以上であることにより、可視光が透過し易いものとなり、したがって、基材2、ひいてはワーク加工用シート1を介して、ワークに形成された印字をより良好に視認することができる。 The light transmittance at a wavelength of 400 nm of the substrate 2 is preferably 40% or more, more preferably 45% or more, particularly preferably 50% or more, and more preferably 75% or more. It is preferable. When the light transmittance at a wavelength of 400 nm is 40% or more, visible light can be easily transmitted. Therefore, the printing formed on the workpiece can be performed more favorably through the base material 2 and the workpiece processing sheet 1. It can be visually recognized.
 さらに、基材2の波長800nmの光線透過率は、45%以上であることが好ましく、55%以上であることがより好ましく、特に65%以上であることが好ましく、さらには75%以上であることが好ましい。波長800nmの光線透過率が45%以上であることにより、可視光が透過し易いものとなり、したがって、基材2、ひいてはワーク加工用シート1を介して、ワークに形成された印字をより良好に視認することができる。 Furthermore, the light transmittance at a wavelength of 800 nm of the substrate 2 is preferably 45% or more, more preferably 55% or more, particularly preferably 65% or more, and further 75% or more. It is preferable. When the light transmittance at a wavelength of 800 nm is 45% or more, visible light is easily transmitted. Therefore, the printing formed on the work is better performed through the base material 2 and the work processing sheet 1. It can be visually recognized.
(1-2)厚さ
 基材2の厚さは、ワーク加工用シート1が使用される各工程において適切に機能できる限り、特に限定されない。具体的には、基材2の厚さは、20μm以上であることが好ましく、特に25μm以上であることが好ましく、さらには50μm以上であることが好ましい。また、基材2の厚さは、450μm以下であることが好ましく、特に400μm以下であることが好ましく、さらには350μm以下であることが好ましい。基材2の厚さが上記範囲にあることで、ワークの加工性とレーザー光の透過性とを良好に維持することができる。
(1-2) Thickness The thickness of the substrate 2 is not particularly limited as long as it can function properly in each process in which the workpiece processing sheet 1 is used. Specifically, the thickness of the substrate 2 is preferably 20 μm or more, particularly preferably 25 μm or more, and more preferably 50 μm or more. Further, the thickness of the substrate 2 is preferably 450 μm or less, particularly preferably 400 μm or less, and more preferably 350 μm or less. The workability of a workpiece | work and the transmittance | permeability of a laser beam can be favorably maintained because the thickness of the base material 2 exists in the said range.
(1-3)材料
 基材2は、樹脂フィルムによって構成されることが好ましい。基材2を構成する樹脂フィルムの具体例としては、低密度ポリエチレン(LDPE)フィルム、直鎖低密度ポリエチレン(LLDPE)フィルム、高密度ポリエチレン(HDPE)フィルム等のポリエチレンフィルム、ポリプロピレンフィルム、エチレン-プロピレン共重合体フィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、エチレン-ノルボルネン共重合体フィルム、ノルボルネン樹脂フィルム等のポリオレフィン系フィルム;エチレン-酢酸ビニル共重合体フィルム、エチレン-(メタ)アクリル酸共重合体フィルム、エチレン-(メタ)アクリル酸エステル共重合体フィルム等のエチレン系共重合フィルム;ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム等のポリ塩化ビニル系フィルム;ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム等のポリエステル系フィルム;ポリウレタンフィルム;ポリイミドフィルム;ポリスチレンフィルム;ポリカーボネートフィルム;フッ素樹脂フィルムなどが挙げられる。また、これらの架橋フィルム、アイオノマーフィルムのような変性フィルムも用いられる。さらに上記フィルムの同種または異種を複数積層した積層フィルムであってもよい。なお、本明細書における「(メタ)アクリル酸」は、アクリル酸およびメタクリル酸の両方を意味する。他の類似用語についても同様である。
(1-3) Material The substrate 2 is preferably composed of a resin film. Specific examples of the resin film constituting the substrate 2 include polyethylene films such as low density polyethylene (LDPE) film, linear low density polyethylene (LLDPE) film, and high density polyethylene (HDPE) film, polypropylene film, and ethylene-propylene. Polyolefin films such as copolymer film, polybutene film, polybutadiene film, polymethylpentene film, ethylene-norbornene copolymer film, norbornene resin film; ethylene-vinyl acetate copolymer film, ethylene- (meth) acrylic acid copolymer Polymer films, ethylene copolymer films such as ethylene- (meth) acrylate copolymer films; polyvinyl chloride films such as polyvinyl chloride films and vinyl chloride copolymer films ; Polyurethane film; polyimide film; polystyrene films; polycarbonate film, polyethylene terephthalate film, a polyester film such as polyethylene terephthalate and polybutylene terephthalate film and a fluorine resin film. In addition, modified films such as these crosslinked films and ionomer films are also used. Further, it may be a laminated film in which a plurality of the same or different types of the above films are laminated. In addition, “(meth) acrylic acid” in the present specification means both acrylic acid and methacrylic acid. The same applies to other similar terms.
 上記の中でも、ポリオレフィン系フィルム、ポリ塩化ビニル系フィルムおよびエチレン系共重合フィルムが好ましい。ポリオレフィン系フィルムの中でも、ポリエチレンフィルムが好ましく、特に低密度ポリエチレン(LDPE)フィルムが好ましい。また、ポリ塩化ビニル系フィルムの中でも、ポリ塩化ビニルフィルムが特に好ましく、エチレン系共重合フィルムの中でも、エチレン-(メタ)アクリル酸共重合体フィルムが特に好ましい。これらの樹脂フィルムによれば、前述した物性を満たし易い。また、これらの樹脂フィルムは、エキスパンド性、ワーク貼付性、チップ剥離性等の観点からも好ましい。 Among these, polyolefin film, polyvinyl chloride film and ethylene copolymer film are preferable. Among the polyolefin-based films, a polyethylene film is preferable, and a low density polyethylene (LDPE) film is particularly preferable. Further, among the polyvinyl chloride films, a polyvinyl chloride film is particularly preferable, and among the ethylene copolymer films, an ethylene- (meth) acrylic acid copolymer film is particularly preferable. According to these resin films, the above-described physical properties are easily satisfied. These resin films are also preferable from the viewpoints of expandability, work stickability, chip peelability, and the like.
 上記樹脂フィルムは、その表面に積層される粘着剤層3との密着性を向上させる目的で、所望により片面または両面に、酸化法や凹凸化法などによる表面処理、あるいはプライマー処理を施すことができる。上記酸化法としては、例えばコロナ放電処理、プラズマ放電処理、クロム酸化処理(湿式)、火炎処理、熱風処理、オゾン、紫外線照射処理などが挙げられ、また、凹凸化法としては、例えばサンドブラスト法、溶射処理法などが挙げられる。 For the purpose of improving the adhesiveness with the pressure-sensitive adhesive layer 3 laminated on the surface of the resin film, one surface or both surfaces may be subjected to a surface treatment such as an oxidation method or a concavo-convex method or a primer treatment as desired. it can. Examples of the oxidation method include corona discharge treatment, plasma discharge treatment, chromium oxidation treatment (wet), flame treatment, hot air treatment, ozone, ultraviolet irradiation treatment, and the like. Examples include a thermal spraying method.
 なお、基材2は、上記樹脂フィルム中に、着色剤、難燃剤、可塑剤、帯電防止剤、滑剤、フィラー等の各種添加剤を含有してもよい。 In addition, the base material 2 may contain various additives, such as a coloring agent, a flame retardant, a plasticizer, an antistatic agent, a lubricant, a filler, in the said resin film.
(1-4)製造方法
 基材2を構成する樹脂フィルムは、樹脂フィルムの種類に応じた製造方法によって製造することができるが、主に押出成形のTダイ法によって製造される。前述した算術平均粗さ(Ra)、最大高さ粗さ(Rz)および光線透過率を有する樹脂フィルムを製造するためには、樹脂フィルムの製膜時にエア(気泡)を巻き込まないようにする必要がある。例えば、減圧下、真空下等で押出成形することにより、かかるエアの巻き込みを抑制し、気泡跡のない樹脂フィルムを製造することができる。また、製膜時のクーリングロール等の各工程ロールの表面粗さを調整することでも、気泡跡のない樹脂フィルムを製造することができる。ただし、前述した算術平均粗さ(Ra)、最大高さ粗さ(Rz)および光線透過率を有する樹脂フィルムの製造方法は、これに限定されるものではない。
(1-4) Manufacturing Method The resin film constituting the substrate 2 can be manufactured by a manufacturing method corresponding to the type of the resin film, but is mainly manufactured by an extrusion T-die method. In order to produce a resin film having the arithmetic average roughness (Ra), maximum height roughness (Rz), and light transmittance described above, it is necessary to prevent air (bubbles) from being involved when the resin film is formed. There is. For example, by performing extrusion molding under reduced pressure, under vacuum, or the like, the entrainment of such air can be suppressed and a resin film having no bubble trace can be produced. Moreover, the resin film without a bubble trace can be manufactured also by adjusting the surface roughness of each process rolls, such as a cooling roll at the time of film forming. However, the method for producing the resin film having the arithmetic average roughness (Ra), the maximum height roughness (Rz), and the light transmittance described above is not limited thereto.
(2)粘着剤層
 本実施形態に係るワーク加工用シート1が備える粘着剤層3は、活性エネルギー線非硬化性粘着剤から構成されてもよいし、活性エネルギー線硬化性粘着剤から構成されてもよい。活性エネルギー線非硬化性粘着剤としては、所望の粘着力および再剥離性を有するものが好ましく、例えば、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ポリエステル系粘着剤、ポリビニルエーテル系粘着剤等を使用することができる。これらの中でも、ダイシング工程等にてワークまたは加工物の脱落を効果的に抑制することのできるアクリル系粘着剤が好ましい。
(2) Pressure-sensitive adhesive layer The pressure-sensitive adhesive layer 3 included in the workpiece processing sheet 1 according to the present embodiment may be formed of an active energy ray non-curable pressure sensitive adhesive or may be formed of an active energy ray curable pressure sensitive adhesive. May be. As the active energy ray non-curable adhesive, those having desired adhesive strength and removability are preferable. For example, acrylic adhesive, rubber adhesive, silicone adhesive, urethane adhesive, polyester adhesive An agent, a polyvinyl ether adhesive, etc. can be used. Among these, an acrylic pressure-sensitive adhesive that can effectively prevent the workpiece or workpiece from falling off in a dicing step or the like is preferable.
 一方、活性エネルギー線硬化性粘着剤は、活性エネルギー線照射により粘着力が低下するため、ワークまたは加工物とワーク加工用シート1とを分離させたいときに、活性エネルギー線照射することにより、容易に分離させることができる。本実施形態では、上記活性エネルギー線硬化性粘着剤は、紫外線硬化性粘着剤であることが好ましい。これにより、前述した糊残り抑制効果が顕在化して発揮されることとなる。 On the other hand, since the adhesive strength of the active energy ray-curable adhesive is reduced by irradiation with the active energy ray, it is easy to irradiate the active energy ray when it is desired to separate the workpiece or the workpiece and the work processing sheet 1. Can be separated. In the present embodiment, the active energy ray-curable adhesive is preferably an ultraviolet curable adhesive. Thereby, the adhesive residue suppression effect mentioned above will be actualized and exhibited.
 粘着剤層3を構成する活性エネルギー線硬化性粘着剤は、活性エネルギー線硬化性を有するポリマーを主成分とするものであってもよいし、活性エネルギー線硬化性を有しないポリマーと活性エネルギー線硬化性の多官能モノマーおよび/またはオリゴマーとの混合物を主成分とするものであってもよい。 The active energy ray-curable pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 3 may be mainly composed of a polymer having active energy ray curability, or a polymer having no active energy ray curability and an active energy ray. The main component may be a mixture of a curable polyfunctional monomer and / or oligomer.
 活性エネルギー線硬化性粘着剤が、活性エネルギー線硬化性を有するポリマーを主成分とする場合について、以下説明する。 The case where the active energy ray-curable pressure-sensitive adhesive is mainly composed of a polymer having active energy ray-curability will be described below.
 活性エネルギー線硬化性を有するポリマーは、側鎖に活性エネルギー線硬化性を有する官能基(活性エネルギー線硬化性基)が導入された(メタ)アクリル酸エステル(共)重合体(A)(以下「活性エネルギー線硬化型重合体(A)」という場合がある。)であることが好ましい。この活性エネルギー線硬化型重合体(A)は、官能基含有モノマー単位を有する(メタ)アクリル系共重合体(a1)と、その官能基に結合する置換基を有する不飽和基含有化合物(a2)とを反応させて得られるものであることが好ましい。 The polymer having active energy ray curability is a (meth) acrylic acid ester (co) polymer (A) in which a functional group having active energy ray curability (active energy ray curable group) is introduced in the side chain (A) It is preferably “active energy ray-curable polymer (A)”. This active energy ray-curable polymer (A) includes a (meth) acrylic copolymer (a1) having a functional group-containing monomer unit, and an unsaturated group-containing compound (a2) having a substituent bonded to the functional group. ) Is preferably obtained.
 アクリル系共重合体(a1)は、官能基含有モノマーから導かれる構成単位と、(メタ)アクリル酸エステルモノマーまたはその誘導体から導かれる構成単位とからなる。 The acrylic copolymer (a1) is composed of a structural unit derived from a functional group-containing monomer and a structural unit derived from a (meth) acrylic acid ester monomer or a derivative thereof.
 アクリル系共重合体(a1)の構成単位としての官能基含有モノマーは、重合性の二重結合と、ヒドロキシル基、アミノ基、置換アミノ基、エポキシ基等の官能基とを分子内に有するモノマーであることが好ましい。 The functional group-containing monomer as a constituent unit of the acrylic copolymer (a1) is a monomer having a polymerizable double bond and a functional group such as a hydroxyl group, an amino group, a substituted amino group, or an epoxy group in the molecule. It is preferable that
 上記官能基含有モノマーのさらに具体的な例としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられ、これらは単独でまたは2種以上を組み合わせて用いられる。 More specific examples of the functional group-containing monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and the like. These may be used alone or in combination of two or more.
 アクリル系共重合体(a1)を構成する(メタ)アクリル酸エステルモノマーとしては、アルキル基の炭素数が1~20であるアルキル(メタ)アクリレート、シクロアルキル(メタ)アクリレート、ベンジル(メタ)アクリレートが用いられる。これらの中でも、特に好ましくはアルキル基の炭素数が1~18であるアルキル(メタ)アクリレート、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等が用いられる。 Examples of the (meth) acrylic acid ester monomer constituting the acrylic copolymer (a1) include alkyl (meth) acrylates having 1 to 20 carbon atoms in the alkyl group, cycloalkyl (meth) acrylates, and benzyl (meth) acrylates. Is used. Among these, particularly preferred are alkyl (meth) acrylates having an alkyl group having 1 to 18 carbon atoms, such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and n-butyl (meth) acrylate. 2-ethylhexyl (meth) acrylate or the like is used.
 アクリル系共重合体(a1)は、上記官能基含有モノマーから導かれる構成単位を通常3~100質量%、好ましくは5~40質量%の割合で含有し、(メタ)アクリル酸エステルモノマーまたはその誘導体から導かれる構成単位を通常0~97質量%、好ましくは60~95質量%の割合で含有してなる。 The acrylic copolymer (a1) usually contains 3 to 100% by mass, preferably 5 to 40% by mass of a structural unit derived from the functional group-containing monomer, and is a (meth) acrylic acid ester monomer or its The structural unit derived from the derivative is usually contained in a proportion of 0 to 97% by mass, preferably 60 to 95% by mass.
 アクリル系共重合体(a1)は、上記のような官能基含有モノマーと、(メタ)アクリル酸エステルモノマーまたはその誘導体とを常法で共重合することにより得られるが、これらモノマーの他にもジメチルアクリルアミド、蟻酸ビニル、酢酸ビニル、スチレン等が共重合されてもよい。 The acrylic copolymer (a1) can be obtained by copolymerizing a functional group-containing monomer as described above with a (meth) acrylic acid ester monomer or a derivative thereof in a conventional manner. Dimethylacrylamide, vinyl formate, vinyl acetate, styrene and the like may be copolymerized.
 上記官能基含有モノマー単位を有するアクリル系共重合体(a1)を、その官能基に結合する置換基を有する不飽和基含有化合物(a2)と反応させることにより、活性エネルギー線硬化型重合体(A)が得られる。 By reacting the acrylic copolymer (a1) having the functional group-containing monomer unit with an unsaturated group-containing compound (a2) having a substituent bonded to the functional group, an active energy ray-curable polymer ( A) is obtained.
 不飽和基含有化合物(a2)が有する置換基は、アクリル系共重合体(a1)が有する官能基含有モノマー単位の官能基の種類に応じて、適宜選択することができる。例えば、官能基がヒドロキシル基、アミノ基または置換アミノ基の場合、置換基としてはイソシアネート基またはエポキシ基が好ましく、官能基がエポキシ基の場合、置換基としてはアミノ基、カルボキシル基またはアジリジニル基が好ましい。 The substituent of the unsaturated group-containing compound (a2) can be appropriately selected according to the type of functional group of the functional group-containing monomer unit of the acrylic copolymer (a1). For example, when the functional group is a hydroxyl group, an amino group or a substituted amino group, the substituent is preferably an isocyanate group or an epoxy group, and when the functional group is an epoxy group, the substituent is an amino group, a carboxyl group or an aziridinyl group. preferable.
 また不飽和基含有化合物(a2)には、活性エネルギー線重合性の炭素-炭素二重結合が、1分子毎に1~5個、好ましくは1~2個含まれている。このような不飽和基含有化合物(a2)の具体例としては、例えば、2-メタクリロイルオキシエチルイソシアネート、メタ-イソプロペニル-α,α-ジメチルベンジルイソシアネート、メタクリロイルイソシアネート、アリルイソシアネート、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート;ジイソシアネート化合物またはポリイソシアネート化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;ジイソシアネート化合物またはポリイソシアネート化合物と、ポリオール化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;グリシジル(メタ)アクリレート;(メタ)アクリル酸、2-(1-アジリジニル)エチル(メタ)アクリレート、2-ビニル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン等が挙げられる。 In addition, the unsaturated group-containing compound (a2) contains 1 to 5, preferably 1 to 2 active energy ray polymerizable carbon-carbon double bonds per molecule. Specific examples of such unsaturated group-containing compound (a2) include, for example, 2-methacryloyloxyethyl isocyanate, meta-isopropenyl-α, α-dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, 1,1- ( Bisacryloyloxymethyl) ethyl isocyanate; acryloyl monoisocyanate compound obtained by reaction of diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth) acrylate; diisocyanate compound or polyisocyanate compound, polyol compound, and hydroxyethyl (meth) Acryloyl monoisocyanate compound obtained by reaction with acrylate; glycidyl (meth) acrylate; (meth) acrylic acid, 2- (1 -Aziridinyl) ethyl (meth) acrylate, 2-vinyl-2-oxazoline, 2-isopropenyl-2-oxazoline and the like.
 不飽和基含有化合物(a2)は、上記アクリル系共重合体(a1)の官能基含有モノマーに対して、通常10~100mol%、好ましくは20~95mol%の割合で用いられる。 The unsaturated group-containing compound (a2) is usually used in a proportion of 10 to 100 mol%, preferably 20 to 95 mol%, based on the functional group-containing monomer of the acrylic copolymer (a1).
 アクリル系共重合体(a1)と不飽和基含有化合物(a2)との反応においては、官能基と置換基との組合せに応じて、反応の温度、圧力、溶媒、時間、触媒の有無、触媒の種類を適宜選択することができる。これにより、アクリル系共重合体(a1)中に存在する官能基と、不飽和基含有化合物(a2)中の置換基とが反応し、不飽和基がアクリル系共重合体(a1)中の側鎖に導入され、活性エネルギー線硬化型重合体(A)が得られる。 In the reaction between the acrylic copolymer (a1) and the unsaturated group-containing compound (a2), depending on the combination of the functional group and the substituent, the reaction temperature, pressure, solvent, time, presence of catalyst, catalyst Can be selected as appropriate. As a result, the functional group present in the acrylic copolymer (a1) reacts with the substituent in the unsaturated group-containing compound (a2), so that the unsaturated group is contained in the acrylic copolymer (a1). Introduced into the side chain, an active energy ray-curable polymer (A) is obtained.
 このようにして得られる活性エネルギー線硬化型重合体(A)の重量平均分子量は、1万以上であるのが好ましく、特に15万~150万であるのが好ましく、さらに20万~100万であるのが好ましい。なお、本明細書における重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー法(GPC法)により測定したポリスチレン換算の値である。 The weight average molecular weight of the active energy ray-curable polymer (A) thus obtained is preferably 10,000 or more, particularly preferably 150,000 to 1,500,000, and more preferably 200,000 to 1,000,000. Preferably there is. In addition, the weight average molecular weight (Mw) in this specification is the value of polystyrene conversion measured by the gel permeation chromatography method (GPC method).
 活性エネルギー線硬化性粘着剤が、活性エネルギー線硬化性を有するポリマーを主成分とする場合であっても、活性エネルギー線硬化性粘着剤は、活性エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)をさらに含有してもよい。 Even when the active energy ray-curable pressure-sensitive adhesive is mainly composed of a polymer having active energy ray-curability, the active energy ray-curable pressure-sensitive adhesive is an active energy ray-curable monomer and / or oligomer (B ) May be further contained.
 活性エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)としては、例えば、多価アルコールと(メタ)アクリル酸とのエステル等を使用することができる。 As the active energy ray-curable monomer and / or oligomer (B), for example, an ester of a polyhydric alcohol and (meth) acrylic acid or the like can be used.
 かかる活性エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)としては、例えば、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の単官能性アクリル酸エステル類、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート等の多官能性アクリル酸エステル類、ポリエステルオリゴ(メタ)アクリレート、ポリウレタンオリゴ(メタ)アクリレート等が挙げられる。 Examples of the active energy ray-curable monomer and / or oligomer (B) include monofunctional acrylic esters such as cyclohexyl (meth) acrylate and isobornyl (meth) acrylate, trimethylolpropane tri (meth) acrylate, Pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, polyethylene Polyfunctional acrylic acid esters such as glycol di (meth) acrylate, dimethyloltricyclodecane di (meth) acrylate, polyester oligo (meth) acrylate, polyurethane oligo ( Data) acrylate, and the like.
 活性エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)を配合する場合、活性エネルギー線硬化性粘着剤中における活性エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)の含有量は、5~80質量%であることが好ましく、特に20~60質量%であることが好ましい。 When the active energy ray-curable monomer and / or oligomer (B) is blended, the content of the active energy ray-curable monomer and / or oligomer (B) in the active energy ray-curable pressure-sensitive adhesive is 5 to 80. The content is preferably mass%, particularly preferably 20 to 60 mass%.
 ここで、活性エネルギー線硬化性樹脂組成物を硬化させるための活性エネルギー線として紫外線を用いる場合には、光重合開始剤(C)を添加することが好ましく、この光重合開始剤(C)の使用により、重合硬化時間および光線照射量を少なくすることができる。 Here, when using an ultraviolet ray as an active energy ray for curing the active energy ray-curable resin composition, it is preferable to add a photopolymerization initiator (C). By use, the polymerization curing time and the amount of light irradiation can be reduced.
 光重合開始剤(C)としては、具体的には、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサンソン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ベンジル、ジベンジル、ジアセチル、β-クロールアンスラキノン、(2,4,6-トリメチルベンジルジフェニル)フォスフィンオキサイド、2-ベンゾチアゾール-N,N-ジエチルジチオカルバメート、オリゴ{2-ヒドロキシ-2-メチル-1-[4-(1-プロペニル)フェニル]プロパノン}、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オンなどが挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Specific examples of the photopolymerization initiator (C) include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, benzoin dimethyl ketal, 2,4-diethylthioxanthone, 1-hydroxycyclohexyl phenyl ketone, benzyldiphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, β-chloranthraquinone, (2,4 6-trimethylbenzyldiphenyl) phosphine oxide, 2-benzothiazole-N, N-diethyldithiocarbamate, oligo {2-hydroxy-2-me Le-1- [4- (1-propenyl) phenyl] propanone}, and 2,2-dimethoxy-1,2-and the like. These may be used alone or in combination of two or more.
 光重合開始剤(C)は、活性エネルギー線硬化型重合体(A)(活性エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)を配合する場合には、活性エネルギー線硬化型重合体(A)および活性エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)の合計量100質量部)100質量部に対して0.1~10質量部、特には0.5~6質量部の範囲の量で用いられることが好ましい。 The photopolymerization initiator (C) is an active energy ray-curable polymer (A) (when an active energy ray-curable monomer and / or oligomer (B) is blended, the active energy ray-curable polymer (A) ) And the active energy ray-curable monomer and / or oligomer (B) in a total amount of 100 parts by mass) A quantity in the range of 0.1 to 10 parts by weight, in particular 0.5 to 6 parts by weight with respect to 100 parts by weight. Is preferably used.
 活性エネルギー線硬化性粘着剤においては、上記成分以外にも、適宜他の成分を配合してもよい。他の成分としては、例えば、活性エネルギー線硬化性を有しないポリマー成分またはオリゴマー成分(D)、架橋剤(E)等が挙げられる。 In the active energy ray-curable pressure-sensitive adhesive, in addition to the above components, other components may be appropriately blended. Examples of other components include a polymer component or oligomer component (D) that does not have active energy ray curability, and a crosslinking agent (E).
 活性エネルギー線硬化性を有しないポリマー成分またはオリゴマー成分(D)としては、例えば、ポリアクリル酸エステル、ポリエステル、ポリウレタン、ポリカーボネート、ポリオレフィン等が挙げられ、重量平均分子量(Mw)が3000~250万のポリマーまたはオリゴマーが好ましい。 Examples of the polymer component or oligomer component (D) having no active energy ray curability include polyacrylates, polyesters, polyurethanes, polycarbonates, polyolefins, etc., and have a weight average molecular weight (Mw) of 3,000 to 2.5 million. Polymers or oligomers are preferred.
 架橋剤(E)としては、活性エネルギー線硬化型重合体(A)等が有する官能基との反応性を有する多官能性化合物を用いることができる。このような多官能性化合物の例としては、イソシアネート化合物、エポキシ化合物、アミン化合物、メラミン化合物、アジリジン化合物、ヒドラジン化合物、アルデヒド化合物、オキサゾリン化合物、金属アルコキシド化合物、金属キレート化合物、金属塩、アンモニウム塩、反応性フェノール樹脂等を挙げることができる。 As the crosslinking agent (E), a polyfunctional compound having reactivity with the functional group of the active energy ray-curable polymer (A) or the like can be used. Examples of such polyfunctional compounds include isocyanate compounds, epoxy compounds, amine compounds, melamine compounds, aziridine compounds, hydrazine compounds, aldehyde compounds, oxazoline compounds, metal alkoxide compounds, metal chelate compounds, metal salts, ammonium salts, A reactive phenol resin etc. can be mentioned.
 これら他の成分(D),(E)を活性エネルギー線硬化性粘着剤に配合することにより、硬化前における粘着性および剥離性、硬化後の強度、他の層との接着性、保存安定性などを改善し得る。これら他の成分の配合量は特に限定されず、活性エネルギー線硬化型重合体(A)100質量部に対して0~40質量部の範囲で適宜決定される。 By blending these other components (D) and (E) in the active energy ray-curable pressure-sensitive adhesive, tackiness and peelability before curing, strength after curing, adhesion to other layers, storage stability Etc. can be improved. The blending amount of these other components is not particularly limited, and is appropriately determined in the range of 0 to 40 parts by mass with respect to 100 parts by mass of the active energy ray-curable polymer (A).
 次に、活性エネルギー線硬化性粘着剤が、活性エネルギー線硬化性を有しないポリマー成分と活性エネルギー線硬化性の多官能モノマーおよび/またはオリゴマーとの混合物を主成分とする場合について、以下説明する。 Next, the case where the active energy ray-curable pressure-sensitive adhesive is mainly composed of a mixture of a polymer component having no active energy ray curability and an active energy ray-curable polyfunctional monomer and / or oligomer will be described below. .
 活性エネルギー線硬化性を有しないポリマー成分としては、例えば、前述したアクリル系共重合体(a1)と同様の成分が使用できる。活性エネルギー線硬化性樹脂組成物中における活性エネルギー線硬化性を有しないポリマー成分の含有量は、20~99.9質量%であることが好ましく、特に30~80質量%であることが好ましい。 As the polymer component having no active energy ray curability, for example, the same components as the acrylic copolymer (a1) described above can be used. The content of the polymer component having no active energy ray curability in the active energy ray curable resin composition is preferably 20 to 99.9% by mass, and more preferably 30 to 80% by mass.
 活性エネルギー線硬化性の多官能モノマーおよび/またはオリゴマーとしては、前述の成分(B)と同じものが選択される。活性エネルギー線硬化性を有しないポリマー成分と活性エネルギー線硬化性の多官能モノマーおよび/またはオリゴマーとの配合比は、ポリマー成分100質量部に対して、多官能モノマーおよび/またはオリゴマー10~150質量部であるのが好ましく、特に25~100質量部であるのが好ましい。 As the active energy ray-curable polyfunctional monomer and / or oligomer, the same one as the above-mentioned component (B) is selected. The blending ratio of the polymer component having no active energy ray curability and the active energy ray curable polyfunctional monomer and / or oligomer is 10 to 150 mass parts of the polyfunctional monomer and / or oligomer with respect to 100 parts by mass of the polymer component. Part is preferable, and in particular, 25 to 100 parts by weight is preferable.
 この場合においても、上記と同様に、光重合開始剤(C)や架橋剤(E)を適宜配合することができる。 Also in this case, the photopolymerization initiator (C) and the crosslinking agent (E) can be appropriately blended as described above.
 粘着剤層3の厚さは、ワーク加工用シート1が使用される各工程において適切に機能できる限り、特に限定されない。具体的には、1~50μmであることが好ましく、特に2~30μmであることが好ましく、さらには3~20μmであることが好ましい。 The thickness of the pressure-sensitive adhesive layer 3 is not particularly limited as long as it can function properly in each process in which the workpiece processing sheet 1 is used. Specifically, the thickness is preferably 1 to 50 μm, particularly preferably 2 to 30 μm, and further preferably 3 to 20 μm.
(3)剥離シート
 本実施形態における剥離シート6は、ワーク加工用シート1が使用されるまでの間、粘着剤層3を保護する。本実施形態における剥離シート6は、粘着剤層3上に直接積層されているが、これに限定されるものではなく、粘着剤層3上に他の層(ダイボンディングフィルム等)が積層され、当該他の層上に剥離シート6が積層されてもよい。
(3) Release sheet The release sheet 6 in the present embodiment protects the pressure-sensitive adhesive layer 3 until the work processing sheet 1 is used. The release sheet 6 in the present embodiment is directly laminated on the pressure-sensitive adhesive layer 3, but is not limited to this, and other layers (such as a die bonding film) are laminated on the pressure-sensitive adhesive layer 3, The release sheet 6 may be laminated on the other layer.
 剥離シート6の構成は任意であり、プラスチックフィルムを剥離剤等により剥離処理したものが例示される。プラスチックフィルムの具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、およびポリプロピレンやポリエチレン等のポリオレフィンフィルムが挙げられる。剥離剤としては、シリコーン系、フッ素系、長鎖アルキル系等を用いることができるが、これらの中で、安価で安定した性能が得られるシリコーン系が好ましい。剥離シートの厚さについては特に制限はないが、通常20~250μm程度である。 The configuration of the release sheet 6 is arbitrary, and examples include a plastic film that has been subjected to a release treatment with a release agent or the like. Specific examples of the plastic film include polyester films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, and polyolefin films such as polypropylene and polyethylene. As the release agent, silicone-based, fluorine-based, long-chain alkyl-based, and the like can be used, and among these, a silicone-based material that is inexpensive and provides stable performance is preferable. The thickness of the release sheet is not particularly limited, but is usually about 20 to 250 μm.
(4)その他の部材
 本実施形態に係るワーク加工用シート1では、粘着剤層3における基材2とは反対側の面(以下「粘着面」という場合がある。)に接着剤層が積層されていてもよい。この場合、本実施形態に係るワーク加工用シート1は、上記接着剤層を備えることで、ダイシング・ダイボンディングシートとして使用することができる。このようなダイシング・ダイボンディングシートでは、接着剤層における粘着剤層とは反対側の面にワークを貼付し、当該ワークとともに接着剤層をダイシングすることで、個片化された接着剤層が積層されたチップを得ることができる。当該チップは、この個片化された接着剤層によって、当該チップが搭載される対象に対して容易に固定することが可能となる。上記接着剤層を構成する材料としては、熱可塑性樹脂と低分子量の熱硬化性接着成分とを含有するものや、Bステージ(半硬化状)の熱硬化型接着成分を含有するもの等を用いることが好ましい。
(4) Other members In the workpiece processing sheet 1 according to the present embodiment, an adhesive layer is laminated on the surface of the pressure-sensitive adhesive layer 3 opposite to the substrate 2 (hereinafter sometimes referred to as “pressure-sensitive surface”). May be. In this case, the workpiece processing sheet 1 according to the present embodiment can be used as a dicing die bonding sheet by including the adhesive layer. In such a dicing die-bonding sheet, a workpiece is attached to the surface of the adhesive layer opposite to the pressure-sensitive adhesive layer, and the adhesive layer separated into individual pieces is obtained by dicing the adhesive layer together with the workpiece. Stacked chips can be obtained. The chip can be easily fixed to an object on which the chip is mounted by the separated adhesive layer. As a material constituting the adhesive layer, a material containing a thermoplastic resin and a low molecular weight thermosetting adhesive component, a material containing a B-stage (semi-cured) thermosetting adhesive component, or the like is used. It is preferable.
 また、本実施形態に係るワーク加工用シート1では、粘着剤層3における粘着面に保護膜形成層が積層されていてもよい。この場合、本実施形態に係るワーク加工用シート1は、保護膜形成兼ダイシング用シートとして使用することができる。このような保護膜形成兼ダイシング用シートでは、保護膜形成層における粘着剤層とは反対側の面にワークを貼付し、当該ワークとともに保護膜形成層をダイシングすることで、個片化された保護膜形成層が積層されたチップを得ることができる。当該被切断物としては、片面に回路が形成されたものが使用されることが好ましく、この場合、通常、当該回路が形成された面とは反対側の面に保護膜形成層が積層される。個片化された保護膜形成層は、所定のタイミング(好ましくはダイシング工程の前)で硬化させることで、十分な耐久性を有する保護膜をワークまたはチップに形成することができる。保護膜形成層は、未硬化の硬化性接着剤からなることが好ましい。 Further, in the workpiece processing sheet 1 according to the present embodiment, a protective film forming layer may be laminated on the adhesive surface of the adhesive layer 3. In this case, the workpiece processing sheet 1 according to the present embodiment can be used as a protective film forming and dicing sheet. In such a protective film forming and dicing sheet, the workpiece was applied to the surface of the protective film forming layer opposite to the pressure-sensitive adhesive layer, and the protective film forming layer was diced together with the workpiece. A chip on which a protective film forming layer is laminated can be obtained. As the material to be cut, one having a circuit formed on one side is preferably used. In this case, a protective film forming layer is usually laminated on the surface opposite to the surface on which the circuit is formed. . The individual protective film forming layers are cured at a predetermined timing (preferably before the dicing step), whereby a protective film having sufficient durability can be formed on the workpiece or the chip. The protective film forming layer is preferably made of an uncured curable adhesive.
 上記の場合、レーザーマーキングの対象は、ワーク自体ではなく、接着剤層または保護膜となる。ただし、これらの場合であっても、前述した優れたレーザーマーキング性およびレーザー光耐性の効果は同じく得られる。 In the above case, the target of laser marking is not the workpiece itself but the adhesive layer or the protective film. However, even in these cases, the excellent effects of laser marking and laser light resistance described above can be obtained.
2.ワーク加工用シートの製造方法
 ワーク加工用シート1を製造するには、一例として、剥離シート6の剥離面に、粘着剤層3を構成する粘着剤と、所望によりさらに溶媒とを含有する粘着剤層用の塗布剤を塗布し乾燥させて粘着剤層3を形成する。その後、粘着剤層3の露出面に基材2を圧着し、基材2、粘着剤層3および剥離シート6からなるワーク加工用シート1を得る。
2. Manufacturing method of work processing sheet In order to manufacture the work processing sheet 1, as an example, a pressure-sensitive adhesive containing a pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 3 on the release surface of the release sheet 6 and, if desired, a solvent. A pressure-sensitive adhesive layer 3 is formed by applying a layer coating agent and drying it. Then, the base material 2 is crimped | bonded to the exposed surface of the adhesive layer 3, and the workpiece | work process sheet 1 which consists of the base material 2, the adhesive layer 3, and the peeling sheet 6 is obtained.
 本実施形態における粘着剤層3は、リングフレーム等の治具に貼付可能であることが好ましい。この場合に、粘着剤層3が活性エネルギー線硬化性粘着剤からなるとき、活性エネルギー線硬化性粘着剤を硬化させないことが好ましい。これにより、リングフレーム等の治具に対する接着力を高く維持することができる。 It is preferable that the pressure-sensitive adhesive layer 3 in the present embodiment can be attached to a jig such as a ring frame. In this case, when the pressure-sensitive adhesive layer 3 is made of an active energy ray-curable pressure-sensitive adhesive, it is preferable not to cure the active energy ray-curable pressure-sensitive adhesive. Thereby, the adhesive force with respect to jigs, such as a ring frame, can be maintained highly.
 基材2および粘着剤層3の積層体は、所望によりハーフカットし、所望の形状、例えばワーク(半導体ウエハ)に対応する円形等の形状にしてもよい。この場合、ハーフカットにより生じた余分な部分は、適宜除去すればよい。 The laminate of the base material 2 and the pressure-sensitive adhesive layer 3 may be half-cut if desired, and may have a desired shape, for example, a shape corresponding to a workpiece (semiconductor wafer). In this case, an excess portion generated by the half cut may be removed as appropriate.
3.ワーク加工用シートの使用方法
 本実施形態に係るワーク加工用シート1はダイシングに用いられることが好ましい。ダイシングの種類としては、ブレードダイシング、ステルスダイシング、プラズマダイシング、レーザーダイシング、ウォーターダイシング等が挙げられ、それらの中でも、ブレードダイシングおよびステルスダイシングが好ましい。ワークとしては、例えば、無機材料からなる半導体ウエハ、ガラス板等の他、各種パッケージなどが挙げられるが、これらに限定されるものではない。
3. Method for Using Workpiece Processing Sheet The workpiece processing sheet 1 according to this embodiment is preferably used for dicing. Examples of the dicing include blade dicing, stealth dicing, plasma dicing, laser dicing, and water dicing. Among these, blade dicing and stealth dicing are preferable. Examples of the work include, but are not limited to, a semiconductor wafer made of an inorganic material, a glass plate, and various packages.
 本実施形態に係るワーク加工用シート1を用いて、一例としてワークとしての半導体ウエハから、ブレードダイシングまたはステルスダイシングによってチップを製造する方法を以下に説明する。 A method of manufacturing a chip by blade dicing or stealth dicing from a semiconductor wafer as a work by using the work processing sheet 1 according to the present embodiment will be described below.
 最初に、巻き取ったロール状のワーク加工用シート1を、剥離シート6を剥離しながら繰り出して、図2に示すように、ワーク加工用シート1の粘着剤層3に半導体ウエハ7およびリングフレーム8を貼付する。これにより、ワーク加工用シート1の粘着剤層3側の面に半導体ウエハ7およびリングフレーム8が積層された構成を備える積層構造体(以下「積層構造体L」という場合がある。)を得る。 First, the wound roll-shaped workpiece processing sheet 1 is fed out while peeling the release sheet 6, and as shown in FIG. 2, the semiconductor wafer 7 and the ring frame are placed on the adhesive layer 3 of the workpiece processing sheet 1. 8 is pasted. Thereby, a laminated structure (hereinafter sometimes referred to as “laminated structure L”) having a configuration in which the semiconductor wafer 7 and the ring frame 8 are laminated on the surface of the workpiece processing sheet 1 on the pressure-sensitive adhesive layer 3 side is obtained. .
 次に、積層構造体Lを、レーザーマーキング工程に付す。具体的には、レーザーマーキング用のレーザー照射装置を使用して、上記半導体ウエハ7に対して、ワーク加工用シート1を介してレーザー光を照射し、半導体ウエハ7に所望の印字を施す。レーザー光としては、波長532nmのレーザー光が主として使用される。 Next, the laminated structure L is subjected to a laser marking process. Specifically, using a laser irradiation apparatus for laser marking, the semiconductor wafer 7 is irradiated with laser light through the workpiece processing sheet 1 to perform desired printing on the semiconductor wafer 7. As the laser light, laser light having a wavelength of 532 nm is mainly used.
 本実施形態に係るワーク加工用シート1においては、基材2の物性が前述したように設定されていることにより、レーザー光が透過し易く、したがって、ワークに対してレーザーマーキングによる印字を良好に行うことができ、精度の高い印字を形成することができる。また、基材2においてレーザー光のエネルギーが吸収され難いため、基材2が焼けてしまうことが抑制される。したがって、基材2の焼けに起因する光線透過性の低下がなく、ワークに形成された印字を、ワーク加工用シート1を介して良好に視認することができる。 In the workpiece processing sheet 1 according to this embodiment, since the physical properties of the base material 2 are set as described above, the laser beam is easily transmitted, and thus the printing by laser marking is favorably performed on the workpiece. It is possible to perform printing with high accuracy. Moreover, since the energy of the laser beam is hardly absorbed in the base material 2, it is suppressed that the base material 2 is burnt. Therefore, there is no decrease in light transmittance due to the burning of the base material 2, and the print formed on the work can be viewed well through the work processing sheet 1.
 次いで、積層構造体Lを、ダイシング工程に付す。ブレードダイシングの場合には、ダイシングブレードを用いて、半導体ウエハ7を切断して分割することにより、チップを得る。その後、ワーク加工用シート1を伸長させるエキスパンド工程を実施することにより、次のピックアップ工程でピックアップし易いように、チップ間の間隔を広げる。 Next, the laminated structure L is subjected to a dicing process. In the case of blade dicing, chips are obtained by cutting and dividing the semiconductor wafer 7 using a dicing blade. Thereafter, by performing an expanding process for extending the workpiece processing sheet 1, the interval between the chips is widened so that it can be easily picked up in the next pickup process.
 一方、ステルスダイシングの場合には、分割加工用レーザー照射装置(レーザダイサー)を使用して、上記半導体ウエハ7に対して、ワーク加工用シート1を介してレーザー光を照射し、半導体ウエハ7内に改質層を形成する。なお、基材2の物性が前述したように設定されていることにより、レーザダイサーによるレーザー光の透過性も優れる。その後、ワーク加工用シート1を伸長させるエキスパンド工程を実施することにより、半導体ウエハ7に力(主面内方向の引張力)を付与する。その結果、ワーク加工用シート1に貼着する半導体ウエハ7は分割されて、チップが得られる。 On the other hand, in the case of stealth dicing, a laser beam is irradiated to the semiconductor wafer 7 via the workpiece processing sheet 1 using a laser beam splitting apparatus (laser dicer) for dividing the semiconductor wafer 7. A modified layer is formed on the substrate. In addition, since the physical properties of the base material 2 are set as described above, the laser light transmittance by the laser dicer is also excellent. Thereafter, an expanding process for extending the workpiece processing sheet 1 is performed to apply a force (tensile force in the main surface direction) to the semiconductor wafer 7. As a result, the semiconductor wafer 7 adhered to the workpiece processing sheet 1 is divided to obtain chips.
 次いで、ピックアップ装置を用いて、ワーク加工用シート1からチップをピックアップする。ここで、ワーク加工用シート1の粘着剤層3が活性エネルギー線硬化性の粘着剤からなる場合には、上記ピックアップの前に、基材2を介して粘着剤層3に対して活性エネルギー線を照射することが好ましい。これにより、粘着剤層3の粘着力を低下させることができ、チップのピックアップを容易に行うことができる。上記活性エネルギー線としては、通常、紫外線、電子線等が用いられ、特に取扱いが容易な紫外線が好ましい。 Next, a chip is picked up from the workpiece processing sheet 1 using a pickup device. Here, when the adhesive layer 3 of the work processing sheet 1 is made of an active energy ray-curable adhesive, the active energy ray is applied to the adhesive layer 3 via the base material 2 before the pickup. Is preferably irradiated. Thereby, the adhesive force of the adhesive layer 3 can be reduced, and the chip can be easily picked up. As the active energy ray, an ultraviolet ray, an electron beam or the like is usually used, and an ultraviolet ray that is easy to handle is particularly preferable.
 上記紫外線の照射は、高圧水銀ランプ、フュージョンランプ、キセノンランプ、LED等によって行うことができ、紫外線の照射量は、照度が50mW/cm以上、1000mW/cm以下であることが好ましい。紫外線の光量は、50mJ/cm以上であることが好ましく、特に80mJ/cm以上であることが好ましく、さらには100mJ/cm以上であることが好ましい。また、紫外線の光量は、2000mJ/cm以下であることが好ましく、特に1000mJ/cm以下であることが好ましく、さらには500mJ/cm以下であることが好ましい。 Irradiation of the ultraviolet rays, a high-pressure mercury lamp, Fusion lamps, can be performed by a xenon lamp, LED, etc., the dose of ultraviolet ray is illuminance 50 mW / cm 2 or more, and preferably 1000 mW / cm 2 or less. Quantity of ultraviolet light is preferably at 50 mJ / cm 2 or more, particularly preferably at 80 mJ / cm 2 or more, and further preferably not 100 mJ / cm 2 or more. Further, the amount of ultraviolet light is preferably 2000 mJ / cm 2 or less, particularly preferably 1000 mJ / cm 2 or less, and more preferably 500 mJ / cm 2 or less.
 前述した通り、レーザーマーキングによる基材2の焼けが抑制されているため、上記のように基材2を介して粘着剤層3に対して紫外線を照射しても、粘着剤層3は良好に硬化する。そのため、ピックアップしたチップに粘着剤が付着してしまう糊残りの問題が発生し難い。 As described above, since the burning of the base material 2 due to laser marking is suppressed, the pressure-sensitive adhesive layer 3 is excellent even when the adhesive layer 3 is irradiated with ultraviolet rays through the base material 2 as described above. Harden. For this reason, it is difficult for the adhesive residue to adhere to the picked-up chip.
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
 例えば、ワーク加工用シート1における基材2と粘着剤層3との間、または基材2における粘着剤層3とは反対側の面には、その他の層が設けられてもよい。 For example, other layers may be provided between the base material 2 and the pressure-sensitive adhesive layer 3 in the workpiece processing sheet 1 or on the surface of the base material 2 opposite to the pressure-sensitive adhesive layer 3.
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and the like, but the scope of the present invention is not limited to these examples and the like.
〔実施例1〕
(1)基材の作製
 低密度ポリエチレンの樹脂組成物を、小型Tダイ押出機(東洋精機製作所社製,製品名「ラボプラストミル」)によって押し出し成形し、厚さ80μmの樹脂フィルムからなる基材を作製した。得られた基材の背面の表面粗さ(算術平均粗さ(Ra)および最大高さ粗さ(Rz))を後述する方法によって測定したところ、表1に示す通りであった。
[Example 1]
(1) Fabrication of base material A low-density polyethylene resin composition was extruded by a small T-die extruder (product name “Labo Plast Mill”, manufactured by Toyo Seiki Seisakusho Co., Ltd.) and formed from a resin film having a thickness of 80 μm. A material was prepared. When the surface roughness (arithmetic mean roughness (Ra) and maximum height roughness (Rz)) of the back surface of the obtained base material was measured by the method described later, it was as shown in Table 1.
(2)粘着剤層用塗布剤の調製
 ブチルアクリレート72質量部と、2-ヒドロキシエチルアクリレート(HEA)28質量部とを共重合して得た共重合体に、メタクリロイルオキシエチルイソシアネート(MOI)を、共重合体のHEAに対して80mol%反応させて、側鎖に活性エネルギー線重合性基を有する活性エネルギー線硬化性アクリル系重合体(重量平均分子量50万)を得た。
(2) Preparation of coating agent for pressure-sensitive adhesive layer To a copolymer obtained by copolymerizing 72 parts by mass of butyl acrylate and 28 parts by mass of 2-hydroxyethyl acrylate (HEA), methacryloyloxyethyl isocyanate (MOI) was added. The active energy ray-curable acrylic polymer (weight average molecular weight 500,000) having an active energy ray-polymerizable group in the side chain was obtained by reacting 80 mol% with respect to the copolymer HEA.
 上記の活性エネルギー線硬化性アクリル系重合体100質量部(固形分濃度;以下同じ)に対して、光重合開始剤(BASF社製,製品名「イルガキュア184」)3.0質量部およびイソシアネート化合物(東ソー社製,製品名「コロネートL」)1.0質量部を配合するとともに、溶媒で希釈することにより、粘着剤層用塗布剤を得た。 With respect to 100 parts by mass of the above active energy ray-curable acrylic polymer (solid content concentration; hereinafter the same), 3.0 parts by mass of a photopolymerization initiator (manufactured by BASF, product name “Irgacure 184”) and an isocyanate compound (Tosoh Corporation make, product name "Coronate L") 1.0 mass part was mix | blended, and the coating agent for adhesive layers was obtained by diluting with a solvent.
(3)ワーク加工用シートの製造
 厚さ38μmのポリエチレンテレフタレートフィルムの片面にシリコーン系の剥離剤層が形成されてなる剥離シート(リンテック社製,製品名「SP-PET381031」)を用意し、その剥離シートの剥離面上に、前述の粘着剤層用塗布剤を、ナイフコーターにて塗布し、乾燥させて、厚さ10μmの粘着剤層を形成した。その粘着剤層上に、上記で作製した基材の正面を重ねて両者を貼り合わせ、基材(80μm)/粘着剤層(10μm)/剥離シートからなる積層体を得た。
(3) Manufacture of Workpiece Processing Sheet A release sheet (product name “SP-PET381031”, manufactured by Lintec Corporation) having a silicone release agent layer formed on one side of a 38 μm thick polyethylene terephthalate film was prepared. On the release surface of the release sheet, the aforementioned adhesive layer coating agent was applied with a knife coater and dried to form an adhesive layer having a thickness of 10 μm. On the pressure-sensitive adhesive layer, the front surface of the base material prepared above was stacked and bonded together to obtain a laminate composed of the base material (80 μm) / pressure-sensitive adhesive layer (10 μm) / release sheet.
 上記で得られた積層体に対し、上記基材側から、基材および粘着剤層の積層体を切断するようにハーフカットを施して、直径370mmの円形のワーク加工用シートを形成した。 The above-obtained laminate was half-cut from the substrate side so as to cut the laminate of the substrate and the pressure-sensitive adhesive layer to form a circular workpiece processing sheet having a diameter of 370 mm.
〔実施例2〕
 ポリ塩化ビニルの樹脂組成物を、小型Tダイ押出機(東洋精機製作所社製,製品名「ラボプラストミル」)によって押し出し成形し、厚さ80μmの樹脂フィルムからなる基材を作製した。得られた基材の背面の表面粗さ(算術平均粗さ(Ra)および最大高さ粗さ(Rz))を後述する方法によって測定したところ、表1に示す通りであった。
[Example 2]
The polyvinyl chloride resin composition was extruded using a small T-die extruder (product name “Lab Plast Mill”, manufactured by Toyo Seiki Seisakusho Co., Ltd.) to prepare a substrate made of a resin film having a thickness of 80 μm. When the surface roughness (arithmetic mean roughness (Ra) and maximum height roughness (Rz)) of the back surface of the obtained base material was measured by the method described later, it was as shown in Table 1.
 上記基材を使用する以外、実施例1と同様にしてワーク加工用シートを製造した。 A work processing sheet was produced in the same manner as in Example 1 except that the above base material was used.
〔実施例3〕
 エチレン-(メタ)アクリル酸共重合体の樹脂組成物を、小型Tダイ押出機(東洋精機製作所社製,製品名「ラボプラストミル」)によって押し出し成形し、厚さ80μmの樹脂フィルムからなる基材を作製した。得られた基材の背面の表面粗さ(算術平均粗さ(Ra)および最大高さ粗さ(Rz))を後述する方法によって測定したところ、表1に示す通りであった。
Example 3
A resin composition of an ethylene- (meth) acrylic acid copolymer is extruded by a small T-die extruder (product name “Lab Plast Mill”, manufactured by Toyo Seiki Seisakusho Co., Ltd.), and is formed of a resin film having a thickness of 80 μm. A material was prepared. When the surface roughness (arithmetic mean roughness (Ra) and maximum height roughness (Rz)) of the back surface of the obtained base material was measured by the method described later, it was as shown in Table 1.
 上記基材を使用する以外、実施例1と同様にしてワーク加工用シートを製造した。 A work processing sheet was produced in the same manner as in Example 1 except that the above base material was used.
〔比較例1〕
 エチレン-(メタ)アクリル酸共重合体の樹脂組成物を、小型Tダイ押出機(東洋精機製作所社製,製品名「ラボプラストミル」)によって押し出し成形し、厚さ80μmの樹脂フィルムからなる基材を作製した。得られた基材の背面の表面粗さ(算術平均粗さ(Ra)および最大高さ粗さ(Rz))を後述する方法によって測定したところ、表1に示す通りであった。
[Comparative Example 1]
A resin composition of an ethylene- (meth) acrylic acid copolymer is extruded by a small T-die extruder (product name “Lab Plast Mill”, manufactured by Toyo Seiki Seisakusho Co., Ltd.), and is formed of a resin film having a thickness of 80 μm. A material was prepared. When the surface roughness (arithmetic mean roughness (Ra) and maximum height roughness (Rz)) of the back surface of the obtained base material was measured by the method described later, it was as shown in Table 1.
 上記基材を使用する以外、実施例1と同様にしてワーク加工用シートを製造した。 A work processing sheet was produced in the same manner as in Example 1 except that the above base material was used.
〔比較例2〕
 ポリエチレンの樹脂組成物を、小型Tダイ押出機(東洋精機製作所社製,製品名「ラボプラストミル」)によって押し出し成形し、厚さ110μmの樹脂フィルムからなる基材を作製した。得られた基材の背面の表面粗さ(算術平均粗さ(Ra)および最大高さ粗さ(Rz))を後述する方法によって測定したところ、表1に示す通りであった。
[Comparative Example 2]
The polyethylene resin composition was extruded using a small T-die extruder (manufactured by Toyo Seiki Seisakusho Co., Ltd., product name “Laboplast Mill”) to prepare a substrate made of a resin film having a thickness of 110 μm. When the surface roughness (arithmetic mean roughness (Ra) and maximum height roughness (Rz)) of the back surface of the obtained base material was measured by the method described later, it was as shown in Table 1.
 上記基材を使用する以外、実施例1と同様にしてワーク加工用シートを製造した。 A work processing sheet was produced in the same manner as in Example 1 except that the above base material was used.
〔比較例3〕
 低密度ポリエチレンの樹脂組成物を、小型Tダイ押出機(東洋精機製作所社製,製品名「ラボプラストミル」)によって押し出し成形し、厚さ80μmの樹脂フィルムからなる基材を作製した。得られた基材の背面の表面粗さ(算術平均粗さ(Ra)および最大高さ粗さ(Rz))を後述する方法によって測定したところ、表1に示す通りであった。
[Comparative Example 3]
The resin composition of low density polyethylene was extruded using a small T-die extruder (manufactured by Toyo Seiki Seisakusho Co., Ltd., product name “Laboplast Mill”) to prepare a base material made of a resin film having a thickness of 80 μm. When the surface roughness (arithmetic mean roughness (Ra) and maximum height roughness (Rz)) of the back surface of the obtained base material was measured by the method described later, it was as shown in Table 1.
 上記基材を使用する以外、実施例1と同様にしてワーク加工用シートを製造した。 A work processing sheet was produced in the same manner as in Example 1 except that the above base material was used.
〔試験例1〕<基材の表面粗さの測定>
 実施例および比較例で作製した基材の背面の算術平均粗さ(Ra;単位μm)および最大高さ粗さ(Rz;単位μm)を、接触式表面粗さ計(ミツトヨ社製,製品名「SV3000S4」)を用いて、以下の測定条件で、JIS B0601:1999に準拠して測定した。結果を表1に示す。
[測定条件]
 評価長さ:10mm
 基準長さ:2.5mm
 走査速度:1.0mm/sec
 カットオフ値:0.25mm
[Test Example 1] <Measurement of surface roughness of substrate>
Arithmetic average roughness (Ra; unit μm) and maximum height roughness (Rz; unit μm) of the back surface of the base material prepared in Examples and Comparative Examples were measured using a contact surface roughness meter (product name, manufactured by Mitutoyo Corporation). "SV3000S4") was measured according to JIS B0601: 1999 under the following measurement conditions. The results are shown in Table 1.
[Measurement condition]
Evaluation length: 10mm
Standard length: 2.5mm
Scanning speed: 1.0mm / sec
Cut-off value: 0.25mm
〔試験例2〕<光線透過率の測定>
 実施例および比較例で作製した基材について、紫外可視近赤外分光光度計(島津製作所社製,製品名「UV-3600」)を用いて、直接受光法により光線透過率を測定し、波長400nm、532nmおよび800nmの光線透過率(%)を抽出した。結果を表1に示す。
[Test Example 2] <Measurement of light transmittance>
About the base material produced in the Example and the comparative example, the light transmittance was measured by a direct light receiving method using an ultraviolet-visible near-infrared spectrophotometer (manufactured by Shimadzu Corporation, product name “UV-3600”). The light transmittance (%) at 400 nm, 532 nm and 800 nm was extracted. The results are shown in Table 1.
〔試験例3〕<レーザーマーキング性の評価>
 テープマウンター装置(リンテック社製,製品名「RAD-2700F/12」)を用いて、実施例および比較例のワーク加工用シートから剥離シートを剥離し、露出した粘着剤層を、♯2000研磨したシリコンウエハ(直径:12インチ,厚さ:350μm)の研磨面に貼付した。それとともに、露出した粘着剤層をリングフレームに貼付した。
[Test Example 3] <Evaluation of laser marking properties>
Using a tape mounter (manufactured by Lintec, product name “RAD-2700F / 12”), the release sheet was peeled off from the work processing sheets of Examples and Comparative Examples, and the exposed adhesive layer was polished by # 2000. The silicon wafer (diameter: 12 inches, thickness: 350 μm) was attached to the polished surface. At the same time, the exposed adhesive layer was attached to the ring frame.
 レーザーマーカー(EO TECHNICS社製,製品名「CSM300M」)を用い、ワーク加工用シート越しにシリコンウエハに対して波長532nmのレーザー光を照射して、シリコンウエハにレーザーマーキングによる印字(文字サイズ:0.2mm×0.3mm,文字間隔:0.3mm,文字数:20文字)を行った。 Using a laser marker (EO TECHNICS, product name “CSM300M”), a silicon wafer is irradiated with laser light having a wavelength of 532 nm through a workpiece processing sheet, and printing is performed on the silicon wafer by laser marking (character size: 0) 2 mm × 0.3 mm, character spacing: 0.3 mm, number of characters: 20 characters).
 その後、シリコンウエハからワーク加工用シートを剥離し、シリコンウエハに形成された印字を、デジタル顕微鏡(キーエンス社製,製品名「デジタルマイクロスコープ VHX-1000」,倍率:100倍)を用いて確認した。その結果、印字に荒れがなく、精度が高く形成されていたものを◎、印字にわずかな荒れが見られたが、精度がある程度高く形成されていたものを〇、印字に荒れがあり、精度が低く形成されていたものを×と評価した。結果を表1に示す。 Thereafter, the workpiece processing sheet was peeled from the silicon wafer, and the print formed on the silicon wafer was confirmed using a digital microscope (manufactured by Keyence Corporation, product name “Digital Microscope VHX-1000”, magnification: 100 ×). . As a result, the print had no roughness and was formed with high accuracy ◎, the print had a slight roughness, but the print was formed with a certain degree of accuracy ◯, the print was rough and the accuracy Was evaluated as x. The results are shown in Table 1.
〔試験例4〕<レーザー光耐性の評価>
 試験例3と同様にして、ワーク加工用シート越しにシリコンウエハに対して波長532nmのレーザー光を照射し、シリコンウエハに印字を行った。その後、シリコンウエハからワーク加工用シートを剥離し、ワーク加工用シートの基材にレーザー光による焼け(印字)があるかどうかを目視により確認した。その結果、基材に焼け(印字)がなかったものを〇、基材に焼け(印字)があったものを×と評価した。結果を表1に示す。
[Test Example 4] <Evaluation of laser light resistance>
In the same manner as in Test Example 3, the silicon wafer was irradiated with laser light having a wavelength of 532 nm through the workpiece processing sheet, and printing was performed on the silicon wafer. Thereafter, the workpiece processing sheet was peeled from the silicon wafer, and it was visually confirmed whether or not the substrate of the workpiece processing sheet was burned (printed) by laser light. As a result, the case where the substrate was not burned (printed) was evaluated as ◯, and the case where the substrate was burned (printed) was evaluated as x. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、実施例で得られたワーク加工用シートは、レーザーマーキング性に優れるとともに、レーザー光に対して耐性を有するものであった。 As can be seen from Table 1, the work processing sheets obtained in the examples were excellent in laser marking properties and resistant to laser light.
 本発明に係るワーク加工用シートは、半導体ウエハやガラス板等のワークに対し、当該ワーク加工用シート越しにレーザーマーキングする工程を含む用途に好適に用いられる。 The workpiece processing sheet according to the present invention is suitably used for applications including a step of laser marking a workpiece such as a semiconductor wafer or a glass plate over the workpiece processing sheet.
1…ワーク加工用シート
2…基材
3…粘着剤層
6…剥離シート
7…半導体ウエハ
8…リングフレーム
DESCRIPTION OF SYMBOLS 1 ... Work processing sheet 2 ... Base material 3 ... Adhesive layer 6 ... Release sheet 7 ... Semiconductor wafer 8 ... Ring frame

Claims (6)

  1.  少なくとも、基材と、前記基材の第1の面側に積層された粘着剤層とを備えたワーク加工用シートであって、
     前記基材の第2の面における算術平均粗さ(Ra)が、0.01μm以上、0.4μm以下であり、
     前記基材の第2の面における最大高さ粗さ(Rz)が、0.01μm以上、2.5μm以下であり、
     前記基材の波長532nmの光線透過率が、40%以上である
    ことを特徴とするワーク加工用シート。
    At least a workpiece processing sheet comprising a substrate and an adhesive layer laminated on the first surface side of the substrate,
    The arithmetic average roughness (Ra) on the second surface of the substrate is 0.01 μm or more and 0.4 μm or less,
    The maximum height roughness (Rz) on the second surface of the substrate is 0.01 μm or more and 2.5 μm or less,
    The workpiece processing sheet, wherein the substrate has a light transmittance of 40% or more at a wavelength of 532 nm.
  2.  前記基材の波長400nmの光線透過率が、40%以上であることを特徴とする請求項1に記載のワーク加工用シート。 The workpiece processing sheet according to claim 1, wherein the substrate has a light transmittance of 40% or more at a wavelength of 400 nm.
  3.  前記基材の波長800nmの光線透過率が、45%以上であることを特徴とする請求項1または2に記載のワーク加工用シート。 The workpiece processing sheet according to claim 1 or 2, wherein the substrate has a light transmittance of a wavelength of 800 nm of 45% or more.
  4.  ワークに対して、前記ワーク加工用シート越しにレーザーマーキングを行う工程を含む用途に用いられることを特徴とする請求項1~3のいずれか一項に記載のワーク加工用シート。 The workpiece processing sheet according to any one of claims 1 to 3, wherein the workpiece processing sheet is used for an application including a step of performing laser marking on the workpiece through the workpiece processing sheet.
  5.  ダイシングに用いられることを特徴とする請求項1~4のいずれか一項に記載のワーク加工用シート。 The work processing sheet according to any one of claims 1 to 4, wherein the work processing sheet is used for dicing.
  6.  ステルスダイシングに用いられることを特徴とする請求項5に記載のワーク加工用シート。 The work processing sheet according to claim 5, wherein the work processing sheet is used for stealth dicing.
PCT/JP2019/015091 2018-04-18 2019-04-05 Workpiece processing sheet WO2019203021A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980026145.XA CN111989764A (en) 2018-04-18 2019-04-05 Sheet for processing workpiece
JP2020514077A JP7325403B2 (en) 2018-04-18 2019-04-05 Work processing sheet
KR1020207025469A KR20200144090A (en) 2018-04-18 2019-04-05 Work sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-079829 2018-04-18
JP2018079829 2018-04-18

Publications (1)

Publication Number Publication Date
WO2019203021A1 true WO2019203021A1 (en) 2019-10-24

Family

ID=68239593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015091 WO2019203021A1 (en) 2018-04-18 2019-04-05 Workpiece processing sheet

Country Status (5)

Country Link
JP (1) JP7325403B2 (en)
KR (1) KR20200144090A (en)
CN (1) CN111989764A (en)
TW (1) TWI797309B (en)
WO (1) WO2019203021A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021089941A (en) * 2019-12-03 2021-06-10 日東電工株式会社 Semiconductor backside contact film
JP2021111744A (en) * 2020-01-15 2021-08-02 日本特殊陶業株式会社 Manufacturing method for conductive layer, manufacturing method for wiring board and manufacturing method for heater device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140348A (en) * 2004-11-12 2006-06-01 Lintec Corp Marking method and sheet used both for protective film formation and for dicing
JP2010073897A (en) * 2008-09-18 2010-04-02 Lintec Corp Laser dicing sheet, and manufacturing method of semiconductor chip
JP2012015236A (en) * 2010-06-30 2012-01-19 Furukawa Electric Co Ltd:The Adhesive sheet for sticking wafer and processing method of wafer using the same
JP2012169441A (en) * 2011-02-14 2012-09-06 Lintec Corp Adhesive sheet for wafer processing, marking method using that sheet and manufacturing method of marking chip
JP2014189563A (en) * 2013-03-26 2014-10-06 Lintec Corp Tacky sheet, film for forming protective film, composite sheet for forming protective film, and marking method
WO2015178346A1 (en) * 2014-05-23 2015-11-26 リンテック株式会社 Composite sheet for forming protective film
WO2016088677A1 (en) * 2014-12-02 2016-06-09 リンテック株式会社 Adhesive sheet, and method for manufacturing processed article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140348A (en) * 2004-11-12 2006-06-01 Lintec Corp Marking method and sheet used both for protective film formation and for dicing
JP2010073897A (en) * 2008-09-18 2010-04-02 Lintec Corp Laser dicing sheet, and manufacturing method of semiconductor chip
JP2012015236A (en) * 2010-06-30 2012-01-19 Furukawa Electric Co Ltd:The Adhesive sheet for sticking wafer and processing method of wafer using the same
JP2012169441A (en) * 2011-02-14 2012-09-06 Lintec Corp Adhesive sheet for wafer processing, marking method using that sheet and manufacturing method of marking chip
JP2014189563A (en) * 2013-03-26 2014-10-06 Lintec Corp Tacky sheet, film for forming protective film, composite sheet for forming protective film, and marking method
WO2015178346A1 (en) * 2014-05-23 2015-11-26 リンテック株式会社 Composite sheet for forming protective film
WO2016088677A1 (en) * 2014-12-02 2016-06-09 リンテック株式会社 Adhesive sheet, and method for manufacturing processed article

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
28 April 2016 (2016-04-28), Retrieved from the Internet <URL:https://web.archive.org/web/20160428023554/http://mast-takeuchi.co.jp:80/technology/roughness> [retrieved on 20190619] *
30 March 2010 (2010-03-30), Retrieved from the Internet <URL:https://web.archive.org/web/20100330055920/http://www.mitsubishicarbide.net/mmc/jp/product/technical_information/information/hyoumenarasa.html> [retrieved on 20190619] *
R A, R Z, RMAX (R Z J I S, 22 March 2011 (2011-03-22), Retrieved from the Internet <URL:https://web.archive.org/web/20110322025852/https://www.toishi.info/faq/question-seven/ra-rz-rmax-rzjis.html> [retrieved on 20190619] *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021089941A (en) * 2019-12-03 2021-06-10 日東電工株式会社 Semiconductor backside contact film
JP7344779B2 (en) 2019-12-03 2023-09-14 日東電工株式会社 Semiconductor back adhesive film
JP2021111744A (en) * 2020-01-15 2021-08-02 日本特殊陶業株式会社 Manufacturing method for conductive layer, manufacturing method for wiring board and manufacturing method for heater device

Also Published As

Publication number Publication date
JP7325403B2 (en) 2023-08-14
TW202004876A (en) 2020-01-16
TWI797309B (en) 2023-04-01
KR20200144090A (en) 2020-12-28
JPWO2019203021A1 (en) 2021-06-10
CN111989764A (en) 2020-11-24

Similar Documents

Publication Publication Date Title
JP6319433B2 (en) Composite sheet for protective film formation
JP6319438B2 (en) Dicing sheet
WO2015002270A1 (en) Dicing sheet
WO2019203021A1 (en) Workpiece processing sheet
KR102579064B1 (en) Manufacturing method of sheet for work processing and processed work
KR102478993B1 (en) Method for manufacturing adhesive sheet for stealth dicing and semiconductor device
KR20210088525A (en) Sheet for work processing
JP6719694B1 (en) Dicing sheet for plasma dicing
KR102579051B1 (en) Manufacturing method of sheet for work processing and processed work
KR102579055B1 (en) Manufacturing method of sheet for work processing and processed work
JP6980684B2 (en) Dicing sheet
JP2018170427A (en) Sheet for semiconductor processing and manufacturing method of semiconductor device
KR102481244B1 (en) Method for manufacturing adhesive sheet for stealth dicing and semiconductor device
JPWO2018083986A1 (en) Stealth dicing adhesive sheet
KR102560374B1 (en) Method for manufacturing adhesive sheet for stealth dicing and semiconductor device
KR102560370B1 (en) Method for manufacturing adhesive sheet for stealth dicing and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514077

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19788955

Country of ref document: EP

Kind code of ref document: A1