KR102520407B1 - 작업 기계 - Google Patents

작업 기계 Download PDF

Info

Publication number
KR102520407B1
KR102520407B1 KR1020217004657A KR20217004657A KR102520407B1 KR 102520407 B1 KR102520407 B1 KR 102520407B1 KR 1020217004657 A KR1020217004657 A KR 1020217004657A KR 20217004657 A KR20217004657 A KR 20217004657A KR 102520407 B1 KR102520407 B1 KR 102520407B1
Authority
KR
South Korea
Prior art keywords
bucket
control
target surface
boom
hydraulic
Prior art date
Application number
KR1020217004657A
Other languages
English (en)
Other versions
KR20210032470A (ko
Inventor
마사미치 이토
데루키 이가라시
아키히로 나라자키
Original Assignee
히다찌 겐끼 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 히다찌 겐끼 가부시키가이샤 filed Critical 히다찌 겐끼 가부시키가이샤
Publication of KR20210032470A publication Critical patent/KR20210032470A/ko
Application granted granted Critical
Publication of KR102520407B1 publication Critical patent/KR102520407B1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/439Automatic repositioning of the implement, e.g. automatic dumping, auto-return
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/437Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like providing automatic sequences of movements, e.g. linear excavation, keeping dipper angle constant
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2041Automatic repositioning of implements, i.e. memorising determined positions of the implement
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2271Actuators and supports therefor and protection therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump

Abstract

버킷(10)이 토사에 접지해 있는 경우에는, 버킷(10)과 목표면(60)의 거리 D가 미리 정한 제1 임계값 D1 이하인 경우에 목표면에 대한 버킷(10)의 상대 각도가 유지되도록 조작 신호를 출력 또는 보정하고, 버킷(10)이 토사에 접지해 있지 않은 경우에는, 버킷(10)과 목표면(60)의 거리가 제1 임계값 D1보다도 작아지도록 미리 정한 제2 임계값 D2 이하인 경우에 목표면(60)에 대한 버킷(10)의 상대 각도가 유지되도록 조작 신호를 출력 또는 보정한다. 이에 의해, 작업구의 각도를 유지하는 제어를 적절하게 개시할 수 있다.

Description

작업 기계
본 발명은 작업 기계에 관한 것이다.
유압 액추에이터로 구동되는 작업 장치(예를 들어, 프론트 작업 장치)를 구비하는, 작업 기계(예를 들어 유압 셔블)의 작업 효율을 향상시키는 기술로서 머신 컨트롤(MC: Machine Control)이 있다. 머신 컨트롤(이후, 간단히 MC라고 칭함)이란, 조작 장치가 오퍼레이터에 의해 조작된 경우에, 미리 정한 조건에 따라서 작업 장치를 동작시키는 반자동 제어를 실행함으로써 오퍼레이터의 조작 지원을 행하는 기술이다.
이러한 MC에 관한 기술로서, 예를 들어 특허 문헌 1에는, 적어도 버킷을 포함하는 작업기를 구비하는 건설 기계의 제어 장치이며, 상기 작업기의 조작량을 나타내는 조작량 데이터를 취득하는 조작량 데이터 취득부와, 상기 조작량 데이터에 기초하여 상기 버킷의 비조작 상태를 판정하는 조작 판정부와, 상기 비조작 상태의 판정에 기초하여 버킷 제어 조건이 충족되어 있는지 여부를 판정하는 버킷 제어 판정부와, 상기 버킷 제어 조건이 충족되어 있다고 판정된 경우 상기 작업기의 상태가 유지되도록 상기 버킷을 제어하는 제어 신호를 출력하는 작업기 제어부를 구비하는 건설 기계의 제어 장치가 개시되어 있다.
국제 공개 제2017/086488호 공보
상기 종래 기술에 있어서는, 프론트 작업 장치의 버킷(작업구)을 기준면을 따라 이동시키는 MC를 행하는 경우에, 버킷과 목표 굴삭 지형(이하, 목표면이라고 칭함)과의 거리가 미리 설정된 임계값 이하이며 또한 암이 구동 상태일 때, 목표면에 대한 버킷의 각도를 일정 각도로 유지하도록 제어함으로써, 예를 들어 굴삭 대상의 마무리 작업을 지원하고 있다.
그러나, 상기 종래 기술에 있어서는, 버킷의 각도를 일정 각도로 유지하는 제어를 개시하는 조건으로서 버킷과 목표면의 거리에 대해 설정되는 임계값은 미리 정해져 있기 때문에, 이 임계값의 설정 방법에 따라서는, 각도의 유지가 요구되는 경우에 제어가 개시되지 않거나, 혹은 각도의 유지가 방해되는 경우에 제어가 개시되어 버리거나 하는 것을 생각할 수 있다. 예를 들어, 굴삭면에 흙을 담아서 버킷에 의해 눌러 굳히는 마무리 작업에 있어서는, 임계값이 크면 버킷의 각도가 유지되어 버리는 범위가 높아지기 때문에, 버킷을 굴삭면으로부터 크게 이격한 상태에서 흙을 내리고, 또한, 버킷의 자세를 눌러 굳히는 자세로 하고 나서 내릴 필요가 있고, 오퍼레이터에게 있어서 위화감이 있는 조작을 행해야만 하고, 작업 효율도 저하되어 버린다. 또한, 임계값이 작으면 버킷의 각도를 유지하는 조건으로부터 벗어나기 쉬워지기 때문에, 각도를 유지하는 제어가 개시되지 않거나, 혹은 의도치 않게 각도를 유지하는 제어의 유무가 전환되거나 하는 것을 생각할 수 있다.
본 발명은 상기에 감안하여 이루어진 것이며, 작업구의 각도를 유지하는 제어를 적절하게 개시할 수 있는 작업 기계를 제공하는 것을 목적으로 한다.
본원은 상기 과제를 해결하는 수단을 복수 포함하고 있지만, 그 일례를 들자면, 선단에 마련된 작업구를 포함하는 복수의 피구동 부재를 서로 회동 가능하게 연결하여 구성된 다관절형의 프론트 작업 장치와, 조작 신호에 기초하여 상기 복수의 피구동 부재를 각각 구동하는 복수의 유압 액추에이터와, 상기 복수의 유압 액추에이터 중 오퍼레이터가 원하는 유압 액추에이터에 상기 조작 신호를 출력하는 조작 장치와, 상기 프론트 작업 장치의 복수의 피구동 부재의 각각의 자세를 검출하는 자세 검출 장치와, 상기 프론트 작업 장치에 의한 작업 대상에 대해 설정된 목표면 상 및 그의 상방의 영역 내에서 상기 프론트 작업 장치가 움직이도록, 상기 복수의 유압 액추에이터 중 적어도 하나의 유압 액추에이터에 상기 조작 신호를 출력하거나, 또는 상기 조작 신호를 보정하는 영역 제한 제어를 실행하는 컨트롤러를 구비한 작업 기계에 있어서, 상기 작업구의 토사에의 접지 상태를 검출하는 접지 상태 검출 장치를 더 구비하고, 상기 컨트롤러는, 상기 접지 상태 검출 장치의 검출 결과로부터 상기 작업구가 토사에 접지해 있다고 판정한 경우에는, 상기 작업구와 상기 목표면과의 거리가 미리 정한 제1 임계값 이하인 경우에 상기 목표면에 대한 상기 작업구의 상대 각도가 유지되도록 상기 조작 신호를 출력 또는 보정하고, 상기 접지 상태 검출 장치의 검출 결과로부터 상기 작업구가 토사에 접지해 있지 않다고 판정한 경우에는, 상기 작업구와 상기 목표면과의 거리가 상기 제1 임계값보다도 작아지도록 미리 정한 제2 임계값 이하인 경우에 상기 목표면에 대한 상기 작업구의 상대 각도가 유지되도록 상기 조작 신호를 출력 또는 보정하는 것으로 한다.
본 발명에 의하면, 작업구의 각도를 유지하는 제어를 적절하게 개시할 수 있다.
도 1은 작업 기계의 일례인 유압 셔블의 외관을 모식적으로 나타내는 도면이다.
도 2는 유압 셔블의 유압 회로 시스템을 컨트롤러(제어 장치)를 포함하는 주변 구성과 함께 발출하여 나타내는 도면이다.
도 3은 도 2 중의 프론트 제어용 유압 유닛의 상세를 나타내는 도면이다.
도 4는 컨트롤러의 하드웨어 구성도이다.
도 5는 컨트롤러의 처리 기능을 나타내는 기능 블록도이다.
도 6은 도 5에 있어서의 MC 제어부의 처리 기능의 상세를 나타내는 기능 블록도이다.
도 7은 컨트롤러에 의한 MC의 붐에 관한 처리 내용을 도시하는 흐름도이다.
도 8은 유압 셔블에 대해 설정하는 셔블 좌표계에 대해 설명하는 도면이다.
도 9는 조작량에 대한 실린더 속도의 설정 테이블의 일례를 나타내는 도면이다.
도 10은 버킷 클로 끝 속도의 수직 성분의 제한값과 거리와의 관계를 나타내는 도면이다.
도 11은 버킷에 있어서의 속도 성분의 일례를 나타내는 도면이다.
도 12는 컨트롤러에 의한 MC의 버킷에 관한 처리 내용을 도시하는 흐름도이다.
도 13은 버킷 압박 작업의 상태를 나타내는 도면이다.
이하, 본 발명의 실시 형태에 대해 도면을 사용하여 설명한다. 또한, 이하의 설명에 있어서는, 작업 기계의 일례로서, 프론트 작업 장치의 선단에 작업구(어태치먼트)로서 버킷을 구비하는 유압 셔블을 예시하여 설명하지만, 버킷 이외의 어태치먼트를 구비하는 작업 기계에 본 발명을 적용하는 것이 가능하다. 또한, 복수의 피구동 부재(어태치먼트, 암, 붐 등)를 연결하여 구성되는 다관절형의 프론트 작업 장치를 갖는 것이면, 유압 셔블 이외의 작업 기계에 대한 적용도 가능하다.
또한, 이하의 설명에 있어서는, 어떠한 형상을 나타내는 용어(예를 들어, 목표면, 설계면 등)과 함께 사용되는 「상」, 「상방」 또는 「하방」이라는 단어의 의미에 관한 것으로, 「상」은 당해 어떠한 형상의 「표면」을 의미하고, 「상방」은 당해 어떠한 형상의 「표면보다 높은 위치」를 의미하고, 「하방」은 당해 어떠한 형상의 「표면보다 낮은 위치」를 의미하는 것으로 한다.
또한, 이하의 설명에 있어서는, 동일한 구성 요소가 복수 존재하는 경우, 부호(숫자)의 말미에 알파벳을 붙이는 경우가 있지만, 당해 알파벳을 생략하여 당해 복수의 구성 요소를 통합하여 표기하는 경우가 있다. 즉, 예를 들어 두 펌프(2a, 2b)가 존재할 때, 이것들을 통합하여 펌프(2)라고 표기하는 경우가 있다.
<기본 구성>
도 1은, 본 실시 형태에 관한 작업 기계의 일례인 유압 셔블의 외관을 모식적으로 나타내는 도면이다. 또한, 도 2는, 유압 셔블의 유압 회로 시스템을 컨트롤러(제어 장치)를 포함하는 주변 구성과 함께 발출하여 나타내는 도면이며, 도 3은, 도 2 중의 프론트 제어용 유압 유닛의 상세를 나타내는 도면이다.
도 1에 있어서, 유압 셔블(1)은, 다관절형의 프론트 작업 장치(1A)와, 본체(1B)로 구성되어 있다. 유압 셔블(1)의 본체(1B)는, 좌우의 주행 유압 모터(3a, 3b)에 의해 주행하는 하부 주행체(11)와, 하부 주행체(11) 상에 장착되며, 선회 유압 모터(4)에 의해 선회하는 상부 선회체(12)로 이루어진다.
프론트 작업 장치(1A)는, 수직 방향으로 각각 회동하는 복수의 피구동 부재(붐(8), 암(9) 및 버킷(10))를 연결하여 구성되어 있다. 붐(8)의 기단은 상부 선회체(12)의 전방부에 있어서 붐 핀을 개재시켜 회동 가능하게 지지되어 있다. 붐(8)의 선단에는 암 핀을 개재시켜 암(9)이 회동 가능하게 연결되어 있으며, 암(9)의 선단에는 버킷 핀을 개재시켜 버킷(10)이 회동 가능하게 연결되어 있다. 붐(8)은 붐 실린더(5)에 의해 구동되고, 암(9)은 암 실린더(6)에 의해 구동되고, 버킷(10)은 버킷 실린더(7)에 의해 구동된다. 또한, 이후의 설명에서, 붐 실린더(5), 암 실린더(6) 및 버킷 실린더(7)를 통합하여 유압 실린더(5, 6, 7)나 유압 액추에이터(5, 6, 7)라고 칭하는 경우가 있다.
도 8은, 유압 셔블에 대해 설정하는 셔블 좌표계에 대해 설명하는 도면이다.
도 8에 도시하는 바와 같이, 본 실시 형태에 있어서는, 유압 셔블(1)에 대해, 셔블 좌표계(로컬 좌표계)를 정의한다. 셔블 좌표계는, 상부 선회체(12)에 대해 상대적으로 고정으로 정의되는 XY 좌표계이며, 상부 선회체(12)에 회동 지지되어 있는 붐(8)의 기단을 원점으로 하고, 상부 선회체(12)의 선회축을 따르는 방향으로 원점을 지나 상방을 양으로 하는 Z축을, 프론트 작업 장치(1A)가 가동하는 평면을 따르는 방향이며 Z축에 수직으로 붐의 기단을 지나 전방을 양으로 하는 X축을 갖는 차체 좌표계를 설정한다.
또한, 붐(8)의 길이(양단의 연결부 사이의 직선 거리)를 L1, 암(9)의 길이(양단의 연결부 사이의 직선 거리)를 L2, 버킷(10)의 길이(암의 연결부와 클로 끝 사이의 직선 거리)를 L3이라 하고, 붐(8)과 X축이 이루는 각(길이 방향의 직선과 X축과의 상대 각도)을 회동 각도 α, 암(9)과 붐(8)이 이루는 각(길이 방향의 직선의 상대 각도)을 회동 각도 β, 버킷(10)과 암(9)이 이루는 각(길이 방향의 직선의 상대 각도)을 회동 각도 γ라고 정의한다. 이에 의해, 셔블 좌표계에 있어서의 버킷 클로 끝 위치의 좌표 및 프론트 작업 장치(1A)의 자세는 L1, L2, L3, α, β, γ로 표현할 수 있다.
또한, 유압 셔블(1)의 본체(1B)의 수평면에 대한 전후 방향의 기울기를 각도 θ, 프론트 작업 장치(1A)의 버킷(10)의 클로 끝과 목표면(60)의 거리를 D로 한다. 또한, 목표면(60)이란, 굴삭 작업의 목표로서 시공 현장의 설계 정보 등에 기초하여 설정되는 목표 굴삭면이다.
프론트 작업 장치(1A)에는, 붐(8), 암(9), 버킷(10)의 회동 각도 α, β, γ를 측정하는 자세 검출 장치로서, 붐 핀에 붐 각도 센서(30), 암 핀에 암 각도 센서(31), 버킷 링크(13)에 버킷 각도 센서(32)가 각각 장착되고, 또한, 상부 선회체(12)에는 기준면(예를 들어 수평면)에 대한 상부 선회체(12)(유압 셔블(1)의 본체(1B))의 경사각 θ를 검출하는 차체 경사각 센서(33)가 장착되어 있다. 또한, 각도 센서(30, 31, 32)는, 복수의 피구동 부재(8, 9, 10)의 연결부에 있어서의 상대 각도를 검출하는 것을 예시하여 설명하지만, 복수의 피구동 부재(8, 9, 10)의 기준면(예를 들어 수평면)에 대한 상대 각도를 각각 검출하는 관성 계측 장치(IMU: Inertial Measurement Unit)에 대체 가능하다.
상부 선회체(12)에 마련된 운전실 내에는, 주행 우측 레버(23a)(도 1)를 갖고 주행 우측 유압 모터(3a)(하부 주행체(11))를 조작하기 위한 조작 장치(47a)(도 2)와, 주행 좌측 레버(23b)(도 1)를 갖고 주행 좌측 유압 모터(3b)(하부 주행체(11))를 조작하기 위한 조작 장치(47b)(도 2)와, 조작 우측 레버(1a)(도 1)를 공유해 붐 실린더(5)(붐(8)) 및 버킷 실린더(7)(버킷(10))를 조작하기 위한 조작 장치(45a, 46a)(도 2)와, 조작 좌측 레버(1b)(도 1)를 공유해 암 실린더(6)(암(9)) 및 선회 유압 모터(4)(상부 선회체(12))를 조작하기 위한 조작 장치(45b, 46b)(도 2)가 설치되어 있다. 이하에서는, 주행 우측 레버(23a), 주행 좌측 레버(23b), 조작 우측 레버(1a) 및 조작 좌측 레버(1b)를 조작 레버(1, 23)라고 총칭하는 경우가 있다.
또한, 운전실 내에는, 목표면(60)과 프론트 작업 장치(1A)의 위치 관계가 표시 가능한 표시 장치(예를 들어 액정 디스플레이)(53)와, 머신 컨트롤(이하, MC라고 칭함)에 의한 버킷 각도 제어(작업구 각도 제어라고도 칭함)의 허가ㆍ금지(ONㆍOFF)를 택일적으로 선택하기 위한 제어 선택 장치(97)와, 목표면(60)에 관한 정보(각 목표면의 위치 정보나 경사 각도 정보를 포함함)를 입력 가능한 인터페이스인 목표면 설정 장치(51)가 배치되어 있다.
제어 선택 장치(97)는, 예를 들어 조이 스틱 형상의 조작 레버(1a)에 있어서의 전방면의 상단부에 마련되어 있고, 조작 레버(1a)를 쥐는 오퍼레이터의 엄지 손가락에 의해 누름 조작된다. 또한, 제어 선택 장치(97)는, 예를 들어 모멘터리 스위치이며, 누를 때마다 버킷 각도 제어(작업구 각도 제어)의 유효(ON)와 무효(OFF)가 전환된다. 또한, 제어 선택 장치(97)의 설치 장소는 조작 레버(1a(1b))에 한정되지는 않고, 그 밖의 장소에 마련해도 된다. 또한, 제어 선택 장치(97)는, 하드웨어로 구성할 필요는 없으며, 예를 들어 표시 장치(53)를 터치 패널화하고, 그 표시 화면 상에 표시되는 그래피컬 유저 인터페이스(GUI)로 구성해도 된다.
목표면 설정 장치(51)는, 글로벌 좌표계(절대 좌표계) 상에 규정된 목표면의 3차원 데이터를 저장한 외부 단말기(도시하지 않음)와 접속되어 있고, 이 외부 단말기로부터의 정보에 기초하여 목표면(60)의 설정을 행한다. 또한, 목표면 설정 장치(51)를 통한 목표면(60)의 입력은, 오퍼레이터가 수동으로 행해도 된다.
도 2에 도시하는 바와 같이, 상부 선회체(12)에 탑재된 원동기인 엔진(18)은, 유압 펌프(2a, 2b)와 파일럿 펌프(48)를 구동한다. 유압 펌프(2a, 2b)는 레귤레이터(2aa, 2ba)에 의해 용량이 제어되는 가변 용량형 펌프이며, 파일럿 펌프(48)는 고정 용량형 펌프이다. 유압 펌프(2) 및 파일럿 펌프(48)는 작동유 탱크(200)로부터 작동유를 흡인한다.
조작 장치(45, 46, 47)로부터 조작 신호로서 출력되는 유압 신호를 전달하는 파일럿 라인(144, 145, 146, 147, 148, 149)의 도중에는 셔틀 블록(162)이 마련되어 있다. 조작 장치(45, 46, 47)로부터 출력된 유압 신호가 셔틀 블록(162)을 통하여 레귤레이터(2aa, 2ba)에도 입력된다. 셔틀 블록(162)은, 파일럿 라인(144, 145, 146, 147, 148, 149)의 유압 신호를 선택적으로 추출하기 위한 복수의 셔틀 밸브 등으로 구성되는 것이지만, 상세 구성의 설명은 생략한다. 조작 장치(45, 46, 47)로부터의 유압 신호가 셔틀 블록(162)을 통하여 레귤레이터(2aa, 2ba)에 입력되어 있고, 유압 펌프(2a, 2b)의 토출 유량이 당해 유압 신호에 따라 제어된다.
파일럿 펌프(48)의 토출 배관인 펌프 라인(48a)은, 로크 밸브(39)를 지난 후, 복수로 분기하여 조작 장치(45, 46, 47) 및 프론트 제어용 유압 유닛(160) 내의 각 밸브에 접속되어 있다. 로크 밸브(39)는, 예를 들어 전자 전환 밸브이며, 그 전자 구동부는 운전실(도 1)에 배치된 도시하지 않은 게이트 로크 레버의 위치 검출기와 전기적으로 접속되어 있다. 게이트 로크 레버의 포지션은 위치 검출기에서 검출되어, 그 위치 검출기로부터 로크 밸브(39)에 대해 게이트 로크 레버의 포지션에 따른 신호가 입력된다. 게이트 로크 레버의 포지션이 로크 위치에 있으면 로크 밸브(39)를 잠그고 펌프 라인(48a)이 차단되어, 로크 해제 위치에 있으면 로크 밸브(39)가 열리고 펌프 라인(48a)이 개통된다. 즉, 게이트 로크 레버가 로크 위치로 조작되어 펌프 라인(48a)이 차단된 상태에서는, 조작 장치(45, 46, 47)에 의한 조작이 무효화되어, 선회 및 굴삭 등의 동작이 금지된다.
조작 장치(45, 46, 47)는, 유압 파일럿 방식이며, 파일럿 펌프(48)로부터 토출되는 압유를 바탕으로, 오퍼레이터에 의해 조작되는 조작 레버(1, 23)의 조작량(예를 들어, 레버 스트로크)과 조작 방향에 따른 파일럿압(조작압이라고 칭하는 경우가 있음)을 유압 신호로서 생성한다. 이렇게 생성된 파일럿압(유압 신호)은, 대응하는 유량 제어 밸브(15a 내지 15f)(도 2, 도 3 참조)의 유압 구동부(150a 내지 155b)에 파일럿 라인(144a 내지 149b)(도 3 참조)을 통하여 공급되며, 이들 유량 제어 밸브(15a 내지 15f)를 구동하는 조작 신호로서 이용된다.
유압 펌프(2)로부터 토출된 압유는, 유량 제어 밸브(15a, 15b, 15c, 15d, 15e, 15f)(도 2 참조)를 통하여 주행 우측 유압 모터(3a), 주행 좌측 유압 모터(3b), 선회 유압 모터(4), 붐 실린더(5), 암 실린더(6) 및 버킷 실린더(7)에 공급된다. 유압 펌프(2)로부터 유량 제어 밸브(15a, 15b, 15c)를 통하여 공급되는 압유에 의해 붐 실린더(5), 암 실린더(6) 및 버킷 실린더(7)가 신축함으로써, 붐(8), 암(9) 및 버킷(10)이 각각 회동되어 버킷(10)의 위치 및 자세가 변화한다. 또한, 유압 펌프(2)로부터 유량 제어 밸브(15d)를 통하여 공급되는 압유에 의해 선회 유압 모터(4)가 회전함으로써, 하부 주행체(11)에 대해 상부 선회체(12)가 선회한다. 또한, 유압 펌프(2)로부터 유량 제어 밸브(15e, 15f)를 통하여 공급되는 압유에 의해 주행 우측 유압 모터(3a) 및 주행 좌측 유압 모터(3b)가 회전함으로써, 하부 주행체(11)가 주행한다. 붐 실린더(5)에는, 버킷(10)이 토사에 접지되어 있는지 여부를 검출하기 위한 버킷 접지 상태 검출 장치로서, 붐 실린더(5)의 보텀측의 압력을 검출하는 압력 센서(57)가 마련되어 있다. 또한, 접지 상태 검출 장치는, 작업구인 버킷(10)이 토사에 접지되어 있는지 여부를 검출할 수 있으면 되고, 예를 들어 스테레오 카메라를 갖는 카메라 장치를 사용하여 취득한 영상으로부터 버킷(10)이 토사에 접지해 있는지 여부를 판정하도록 구성해도 된다.
<프론트 제어용 유압 유닛(160)>
도 3에 도시하는 바와 같이, 프론트 제어용 유압 유닛(160)은, 붐(8)용 조작 장치(45a)의 파일럿 라인(144a, 144b)에 마련되고, 조작 레버(1a)의 조작량으로서 파일럿압(제1 제어 신호)을 검출하는 오퍼레이터 조작 검출 장치로서의 압력 센서(70a, 70b)와, 1차 포트측이 펌프 라인(48a)을 통하여 파일럿 펌프(48)에 접속되어 파일럿 펌프(48)로부터의 파일럿압을 감압하여 출력하는 전자 비례 밸브(54a)와, 붐(8)용 조작 장치(45a)의 파일럿 라인(144a)과 전자 비례 밸브(54a)의 2차 포트측에 접속되고, 파일럿 라인(144a) 내의 파일럿압과 전자 비례 밸브(54a)로부터 출력되는 제어압(제2 제어 신호)의 고압측을 선택하고, 유량 제어 밸브(15a)의 유압 구동부(150a)로 유도하는 셔틀 밸브(82a)와, 붐(8)용 조작 장치(45a)의 파일럿 라인(144b)에 설치되고, 컨트롤러(40)로부터의 제어 신호를 기초로 파일럿 라인(144b) 내의 파일럿압(제1 제어 신호)을 저감하여 출력하는 전자 비례 밸브(54b)를 구비하고 있다.
또한, 프론트 제어용 유압 유닛(160)은, 암(9)용 파일럿 라인(145a, 145b)에 설치되고, 조작 레버(1b)의 조작량으로서 파일럿압(제1 제어 신호)을 검출하여 컨트롤러(40)에 출력하는 오퍼레이터 조작 검출 장치로서의 압력 센서(71a), 71b)와, 파일럿 라인(145b)에 설치되고, 컨트롤러(40)로부터의 제어 신호를 기초로 파일럿압(제1 제어 신호)을 저감하여 출력하는 전자 비례 밸브(55b)와, 파일럿 라인(145a)에 설치되고, 컨트롤러(40)로부터의 제어 신호를 기초로 파일럿 라인(145a) 내의 파일럿압(제1 제어 신호)을 저감하여 출력하는 전자 비례 밸브(55a)를 구비하고 있다.
또한, 프론트 제어용 유압 유닛(160)은, 버킷(10)용 파일럿 라인(146a, 146b)에 설치되고, 조작 레버(1a)의 조작량으로서 파일럿압(제1 제어 신호)을 검출하여 컨트롤러(40)에 출력하는 오퍼레이터 조작 검출 장치로서의 압력 센서(72a, 72b)와, 컨트롤러(40)로부터의 제어 신호를 기초로 파일럿압(제1 제어 신호)을 저감하여 출력하는 전자 비례 밸브(56a, 56b)와, 1차 포트측이 파일럿 펌프(48)에 접속되어 파일럿 펌프(48)로부터의 파일럿압을 감압하여 출력하는 전자 비례 밸브(56c, 56d)와, 파일럿 라인(146a, 146b) 내의 파일럿압과 전자 비례 밸브(56c, 56d)로부터 출력되는 제어압의 고압측을 선택하고, 유량 제어 밸브(15c)의 유압 구동부(152a, 152b)로 유도하는 셔틀 밸브(83a, 83b)를 구비하고 있다. 또한, 도 3에 있어서는, 압력 센서(70, 71, 72)와 컨트롤러(40)의 접속선은 지면 사정상 생략하였다.
전자 비례 밸브(54b, 55a, 55b, 56a, 56b)는, 비통전 시에는 개방도가 최대이며, 컨트롤러(40)로부터의 제어 신호인 전류를 증대시킬수록 개방도는 작아진다. 한편, 전자 비례 밸브(54a, 56c, 56d)는, 비통전 시에는 개방도를 제로, 통전 시에 개방도를 갖고, 컨트롤러(40)로부터의 전류(제어 신호)를 증대시킬수록 개방도는 커진다. 이와 같이 각 전자 비례 밸브(54, 55, 56)의 개방도는 컨트롤러(40)로부터의 제어 신호에 따른 것이 된다.
이후, 본 실시 형태에 있어서는, 유량 제어 밸브(15a 내지 15c)에 대한 제어 신호 중, 조작 장치(45a, 45b, 46a)의 조작에 의해 발생된 파일럿압을 「제1 제어 신호」라 칭한다. 또한, 유량 제어 밸브(15a 내지 15c)에 대한 제어 신호 중, 컨트롤러(40)로 전자 비례 밸브(54b, 55a, 55b, 56a, 56b)를 구동하여 제1 제어 신호를 보정(저감)하여 생성된 파일럿압과, 컨트롤러(40)로 전자 비례 밸브(54a, 56c, 56d)를 구동하여 제1 제어 신호와는 별도로 새롭게 생성한 파일럿압을 「제2 제어 신호」라 칭한다.
<컨트롤러(40)>
도 4는, 컨트롤러의 하드웨어 구성도이다.
도 4에서, 컨트롤러(40)는, 입력 인터페이스(91)와, 프로세서인 중앙 처리 장치(CPU)(92)와, 기억 장치인 리드 온리 메모리(ROM)(93) 및 랜덤 액세스 메모리(RAM)(94)와, 출력 인터페이스(95)를 갖고 있다. 입력 인터페이스(91)는, 자세 검출 장치(붐 각도 센서(30), 암 각도 센서(31), 버킷 각도 센서(32), 차체 경사각 센서(33))로부터의 신호, 목표면 설정 장치(51)로부터의 신호, 오퍼레이터 조작 검출 장치(압력 센서(70a, 70b, 71a, 71b, 72a, 72b), 제어 선택 장치(97)로부터의 신호 및 버킷 접지 상태 검출 장치(압력 센서(57))로부터의 신호를 입력하고, A/D 변환을 행한다. ROM(93)은, 후술하는 흐름도를 실행하기 위한 제어 프로그램과, 당해 흐름도의 실행에 필요한 각종 정보 등이 기억된 기록 매체이며, CPU(92)는, ROM(93)에 기억된 제어 프로그램을 따라 입력 인터페이스(91) 및 메모리(93, 94)로부터 도입한 신호에 대해 소정의 연산 처리를 행한다. 출력 인터페이스(95)는, CPU(92)에서의 연산 결과에 따른 출력용 신호를 작성하고, 그 신호를 표시 장치(53)나 전자 비례 밸브(54, 55, 56)에 출력함으로써, 유압 액추에이터(3a, 3b, 3c)를 구동ㆍ제어하거나, 유압 셔블(1)의 본체(1B), 버킷(10) 및 목표면(60) 등의 화상을 표시 장치(53)의 표시 화면 상에 표시시키거나 한다. 또한, 도 4의 컨트롤러(40)는, 기억 장치로서 ROM(93) 및 RAM(94)이라는 반도체 메모리를 구비하고 있는 경우를 예시하고 있지만, 기억 기능을 갖는 장치라면 대체 가능하고, 예를 들어 하드 디스크 드라이브 등의 자기 기억 장치를 구비하는 구성으로 해도 된다.
본 실시 형태에서의 컨트롤러(40)는, 머신 컨트롤(MC)로서, 조작 장치(45, 46)가 오퍼레이터에 의해 조작되었을 때, 프론트 작업 장치(1A)를 미리 정해진 조건에 기초하여 제어하는 처리를 실행한다. 본 실시 형태에서의 MC는, 조작 장치(45, 46)의 비조작 시에 프론트 작업 장치(1A)의 동작을 컴퓨터에 의해 제어하는 「자동 제어」에 대해, 조작 장치(45, 46)의 조작 시에만 프론트 작업 장치(1A)의 동작을 컴퓨터에 의해 제어하는 「반자동 제어」라고 칭하는 경우가 있다.
프론트 작업 장치(1A)의 MC로서는, 조작 장치(45b, 46a)를 통하여 굴삭 조작(구체적으로는, 암 크라우드, 버킷 크라우드 및 버킷 덤프 중 적어도 하나의 지시)이 입력된 경우, 목표면(60)과 프론트 작업 장치(1A)의 선단(본 실시 형태에서는 버킷(10)의 클로 끝으로 함)의 위치 관계에 기초하여, 프론트 작업 장치(1A)의 선단의 위치가 목표면(60) 상 및 그의 상방의 영역 내에 유지되도록 유압 액추에이터(5, 6, 7) 중 적어도 하나를 강제적으로 동작시키는 제어 신호(예를 들어, 붐 실린더(5)을 늘려서 강제적으로 붐 상승 동작을 행함)를 해당하는 유량 제어 밸브(15a, 15b, 15c)에 출력하는, 소위, 영역 제한 제어를 행한다.
이러한 MC에 의해 버킷(10)의 클로 끝이 목표면(60)의 하방에 침입하는 것이 방지되므로, 오퍼레이터의 기량 정도에 상관없이 목표면(60)에 따른 굴삭이 가능하게 된다. 또한, 본 실시 형태에서는, MC 시의 프론트 작업 장치(1A)의 제어점을, 유압 셔블의 버킷(10)의 클로 끝(프론트 작업 장치(1A)의 선단)에 설정하고 있지만, 제어점은 프론트 작업 장치(1A)의 선단 부분의 점이면 버킷 클로 끝 이외에도 변경 가능하다. 즉, 예를 들어 버킷(10)의 저면이나, 버킷 링크(13)의 최외부에 제어점을 설정해도 된다.
프론트 제어용 유압 유닛(160)에 있어서, 컨트롤러(40)로부터 제어 신호를 출력하여 전자 비례 밸브(54a, 56c, 56d)를 구동하면, 대응하는 조작 장치(45a, 46a)의 오퍼레이터 조작이 없는 경우에도 파일럿압(제2 제어 신호)을 발생할 수 있으므로, 붐 상승 동작, 버킷 크라우드 동작, 버킷 덤프 동작을 강제적으로 발생할 수 있다. 또한, 이와 마찬가지로 컨트롤러(40)에 의해 전자 비례 밸브(54b, 55a, 55b, 56a, 56b)를 구동하면, 조작 장치(45a, 45b, 46a)의 오퍼레이터 조작에 의해 발생된 파일럿압(제1 제어 신호)을 감한 파일럿압(제2 제어 신호)을 발생할 수 있고, 붐 하강 동작, 암 크라우드/덤프 동작, 버킷 크라우드/덤프 동작의 속도를 오퍼레이터 조작의 값으로부터 강제적으로 저감할 수 있다.
제2 제어 신호는, 제1 제어 신호에 의해 발생되는 프론트 작업 장치(1A)의 제어점의 속도 벡터가 소정의 조건에 반할 때 생성되고, 당해 소정의 조건에 반하지 않는 프론트 작업 장치(1A)의 제어점의 속도 벡터를 발생시키는 제어 신호로서 생성된다. 또한, 동일한 유량 제어 밸브(15a 내지 15c)에 있어서의 한쪽의 유압 구동부에 대해 제1 제어 신호가, 다른 쪽의 유압 구동부에 대해 제2 제어 신호가 생성되는 경우에는, 제2 제어 신호를 우선적으로 유압 구동부에 작용시키는 것으로 하여, 제1 제어 신호를 전자 비례 밸브로 차단하고, 제2 제어 신호를 당해 다른 쪽의 유압 구동부에 입력한다. 따라서, 유량 제어 밸브(15a 내지 15c) 중 제2 제어 신호가 연산된 것에 대해서는 제2 제어 신호를 기초로 제어되고, 제2 제어 신호가 연산되지 않은 것에 대해서는 제1 제어 신호를 기초로 제어되고, 제1 및 제2 제어 신호의 양쪽이 발생하지 않은 것에 대해서는 제어(구동)되지 않게 된다. 상기한 바와 같이 제1 제어 신호와 제2 제어 신호를 정의하면, MC는, 제2 제어 신호에 기초하는 유량 제어 밸브(15a 내지 15c)의 제어라고 할 수도 있다.
도 5는, 컨트롤러의 처리 기능을 나타내는 기능 블록도이다. 또한, 도 6은, 도 5에 있어서의 MC 제어부의 처리 기능의 상세를 나타내는 기능 블록도이다.
도 5에 도시하는 바와 같이, 컨트롤러(40)는, MC 제어부(43)와, 전자 비례 밸브 제어부(44)와, 표시 제어부(374)를 구비하고 있다.
표시 제어부(374)는, MC 제어부(43)로부터 출력되는 작업 장치 자세 및 목표면을 기초로 표시 장치(53)를 제어하는 부분이다. 표시 제어부(374)에는, 프론트 작업 장치(1A)의 화상 및 아이콘을 포함하는 표시 관련 데이터가 다수 저장되어 있는 표시 ROM이 구비되어 있고, 표시 제어부(374)가 입력 정보에 포함되는 플래그에 기초하여 소정의 프로그램을 판독함과 함께, 표시 장치(53)에 있어서의 표시 제어를 한다.
도 6에 도시하는 바와 같이, MC 제어부(43)는, 조작량 연산부(43a)와, 자세 연산부(43b)와, 목표면 연산부(43c)와, 붐 제어부(81a)와, 버킷 제어부(81b)를 구비하고 있다.
조작량 연산부(43a)는, 오퍼레이터 조작 검출 장치(압력 센서(70, 71, 72))로부터의 입력을 기초로 조작 장치(45a, 45b, 46a)(조작 레버(1a, 1b))의 조작량을 산출한다. 조작량 연산부(43a)에서는, 압력 센서(70, 71, 72)의 검출값으로부터 조작 장치(45a, 45b, 46a)의 조작량을 산출한다. 또한, 본 실시 형태에서 나타내는 압력 센서(70, 71, 72)에 의한 조작량의 산출은 일례에 지나지 않으며, 예를 들어 각 조작 장치(45a, 45b, 46a)의 조작 레버의 회전 변위를 검출하는 위치 센서(예를 들어, 로터리 인코더)로 당해 조작 레버의 조작량을 검출해도 된다.
자세 연산부(43b)는 작업 장치 자세 검출 장치(50)로부터의 정보에 기초하여, 로컬 좌표계에 있어서의 프론트 작업 장치(1A)의 자세와, 버킷(10)의 클로 끝 위치를 연산한다.
목표면 연산부(43c)는, 목표면 설정 장치(51)로부터의 정보에 기초하여 목표면(60)의 위치 정보를 연산하고, 이것을 ROM(93) 내에 기억한다. 본 실시 형태에서는, 도 8에 도시하는 바와 같이, 3차원의 목표면을 프론트 작업 장치(1A)가 이동하는 평면(작업기의 동작 평면)에서 절단한 단면 형상을 목표면(60)(2차원의 목표면)으로서 이용한다.
또한, 도 8에서는, 목표면(60)이 하나인 경우를 예시하고 있지만, 목표면이 복수 존재하는 경우도 있다. 목표면이 복수 존재하는 경우에는, 예를 들어 프론트 작업 장치(1A)로부터 가장 가까운 것을 목표면으로 설정하는 방법이나, 버킷 클로 끝의 하방에 위치하는 것을 목표면으로 하는 방법, 혹은 임의로 선택한 것을 목표면으로 하는 방법 등이 있다.
거리 연산부(43d)는, 버킷(10)의 클로 끝 위치(좌표)와, ROM(93)에 기억된 목표면(60)을 포함하는 직선의 거리에 기초하여, 버킷 선단으로부터 제어 대상의 목표면(60)까지의 거리 D(도 8 참조)를 산출한다.
목표 각도 연산부(96)는, 목표면(60)에 대한 버킷 클로 끝의 경사각 버킷각 γ의 목표 각도(이하이면 「목표 버킷 각도 γTGT」라고도 칭함)를 연산한다. 목표 버킷 각도 γTGT의 설정에는, 버킷 제어 판정부(81c)로 버킷 제어가 개시될 때의 버킷 각도 γ가 설정된다.
붐 제어부(81a) 및 버킷 제어부(81b)는, 조작 장치(45a, 45b, 46a)의 조작 시에, 미리 정한 조건에 따라 복수의 유압 액추에이터(5, 6, 7) 중 적어도 하나를 제어하는 액추에이터 제어부(81)를 구성한다. 액추에이터 제어부(81)는, 각 유압 실린더(5, 6, 7)의 유량 제어 밸브(15a, 15b, 15c)의 목표 파일럿압을 연산하고, 그 연산된 목표 파일럿압을 전자 비례 밸브 제어부(44)에 출력한다.
붐 제어부(81a)는, 조작 장치(45a, 45b, 46a)의 조작 시에, 목표면(60)의 위치와, 프론트 작업 장치(1A)의 자세 및 버킷(10)의 클로 끝 위치와, 조작 장치(45a, 45b, 46a)의 조작량에 기초하여, 목표면(60) 상 또는 그 상방에 버킷(10)의 클로 끝(제어점)이 위치하도록 붐 실린더(5)(붐(8))의 동작을 제어하는 MC를 실행하기 위한 부분이다. 붐 제어부(81a)에서는, 붐 실린더(5)의 유량 제어 밸브(15a)의 목표 파일럿압이 연산된다.
버킷 제어부(81b)는, 조작 장치(45a, 45b, 46a)의 조작 시에, MC에 의한 버킷 각도 제어를 실행하기 위한 부분이다. 버킷 제어부(81b)가 상세한 제어 내용은 후술하겠지만, 버킷 제어 판정부(81c)에서 버킷을 자동으로 제어하도록 판정하였을 때, 암에 대한 버킷 클로 끝의 경사 각도 γ가 목표 각도 연산부(96)에서 설정한 목표 버킷 각도 γTGT가 되도록 버킷 실린더(7)(버킷(10))의 동작을 제어하는 MC(버킷 각도 제어)가 실행된다. 버킷 제어부(81b)에서는, 버킷 실린더(7)의 유량 제어 밸브(15c)의 목표 파일럿압이 연산된다.
전자 비례 밸브 제어부(44)는, 액추에이터 제어부(81)로부터 출력되는 각 유량 제어 밸브(15a, 15b, 15c)로의 목표 파일럿압을 기초로, 각 전자 비례 밸브(54 내지 56)로의 명령을 연산한다. 또한, 오퍼레이터 조작에 기초하는 파일럿압(제1 제어 신호)과, 액추에이터 제어부(81)에서 산출된 목표 파일럿압이 일치하는 경우에는, 해당하는 전자 비례 밸브(54 내지 56)로의 전류값(명령값)은 제로로 되고, 해당되는 전자 비례 밸브(54 내지 56)의 동작은 행해지지 않는다.
<MC에 관한 붐 제어(붐 제어부(81a))>
여기서, MC에 관한 붐 제어의 상세를 설명한다.
도 7은, 컨트롤러에 의한 MC의 붐에 관한 처리 내용을 도시하는 흐름도이다. 또한, 도 9는 조작량에 대한 실린더 속도의 설정 테이블의 일례를, 도 10은 버킷 클로 끝 속도의 수직 성분의 제한값과 거리와의 관계를, 도 11은, 버킷에 있어서의 속도 성분의 일례를 각각 나타내는 도면이다.
컨트롤러(40)는, MC에 있어서의 붐 제어로서, 붐 제어부(81a)에 의한 붐 상승 제어를 실행한다. 붐 제어부(81a)에 의한 처리는, 조작 장치(45a, 45b, 46a)가 오퍼레이터에 의해 조작되면 개시된다.
도 7에 있어서, 붐 제어부(81a)는, 조작 장치(45a, 45b, 46a)가 오퍼레이터에 의해 조작되면, 우선, 조작량 연산부(43a)에서 연산된 조작량을 기초로 각 유압 실린더(5, 6, 7)의 동작 속도(실린더 속도)를 연산한다(스텝 S410). 구체적으로는, 도 9에서 나타낸 바와 같이, 미리 실험이나 시뮬레이션에서 구해진 조작량에 대한 실린더 속도를 테이블로서 설정하고, 이것에 따라 각 유압 실린더(5, 6, 7)에 대해 실린더 속도를 산출한다.
이어서, 붐 제어부(81a)는, 스텝 S410에서 연산된 각 유압 실린더(5, 6, 7)의 동작 속도와, 자세 연산부(43b)에서 연산된 프론트 작업 장치(1A)의 자세에 기초하여, 오퍼레이터 조작에 의한 버킷 선단(클로 끝)의 속도 벡터 B를 연산한다(스텝 S420).
이어서, 붐 제어부(81a)는, 거리 D와 도 10에 나타내는 관계에 기초하여, 버킷 선단의 속도 벡터의 목표면(60)에 수직인 성분의 제한값 ay를 산출한다(스텝 S430).
이어서, 붐 제어부(81a)는, 스텝 S420에서 산출한 오퍼레이터 조작에 의한 버킷 선단의 속도 벡터 B에 대해, 목표면(60)에 수직인 성분 by를 취득한다(스텝 S440).
이어서, 붐 제어부(81a)는, 스텝 S430에서 산출한 제한값 ay가 0 이상인지 여부를 판정한다(스텝 S450). 또한, 도 11에 도시하는 바와 같이, 버킷(10)에 대해 xy 좌표를 설정한다. 도 11의 xy 좌표에서는, x축은 목표면(60)과 평행하여 도면 중 우측 방향을 양으로 하고, y축은 목표면(60)에 수직하여 도면 중 상측 방향을 양으로 한다. 도 11에서는, 수직 성분 by 및 제한값 ay는 음이며, 수평 성분 bx 및 수평 성분 cx 및 수직 성분 cy는 양이다. 그리고, 도 10으로부터 명확하지만, 제한값 ay가 0일 때에는 거리 D가 0, 즉 클로 끝이 목표면(60) 상에 위치하는 경우이며, 제한값 ay가 양일 때에는 거리 D가 음, 즉 클로 끝이 목표면(60)보다 하방에 위치하는 경우이며, 제한값 ay가 음일 때에는 거리 D가 양, 즉 클로 끝이 목표면(60)보다 상방에 위치하는 경우이다.
스텝 S450에서의 판정 결과가 "예"인 경우, 즉 제한값 ay가 0 이상이라고 판정된 경우이며, 클로 끝이 목표면(60) 상 또는 그 하방에 위치하는 경우에는, 붐 제어부(81a)는, 오퍼레이터 조작에 의한 클로 끝의 속도 벡터 B의 수직 성분 by가 0 이상인지 여부를 판정한다(스텝 S460). 수직 성분 by가 양인 경우에는 속도 벡터 B의 수직 성분 by가 상향인 것을 나타내고, 수직 성분 by가 음인 경우에는 속도 벡터 B의 수직 성분 by가 하향인 것을 나타낸다.
스텝 S460에서의 판정 결과가 "예"인 경우, 즉 수직 성분 by가 0 이상이라고 판정된 경우이며, 수직 성분 by가 상향인 경우에는, 붐 제어부(81a)는, 제한값 ay의 절댓값이 수직 성분 by의 절댓값 이상인지 여부를 판정하고, (스텝 S470), 판정 결과가 "예"인 경우에는, 붐 제어부(81a)는, 머신 컨트롤에 의한 붐(8)의 동작에서 발생해야 할 버킷 선단의 속도 벡터 C의 목표면(60)에 수직인 성분 cy를 산출하는 식으로서 「cy=ay-by」를 선택하고, 그 식과 스텝 S430에서 산출한 제한값 ay와 스텝 S440에서 산출한 수직 성분 by를 기초로 수직 성분 cy를 산출한다(스텝 S500).
이어서, 붐 제어부(81a)는, 스텝 S500에서 산출한 수직 성분 cy를 출력 가능한 속도 벡터 C를 산출하고, 그 수평 성분을 cx로 한다(스텝 S510).
이어서, 붐 제어부(81a)는, 목표 속도 벡터 T를 산출하고(스텝 S520), 스텝 S550으로 진행한다. 목표 속도 벡터 T의 목표면(60)에 수직인 성분을 ty, 수평한 성분 tx라 하면, 각각 「ty=by+cy, tx=bx+cx」라고 나타낼 수 있다. 이것에, 스텝 S500에서 산출한 cy=ay-by를 대입시키면 목표 속도 벡터 T는 「ty=ay, tx=bx+cx」가 된다. 즉, 스텝 S520의 처리에 이르렀을 경우의 목표 속도 벡터의 수직 성분 ty는 제한값 ay에 제한되고, 머신 컨트롤에 의한 강제 붐 상승의 제어가 발동된다.
스텝 S450에서의 판정 결과가 "아니오"인 경우, 즉 제한값 ay가 0 미만인 경우에는, 붐 제어부(81a)는, 오퍼레이터 조작에 의한 클로 끝의 속도 벡터 B의 수직 성분 by가 0 이상인지 여부를 판정한다(스텝 S480). 스텝 S480에서의 판정 결과가 "예"인 경우에는, 스텝 S530으로 진행하고, 판정 결과가 "아니오"인 경우에는, 스텝 S490으로 진행한다.
스텝 S480에서의 판정 결과가 "아니오"인 경우, 즉 수직 성분 by가 0 미만인 경우에는, 붐 제어부(81a)는, 제한값 ay의 절댓값과 수직 성분 by의 절댓값 이상인지 여부를 판정하고(스텝 S490), 판정 결과가 "예"인 경우에는, 스텝 S530으로 진행하고, 판정 결과가 "아니오"인 경우에는 스텝 S500으로 진행한다.
스텝 S480에서의 판정 결과가 "예"인 경우, 즉 수직 성분 by가 0 이상이라고 판정된 경우(수직 성분 by가 상향인 경우), 또는 스텝 S490에서의 판정 결과가 "예"인 경우, 즉 제한값 ay의 절댓값이 수직 성분 by의 절댓값 미만인 경우에는, 붐 제어부(81a)는, 머신 컨트롤로 붐(8)을 동작시킬 필요가 없다고 하고, 속도 벡터 C를 제로로 한다(스텝 S530).
이어서, 붐 제어부(81a)는, 목표 속도 벡터 T를 스텝 S520으로 이용한 식(ty=by+cy, tx=bx+cx)에 기초하여 「ty=by, tx=bx」로 한다(스텝 S540). 이것은, 오퍼레이터 조작에 의한 속도 벡터 B와 일치한다.
스텝 S520, 또는 스텝 S540의 처리가 종료되면, 이어서, 붐 제어부(81a)는, 스텝 S520 또는 스텝 S540으로 결정한 목표 속도 벡터 T(ty, tx)에 기초하여 각 유압 실린더(5, 6, 7)의 목표 속도를 연산한다(스텝 S550). 또한, 상기 설명으로부터 명확하지만, 목표 속도 벡터 T가 속도 벡터 B에 일치하지 않을 때에는, 머신 컨트롤에 의한 붐(8)의 동작에서 발생되는 속도 벡터 C를 속도 벡터 B에 더함으로써 목표 속도 벡터 T를 실현한다.
이어서, 붐 제어부(81a)는, 스텝 S550에서 산출된 각 실린더(5, 6, 7)의 목표 속도를 기초로 각 유압 실린더(5, 6, 7)의 유량 제어 밸브(15a, 15b, 15c)로의 목표 파일럿압을 연산한다(스텝 S560).
이어서, 붐 제어부(81a)는, 각 유압 실린더(5, 6, 7)의 유량 제어 밸브(15a, 15b, 15c)로의 목표 파일럿압을 전자 비례 밸브 제어부(44)에 출력하고(스텝 S570), 처리를 종료한다.
이와 같이, 도 7에 도시한 흐름도의 처리를 행함으로써, 전자 비례 밸브 제어부(44)는, 각 유압 실린더(5, 6, 7)의 유량 제어 밸브(15a, 15b, 15c)에 목표 파일럿압이 작용하도록 전자 비례 밸브(54, 55, 56)를 제어하고, 프론트 작업 장치(1A)에 의한 굴삭이 행해진다. 예를 들어, 오퍼레이터가 조작 장치(45b)를 조작하여 암 크라우드 동작에 의해 수평 굴삭을 행하는 경우에는, 버킷(10)의 선단이 목표면(60)에 침입하지 않도록 전자 비례 밸브(55c)가 제어되고, 붐(8)의 상승 동작이 자동적으로 행해진다.
<MC에 관한 버킷 제어(버킷 제어부(81b), 버킷 제어 판정부(81c))>
이어서, MC에 관한 버킷 제어의 상세를 설명한다.
도 12는, 컨트롤러에 의한 MC의 버킷에 관한 처리 내용을 도시하는 흐름도이다.
컨트롤러(40)는, MC에 있어서의 버킷 제어로서, 버킷 제어부(81b) 및 버킷 제어 판정부(81c)에 의한 버킷 회동 제어를 실행한다. 버킷 회동 제어는, 버킷(10)의 목표면(60)에 대한 상대 각도를 제어하는 버킷 각도 제어이다.
도 12에 있어서, 우선, 버킷 제어 판정부(81c)는, 제어 선택 장치(97)가 ON(즉 버킷 각도 제어는 유효)으로 전환되어 있는지 여부를 판정하고(스텝 S100), 판정 결과가 NO인 경우에는, 버킷(10)의 각도를 제어하는 버킷 회동 제어를 실행하지 않고(스텝 S108), 처리를 종료한다. 이 경우, 4개의 전자 비례 밸브(56a, 56b, 56c, 56d)의 어느 것에도 명령은 보내지지 않는다.
또한, 스텝 S100에서의 판정 결과가 "예"인 경우, 즉 제어 선택 장치(97)가 ON(버킷 각도 제어가 유효)인 경우에는, 이어서, 버킷 제어 판정부(81c)는, 버킷(10)이 토사에 접지되어 있는지 여부를 판정한다(스텝 S101). 버킷(10)이 토사에 접지되어 있는지 여부의 판정은, 버킷 접지 상태 검출 장치(압력 센서(57))에서 검출된 붐 실린더(5)의 보텀압 Pbmb와 미리 정한 임계값 Pth를 비교함으로써 행하고, 보텀압 Pbmb가 임계값 Pth보다도 작은 경우에는, 버킷(10)이 접지 상태라고 판정한다.
스텝 S101에서의 판정 결과가 "예"인 경우, 즉 버킷(10)이 접지 상태라고 판정한 경우에는, 계속해서, 버킷 제어 판정부(81c)는, 버킷(10)의 클로 끝과 목표면(60)의 거리 D가 소정값 D1 이하인지 여부를 판정하고(스텝 S102), 판정 결과가 "예"인 경우에는, 스텝 S104로 진행한다.
또한, 스텝 S101에서의 판정 결과가 "아니오"인 경우, 즉 버킷(10)이 접지 상태가 아니라고 판정한 경우에는, 버킷 제어 판정부(81c)는, 버킷(10)의 클로 끝과 목표면(60)의 거리 D가 소정값 D2 이하인지 여부를 판정하고(스텝 S103), 판정 결과가 "예"인 경우에는, 스텝 S104로 진행한다.
버킷(10)과 목표면(60)의 거리 소정값 D1, D2는, MC의 버킷 각도 제어(버킷 회동 제어)의 개시 타이밍을 결정하는 값이라고 할 수 있다. 소정값 D2는, 버킷 각도 제어의 발동이 오퍼레이터에게 주는 위화감을 저감시키는 관점에서는 가능한 한 작은 값으로 설정하는 것이 바람직하다. 또한 소정값 D1은, 목표면보다도 흙이 담겨져 있는 것을 상정하고, 소정값 D2보다도 큰 값으로 설정하는 것이 바람직하다. 또한, 스텝 S102, S103에서 이용하는 버킷(10)의 클로 끝으로부터 목표면(60)까지의 거리 D는, 자세 연산부(43b)에서 연산한 버킷(10)의 클로 끝 위치(좌표)와, ROM(93)에 기억된 목표면(60)을 포함하는 직선의 거리로부터 산출할 수 있다. 또한, 거리 D를 산출할 때의 버킷(10)의 기준점은 버킷 클로 끝(버킷(10)의 전단)일 필요는 없고, 버킷(10) 중 목표면(60)의 거리가 최소가 된다는 점이어도 되고, 버킷(10)의 후단이어도 된다.
스텝 S102에서의 판정 결과가 "예"인 경우, 즉 거리 D가 소정값 D1 이하인 경우, 또는 스텝 S103에서의 판정 결과가 "예"인 경우, 즉 거리 D가 소정값 D2 이하인 경우에는, 버킷 제어 판정부(81c)는, 조작량 연산부(43a)로부터의 신호에 기초하여, 오퍼레이터에 의한 암(9)의 조작 신호가 있는지 여부를 판정한다(스텝 S104).
스텝 S104에서의 판정 결과가 "예"인 경우, 즉 암(9)의 조작 신호가 있는 경우에는, 버킷 제어 판정부(81c)는, 조작량 연산부(43a)로부터의 신호에 기초하여, 오퍼레이터에 의한 버킷(10)의 조작 신호가 있는지 여부를 판정하고(스텝 S105), 판정 결과가 "아니오"인 경우에는, 버킷 제어부(81b)는, 버킷(10)의 파일럿 라인(146a, 146b)에 있는 전자 비례 밸브(버킷 감압 밸브)(56a, 56b)를 잠그도록 명령을 출력한다(스텝 S106). 이에 의해 조작 장치(46a)를 통한 오퍼레이터 조작에 의해 버킷(10)이 회동하는 것이 방지된다.
또한, 스텝 S105에서의 판정 결과가 "예"인 경우, 즉 버킷(10)의 조작 신호가 없는 경우, 또는 스텝 S106의 처리가 종료된 경우에는, 이어서, 버킷 제어부(81b)는, 버킷(10)의 파일럿 라인(148a)에 있는 전자 비례 밸브(버킷 증압 밸브)(56c, 56d)를 개방하도록 명령을 내리고, 목표 버킷 각도가 설정값 γTGT가 되도록 버킷 실린더(7)를 회동 제어하여(스텝 S107), 처리를 종료한다.
또한, 스텝 S102, S103, S104 중 어느 것의 판정 결과가 "아니오"인 경우에는, 스텝 S108로 진행한다.
또한, 본 실시 형태에 있어서는, MC로서, 붐 제어부(81a)에 의한 붐 제어(강제 붐 상승 제어)와, 버킷 제어부(81b) 및 버킷 제어 판정부(81c)에 의한 버킷 제어(버킷 각도 제어)를 실행하는 경우를 예시하였지만, MC로서 버킷(10)과 목표면(60)의 거리 D에 따른 붐 제어를 실행하도록 구성해도 된다.
이상과 같이 구성한 본 실시 형태에서의 효과를 설명한다.
도 13은, 본 실시 형태의 효과를 설명하는 도면이며, 버킷 압박 작업의 양태를 나타내는 도면이다.
도 13에 도시하는 바와 같이, 굴삭면을 눌러 굳히기 위해, 목표면(60)보다도 상방에서 흙을 담고, 그 위에서 버킷 각도를 일정하게 유지하고, 버킷을 압박하면서 굴삭면을 마무리하는 작업을 행하는 경우, 종래 기술에 있어서는, 버킷 각도를 보유 지지하는 제어가 개시되는 버킷과 목표면과의 거리의 임계값을 D1과 같이 크게 취하면, 예를 들어 버킷을 굴삭 개시 위치로 복귀시키기 위해 목표면의 상방의 공중에서 프론트를 조작하여, 이 임계값 D1 이하의 영역에 버킷이 진입한 경우, 버킷 각도가 보유 지지되도록 구동되며, 굴삭 동작이 아닌 동작으로 제어되므로 오퍼레이터에게 위화감을 부여해 버리는 경우가 있다. 또한, 이것을 피하기 위해, 도 13과 같이 임계값 D1보다도 작은 D2를 임계값으로 한 경우, 전술한 바와 같은 눌러 굳히기 작업 때문에, 목표면(60) 상에 흙을 담은 때에 버킷과 목표면과의 거리가 임계값 D2 이하가 되지 않고, 버킷 각도를 보유 지지하는 제어가 개시되지 않게 되는 경우가 있다.
이에 반하여, 본 실시 형태에 있어서는, 선단에 마련된 작업구(예를 들어, 버킷(10))를 포함하는 복수의 피구동 부재(붐(8), 암(9), 버킷(10))를 서로 회동 가능하게 연결하여 구성된 다관절형의 프론트 작업 장치(1A)와, 조작 신호에 기초하여 복수의 피구동 부재를 각각 구동하는 복수의 유압 액추에이터(붐 실린더(5), 암 실린더(6), 버킷 실린더(7))와, 복수의 유압 액추에이터 중 오퍼레이터가 원하는 유압 액추에이터에 조작 신호를 출력하는 조작 장치(45a, 45b, 46a)와, 프론트 작업 장치의 복수의 피구동 부재의 각각의 자세를 검출하는 자세 검출 장치(붐 각도 센서(30), 암 각도 센서(31), 버킷 각도 센서(32), 차체 경사각 센서(33))와, 프론트 작업 장치에 의한 작업 대상에 대해 설정된 목표면(60) 상 및 그의 상방의 영역 내에서 프론트 작업 장치가 움직이도록, 복수의 유압 액추에이터 중 적어도 하나의 유압 액추에이터에 조작 신호를 출력하거나, 또는 조작 신호를 보정하는 영역 제한 제어를 실행하는 컨트롤러(40)를 구비한 작업 기계(유압 셔블(1))에 있어서, 작업구의 토사에의 접지 상태를 검출하는 접지 상태 검출 장치(압력 센서(57))를 더 구비하고, 컨트롤러는, 접지 상태 검출 장치의 검출 결과로부터 작업구가 토사에 접지해 있다고 판정한 경우에는, 작업구와 목표면의 거리가 미리 정한 제1 임계값 D1 이하인 경우에 목표면에 대한 작업구의 상대 각도가 유지되도록 조작 신호를 출력 또는 보정하고, 접지 상태 검출 장치의 검출 결과로부터 작업구가 토사에 접지해 있지 않다고 판정된 경우에는, 작업구와 목표면의 거리가 제1 임계값 D1보다도 작아지도록 미리 정한 제2 임계값 D2 이하인 경우에 목표면에 대한 작업구의 상대 각도가 유지되도록 조작 신호를 출력 또는 보정하도록 구성하였으므로, 작업구의 각도를 유지하는 제어를 적절하게 개시할 수 있다.
즉, 도 13과 같이 목표면보다도 상방에 흙을 담은 상태에서 버킷 각도를 보유 지지하는 작업을 실시할 때, 버킷(10)을 땅에 압박함으로써 프론트의 하중이 지면에 지지되어, 붐 실린더(5)의 보텀압이 임계값 Pth를 하회하므로, 버킷 각도를 유지하는 제어를 개시하기 위한 버킷과 목표면과의 거리의 임계값 D가 D1이 되고, 임계값 D1은 목표면 상에 담은 흙의 두께보다도 충분히 크기 때문에, 버킷 각도를 유지하도록 제어가 개시된다. 또한, 작업 개시 위치에 버킷을 공중에서 이동할 때 프론트의 하중을 붐 실린더(5)로 보유 지지하게 되어, 붐 실린더(5)의 보텀압이 임계값 Pth보다도 커진다. 이 때문에, 버킷 각도를 유지하는 제어를 개시하기 위한 버킷과 목표면과의 거리의 임계값 D가 D2가 되고, 임계값 D2는 가능한 한 작은 값으로 설정되기 때문에, 버킷 각도를 유지하는 제어가 개시되지 않고, 오퍼레이터의 조작에 위화감을 주지 않도록 제어할 수 있다.
다음으로 상기 각 실시 형태의 특징에 대해 설명한다.
(1) 상기 실시 형태에서는, 선단에 마련된 작업구(예를 들어, 버킷(10))를 포함하는 복수의 피구동 부재(예를 들어, 붐(8), 암(9), 버킷(10))를 서로 회동 가능하게 연결하여 구성된 다관절형의 프론트 작업 장치(1A)와, 조작 신호에 기초하여 상기 복수의 피구동 부재를 각각 구동하는 복수의 유압 액추에이터(예를 들어, 붐 실린더(5), 암 실린더(6), 버킷 실린더(7))와, 상기 복수의 유압 액추에이터 중 오퍼레이터가 원하는 유압 액추에이터에 상기 조작 신호를 출력하는 조작 장치(45a, 45b, 46a)와, 상기 프론트 작업 장치의 복수의 피구동 부재의 각각의 자세를 검출하는 자세 검출 장치(예를 들어, 붐 각도 센서(30), 암 각도 센서(31), 버킷 각도 센서(32), 차체 경사각 센서(33))와, 상기 프론트 작업 장치에 의한 작업 대상에 대해 설정된 목표면 상 및 그의 상방의 영역 내에서 상기 프론트 작업 장치가 움직이도록, 상기 복수의 유압 액추에이터 중 적어도 하나의 유압 액추에이터에 상기 조작 신호를 출력하거나, 또는 상기 조작 신호를 보정하는 영역 제한 제어를 실행하는 컨트롤러(40)를 구비한 작업 기계(예를 들어, 유압 셔블(1))에 있어서, 상기 작업구 토사에의 접지 상태를 검출하는 접지 상태 검출 장치(예를 들어, 압력 센서(57))를 더 구비하고, 상기 컨트롤러는, 상기 접지 상태 검출 장치의 검출 결과로부터 상기 작업구가 토사에 접지해 있다고 판정한 경우에는, 상기 작업구와 상기 목표면의 거리가 미리 정한 제1 임계값(예를 들어, 소정값 D1) 이하인 경우에 상기 목표면에 대한 상기 작업구의 상대 각도가 유지되도록 상기 조작 신호를 출력 또는 보정하고, 상기 접지 상태 검출 장치의 검출 결과로부터 상기 작업구가 토사에 접지해 있지 않다고 판정된 경우에는, 상기 작업구와 상기 목표면의 거리가 상기 제1 임계값보다도 작아지도록 미리 정한 제2 임계값(예를 들어, 소정값 D2) 이하인 경우에 상기 목표면에 대한 상기 작업구의 상대 각도가 유지되도록 상기 조작 신호를 출력 또는 보정하기로 하였다.
이에 의해, 작업구의 각도를 유지하는 제어를 적절하게 개시할 수 있다.
(2) 또한, 상기 실시 형태에서는, (1)의 작업 기계(예를 들어, 유압 셔블(1))에 있어서, 상기 프론트 작업 장치(1A)는, 상기 복수의 피구동 부재로서, 상기 작업 기계의 본체에 기단을 회동 가능하게 연결된 붐(8)과, 상기 붐의 선단에 일단을 회동 가능하게 연결된 암(9)과, 상기 암의 타단에 회동 가능하게 연결된 작업구(예를 들어, 버킷(10))를 구비하고, 상기 접지 상태 검출 장치는, 상기 붐을 구동하는 유압 액추에이터인 붐 실린더(5)의 실린더압을 검출하는 압력 센서(57)인 것으로 하였다.
(3) 또한, 상기 실시 형태에서는, (1)의 작업 기계(예를 들어, 유압 셔블(1))에 있어서, 상기 접지 상태 검출 장치는, 상기 프론트 작업 장치를 촬영하는 카메라 장치인 것으로 하였다.
(4) 또한, 상기 실시 형태에서는, (1) 내지 (3) 중 어느 하나의 작업 기계(예를 들어, 유압 셔블(1))에 있어서, 상기 컨트롤러(40)에 의한 상기 영역 제한 제어의 유효와 무효를 택일적으로 선택하는 제어 선택 장치(97)를 더 구비한 것으로 하였다.
<부기>
또한, 본 발명은 상기한 실시 형태에 한정되는 것은 아니며, 그 요지를 일탈하지 않는 범위 내의 다양한 변형예나 조합이 포함된다. 또한, 본 발명은 상기 실시 형태에서 설명한 모든 구성을 구비하는 것에 한정되지는 않고, 그 구성의 일부를 삭제한 것도 포함된다. 또한, 상기의 각 구성, 기능 등은, 그것들의 일부 또는 전부를, 예를 들어 집적 회로에서 설계하는 등에 의해 실현해도 된다. 또한, 상기의 각 구성, 기능 등은, 프로세서가 각각의 기능을 실현하는 프로그램을 해석하고, 실행함으로써 소프트웨어에서 실현해도 된다.
1: 유압 셔블
1a, 1b: 조작 레버
1A: 프론트 작업 장치
1B: 본체
2, 2a, 2b: 유압 펌프
2aa, 2ba: 레귤레이터
3a, 3b: 주행 유압 모터
4: 선회 유압 모터
5: 붐 실린더
6: 암 실린더
7: 버킷 실린더
8: 붐
9: 암
10: 버킷
11: 하부 주행체
12: 상부 선회체
13: 버킷 링크
15a 내지 15f: 유량 제어 밸브
18: 엔진
23: 조작 레버
30: 붐 각도 센서
31: 암 각도 센서
32: 버킷 각도 센서
33: 차체 경사각 센서
39: 로크 밸브
40: 컨트롤러
43: MC 제어부
43a: 조작량 연산부
43b: 자세 연산부
43c: 목표면 연산부
43d: 거리 연산부
44: 전자 비례 밸브 제어부
45 내지 47: 조작 장치
48: 파일럿 펌프
50: 작업 장치 자세 검출 장치
51: 목표면 설정 장치
53: 표시 장치
54 내지 56: 전자 비례 밸브
57: 압력 센서
60: 목표면
70 내지 72: 압력 센서
81: 액추에이터 제어부
81a: 붐 제어부
81b: 버킷 제어부
81c: 버킷 제어 판정부
82a, 83a, 83b: 셔틀 밸브
91: 입력 인터페이스
92: 중앙 처리 장치(CPU)
93: 리드 온리 메모리(ROM)
94: 랜덤 액세스 메모리(RAM)
95: 출력 인터페이스
96: 목표 각도 연산부
97: 제어 선택 장치
144 내지 149: 파일럿 라인
150a, 152a, 152b, 155b: 유압 구동부
160: 프론트 제어용 유압 유닛
162: 셔틀 블록
200: 작동유 탱크
374: 표시 제어부

Claims (4)

  1. 선단에 마련된 작업구를 포함하는 복수의 피구동 부재를 서로 회동 가능하게 연결하여 구성된 다관절형의 프론트 작업 장치와,
    조작 신호에 기초하여 상기 복수의 피구동 부재를 각각 구동하는 복수의 유압 액추에이터와,
    상기 복수의 유압 액추에이터 중 오퍼레이터가 원하는 유압 액추에이터에 상기 조작 신호를 출력하는 조작 장치와,
    상기 프론트 작업 장치의 복수의 피구동 부재의 각각의 자세를 검출하는 자세 검출 장치와,
    상기 프론트 작업 장치에 의한 작업 대상에 대해 설정된 목표면 상 및 그의 상방의 영역 내에서 상기 프론트 작업 장치가 움직이도록, 상기 복수의 유압 액추에이터 중 적어도 하나의 유압 액추에이터에 상기 조작 신호를 출력하거나, 또는 상기 조작 신호를 보정하는 영역 제한 제어를 실행하는 컨트롤러를 구비한 작업 기계에 있어서,
    상기 작업구의 토사에의 접지 상태를 검출하는 접지 상태 검출 장치를 더 구비하고,
    상기 컨트롤러는,
    상기 접지 상태 검출 장치의 검출 결과로부터 상기 작업구가 토사에 접지해 있다고 판정한 경우에는, 상기 작업구와 상기 목표면의 거리가 미리 정한 제1 임계값 이하인 경우에 상기 목표면에 대한 상기 작업구의 상대 각도가 유지되도록 상기 조작 신호를 출력 또는 보정하고,
    상기 접지 상태 검출 장치의 검출 결과로부터 상기 작업구가 토사에 접지해 있지 않다고 판정한 경우에는, 상기 작업구와 상기 목표면의 거리가 미리 정한 제2 임계값 이하인 경우에 상기 목표면에 대한 상기 작업구의 상대 각도가 유지되도록 상기 조작 신호를 출력 또는 보정하고, 상기 제2 임계값은 상기 제1 임계값보다 작은 것을 특징으로 하는 작업 기계.
  2. 제1항에 있어서, 상기 프론트 작업 장치는, 상기 복수의 피구동 부재로서, 상기 작업 기계의 본체에 기단을 회동 가능하게 연결된 붐과, 상기 붐의 선단에 일단을 회동 가능하게 연결된 암과, 상기 암의 타단에 회동 가능하게 연결된 작업구를 구비하고,
    상기 접지 상태 검출 장치는, 상기 붐을 구동하는 유압 액추에이터인 붐 실린더의 실린더압을 검출하는 압력 센서인 것을 특징으로 하는 작업 기계.
  3. 제1항에 있어서, 상기 접지 상태 검출 장치는, 상기 프론트 작업 장치를 촬영하는 카메라 장치인 것을 특징으로 하는 작업 기계.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 컨트롤러에 의한 상기 영역 제한 제어의 유효와 무효를 택일적으로 선택하는 제어 선택 장치를 더 구비한 것을 특징으로 하는 작업 기계.
KR1020217004657A 2019-03-26 2019-11-29 작업 기계 KR102520407B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2019-059361 2019-03-26
JP2019059361A JP6964109B2 (ja) 2019-03-26 2019-03-26 作業機械
PCT/JP2019/046852 WO2020194878A1 (ja) 2019-03-26 2019-11-29 作業機械

Publications (2)

Publication Number Publication Date
KR20210032470A KR20210032470A (ko) 2021-03-24
KR102520407B1 true KR102520407B1 (ko) 2023-04-12

Family

ID=72609377

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217004657A KR102520407B1 (ko) 2019-03-26 2019-11-29 작업 기계

Country Status (6)

Country Link
US (1) US20220025608A1 (ko)
EP (1) EP3951070B1 (ko)
JP (1) JP6964109B2 (ko)
KR (1) KR102520407B1 (ko)
CN (1) CN112601864B (ko)
WO (1) WO2020194878A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7009600B1 (ja) * 2020-12-07 2022-01-25 日立建機株式会社 作業機械
CN115288218A (zh) * 2022-07-28 2022-11-04 中联重科股份有限公司 用于控制臂架的方法、挖掘机、存储介质及处理器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016169571A (ja) 2015-03-13 2016-09-23 住友重機械工業株式会社 ショベル
JP2018135681A (ja) 2017-02-21 2018-08-30 日立建機株式会社 作業機械
JP2018155027A (ja) 2017-03-17 2018-10-04 日立建機株式会社 建設機械

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01304229A (ja) * 1988-05-30 1989-12-07 Komatsu Ltd パワーショベルの法面自動堀削装置
EP0380665B1 (en) * 1988-08-02 1993-10-27 Kabushiki Kaisha Komatsu Seisakusho Method and apparatus for controlling working units of power shovel
JPH0639794B2 (ja) * 1988-08-08 1994-05-25 住友建機株式会社 油圧ショベルの自動運転パターン選択方法
JP2810060B2 (ja) * 1988-08-31 1998-10-15 キャタピラー インコーポレーテッド 建設機械の作業機位置制御装置
JPH05311692A (ja) * 1991-09-06 1993-11-22 Yotaro Hatamura パワーショベル
JP5005016B2 (ja) * 2009-10-05 2012-08-22 株式会社小松製作所 作業車両の走行振動抑制装置
CN102900122B (zh) * 2012-11-09 2015-05-20 中外合资沃得重工(中国)有限公司 挖掘机回转液压系统及控制方法
JP5583872B1 (ja) * 2013-12-06 2014-09-03 株式会社小松製作所 油圧ショベル
US9587369B2 (en) * 2015-07-02 2017-03-07 Caterpillar Inc. Excavation system having adaptive dig control
WO2016148311A1 (ja) * 2016-04-08 2016-09-22 株式会社小松製作所 作業車両の制御システム、制御方法、及び作業車両
WO2018096668A1 (ja) * 2016-11-28 2018-05-31 株式会社小松製作所 作業車両および作業車両の制御方法
JP6271771B2 (ja) * 2016-11-29 2018-01-31 株式会社小松製作所 建設機械の制御装置及び建設機械の制御方法
KR101886798B1 (ko) * 2016-11-29 2018-08-08 가부시키가이샤 고마쓰 세이사쿠쇼 작업기 제어 장치 및 작업 기계
US10683638B2 (en) * 2017-09-12 2020-06-16 Cnh Industrial America Llc System for repositioning a backhoe digger
JP7164294B2 (ja) * 2017-10-24 2022-11-01 株式会社小松製作所 作業車両

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016169571A (ja) 2015-03-13 2016-09-23 住友重機械工業株式会社 ショベル
JP2018135681A (ja) 2017-02-21 2018-08-30 日立建機株式会社 作業機械
JP2018155027A (ja) 2017-03-17 2018-10-04 日立建機株式会社 建設機械

Also Published As

Publication number Publication date
JP2020159049A (ja) 2020-10-01
CN112601864A (zh) 2021-04-02
CN112601864B (zh) 2022-02-25
US20220025608A1 (en) 2022-01-27
JP6964109B2 (ja) 2021-11-10
WO2020194878A1 (ja) 2020-10-01
EP3951070A1 (en) 2022-02-09
EP3951070A4 (en) 2023-01-11
EP3951070B1 (en) 2024-01-31
KR20210032470A (ko) 2021-03-24

Similar Documents

Publication Publication Date Title
CN109757113B (zh) 作业机械
KR102024701B1 (ko) 작업 기계
KR102189225B1 (ko) 작업 기계
JP6889579B2 (ja) 作業機械
JP6860329B2 (ja) 作業機械
KR102388111B1 (ko) 작업 기계
KR20180102644A (ko) 작업 기계
CN111032970B (zh) 作业机械
KR102154581B1 (ko) 작업 기계
KR20180111966A (ko) 작업 기계
KR102520408B1 (ko) 작업 기계
KR20190113882A (ko) 작업 기계
KR102588223B1 (ko) 작업 기계
KR102520407B1 (ko) 작업 기계
JP7401715B2 (ja) 作業機械
KR102491288B1 (ko) 작업 기계
WO2020065739A1 (ja) 作業機械
JP2021161611A (ja) 作業機械

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right