WO2019202673A1 - 作業機械 - Google Patents

作業機械 Download PDF

Info

Publication number
WO2019202673A1
WO2019202673A1 PCT/JP2018/015917 JP2018015917W WO2019202673A1 WO 2019202673 A1 WO2019202673 A1 WO 2019202673A1 JP 2018015917 W JP2018015917 W JP 2018015917W WO 2019202673 A1 WO2019202673 A1 WO 2019202673A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
arm
arm cylinder
bucket
operation amount
Prior art date
Application number
PCT/JP2018/015917
Other languages
English (en)
French (fr)
Inventor
勝道 伊東
理優 成川
井村 進也
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to EP18915478.4A priority Critical patent/EP3783155B1/en
Priority to JP2020514835A priority patent/JP6889806B2/ja
Priority to US16/641,772 priority patent/US11453995B2/en
Priority to CN201880054566.9A priority patent/CN111032970B/zh
Priority to KR1020207004664A priority patent/KR102414027B1/ko
Priority to PCT/JP2018/015917 priority patent/WO2019202673A1/ja
Publication of WO2019202673A1 publication Critical patent/WO2019202673A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/437Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like providing automatic sequences of movements, e.g. linear excavation, keeping dipper angle constant
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers

Definitions

  • the present invention relates to a work machine that controls at least one of a plurality of hydraulic actuators according to a predetermined condition when operating an operating device.
  • MC machine control
  • a work machine for example, a hydraulic excavator
  • a work device for example, a front work device driven by a hydraulic actuator.
  • MC is a technology for assisting an operator's operation by executing semi-automatic control for operating a working device according to a predetermined condition when the operating device is operated by an operator.
  • Patent Document 1 discloses a technique for controlling a front working device so that a blade edge of a bucket is moved along a target design landform (target surface).
  • the estimated speed of the arm cylinder is calculated based on the operation amount of the arm operation lever due to the falling weight of the bucket depending on the posture of the front work device.
  • the actual arm cylinder speed increases, and if MC based on the estimated speed of the arm cylinder is executed in such a situation, the blade edge of the bucket is not stabilized and hunting may occur.
  • This document estimates the arm cylinder when the operation amount of the arm operation lever is less than a predetermined amount, and the speed larger than the speed calculated based on the operation amount of the arm operation lever is taken into account of the weight drop of the bucket.
  • the above problem is solved by calculating the speed and performing MC based on the estimated speed.
  • the estimated speed approaches the actual speed of the arm cylinder, so that hunting in the MC can be prevented.
  • the difference between the estimated speed and the actual speed of the arm cylinder based on the operation amount of the arm operation lever is not caused only by the weight drop of the bucket. Simply estimating the speed is not enough to prevent hunting.
  • the front work device when performing so-called uplifting work, where the earth and sand are scraped and leveled against the slope located below the traveling body of the work machine, the front work device is mainly used against the weight of the arm or bucket.
  • the arm cylinder is driven in the lifting direction.
  • the arm cylinder speed is rarely higher than expected due to the weight of the front work device (arm, bucket) relating to the drive of the arm cylinder. Rather, the cylinder speed of the arm may be slower than the assumed speed due to the effect of driving the front working device in the direction of lifting the front working device.
  • FIG. 16 shows the opening area characteristics of an open center bypass type spool.
  • the opening area of the spool of the open center bypass system includes the center bypass opening of the flow path for supplying pressure oil from the pump to the tank, the meter-in opening of the flow path for supplying pressure oil from the pump to the actuator, and the flow from the actuator to the tank.
  • SX is the closing point where the area of the center bypass opening is zero.
  • the pressure oil tends to flow in the direction where the load is light, the pressure oil is less likely to flow into the arm cylinder than when the arm cylinder is not driven in the direction of lifting the front work device against its own weight, resulting in the arm cylinder speed. Becomes slower.
  • the arm cylinder speed may be slower than expected, and as a result, the bucket blade tip (tip of the work equipment) during semi-automatic control is not stable and hunting is performed. May be caused.
  • An object of the present invention is to provide a work machine that can more appropriately calculate the speed of the arm cylinder that drives the work device and that stabilizes the behavior of the tip of the work device (for example, the bucket blade edge) in the MC.
  • the present application includes a plurality of means for solving the above-described problems.
  • the working device having a plurality of front members including an arm and an arm cylinder for driving the arms include the plurality of front members.
  • a control device having an actuator control unit that controls at least one of the hydraulic actuators, a posture detection device that detects a physical quantity related to the posture of the arm, and a physical quantity related to an operation amount with respect to the arm among the operation amounts of the operation device
  • a first speed calculation unit that calculates the first speed calculated from the detection value of the operation amount detection device as the speed of the arm cylinder, and the weight of the arm is given to the arm cylinder based on the detection value of the posture detection device.
  • a load direction is determined, and when it is determined that the load direction is opposite to the driving direction of the arm cylinder, a second speed smaller than the first speed is calculated as the arm cylinder speed as the arm cylinder speed.
  • a third speed equal to or higher than the first speed is calculated as the arm cylinder speed as the arm cylinder speed.
  • a third speed calculation unit is determined.
  • the speed of the arm cylinder that drives the work device can be calculated more appropriately, and the behavior of the tip of the work device in the MC can be stabilized.
  • the block diagram of a hydraulic excavator The figure which shows the control controller of a hydraulic shovel with a hydraulic drive device. Detailed view of the front control hydraulic unit.
  • the hardware block diagram of the control controller of a hydraulic excavator The figure which shows the coordinate system and target surface in the hydraulic shovel of FIG.
  • the functional block diagram of the control controller of the hydraulic shovel of FIG. FIG. 7 is a functional block diagram of the MC control unit in FIG. 6.
  • a hydraulic excavator including the bucket 10 is illustrated as a work tool (attachment) at the tip of the working device, but the present invention may be applied to a work machine including an attachment other than the bucket. Furthermore, the present invention can be applied to a working machine other than a hydraulic excavator as long as it has an articulated working device configured by connecting a plurality of front members (attachment, arm, boom, etc.).
  • FIG. 1 is a configuration diagram of a hydraulic excavator according to an embodiment of the present invention
  • FIG. 2 is a diagram showing a control controller of the hydraulic excavator according to an embodiment of the present invention together with a hydraulic drive device
  • FIG. 3 is a detailed view of a front control hydraulic unit 160.
  • a hydraulic excavator 1 includes an articulated front working device 1A and a vehicle body 1B.
  • the vehicle body 1B includes a lower traveling body 11 that travels by left and right traveling hydraulic motors 3a (see FIG. 2) and 3b, and an upper revolving body 12 that is mounted on the lower traveling body 11 and that is swung by the swing hydraulic motor 4. .
  • the front working device 1A is configured by connecting a plurality of front members (boom 8, arm 9, and bucket 10) that rotate in the vertical direction.
  • the base end of the boom 8 is rotatably supported at the front portion of the upper swing body 12 via a boom pin.
  • An arm 9 is rotatably connected to the tip of the boom 8 via an arm pin, and a bucket 10 is rotatably connected to the tip of the arm 9 via a bucket pin.
  • the plurality of front members 8, 9, and 10 are driven by hydraulic cylinders 5, 6, and 7, which are a plurality of hydraulic actuators. Specifically, the boom 8 is driven by the boom cylinder 5, the arm 9 is driven by the arm cylinder 6, and the bucket 10 is driven by the bucket cylinder 7.
  • a bucket angle sensor 32 is attached to 13 and a vehicle body inclination angle sensor 33 for detecting an inclination angle ⁇ (see FIG. 5) of the upper turning body 12 (vehicle body 1B) with respect to a reference plane (for example, a horizontal plane) is attached to the upper turning body 12. It has been.
  • the angle sensors 30, 31, and 32 of the present embodiment are rotary potentiometers, but can be replaced with an inclination angle sensor or an inertial measurement device (IMU) with respect to a reference plane (for example, a horizontal plane).
  • IMU inertial measurement device
  • An operating room 47a having a traveling right lever 23a (FIG. 1) for operating the traveling right hydraulic motor 3a (lower traveling body 11), and a traveling room provided in the upper swing body 12
  • An operating device 47b having a left lever 23b (FIG. 1) for operating the traveling left hydraulic motor 3b (lower traveling body 11) and the operating right lever 1a (FIG. 1) share the boom cylinder 5
  • the operating devices 45a and 46a (FIG. 2) for operating the boom 8) and the bucket cylinder 7 (bucket 10) and the operation left lever 1b (FIG. 1) share the arm cylinder 6 (arm 9) and the swing hydraulic motor 4
  • Operation devices 45b and 46b for operating the (upper swing body 12) are installed.
  • the traveling right lever 23a, the traveling left lever 23b, the operation right lever 1a, and the operation left lever 1b may be collectively referred to as operation levers 1 and 23.
  • the engine 18 which is a prime mover mounted on the upper swing body 12 drives the hydraulic pumps 2a and 2b and the pilot pump 48.
  • the hydraulic pumps 2a and 2b are variable displacement pumps whose displacement is controlled by the regulators 2aa and 2ba, and the pilot pump 48 is a fixed displacement pump.
  • the hydraulic pump 2 and the pilot pump 48 suck hydraulic fluid from the tank 200.
  • a shuttle block 162 is provided in the middle of the pilot lines 144, 145, 146, 147, 148, and 149. Hydraulic pressure signals output from the operating devices 45, 46, 47 are also input to the regulators 2aa, 2ba via the shuttle block 162.
  • Hydraulic pressure signals output from the operating devices 45, 46, 47 are also input to the regulators 2aa, 2ba via the shuttle block 162.
  • hydraulic signals are input to the regulators 2aa and 2ba via the shuttle block 162, and the discharge flow rates of the hydraulic pumps 2a and 2b are controlled according to the hydraulic signals.
  • the pump line 48a which is the discharge pipe of the pilot pump 48, passes through the lock valve 39 and then branches into a plurality of valves and is connected to the valves in the operating devices 45, 46, 47 and the front control hydraulic unit 160.
  • the lock valve 39 is an electromagnetic switching valve in this example, and its electromagnetic drive unit is electrically connected to a position detector of a gate lock lever (not shown) disposed in the cab (FIG. 1). The position of the gate lock lever is detected by a position detector, and a signal corresponding to the position of the gate lock lever is input to the lock valve 39 from the position detector.
  • the lock valve 39 is closed and the pump line 48a is shut off, and if it is in the unlocked position, the lock valve 39 is opened and the pump line 48a is opened. That is, in the state where the pump line 48a is shut off, the operations by the operating devices 45, 46, 47 are invalidated, and operations such as turning and excavation are prohibited.
  • the operation devices 45, 46, and 47 are hydraulic pilot type operation devices, and the operation amounts (for example, levers) of the operation levers 1 and 23 operated by the operator based on the pressure oil discharged from the pilot pump 48, respectively. Stroke) and a pilot pressure (sometimes referred to as operation pressure) corresponding to the operation direction are generated.
  • the pilot pressure generated in this way is supplied to the hydraulic drive units 150a to 155b of the corresponding flow control valves 15a to 15f (FIG. 2 or 3) via the pilot lines 144a to 149b (see FIG. 3). This is used as a control signal for driving the control valves 15a to 15f.
  • the hydraulic oil discharged from the hydraulic pump 2 passes through the flow control valves 15a, 15b, 15c, 15d, 15e, and 15f (see FIG. 2), the traveling right hydraulic motor 3a, the traveling left hydraulic motor 3b, the turning hydraulic motor 4, It is supplied to the boom cylinder 5, arm cylinder 6 and bucket cylinder 7.
  • the boom cylinder 5, the arm cylinder 6, and the bucket cylinder 7 are expanded and contracted by the supplied pressure oil, and the boom 8, the arm 9, and the bucket 10 are rotated, and the position and posture of the bucket 10 are changed.
  • the turning hydraulic motor 4 is rotated by the supplied pressure oil, and the upper turning body 12 is turned with respect to the lower traveling body 11.
  • the traveling right hydraulic motor 3a and the traveling left hydraulic motor 3b are rotated by the supplied pressure oil, and the lower traveling body 11 travels.
  • the flow control valves 15a, 15b, 15c, 15d, 15e and 15f are open center bypass type flow control valves, respectively.
  • the center bypass flow path (bleed-off opening) is narrowed and the flow paths (meter-in opening and meter-out opening) leading to the actuator are opened as shown in FIG.
  • the bleed-off flow rate ie, the bleed-off opening
  • the flow rate to the actuator ie, the meter-in opening and meter-out opening
  • FIG. 2 is a simplified representation of the actual system, there is also a flow control valve 15 in which the bleed-off flow path is not connected to the tank 200 in the figure, but in reality all flow control of the open center bypass type The valve 15 is used.
  • the tank 200 includes a hydraulic oil temperature detection device 210 for detecting the hydraulic oil temperature for driving the hydraulic actuator.
  • the hydraulic oil temperature detection device 210 can be installed outside the tank 200, and may be attached to, for example, the inlet line or the outlet line of the tank 200.
  • FIG. 4 is a configuration diagram of a machine control (MC) system provided in the hydraulic excavator according to the present embodiment.
  • the system shown in FIG. 4 performs processing for controlling the speeds of the hydraulic cylinders 5, 6 and 7 and the front working device 1A based on predetermined conditions when the operating devices 45 and 46 are operated by the operator as MC. Execute.
  • the machine control (MC) controls the operation of the work device 1A by a computer when the operation devices 45 and 46 are not operated
  • the operation of the work device 1A only when the operation devices 45 and 46 are operated.
  • the excavation operation (specifically, at least one instruction of arm cloud, bucket cloud, and bucket dump) is input through the operation devices 45b and 46a as the MC of the front work device 1A, the target surface 60 (FIG. 5) and the tip of the working device 1A (in this embodiment, the tip of the bucket 10 is a tip), the tip of the working device 1A is held on the target surface 60 and in the region above it.
  • the control signals for forcibly operating at least one of the hydraulic actuators 5, 6 and 7 are applied to the corresponding flow control valves 15a, 15b, To 15c.
  • This MC prevents the toes of the bucket 10 from entering below the target surface 60, so excavation along the target surface 60 is possible regardless of the level of skill of the operator.
  • the control point of the front working device 1A at the time of MC is set to the tip of the bucket 10 of the excavator (the tip of the working device 1A), but the control point is the tip of the working device 1A. If it is a point, it can change besides bucket toe. For example, the bottom surface of the bucket 10 or the outermost part of the bucket link 13 can be selected.
  • the system shown in FIG. 4 includes a work device attitude detection device 50, a target surface setting device 51, an operator operation amount detection device 52a, and a display installed in the cab and capable of displaying the positional relationship between the target surface 60 and the work device 1A.
  • a device for example, a liquid crystal display
  • a controller control device 40 that controls MC control are provided.
  • Work device attitude detection device (orientation detection device) 50 includes a boom angle sensor 30, an arm angle sensor 31, a bucket angle sensor 32, and a vehicle body tilt angle sensor 33. These angle sensors 30, 31, 32, and 33 function as posture sensors that detect physical quantities related to the postures of the boom 8, arm 9, and bucket 10 that are a plurality of front members.
  • the target surface setting device 51 is an interface through which information regarding the target surface 60 (including position information and inclination angle information of each target surface) can be input.
  • the target plane setting device 51 is connected to an external terminal (not shown) that stores the three-dimensional data of the target plane defined on the global coordinate system (absolute coordinate system). The input of the target surface via the target surface setting device 51 may be performed manually by the operator.
  • the operator operation amount detection device (operation amount detection device) 52a is an operation pressure (first control signal) generated in the pilot lines 144, 145, 146 when the operator operates the operation levers 1a, 1b (operation devices 45a, 45b, 46a). It comprises pressure sensors 70a, 70b, 71a, 71b, 72a, 72b. These pressure sensors 70a, 70b, 71a, 71b, 72a, 72b are provided via operating devices 45a, 45b, 46a for the boom 7 (boom cylinder 5), arm 8 (arm cylinder 6), and bucket 9 (bucket cylinder 7). It functions as an operation amount sensor that detects a physical amount related to the operation amount of the operator.
  • the front control hydraulic unit 160 is provided on the pilot lines 144a and 144b of the operation device 45a for the boom 8, and detects the pilot pressure (first control signal) as the operation amount of the operation lever 1a.
  • the flow control valve is connected to the secondary port side of the line 144a and the electromagnetic proportional valve 54a, selects the pilot pressure in the pilot line 144a and the high pressure side of the control pressure (second control signal) output from the electromagnetic proportional valve 54a.
  • the front control hydraulic unit 160 is installed in the pilot lines 145a and 145b for the arm 9, and detects a pilot pressure (first control signal) as an operation amount of the operation lever 1b and outputs it to the controller 40.
  • 71a, 71b and an electromagnetic proportional valve 55b which is installed in the pilot line 145b and reduces and outputs the pilot pressure (first control signal) based on the control signal from the controller 40, and is installed in the pilot line 145a for control.
  • An electromagnetic proportional valve 55a that reduces and outputs a pilot pressure (first control signal) in the pilot line 145a based on a control signal from the controller 40 is provided.
  • the front control hydraulic unit 160 detects a pilot pressure (first control signal) as an operation amount of the operation lever 1a in the pilot lines 146a and 146b for the bucket 10 and outputs the pressure sensor 72a to the controller 40.
  • 72b electromagnetic proportional valves 56a, 56b that reduce and output pilot pressure (first control signal) based on the control signal from the controller 40, and the primary port side is connected to the pilot pump 48 so that the pilot pump 48
  • the electromagnetic proportional valves 56c and 56d for reducing and outputting the pilot pressure, the pilot pressure in the pilot lines 146a and 146b, and the high pressure side of the control pressure output from the electromagnetic proportional valves 56c and 56d are selected, and the flow control valve 15c Shuttle valves 83a and 83b leading to the hydraulic drive units 152a and 152b are respectively provided. It is provided.
  • connection lines between the pressure sensors 70, 71, 72 and the controller 40 are omitted for the sake of space.
  • the electromagnetic proportional valves 54b, 55a, 55b, 56a, 56b have a maximum opening when not energized, and the opening decreases as the current that is a control signal from the controller 40 is increased.
  • the electromagnetic proportional valves 54a, 56c, 56d have an opening degree when not energized and an opening degree when energized, and the opening degree increases as the current (control signal) from the controller 40 increases. In this way, the opening 54, 55, 56 of each electromagnetic proportional valve corresponds to the control signal from the controller 40.
  • control hydraulic unit 160 configured as described above, when a control signal is output from the controller 40 and the electromagnetic proportional valves 54a, 56c, 56d are driven, there is no operator operation of the corresponding operating devices 45a, 46a. Since pilot pressure (second control signal) can be generated, boom raising operation, bucket cloud operation, and bucket dump operation can be forcibly generated. Similarly, when the electromagnetic proportional valves 54b, 55a, 55b, 56a, 56b are driven by the controller 40, the pilot pressure (first control signal) generated by the operator operation of the operating devices 45a, 45b, 46a is reduced. A pilot pressure (second control signal) can be generated, and the speed of the boom lowering operation, the arm cloud / dump operation, and the bucket cloud / dump operation can be forcibly reduced from the value of the operator operation.
  • the pilot pressure generated by the operation of the operating devices 45a, 45b, 46a is referred to as a “first control signal”.
  • the control pressure is generated by the controller 40 driving the electromagnetic proportional valves 54b, 55a, 55b, 56a, 56b to correct (reduce) the first control signal.
  • the pilot pressure newly generated separately from the first control signal by driving the electromagnetic proportional valves 54a, 56c, 56d by the controller 40 is referred to as a “second control signal”.
  • the second control signal is generated when the speed vector of the control point of the work device 1A generated by the first control signal violates a predetermined condition, and the speed vector of the control point of the work device 1A that meets the predetermined condition. Is generated as a control signal.
  • the second control signal is given priority.
  • the first control signal is blocked by an electromagnetic proportional valve, and the second control signal is input to the other hydraulic drive unit. Therefore, among the flow control valves 15a to 15c, those for which the second control signal is calculated are controlled based on the second control signal, and those for which the second control signal is not calculated are based on the first control signal. Those that are controlled and neither the first nor second control signal is generated are not controlled (driven). If the first control signal and the second control signal are defined as described above, MC can be said to control the flow control valves 15a to 15c based on the second control signal.
  • the controller 40 includes an input unit 91, a central processing unit (CPU) 92 that is a processor, a read-only memory (ROM) 93 and a random access memory (RAM) 94 that are storage devices, and an output unit 95.
  • the input unit 91 includes signals from the angle sensors 30 to 32 and the tilt angle sensor 33 that are the work device attitude detection device 50, a signal from the target surface setting device 51 that is a device for setting the target surface 60, and an operation.
  • a signal from an operator operation amount detection device 52a which is a pressure sensor (including pressure sensors 70, 71, 72) for detecting an operation amount from the devices 45a, 45b, 46a, is input and converted so that the CPU 92 can calculate it. .
  • the ROM 93 is a recording medium in which a control program for executing MC including processing related to a flowchart to be described later and various information necessary for executing the flowchart are stored.
  • the CPU 92 is a control program stored in the ROM 93. Then, predetermined arithmetic processing is performed on the signals taken from the input unit 91 and the memories 93 and 94.
  • the output unit 95 creates a signal for output according to the calculation result in the CPU 92, and outputs the signal to the electromagnetic proportional valves 54 to 56 or the display device 53, thereby driving and controlling the hydraulic actuators 5 to 7. Or images of the vehicle body 1B, the bucket 10, the target surface 60, and the like are displayed on the screen of the display device 53.
  • the control controller 40 in FIG. 4 includes a semiconductor memory such as a ROM 93 and a RAM 94 as storage devices.
  • the control controller 40 can be replaced with any other storage device, and may include a magnetic storage device such as a hard disk drive.
  • FIG. 6 is a functional block diagram of the control controller 40.
  • the control controller 40 includes an MC control unit 43, an electromagnetic proportional valve control unit 44, and a display control unit 374.
  • the display control unit 374 is a part that controls the display device 53 based on the working device attitude and the target surface output from the MC control unit 43.
  • the display control unit 374 is provided with a display ROM that stores a large number of display-related data including images and icons of the work apparatus 1A.
  • the display control unit 374 determines a predetermined value based on a flag included in the input information. While reading the program, the display device 53 performs display control.
  • FIG. 7 is a functional block diagram of the MC control unit 43 in FIG.
  • the MC control unit 43 includes an operation amount calculation unit 43a, a posture calculation unit 43b, a target surface calculation unit 43c, an arm cylinder speed calculation unit 49, an actuator control unit 81 (boom control unit 81a and bucket control unit 81b), It has.
  • the operation amount calculator 43a calculates the operation amounts of the operation devices 45a, 45b, and 46a (operation levers 1a and 1b) based on the detection value of the operator operation amount detection device 52a. That is, the operation amount of the operating devices 45a, 45b, 46a can be calculated from the detected values of the pressure sensors 70, 71, 72.
  • the use of the pressure sensors 70, 71, 72 for calculating the operation amount is merely an example.
  • a position sensor for example, a rotary encoder
  • the operation amount of the operation lever may be detected.
  • the posture calculation unit 43b calculates the postures of the boom 8, the arm 9 and the bucket 10 in the local coordinate system, the posture of the front work device 1A, and the position of the toe of the bucket 10 based on the detection value of the work device posture detection device 50. To do. In addition, the posture calculation unit 43b calculates an angle between the horizontal plane passing through the arm rotation center (arm pin) and the arm 9 (referred to as “arm horizontal angle ⁇ ” (see FIG. 5)).
  • the posture of the boom 8, the arm 9 and the bucket 10 and the posture of the front working device 1A can be defined on the shovel coordinate system (local coordinate system) in FIG.
  • the shovel coordinate system (XZ coordinate system) in FIG. 5 is a coordinate system set for the upper swing body 12, and the upper portion of the boom 8 that is rotatably supported by the upper swing body 12 is the origin.
  • the body 12 was set with the Z axis in the vertical direction and the X axis in the horizontal direction.
  • the inclination angle of the boom 8 with respect to the X-axis is the boom angle ⁇
  • the inclination angle of the arm 9 with respect to the boom 8 is the arm angle ⁇
  • the inclination angle of the bucket toe with respect to the arm 9 is the bucket angle ⁇ .
  • the inclination angle of the vehicle body 1B (upper turning body 12) with respect to the horizontal plane (reference plane) is defined as an inclination angle ⁇ .
  • the boom angle ⁇ is detected by the boom angle sensor 30, the arm angle ⁇ is detected by the arm angle sensor 31, the bucket angle ⁇ is detected by the bucket angle sensor 32, and the tilt angle ⁇ is detected by the vehicle body tilt angle sensor 33.
  • the lengths of the boom 8, arm 9, and bucket 10 are L1, L2, and L3, respectively, the coordinates of the bucket toe position in the shovel coordinate system, the postures of the boom 8, arm 9, and bucket 10 and The posture of the work apparatus 1A can be expressed by L1, L2, L3, ⁇ , ⁇ , ⁇ .
  • the arm horizontal angle ⁇ which is the angle formed by the horizontal plane passing through the arm rotation center (arm pin) and the arm 9, can be calculated from, for example, the inclination angle ⁇ , the boom angle ⁇ , and the arm angle ⁇ .
  • a U-axis is set on a horizontal plane passing through the arm rotation center (arm pin) in the global coordinate system, and a straight line (length) connecting the arm rotation center and the bucket rotation center.
  • the angle formed by the straight line L2 and the U axis is ⁇ .
  • the U axis is 0 degree, counterclockwise is a positive angle, and clockwise is a negative angle.
  • is positive.
  • the arm horizontal angle ⁇ can also be detected by attaching an inclination angle sensor, an inertial measurement device (IMU), or the like to a reference plane (for example, a horizontal plane) to the arm 9.
  • IMU inertial measurement device
  • the target surface calculation unit 43 c calculates the position information of the target surface 60 based on the information from the target surface setting device 51 and stores this in the ROM 93.
  • a cross-sectional shape obtained by cutting a three-dimensional target plane with a plane (working plane of the working machine) on which the working apparatus 1A moves is used as the target plane 60 (two-dimensional target plane). To do.
  • a method of setting a target surface closest to the work device 1A as a target surface for example, a method of setting a target surface below the bucket toe, or a method selected arbitrarily
  • a method of making it a target surface for example, a method of making a target surface closest to the work device 1A as a target surface, a method of setting a target surface below the bucket toe, or a method selected arbitrarily
  • the arm cylinder speed calculation unit 49 calculates a speed (arm cylinder speed) used as the speed of the arm cylinder 6 when the actuator control unit 81 executes MC, and outputs the calculation result to the actuator control unit 81 It is.
  • FIG. 8 is a functional block diagram of the arm cylinder speed calculation unit 49.
  • the arm cylinder speed calculator 49 includes a first speed calculator 49a, a second speed calculator 49b, a third speed calculator 49c, and a speed selector 49d.
  • the first speed calculation unit 49a is a part that calculates the speed (Vamt1) of the arm cylinder 6 from the detection value of the operation amount for the arm 9 among the detection values of the operator operation amount detection device 52a.
  • the speed (Vamt1) of the arm cylinder 6 calculated by the first speed calculation unit 49a may be referred to as “first speed” or “first arm cylinder speed”.
  • the operation amount calculation unit 43a calculates the arm operation amount from the detected value of the arm operation amount by the operator operation amount detection device 52a, and the first speed calculation unit 49a is calculated by the operation amount calculation unit 43a.
  • the speed (Vamt1) of the arm cylinder 6 is calculated based on the arm operation amount and the table of FIG.
  • the correlation between the arm operation amount and the arm cylinder speed is defined on a one-to-one basis.
  • the correlation between the operation amount and the speed is defined so that the arm cylinder speed monotonously increases as the arm operation amount increases based on the cylinder speed with respect to the operation amount obtained in advance through experiments and simulations.
  • the first arm cylinder speed calculated by the first speed calculator 49a is output to the speed selector 49d.
  • the second speed calculation unit 49b takes into account the weight of the driven object of the arm cylinder 6 (an assembly of various members located on the bucket 10 side from the arm 9 including the arm 9, the bucket 10, and the bucket cylinder 7), This is a part that calculates a speed (sometimes referred to as a second speed or a second arm cylinder speed) smaller than the first arm cylinder speed (Vamt1) calculated by the speed calculation unit 49a as the speed (Vamt2) of the arm cylinder 6. .
  • the second arm cylinder speed (Vamt2) of the present embodiment is a scene in which the direction of the load applied to the arm cylinder 6 by the weight of the object to be driven of the arm cylinder 6 is opposite to the driving direction of the arm cylinder.
  • the predetermined correction amount defined by the arm operation amount and the arm horizontal angle ⁇ is set to the first correction amount. It is defined as a value subtracted from the 1-arm cylinder speed (Vamt1).
  • the predetermined correction amount (that is, the magnitude of the difference between the first speed and the second speed) is preferably set to be equal to or less than the maximum speed value at which the first speed can be decelerated due to the weight of the driven object.
  • the second arm cylinder speed (Vamt2) calculated by the second speed calculator 49b is output to the speed selector 49d.
  • the third speed calculation unit 49c considers the weight of the object to be driven of the arm cylinder 6, and has a speed (third speed or third arm) higher than the first arm cylinder speed (Vamt1) calculated by the first speed calculation unit 49a. This is a part for calculating the arm cylinder 6 speed (Vamt3).
  • the third arm cylinder speed (Vamt3) of the present embodiment is a scene in which the direction of the load applied to the arm cylinder 6 by the weight of the driving object of the arm cylinder 6 is the same as the driving direction of the arm cylinder.
  • a predetermined correction amount defined by the arm operation amount and the arm horizontal angle ⁇ is set to the first arm. It is defined by a value added to the cylinder speed (Vamt1).
  • the predetermined correction amount (that is, the magnitude of the difference between the first speed and the third speed) is preferably set to be equal to or less than the maximum speed value at which the first speed can be accelerated by the influence of the weight of the driven object.
  • the third arm cylinder speed (Vamt3) calculated by the third speed calculator 49c is output to the speed selector 49d.
  • the speed selection unit 49d determines the direction of the load applied to the arm cylinder 6 by the weight of the driven object of the arm cylinder 6 including the arm 9 (hereinafter sometimes referred to as “the load direction of the driven object”) of the posture detection device 43b. A determination is made based on the detected value (specifically, the arm horizontal angle ⁇ ), and based on the determination result, the arm cylinder speed Vam output to the actuator controller 81 is set to the first speed (Vamt1) and the second speed (Vamt2). And the third speed (Vamt3).
  • the speed selection unit 49d can output the second speed (Vamt2) to the actuator control unit 81 when it is determined that the load direction of the driven object is opposite to the drive direction of the arm cylinder 6.
  • the third speed (Vamt3) can be output to the actuator control unit 81.
  • the boom control unit 81a and the bucket control unit 81b constitute an actuator control unit 81 that controls at least one of the plurality of hydraulic actuators 5, 6, and 7 according to a predetermined condition when operating the operation devices 45a, 45b, and 46a. .
  • the actuator control unit 81 calculates target pilot pressures of the flow control valves 15 a, 15 b, and 15 c of the hydraulic cylinders 5, 6, and 7, and outputs the calculated target pilot pressures to the electromagnetic proportional valve control unit 44.
  • the boom control unit 81a when operating the operation devices 45a, 45b, 46a, the position of the target surface 60, the position of the front working device 1A, the position of the toe of the bucket 10, the speed of each hydraulic cylinder 5, 6, 7 This is a part for executing MC for controlling the operation of the boom cylinder 5 (boom 8) so that the toe (control point) of the bucket 10 is positioned on or above the target surface 60.
  • the target pilot pressure of the flow control valve 15a of the boom cylinder 5 is calculated. Details of the MC by the boom control unit 81a will be described later with reference to FIG.
  • the bucket control unit 81b is a part for executing bucket angle control by MC when operating the operation devices 45a, 45b, and 46a. Specifically, when the distance between the target surface 60 and the tip of the bucket 10 is equal to or less than a predetermined value, the bucket cylinder 7 (the bucket cylinder 7 (bucket) is set so that the angle ⁇ of the bucket 10 with respect to the target surface 60 becomes a preset target surface bucket angle ⁇ TGT. MC (bucket angle control) for controlling the operation of 10) is executed. In the bucket controller 81b, the target pilot pressure of the flow rate control valve 15c of the bucket cylinder 7 is calculated.
  • the electromagnetic proportional valve control unit 44 calculates commands to the electromagnetic proportional valves 54 to 56 based on the target pilot pressures output to the flow control valves 15a, 15b, and 15c from the actuator control unit 81.
  • the pilot pressure (first control signal) based on the operator operation matches the target pilot pressure calculated by the actuator control unit 81, the current value (command value) to the corresponding electromagnetic proportional valves 54 to 56 is determined. Becomes zero, and the operation of the corresponding proportional valves 54 to 56 is not performed.
  • FIG. 10 is a flowchart for calculating the speed Vam of the arm cylinder 6 output from the arm cylinder speed calculation unit 49 to the actuator control unit 81.
  • the arm cylinder speed calculation unit 49 repeatedly executes the flow of FIG. 10 at a predetermined control cycle.
  • the speed to be output (Vamt1, Vamt2, Vamt3) is calculated after the speed selection by the speed selection unit 49d is performed. However, before the speed selection by the speed selection unit 49d, the first speed is selected.
  • the arm cylinder speeds (Vamt1, Vamt2, Vamt3) are calculated by the speed calculation unit 49a, the second speed calculation unit 49b, and the third speed calculation unit 49c, respectively. Needless to say, the flow may be configured to output only the corresponding arm cylinder speed to the actuator controller 81.
  • the speed selection unit 49d acquires the arm horizontal angle ⁇ (see FIG. 5) from the posture calculation unit 43b.
  • the speed selection unit 49d determines whether the arm angle ⁇ acquired in S600 is ⁇ 90 degrees or more and 90 degrees or less.
  • the load direction applied to the arm cylinder 6 by the weight of the driven object is the same as the driving direction of the arm cylinder 6
  • the speed selection unit 49d determines to output the third speed (Vamt3) to the actuator control unit 81 as the arm cylinder speed Vam, and proceeds to S620.
  • the third speed calculation unit 49c calculates the correction gain k related to the arm cylinder speed Vamt3 based on the arm operation amount amlever calculated by the operation amount calculation unit 43a.
  • the function kmo for the third speed calculator to calculate the correction gain k in S620 is that the influence of the weight of the driven object of the arm cylinder 6 is derived from the meter-out opening area of the arm spool related to the flow control valve 15b. It is assumed that the function correlates with the meter-out opening area of the arm spool.
  • the meter-out opening area of the arm spool is converted into an arm operation amount (amlever) corresponding thereto
  • the third speed calculation unit 49c is the arm operation amount calculated by the operation amount calculation unit 43a.
  • the correction gain k is calculated based on (amlever), and the table of FIG. 11 in which the correlation between the arm operation amount (amlever) and the correction gain k (function kmo) is defined on a one-to-one basis.
  • the correlation between the operation amount and the correction gain k is defined so that the correction gain k increases monotonously with the increase in the arm operation amount based on the cylinder speed with respect to the operation amount obtained in advance through experiments and simulations. ing.
  • the third speed calculator 49c calculates a correction amount (k ⁇ cos ⁇ ) related to the arm cylinder speed Vamt3 using the correction gain k obtained in S620.
  • the third speed calculation unit 49c adds the correction amount k ⁇ cos ⁇ to the first speed Vamt1 obtained by the first speed calculation unit 49a for the estimated speed of the arm cylinder 6 (third speed (Vamt3)). Value.
  • is ⁇ 90 degrees or more and 90 degrees or less, so cos ⁇ is a value of 0 or more, and the correction amount k ⁇ cos ⁇ is also a value of 0 or more. That is, the third speed Vamt3 is a value equal to or higher than the first speed Vamt1.
  • the arm cylinder speed calculation unit 49 outputs the third speed Vam3 as the arm cylinder speed Vam to the actuator control unit 81, and the arm cylinder speed calculation unit 49 stands by until the next control cycle.
  • the speed selection unit 49d determines whether the arm operation amount amelever is smaller than a predetermined threshold level in S630.
  • the threshold level (see, for example, FIGS. 11 and 12) is an arm operation amount corresponding to a stroke amount SX in which the bleed-off opening of the arm spool is closed (that is, the bleed-off opening area (center bypass opening area) becomes zero).
  • the speed selection unit 49d indicates that the load applied to the arm cylinder 6 by the weight of the driven object is opposite to the driving direction of the arm cylinder 6. It is determined that the second speed (Vamt2) is output to the actuator controller 81 as the arm cylinder speed Vam, and the process proceeds to S640.
  • the second speed calculation unit 49b calculates a correction gain k related to the arm cylinder speed Vamt2 based on the arm operation amount amlever calculated by the operation amount calculation unit 43a.
  • the function kmi for the second speed calculation unit 49b to calculate the correction gain k in S640 is that the influence of the weight of the driven object of the arm cylinder 6 depends on the meter-in opening area and the bleed of the arm spool related to the flow control valve 15b.
  • a function derived from the off-opening area a function correlated with the meter-in opening area and the bleed-off opening area of the arm spool is used.
  • the second speed calculation unit 49b has the operation amount calculation unit 43a
  • the correction gain k is calculated on the basis of the calculated arm operation amount (amlever) and the table of FIG. 12 in which the correlation between the arm operation amount (amlever) and the correction gain k (function kmi) is defined in a one-to-one relationship. .
  • the correlation between the operation amount and the correction gain k is defined so that the correction gain k monotonously decreases as the arm operation amount increases based on the cylinder speed with respect to the operation amount obtained in advance through experiments and simulations. ing.
  • the second speed calculator 49b calculates a correction amount (k ⁇ cos ⁇ ) related to the arm cylinder speed Vamt2 using the correction gain k obtained in S640.
  • the second speed calculation unit 49b adds the correction amount k ⁇ cos ⁇ to the first speed Vamt1 obtained by the first speed calculation unit 49a for the estimated speed of the arm cylinder 6 (second speed (Vamt2)). Value.
  • second speed (Vamt2) the second speed
  • the arm cylinder speed calculator 49 outputs the second speed Vam2 to the actuator controller 81 as the arm cylinder speed Vam, and the arm cylinder speed calculator 49 stands by until the next control cycle.
  • the speed selection unit 49d determines to output the first speed (Vamt1) as the arm cylinder speed Vam to the actuator control unit 81, and proceeds to S650.
  • the first speed calculation unit 49a assumes that the weight of the driven object of the arm cylinder 6 has almost no influence on the arm cylinder speed, and sets the correction gain k to zero.
  • the first speed calculation unit 49a sets the speed determined from the correlation in FIG. 9 and the arm operation amount (amlever) as the first speed Vamt1.
  • the arm cylinder speed calculator 49 outputs the first speed Vam1 as the arm cylinder speed Vam to the actuator controller 81, and the arm cylinder speed calculator 49 stands by until the next control cycle.
  • FIG. 13 shows a flow of boom raising control by the boom control unit 81a.
  • FIG. 13 is a flowchart of MC executed by the boom control unit 81a, and processing is started when the operating devices 45a, 45b, and 46a are operated by the operator.
  • the boom control unit 81a acquires the speeds of the hydraulic cylinders 5, 6, and 7.
  • the speeds of the boom cylinder 5 and the bucket cylinder 7 are obtained by calculating the speeds of the boom cylinder 5 and the bucket cylinder 7 based on the operation amounts for the boom 8 and the bucket 10 calculated by the operation amount calculation unit 43a.
  • the cylinder speed with respect to the operation amount obtained in advance through experiments and simulations is set as a table, and the speeds of the boom cylinder 5 and the bucket cylinder 7 are calculated accordingly.
  • the arm cylinder speed calculation unit 49 outputs the speed Vam (that is, one of the first speed Vamt1, the second speed Vamt2, and the third speed Vamt3) based on the flow of FIG. ) Is acquired as the speed of the arm cylinder 6.
  • the boom control unit 81a based on the operation speed of each of the hydraulic cylinders 5, 6, and 7 acquired in S410 and the posture of the working device 1A calculated by the posture calculation unit 43b, The velocity vector B of the toe) is calculated.
  • the boom control unit 81a determines the target surface to be controlled from the tip of the bucket based on the distance between the toe position (coordinates) of the bucket 10 calculated by the posture calculation unit 43b and the straight line including the target surface 60 stored in the ROM 93. A distance D up to 60 (see FIG. 5) is calculated. Based on the distance D and the graph of FIG. 14, the limit value ay on the lower limit side of the component perpendicular to the target surface 60 of the velocity vector at the bucket tip is calculated.
  • the boom control unit 81a acquires a component by perpendicular to the target surface 60 in the speed vector B at the bucket tip by the operator operation calculated in S420.
  • the boom control unit 81a determines whether or not the limit value ay calculated in S430 is 0 or more.
  • xy coordinates are set as shown in the upper right of FIG. In the xy coordinates, the x axis is parallel to the target surface 60 and the right direction in the drawing is positive, and the y axis is perpendicular to the target surface 60 and the upward direction in the drawing is positive.
  • the vertical component by and the limit value ay are negative, and the horizontal component bx, the horizontal component cx, and the vertical component cy are positive. As is apparent from FIG.
  • the boom control unit 81a determines whether or not the vertical component by of the toe velocity vector B by the operator operation is 0 or more. When by is positive, it indicates that the vertical component by of the velocity vector B is upward, and when by is negative, it indicates that the vertical component by of the velocity vector B is downward. If it is determined in S460 that the vertical component by is 0 or more (that is, if the vertical component by is upward), the process proceeds to S470, and if the vertical component by is less than 0, the process proceeds to S500.
  • the boom control unit 81a compares the limit value ay with the absolute value of the vertical component by, and if the absolute value of the limit value ay is greater than or equal to the absolute value of the vertical component by, the process proceeds to S500. On the other hand, if the absolute value of the limit value ay is less than the absolute value of the vertical component by, the process proceeds to S530.
  • the vertical component cy is calculated based on the equation, the limit value ay in S430 and the vertical component by in S440. Then, a velocity vector C capable of outputting the calculated vertical component cy is calculated, and the horizontal component is set as cx (S510).
  • the boom control unit 81a determines whether or not the vertical component by of the toe velocity vector B by the operator operation is 0 or more. If it is determined in S480 that the vertical component by is greater than or equal to 0 (that is, if the vertical component by is upward), the process proceeds to S530, and if the vertical component by is less than 0, the process proceeds to S490.
  • the boom control unit 81a compares the limit value ay with the absolute value of the vertical component by. If the absolute value of the limit value ay is equal to or greater than the absolute value of the vertical component by, the process proceeds to S530. On the other hand, if the absolute value of the limit value ay is less than the absolute value of the vertical component by, the process proceeds to S500.
  • the boom control unit 81a sets the speed vector C to zero.
  • the boom control unit 81a calculates the target speed of each hydraulic cylinder 5, 6, and 7 based on the target speed vector T (ty, tx) determined in S520 or S540. As is apparent from the above description, when the target speed vector T does not coincide with the speed vector B in the case of FIG. 13, the speed vector C generated by the operation of the boom 8 by machine control is added to the speed vector B. A velocity vector T is realized.
  • the boom controller 81a sets the target pilot pressure to the flow control valves 15a, 15b, 15c of the hydraulic cylinders 5, 6, 7 based on the target speeds of the cylinders 5, 6, 7 calculated in S550. Calculate.
  • the boom control unit 81a outputs the target pilot pressure to the flow control valves 15a, 15b, and 15c of the hydraulic cylinders 5, 6, and 7 to the electromagnetic proportional valve control unit 44.
  • the electromagnetic proportional valve control unit 44 controls the electromagnetic proportional valves 54, 55 and 56 so that the target pilot pressure acts on the flow control valves 15a, 15b and 15c of the hydraulic cylinders 5, 6 and 7, and thereby the working device.
  • Excavation by 1A is performed.
  • the electromagnetic proportional valve 55c is controlled so that the tip of the bucket 10 does not enter the target surface 60, and the boom 8 is raised. Is done automatically.
  • the boom control (forced boom raising control) by the boom control unit 81a and the bucket control (bucket angle control) by the bucket control unit 81b are executed as MC, but the distance between the bucket 10 and the target surface 60 You may perform boom control according to D as MC.
  • a command (MC) for raising the boom 8 is executed by issuing a command to the electromagnetic valve 54a from the boom control unit 81a.
  • the weight of the front work device (the arm 9 and the bucket 10) ahead of the arm 9 acts in the direction of accelerating the arm cylinder speed.
  • the actual arm cylinder speed tends to be larger than the value (first speed Vamt1) assumed from the arm operation amount (amlever) at that time.
  • the third speed Vamt3 larger than the first speed Vamt1 is output to the actuator controller 81 as the arm cylinder speed Vam. .
  • the boom raising operation amount by the MC can be calculated more accurately, so that the MC is stabilized and the construction accuracy of the target surface 60 is improved.
  • the correction amount that is, k ⁇ cos ⁇ which is the deviation between the first speed Vamt1 and the third speed Vamt3 is changed in accordance with changes in the arm horizontal angle ⁇ (see FIG. 10) and the arm operation amount (see FIG. 11). Since it is changed, MC stability and construction accuracy can be further improved.
  • the front work device (arm 9 and the bucket 10) act in the direction of decelerating the arm cylinder speed, so that the actual arm cylinder speed tends to be smaller than the value (first speed Vamt1) assumed from the arm operation amount (amever) at that time.
  • the second speed Vamt2 smaller than the first speed Vamt1 is output to the actuator controller 81 as the arm cylinder speed Vam by the control flow of FIG.
  • the boom raising operation amount by the MC can be calculated more accurately, so that the MC is stabilized and the construction accuracy of the target surface 60 is improved.
  • a correction amount that is, k ⁇ cos ⁇ which is a deviation between the first speed Vamt1 and the second speed Vamt2 is changed according to changes in the arm horizontal angle ⁇ (see FIG. 10) and the arm operation amount (see FIG. 12). Since it is changed, MC stability and construction accuracy can be further improved.
  • the bleed of the arm spool related to the flow control valve 15b is performed.
  • the off-opening is closed, and all the pressure oil supplied to the flow control valve 15 b flows to the arm cylinder 6. Therefore, there is almost no influence of the weight of the front work device (arm 9, bucket 10) ahead of the arm 9 on the arm cylinder speed, and the arm cylinder speed (first speed Vamt1) assumed from the arm operation amount (amlever) as before. Is output to the actuator control unit 81 to execute MC.
  • the bleed-off opening is closed, the conventional MC stability and construction accuracy can be maintained.
  • the arm cylinder speed (first level) assumed from the arm operation amount (amlever) is taken into consideration.
  • the deviation from the actual arm cylinder speed is reduced.
  • an appropriate boom raising operation amount that is, the target speed of each hydraulic cylinder 5, 6, 7) can be calculated, and the behavior of the bucket tip in the MC can be stabilized.
  • the control is made so that the arm cylinder speed is not corrected.
  • the system may be configured to output to That is, the system may be configured to proceed to S640 if NO is determined in S610 in FIG.
  • the system is configured to proceed to S630 when NO is determined in S610.
  • the system may be configured to execute the determination process of S630 before S610.
  • the angle sensor that detects the angles of the boom 8, the arm 9, and the bucket 10 is used.
  • the attitude information of the shovel may be calculated by a cylinder stroke sensor instead of the angle sensor.
  • the hydraulic pilot type excavator has been described as an example, but an electric lever type excavator may be configured to control a command current generated from the electric lever.
  • the speed vector calculation method for the front work apparatus 1A may be obtained from the angular velocity calculated by differentiating the angles of the boom 8, the arm 9 and the bucket 10 instead of the pilot pressure by the operator operation.
  • Each configuration related to the control controller 40 and the functions and execution processes of each configuration are realized by hardware (for example, designing logic for executing each function with an integrated circuit). Also good.
  • the configuration related to the control controller 40 may be a program (software) that realizes each function related to the configuration of the control controller 40 by being read and executed by an arithmetic processing device (for example, a CPU).
  • Information related to the program can be stored in, for example, a semiconductor memory (flash memory, SSD, etc.), a magnetic storage device (hard disk drive, etc.), a recording medium (magnetic disk, optical disc, etc.), and the like.
  • the present invention is not limited to the above-described embodiment, and includes various modifications within the scope not departing from the gist thereof.
  • the present invention is not limited to the one having all the configurations described in the above embodiment, and includes a configuration in which a part of the configuration is deleted.
  • a part of the configuration according to the embodiment may be replaced with another configuration, or another configuration may be added.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

油圧ショベル(1)は,操作装置(45,46)の操作時に,複数の油圧アクチュエータ(5,6,7)の速度と予め定めた条件に従って複数の油圧アクチュエータ(5,6,7)の少なくとも1つを制御するアクチュエータ制御部(81)を有する制御コントローラ(40)を備える。制御コントローラ(40)は,姿勢検出装置(50)の検出値に基づいてアーム(9)の自重がアームシリンダ(6)に与える荷重の方向を判定し,その荷重の方向がアームシリンダ(6)の駆動方向と逆であると判定したとき第2速度Vamt2をアクチュエータ制御部(81)に出力し,その荷重の方向がアームシリンダ(6)の駆動方向と同じであると判定したとき第3速度Vamt3をアクチュエータ制御部(81)に出力する。

Description

作業機械
 本発明は,操作装置の操作時に,予め定めた条件に従って複数の油圧アクチュエータの少なくとも1つを制御する作業機械に関する。
 油圧アクチュエータで駆動される作業装置(例えばフロント作業装置)を備える作業機械(例えば油圧ショベル)の作業効率を向上する技術としてマシンコントロール(Machine Control:MC)がある。MCは,操作装置がオペレータに操作された場合に,予め定めた条件に従って作業装置を動作させる半自動制御を実行することでオペレータの操作支援を行う技術である。
 例えば特許文献1には,バケットの刃先を目標設計地形(目標面)に沿って移動させるようにフロント作業装置を制御する技術が開示されている。この文献では,アーム操作レバーの操作量が少ない場合,フロント作業装置の姿勢に依ってはバケットの自重落下に起因して,アーム操作レバーの操作量に基づいて算出されるアームシリンダの推定速度よりも実際のアームシリンダ速度が大きくなり,このような状況でアームシリンダの推定速度に基づくMCを実行すると,バケットの刃先が安定せずハンチングが生じる可能性があることを課題として挙げている。そして,この文献は,アーム操作レバーの操作量が所定量未満の場合には,アーム操作レバーの操作量を基に算出される速度よりも大きい速度をバケットの自重落下を加味したアームシリンダの推定速度として算出し,その推定速度に基づいてMCを行うことで上記の課題の解決を図っている。
国際公開第2015/025985号パンフレット
 特許文献1の技術のようにアームシリンダの推定速度の算出時にバケットの自重落下を考慮すると,その推定速度がアームシリンダの実速度に近づくので,MC中のハンチング発生を防止できる。しかし,アーム操作レバーの操作量に基づくアームシリンダの推定速度と実速度の乖離はバケットの自重落下のみに起因するものではなく,特許文献1のようにバケットの自重落下を考慮してアームシリンダの速度を推定するだけではハンチング発生防止の対策として不充分である。
 例えば,図15のように作業機械の走行体よりも下側に位置する斜面に対して土砂を掻き均す,いわゆる切上げ作業を行う場合,主にアームやバケットの自重に反してフロント作業装置を持ち上げる方向にアームシリンダを駆動することになる。つまり,切上げ作業では,アームシリンダの駆動に関するフロント作業装置(アーム,バケット)の自重の影響でアームシリンダ速度が想定よりも速くなる場合は少ない。むしろ,自重に対してフロント作業装置を持ち上げる方向に駆動する影響でアームのシリンダ速度は想定速度よりも遅くなる場合がある。
 このようにフロント作業装置の自重によりアームシリンダ速度が想定速度よりも遅くなる現象は作業機械に用いられる油圧システムのうちいわゆるオープンセンタバイパス方式(オープンセンタ方式とも称される)のもので顕著となる。図16にオープンセンタバイパス方式のスプールの開口面積特性を示す。オープンセンタバイパス方式のスプールの開口面積には,ポンプからの圧油をタンクに流す流路のセンタバイパス開口,ポンプからの圧油をアクチュエータに供給する流路のメータイン開口,アクチュエータからタンクへ流す流路のメータアウト開口がある。センタバイパス開口の面積がゼロになる閉じきり点をSXとする。
 ここで,切上げ作業のように自重に対してフロント作業装置を持ち上げる方向にアームシリンダを駆動した場合の圧油の流れを説明する。この場合,自重に対してフロント作業装置を持ち上げる方向にアームシリンダを駆動するので,フロント作業装置の自重によりメータイン側の圧力が上昇する。アーム操作レバーの操作量が少なくスプールのストローク量がSX未満の場合,センタバイパス開口が開いているため,ポンプから供給される圧油はメータイン開口(メータイン流路)を通ってアームシリンダへ供給されるものと,センタバイパス開口(センタバイパス流路)を通ってタンクへ流れるものに分かれる。圧油は負荷が軽い方向に流れやすい特性があるため,自重に対してフロント作業装置を持ち上げる方向にアームシリンダを駆動しないときと比べてアームシリンダへ圧油が流れにくくなり,結果としてアームシリンダ速度が遅くなる。
 このように,作業機械の作業内容によってはアームシリンダ速度が想定していた速度よりも遅くなる場合があり,結果として半自動制御をする際のバケットの刃先(作業装置の先端)が安定せずハンチングを起こしてしまう可能性がある。
 本発明の目的は,作業装置を駆動するアームシリンダの速度をより適切に算出でき,MCにおける作業装置の先端(例えばバケット刃先)の挙動が安定化した作業機械を提供することにある。
 本願は上記課題を解決する手段を複数含んでいるが,その一例を挙げるならば,アームを含む複数のフロント部材を有する作業装置と,前記アームを駆動するアームシリンダを含み前記複数のフロント部材を駆動する複数の油圧アクチュエータと,オペレータの操作に応じて前記複数の油圧アクチュエータの動作を指示する操作装置と,前記操作装置の操作時に,前記複数の油圧アクチュエータの速度と予め定めた条件に従って前記複数の油圧アクチュエータの少なくとも1つを制御するアクチュエータ制御部を有する制御装置と,前記アームの姿勢に関する物理量を検出する姿勢検出装置と,前記操作装置の操作量のうち前記アームに対する操作量に関する物理量を検出する操作量検出装置とを備える作業機械において,前記制御装置は,前記操作量検出装置の検出値から算出した第1速度を前記アームシリンダの速度として算出する第1速度演算部と,前記姿勢検出装置の検出値に基づいて前記アームの自重が前記アームシリンダに与える荷重の方向を判定し,前記荷重の方向が前記アームシリンダの駆動方向と逆であると判定したとき前記アームシリンダの速度として前記第1速度より小さい第2速度を前記アームシリンダの速度として算出する第2速度演算部と,前記荷重の方向が前記アームシリンダの駆動方向と同じであると判定したとき前記アームシリンダの速度として前記第1速度以上の第3速度を前記アームシリンダの速度として算出する第3速度演算部とを備える。
 本発明によれば,作業装置を駆動するアームシリンダの速度をより適切に算出でき,MCにおける作業装置の先端の挙動を安定化できる。
油圧ショベルの構成図。 油圧ショベルの制御コントローラを油圧駆動装置と共に示す図。 フロント制御用油圧ユニットの詳細図。 油圧ショベルの制御コントローラのハードウェア構成図。 図1の油圧ショベルにおける座標系および目標面を示す図。 図1の油圧ショベルの制御コントローラの機能ブロック図。 図6中のMC制御部の機能ブロック図。 図7中のアームシリンダ速度演算部49の機能ブロック図。 操作量に対するシリンダ速度の関係を示す図。 アームシリンダ速度を算出するフローチャート。 アーム操作量と補正ゲインkmoの関係を示す図。 アーム操作量と補正ゲインkmiの関係を示す図。 ブーム制御部によるブーム上げ制御のフローチャート。 バケット爪先速度の垂直成分の制限値ayと距離Dとの関係を示す図。 切上げ作業の説明図。 センタバイパス式スプールのスプールストロークに対する開口面積を示す図。
 以下,本発明の実施形態について図面を用いて説明する。なお,以下では,作業装置の先端の作業具(アタッチメント)としてバケット10を備える油圧ショベルを例示するが,バケット以外のアタッチメントを備える作業機械で本発明を適用しても構わない。さらに,複数のフロント部材(アタッチメント,アーム,ブーム等)を連結して構成される多関節型の作業装置を有するものであれば油圧ショベル以外の作業機械への適用も可能である。
 また,本稿では,或る形状を示す用語(例えば,目標面,設計面等)とともに用いられる「上」,「上方」又は「下方」という語の意味に関し,「上」は当該或る形状の「表面」を意味し,「上方」は当該或る形状の「表面より高い位置」を意味し,「下方」は当該或る形状の「表面より低い位置」を意味することとする。また,以下の説明では,同一の構成要素が複数存在する場合,符号(数字)の末尾にアルファベットを付すことがあるが,当該アルファベットを省略して当該複数の構成要素をまとめて表記することがある。例えば,2つのポンプ2a,2b,が存在するとき,これらをまとめてポンプ2と表記することがある。
 <基本構成>
 図1は本発明の実施形態に係る油圧ショベルの構成図であり,図2は本発明の実施形態に係る油圧ショベルの制御コントローラを油圧駆動装置と共に示す図であり,図3は図2中のフロント制御用油圧ユニット160の詳細図である。
 図1において,油圧ショベル1は,多関節型のフロント作業装置1Aと,車体1Bで構成されている。車体1Bは,左右の走行油圧モータ3a(図2参照),3bにより走行する下部走行体11と,下部走行体11の上に取り付けられ,旋回油圧モータ4により旋回する上部旋回体12とからなる。
 フロント作業装置1Aは,垂直方向にそれぞれ回動する複数のフロント部材(ブーム8,アーム9及びバケット10)を連結して構成されている。ブーム8の基端は上部旋回体12の前部においてブームピンを介して回動可能に支持されている。ブーム8の先端にはアームピンを介してアーム9が回動可能に連結されており,アーム9の先端にはバケットピンを介してバケット10が回動可能に連結されている。これら複数のフロント部材8,9,10は複数の油圧アクチュエータである油圧シリンダ5,6,7によって駆動される。具体的には,ブーム8はブームシリンダ5によって駆動され,アーム9はアームシリンダ6によって駆動され,バケット10はバケットシリンダ7によって駆動される。
 ブーム8,アーム9,バケット10の姿勢に関する物理量である回動角度α,β,γ(図5参照)を測定可能なように,ブームピンにブーム角度センサ30,アームピンにアーム角度センサ31,バケットリンク13にバケット角度センサ32が取付けられ,上部旋回体12には基準面(例えば水平面)に対する上部旋回体12(車体1B)の傾斜角θ(図5参照)を検出する車体傾斜角センサ33が取付けられている。なお,本実施形態の角度センサ30,31,32はロータリポテンショメータであるが,それぞれ基準面(例えば水平面)に対する傾斜角センサや慣性計測装置(IMU)などに代替可能である。
 上部旋回体12に設けられた運転室内には,走行右レバー23a(図1)を有し走行右油圧モータ3a(下部走行体11)を操作するための操作装置47a(図2)と,走行左レバー23b(図1)を有し走行左油圧モータ3b(下部走行体11)を操作するための操作装置47b(図2)と,操作右レバー1a(図1)を共有しブームシリンダ5(ブーム8)及びバケットシリンダ7(バケット10)を操作するための操作装置45a,46a(図2)と,操作左レバー1b(図1)を共有しアームシリンダ6(アーム9)及び旋回油圧モータ4(上部旋回体12)を操作するための操作装置45b,46b(図2)が設置されている。以下では,走行右レバー23a,走行左レバー23b,操作右レバー1aおよび操作左レバー1bを操作レバー1,23と総称することがある。
 上部旋回体12に搭載された原動機であるエンジン18は,油圧ポンプ2a,2bとパイロットポンプ48を駆動する。油圧ポンプ2a,2bはレギュレータ2aa,2baによって容量が制御される可変容量型ポンプであり,パイロットポンプ48は固定容量型ポンプである。油圧ポンプ2およびパイロットポンプ48はタンク200より作動油を吸引する。本実施形態においては,図2に示すように,パイロットライン144,145,146,147,148,149の途中にシャトルブロック162が設けられている。操作装置45,46,47から出力された油圧信号が,このシャトルブロック162を介してレギュレータ2aa,2baにも入力される。シャトルブロック162の詳細構成は省略するが,油圧信号がシャトルブロック162を介してレギュレータ2aa,2baに入力されており,油圧ポンプ2a,2bの吐出流量が当該油圧信号に応じて制御される。
 パイロットポンプ48の吐出配管であるポンプライン48aはロック弁39を通った後,複数に分岐して操作装置45,46,47,フロント制御用油圧ユニット160内の各弁に接続している。ロック弁39は本例では電磁切換弁であり,その電磁駆動部は運転室(図1)に配置されたゲートロックレバー(不図示)の位置検出器と電気的に接続している。ゲートロックレバーのポジションは位置検出器で検出され,その位置検出器からロック弁39に対してゲートロックレバーのポジションに応じた信号が入力される。ゲートロックレバーのポジションがロック位置にあればロック弁39が閉じてポンプライン48aが遮断され,ロック解除位置にあればロック弁39が開いてポンプライン48aが開通する。つまり,ポンプライン48aが遮断された状態では操作装置45,46,47による操作が無効化され,旋回,掘削等の動作が禁止される。
 操作装置45,46,47は,油圧パイロット方式の操作装置であり,パイロットポンプ48から吐出される圧油をもとに,それぞれオペレータにより操作される操作レバー1,23の操作量(例えば,レバーストローク)と操作方向に応じたパイロット圧(操作圧と称することもある)を発生する。このように発生したパイロット圧は,対応する流量制御弁15a~15f(図2または図3)の油圧駆動部150a~155bにパイロットライン144a~149b(図3参照)を介して供給され,これら流量制御弁15a~15fを駆動する制御信号として利用される。
 油圧ポンプ2から吐出された圧油は,流量制御弁15a,15b,15c,15d,15e,15f(図2参照)を介して走行右油圧モータ3a,走行左油圧モータ3b,旋回油圧モータ4,ブームシリンダ5,アームシリンダ6,バケットシリンダ7に供給される。供給された圧油によってブームシリンダ5,アームシリンダ6,バケットシリンダ7が伸縮して,ブーム8,アーム9,バケット10がそれぞれ回動し,バケット10の位置及び姿勢が変化する。また,供給された圧油によって旋回油圧モータ4が回転して,下部走行体11に対して上部旋回体12が旋回する。そして,供給された圧油によって走行右油圧モータ3a,走行左油圧モータ3bが回転して,下部走行体11が走行する。
 流量制御弁15a,15b,15c,15d,15e,15fは,それぞれ,オープンセンタバイパス方式の流量制御弁であり,スプールが中立位置にある場合には作動油はセンタバイパス流路を経由して全てタンク200へ流れる。操作レバー1,23を操作してスプールを変位させると,図16に示すようにセンタバイパス流路(ブリードオフ開口)が絞られアクチュエータへ通じる流路(メータイン開口及びメータアウト開口)が開く。さらに操作量を増すとセンタバイパス流路を経由するブリードオフ流量(すなわちブリードオフ開口)が減少すると同時にアクチュエータへの流量(すなわちメータイン開口及びメータアウト開口)が増し,操作量に応じたアクチュエータ速度が得られる。さらに操作量を増加すると或る操作量(閉じきり点SXに相当する操作量)でセンタバイパス流路(ブリードオフ開口)が完全に閉じられ,流量制御弁15に供給される作動油は全て対応するアクチュエータに流れる。なお,図2は実際のシステムを簡略して表記しているため,図示上ブリードオフ流路がタンク200に接続していない流量制御弁15も存在するが,実際は全てオープンセンタバイパス式の流量制御弁15とする。
 タンク200は油圧アクチュエータを駆動するための作動油の油温を検出するための作動油温検出装置210を備えている。作動油温検出装置210はタンク200の外にも設置することができ,例えばタンク200の入口管路または出口管路に取り付けても良い。
 図4は本実施形態に係る油圧ショベルが備えるマシンコントロール(MC)システムの構成図である。図4のシステムは,MCとして,操作装置45,46がオペレータに操作されたとき,各油圧シリンダ5,6,7の速度とフロント作業装置1Aを予め定められた条件に基づいて制御する処理を実行する。本稿ではマシンコントロール(MC)を,操作装置45,46の非操作時に作業装置1Aの動作をコンピュータにより制御する「自動制御」に対して,操作装置45,46の操作時にのみ作業装置1Aの動作をコンピュータにより制御する「半自動制御」と称することがある。次に本実施形態におけるMCの詳細を説明する。
 フロント作業装置1AのMCとしては,操作装置45b,46aを介して掘削操作(具体的には,アームクラウド,バケットクラウド及びバケットダンプの少なくとも1つの指示)が入力された場合,目標面60(図5参照)と作業装置1Aの先端(本実施形態ではバケット10の爪先とする)の位置関係に基づいて,作業装置1Aの先端の位置が目標面60上及びその上方の領域内に保持されるように油圧アクチュエータ5,6,7のうち少なくとも1つを強制的に動作させる制御信号(例えば,ブームシリンダ5を伸ばして強制的にブーム上げ動作を行う)を該当する流量制御弁15a,15b,15cに出力する。
 このMCによりバケット10の爪先が目標面60の下方に侵入することが防止されるので,オペレータの技量の程度に関わらず目標面60に沿った掘削が可能となる。なお,本実施形態では,MC時のフロント作業装置1Aの制御点を,油圧ショベルのバケット10の爪先(作業装置1Aの先端)に設定しているが,制御点は作業装置1Aの先端部分の点であればバケット爪先以外にも変更可能である。例えば,バケット10の底面や,バケットリンク13の最外部も選択可能である。
 図4のシステムは,作業装置姿勢検出装置50と,目標面設定装置51と,オペレータ操作量検出装置52aと,運転室内に設置され,目標面60と作業装置1Aの位置関係が表示可能な表示装置(例えば液晶ディスプレイ)53と,MC制御を司る制御コントローラ(制御装置)40とを備えている。
 作業装置姿勢検出装置(姿勢検出装置)50は,ブーム角度センサ30,アーム角度センサ31,バケット角度センサ32,車体傾斜角センサ33から構成される。これらの角度センサ30,31,32,33は複数のフロント部材であるブーム8,アーム9,バケット10の姿勢に関する物理量を検出する姿勢センサとして機能している。
 目標面設定装置51は,目標面60に関する情報(各目標面の位置情報や傾斜角度情報を含む)を入力可能なインターフェースである。目標面設定装置51は,グローバル座標系(絶対座標系)上に規定された目標面の3次元データを格納した外部端末(図示せず)と接続されている。なお,目標面設定装置51を介した目標面の入力は,オペレータが手動で行っても良い。
 オペレータ操作量検出装置(操作量検出装置)52aは,オペレータによる操作レバー1a,1b(操作装置45a,45b,46a)の操作によってパイロットライン144,145,146に生じる操作圧(第1制御信号)を取得する圧力センサ70a,70b,71a,71b,72a,72bから構成される。これらの圧力センサ70a,70b,71a,71b,72a,72bは,ブーム7(ブームシリンダ5),アーム8(アームシリンダ6),バケット9(バケットシリンダ7)に対する操作装置45a,45b,46aを介したオペレータの操作量に関する物理量を検出する操作量センサとして機能している。
 <フロント制御用油圧ユニット160>
 図3に示すように,フロント制御用油圧ユニット160は,ブーム8用の操作装置45aのパイロットライン144a,144bに設けられ,操作レバー1aの操作量としてパイロット圧(第1制御信号)を検出する圧力センサ70a,70bと,一次ポート側がポンプライン148aを介してパイロットポンプ48に接続されパイロットポンプ48からのパイロット圧を減圧して出力する電磁比例弁54aと,ブーム8用の操作装置45aのパイロットライン144aと電磁比例弁54aの二次ポート側に接続され,パイロットライン144a内のパイロット圧と電磁比例弁54aから出力される制御圧(第2制御信号)の高圧側を選択し,流量制御弁15aの油圧駆動部150aに導くシャトル弁82aと,ブーム8用の操作装置45aのパイロットライン144bに設置され,制御コントローラ40からの制御信号を基にパイロットライン144b内のパイロット圧(第1制御信号)を低減して出力する電磁比例弁54bを備えている。
 また,フロント制御用油圧ユニット160は,アーム9用のパイロットライン145a,145bに設置され,操作レバー1bの操作量としてパイロット圧(第1制御信号)を検出して制御コントローラ40に出力する圧力センサ71a,71bと,パイロットライン145bに設置され,制御コントローラ40からの制御信号を基にパイロット圧(第1制御信号)を低減して出力する電磁比例弁55bと,パイロットライン145aに設置され,制御コントローラ40からの制御信号を基にパイロットライン145a内のパイロット圧(第1制御信号)を低減して出力する電磁比例弁55aが設けられている。
 また,フロント制御用油圧ユニット160は,バケット10用のパイロットライン146a,146bには,操作レバー1aの操作量としてパイロット圧(第1制御信号)を検出して制御コントローラ40に出力する圧力センサ72a,72bと,制御コントローラ40からの制御信号を基にパイロット圧(第1制御信号)を低減して出力する電磁比例弁56a,56bと,一次ポート側がパイロットポンプ48に接続されパイロットポンプ48からのパイロット圧を減圧して出力する電磁比例弁56c,56dと,パイロットライン146a,146b内のパイロット圧と電磁比例弁56c,56dから出力される制御圧の高圧側を選択し,流量制御弁15cの油圧駆動部152a,152bに導くシャトル弁83a,83bとがそれぞれ設けられている。なお,図3では,圧力センサ70,71,72と制御コントローラ40との接続線は紙面の都合上省略している。
 電磁比例弁54b,55a,55b,56a,56bは,非通電時には開度が最大で,制御コントローラ40からの制御信号である電流を増大させるほど開度は小さくなる。一方,電磁比例弁54a,56c,56dは,非通電時には開度をゼロ,通電時に開度を有し,制御コントローラ40からの電流(制御信号)を増大させるほど開度は大きくなる。このように各電磁比例弁の開度54,55,56は制御コントローラ40からの制御信号に応じたものとなる。
 上記のように構成される制御用油圧ユニット160において,制御コントローラ40から制御信号を出力して電磁比例弁54a,56c,56dを駆動すると,対応する操作装置45a,46aのオペレータ操作が無い場合にもパイロット圧(第2制御信号)を発生できるので,ブーム上げ動作,バケットクラウド動作,バケットダンプ動作を強制的に発生できる。また,これと同様に制御コントローラ40により電磁比例弁54b,55a,55b,56a,56bを駆動すると,操作装置45a,45b,46aのオペレータ操作により発生したパイロット圧(第1制御信号)を減じたパイロット圧(第2制御信号)を発生することができ,ブーム下げ動作,アームクラウド/ダンプ動作,バケットクラウド/ダンプ動作の速度をオペレータ操作の値から強制的に低減できる。
 本稿では,流量制御弁15a~15cに対する制御信号のうち,操作装置45a,45b,46aの操作によって発生したパイロット圧を「第1制御信号」と称する。そして,流量制御弁15a~15cに対する制御信号のうち,制御コントローラ40で電磁比例弁54b,55a,55b,56a,56bを駆動して第1制御信号を補正(低減)して生成したパイロット圧と,制御コントローラ40で電磁比例弁54a,56c,56dを駆動して第1制御信号とは別に新たに生成したパイロット圧を「第2制御信号」と称する。
 第2制御信号は,第1制御信号によって発生される作業装置1Aの制御点の速度ベクトルが所定の条件に反するときに生成され,当該所定の条件に適合する作業装置1Aの制御点の速度ベクトルを発生させる制御信号として生成される。なお,同一の流量制御弁15a~15cにおける一方の油圧駆動部に対して第1制御信号が,他方の油圧駆動部に対して第2制御信号が生成される場合は,第2制御信号を優先的に油圧駆動部に作用させるものとし,第1制御信号を電磁比例弁で遮断し,第2制御信号を当該他方の油圧駆動部に入力する。したがって,流量制御弁15a~15cのうち第2制御信号が演算されたものについては第2制御信号を基に制御され,第2制御信号が演算されなかったものについては第1制御信号を基に制御され,第1及び第2制御信号の双方が発生しなかったものについては制御(駆動)されないことになる。上記のように第1制御信号と第2制御信号を定義すると,MCは,第2制御信号に基づく流量制御弁15a~15cの制御ということもできる。
 <制御コントローラ40>
 図4において制御コントローラ40は,入力部91と,プロセッサである中央処理装置(CPU)92と,記憶装置であるリードオンリーメモリ(ROM)93及びランダムアクセスメモリ(RAM)94と,出力部95とを有している。入力部91は,作業装置姿勢検出装置50である角度センサ30~32及び傾斜角センサ33からの信号と,目標面60を設定するための装置である目標面設定装置51からの信号と,操作装置45a,45b,46aからの操作量を検出する圧力センサ(圧力センサ70,71,72を含む)であるオペレータ操作量検出装置52aからの信号を入力し,CPU92が演算可能なように変換する。ROM93は,後述するフローチャートに係る処理を含めMCを実行するための制御プログラムと,当該フローチャートの実行に必要な各種情報等が記憶された記録媒体であり,CPU92は,ROM93に記憶された制御プログラムに従って入力部91及びメモリ93,94から取り入れた信号に対して所定の演算処理を行う。出力部95は,CPU92での演算結果に応じた出力用の信号を作成し,その信号を電磁比例弁54~56または表示装置53に出力することで,油圧アクチュエータ5~7を駆動・制御したり,車体1B,バケット10及び目標面60等の画像を表示装置53の画面上に表示させたりする。
 なお,図4の制御コントローラ40は,記憶装置としてROM93及びRAM94という半導体メモリを備えているが,記憶装置であれば特に代替可能であり,例えばハードディスクドライブ等の磁気記憶装置を備えても良い。
 図6は,制御コントローラ40の機能ブロック図である。制御コントローラ40は,MC制御部43と,電磁比例弁制御部44と,表示制御部374を備えている。
 表示制御部374は,MC制御部43から出力される作業装置姿勢及び目標面を基に表示装置53を制御する部分である。表示制御部374には,作業装置1Aの画像及びアイコンを含む表示関連データが多数格納されている表示ROMが備えられており,表示制御部374が,入力情報に含まれるフラグに基づいて所定のプログラムを読み出すとともに,表示装置53における表示制御をする。
 図7は図6中のMC制御部43の機能ブロック図である。MC制御部43は,操作量演算部43aと,姿勢演算部43bと,目標面演算部43cと,アームシリンダ速度演算部49と,アクチュエータ制御部81(ブーム制御部81a及びバケット制御部81b)とを備えている。
 操作量演算部43aは,オペレータ操作量検出装置52aの検出値を基に操作装置45a,45b,46a(操作レバー1a,1b)の操作量を算出する。すなわち,操作装置45a,45b,46aの操作量は圧力センサ70,71,72の検出値から算出できる。
 なお,操作量の算出に圧力センサ70,71,72を利用することは一例に過ぎず,例えば各操作装置45a,45b,46aの操作レバーの回転変位を検出する位置センサ(例えば,ロータリーエンコーダ)で当該操作レバーの操作量を検出しても良い。
 姿勢演算部43bは,作業装置姿勢検出装置50の検出値に基づき,ローカル座標系におけるブーム8,アーム9及びバケット10の姿勢と,フロント作業装置1Aの姿勢と,バケット10の爪先の位置を演算する。また,姿勢演算部43bは,アーム回動中心(アームピン)を通過する水平面とアーム9のなす角(「アーム水平角度φ」(図5参照)と称することがある)を演算する。
 ブーム8,アーム9及びバケット10の姿勢とフロント作業装置1Aの姿勢は図5のショベル座標系(ローカル座標系)上に定義できる。図5のショベル座標系(XZ座標系)は,上部旋回体12に設定された座標系であり,上部旋回体12に回動可能に支持されているブーム8の基底部を原点とし,上部旋回体12における垂直方向にZ軸,水平方向にX軸を設定した。X軸に対するブーム8の傾斜角をブーム角α,ブーム8に対するアーム9の傾斜角をアーム角β,アーム9に対するバケット爪先の傾斜角をバケット角γとした。水平面(基準面)に対する車体1B(上部旋回体12)の傾斜角を傾斜角θとした。ブーム角αはブーム角度センサ30により,アーム角βはアーム角度センサ31により,バケット角γはバケット角度センサ32により,傾斜角θは車体傾斜角センサ33により検出される。図5中に規定したようにブーム8,アーム9,バケット10の長さをそれぞれL1,L2,L3とすると,ショベル座標系におけるバケット爪先位置の座標,ブーム8,アーム9及びバケット10の姿勢および作業装置1Aの姿勢はL1,L2,L3,α,β,γで表現できる。
 また,図5において,アーム回動中心(アームピン)を通過する水平面とアーム9のなす角であるアーム水平角度φは,例えば,傾斜角θ,ブーム角αおよびアーム角βから算出できる。本実施形態では,図5に示すようにグローバル座標系でアーム回動中心(アームピン)を通過する水平面上にU軸を設定し,アーム回動中心とバケット回動中心を接続した直線(長さL2の直線)がU軸となす角をφとする。U軸を0度とし反時計回りを正の角度とし時計回りを負の角度とする。図5のφは正となる。なお,基準面(例えば水平面)に対する傾斜角センサや慣性計測装置(IMU)などをアーム9に取り付けてアーム水平角度φを検出することもできる。
 目標面演算部43cは,目標面設定装置51からの情報に基づき目標面60の位置情報を演算し,これをROM93内に記憶する。本実施形態では,図5に示すように,3次元の目標面を作業装置1Aが移動する平面(作業機の動作平面)で切断した断面形状を目標面60(2次元の目標面)として利用する。
 なお,図5の例では目標面60は1つだが,目標面が複数存在する場合もある。目標面が複数存在する場合には,例えば,作業装置1Aから最も近いものを目標面と設定する方法や,バケット爪先の下方に位置するものを目標面とする方法や,任意に選択したものを目標面とする方法等がある。
 アームシリンダ速度演算部49は、アクチュエータ制御部81がMCを実行する際にアームシリンダ6の速度として利用される速度(アームシリンダ速度)を算出し,その演算結果をアクチュエータ制御部81へ出力する部分である。
 図8はアームシリンダ速度演算部49の機能ブロック図である。アームシリンダ速度演算部49は,第1速度演算部49aと,第2速度演算部49bと,第3速度演算部49cと,速度選択部49dを備えている。
 第1速度演算部49aは,オペレータ操作量検出装置52aの検出値のうちアーム9に対する操作量の検出値からアームシリンダ6の速度(Vamt1)を演算する部分である。本稿では第1速度演算部49aで演算されたアームシリンダ6の速度(Vamt1)を「第1速度」や「第1アームシリンダ速度」と称することがある。本実施形態では,操作量演算部43aがオペレータ操作量検出装置52aによるアーム操作量の検出値からアーム操作量を算出しており,第1速度演算部49aは,操作量演算部43aが算出したアーム操作量と,アーム操作量とアームシリンダ速度の相関関係が一対一で規定された図9のテーブルとを基にアームシリンダ6の速度(Vamt1)を算出している。図9のテーブルでは,あらかじめ実験やシミュレーションで求めた操作量に対するシリンダ速度に基づいて,アーム操作量の増加とともにアームシリンダ速度が単調に増加するように操作量と速度の相関関係が規定されている。第1速度演算部49aで演算された第1アームシリンダ速度は速度選択部49dに出力される。
 第2速度演算部49bは,アームシリンダ6の駆動対象物(アーム9及びバケット10及びバケットシリンダ7を含むアーム9よりバケット10側に位置する各種部材の集合体)の自重を考慮し,第1速度演算部49aで算出された第1アームシリンダ速度(Vamt1)より小さい速度(第2速度または第2アームシリンダ速度と称することがある)をアームシリンダ6の速度(Vamt2)として算出する部分である。具体例は後述するが,本実施形態の第2アームシリンダ速度(Vamt2)は,アームシリンダ6の駆動対象物の自重がアームシリンダ6に与える荷重の方向がアームシリンダの駆動方向と逆の場面、すなわち駆動対象物の自重により実際のアームシリンダ6の速度が第1速度(Vamt1)よりも減速される場面を想定して,アーム操作量とアーム水平角度φで規定される所定の補正量を第1アームシリンダ速度(Vamt1)から減じた値で定義されている。当該所定の補正量(すなわち第1速度と第2速度の差分の大きさ)は,駆動対象物の自重の影響で第1速度が減速され得る速度値の最大値以下に設定することが好ましい。第2速度演算部49bで演算された第2アームシリンダ速度(Vamt2)は速度選択部49dに出力される。
 第3速度演算部49cは,アームシリンダ6の駆動対象物の自重を考慮し,第1速度演算部49aで算出された第1アームシリンダ速度(Vamt1)より大きい速度(第3速度または第3アームシリンダ速度と称することがある)をアームシリンダ6の速度(Vamt3)として算出する部分である。具体例は後述するが,本実施形態の第3アームシリンダ速度(Vamt3)は,アームシリンダ6の駆動対象物の自重がアームシリンダ6に与える荷重の方向がアームシリンダの駆動方向と同じの場面、すなわち駆動対象物の自重によりアームシリンダ6の速度が第1速度(Vamt1)よりも加速される場面を想定して,アーム操作量とアーム水平角度φで規定される所定の補正量を第1アームシリンダ速度(Vamt1)に加えた値で定義されている。当該所定の補正量(すなわち第1速度と第3速度の差分の大きさ)は,駆動対象物の自重の影響で第1速度が加速され得る速度値の最大値以下に設定することが好ましい。第3速度演算部49cで演算された第3アームシリンダ速度(Vamt3)は速度選択部49dに出力される。
 速度選択部49dは,アーム9を含むアームシリンダ6の駆動対象物の自重がアームシリンダ6に与える荷重の方向(以下「駆動対象物の荷重方向」と称することがある)を姿勢検出装置43bの検出値(具体的にはアーム水平角度φ)に基づいて判定し,その判定結果に基づいて,アクチュエータ制御部81に出力するアームシリンダ速度Vamを第1速度(Vamt1),第2速度(Vamt2)及び第3速度(Vamt3)のいずれか1つに選択する部分である。詳細は後述するが,速度選択部49dは,駆動対象物の荷重方向がアームシリンダ6の駆動方向と逆であると判定したとき第2速度(Vamt2)をアクチュエータ制御部81に出力することができ,駆動対象物の荷重方向がアームシリンダ6の駆動方向と同じであると判定したとき第3速度(Vamt3)をアクチュエータ制御部81に出力することができる。
 ブーム制御部81aとバケット制御部81bは,操作装置45a,45b,46aの操作時に,予め定めた条件に従って複数の油圧アクチュエータ5,6,7の少なくとも1つを制御するアクチュエータ制御部81を構成する。アクチュエータ制御部81は,各油圧シリンダ5,6,7の流量制御弁15a,15b,15cの目標パイロット圧を演算し,その演算した目標パイロット圧を電磁比例弁制御部44に出力する。
 ブーム制御部81aは,操作装置45a,45b,46aの操作時に,目標面60の位置と,フロント作業装置1Aの姿勢及びバケット10の爪先の位置と,各油圧シリンダ5,6,7の速度とに基づいて,目標面60上またはその上方にバケット10の爪先(制御点)が位置するようにブームシリンダ5(ブーム8)の動作を制御するMCを実行するための部分である。ブーム制御部81aでは,ブームシリンダ5の流量制御弁15aの目標パイロット圧が演算される。ブーム制御部81aによるMCの詳細は図13を用いて後述する。
 バケット制御部81bは,操作装置45a,45b,46aの操作時に,MCによるバケット角度制御を実行するための部分である。具体的には,目標面60とバケット10の爪先の距離が所定値以下のとき,目標面60に対するバケット10の角度θが予め設定した対目標面バケット角度θTGTとなるようにバケットシリンダ7(バケット10)の動作を制御するMC(バケット角度制御)が実行される。バケット制御部81bでは,バケットシリンダ7の流量制御弁15cの目標パイロット圧が演算される。
 電磁比例弁制御部44は,アクチュエータ制御部81から出力される各流量制御弁15a,15b,15cへの目標パイロット圧を基に,各電磁比例弁54~56への指令を演算する。なお,オペレータ操作に基づくパイロット圧(第1制御信号)と,アクチュエータ制御部81で算出された目標パイロット圧が一致する場合には,該当する電磁比例弁54~56への電流値(指令値)はゼロとなり,該当する電磁比例弁54~56の動作は行われない。
 <アームシリンダ速度演算部49によるアームシリンダ速度算出のフロー>
 図10にアームシリンダ速度演算部49がアクチュエータ制御部81に出力するアームシリンダ6の速度Vamを算出するフローチャート図を示す。アームシリンダ速度演算部49は図10のフローを所定の制御周期で繰り返し実行する。なお,下記で説明するフローでは速度選択部49dによる速度選択が行われた後に出力対象の速度(Vamt1,Vamt2,Vamt3)を演算しているが,速度選択部49dによる速度選択の前に第1速度演算部49a,第2速度演算部49b及び第3速度演算部49cでアームシリンダ速度(Vamt1,Vamt2,Vamt3)をそれぞれ演算しておき,速度選択部49dの判定処理の終了後にその判定結果に対応したアームシリンダ速度のみをアクチュエータ制御部81に出力するようにフローを構成しても良いことはいうまでもない。
 S600では,速度選択部49dは姿勢演算部43bからアーム水平角度φ(図5参照)を取得する。
 S610では,速度選択部49dはS600で取得したアーム角度φが-90度以上かつ90度以下であるかを判定する。
 S610でYESと判定した場合(すなわちφが-90度以上かつ90度以下である場合),駆動対象物の自重がアームシリンダ6に与える荷重の方向がアームシリンダ6の駆動方向と同じであると判定し,速度選択部49dは第3速度(Vamt3)をアームシリンダ速度Vamとしてアクチュエータ制御部81に出力することを決定し,S620に進む。
 S620では,第3速度演算部49cは,操作量演算部43aで演算されるアーム操作量amleverに基づいてアームシリンダ速度Vamt3に関する補正ゲインkを算出する。ここで,S620で第3速度演算部が補正ゲインkを算出するための関数kmoは,アームシリンダ6の駆動対象物の自重の影響は流量制御弁15bに係るアームスプールのメータアウト開口面積に由来するものとして,アームスプールのメータアウト開口面積と相関のある関数とする。
 本実施形態では,アームスプールのメータアウト開口面積をそれに相当するアーム操作量(amlever)に変換することを前提としており,第3速度演算部49cは,操作量演算部43aが算出したアーム操作量(amlever)と,アーム操作量(amlever)と補正ゲインk(関数kmo)の相関関係が一対一で規定された図11のテーブルとに基づいて補正ゲインkを算出している。図11のテーブルでは,あらかじめ実験やシミュレーションで求めた操作量に対するシリンダ速度に基づいて,アーム操作量の増加とともに補正ゲインkが単調に増加するように操作量と補正ゲインkの相関関係が規定されている。
 S660では,第3速度演算部49cは,S620で求めた補正ゲインkを用いてアームシリンダ速度Vamt3に関する補正量(k×cosφ)を演算する。
 S670では,第3速度演算部49cは,アームシリンダ6の推定速度(第3速度(Vamt3))を第1速度演算部49aで求められる第1速度Vamt1に対して補正量k×cosφを加算した値とする。S620を通過する場合,φは-90度以上かつ90度以下であるのでcosφは0以上の値となり,補正量k×cosφも0以上の値となる。すなわち,第3速度Vamt3は第1速度Vamt1以上の値となる。
 これにより,アームシリンダ速度演算部49はアームシリンダ速度Vamとして第3速度Vam3をアクチュエータ制御部81に出力し,アームシリンダ速度演算部49は次の制御周期まで待機する。
 S610でNOと判定された場合,速度選択部49dはS630でアーム操作量amleverが所定の閾値levertよりも小さいか否かを判定する。ここで,閾値levert(例えば図11,12参照)はアームスプールのブリードオフ開口が閉じる(すなわちブリードオフ開口面積(センタバイパス開口面積)がゼロになる)ストローク量SXに相当するアーム操作量である。
 S630でYESと判定された場合(すなわちブリードオフ開口面積が0より大きい場合),速度選択部49dは,駆動対象物の自重がアームシリンダ6に与える荷重の方向がアームシリンダ6の駆動方向と逆であると判定し,第2速度(Vamt2)をアームシリンダ速度Vamとしてアクチュエータ制御部81に出力することを決定し,S640に進む。
 S640では,第2速度演算部49bは,操作量演算部43aで演算されるアーム操作量amleverに基づいてアームシリンダ速度Vamt2に関する補正ゲインkを算出する。ここで,S640で第2速度演算部49bが補正ゲインkを算出するための関数kmiは,アームシリンダ6の駆動対象物の自重の影響は流量制御弁15bに係るアームスプールのメータイン開口面積およびブリードオフ開口面積に由来するものとして,アームスプールのメータイン開口面積およびブリードオフ開口面積と相関のある関数とする。
 本実施形態では,アームスプールのメータアウト開口面積およびブリードオフ開口面積をそれに相当するアーム操作量(amlever)に変換することを前提としており,第2速度演算部49bは,操作量演算部43aが算出したアーム操作量(amlever)と,アーム操作量(amlever)と補正ゲインk(関数kmi)の相関関係が一対一で規定された図12のテーブルとに基づいて補正ゲインkを算出している。図12のテーブルでは,あらかじめ実験やシミュレーションで求めた操作量に対するシリンダ速度に基づいて,アーム操作量の増加とともに補正ゲインkが単調に減少するように操作量と補正ゲインkの相関関係が規定されている。
 S680では,第2速度演算部49bは,S640で求めた補正ゲインkを用いてアームシリンダ速度Vamt2に関する補正量(k×cosφ)を演算する。
 S690では,第2速度演算部49bは,アームシリンダ6の推定速度(第2速度(Vamt2))を第1速度演算部49aで求められる第1速度Vamt1に対して補正量k×cosφを加算した値とする。S640を通過する場合,φは-90度未満または90度より大きいのでcosφは負の値となり,補正量k×cosφも負の値となる。すなわち,第2速度Vamt2は第1速度Vamt1より小さい値となる。
 これにより,アームシリンダ速度演算部49はアームシリンダ速度Vamとして第2速度Vam2をアクチュエータ制御部81に出力し,アームシリンダ速度演算部49は次の制御周期まで待機する。
 S630でNOと判定された場合(すなわちブリードオフ開口面積が0の場合),流量制御弁15bに係るアームスプールのブリードオフ開口が閉じているので,ポンプ2bから流量制御弁15bに供給される圧油は全流量アームシリンダ6に流れる。すなわち,このときのアームシリンダ速度は供給される流量によって決まるので,アームシリンダ6の駆動対象物の自重がアームシリンダ速度に対して与える影響はほぼ無い。そこで速度選択部49dは第1速度(Vamt1)をアームシリンダ速度Vamとしてアクチュエータ制御部81に出力することを決定してS650に進む。
 S650では,第1速度演算部49aは,アームシリンダ6の駆動対象物の自重がアームシリンダ速度に対して与える影響はほぼ無いとみなして補正ゲインkを0とする。
 S700では,第1速度演算部49aは,図9の相関関係とアーム操作量(amlever)から決定される速度を第1速度Vamt1とする。
 これにより,アームシリンダ速度演算部49はアームシリンダ速度Vamとして第1速度Vam1をアクチュエータ制御部81に出力し,アームシリンダ速度演算部49は次の制御周期まで待機する。
 <ブーム制御部81aによるブーム上げ制御のフロー>
 本実施の形態の制御コントローラ40は,ブーム制御部81aによるブーム上げ制御をMCとして実行する。このブーム制御部81aによるブーム上げ制御のフローを図13に示す。図13はブーム制御部81aで実行されるMCのフローチャートであり,操作装置45a,45b,46aがオペレータにより操作されると処理が開始される。
 S410では,ブーム制御部81aは各油圧シリンダ5,6,7の速度を取得する。まず,ブームシリンダ5とバケットシリンダ7の速度については,操作量演算部43aで演算されたブーム8とバケット10に対する操作量を基にブームシリンダ5とバケットシリンダ7の速度を演算して取得する。具体的には,前述の図9と同様にあらかじめ実験やシミュレーションで求めた操作量に対するシリンダ速度をテーブルとして設定し,これに従ってブームシリンダ5とバケットシリンダ7の速度を算出する。一方,アームシリンダ6の速度については,アームシリンダ速度演算部49が前述の図10のフローに基づいて出力する速度Vam(すなわち,第1速度Vamt1,第2速度Vamt2,第3速度Vamt3のいずれか)をアームシリンダ6の速度として取得する。
 S420では,ブーム制御部81aは,S410で取得した各油圧シリンダ5,6,7の動作速度と,姿勢演算部43bで演算された作業装置1Aの姿勢とを基に,オペレータ操作によるバケット先端(爪先)の速度ベクトルBを演算する。
 S430では,ブーム制御部81aは,姿勢演算部43bで演算したバケット10の爪先の位置(座標)と,ROM93に記憶された目標面60を含む直線の距離から,バケット先端から制御対象の目標面60までの距離D(図5参照)を算出する。そして,距離Dと図14のグラフを基にバケット先端の速度ベクトルの目標面60に垂直な成分の下限側の制限値ayを算出する。
 S440では,ブーム制御部81aは,S420で算出したオペレータ操作によるバケット先端の速度ベクトルBにおいて,目標面60に垂直な成分byを取得する。
 S450では,ブーム制御部81aは,S430で算出した制限値ayが0以上か否かを判定する。なお,図13の右上に示したようにxy座標を設定する。当該xy座標では,x軸は目標面60と平行で図中右方向を正とし,y軸は目標面60に垂直で図中上方向を正とする。図13中の凡例では垂直成分by及び制限値ayは負であり,水平成分bx及び水平成分cx及び垂直成分cyは正である。そして,図14から明らかであるが,制限値ayが0のときは距離Dが0,すなわち爪先が目標面60上に位置する場合であり,制限値ayが正のときは距離Dが負,すなわち爪先が目標面60より下方に位置する場合であり,制限値ayが負のときは距離Dが正,すなわち爪先が目標面60より上方に位置する場合である。S450で制限値ayが0以上と判定された場合(すなわち,爪先が目標面60上またはその下方に位置する場合)にはS460に進み,制限値ayが0未満の場合にはS480に進む。
 S460では,ブーム制御部81aは,オペレータ操作による爪先の速度ベクトルBの垂直成分byが0以上か否かを判定する。byが正の場合は速度ベクトルBの垂直成分byが上向きであることを示し,byが負の場合は速度ベクトルBの垂直成分byが下向きであることを示す。S460で垂直成分byが0以上と判定された場合(すなわち,垂直成分byが上向きの場合)にはS470に進み,垂直成分byが0未満の場合にはS500に進む。
 S470では,ブーム制御部81aは,制限値ayと垂直成分byの絶対値を比較し,制限値ayの絶対値が垂直成分byの絶対値以上の場合にはS500に進む。一方,制限値ayの絶対値が垂直成分byの絶対値未満の場合にはS530に進む。
 S500では,ブーム制御部81aは,マシンコントロールによるブーム8の動作で発生すべきバケット先端の速度ベクトルCの目標面60に垂直な成分cyを算出する式として「cy=ay-by」を選択し,その式とS430の制限値ayとS440の垂直成分byを基に垂直成分cyを算出する。そして,算出した垂直成分cyを出力可能な速度ベクトルCを算出し,その水平成分をcxとする(S510)。
 S520では,目標速度ベクトルTを算出する。目標速度ベクトルTの目標面60に垂直な成分をty,水平な成分txとすると,それぞれ「ty=by+cy,tx=bx+cx」と表すことができる。これにS500の式(cy=ay-by)を代入すると目標速度ベクトルTは結局「ty=ay,tx=bx+cx」となる。つまり,S520に至った場合の目標速度ベクトルの垂直成分tyは制限値ayに制限され,マシンコントロールによる強制ブーム上げが発動される。
 S480では,ブーム制御部81aは,オペレータ操作による爪先の速度ベクトルBの垂直成分byが0以上か否かを判定する。S480で垂直成分byが0以上と判定された場合(すなわち,垂直成分byが上向きの場合)にはS530に進み,垂直成分byが0未満の場合にはS490に進む。
 S490では,ブーム制御部81aは,制限値ayと垂直成分byの絶対値を比較し,制限値ayの絶対値が垂直成分byの絶対値以上の場合にはS530に進む。一方,制限値ayの絶対値が垂直成分byの絶対値未満の場合にはS500に進む。
 S530に至った場合,マシンコントロールでブーム8を動作させる必要が無いので,ブーム制御部81aは,速度ベクトルCをゼロとする。この場合,目標速度ベクトルTは,S520で利用した式(ty=by+cy,tx=bx+cx)に基づくと「ty=by,tx=bx」となり,オペレータ操作による速度ベクトルBと一致する(S540)。
 S550では,ブーム制御部81aは,S520またはS540で決定した目標速度ベクトルT(ty,tx)を基に各油圧シリンダ5,6,7の目標速度を演算する。なお,上記説明から明らかであるが,図13の場合に目標速度ベクトルTが速度ベクトルBに一致しないときには,マシンコントロールによるブーム8の動作で発生する速度ベクトルCを速度ベクトルBに加えることで目標速度ベクトルTを実現する。
 S560では,ブーム制御部81aは,S550で算出された各シリンダ5,6,7の目標速度を基に各油圧シリンダ5,6,7の流量制御弁15a,15b,15cへの目標パイロット圧を演算する。
 S590では,ブーム制御部81aは,各油圧シリンダ5,6,7の流量制御弁15a,15b,15cへの目標パイロット圧を電磁比例弁制御部44に出力する。
 電磁比例弁制御部44は,各油圧シリンダ5,6,7の流量制御弁15a,15b,15cに目標パイロット圧が作用するように電磁比例弁54,55,56を制御し,これにより作業装置1Aによる掘削が行われる。例えば,オペレータが操作装置45bを操作して,アームクラウド動作によって水平掘削を行う場合には,バケット10の先端が目標面60に侵入しないように電磁比例弁55cが制御され,ブーム8の上げ動作が自動的に行われる。
 なお,本実施形態では,ブーム制御部81aによるブーム制御(強制ブーム上げ制御)と,バケット制御部81bによるバケット制御(バケット角度制御)がMCとして実行されるが,バケット10と目標面60の距離Dに応じたブーム制御をMCとして実行しても良い。
 <動作・効果>
 上記のように構成される油圧ショベルにおいて,図15の状態S1(アーム水平角度φ1≦90度)から状態S2(アーム水平角度φ2>90度)に遷移する場合のオペレータ操作と,制御コントローラ40(ブーム制御部81a)によるMCについて説明する。
 図15の状態S1から状態S2に遷移する際,オペレータはアーム9のクラウド操作を行う。そして,アーム9のクラウド操作によりバケット10が目標面60に侵入すると判断するときには,ブーム制御部81aから電磁弁54aに指令を出し,ブーム8を上昇させる制御(MC)が実行される。
 状態S1のようにアーム水平角度φが90度以下でMCが実行されるとき,アーム9より先のフロント作業装置(アーム9およびバケット10)の自重がアームシリンダ速度を加速する方向に作用するため,その際のアーム操作量(amlever)から想定される値(第1速度Vamt1)より実際のアームシリンダ速度は大きくなる傾向がある。しかし,本実施形態では図10の制御フローによりアーム水平角度φが90度以下の場合、第1速度Vamt1よりも大きな第3速度Vamt3がアームシリンダ速度Vamとしてアクチュエータ制御部81に対して出力される。これによりアクチュエータ制御部81に入力されてMCに利用されるアームシリンダ速度Vam(=Vamt3)と実際のアームシリンダ速度の偏差が,MCのアームシリンダ速度としてアーム水平角度φの大小に係わらず第1速度Vamt1を常に利用していた従前の方法よりも小さくなる。その結果,MCによるブーム上げ操作量をより的確に算出できるため,MCが安定化するとともに目標面60の施工精度が向上する。特に本実施形態ではアーム水平角度φ(図10参照)とアーム操作量(図11参照)の変化に応じて補正量(すなわち第1速度Vamt1と第3速度Vamt3の偏差であるk×cosφ)を変化させているのでMCの安定度と施工精度をさらに向上できる。
 次に状態S2のようにアーム水平角度φが90度を超えた状態で,オペレータのアーム操作量(amlever)が閾値levert未満でMCが実行されるとき,アーム9より先のフロント作業装置(アーム9およびバケット10)の自重がアームシリンダ速度を減速する方向に作用するため,その際のアーム操作量(amlever)から想定される値(第1速度Vamt1)より実際のアームシリンダ速度は小さくなる傾向がある。しかし,本実施形態では図10の制御フローにより第1速度Vamt1よりも小さな第2速度Vamt2がアームシリンダ速度Vamとしてアクチュエータ制御部81に対して出力される。これによりアクチュエータ制御部81に入力されてMCに利用されるアームシリンダ速度Vam(=Vamt2)と実際のアームシリンダ速度の偏差が,MCのアームシリンダ速度としてアーム水平角度φの大小に係わらず第1速度Vamt1を常に利用していた従前の方法よりも小さくなる。その結果,MCによるブーム上げ操作量をより的確に算出できるため,MCが安定化するとともに目標面60の施工精度が向上する。特に本実施形態ではアーム水平角度φ(図10参照)とアーム操作量(図12参照)の変化に応じて補正量(すなわち第1速度Vamt1と第2速度Vamt2の偏差であるk×cosφ)を変化させているのでMCの安定度と施工精度をさらに向上できる。
 次に状態S2のようにアーム水平角度φが90度を超えた状態で,オペレータのアーム操作量(amlever)が閾値levert以上でMCが実行されるとき,流量制御弁15bに係るアームスプールのブリードオフ開口は閉じており,流量制御弁15bに供給される圧油はアームシリンダ6に全て流れる。そのため,アームシリンダ速度に対するアーム9より先のフロント作業装置(アーム9,バケット10)の自重の影響はほぼなく,従前通りアーム操作量(amlever)から想定されるアームシリンダ速度(第1速度Vamt1)をアクチュエータ制御部81に出力してMCを実行する。これによりブリードオフ開口が閉じられた場合には従来通りのMCの安定度と施工精度を維持できる。
 したがって,本実施形態では,上記のようにアーム9より先のフロント作業装置(アーム9,バケット10)の自重の影響を考慮して,アーム操作量(amlever)から想定されるアームシリンダ速度(第1速度Vamt1)に対して適切な補正量を加算することで実際のアームシリンダ速度との乖離が小さくなる。これにより適切なブーム上げ操作量(すなわち各油圧シリンダ5,6,7の目標速度)を算出できるようになりMCにおけるバケット先端の挙動を安定化できる。
 <その他>
 上記の実施形態では,アーム水平角度φが90度を超えたときかつアーム操作量が閾値levert以上のときはアームシリンダ速度を補正しない制御としたが,この場合も第2速度をアクチュエータ制御部81に出力するようにシステムを構成しても良い。すなわち図10においてS610でNOと判定された場合にはS640に進むようにシステムを構成しても良い。
 図10では,S610でNOと判定された場合にS630に進むようにシステムを構成したが,S610より前にS630の判定処理を実行するようにシステムを構成しても良い。
 上記の実施形態ではブーム8,アーム9,バケット10の角度を検出する角度センサを用いたが,角度センサではなくシリンダストロークセンサによりショベルの姿勢情報を算出するとしても良い。また,油圧パイロット式のショベルを例として説明したが,電気レバー式のショベルであれば電気レバーから生成される指令電流を制御するような構成としても良い。フロント作業装置1Aの速度ベクトルの算出方法について,オペレータ操作によるパイロット圧ではなく,ブーム8,アーム9,バケット10の角度を微分することで算出される角速度から求めても良い。
 上記の制御コントローラ40に係る各構成や当該各構成の機能及び実行処理等は,それらの一部又は全部をハードウェア(例えば各機能を実行するロジックを集積回路で設計する等)で実現しても良い。また,上記の制御コントローラ40に係る構成は,演算処理装置(例えばCPU)によって読み出し・実行されることで当該制御コントローラ40の構成に係る各機能が実現されるプログラム(ソフトウェア)としてもよい。当該プログラムに係る情報は,例えば,半導体メモリ(フラッシュメモリ,SSD等),磁気記憶装置(ハードディスクドライブ等)及び記録媒体(磁気ディスク,光ディスク等)等に記憶することができる。
 本発明は,上記の実施形態に限定されるものではなく,その要旨を逸脱しない範囲内の様々な変形例が含まれる。例えば,本発明は,上記の実施形態で説明した全ての構成を備えるものに限定されず,その構成の一部を削除したものも含まれる。また,実施形態に係る構成の一部を他の構成に置換,または,他の構成を追加することも可能である。
 1A…フロント作業装置,8…ブーム,9…アーム,10…バケット,30…ブーム角度センサ,31…アーム角度センサ,32…バケット角度センサ,40…制御コントローラ(制御装置),43…MC制御部,43a…操作量演算部,43b…姿勢演算部,43c…目標面演算部,49…アームシリンダ速度演算部,49a…第1速度演算部,49b…第2速度演算部,49c…第3速度演算部,49d…速度選択部,44…電磁比例弁制御部,45…操作装置(ブーム,アーム),46…操作装置(バケット,旋回),50…作業装置姿勢検出装置(姿勢検出装置),51…目標面設定装置,52a…オペレータ操作量検出装置(操作量検出装置),53…表示装置,54,55,56…電磁比例弁,81…アクチュエータ制御部,81a…ブーム制御部,81b…バケット制御部

Claims (4)

  1.  アームを含む複数のフロント部材を有する作業装置と,
     前記アームを駆動するアームシリンダを含み前記複数のフロント部材を駆動する複数の油圧アクチュエータと,
     オペレータの操作に応じて前記複数の油圧アクチュエータの動作を指示する操作装置と,
     前記操作装置の操作時に,前記複数の油圧アクチュエータの速度と予め定めた条件に従って前記複数の油圧アクチュエータの少なくとも1つを制御するアクチュエータ制御部を有する制御装置と,
     前記アームの姿勢に関する物理量を検出する姿勢検出装置と,
     前記操作装置の操作量のうち前記アームに対する操作量に関する物理量を検出する操作量検出装置とを備える作業機械において,
     前記制御装置は,
      前記操作量検出装置の検出値から算出した第1速度を前記アームシリンダの速度として算出する第1速度演算部と,
      前記姿勢検出装置の検出値に基づいて前記アームの自重が前記アームシリンダに与える荷重の方向を判定し,前記荷重の方向が前記アームシリンダの駆動方向と逆であると判定したとき前記アームシリンダの速度として前記第1速度より小さい第2速度を前記アームシリンダの速度として算出する第2速度演算部と,
      前記荷重の方向が前記アームシリンダの駆動方向と同じであると判定したとき前記アームシリンダの速度として前記第1速度以上の第3速度を前記アームシリンダの速度として算出する第3速度演算部とを備えることを特徴とする作業機械。
  2.  請求項1の作業機械において,
     前記第2速度演算部は,前記アームの自重の影響を考慮して前記第2速度を算出し,
     前記第3速度演算部は,前記アームの自重の影響を考慮して前記第3速度を算出することを特徴とする作業機械。
  3.  請求項1の作業機械において,
     前記第1速度と前記第2速度の偏差である第1補正量と,前記第1速度と前記第3速度の偏差である第2補正量は,それぞれ,前記姿勢検出装置の検出値と前記操作量検出装置の検出値の変化に応じて変化することを特徴とする作業機械。
  4.  請求項1の作業機械において,
     前記第1速度演算部で算出された前記第1速度,前記第2速度演算部で算出された前記第2速度,及び前記第3速度演算部で算出された前記第3速度のいずれか1つを前記アクチュエータ制御部に出力する速度選択部を備え,
     前記速度選択部は,
      前記操作量検出装置の検出値が所定値以上のとき,前記アームシリンダの速度として前記第1速度を前記アクチュエータ制御部に出力し,
      前記操作量検出装置の検出値が前記所定値未満かつ前記荷重の方向が前記アームシリンダの駆動方向と逆であると判定したとき,前記アームシリンダの速度として前記第2速度を前記アクチュエータ制御部に出力し,
      前記操作量検出装置の検出値が前記所定値未満かつ前記荷重の方向が前記アームシリンダの駆動方向と同じであると判定したとき,前記アームシリンダの速度として前記第3速度を前記アクチュエータ制御部に出力することを特徴とする作業機械。
PCT/JP2018/015917 2018-04-17 2018-04-17 作業機械 WO2019202673A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18915478.4A EP3783155B1 (en) 2018-04-17 2018-04-17 Work machine
JP2020514835A JP6889806B2 (ja) 2018-04-17 2018-04-17 作業機械
US16/641,772 US11453995B2 (en) 2018-04-17 2018-04-17 Work machine
CN201880054566.9A CN111032970B (zh) 2018-04-17 2018-04-17 作业机械
KR1020207004664A KR102414027B1 (ko) 2018-04-17 2018-04-17 작업 기계
PCT/JP2018/015917 WO2019202673A1 (ja) 2018-04-17 2018-04-17 作業機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/015917 WO2019202673A1 (ja) 2018-04-17 2018-04-17 作業機械

Publications (1)

Publication Number Publication Date
WO2019202673A1 true WO2019202673A1 (ja) 2019-10-24

Family

ID=68240058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015917 WO2019202673A1 (ja) 2018-04-17 2018-04-17 作業機械

Country Status (6)

Country Link
US (1) US11453995B2 (ja)
EP (1) EP3783155B1 (ja)
JP (1) JP6889806B2 (ja)
KR (1) KR102414027B1 (ja)
CN (1) CN111032970B (ja)
WO (1) WO2019202673A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053900A1 (ja) * 2021-09-30 2023-04-06 日立建機株式会社 作業機械
WO2023182284A1 (ja) * 2022-03-23 2023-09-28 日立建機株式会社 作業機械

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2577899B (en) * 2018-10-09 2023-03-29 Bamford Excavators Ltd A machine, controller, and control method
EP4012111B1 (en) * 2019-08-08 2023-08-30 Sumitomo Construction Machinery Co., Ltd. Excavator
JP7182579B2 (ja) * 2020-03-27 2022-12-02 日立建機株式会社 作業機械

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094616A1 (ja) * 2011-12-22 2013-06-27 日立建機株式会社 作業機械
WO2015025985A1 (ja) 2014-09-10 2015-02-26 株式会社小松製作所 作業車両および作業車両の制御方法
WO2015129930A1 (ja) * 2014-06-04 2015-09-03 株式会社小松製作所 建設機械の制御システム、建設機械、及び建設機械の制御方法
WO2015137524A1 (ja) * 2014-06-04 2015-09-17 株式会社小松製作所 建設機械の制御システム、建設機械、及び建設機械の制御方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120925A (ja) * 1982-01-12 1983-07-19 Hitachi Constr Mach Co Ltd 油圧シヨベルの作業軌跡制御装置
JP2566745B2 (ja) * 1994-04-29 1996-12-25 三星重工業株式会社 電子制御油圧掘削機の自動平坦作業方法
JP2007218405A (ja) * 2006-02-20 2007-08-30 Ishikawajima Constr Mach Co 建設機械の油圧回路
KR20110077061A (ko) * 2009-12-30 2011-07-07 볼보 컨스트럭션 이큅먼트 에이비 오픈센터 방식의 굴삭기용 유압시스템의 선회모터 제어방법
KR101934017B1 (ko) * 2011-06-10 2018-12-31 히다치 겡키 가부시키 가이샤 작업 기계
BR112016030088A2 (pt) * 2014-06-25 2017-08-22 Siemens Industry Inc sistema para uma máquina de escavação
JP6291394B2 (ja) * 2014-10-02 2018-03-14 日立建機株式会社 作業機械の油圧駆動システム
JP6250515B2 (ja) 2014-10-07 2017-12-20 日立建機株式会社 建設機械の油圧制御装置
CN105518222B (zh) * 2015-09-25 2018-02-02 株式会社小松制作所 作业机械的控制装置、作业机械以及作业机械的控制方法
JP6474718B2 (ja) * 2015-12-25 2019-02-27 日立建機株式会社 建設機械の油圧制御装置
JP6564739B2 (ja) * 2016-06-30 2019-08-21 日立建機株式会社 作業機械
JP6666209B2 (ja) * 2016-07-06 2020-03-13 日立建機株式会社 作業機械
JP2018044305A (ja) * 2016-09-12 2018-03-22 日立建機株式会社 油圧ショベル
WO2019053814A1 (ja) * 2017-09-13 2019-03-21 日立建機株式会社 作業機械

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094616A1 (ja) * 2011-12-22 2013-06-27 日立建機株式会社 作業機械
WO2015129930A1 (ja) * 2014-06-04 2015-09-03 株式会社小松製作所 建設機械の制御システム、建設機械、及び建設機械の制御方法
WO2015137524A1 (ja) * 2014-06-04 2015-09-17 株式会社小松製作所 建設機械の制御システム、建設機械、及び建設機械の制御方法
WO2015025985A1 (ja) 2014-09-10 2015-02-26 株式会社小松製作所 作業車両および作業車両の制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3783155A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053900A1 (ja) * 2021-09-30 2023-04-06 日立建機株式会社 作業機械
JP2023051071A (ja) * 2021-09-30 2023-04-11 日立建機株式会社 作業機械
JP7269301B2 (ja) 2021-09-30 2023-05-08 日立建機株式会社 作業機械
US12084836B2 (en) 2021-09-30 2024-09-10 Hitachi Construction Machinery Co., Ltd Work machine
WO2023182284A1 (ja) * 2022-03-23 2023-09-28 日立建機株式会社 作業機械

Also Published As

Publication number Publication date
EP3783155B1 (en) 2022-12-14
CN111032970B (zh) 2022-02-25
US11453995B2 (en) 2022-09-27
KR102414027B1 (ko) 2022-06-29
CN111032970A (zh) 2020-04-17
EP3783155A4 (en) 2021-12-08
EP3783155A1 (en) 2021-02-24
US20200248430A1 (en) 2020-08-06
JP6889806B2 (ja) 2021-06-18
KR20200032149A (ko) 2020-03-25
JPWO2019202673A1 (ja) 2020-09-03

Similar Documents

Publication Publication Date Title
US11053661B2 (en) Work machine
JP6618652B2 (ja) 作業機械
JP6889806B2 (ja) 作業機械
JP6889579B2 (ja) 作業機械
JPWO2018051511A1 (ja) 作業機械
JP6860329B2 (ja) 作業機械
KR102154581B1 (ko) 작업 기계
KR20200028993A (ko) 작업 기계
JP2019052472A (ja) 作業機械
KR102520407B1 (ko) 작업 기계
KR20230136647A (ko) 작업 기계
WO2020065739A1 (ja) 作業機械
WO2021065952A1 (ja) 作業機械
JP7083326B2 (ja) 建設機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514835

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20207004664

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018915478

Country of ref document: EP

Effective date: 20201117