WO2021065952A1 - 作業機械 - Google Patents

作業機械 Download PDF

Info

Publication number
WO2021065952A1
WO2021065952A1 PCT/JP2020/037016 JP2020037016W WO2021065952A1 WO 2021065952 A1 WO2021065952 A1 WO 2021065952A1 JP 2020037016 W JP2020037016 W JP 2020037016W WO 2021065952 A1 WO2021065952 A1 WO 2021065952A1
Authority
WO
WIPO (PCT)
Prior art keywords
boom
control
arm
hydraulic
cylinder
Prior art date
Application number
PCT/JP2020/037016
Other languages
English (en)
French (fr)
Inventor
太郎 秋田
小林 敬弘
昭広 楢▲崎▼
勝道 伊東
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to EP20871610.0A priority Critical patent/EP4039892A4/en
Priority to KR1020217025973A priority patent/KR102491288B1/ko
Priority to CN202080014994.6A priority patent/CN113474514B/zh
Priority to US17/436,486 priority patent/US20220186458A1/en
Publication of WO2021065952A1 publication Critical patent/WO2021065952A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/425Drive systems for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • E02F9/221Arrangements for controlling the attitude of actuators, e.g. speed, floating function for generating actuator vibration
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2033Limiting the movement of frames or implements, e.g. to avoid collision between implements and the cabin
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • E02F9/2207Arrangements for controlling the attitude of actuators, e.g. speed, floating function for reducing or compensating oscillations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump

Definitions

  • the present invention relates to a work machine.
  • Machine Control is a technology for improving the work efficiency of a work machine (for example, a hydraulic excavator) equipped with a work device (for example, a work device consisting of a boom, an arm, and a bucket) driven by a hydraulic actuator.
  • a work machine for example, a hydraulic excavator
  • a work device for example, a work device consisting of a boom, an arm, and a bucket
  • MC Machine control
  • MC is a technique for supporting the operation of an operator by semi-automatically controlling the operation of the operating device by the operator and the operation of the working device according to predetermined conditions.
  • the speed of the arm cylinder is higher than the speed of the arm cylinder according to the correlation between the movement amount of the spool of the direction control valve according to the operation amount of the arm operation lever and the speed of the arm cylinder.
  • the work vehicle which is calculated as the estimated speed, is disclosed.
  • the speed of the arm cylinder is estimated more accurately by considering the weight of the working device that affects the speed of the arm cylinder.
  • the actuator with the larger operation amount is prioritized to control the pump flow rate at the time of combined operation, so that the operation amount is controlled.
  • the pump flow rate supplied to the smaller actuator may increase, and the actual speed may become faster than the estimated speed calculated from the metering characteristics during single operation. That is, the actual speed of the actuator may differ from the measured speed during the combined operation, and hunting or the like may occur in the operation of the working device, resulting in unstable behavior.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a work machine capable of stabilizing the behavior of a work device.
  • the present application includes a plurality of means for solving the above problems.
  • a boom having a base end rotatably connected to an upper swing body and one end rotatably connected to the tip of the boom.
  • the boom is driven based on an operation signal and an articulated working device composed of a plurality of driven members including a work tool rotatably connected to the other end of the arm and a work tool.
  • a plurality of hydraulic actuators including a boom cylinder, an arm cylinder for driving the arm, and a work tool cylinder for driving the work tool, and a plurality of hydraulic pumps for discharging pressure oil for driving the plurality of hydraulic actuators.
  • a control signal for controlling the flow control valve corresponding to at least one of the plurality of hydraulic actuators is output so that the working device moves, or at least one of the plurality of hydraulic actuators is output from the operating device.
  • the controller is the operating device corresponding to the boom cylinder.
  • the first condition in which the relationship between the operating amount of the operating device corresponding to the arm cylinder and the estimated speed of the arm cylinder is predetermined is determined.
  • the estimated speed of the arm cylinder used for the area limitation control is calculated based on the above, and when the operating amount of the operating device corresponding to the boom cylinder is larger than the operating amount of the operating device corresponding to the arm cylinder.
  • the estimated speed of the arm cylinder used for the area limitation control is calculated as a speed higher than the estimated speed of the arm cylinder calculated based on the first condition.
  • the behavior of the working device can be stabilized.
  • an alphabet may be added to the end of the sign (number), but the alphabet is omitted and the plurality of components are collectively described. There is. That is, for example, when two hydraulic pumps 2a and 2b exist, they may be collectively referred to as the hydraulic pump 2.
  • FIG. 1 is a diagram schematically showing the appearance of a hydraulic excavator, which is an example of a work machine according to the present embodiment.
  • FIG. 2 is a diagram showing the hydraulic circuit system of the hydraulic excavator extracted together with the peripheral configuration including the controller
  • FIG. 3 is a diagram showing the front control hydraulic unit in FIG. 2 extracted together with the related configuration in detail. is there.
  • the hydraulic excavator 1 is composed of an articulated working device 1A and a main body 1B.
  • the main body 1B of the hydraulic excavator 1 includes a lower traveling body 11 that travels by the left and right traveling hydraulic motors 3a and 3b, and an upper rotating body 12 that is mounted on the lower traveling body 11 and swivels by the swivel hydraulic motor 4.
  • the working device 1A is configured by connecting a plurality of driven members (boom 8, arm 9, and bucket 10) that rotate in each vertical direction.
  • the base end of the boom 8 is rotatably supported at the front portion of the upper swing body 12 via a boom pin.
  • the arm 9 is rotatably connected to the tip of the boom 8 via an arm pin, and the bucket 10 is rotatably connected to the tip of the arm 9 via a bucket pin.
  • the boom 8 is driven by the boom cylinder 5, the arm 9 is driven by the arm cylinder 6, and the bucket 10 is driven by the bucket cylinder 7.
  • the boom cylinder 5, the arm cylinder 6, and the bucket cylinder 7 may be collectively referred to as a hydraulic cylinder 5, 6, 7 or a hydraulic actuator 5, 6, 7.
  • FIG. 8 is a diagram for explaining the excavator coordinate system set for the hydraulic excavator.
  • the excavator coordinate system (local coordinate system) is defined for the hydraulic excavator 1.
  • the excavator coordinate system is an XY coordinate system defined to be relatively fixed relative to the upper swivel body 12, with the base end of the boom 8 rotationally supported by the upper swivel body 12 as the origin, and the upper swivel body 12
  • the Z-axis which passes through the origin in the direction along the turning axis of the above and is positive above, is positive in the front through the base end of the boom in the direction along the plane on which the working device 1A operates and perpendicular to the Z-axis.
  • Set the vehicle body coordinate system having the X axis.
  • the length of the boom 8 (straight line distance between the connecting portions at both ends) is L1
  • the length of the arm 9 (straight line distance between the connecting portions at both ends) is L2
  • the length of the bucket 10 (connecting with the arm).
  • the linear distance between the part and the tip of the toe is L3, the angle formed by the boom 8 and the X-axis (the relative angle between the straight line in the length direction and the X-axis) is the rotation angle ⁇
  • the arm 9 and the boom 8 are formed.
  • the angle (relative angle of the straight line in the length direction)
  • the angle formed by the bucket 10 and the arm 9 (relative angle of the straight line in the length direction) is defined as the rotation angle ⁇ .
  • the target surface 60 is a target excavation surface set as a target of excavation work based on design information of a construction site or the like.
  • the work device 1A has a boom angle sensor 30 on the boom pin, an arm angle sensor 31 on the arm pin, and a bucket on the bucket link 13 as posture detection devices for measuring the rotation angles ⁇ , ⁇ , and ⁇ of the boom 8, arm 9, and bucket 10.
  • An angle sensor 32 is attached to each, and a vehicle body inclination angle sensor 33 that detects an inclination angle ⁇ of the upper rotating body 12 (main body 1B of the hydraulic excavator 1) with respect to a reference plane (for example, a horizontal plane) is attached to the upper rotating body 12.
  • the angle sensors 30, 31, and 32 will be described by way of exemplifying those that detect the relative angle at the connecting portion of the plurality of driven members 8, 9, and 10.
  • angle sensors 30, 31, and 10 of the plurality of driven members 8, 9, and 10 will be described by way of example. It can be replaced with an inertial measurement unit (IMU: Inertial Measurement Unit) that detects each relative angle with respect to a reference plane (for example, a horizontal plane).
  • IMU Inertial Measurement Unit
  • a right traveling operation lever 23a (FIG. 1) is provided in the cab provided in the upper rotating body 12 to operate the right traveling hydraulic motor 3a (that is, the lower traveling body 11).
  • An operating device 47a (FIG. 2) for operating the left traveling hydraulic motor 3b (that is, the lower traveling body 11) having a left traveling operating lever 23b (FIG. 1), and an operating device 47b (FIG. 2) for operating the left traveling hydraulic motor 3b (that is, the lower traveling body 11).
  • Operating devices 45a and 46a (FIG. 2) for operating the boom cylinder 5 (that is, boom 8) and the bucket cylinder 7 (that is, bucket 10) sharing the right operating lever 1a (FIG. 1), and the left operating lever 1b.
  • the operating devices 45b and 46b (FIG. 2) for operating the arm cylinder 6 (that is, the arm 9) and the swing hydraulic motor 4 (that is, the upper swing body 12) are installed in common with FIG. 1 (FIG. 1).
  • the right traveling operation lever 23a and the left traveling operating lever 23b may be collectively referred to as traveling operating levers 23a and 23b
  • the right operating lever 1a and the left operating lever 1b may be collectively referred to as operating levers 1a and 1b.
  • a display device for example, a liquid crystal display 53 capable of displaying the positional relationship between the target surface 60 and the work device 1A, and permission / prohibition (ON / prohibition) of operation control by machine control (hereinafter referred to as MC).
  • MC permission / prohibition
  • Control selection switch 97 target angle setting device 96 for setting the angle (target angle) of the bucket 10 with respect to the target surface 60 in bucket angle control by MC, and information on the target surface 60 (position information of each target surface and
  • a target surface setting device 51 which is an interface capable of inputting tilt angle information (including tilt angle information), is arranged (see FIGS. 4 and 5 below).
  • the control selection switch 97 is provided, for example, at the upper end of the front surface of the joystick-shaped operation lever 1a, and is pressed by the thumb of the operator holding the operation lever 1a. Further, the control selection switch 97 is, for example, a momentary switch, and each time it is pressed, the bucket angle control (work tool angle control) is switched between valid (ON) and invalid (OFF).
  • the location where the control selection switch 97 is installed is not limited to the operation lever 1a (1b), and may be provided at other locations. Further, the control selection switch 97 does not need to be configured by hardware, and may be configured by, for example, a display device 53 as a touch panel and a graphical user interface (GUI) displayed on the display screen.
  • GUI graphical user interface
  • the target surface setting device 51 is connected to an external terminal (not shown) that stores the three-dimensional data of the target surface defined on the global coordinate system (absolute coordinate system), and is based on the information from the external terminal.
  • the target surface 60 is set. The operator may manually input the target surface 60 via the target surface setting device 51.
  • the hydraulic pumps 2a and 2b are variable-capacity pumps whose capacities are controlled by regulators 2aa and 2ba, and the pilot pump 48 is a fixed-capacity pump.
  • the hydraulic pump 2 and the pilot pump 48 suck hydraulic oil from the hydraulic oil tank 200.
  • a shuttle block 162 is provided in the middle of the pilot lines 144, 145, 146, 147, 148, 149 that transmit the hydraulic signal output as the operation signal from the operation devices 45, 46, 47.
  • the hydraulic signals output from the operating devices 45, 46, and 47 are also input to the regulators 2aa and 2ba via the shuttle block 162.
  • the shuttle block 162 is composed of a plurality of shuttle valves and the like for selectively extracting the hydraulic signals of the pilot lines 144, 145, 146, 147, 148, and 149, but the detailed configuration will be omitted. ..
  • the hydraulic signals from the operating devices 45, 46, 47 are input to the regulators 2aa and 2ba via the shuttle block 162, and the discharge flow rates of the hydraulic pumps 2a and 2b are controlled according to the hydraulic signals.
  • the pump line 48a which is the discharge pipe of the pilot pump 48, is branched into a plurality of pipes and is connected to the operating devices 45, 46, 47 and each valve in the front control hydraulic unit 160.
  • the lock valve 39 is, for example, an electromagnetic switching valve, and its electromagnetic drive unit is electrically connected to a position detector of a gate lock lever (not shown) arranged in an cab (FIG. 1). The position of the gate lock lever is detected by the position detector, and a signal corresponding to the position of the gate lock lever is input to the lock valve 39 from the position detector. If the gate lock lever is in the locked position, the lock valve 39 is closed and the pump line 48a is shut off.
  • the lock valve 39 is opened and the pump line 48a is opened. That is, in a state where the gate lock lever is operated to the locked position and the pump line 48a is shut off, the operation by the operating devices 45, 46, 47 is invalidated, and operations such as turning and excavation are prohibited.
  • the operating devices 45, 46, 47 are of the hydraulic pilot system, and the operating amount (for example, lever stroke) of the operating levers 1a1b, 23a, 23b operated by the operator based on the pressure oil discharged from the pilot pump 48. And the pilot pressure (sometimes called the operating pressure) according to the operating direction is generated as a flood control signal.
  • the pilot pressure (hydraulic signal) generated in this way is applied to the pilot lines 144a to 149b (see FIG. 3) on the hydraulic drive units 150a to 157b of the corresponding flow control valves 15a to 15h (see FIGS. 2 and 3). It is supplied via the system and is used as an operation signal for driving these flow control valves 15a to 15h.
  • the pressure oil discharged from the hydraulic pump 2 passes through the flow control valves 15a to 15h (see FIG. 2) to the right traveling hydraulic motor 3a, the left traveling hydraulic motor 3b, the swivel hydraulic motor 4, the boom cylinder 5, the arm cylinder 6, and the like. It is also supplied to the bucket cylinder 7 and guided to the hydraulic oil tank 200 via the center bypass pipelines 158a to 158d connecting the flow control valves 15a to 15h.
  • the pressure oil supplied from the hydraulic pump 2 via the flow control valves 15a and 15b passes through the boom cylinder 5, and the pressure oil supplied via the flow control valves 15c and 15d passes through the arm cylinder 6 and the flow rate control valve 15c.
  • the boom 8, arm 9, and bucket 10 are rotated to change the position and orientation of the bucket 10.
  • the swivel hydraulic motor 4 is rotated by the pressure oil supplied from the hydraulic pump 2 via the flow control valve 15f, so that the upper swivel body 12 is swiveled with respect to the lower traveling body 11.
  • the lower traveling body 11 travels by rotating the right traveling hydraulic motor 3a and the left traveling hydraulic motor 3b by the pressure oil supplied from the hydraulic pump 2 via the flow control valves 15g and 15h.
  • the front control hydraulic unit 160 is provided on the pilot lines 144a and 144b of the operation device 45a for the boom 8, and detects the pilot pressure (first control signal) as the operation amount of the operation lever 1a.
  • the electromagnetic proportional valve 54a in which the primary port side is connected to the pilot pump 48 via the pump line 48a and the pilot pressure from the pilot pump 48 is reduced and output.
  • the pilot line 144a of the operating device 45a and the secondary port side of the electromagnetic proportional valve 54a are connected to the pilot pressure in the pilot line 144a and the high pressure side of the control pressure (second control signal) output from the electromagnetic proportional valve 54a.
  • the pilot line 144b is installed based on the control signal from the controller 40. It is provided with an electromagnetic proportional valve 54b that reduces the pilot pressure (first control signal) inside and guides the flow control valves 15a and 15b to the hydraulic drive units 150b and 151b.
  • the front control hydraulic unit 160 is installed on the pilot lines 145a and 145b for the arm 9, and serves as an operator operation detection device that detects the pilot pressure (first control signal) as the operation amount of the operation lever 1b and outputs it to the controller 40.
  • Pressure sensors 71a, 71b and pilot line 145b are installed, and the pilot pressure (first control signal) is reduced based on the control signal from the controller 40 to the flood control drive units 152b, 153b of the flow control valves 15c, 15d.
  • the flood control valves 15c and 15d are hydraulically driven by reducing the pilot pressure (first control signal) in the pilot line 145a based on the control signal from the controller 40 and the electromagnetic proportional valve 55b to guide. It is provided with an electromagnetic proportional valve 55a leading to 152a and 153a.
  • the front control hydraulic unit 160 is installed in the pilot lines 146a and 146b for the bucket 10, and the operator operation detection that detects the pilot pressure (first control signal) as the operation amount of the operation lever 1a and outputs it to the controller 40.
  • the pressure sensors 72a and 72b as a device, the electromagnetic proportional valves 56a and 56b that reduce and output the pilot pressure (first control signal) based on the control signal from the controller 40, and the primary port side are connected to the pilot pump 48.
  • FIG. 3 for the sake of simplicity, only one is shown when a plurality of flow control valves are connected to the same pilot line, and the symbols thereof are shown in parentheses for the other flow control valves. .. Further, in FIG. 3, the connection line between the pressure sensors 70, 71, 72 and the controller 40 is omitted due to space limitations.
  • the electromagnetic proportional valves 54b, 55a, 55b, 56a, 56b have a maximum opening when not energized, and the opening decreases as the current, which is a control signal from the controller 40, increases.
  • the electromagnetic proportional valves 54a, 56c, and 56d have an opening degree of zero when the electromagnetic proportional valves 54a, 56c, and 56d are not energized, and the opening degree increases as the current, which is a control signal from the controller 40, increases when the electromagnetic proportional valves 54a, 56c, and 56d are energized. That is, the opening degrees of the electromagnetic proportional valves 54, 55, and 56 correspond to the control signal from the controller 40.
  • the pilot pressure generated by the operation of the operating devices 45a, 45b, 46a is referred to as the "first control signal”.
  • the pilot pressure generated by correcting (reducing) the first control signal by driving the electromagnetic proportional valves 54b, 55a, 55b, 56a, 56b by the controller 40 and The pilot pressure newly generated separately from the first control signal by driving the electromagnetic proportional valves 54a, 56c, 56d with the controller 40 is referred to as a "second control signal".
  • FIG. 4 is a hardware configuration diagram of the controller.
  • the controller 40 includes an input interface 91, a central processing unit (CPU) 92 as a processor, a read-only memory (ROM) 93 and a random access memory (RAM) 94 as storage devices, and an output interface 95.
  • the input interface 91 is a signal from an attitude detection device (boom angle sensor 30, arm angle sensor 31, bucket angle sensor 32, vehicle body tilt angle sensor 33), a signal from a target surface setting device 51, and an operator operation detection device (pressure sensor). 70a, 70b, 71a, 71b, 72a, 72b), the signal from the control selection switch 97, the signal indicating the target angle from the target angle setting device 96, the enabled or disabled selection state of the bucket angle control from the control selection switch 97.
  • an attitude detection device boom angle sensor 30, arm angle sensor 31, bucket angle sensor 32, vehicle body tilt angle sensor 33
  • a target surface setting device 51 a target surface setting device 51
  • an operator operation detection device pressure sensor
  • a signal indicating the above and a signal indicating the selection state of MC permission / prohibition (ON / OFF) from the MC control ON / OFF switch 98 are input to perform A / D conversion.
  • the ROM 93 is a recording medium in which a control program for executing a flowchart described later and various information necessary for executing the flowchart are stored, and the CPU 92 has an input interface 91 and a memory according to the control program stored in the ROM 93. Predetermined arithmetic processing is performed on the signals taken in from 93 and 94.
  • the output interface 95 creates a signal for output according to the calculation result of the CPU 92, and outputs the signal to the display device 53 and the electromagnetic proportional valves 54, 55, 56 to output the hydraulic actuators 3a, 3b, 3c. It is driven and controlled, and images of the main body 1B of the hydraulic excavator 1, the bucket 10, the target surface 60, and the like are displayed on the display screen of the display device 53.
  • the controller 40 in FIG. 4 illustrates a case where semiconductor memories such as ROM 93 and RAM 94 are provided as storage devices, any device having a storage function can be substituted, for example, magnetic storage such as a hard disk drive. It may be configured to include a device.
  • the controller 40 in the present embodiment executes a process of controlling the working device 1A based on predetermined conditions when the operating devices 45 and 46 are operated by the operator.
  • the MC in the present embodiment operates the operating devices 45a, 45b, 46a, 46b as opposed to "automatic control” in which the operation of the working device 1A is controlled by a computer when the operating devices 45a, 45b, 46a, 46b are not operated. It is sometimes referred to as "semi-automatic control" in which the operation of the working device 1A is controlled by a computer only occasionally.
  • the MC of the working device 1A works with the target surface 60.
  • the hydraulic actuator 5 is held so that the position of the tip of the work device 1A is held on the target surface 60 and in the region above the target surface 60.
  • 6 and 7 are output to the corresponding flow control valves 15a to 15e, that is, a control signal for forcibly operating at least one of 6 and 7 (for example, the boom cylinder 5 is extended to forcibly raise the boom). Performs area limitation control.
  • the control point of the work device 1A at the time of MC is set to the toe of the bucket 10 of the hydraulic excavator (the tip of the work device 1A), but the control point is the tip of the work device 1A. If it is a point, it can be changed other than the bucket toe. That is, for example, a control point may be set on the bottom surface of the bucket 10 or on the outermost side of the bucket link 13.
  • the pilot pressure (second control) even when there is no operator operation of the corresponding operating devices 45a, 46a. Since a signal) can be generated, boom raising operation, bucket cloud operation, and bucket dump operation can be forcibly generated.
  • the electromagnetic proportional valves 54b, 55a, 55b, 56a, 56b are driven by the controller 40, the pilot pressure (first control signal) generated by the operator operation of the operating devices 45a, 45b, 46a is reduced. Pressure (second control signal) can be generated, and the speed of boom lowering operation, arm cloud / dump operation, and bucket cloud / dump operation can be forcibly reduced from the value of the operator operation.
  • the second control signal is generated when the speed vector of the control point of the working device 1A generated by the first control signal violates a predetermined condition, and the speed vector of the control point of the working device 1A that does not violate the predetermined condition. Is generated as a control signal to generate.
  • the second control signal has priority.
  • the first control signal is cut off by an electromagnetic proportional valve, and the second control signal is input to the other hydraulic drive unit.
  • the MC in the present embodiment can also be said to be the control of the flow rate control valves 15a to 15e based on the second control signal.
  • FIG. 5 is a functional block diagram showing the processing function of the controller. Further, FIG. 6 is a functional block diagram showing in detail the processing functions of the MC control unit in FIG. 5 together with related configurations.
  • the controller 40 includes an MC control unit 43, an electromagnetic proportional valve control unit 44, and a display control unit 374.
  • the display control unit 374 is a functional unit that controls the display device 53 based on the work device posture and the target surface output from the MC control unit 43.
  • the display control unit 374 is provided with a display ROM in which a large number of display-related data including images and icons of the work device 1A are stored, and the display control unit 374 determines a predetermined value based on a flag included in the input information. Along with reading the program, display control is performed on the display device 53.
  • the MC control unit 43 includes an operation amount calculation unit 43a, a posture calculation unit 43b, a target surface calculation unit 43c, and an actuator control unit 81. Further, the actuator control unit 81 has a boom control unit 81a and a bucket control unit 81b.
  • the operation amount calculation unit 43a calculates the operation amount of the operation devices 45a, 45b, 46a (operation levers 1a, 1b) based on the input from the operator operation detection device (pressure sensors 70, 71, 72).
  • the operation amount calculation unit 43a calculates the operation amount of the operation devices 45a, 45b, 46a from the detected values of the pressure sensors 70, 71, 72.
  • the calculation of the operation amount by the pressure sensors 70, 71, 72 shown in the present embodiment is only an example, and for example, a position sensor for detecting the rotational displacement of the operation devices of the operation devices 45a, 45b, 46a (for example, The operation amount of the operation device may be detected by the rotary encoder).
  • the attitude calculation unit 43b is based on the information from the attitude detection device (boom angle sensor 30, arm angle sensor 31, bucket angle sensor 32, vehicle body inclination angle sensor 33), and the attitude of the work device 1A in the local coordinate system and the bucket 10 Calculate the position of the tip of the toe.
  • the attitude detection device boost angle sensor 30, arm angle sensor 31, bucket angle sensor 32, vehicle body inclination angle sensor 33
  • the target surface calculation unit 43c calculates the position information of the target surface 60 based on the information from the target surface setting device 51, and stores this in the ROM 93.
  • the cross-sectional shape obtained by cutting the three-dimensional target surface on the plane on which the work device 1A moves (the operating plane of the work device 1A) is the target surface 60 (two-dimensional target surface). Use as.
  • FIG. 8 illustrates the case where the target surface 60 is one, there may be a plurality of target surfaces.
  • a method of setting the one closest to the working device 1A as the target surface for example, a method of setting the one located below the bucket toe as the target surface, or an arbitrarily selected one. There is a method to set the target surface.
  • the boom control unit 81a and the bucket control unit 81b constitute an actuator control unit 81 that controls at least one of a plurality of hydraulic actuators 5, 6 and 7 according to predetermined conditions when the operating devices 45a, 45b and 46a are operated. To do.
  • the actuator control unit 81 calculates the target pilot pressures of the flow rate control valves 15a to 15e of the hydraulic cylinders 5, 6 and 7, and outputs the calculated target pilot pressures to the electromagnetic proportional valve control unit 44.
  • the boom control unit 81a determines the position of the target surface 60, the posture of the working device 1A, the position of the toe of the bucket 10, and the operating amount of the operating devices 45a, 45b, 46a. Based on this, it is a functional unit for executing MC that controls the operation of the boom cylinder 5 (boom 8) so that the toe (control point) of the bucket 10 is located on or above the target surface 60.
  • the boom control unit 81a calculates the target pilot pressures of the flow control valves 15a and 15b of the boom cylinder 5.
  • the bucket control unit 81b is a functional unit for executing bucket angle control by the MC when operating the operating devices 45a, 45b, 46a. Specifically, when the distance between the target surface 60 and the tip of the bucket 10 is equal to or less than a predetermined value, the angle of the bucket 10 with respect to the target surface 60 (which can be calculated from the angles ⁇ and ⁇ ) is set in advance by the target angle setting device 96. MC (bucket angle control) that controls the operation of the bucket cylinder 7 (that is, the bucket 10) is executed so as to have the target surface bucket angle. The bucket control unit 81b calculates the target pilot pressure of the flow control valve 15e of the bucket cylinder 7.
  • the electromagnetic proportional valve control unit 44 calculates commands to the electromagnetic proportional valves 54 to 56 based on the target pilot pressures to the flow rate control valves 15a to 15e output from the actuator control unit 81 of the MC control unit 43. .. If the pilot pressure (first control signal) based on the operator operation and the target pilot pressure calculated by the actuator control unit 81 match, the current value (command value) to the corresponding electromagnetic proportional valves 54 to 56. Is zero, and the corresponding electromagnetic proportional valves 54 to 56 are not operated.
  • FIG. 7 is a flowchart showing the processing contents of the MC boom by the controller. Further, FIG. 9 is a diagram showing an example of a speed component in the bucket, and FIG. 10 is a diagram showing an example of a cylinder speed setting table with respect to the operation amount of the operating device.
  • the controller 40 executes boom raising control by the boom control unit 81a as boom control in MC.
  • the processing by the boom control unit 81a is started when the operating devices 45a, 45b, 46a are operated by the operator.
  • step S100 Cylinder speed calculation processing for calculating the operating speed (cylinder speed) is performed (step S100). Specifically, as shown in FIG. 10, for example, the boom cylinder 5, the arm cylinder 6, the bucket cylinder 7, etc., which are obtained in advance by experiments or simulations, with respect to the operating amount of the operating levers of the boom 8, arm 9, bucket 10, etc. Cylinder speed is set as a table, and the cylinder speed is calculated for each of the hydraulic cylinders 5, 6 and 7 according to this. Further, the speed of the arm cylinder 6 is corrected by using the correction gain k in the arm cylinder speed correction process described later.
  • the boom control unit 81a operates a bucket operated by an operator based on the operating speeds of the hydraulic cylinders 5, 6 and 7 calculated in step S100 and the posture of the work device 1A calculated by the posture calculation unit 43b.
  • the velocity vector B of the tip (toe) is calculated (step S110).
  • the boom control unit 81a uses the distance D to reach the target surface 60 of the velocity vector at the tip of the bucket based on the predetermined relationship between the distance D from the target surface 60 of the toe of the bucket 10 and the limit value ay.
  • the limit value ay of the vertical component is calculated (step S120).
  • the boom control unit 81a acquires the component by perpendicular to the target surface 60 with respect to the velocity vector B at the tip of the bucket by the operator operation calculated in step S120 (step S130).
  • the boom control unit 81a determines whether or not the limit value ay calculated in step S130 is 0 or more (step S140).
  • the xy coordinates are set for the bucket 10.
  • the x-axis is parallel to the target surface 60 and the right direction in the figure is positive, and the y-axis is perpendicular to the target surface 60 and the upper direction in the figure is positive.
  • the vertical component by and the limit value ay are negative, and the horizontal component bx, the horizontal component cx, and the vertical component cy are positive.
  • the distance D is 0, that is, when the toe is located on the target surface 60, and when the limit value ay is positive, the distance D is negative. That is, the toe is located below the target surface 60, and when the limit value ay is negative, the distance D is positive, that is, the toe is located above the target surface 60.
  • step S140 When the determination result in step S140 is YES, that is, when the limit value ay is determined to be 0 or more and the toe is located on or below the target surface 60, the boom control unit 81a It is determined whether or not the vertical component by of the velocity vector B of the toe by the operator operation is 0 or more (step S150). When the vertical component by is positive, it indicates that the vertical component by of the velocity vector B is upward, and when the vertical component by is negative, it indicates that the vertical component by of the velocity vector B is downward.
  • the boom control unit 81a calculates a velocity vector C capable of outputting the vertical component cy calculated in step S170, and sets the horizontal component to cx (step S180).
  • the boom control unit 81a calculates the target velocity vector T (step S190), and proceeds to step S200.
  • step S140 determines whether or not the vertical component by of the toe velocity vector B by the operator operation is 0 or more. (Step S141). If the determination result in step S141 is YES, the process proceeds to step S143, and if the determination result is NO, the process proceeds to step S142.
  • step S141 determines whether the absolute value of the limit value ay is equal to or greater than the absolute value of the vertical component by. (Step S142), if the determination result is YES, the process proceeds to step S143, and if the determination result is NO, the process proceeds to step S170.
  • step S141 When the determination result in step S141 is YES, that is, when the vertical component by is determined to be 0 or more (when the vertical component by is upward), or when the determination result in step S142 is YES, that is, the restriction.
  • the boom control unit 81a assumes that it is not necessary to operate the boom 8 by machine control, and sets the velocity vector C to zero (step S143).
  • step S190 or step S144 the boom control unit 81a subsequently receives the hydraulic cylinders 5, 6, and 7 based on the target velocity vector T (ty, tx) determined in step S520 or step S540.
  • the target speed of (step S200) is calculated.
  • the target velocity vector T is realized by adding the velocity vector C generated by the operation of the boom 8 by the machine control to the velocity vector B. To do.
  • the boom control unit 81a calculates the target pilot pressure for the flow control valves 15a to 15e of the hydraulic cylinders 5, 6 and 7 based on the target speeds of the cylinders 5, 6 and 7 calculated in step S200. (Step S210).
  • the boom control unit 81a outputs the target pilot pressure to the flow rate control valves 15a to 15e of the hydraulic cylinders 5, 6 and 7 to the electromagnetic proportional valve control unit 44 (step S220), and ends the process.
  • the electromagnetic proportional valve control unit 44 electromagnetically acts on the flow control valves 15a to 15e of the hydraulic cylinders 5, 6 and 7 so that the target pilot pressure acts.
  • the proportional valves 54, 55, 56 are controlled, and excavation is performed by the working device 1A.
  • the electromagnetic proportional valve 55c is controlled so that the tip of the bucket 10 does not enter the target surface 60, and the boom 8 is raised. It is done automatically.
  • FIG. 13 is a flowchart showing the processing contents of the arm cylinder speed correction processing.
  • the function Kpc is a function that correlates with the pump flow rate by the positive control based on the boom operation amount Qbm and the pump flow rate by the positive control based on the arm operation amount Qam.
  • step S300 determines whether the operation amount Qbm of the boom is equal to or less than the operation amount Qam of the arm.
  • the Vam calculated by this arm cylinder speed correction process is the arm cylinder speed calculated in step S100 of FIG.
  • FIG. 14 is a diagram showing an example of a change in the working state of the hydraulic excavator.
  • the operator While transitioning from the state S1 to the state S2 in FIG. 14, the operator performs a dump operation of the arm 9.
  • the boom control unit 81a issues a command to the electromagnetic proportional valve 54a to execute control (MC) for raising the boom 8.
  • an appropriate correction amount is applied to the assumed arm speed in consideration of the pump flow rate by the positive controller based on the boom operation amount and the pump flow rate based on the arm operation amount. Is added, the deviation from the actual arm cylinder speed is small, an appropriate boom raising operation amount can be calculated, and MC can be stabilized.
  • the angle sensor that detects the angles of the boom 8, the arm 9, and the bucket 10 is used, but the posture information of the excavator may be calculated by the cylinder stroke sensor instead of the angle sensor. good.
  • the hydraulic pilot type hydraulic excavator has been described as an example, it can also be applied to an electric lever type hydraulic excavator, and may be configured to control a command current generated from the electric lever, for example.
  • the velocity vector of the working device 1A may be obtained from the angular velocity calculated by differentiating the angles of the boom 8, the arm 9, and the bucket 10 instead of the pilot pressure operated by the operator.
  • the boom 8 whose base end is rotatably connected to the upper swing body 12, the arm 9 whose one end is rotatably connected to the tip of the boom, and the arm.
  • An articulated working device 1A composed of a plurality of driven members including a working tool (for example, a bucket 10) rotatably connected to the other end, and a boom cylinder for driving the boom based on an operation signal. 5.
  • a plurality of hydraulic actuators including an arm cylinder 6 for driving the arm and a work tool cylinder (for example, a bucket cylinder 7) for driving the work tool, and pressure oil for driving the plurality of hydraulic actuators.
  • a plurality of flow control valves 15a to 15e provided corresponding to the actuators and controlling the direction and flow rate of the pressure oil supplied from the hydraulic pump to the plurality of hydraulic actuators based on the operation signal from the operating device.
  • a control signal that controls the flow control valve corresponding to at least one of the plurality of hydraulic actuators so that the work device moves within the target surface set for the work target by the work device and the region above the target surface.
  • the controller 40 includes the operating amount of the operating device and the operating amount of the operating device.
  • the estimated speed of the arm cylinder used for the area limitation control is calculated based on the first condition in which the relationship with the estimated speed of the arm cylinder is predetermined, and the operating amount of the operating device corresponding to the boom cylinder is the operation amount.
  • the estimated speed of the arm cylinder used for the area limitation control is larger than the estimated speed of the arm cylinder calculated based on the first condition. It was calculated as the speed.
  • the operating amount of the operating device corresponding to the boom cylinder 5 corresponds to the operating device of the arm cylinder 6.
  • the estimated speed of the arm cylinder calculated when it is larger than the operation amount of 45a is positively controlled based on the operation of the operation device 45b corresponding to the boom cylinder, and the discharge flow rate of the hydraulic pump and the arm cylinder. It was decided to calculate based on the discharge flow rate of the hydraulic pump which is positively controlled based on the operation of the operating device corresponding to.
  • the present invention is not limited to the above-described embodiment, and includes various modifications and combinations within a range that does not deviate from the gist thereof. Further, the present invention is not limited to the one including all the configurations described in the above-described embodiment, and includes the one in which a part of the configurations is deleted. Further, each of the above configurations, functions and the like may be realized by designing a part or all of them by, for example, an integrated circuit. Further, each of the above configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function.
  • Body tilt angle sensor 39 ... Lock valve, 40 ... Controller, 43 ... MC control unit, 43a ... Operation amount calculation unit, 43b ... Attitude calculation unit, 43c ... Target surface calculation unit, 44 ... Electromagnetic proportional valve control unit, 45-47 ... Operation device, 48 ... Pilot pump, 50 ... Attitude detection device, 51 ... Target surface Setting device, 53 ... Display device, 54 to 56 ... Electromagnetic proportional valve, 60 ... Target surface, 70 to 72 ... Pressure sensor, 81 ... Actuator control unit, 81a ... Boom control unit, 81b ... Bucket control unit, 81c ... Bucket control Judgment unit, 82a, 83a, 83b ...
  • Shuttle valve 91 ... Input interface, 92 ... Central processing device (CPU), 93 ... Read-only memory (ROM), 94 ... Random access memory (RAM), 95 ... Output interface, 96 ... Target angle setting device, 97 ... Control selection switch, 144 to 149 ... Pilot line, 150a to 157a, 150b to 157b ... Hydraulic drive unit, 160 ... Front control hydraulic unit, 162 ... Shuttle block, 200 ... Hydraulic oil tank, 374 ... Display control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

ブームシリンダ5に対応する操作レバー1a,1bの操作量がアームシリンダ6に対応する操作レバー1a,1bの操作量以下の場合には、操作レバー1a,1bの操作量とアームシリンダ6の推定速度との関係を予め定めた第1の条件に基づいて、領域制限制御に用いるアームシリンダの推定速度を算出し、ブームシリンダ5に対応する操作レバー1a,1bの操作量がアームシリンダ6に対応する操作レバー1a,1bの操作量よりも大きい場合には、領域制限制御に用いるアームシリンダ6の推定速度を第1の条件に基づいて算出されるアームシリンダ6の推定速度よりも大きい速度として算出する。これにより、作業装置の挙動を安定させることができる。

Description

作業機械
 本発明は、作業機械に関する。
 油圧アクチュエータで駆動される作業装置(例えば、ブーム、アーム、及びバケットから成る作業装置)を備える、作業機械(例えば油圧ショベル)の作業効率を向上する技術としてマシンコントロール(MC:Machine Control)がある。マシンコントロール(以降、単にMCと称する)とは、オペレータによる操作装置の操作と、予め定めた条件とに従って作業装置の動作を半自動的に制御することでオペレータの操作支援を行う技術である。
 このようなMCに係る技術として、例えば、特許文献1には、ブームと、アームと、バケットと、前記アームを駆動するアームシリンダと、移動可能なスプールを有し、前記スプールの移動により前記アームシリンダに作動油を供給して前記アームシリンダを動作させる方向制御弁と、アーム操作レバーの操作量に従う前記方向制御弁のスプールの移動量と前記アームシリンダの速度との相関関係に基づいて前記アームシリンダの推定速度を算出する算出部と、前記アームシリンダの推定速度に基づいて、前記ブームの目標速度を決定する速度決定部とを備え、前記算出部は、前記アーム操作レバーの操作量が所定量未満の場合には、前記アーム操作レバーの操作量に従う前記方向制御弁のスプールの移動量と前記アームシリンダの速度との相関関係に従う前記アームシリンダの速度よりも大きい速度を、前記アームシリンダの推定速度として算出する、作業車両が開示されている。
国際公開第2015/025985号
 上記従来技術においては、アームシリンダの速度に影響を及ぼす作業装置の自重を考慮することで、アームシリンダの速度をより正確に推定しようとしている。しかしながら、例えば、オープンセンタ・ポジティブコントロール制御の油圧システムを用いる作業機械に上記従来技術を適用した場合、複合操作時には操作量の大きい方のアクチュエータを優先してポンプ流量を制御するため、操作量の小さい方のアクチュエータに供給されるポンプ流量が増える場合があり、実速度が単独操作時のメータリング特性から算出される推定速度よりも速くなってしまう場合がある。すなわち、複合動作時にアクチュエータの実速度が測定速度と異なってしまい、作業装置の動作にハンチング等が生じて挙動が不安定となるおそれがある。
 本発明は上記に鑑みてなされたものであり、作業装置の挙動を安定させることができる作業機械を提供することを目的とする。
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、基端を上部旋回体に回動可能に連結されたブーム、前記ブームの先端に一端を回動可能に連結されたアーム、及び、前記アームの他端に回動可能に連結された作業具を含む複数の被駆動部材で構成された多関節型の作業装置と、操作信号に基づいて前記ブームを駆動するブームシリンダ、前記アームを駆動するアームシリンダ、及び、前記作業具を駆動する作業具シリンダを含む複数の油圧アクチュエータと、複数の前記油圧アクチュエータを駆動するための圧油を吐出する複数の油圧ポンプと、複数の前記油圧アクチュエータのうちオペレータの所望する油圧アクチュエータを操作するための前記操作信号を出力する操作装置と、複数の前記油圧アクチュエータに対応して各々設けられ、前記操作装置からの操作信号に基づいて前記油圧ポンプから複数の前記油圧アクチュエータに供給される圧油の方向および流量を制御する複数の流量制御弁と、前記作業装置による作業対象について設定された目標面およびその上方の領域内で前記作業装置が動くように、複数の前記油圧アクチュエータのうち少なくとも1つに対応する前記流量制御弁を制御する制御信号を出力するか、又は、前記操作装置から複数の前記油圧アクチュエータのうち少なくとも1つに対応する前記流量制御弁を制御するために出力された前記制御信号を補正する領域制限制御を実行するコントローラとを備えた作業機械において、前記コントローラは、前記ブームシリンダに対応する前記操作装置の操作量が前記アームシリンダに対応する操作装置の操作量以下の場合には、前記アームシリンダに対応する操作装置の操作量と前記アームシリンダの推定速度との関係を予め定めた第1の条件に基づいて、前記領域制限制御に用いる前記アームシリンダの推定速度を算出し、前記ブームシリンダに対応する前記操作装置の操作量が前記アームシリンダに対応する操作装置の操作量よりも大きい場合には、前記領域制限制御に用いる前記アームシリンダの推定速度を前記第1の条件に基づいて算出される前記アームシリンダの推定速度よりも大きい速度として算出するものとする。
 本発明によれば、作業装置の挙動を安定させることができる。
作業機械の一例である油圧ショベルの外観を模式的に示す図である。 油圧ショベルの油圧回路システムをコントローラを含む周辺構成とともに抜き出して示す図である。 図2中のフロント制御用油圧ユニットを関連構成とともに抜き出して詳細に示す図である。 コントローラのハードウェア構成図である。 コントローラの処理機能を示す機能ブロック図である。 図5におけるMC制御部の処理機能の詳細を示す機能ブロック図である。 コントローラによるMCのブームについての処理内容を示すフローチャートである。 油圧ショベルについて設定するショベル座標系について説明する図である。 バケットにおける速度成分の一例を示す図である。 操作量に対するシリンダ速度の設定テーブルの一例を示す図である。 ポンプコントロール圧とポンプ流量の関係を示す図である。 バケット爪先速度の垂直成分の制限値と距離との関係を示す図である。 アームシリンダ速度補正処理の処理内容を示すフローチャートである。 油圧ショベルにおける作業状態の変化の一例を示す図である。
 以下、本発明の実施形態について図面を用いて説明する。なお、以下の説明においては、作業機械の一例として、作業装置の先端に作業具(アタッチメント)としてバケットを備える油圧ショベルを例示して説明するが、バケット以外のアタッチメントを備える作業機械に本発明を適用することが可能である。また、複数の被駆動部材(アタッチメント、アーム、ブーム等)を連結して構成される多関節型の作業装置を有するものであれば、油圧ショベル以外の作業機械への適用も可能である。
 また、以下の説明においては、ある形状を示す用語(例えば、目標面、設計面等)とともに用いられる「上」、「上方」又は「下方」という語の意味に関し、「上」は当該或る形状の「表面」を意味し、「上方」は当該或る形状の「表面より高い位置」を意味し、「下方」は当該或る形状の「表面より低い位置」を意味することとする。
 また、以下の説明においては、同一の構成要素が複数存在する場合、符号(数字)の末尾にアルファベットを付すことがあるが、当該アルファベットを省略して当該複数の構成要素をまとめて表記することがある。すなわち、例えば、2つの油圧ポンプ2a,2bが存在するとき、これらをまとめて油圧ポンプ2と表記することがある。
 <基本構成>
  図1は、本実施の形態に係る作業機械の一例である油圧ショベルの外観を模式的に示す図である。また、図2は、油圧ショベルの油圧回路システムをコントローラを含む周辺構成とともに抜き出して示す図であり、図3は、図2中のフロント制御用油圧ユニットを関連構成とともに抜き出して詳細に示す図である。
 図1において、油圧ショベル1は、多関節型の作業装置1Aと、本体1Bで構成されている。油圧ショベル1の本体1Bは、左右の走行油圧モータ3a,3bにより走行する下部走行体11と、下部走行体11の上に取り付けられ、旋回油圧モータ4により旋回する上部旋回体12とからなる。
 作業装置1Aは、垂直方向にそれぞれ回動する複数の被駆動部材(ブーム8、アーム9、及び、バケット10)を連結して構成されている。ブーム8の基端は上部旋回体12の前部においてブームピンを介して回動可能に支持されている。ブーム8の先端にはアームピンを介してアーム9が回動可能に連結されており、アーム9の先端にはバケットピンを介してバケット10が回動可能に連結されている。ブーム8はブームシリンダ5によって駆動され、アーム9はアームシリンダ6によって駆動され、バケット10はバケットシリンダ7によって駆動される。なお、以降の説明において、ブームシリンダ5、アームシリンダ6、及び、バケットシリンダ7をまとめて油圧シリンダ5,6,7や油圧アクチュエータ5,6,7と称することがある。
 図8は、油圧ショベルについて設定するショベル座標系について説明する図である。
 図8に示すように、本実施の形態においては、油圧ショベル1に対して、ショベル座標系(ローカル座標系)を定義する。ショベル座標系は、上部旋回体12に対して相対的に固定で定義されるXY座標系であり、上部旋回体12に回動支持されているブーム8の基端を原点とし、上部旋回体12の旋回軸に沿う方向に原点を通って上方を正とするZ軸を、作業装置1Aの稼動する平面に沿う方向であってZ軸に垂直にブームの基端を通って前方を正とするX軸を有する車体座標系を設定する。
 また、ブーム8の長さ(両端の連結部の間の直線距離)をL1、アーム9の長さ(両端の連結部の間の直線距離)をL2、バケット10の長さ(アームとの連結部と爪先の間の直線距離)をL3とし、ブーム8とX軸との成す角(長さ方向の直線とX軸との相対角度)を回動角度α、アーム9とブーム8との成す角(長さ方向の直線の相対角度)を回動角度β、バケット10とアーム9との成す角(長さ方向の直線の相対角度)を回動角度γと定義する。これにより、ショベル座標系におけるバケット爪先位置の座標および作業装置1Aの姿勢はL1,L2,L3,α,β,γで表現することができる。
 さらに、油圧ショベル1の本体1Bの水平面に対する前後方向の傾きを角度θ、作業装置1Aのバケット10の爪先と目標面60との距離をDとする。なお、目標面60とは、掘削作業の目標として施工現場の設計情報などに基づいて設定される目標掘削面である。
 作業装置1Aには、ブーム8、アーム9、バケット10の回動角度α,β,γを測定する姿勢検出装置として、ブームピンにブーム角度センサ30、アームピンにアーム角度センサ31、バケットリンク13にバケット角度センサ32がそれぞれ取付けられ、また、上部旋回体12には基準面(例えば水平面)に対する上部旋回体12(油圧ショベル1の本体1B)の傾斜角θを検出する車体傾斜角センサ33が取付けられている。なお、角度センサ30,31,32は、複数の被駆動部材8,9,10の連結部における相対角度を検出するものを例示して説明するが、複数の被駆動部材8,9,10の基準面(例えば水平面)に対する相対角度をそれぞれ検出する慣性計測装置(IMU: Inertial Measurement Unit)に代替可能である。
 また、図1及び図2において、上部旋回体12に設けられた運転室内には、右走行操作レバー23a(図1)を有し右走行油圧モータ3a(すなわち、下部走行体11)を操作するための操作装置47a(図2)と、左走行操作レバー23b(図1)を有し左走行油圧モータ3b(すなわち、下部走行体11)を操作するための操作装置47b(図2)と、右操作レバー1a(図1)を共有しブームシリンダ5(すなわち、ブーム8)及びバケットシリンダ7(すなわち、バケット10)を操作するための操作装置45a,46a(図2)と、左操作レバー1b(図1)を共有しアームシリンダ6(すなわち、アーム9)及び旋回油圧モータ4(すなわち、上部旋回体12)を操作するための操作装置45b,46b(図2)とが設置されている。なお、以下では、右走行操作レバー23a及び左走行操作レバー23bを走行操作レバー23a,23b、右操作レバー1a及び左操作レバー1bを操作レバー1a,1bと総称することがある。
 また、運転室内には、目標面60と作業装置1Aの位置関係が表示可能な表示装置(例えば液晶ディスプレイ)53と、マシンコントロール(以下、MCと称する)による動作制御の許可・禁止(ON/OFF)を択一的に選択するためのMC制御ON/OFFスイッチ98と、MCによるバケット角度制御(作業具角度制御とも称する)の許可・禁止(ON/OFF)を択一的に選択するための制御選択スイッチ97と、MCによるバケット角度制御における目標面60に対するバケット10の角度(目標角度)を設定するための目標角度設定装置96と、目標面60に関する情報(各目標面の位置情報や傾斜角度情報を含む)を入力可能なインタフェースである目標面設定装置51とが配置されている(後の図4及び図5を参照)。
 制御選択スイッチ97は、例えば、ジョイスティック形状の操作レバー1aにおける前面の上端部に設けられており、操作レバー1aを握るオペレータの親指により押下操作される。また、制御選択スイッチ97は、例えば、モーメンタリスイッチであり、押下される度にバケット角度制御(作業具角度制御)の有効(ON)と無効(OFF)が切り替えられる。なお、制御選択スイッチ97の設置箇所は操作レバー1a(1b)に限られず、その他の場所に設けても良い。また、制御選択スイッチ97は、ハードウェアで構成する必要は無く、例えば表示装置53をタッチパネル化し、その表示画面上に表示されるグラフィカルユーザインターフェース(GUI)で構成しても良い。
 目標面設定装置51は、グローバル座標系(絶対座標系)上に規定された目標面の3次元データを格納した外部端末(図示せず)と接続されており、この外部端末からの情報に基づいて目標面60の設定を行う。なお、目標面設定装置51を介した目標面60の入力は、オペレータが手動で行っても良い。
 図2に示すように、上部旋回体12に搭載された原動機であるエンジン18は、油圧ポンプ2a,2bとパイロットポンプ48を駆動する。油圧ポンプ2a,2bはレギュレータ2aa,2baによって容量が制御される可変容量型ポンプであり、パイロットポンプ48は固定容量型ポンプである。油圧ポンプ2およびパイロットポンプ48は作動油タンク200より作動油を吸引する。
 操作装置45,46,47から操作信号として出力される油圧信号を伝達するパイロットライン144,145,146,147,148,149の途中にはシャトルブロック162が設けられている。操作装置45,46,47から出力された油圧信号がシャトルブロック162を介してレギュレータ2aa,2baにも入力される。シャトルブロック162は、パイロットライン144,145,146,147,148,149の油圧信号を選択的に抽出するための複数のシャトル弁等により構成されるものであるが、詳細構成の説明は省略する。操作装置45,46,47からの油圧信号がシャトルブロック162を介してレギュレータ2aa,2baに入力されており、油圧ポンプ2a,2bの吐出流量が当該油圧信号に応じて制御される。
 パイロットポンプ48の吐出配管であるポンプライン48aは、ロック弁39を通った後、複数に分岐して操作装置45,46,47、及び、フロント制御用油圧ユニット160内の各弁に接続されている。ロック弁39は、例えば、電磁切換弁であり、その電磁駆動部は運転室(図1)に配置された図示しないゲートロックレバーの位置検出器と電気的に接続されている。ゲートロックレバーのポジションは位置検出器で検出され、その位置検出器からロック弁39に対してゲートロックレバーのポジションに応じた信号が入力される。ゲートロックレバーのポジションがロック位置にあればロック弁39が閉じてポンプライン48aが遮断され、ロック解除位置にあればロック弁39が開いてポンプライン48aが開通する。つまり、ゲートロックレバーがロック位置に操作されてポンプライン48aが遮断された状態では、操作装置45,46,47による操作が無効化されて、旋回および掘削等の動作が禁止される。
 操作装置45,46,47は、油圧パイロット方式であり、パイロットポンプ48から吐出される圧油をもとに、オペレータにより操作される操作レバー1a1b,23a,23bの操作量(例えば、レバーストローク)と操作方向に応じたパイロット圧(操作圧と称することがある)を油圧信号として生成する。このようにして生成されたパイロット圧(油圧信号)は、対応する流量制御弁15a~15h(図2,図3参照)の油圧駆動部150a~157bにパイロットライン144a~149b(図3参照)を介して供給され、これら流量制御弁15a~15hを駆動する操作信号として利用される。
 油圧ポンプ2から吐出された圧油は、流量制御弁15a~15h(図2参照)を介して右走行油圧モータ3a、左走行油圧モータ3b、旋回油圧モータ4、ブームシリンダ5、アームシリンダ6、及び、バケットシリンダ7に供給されるともに、各流量制御弁15a~15hを結ぶセンタバイパス管路158a~158dを介して作動油タンク200に導かれる。油圧ポンプ2から流量制御弁15a,15bを介して供給される圧油によってブームシリンダ5、流量制御弁15c,15dを介して供給される圧油によってアームシリンダ6、及び、流量制御弁15cを介して供給される圧油によってバケットシリンダ7がそれぞれ伸縮することにより、ブーム8、アーム9、及び、バケット10がそれぞれ回動されてバケット10の位置及び姿勢が変化する。また、油圧ポンプ2から流量制御弁15fを介して供給される圧油によって旋回油圧モータ4が回転することで、下部走行体11に対して上部旋回体12が旋回する。また、油圧ポンプ2から流量制御弁15g,15hを介して供給される圧油によって右走行油圧モータ3a及び左走行油圧モータ3bが回転することで、下部走行体11が走行する。
 <フロント制御用油圧ユニット160>
  図3に示すように、フロント制御用油圧ユニット160は、ブーム8用の操作装置45aのパイロットライン144a,144bに設けられ、操作レバー1aの操作量としてパイロット圧(第1制御信号)を検出するオペレータ操作検出装置としての圧力センサ70a,70bと、一次ポート側がポンプライン48aを介してパイロットポンプ48に接続されパイロットポンプ48からのパイロット圧を減圧して出力する電磁比例弁54aと、ブーム8用の操作装置45aのパイロットライン144aと電磁比例弁54aの二次ポート側に接続され、パイロットライン144a内のパイロット圧と電磁比例弁54aから出力される制御圧(第2制御信号)の高圧側を選択し、流量制御弁15a,15bの油圧駆動部150a,151aに導くシャトル弁82aと、ブーム8用の操作装置45aのパイロットライン144bに設置され、コントローラ40からの制御信号を基にパイロットライン144b内のパイロット圧(第1制御信号)を低減して流量制御弁15a,15bの油圧駆動部150b,151bに導く電磁比例弁54bとを備えている。
 フロント制御用油圧ユニット160は、アーム9用のパイロットライン145a,145bに設置され、操作レバー1bの操作量としてパイロット圧(第1制御信号)を検出してコントローラ40に出力するオペレータ操作検出装置としての圧力センサ71a,71bと、パイロットライン145bに設置され、コントローラ40からの制御信号を基にパイロット圧(第1制御信号)を低減して流量制御弁15c,15dの油圧駆動部152b,153bに導く電磁比例弁55bと、パイロットライン145aに設置され、コントローラ40からの制御信号を基にパイロットライン145a内のパイロット圧(第1制御信号)を低減して流量制御弁15c,15dの油圧駆動部152a,153aに導く電磁比例弁55aとを備えている。
 また、フロント制御用油圧ユニット160は、バケット10用のパイロットライン146a,146bに設置され、操作レバー1aの操作量としてパイロット圧(第1制御信号)を検出してコントローラ40に出力するオペレータ操作検出装置としての圧力センサ72a,72bと、コントローラ40からの制御信号を基にパイロット圧(第1制御信号)を低減して出力する電磁比例弁56a,56bと、一次ポート側がパイロットポンプ48に接続されパイロットポンプ48からのパイロット圧を減圧して出力する電磁比例弁56c,56dと、パイロットライン146a,146b内のパイロット圧と電磁比例弁56c,56dから出力される制御圧の高圧側を選択し、流量制御弁15eの油圧駆動部154a,154bに導くシャトル弁83a,83bとを備えている。
 なお、図3においては図示の簡単のため、同一のパイロットラインに複数の流量制御弁が接続される場合については一つのみを図示し、他の流量制御弁についてはその符号を括弧書きで示す。また、図3においては、圧力センサ70,71,72とコントローラ40との接続線は紙面の都合上省略している。
 電磁比例弁54b,55a,55b,56a,56bは、非通電時には開度が最大で、コントローラ40からの制御信号である電流が増大するほど開度が小さくなる。一方、電磁比例弁54a,56c,56dは、非通電時には開度がゼロであり、通電時にはコントローラ40からの制御信号である電流が増大するほど開度が大きくなる。すなわち、各電磁比例弁54,55,56の開度はコントローラ40からの制御信号に応じたものとなる。
 以降、本実施の形態においては、流量制御弁15a~15eに対する制御信号のうち、操作装置45a,45b,46aの操作によって発生したパイロット圧を「第1制御信号」と称する。また、流量制御弁15a~15eに対する制御信号のうち、コントローラ40で電磁比例弁54b,55a,55b,56a,56bを駆動して第1制御信号を補正(低減)して生成したパイロット圧と、コントローラ40で電磁比例弁54a,56c,56dを駆動して第1制御信号とは別に新たに生成したパイロット圧を「第2制御信号」と称する。
 <コントローラ40>
  図4は、コントローラのハードウェア構成図である。
 図4において、コントローラ40は、入力インタフェース91と、プロセッサである中央処理装置(CPU)92と、記憶装置であるリードオンリーメモリ(ROM)93及びランダムアクセスメモリ(RAM)94と、出力インタフェース95とを有している。入力インタフェース91は、姿勢検出装置(ブーム角度センサ30、アーム角度センサ31、バケット角度センサ32、車体傾斜角センサ33)からの信号、目標面設定装置51からの信号、オペレータ操作検出装置(圧力センサ70a,70b,71a,71b,72a,72b)、制御選択スイッチ97からの信号、目標角度設定装置96からの目標角度を示す信号、制御選択スイッチ97からのバケット角度制御の有効又は無効の選択状態を示す信号、及び、MC制御ON/OFFスイッチ98からのMCの許可・禁止(ON/OFF)の選択状態を示す信号を入力し、A/D変換を行う。ROM93は、後述するフローチャートを実行するための制御プログラムと、当該フローチャートの実行に必要な各種情報等が記憶された記録媒体であり、CPU92は、ROM93に記憶された制御プログラムに従って入力インタフェース91及びメモリ93、94から取り入れた信号に対して所定の演算処理を行う。出力インタフェース95は、CPU92での演算結果に応じた出力用の信号を作成し、その信号を表示装置53や電磁比例弁54,55,56に出力することで、油圧アクチュエータ3a,3b,3cを駆動・制御したり、油圧ショベル1の本体1B、バケット10及び目標面60等の画像を表示装置53の表示画面上に表示させたりする。なお、図4のコントローラ40は、記憶装置としてROM93及びRAM94という半導体メモリを備えている場合を例示しているが、記憶機能を有する装置であれば代替可能であり、例えばハードディスクドライブ等の磁気記憶装置を備える構成としても良い。
 本実施の形態におけるコントローラ40は、マシンコントロール(MC)として、操作装置45,46がオペレータに操作されたとき、作業装置1Aを予め定められた条件に基づいて制御する処理を実行する。本実施の形態におけるMCは、操作装置45a,45b,46a,46bの非操作時に作業装置1Aの動作をコンピュータにより制御する「自動制御」に対して、操作装置45a,45b,46a,46bの操作時にのみ作業装置1Aの動作をコンピュータにより制御する「半自動制御」と称することがある。
 作業装置1AのMCとしては、操作装置45b,46aを介して掘削操作(具体的には、アームクラウド、バケットクラウド及びバケットダンプのうち少なくとも1つの指示)が入力された場合、目標面60と作業装置1Aの先端(本実施形態ではバケット10の爪先とする)の位置関係に基づいて、作業装置1Aの先端の位置が目標面60上及びその上方の領域内に保持されるように油圧アクチュエータ5,6,7のうち少なくとも1つを強制的に動作させる制御信号(例えば、ブームシリンダ5を伸ばして強制的にブーム上げ動作を行う)を該当する流量制御弁15a~15eに出力する、所謂、領域制限制御を行う。
 このようなMCによりバケット10の爪先が目標面60の下方に侵入することが防止されるので、オペレータの技量の程度に関わらず目標面60に沿った掘削が可能となる。なお、本実施の形態では、MC時の作業装置1Aの制御点を、油圧ショベルのバケット10の爪先(作業装置1Aの先端)に設定しているが、制御点は作業装置1Aの先端部分の点であればバケット爪先以外にも変更可能である。すなわち、例えば、バケット10の底面や、バケットリンク13の最外部に制御点を設定しても良い。
 フロント制御用油圧ユニット160において、コントローラ40から制御信号を出力して電磁比例弁54a,56c,56dを駆動すると、対応する操作装置45a,46aのオペレータ操作が無い場合にもパイロット圧(第2制御信号)を発生できるので、ブーム上げ動作、バケットクラウド動作、バケットダンプ動作を強制的に発生できる。また、これと同様にコントローラ40により電磁比例弁54b,55a,55b,56a,56bを駆動すると、操作装置45a,45b,46aのオペレータ操作により発生したパイロット圧(第1制御信号)を減じたパイロット圧(第2制御信号)を発生することができ、ブーム下げ動作、アームクラウド/ダンプ動作、バケットクラウド/ダンプ動作の速度をオペレータ操作の値から強制的に低減できる。
 第2制御信号は、第1制御信号によって発生される作業装置1Aの制御点の速度ベクトルが所定の条件に反するときに生成され、当該所定の条件に反しない作業装置1Aの制御点の速度ベクトルを発生させる制御信号として生成される。なお、同一の流量制御弁15a~15eにおける一方の油圧駆動部に対して第1制御信号が、他方の油圧駆動部に対して第2制御信号が生成される場合は、第2制御信号を優先的に油圧駆動部に作用させるものとし、第1制御信号を電磁比例弁で遮断し、第2制御信号を当該他方の油圧駆動部に入力する。したがって、流量制御弁15a~15eのうち第2制御信号が演算されたものについては第2制御信号を基に制御され、第2制御信号が演算されなかったものについては第1制御信号を基に制御され、第1及び第2制御信号の双方が発生しなかったものについては制御(駆動)されないことになる。すなわち、本実施の形態におけるMCとは、第2制御信号に基づく流量制御弁15a~15eの制御ということもできる。
 図5は、コントローラの処理機能を示す機能ブロック図である。また、図6は、図5におけるMC制御部の処理機能を関連構成とともに詳細に示す機能ブロック図である。
 図5に示すように、コントローラ40は、MC制御部43と、電磁比例弁制御部44と、表示制御部374とを備えている。
 表示制御部374は、MC制御部43から出力される作業装置姿勢及び目標面を基に表示装置53を制御する機能部である。表示制御部374には、作業装置1Aの画像及びアイコンを含む表示関連データが多数格納されている表示ROMが備えられており、表示制御部374が、入力情報に含まれるフラグに基づいて所定のプログラムを読み出すとともに、表示装置53における表示制御をする。
 図6に示すように、MC制御部43は、操作量演算部43aと、姿勢演算部43bと、目標面演算部43cと、アクチュエータ制御部81とを備えている。また、アクチュエータ制御部81は、ブーム制御部81aとバケット制御部81bとを有している。
 操作量演算部43aは、オペレータ操作検出装置(圧力センサ70,71,72)からの入力を基に操作装置45a,45b,46a(操作レバー1a,1b)の操作量を算出する。操作量演算部43aでは、圧力センサ70,71,72の検出値から操作装置45a,45b,46aの操作量を算出する。なお、本実施の形態で示す圧力センサ70,71,72による操作量の算出は一例に過ぎず、例えば、各操作装置45a,45b,46aの操作装置の回転変位を検出する位置センサ(例えば、ロータリーエンコーダ)で当該操作装置の操作量を検出しても良い。
 姿勢演算部43bは姿勢検出装置(ブーム角度センサ30、アーム角度センサ31、バケット角度センサ32、車体傾斜角センサ33)からの情報に基づき、ローカル座標系における作業装置1Aの姿勢と、バケット10の爪先の位置を演算する。
 目標面演算部43cは、目標面設定装置51からの情報に基づき目標面60の位置情報を演算し、これをROM93内に記憶する。本実施の形態では、図8に示すように、3次元の目標面を作業装置1Aが移動する平面(作業装置1Aの動作平面)で切断した断面形状を目標面60(2次元の目標面)として利用する。
 なお、図8では、目標面60が1つである場合を例示しているが、目標面が複数存在する場合もある。目標面が複数存在する場合には、例えば、作業装置1Aから最も近いものを目標面と設定する方法や、バケット爪先の下方に位置するものを目標面とする方法、或いは、任意に選択したものを目標面とする方法等がある。
 ブーム制御部81a及びバケット制御部81bは、操作装置45a,45b,46aの操作時に、予め定めた条件に従って複数の油圧アクチュエータ5,6,7のうち少なくとも1つを制御するアクチュエータ制御部81を構成する。アクチュエータ制御部81は、各油圧シリンダ5,6,7の流量制御弁15a~15eの目標パイロット圧を演算し、その演算した目標パイロット圧を電磁比例弁制御部44に出力する。
 ブーム制御部81aは、操作装置45a,45b,46aの操作時に、目標面60の位置と、作業装置1Aの姿勢及びバケット10の爪先の位置と、操作装置45a,45b,46aの操作量とに基づいて、目標面60上またはその上方にバケット10の爪先(制御点)が位置するようにブームシリンダ5(ブーム8)の動作を制御するMCを実行するための機能部である。ブーム制御部81aでは、ブームシリンダ5の流量制御弁15a,15bの目標パイロット圧が演算される。
 バケット制御部81bは、操作装置45a,45b,46aの操作時に、MCによるバケット角度制御を実行するための機能部である。具体的には、目標面60とバケット10の爪先の距離が所定値以下のとき、目標面60に対するバケット10の角度(角度θ,φから算出可能)が目標角度設定装置96で予め設定した対目標面バケット角度となるようにバケットシリンダ7(すなわち、バケット10)の動作を制御するMC(バケット角度制御)が実行される。バケット制御部81bでは、バケットシリンダ7の流量制御弁15eの目標パイロット圧が演算される。
 電磁比例弁制御部44は、MC制御部43のアクチュエータ制御部81から出力される各流量制御弁15a~15eへの目標パイロット圧を基に、各電磁比例弁54~56への指令を演算する。なお、オペレータ操作に基づくパイロット圧(第1制御信号)と、アクチュエータ制御部81で算出された目標パイロット圧が一致する場合には,該当する電磁比例弁54~56への電流値(指令値)はゼロとなり、該当する電磁比例弁54~56の動作は行われない。
 <MCに係るブーム制御(ブーム制御部81a)>
  ここで、MCに係るブーム制御の詳細を説明する。
 図7は、コントローラによるMCのブームについての処理内容を示すフローチャートである。また、図9はバケットにおける速度成分の一例を、図10は操作装置の操作量に対するシリンダ速度の設定テーブルの一例をそれぞれ示す図である。
 コントローラ40は、MCにおけるブーム制御として、ブーム制御部81aによるブーム上げ制御を実行する。ブーム制御部81aによる処理は、操作装置45a,45b,46aがオペレータにより操作されると開始される。
 図7において、ブーム制御部81aは、操作装置45a,45b,46aがオペレータにより操作されると、まず、操作量演算部43aで演算された操作量を基に各油圧シリンダ5,6,7の動作速度(シリンダ速度)を演算するシリンダ速度算出処理を行う(ステップS100)。具体的には、図10で示すように、あらかじめ実験やシミュレーションで求めた、例えば、ブーム8、アーム9、バケット10等の操作レバーの操作量に対するブームシリンダ5、アームシリンダ6、バケットシリンダ7等のシリンダ速度をテーブルとして設定し、これに従って各油圧シリンダ5,6,7についてシリンダ速度を算出する。また、アームシリンダ6の速度については、後述のアームシリンダ速度補正処理において、補正ゲインkを用いることで補正を行う。
 続いて、ブーム制御部81aは、ステップS100で演算された各油圧シリンダ5,6,7の動作速度と、姿勢演算部43bで演算された作業装置1Aの姿勢とに基づいて、オペレータ操作によるバケット先端(爪先)の速度ベクトルBを演算する(ステップS110)。
 続いて、ブーム制御部81aは、バケット10の爪先の目標面60からの距離Dと制限値ayとの予め定めた関係に基づいて、距離Dを用いてバケット先端の速度ベクトルの目標面60に垂直な成分の制限値ayを算出する(ステップS120)。
 続いて、ブーム制御部81aは、ステップS120で算出したオペレータ操作によるバケット先端の速度ベクトルBについて、目標面60に垂直な成分byを取得する(ステップS130)。
 続いて、ブーム制御部81aは、ステップS130で算出した制限値ayが0以上か否かを判定する(ステップS140)。なお、図9に示したように、バケット10に対してxy座標を設定する。図9のxy座標では、x軸は目標面60と平行で図中右方向を正とし、y軸は目標面60に垂直で図中上方向を正とする。図9では、垂直成分by及び制限値ayは負であり、水平成分bx及び水平成分cx及び垂直成分cyは正である。そして、図12から明らかであるが、制限値ayが0のときは距離Dが0、すなわち爪先が目標面60上に位置する場合であり、制限値ayが正のときは距離Dが負、すなわち爪先が目標面60より下方に位置する場合であり、制限値ayが負のときは距離Dが正、すなわち爪先が目標面60より上方に位置する場合である。
 ステップS140での判定結果がYESの場合、すなわち、制限値ayが0以上と判定された場合であって、爪先が目標面60上またはその下方に位置する場合には、ブーム制御部81aは、オペレータ操作による爪先の速度ベクトルBの垂直成分byが0以上か否かを判定する(ステップS150)。垂直成分byが正の場合は速度ベクトルBの垂直成分byが上向きであることを示し、垂直成分byが負の場合は速度ベクトルBの垂直成分byが下向きであることを示す。
 ステップS150での判定結果がYESの場合、すなわち、垂直成分byが0以上と判定された場合であって、垂直成分byが上向きの場合には、ブーム制御部81aは、制限値ayの絶対値が垂直成分byの絶対値以上か否かを判定し、(ステップS160)、判定結果がYESの場合には、ブーム制御部81aは、マシンコントロールによるブーム8の動作で発生すべきバケット先端の速度ベクトルCの目標面60に垂直な成分cyを算出する式として「cy=ay-by」を選択し、その式とステップS140で算出した制限値ayとステップS150で算出した垂直成分byを基に垂直成分cyを算出する(ステップS170)。
 続いて、ブーム制御部81aは、ステップS170で算出した垂直成分cyを出力可能な速度ベクトルCを算出し、その水平成分をcxとする(ステップS180)。
 続いて、ブーム制御部81aは、目標速度ベクトルTを算出し(ステップS190)、ステップS200に進む。目標速度ベクトルTは、目標面60に垂直な成分をty、水平な成分txとし、それぞれ「ty=by+cy,tx=bx+cx」とすることで表すことができる。これに、ステップS170で算出したcy=ay-byを代入すると目標速度ベクトルTは「ty=ay,tx=bx+cx」となる。つまり、ステップS190の処理に至った場合の目標速度ベクトルの垂直成分tyは制限値ayに制限され、マシンコントロールによる強制ブーム上げの制御が発動される。
 ステップS140での判定結果がNOの場合、すなわち、制限値ayが0未満の場合には、ブーム制御部81aは、オペレータ操作による爪先の速度ベクトルBの垂直成分byが0以上か否かを判定する(ステップS141)。ステップS141での判定結果がYESの場合には、ステップS143に進み、判定結果がNOの場合には、ステップS142に進む。
 ステップS141での判定結果がNOの場合、すなわち、垂直成分byが0未満の場合には、ブーム制御部81aは、制限値ayの絶対値がと垂直成分byの絶対値以上か否かを判定し(ステップS142)、判定結果がYESの場合には、ステップS143に進み、判定結果がNOの場合にはステップS170に進む。
 ステップS141での判定結果がYESの場合、すなわち、垂直成分byが0以上と判定された場合(垂直成分byが上向きの場合)、又は、ステップS142での判定結果がYESの場合、すなわち、制限値ayの絶対値が垂直成分byの絶対値未満の場合には、ブーム制御部81aは、マシンコントロールでブーム8を動作させる必要が無いとし、速度ベクトルCをゼロとする(ステップS143)。
 続いて、ブーム制御部81aは、目標速度ベクトルTをステップS190と同様の式(ty=by+cy,tx=bx+cx)に基づいて「ty=by,tx=bx」とする(ステップS144)。これは、オペレータ操作による速度ベクトルBと一致する。
 ステップS190、又は、ステップS144の処理が終了すると、続いて、ブーム制御部81aは、ステップS520又はステップS540で決定した目標速度ベクトルT(ty,tx)に基づいて各油圧シリンダ5,6,7の目標速度を演算する(ステップS200)。なお、上記説明から明らかであるが、目標速度ベクトルTが速度ベクトルBに一致しないときには、マシンコントロールによるブーム8の動作で発生する速度ベクトルCを速度ベクトルBに加えることで目標速度ベクトルTを実現する。
 続いて、ブーム制御部81aは、ステップS200で算出された各シリンダ5,6,7の目標速度を基に各油圧シリンダ5,6,7の流量制御弁15a~15eへの目標パイロット圧を演算する(ステップS210)。
 続いて、ブーム制御部81aは、各油圧シリンダ5,6,7の流量制御弁15a~15eへの目標パイロット圧を電磁比例弁制御部44に出力し(ステップS220)、処理を終了する。
 このように、図7に示したフローチャートの処理を行うことにより、電磁比例弁制御部44は、各油圧シリンダ5,6,7の流量制御弁15a~15eに目標パイロット圧が作用するように電磁比例弁54,55,56を制御し、作業装置1Aによる掘削が行われる。例えば、オペレータが操作装置45bを操作してアームクラウド動作によって水平掘削を行う場合には、バケット10の先端が目標面60に侵入しないように電磁比例弁55cが制御され、ブーム8の上げ動作が自動的に行われる。
 <アームシリンダ速度補正処理>
  続いて、図7のステップS100で示したアームシリンダ速度補正処理について説明する。
 図13は、アームシリンダ速度補正処理の処理内容を示すフローチャートである。
 図13では、まず、ブームの操作量Qbmがアームの操作量Qamよりも大きいかどうかを判定する(ステップS300)。ステップS300での判定結果がYESの場合、すなわち、ブームの操作量Qbmがアームの操作量Qamよりも大きい場合には、あらかじめ定めた関数k=Kpc(Qbm,Qam)に従って補正ゲインkを算出する(ステップS310)。なお、関数Kpcは、ブーム操作量Qbmに基づくポジディブコントロールによるポンプ流量およびアーム操作量Qamに基づくポジディブコントロールによるポンプ流量と相関のある関数である。
 また、ステップS300での判定結果がNOの場合、すなわち、ブームの操作量Qbmがアームの操作量Qam以下である場合には、補正ゲインk=0(ゼロ)とする。
 ステップS310又はステップS301において補正ゲインkが算出されると、続いて、アーム速度Vam=Vamt+kとする補正を行い(ステップS320)、処理を終了する。このアームシリンダ速度補正処理により算出されるVamが図7のステップS100で算出されるアームシリンダ速度となる。
 以上のように構成した本実施の形態における作用効果を説明する。
 図14は、油圧ショベルにおける作業状態の変化の一例を示す図である。
 図14においては、状態S1(ブームの操作量>アームの操作量)から状態S2(ブームの操作量≦アームの操作量)に遷移する場合のオペレータの操作とコントローラ40(ブーム制御部81a)によるMCとについて説明する。
 図14の状態S1から状態S2に遷移する間、オペレータはアーム9のダンプ操作を行う。アーム9のダンプ操作によりバケット10が目標面60に侵入すると判断されるときには、ブーム制御部81aから電磁比例弁54aに指令を出すことでブーム8を上昇させる制御(MC)を実行する。
 また、状態S1のようにブームの操作量がアームの操作量より大きい状態でMCが実行されるときは、アームシリンダ速度補正処理(図13参照)により、想定よりも大きなアームシリンダ速度の推定値が算出することによって実際のポンプ流量がアーム単独操作時よりも増加して想定よりもアームシリンダ速度が大きくなることを抑制することができ、ブーム上げ操作量をより的確に算出することができる。
 また、状態S2のようにブームの操作量がアームの操作量より小さい状態でMCが実行されるときは、実際のポンプ流量はアーム単独操作時と一致しており、アームシリンダ速度に対するポンプ流量の影響はほぼなく、アームシリンダ速度補正処理(図13参照)によってもブーム上げ操作量をより的確に算出することができる。
 すなわち、以上のように構成した本実施の形態においては、ブーム操作量に基づくポジコンによるポンプ流量とアーム操作量に基づくポンプ流量を考慮して,想定していたアーム速度に対して適切な補正量を加算するので、実際のアームシリンダ速度との乖離が小さくなり、適切なブーム上げ操作量を算出でき、MCを安定させることができる。
 なお、本実施の形態においては、ブーム8、アーム9、バケット10の角度を検出する角度センサを用いたが、角度センサではなくシリンダストロークセンサによりショベルの姿勢情報を算出するように構成しても良い。また、油圧パイロット式の油圧ショベルを例示して説明したが、電気レバー式の油圧ショベルにも適用可能であり、例えば、電気レバーから生成される指令電流を制御するような構成としても良い。また、作業装置1Aの速度ベクトルは、オペレータ操作によるパイロット圧ではなく、ブーム8、アーム9、バケット10の角度を微分することで算出される角速度から求めても良い。
 次に上記の各実施の形態の特徴について説明する。
 (1)上記の実施の形態では、基端を上部旋回体12に回動可能に連結されたブーム8、前記ブームの先端に一端を回動可能に連結されたアーム9、及び、前記アームの他端に回動可能に連結された作業具(例えば、バケット10)を含む複数の被駆動部材で構成された多関節型の作業装置1Aと、操作信号に基づいて前記ブームを駆動するブームシリンダ5、前記アームを駆動するアームシリンダ6、及び、前記作業具を駆動する作業具シリンダ(例えば、バケットシリンダ7)を含む複数の油圧アクチュエータと、複数の前記油圧アクチュエータを駆動するための圧油を吐出する複数の油圧ポンプ2a,2bと、複数の前記油圧アクチュエータのうちオペレータの所望する油圧アクチュエータを操作するための前記操作信号を出力する操作装置45a,45b,46a,46bと、複数の前記油圧アクチュエータに対応して各々設けられ、前記操作装置からの操作信号に基づいて前記油圧ポンプから複数の前記油圧アクチュエータに供給される圧油の方向および流量を制御する複数の流量制御弁15a~15eと、前記作業装置による作業対象について設定された目標面およびその上方の領域内で前記作業装置が動くように、複数の前記油圧アクチュエータのうち少なくとも1つに対応する前記流量制御弁を制御する制御信号を出力するか、又は、前記操作装置から複数の前記油圧アクチュエータのうち少なくとも1つに対応する前記流量制御弁を制御するために出力された前記制御信号を補正する領域制限制御を実行するコントローラ40とを備えた作業機械において、前記コントローラは、前記ブームシリンダに対応する前記操作装置の操作量が前記アームシリンダに対応する操作装置の操作量以下の場合には、前記操作装置の操作量と前記アームシリンダの推定速度との関係を予め定めた第1の条件に基づいて、前記領域制限制御に用いる前記アームシリンダの推定速度を算出し、前記ブームシリンダに対応する前記操作装置の操作量が前記アームシリンダに対応する操作装置の操作量よりも大きい場合には、前記領域制限制御に用いる前記アームシリンダの推定速度を前記第1の条件に基づいて算出される前記アームシリンダの推定速度よりも大きい速度として算出するものとした。
 これにより、作業装置の挙動を安定させることができる。
 (2)また、上記の実施の形態では、(1)の作業機械(例えば、油圧ショベル1)において、前記ブームシリンダ5に対応する前記操作装置の操作量が前記アームシリンダ6に対応する操作装置45aの操作量よりも大きい場合に算出される前記アームシリンダの推定速度を、前記ブームシリンダに対応する前記操作装置45bの操作に基づいてポジティブコントロールされる前記油圧ポンプの吐出流量と、前記アームシリンダに対応する前記操作装置の操作に基づいてポジティブコントロールされる前記油圧ポンプの吐出流量とに基づいて算出するものとした。
 <付記>
 なお、本発明は上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例や組み合わせが含まれる。また、本発明は、上記の実施の形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。また、上記の各構成、機能等は、それらの一部又は全部を、例えば集積回路で設計する等により実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。
 1…油圧ショベル、1a,1b…操作レバー,1A…作業装置、1B…本体、2…油圧ポンプ、2aa,2ba…レギュレータ、3a,3b…走行油圧モータ、4…旋回油圧モータ、5…ブームシリンダ、6…アームシリンダ、7…バケットシリンダ、8…ブーム、9…アーム、10…バケット、11…下部走行体、12…上部旋回体、13…バケットリンク、15a~15h…流量制御弁、18…エンジン、23a,23b…走行操作レバー、30…ブーム角度センサ、31…アーム角度センサ、32…バケット角度センサ、33…車体傾斜角センサ、39…ロック弁、40…コントローラ、43…MC制御部、43a…操作量演算部、43b…姿勢演算部、43c…目標面演算部、44…電磁比例弁制御部、45~47…操作装置、48…パイロットポンプ、50…姿勢検出装置、51…目標面設定装置、53…表示装置、54~56…電磁比例弁、60…目標面、70~72…圧力センサ、81…アクチュエータ制御部、81a…ブーム制御部、81b…バケット制御部、81c…バケット制御判定部、82a,83a,83b…シャトル弁、91…入力インタフェース、92…中央処理装置(CPU)、93…リードオンリーメモリ(ROM)、94…ランダムアクセスメモリ(RAM)、95…出力インタフェース、96…目標角度設定装置、97…制御選択スイッチ、144~149…パイロットライン、150a~157a,150b~157b…油圧駆動部、160…フロント制御用油圧ユニット、162…シャトルブロック、200…作動油タンク、374…表示制御部

Claims (2)

  1.  基端を上部旋回体に回動可能に連結されたブーム、前記ブームの先端に一端を回動可能に連結されたアーム、及び、前記アームの他端に回動可能に連結された作業具を含む複数の被駆動部材で構成された多関節型の作業装置と、
     操作信号に基づいて前記ブームを駆動するブームシリンダ、前記アームを駆動するアームシリンダ、及び、前記作業具を駆動する作業具シリンダを含む複数の油圧アクチュエータと、
     複数の前記油圧アクチュエータを駆動するための圧油を吐出する複数の油圧ポンプと、
     複数の前記油圧アクチュエータのうちオペレータの所望する油圧アクチュエータを操作するための前記操作信号を出力する操作装置と、
     複数の前記油圧アクチュエータに対応して各々設けられ、前記操作装置からの操作信号に基づいて前記油圧ポンプから複数の前記油圧アクチュエータに供給される圧油の方向および流量を制御する複数の流量制御弁と、
     前記作業装置による作業対象について設定された目標面およびその上方の領域内で前記作業装置が動くように、複数の前記油圧アクチュエータのうち少なくとも1つに対応する前記流量制御弁を制御する制御信号を出力するか、又は、前記操作装置から複数の前記油圧アクチュエータのうち少なくとも1つに対応する前記流量制御弁を制御するために出力された前記制御信号を補正する領域制限制御を実行するコントローラとを備えた作業機械において、
     前記コントローラは、
     前記ブームシリンダに対応する前記操作装置の操作量が前記アームシリンダに対応する操作装置の操作量以下の場合には、前記アームシリンダに対応する操作装置の操作量と前記アームシリンダの推定速度との関係を予め定めた第1の条件に基づいて、前記領域制限制御に用いる前記アームシリンダの推定速度を算出し、
     前記ブームシリンダに対応する前記操作装置の操作量が前記アームシリンダに対応する操作装置の操作量よりも大きい場合には、前記領域制限制御に用いる前記アームシリンダの推定速度を前記第1の条件に基づいて算出される前記アームシリンダの推定速度よりも大きい速度として算出することを特徴とする作業機械。
  2.  請求項1記載の作業機械において、
     前記ブームシリンダに対応する前記操作装置の操作量が前記アームシリンダに対応する操作装置の操作量よりも大きい場合に算出される前記アームシリンダの推定速度を、前記ブームシリンダに対応する前記操作装置の操作に基づいてポジティブコントロールされる前記油圧ポンプの吐出流量と、前記アームシリンダに対応する前記操作装置の操作に基づいてポジティブコントロールされる前記油圧ポンプの吐出流量とに基づいて算出することを特徴とする作業機械。
PCT/JP2020/037016 2019-09-30 2020-09-29 作業機械 WO2021065952A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20871610.0A EP4039892A4 (en) 2019-09-30 2020-09-29 WORKING MACHINE
KR1020217025973A KR102491288B1 (ko) 2019-09-30 2020-09-29 작업 기계
CN202080014994.6A CN113474514B (zh) 2019-09-30 2020-09-29 作业机械
US17/436,486 US20220186458A1 (en) 2019-09-30 2020-09-29 Work machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019180039A JP7149917B2 (ja) 2019-09-30 2019-09-30 作業機械
JP2019-180039 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021065952A1 true WO2021065952A1 (ja) 2021-04-08

Family

ID=75270052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037016 WO2021065952A1 (ja) 2019-09-30 2020-09-29 作業機械

Country Status (6)

Country Link
US (1) US20220186458A1 (ja)
EP (1) EP4039892A4 (ja)
JP (1) JP7149917B2 (ja)
KR (1) KR102491288B1 (ja)
CN (1) CN113474514B (ja)
WO (1) WO2021065952A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025985A1 (ja) 2014-09-10 2015-02-26 株式会社小松製作所 作業車両および作業車両の制御方法
WO2015186180A1 (ja) * 2014-06-02 2015-12-10 株式会社小松製作所 建設機械の制御システム、建設機械、及び建設機械の制御方法
WO2019123511A1 (ja) * 2017-12-18 2019-06-27 住友重機械工業株式会社 ショベル
WO2019180798A1 (ja) * 2018-03-19 2019-09-26 日立建機株式会社 建設機械

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950004017B1 (ko) * 1990-11-01 1995-04-22 삼성중공업주식회사 굴삭기의 최적작동유량제어장치 및 그 제어방법
JP3306301B2 (ja) * 1996-06-26 2002-07-24 日立建機株式会社 建設機械のフロント制御装置
JP4493175B2 (ja) * 2000-07-28 2010-06-30 株式会社小松製作所 油圧式掘削車輌
JP5401992B2 (ja) * 2009-01-06 2014-01-29 コベルコ建機株式会社 ハイブリッド作業機械の動力源装置
WO2019053814A1 (ja) * 2017-09-13 2019-03-21 日立建機株式会社 作業機械
JP6974217B2 (ja) * 2018-02-28 2021-12-01 株式会社小松製作所 施工管理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186180A1 (ja) * 2014-06-02 2015-12-10 株式会社小松製作所 建設機械の制御システム、建設機械、及び建設機械の制御方法
WO2015025985A1 (ja) 2014-09-10 2015-02-26 株式会社小松製作所 作業車両および作業車両の制御方法
WO2019123511A1 (ja) * 2017-12-18 2019-06-27 住友重機械工業株式会社 ショベル
WO2019180798A1 (ja) * 2018-03-19 2019-09-26 日立建機株式会社 建設機械

Also Published As

Publication number Publication date
JP2021055423A (ja) 2021-04-08
US20220186458A1 (en) 2022-06-16
EP4039892A1 (en) 2022-08-10
EP4039892A4 (en) 2023-10-11
CN113474514B (zh) 2022-11-15
CN113474514A (zh) 2021-10-01
KR102491288B1 (ko) 2023-01-26
KR20210115009A (ko) 2021-09-24
JP7149917B2 (ja) 2022-10-07

Similar Documents

Publication Publication Date Title
US11053661B2 (en) Work machine
JP6889579B2 (ja) 作業機械
KR102130562B1 (ko) 작업 기계
JP6860329B2 (ja) 作業機械
KR102029828B1 (ko) 작업 기계
CN111032970B (zh) 作业机械
KR102154581B1 (ko) 작업 기계
JPWO2019088065A1 (ja) 作業機械
US20220145580A1 (en) Work machine
KR102520407B1 (ko) 작업 기계
WO2022085556A1 (ja) 作業機械
WO2021065952A1 (ja) 作業機械
WO2020065739A1 (ja) 作業機械
JP2023133701A (ja) 作業機械
JP2021161611A (ja) 作業機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871610

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217025973

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020871610

Country of ref document: EP

Effective date: 20220502