KR102154581B1 - 작업 기계 - Google Patents

작업 기계 Download PDF

Info

Publication number
KR102154581B1
KR102154581B1 KR1020197006476A KR20197006476A KR102154581B1 KR 102154581 B1 KR102154581 B1 KR 102154581B1 KR 1020197006476 A KR1020197006476 A KR 1020197006476A KR 20197006476 A KR20197006476 A KR 20197006476A KR 102154581 B1 KR102154581 B1 KR 102154581B1
Authority
KR
South Korea
Prior art keywords
intervention
control
machine
bucket
target surface
Prior art date
Application number
KR1020197006476A
Other languages
English (en)
Other versions
KR20190034648A (ko
Inventor
도시히코 이시다
마나부 에다무라
히데카즈 모리키
Original Assignee
히다찌 겐끼 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 히다찌 겐끼 가부시키가이샤 filed Critical 히다찌 겐끼 가부시키가이샤
Publication of KR20190034648A publication Critical patent/KR20190034648A/ko
Application granted granted Critical
Publication of KR102154581B1 publication Critical patent/KR102154581B1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2033Limiting the movement of frames or implements, e.g. to avoid collision between implements and the cabin
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2271Actuators and supports therefor and protection therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)

Abstract

조작 장치(45a, 45b, 46c)의 조작 시에, 미리 정한 조건에 따라 작업기(1A)를 동작시키는 머신 컨트롤을 실행하는 머신 컨트롤부(43)를 갖는 제어 컨트롤러(40)를 구비하는 유압 셔블(1)에 있어서, 오퍼레이터에 의해 조작되는 개입 강도 입력 장치(96)를 구비한다. 제어 컨트롤러는, 개입 강도 입력 장치의 조작량에 기초하여, 조작 장치의 조작으로 지시되는 작업기의 동작에 머신 컨트롤이 개입하는 정도의 대소를 나타내는 개입 강도의 보정량을 산출하는 보정 정도 연산부(43m)를 구비한다. 머신 컨트롤부는, 보정 정도 연산부에서 산출된 보정량에 기초하여 보정된 개입 강도로, 조작 장치의 조작으로 지시되는 작업기의 동작에 머신 컨트롤을 개입시킨다.

Description

작업 기계
본 발명은 머신 컨트롤을 실행 가능한 작업 기계에 관한 것이다.
유압 셔블에는, 오퍼레이터의 굴삭 조작을 보조하는 제어 시스템이 구비되는 경우가 있다. 구체적으로는, 조작 장치를 통해 굴삭 조작(예를 들어, 암 클라우드의 지시)가 입력된 경우, 목표면과 작업기의 선단(예를 들어 버킷의 클로 끝)의 위치 관계를 기초로, 작업기(프론트 작업기라고도 한다)의 선단의 위치가 목표면 위 및 그의 상방의 영역 내에 유지되도록, 작업기를 구동하는 붐 실린더, 암 실린더 및 버킷 실린더 중 적어도 붐 실린더를 강제적으로 동작시키는 제어(예를 들어, 붐 실린더를 연장시켜서 강제적으로 붐 올림 동작을 행한다)를 실행하는 제어 시스템이 있다. 이러한 작업기 선단이 움직일 수 있는 영역을 제한하는 제어 시스템의 이용에 의해 굴삭면의 마무리 작업이나 법면의 성형 작업이 용이해진다. 이하에서는, 이러한 종류의 제어를 「영역 제한 제어」, 「(오퍼레이터 조작에 대한) 개입 제어」 또는 「머신 컨트롤(MC: Machine Control)」이라고 칭하는 경우가 있다.
이러한 종류의 기술에 관련하여, 일본 특허 제3056254호 공보에서는, 버킷 선단이 목표면(침입 불가 영역)에 근접한 경우, 버킷 선단의 이동 방향에 관계 없이 버킷 선단의 속도를 늦추면, 목표면을 따른 방향의 굴삭 속도도 느려져 능률이 저하됨을 지적하고 있다. 그리고, 이것에 대한 해결책으로서, 버킷 선단의 이동 속도 중, 목표면에 수직인 성분만을 개입 제어에 의해 제한하고, 목표면에 평행한 속도 성분에 대해서는, 오퍼레이터의 조작 신호를 그대로 프론트 동작 지령으로서 부여하여 개입 제어하지 않는 제어의 방법이 설명되어 있다.
일본 특허 제3056254호 공보
상기 선행기술문헌과 같은 머신 컨트롤 기능을 탑재한 셔블(이하 「MC기」라고 칭하는 경우가 있다)은, 전자 정보로서 부여되는 설계면(목표면)에 따라 버킷 클로 끝의 위치가 동작하도록 기체를 제어함으로써 설계면의 굴삭·성형을 행하는 소위 정보화 시공의 장면에도 응용할 수 있다. 이 경우, 자기에 설정한 좌표계(셔블 좌표계) 상에서의 버킷 클로 끝의 위치를 작업기의 자세 센서의 검출값으로부터 산출하고, 전지구 위성 측위 시스템(GNSS) 등을 이용하여 지구에 설정한 좌표계(세계 좌표계) 상에서의 자기의 위치 및 방향을 산출하고, 양자(셔블 좌표계에 있어서의 클로 끝의 위치와, 세계 좌표계에 있어서의 자차의 위치 및 방향)를 조합함으로써 세계 좌표계에 있어서의 클로 끝의 위치를 산출할 수 있다. 그리고, 세계 좌표계에 있어서의 클로 끝의 위치가 목표면을 따라 동작하도록 기체를 제어하면, 목표면(설계면)의 굴삭·성형이 가능해진다.
이렇게 목표면을 굴삭·성형하는 작업에서는, 굴삭면을 목표면을 따라 고르게 하기 위해서, 붐 내림 동작을 행해 버킷 배면에서 굴삭면을 대략 수직으로 압박하는 비탈면 다지기라는 다지기 작업이 이루어진다. 비탈면 다지기 작업에서는, 토질에 적합한 대략 일정한 압박력으로 비탈면 다지기를 반복하는 것이 요구되지만, 그 조작에는 숙련이 요구된다. 그래서 오퍼레이터의 기량에 관계없이, 비탈면 다지기의 압박력의 조정과 유지가 가능한 작업 기계가 요구되고 있다. 또한, MC 실행 중에는, 비탈면 다지기를 목적으로 붐 내림 조작을 해도 목표면을 초과하는 프론트 작업기의 동작이 억제되기 때문에, 버킷 배면에서 굴삭면에 압력을 가할 수 없다. 즉 MC 실행 중에는 비탈면 다지기를 할 수 없으므로, 선행기술문헌의 셔블에서는 비탈면 다지기 때마다 MC를 OFF로 할 필요가 있다. 또한, 통상, 비탈면 다지기 작업의 완료 후는 MC에 의해 버킷 클로 끝을 목표면을 따라 이동시키는 마무리 작업이 행해지기 때문에, 비탈면 다지기 작업에서 일단 OFF로 한 MC 기능을 ON으로 해야 하고, 이 일련의 전환 조작이 오퍼레이터의 부담이 된다.
본 발명은 상기를 감안하여 발명된 것이며, 그 목적은, 머신 컨트롤 기능을 갖고, 비탈면 다지기 시의 압박력의 조정·유지가 가능한 작업 기계를 제공하는 데 있다.
본원은 상기 과제를 해결하는 수단을 복수 포함하고 있지만, 그 일례를 들면, 복수의 유압 액추에이터에 의해 구동되는 작업기와, 오퍼레이터의 조작에 따라 상기 작업기의 동작을 지시하는 조작 장치와, 상기 조작 장치의 조작 시에, 미리 정한 조건에 따라 상기 작업기를 동작시키는 머신 컨트롤을 실행하는 머신 컨트롤부를 갖는 제어 장치를 구비하는 작업 기계에 있어서, 오퍼레이터에 의해 조작되는 개입 강도 입력 장치를 구비하고, 상기 제어 장치는, 상기 개입 강도 입력 장치의 조작량에 기초하여, 상기 조작 장치의 조작으로 지시되는 상기 작업기의 동작에 상기 머신 컨트롤이 개입하는 정도의 대소를 나타내는 개입 강도의 보정량을 산출하는 보정 정도 연산부를 더 구비하고, 상기 머신 컨트롤부는, 상기 보정 정도 연산부에서 산출된 상기 보정량에 기초하여 보정된 개입 강도로, 상기 조작 장치의 조작으로 지시되는 상기 작업기의 동작에 상기 머신 컨트롤을 개입시키는 것으로 한다.
본 발명에 따르면, 머신 컨트롤 기능을 갖는 작업 기계에 있어서, 비탈면 다지기 시의 압박력의 조정·유지가 가능해진다.
도 1은, 본 발명의 실시 형태에 관한 유압 셔블의 구성도이다.
도 2는, 유압 셔블의 제어 컨트롤러를 유압 구동 장치와 함께 나타내는 도면이다.
도 3은, 유압 셔블의 프론트 제어용 유압 유닛의 상세도이다.
도 4는, 유압 셔블의 제어 컨트롤러의 하드웨어 구성도이다.
도 5는, 유압 셔블에 있어서의 좌표계 및 목표면을 나타내는 도면이다.
도 6은, 유압 셔블의 제어 컨트롤러의 기능 블록도이다.
도 7은, 도 6 중의 머신 컨트롤부의 기능 블록도이다.
도 8a는, 개입 강도 입력 장치를 구비한 조작 레버의 상면도이다.
도 8b는, 개입 강도 입력 장치를 구비한 조작 레버의 측면도이다.
도 8c는, 개입 강도 입력 장치를 구비한 조작 레버의 전방면도이다.
도 9는, 버킷 클로 끝 속도의 수직 성분의 제한값 ay와 거리 D의 관계를 나타내는 도면이다.
도 10은, 제한값 ay와 거리 D와 개입 강도의 관계를 나타내는 도면이다.
도 11은, 제어 컨트롤러의 모드 판정부에서 실행되는 모드 판정 처리의 흐름도이다.
도 12는, 제어 컨트롤러의 제어 신호 연산부에서 실행되는 붐 내림 감속 모드의 흐름도이다.
도 13은, 개입 강도를 변화시킨 경우의 붐 파일럿압, 거리 D, 붐 속도 및 붐 로드압의 비교도이다.
도 14는, 제어 컨트롤러의 제어 신호 연산부에서 실행되는 붐 올림·내림 모드의 흐름도이다.
도 15는, 표시 장치의 표시 내용예를 나타내는 도면이다.
도 16은, 제한값 ay와 거리 D와 개입 강도의 관계를 나타내는 도면이다.
도 17은, 제한값 ay와 거리 D와 개입 강도의 관계를 나타내는 도면이다.
도 18a는, 개입 강도 입력 장치를 구비한 조작 레버의 상면도이다.
도 18b는, 개입 강도 입력 장치를 구비한 조작 레버의 측면도이다.
도 18c는, 개입 강도 입력 장치를 구비한 조작 레버의 전방면도이다.
이하, 본 발명의 실시 형태에 대하여 도면을 사용하여 설명한다. 또한, 이하에서는, 작업기의 선단의 어태치먼트로서 버킷(10)을 구비하는 유압 셔블을 예시하지만, 버킷 이외의 어태치먼트를 구비하는 유압 셔블로 본 발명을 적용해도 상관없다. 또한, 복수의 피구동 부재(어태치먼트, 암, 붐 등)를 연결하여 구성되고, 소정의 동작 평면 위에서 동작하는 다관절형의 작업기를 갖는 것이라면 유압 셔블 이외의 작업 기계로의 적용도 가능하다.
또한, 본 명세서에서는, 어떤 형상을 나타내는 용어(예를 들어, 목표면, 제어 대상면 등)와 함께 사용되는 「상」, 「상방」 또는 「하방」이라는 단어의 의미에 관하여, 「상」은 당해 어떤 형상의 「표면」을 의미하고, 「상방」은 당해 어떤 형상의 「표면보다 높은 위치」를 의미하고, 「하방」은 당해 어떤 형상의 「표면보다 낮은 위치」를 의미하는 것으로 한다. 또한, 이하의 설명에서는, 동일한 구성 요소가 복수 존재하는 경우, 부호(숫자)의 말미에 알파벳을 붙이는 경우가 있는데, 당해 알파벳을 생략하고 당해 복수의 구성 요소를 통합하여 표기하는 경우가 있다. 예를 들어, 3개의 펌프(300a), 펌프(300b), 펌프(300c)가 존재할 때, 이들을 통합하여 펌프(300)라 표기하는 경우가 있다.
<기본 구성>
도 1은 본 발명의 실시 형태에 관한 유압 셔블의 구성도이고, 도 2는 본 발명의 실시 형태에 관한 유압 셔블의 제어 컨트롤러를 유압 구동 장치와 함께 나타내는 도면이고, 도 3은 도 2 중의 프론트 제어용 유압 유닛(160)의 상세도이다.
도 1에 있어서, 유압 셔블(1)은, 다관절형의 프론트 작업기(1A)와 차체(1B)로 구성되어 있다. 차체(1B)는, 좌우의 주행 모터(3a, 3b)에 의해 주행하는 하부 주행체(11)와, 하부 주행체(11) 위에 선회 가능하게 설치된 상부 선회체(12)로 이루어진다. 프론트 작업기(1A)는, 수직 방향으로 각각 회동하는 복수의 피구동 부재(붐(8), 암(9) 및 버킷(10))를 연결하여 구성되어 있고, 프론트 작업기(1A)의 붐(8)의 기단부는 상부 선회체(12)의 전방부에 지지되어 있다.
상부 선회체(12)에 탑재된 원동기인 엔진(18)은, 유압 펌프(2)와 파일럿 펌프(48)를 구동한다. 유압 펌프(2)는 레귤레이터(2a)에 의해 용량이 제어되는 가변 용량형 펌프이며, 파일럿 펌프(48)는 고정 용량형 펌프이다. 본 실시 형태에 있어서는, 파일럿 라인(144, 145, 146, 147, 148, 149)의 도중에 셔틀 블록(162)가 마련되어 있다. 오퍼레이터의 조작에 따라 프론트 작업기(1A)의 동작을 지시하는 조작 장치(45, 46, 47)로부터 출력된 유압 신호가, 이 셔틀 블록(162)을 통해 레귤레이터(2a)에도 입력된다. 셔틀 블록(162)의 상세 구성은 생략하지만, 유압 신호가 셔틀 블록(162)을 통해 레귤레이터(2a)에 입력되어 있고, 유압 펌프(2)의 토출 유량이 당해 유압 신호에 따라 제어된다.
파일럿 펌프(48)의 토출 배관인 펌프 라인(148a)은 로크 밸브(39)를 통과한 후, 복수로 분기하여 조작 장치(45, 46, 47) 및 프론트 제어용 유압 유닛(160) 내의 각 밸브에 접속하고 있다. 로크 밸브(39)는 본 예에서는 전자 전환 밸브이며, 그 전자 구동부는 운전실(도 1)에 배치된 게이트 로크 레버(미도시)의 위치 검출기와 전기적으로 접속하고 있다. 게이트 로크 레버의 포지션은 위치 검출기에서 검출되고, 그 위치 검출기로부터 로크 밸브(39)에 대하여 게이트 로크 레버의 포지션에 따른 신호가 입력된다. 게이트 로크 레버의 포지션이 로크 위치에 있으면 로크 밸브(39)가 폐쇄되어 펌프 라인(148a)이 차단되고, 로크 해제 위치에 있으면 로크 밸브(39)가 개방되어 펌프 라인(148a)이 개통된다. 즉, 펌프 라인(148a)이 차단된 상태에서는 조작 장치(45, 46, 47)에 의한 조작이 무효화되어, 선회나 굴삭 등의 동작이 금지된다.
붐(8), 암(9), 버킷(10) 및 상부 선회체(12)는 붐 실린더(5), 암 실린더(6), 버킷 실린더(7) 및 선회 유압 모터(4)(유압 액추에이터)에 의해 각각 구동되는 피구동 부재를 구성한다. 이들 피구동 부재(8, 9, 10, 12)에 대한 동작 지시는, 상부 선회체(12) 위의 운전실 내에 탑재된 주행 우 레버(23a), 주행 좌 레버(23b), 조작 우 레버(1a) 및 조작 좌 레버(1b)(이들을 조작 레버(1, 23)라고 총칭하는 경우가 있다)의 오퍼레이터에 의한 조작에 따라 출력된다.
운전실 내에는, 주행 우 레버(23a)를 갖는 조작 장치(47a)와, 주행 좌 레버(23b)를 갖는 조작 장치(47b)와, 조작 우 레버(1a)를 공유하는 조작 장치(45a, 46a)와, 조작 좌 레버(1b)를 공유하는 조작 장치(45b, 46b)가 설치되어 있다. 주행 레버(23a, 23b)와 조작 레버(1a, 1b)는 셔블의 조작 중에 오퍼레이터의 손이 놓이는 파지부이다. 조작 장치(45, 46, 47)는, 유압 파일럿 방식이며, 파일럿 펌프로부터 토출되는 압유를 바탕으로, 각각 오퍼레이터에 의해 조작되는 조작 레버(1, 23)의 조작량(예를 들어, 레버 스트로크)과 조작 방향에 따른 파일럿압(조작압이라고 칭하는 경우가 있다)을 발생시킨다. 이렇게 발생한 파일럿압은, 컨트롤 밸브 유닛(20) 내의 대응하는 유량 제어 밸브(15a 내지 15f)(도 2 참조)의 유압 구동부(150a 내지 155b)에 파일럿 라인(144a 내지 149b)(도 2 참조)을 통해 공급되고, 이들 유량 제어 밸브(15a 내지 15f)를 구동하는 제어 신호로서 이용된다.
유압 펌프(2)로부터 토출된 압유는, 유량 제어 밸브(15a, 15b, 15c, 15d, 15e, 15f)(도 2 참조)를 통해 주행 우 유압 모터(3a), 주행 좌 유압 모터(3b), 선회 유압 모터(4), 붐 실린더(5), 암 실린더(6), 버킷 실린더(7)에 공급된다. 공급된 압유에 의해 붐 실린더(5), 암 실린더(6), 버킷 실린더(7)가 신축됨으로써, 붐(8), 암(9), 버킷(10)이 각각 회동하고, 버킷(10)의 위치 및 자세가 변화한다. 또한, 공급된 압유에 의해 선회 유압 모터(4)가 회전함으로써, 하부 주행체(11)에 대하여 상부 선회체(12)가 선회한다. 또한, 공급된 압유에 의해 주행 우 유압 모터(3a), 주행 좌 유압 모터(3b)가 회전함으로써, 하부 주행체(11)가 주행한다.
한편, 붐(8), 암(9), 버킷(10)의 회동 각도 α, β, γ(도 5 참조)를 측정 가능하도록, 붐 핀에 붐 각도 센서(30), 암 핀에 암 각도 센서(31), 버킷 링크(13)에 버킷 각도 센서(32)가 설치되고, 상부 선회체(12)에는 기준면(예를 들어 수평면)에 대한 상부 선회체(12)(차체(1B))의 전후 방향의 경사각 θ(도 5 참조)를 검출하는 차체 경사각 센서(33)가 설치되어 있다.
본 실시 형태의 유압 셔블에는, 오퍼레이터의 굴삭 조작을 보조하는 목적으로, 조작 장치(45a, 45b, 46c)의 조작 시에, 미리 정한 조건에 따라, 조작 장치의 조작으로 지시된 동작과 상이한 동작으로 프론트 작업기(1A)를 동작시키는 머신 컨트롤을 실행하는 제어 시스템이 구비되어 있다. 구체적으로는, 조작 장치(45b, 46a)를 통해 굴삭 조작(구체적으로는, 암 클라우드, 버킷 클라우드 및 버킷 덤프 중 적어도 하나의 지시)이 입력된 경우, 목표면(60)(도 5 참조)과 작업기(1A)의 선단(본 실시 형태에서는 버킷(10)의 클로 끝이라고 한다)의 위치 관계를 기초로, 작업기(1A)의 선단의 위치가 목표면(60)의 위 및 그의 상방의 영역 내에 유지되도록 유압 액추에이터(5, 6, 7) 중 적어도 하나를 강제적으로 동작시키는 제어 신호(예를 들어, 붐 실린더(5)를 연장시켜서 강제적으로 붐 올림 동작을 행한다)를 해당하는 유량 제어 밸브(15a, 15b, 15c)에 출력하는 굴삭 제어 시스템이 구비되어 있다. 본 명세서에서는 이 제어를 「영역 제한 제어」 또는 「머신 컨트롤」이라고 칭하는 경우가 있다. 이 제어에 의해 버킷(10)의 클로 끝이 목표면(60)의 하방에 침입하는 것이 방지되므로, 오퍼레이터의 기량의 정도에 관계 없이 목표면(60)에 따른 굴삭이 가능해진다. 본 실시 형태에서는, 영역 제한 제어에 관한 제어점을, 유압 셔블의 버킷(10)의 클로 끝(작업기(1A)의 선단)으로 설정하고 있다. 제어점은 작업기(1A)의 선단 부분의 점이라면 버킷 클로 끝 이외에도 변경 가능하다. 예를 들어, 버킷(10)의 저면이나, 버킷 링크(13)의 최외부도 선택 가능하다.
<스위치(17), 입력 장치(96), 표시 장치(53)>
영역 제한 제어(머신 컨트롤)의 실행이 가능한 굴삭 제어 시스템은, 운전실 내에 설치되어, 목표면(60)과 작업기(1A)의 위치 관계가 표시 가능한 표시 장치(예를 들어 액정 디스플레이)(53)와, 조작 레버(1a)에 마련되고, 머신 컨트롤의 유효 무효를 택일적로 전환하는 머신 컨트롤 ON/OFF 스위치(17)와, 조작 레버(1a)에 마련되어, 조작 장치(45a, 45b, 46a)(조작 레버(1a, 1b))를 통한 오퍼레이터 조작에 대한 머신 컨트롤의 개입 강도를 조정하는 개입 강도 입력 장치(96)(입력 장치)와, 머신 컨트롤을 실행 가능한 컴퓨터인 제어 컨트롤러(제어 장치)(40)를 구비하고 있다. 여기서 「개입 강도」란, 조작 장치의 조작으로 지시되는 프론트 작업기(1A)의 동작에 대하여 머신 컨트롤이 개입하는 정도의 대소를 나타내는 것으로 한다.
도 8a, b, c는, 머신 컨트롤 ON/OFF 스위치(17)와, 개입 강도 입력 장치(96)(입력 장치)를 구비한 조작 레버(1a)의 구성도이다. 도 8a는 조작 레버(1a)의 상면도, 도 8b는 그 측면도, 도 8c는 그 전방면도이다.
머신 컨트롤 ON/OFF 스위치(17)는, 조이 스틱 형상의 조작 레버(1a)에 있어서의 전방면의 상단부에 마련되어 있고, 예를 들어 조작 레버(1a)를 쥐는 오퍼레이터의 엄지 손가락에 의해 압하된다. 머신 컨트롤 ON/OFF 스위치(17)는, 모멘터리 스위치이며, 압하될 때마다 머신 컨트롤의 유효와 무효가 전환된다. 또한, 스위치(17)의 설치 장소는 조작 레버(1a)(1b)로 한정되지 않고, 기타의 장소에 마련해도 된다.
개입 강도 입력 장치(96)는, 머신 컨트롤 ON/OFF 스위치(17)의 옆에 마련되어 있고, 스위치(17)와 마찬가지로 조작 레버(1a)를 쥐는 오퍼레이터의 엄지 손가락에 의해 조작된다. 개입 강도 입력 장치(96)는, 조작 레버(1a)의 표면에 대하여 안쪽 방향 및 앞쪽 방향(도 8b 참조)으로 경도하는 스틱부를 갖는 아날로그 스틱이며, 당해 스틱부의 경도 방향 및 경도량을 제어 컨트롤러(40)(머신 컨트롤부(43))에 출력한다. 도 8b의 스틱부의 위치가 초기 위치이며, 오퍼레이터가 손을 떼면 스틱부는 레버 내부에 마련된 가압 수단(미도시)의 가압력에 의해 초기 위치로 복귀된다. 스틱부를 안쪽 방향으로 경도하면 초기 위치로부터의 경도량(조작량)에 따라서 개입 강도가 강해지고, 앞쪽 방향으로 경도하면 초기 위치로부터의 경도량(조작량)에 따라서 개입 강도가 약해진다.
<프론트 제어용 유압 유닛(160)>
도 3에 나타내는 바와 같이, 프론트 제어용 유압 유닛(160)은, 붐(8)용 조작 장치(45a)의 파일럿 라인(144a, 144b)에 마련되어, 조작 레버(1a)의 조작량으로서 파일럿압(제1 제어 신호)을 검출하는 압력 센서(70a, 70b)(도 3 참조)와, 1차 포트측이 펌프 라인(148a)을 통해 파일럿 펌프(48)에 접속되어 파일럿 펌프(48)로부터의 파일럿압을 감압하여 출력하는 전자 비례 밸브(54a)(도 3 참조)와, 붐(8)용 조작 장치(45a)의 파일럿 라인(144a)과 전자 비례 밸브(54a)의 2차 포트측에 접속되고, 파일럿 라인(144a) 내의 파일럿압과 전자 비례 밸브(54a)로부터 출력되는 제어 압(제2 제어 신호)의 고압측을 선택하여, 유량 제어 밸브(15a)의 유압 구동부(150a)로 유도하는 셔틀 밸브(82a)(도 3 참조)와, 붐(8)용 조작 장치(45a)의 파일럿 라인(144b)에 설치되어, 제어 컨트롤러(40)로부터의 제어 신호를 기초로 파일럿 라인(144b) 내의 파일럿압(제1 제어 신호)을 저감하여 출력하는 전자 비례 밸브(54b)(도 3 참조)와, 1차 포트측이 파일럿 펌프(48)에 접속되어 파일럿 펌프(48)로부터의 파일럿압을 감압하여 출력하는 전자 비례 밸브(54c)(도 3 참조)와, 파일럿 라인(144b) 내의 파일럿압과 전자 비례 밸브(54c)로부터 출력되는 제어압의 고압측을 선택하여, 유량 제어 밸브(15a)의 유압 구동부(150b)로 유도하는 셔틀 밸브(82b)(도 3 참조)를 구비하고 있다.
또한, 프론트 제어용 유압 유닛(160)은, 암(9)용 파일럿 라인(145a, 145b)에 설치되어, 조작 레버(1b)의 조작량으로서 파일럿압(제1 제어 신호)을 검출하여 제어 컨트롤러(40)에 출력하는 압력 센서(71a, 7lb)(도 3 참조)와, 파일럿 라인(145b)에 설치되어, 제어 컨트롤러(40)로부터의 제어 신호를 기초로 파일럿압(제1 제어 신호)을 저감하여 유량 제어 밸브(15b)의 유압 구동부(151b)에 출력하는 전자 비례 밸브(55b)(도 3 참조)와, 파일럿 라인(145a)에 설치되어, 제어 컨트롤러(40)로부터의 제어 신호를 기초로 파일럿 라인(145a) 내의 파일럿압(제1 제어 신호)을 저감하여 출력하는 전자 비례 밸브(55a)(도 3 참조)와, 1차 포트측이 파일럿 펌프(48)에 접속되어 파일럿 펌프(48)로부터의 파일럿압을 감압하여 출력하는 전자 비례 밸브(55c)(도 3 참조)와, 전자 비례 밸브(55a)와 전자 비례 밸브(55c)로부터 출력되는 제어압의 고압측을 선택하여, 유량 제어 밸브(15b)의 유압 구동부(151a)로 유도하는 셔틀 밸브(84a)(도 3 참조)가 마련되어 있다.
또한, 프론트 제어용 유압 유닛(160)은, 버킷(10)용 파일럿 라인(146a, 146b)에는, 조작 레버(1a)의 조작량으로서 파일럿압(제1 제어 신호)을 검출하여 제어 컨트롤러(40)에 출력하는 압력 센서(72a, 72b)(도 3 참조)와, 제어 컨트롤러(40)로부터의 제어 신호를 기초로 파일럿압(제1 제어 신호)을 저감하여 출력하는 전자 비례 밸브(56a, 56b)(도 3 참조)와, 1차 포트측이 파일럿 펌프(48)에 접속되어 파일럿 펌프(48)로부터의 파일럿압을 감압하여 출력하는 전자 비례 밸브(56c, 56d)(도 3 참조)와, 전자 비례 밸브(56a, 56b)와 전자 비례 밸브(56c, 56d)로부터 출력되는 제어압의 고압측을 선택하여, 유량 제어 밸브(15c)의 유압 구동부(152a, 152b)로 유도하는 셔틀 밸브(83a, 83b)(도 3 참조)가 각각 마련되어 있다. 또한, 도 3에서는, 압력 센서(70, 71, 72)와 제어 컨트롤러(40)의 접속선은 지면의 사정상 생략하고 있다.
전자 비례 밸브(54b, 55a, 55b, 56a, 56b)는, 비통전 시에는 개방도가 최대이고, 제어 컨트롤러(40)로부터의 제어 신호인 전류를 증대시킬수록 개방도는 작아진다. 한편, 전자 비례 밸브(54a, 54c, 55c, 56c, 56d)는, 비통전 시에는 개방도를 제로, 통전 시에 개방도를 갖고, 제어 컨트롤러(40)로부터의 전류(제어 신호)를 증대시킬수록 개방도는 커진다. 이렇게 각 전자 비례 밸브의 개방도 54, 55, 56은 제어 컨트롤러(40)로부터의 제어 신호에 따른 것이 된다.
상기와 같이 구성되는 프론트 제어용 유압 유닛(160)에 있어서, 제어 컨트롤러(40)로부터 제어 신호를 출력하여 전자 비례 밸브(54a, 54c, 55c, 56c, 56d)를 구동하면, 조작 장치(45a, 46a)의 오퍼레이터 조작이 없는 경우에도 파일럿압(제2 제어 신호)을 발생시킬 수 있으므로, 붐 올림 동작, 붐 내림 동작, 암 클라우드 동작, 버킷 클라우드 동작 또는 버킷 덤프 동작을 강제적으로 발생시킬 수 있다. 또한, 이와 마찬가지로 제어 컨트롤러(40)에 의해 전자 비례 밸브(54b, 55a, 55b, 56a, 56b)를 구동하면, 조작 장치(45a, 45b, 46a)의 오퍼레이터 조작에 의해 발생한 파일럿압(제1 제어 신호)을 뺀 파일럿압(제2 제어 신호)을 발생시킬 수 있고, 붐 내림 동작, 암 클라우드/덤프 동작, 버킷 클라우드/덤프 동작의 속도를 오퍼레이터 조작보다도 강제적으로 저감시킬 수 있다.
본 명세서에서는, 유량 제어 밸브(15a 내지 15c)에 대한 제어 신호 중, 조작 장치(45a, 45b, 46a)의 조작에 의해 발생한 파일럿압을 「제1 제어 신호」라고 칭한다. 그리고, 유량 제어 밸브(15a 내지 15c)에 대한 제어 신호 중, 제어 컨트롤러(40)에서 전자 비례 밸브(54b, 55a, 55b, 56a, 56b)를 구동하여 제1 제어 신호를 보정(저감)하여 생성한 파일럿압과, 제어 컨트롤러(40)에서 전자 비례 밸브(54b, 55a, 55b, 56a, 56b)를 구동하여 제1 제어 신호와는 별도로 새롭게 생성한 파일럿압을 「제2 제어 신호」라고 칭한다.
상세는 후술하지만, 제2 제어 신호는, 제1 제어 신호에 의해 발생되는 작업기(1A)의 선단의 속도 벡터가 소정의 제한에 반할 때 생성되고, 당해 소정의 제한에 반하지 않는 작업기(1A)의 선단의 속도 벡터를 발생시키는 제어 신호로서 생성된다. 또한, 동일한 유량 제어 밸브(15a 내지 15c)에 있어서의 한쪽의 유압 구동부에 대하여 제1 제어 신호가, 다른 쪽의 유압 구동부에 대하여 제2 제어 신호가 생성되는 경우는, 제2 제어 신호를 우선적으로 유압 구동부에 작용시키는 것으로 하고, 제1 제어 신호를 전자 비례 밸브에서 차단하고, 제2 제어 신호를 당해 다른 쪽의 유압 구동부에 입력한다. 따라서, 유량 제어 밸브(15a 내지 15c) 중 제2 제어 신호가 연산된 것에 대해서는 제2 제어 신호를 기초로 제어되고, 제2 제어 신호가 연산되지 않은 것에 대해서는 제1 제어 신호를 기초로 제어되고, 제1 및 제2 제어 신호 양쪽이 발생하지 않은 것에 대해서는 제어(구동)되지 않게 된다. 상기와 같이 제1 제어 신호와 제2 제어 신호를 정의하면, 상기의 「영역 제한 제어」 또는 「머신 컨트롤」은, 제2 제어 신호에 기초하는 유량 제어 밸브(15a 내지 15c)의 제어라고 할 수도 있다.
<제어 컨트롤러(40)>
도 4에, 제어 컨트롤러(40)의 하드웨어 구성을 나타낸다. 제어 컨트롤러(40)는, 입력부(91)와, 프로세서인 중앙 처리 장치(CPU)(92)와, 기억 장치인 리드 온리 메모리(ROM)(93) 및 랜덤 액세스 메모리(RAM)(94)와, 출력부(95)를 갖고 있다. 입력부(91)는, 작업기 자세 검출 장치(50)인 각도 센서(30 내지 32) 및 경사각 센서(33)로부터의 신호와, 임의의 목표면(60)을 설정하기 위한 장치인 목표면 설정 장치(51)로부터의 신호와, 머신 컨트롤 ON/OFF 스위치(17)로부터의 신호와, 조작 장치(45a, 45b, 46a)로부터의 조작량을 검출하는 압력 센서(압력 센서(70, 71, 72)를 포함한다)인 오퍼레이터 조작 검출 장치(52a)로부터의 신호와, 개입 강도 입력 장치(96)로부터의 신호를 입력하고, CPU(92)가 연산 가능하도록 변환한다. ROM(93)은, 후술하는 흐름도에 관한 처리를 포함해 영역 제한 제어를 실행하기 위한 제어 프로그램과, 당해 흐름도의 실행에 필요한 각종 정보 등이 기억된 기록 매체이며, CPU(92)는, ROM(93)에 기억된 제어 프로그램을 따라 입력부(91) 및 메모리(93, 94)로부터 도입한 신호에 대하여 소정의 연산 처리를 행한다. 출력부(95)는, CPU(92)에서의 연산 결과에 따른 출력용 신호를 작성하여, 그 신호를 전자 비례 밸브(54 내지 56) 또는 표시 장치(53)에 출력함으로써, 유압 액추에이터(5 내지 7)를 구동·제어하거나, 차체(1B), 버킷(10) 및 목표면(60) 등의 화상을 표시 장치(53)인 모니터의 표시 화면 상에 표시시키거나 한다.
또한, 도 4의 제어 컨트롤러(40)는, 기억 장치로서 ROM(93) 및 RAM(94)이라는 반도체 메모리를 구비하고 있지만, 기억 장치라면 특히 반도체 메모리로 한정되지 않고 대체 가능하고, 예를 들어 하드디스크 드라이브 등의 자기 기억 장치를 구비해도 된다.
도 6은, 본 발명의 실시 형태에 관한 제어 컨트롤러(40)의 기능 블록도이다. 제어 컨트롤러(40)는, 머신 컨트롤부(43)와, 전자 비례 밸브 제어부(44)와, 표시 제어부(374)를 구비하고 있다.
작업기 자세 검출 장치(50)는, 붐 각도 센서(30), 암 각도 센서(31), 버킷 각도 센서(32), 차체 경사각 센서(33)로부터 구성된다.
목표면 설정 장치(51)는, 목표면(60)에 관한 정보(각 목표면의 위치 정보나 경사 각도 정보를 포함한다)를 입력 가능한 인터페이스이다. 목표면 설정 장치(51)를 통한 목표면의 입력은, 오퍼레이터가 수동으로 행해도, 네트워크 등을 통해 외부로부터 도입해도 된다. 또한, 목표면 설정 장치(51)에는 GNSS 수신기 등의 위성 통신 안테나(미도시)가 접속되어 있다. 글로벌 좌표계(절대 좌표계) 상에 규정된 목표면의 3차원 데이터를 저장한 외부 단말기와 셔블이 데이터 통신 가능한 경우에는, 당해 위성 통신 안테나에 의해 특정한 셔블의 글로벌 좌표를 기초로 셔블 위치에 대응하는 목표면을 당해 외부 단말기에 3차원 데이터 내에서 탐색하여 도입할 수 있다.
오퍼레이터 조작 검출 장치(52a)는, 오퍼레이터에 의한 조작 레버(1a, 1b)(조작 장치(45a, 45b, 46a))의 조작에 의해 파일럿 라인(144, 145, 146)에 발생하는 조작압(제1 제어 신호)을 취득하는 압력 센서(70a, 70b, 71a, 71b, 72a, 72b)로 구성된다. 즉, 작업기(1A)에 관한 유압 실린더(5, 6, 7)에 대한 조작을 검출하고 있다.
<표시 장치>
표시 제어부(374)는, 머신 컨트롤부(43)로부터 출력되는 작업기 자세, 목표면, 머신 컨트롤의 ON/OFF 상태, 오퍼레이터 조작에 대한 머신 컨트롤의 개입 강도의 정보를 기초로 표시 장치(53)를 제어하는 부분이다. 표시 제어부(374)에는, 아이콘을 포함하는 표시 관련 데이터가 다수 저장되어 있는 표시 ROM이 구비되어 있고, 표시 제어부(374)가, 입력 정보에 포함되는 플래그에 기초하여 소정의 프로그램을 판독함과 함께, 표시 장치(53)에 있어서의 표시 제어를 한다.
구체적으로는, 표시 제어부(374)는, 도 15에 나타내는 바와 같이, 개입 강도 입력 장치(96)의 스틱부의 경도 방향과 경도량을 기초로 개입 강도(개입 강도 입력 장치(96)에 의한 제한값 ay의 변화의 정도)를 표시부(395)에 표시한다. 도 12의 예에서는, 스틱부의 경도량(조작량)에 비례하여 표시부(395)에 있어서의 개입 강도의 수치를 변화시키고 있고, 개입 강도가 강해지는 안쪽 방향에 스틱부가 경도된 경우의 개입 강도는 양(+)으로 표시되고, 개입 강도가 약해지는 앞쪽 방향으로 경도된 경우의 개입 강도는 음(-)으로 표시된다. 표시부(395)에 표시하는 개입 강도는, 도 15에 예시한 수치뿐만 아니라, 그 정도를 나타내는 미터 표시 등을 이용해도 된다.
또한, 머신 컨트롤의 ON/OFF 상태가 ON인 것을 나타내는 정보가 머신 컨트롤부(43)로부터 입력된 경우, 표시 제어부(374)는, 표시 화면(391) 상에 머신 컨트롤의 ON/OFF 상태가 ON인 것을 나타내는 아이콘(393)을 표시한다. 한편, 머신 컨트롤의 ON/OFF 상태가 OFF인 것을 나타내는 정보가 입력된 경우, 표시 제어부(374)는 표시 화면(391) 상에서 아이콘(394)을 비표시로 한다. 도 15의 표시 화면(391)에는, 목표면(60)과 버킷(10)의 위치 관계를 오퍼레이터에 통지하기 위한, 목표면(60)의 종단면도(버킷(10)의 측면도)와, 버킷(10)의 클로 끝의 위치에 있어서의 목표면(60)의 횡단면도가 작업기 자세 및 목표면의 정보를 기초로 표시되어 있다.
<머신 컨트롤부(43), 전자 비례 밸브 제어부(44)>
도 7은 도 6 중의 머신 컨트롤부(43)의 기능 블록도이다. 머신 컨트롤부(43)는, 조작 장치(45a, 45b, 46c)의 조작 시에, 미리 정한 조건에 따라 프론트 작업기(1A)를 동작시키는 머신 컨트롤을 실행한다. 머신 컨트롤부(43)는, 조작량 연산부(43a)와, 자세 연산부(43b)와, 목표면 연산부(43c)와, 실린더 속도 연산부(43d)와, 버킷 선단 속도 연산부(43e)와, 목표 버킷 선단 속도 연산부(43f)와, 목표 실린더 속도 연산부(43g)와, 목표 파일럿압 연산부(43h)와, 보정 정도 연산부(43m)와, 모드 판정부(43n)를 구비하고 있다. 이 중, 실린더 속도 연산부(43d), 버킷 선단 속도 연산부(43e), 목표 버킷 선단 속도 연산부(43f), 목표 실린더 속도 연산부(43g) 및 목표 파일럿압 연산부(43h)를 「제어 신호 연산부(43X)」라고 총칭하는 경우가 있다.
조작량 연산부(43a)는, 오퍼레이터 조작 검출 장치(52a)로부터의 입력을 기초로 조작 장치(45a, 45b, 46a)(조작 레버(1a, 1b))의 조작량을 산출한다. 압력 센서(70, 71, 72)의 검출값으로부터 조작 장치(45a, 45b, 46a)의 조작량을 산출할 수 있다.
또한, 압력 센서(70, 71, 72)에 의한 조작량의 산출은 일례에 지나지 않고, 예를 들어 각 조작 장치(45a, 45b, 46a)의 조작 레버의 회전 변위를 검출하는 위치 센서(예를 들어, 로터리 인코더)에서 당해 조작 레버의 조작량을 검출해도 된다.
자세 연산부(43b)는 작업기 자세 검출 장치(50)로부터의 정보에 기초하여, 작업기(1A)의 자세 및 버킷(10)의 클로 끝의 위치를 연산한다. 작업기(1A)의 자세는 도 5의 셔블 좌표계 상에 정의할 수 있다. 도 5의 셔블 좌표계는, 상부 선회체(12)로 설정된 좌표계이며, 상부 선회체(12)에 회동 가능하게 지지되어 있는 붐(8)의 기저부를 원점으로 하고, 상부 선회체(12)에 있어서의 수직 방향에 Z축, 수평 방향에 X축을 설정하였다. X축에 대한 붐(8)의 경사각을 붐 각 α, 붐(8)에 대한 암(9)의 경사각을 암 각 β, 암에 대한 버킷 클로 끝의 경사각을 버킷 각 γ라 하였다. 수평면(기준면)에 대한 차체(1B)(상부 선회체(12))의 경사각을 경사각 θ라 하였다. 붐 각 α는 붐 각도 센서(30)에 의해, 암 각 β는 암 각도 센서(31)에 의해, 버킷 각 γ는 버킷 각도 센서(32)에 의해, 경사각 θ는 차체 경사각 센서(33)에 의해 검출된다. 도 5 중에 규정한 바와 같이 붐(8), 암(9), 버킷(10)의 길이를 각각 L1, L2, L3라 하면, 셔블 좌표계에 있어서의 버킷 클로 끝의 위치의 좌표 및 작업기(1A)의 자세는 L1, L2, L3, α, β, γ로 표현할 수 있다.
목표면 연산부(43c)는, 목표면 설정 장치(51)로부터의 정보에 기초하여 목표면(60)의 위치 정보를 연산하고, 이것을 ROM(93) 내에 기억시킨다. 본 실시 형태에서는, 도 5에 나타내는 바와 같이, 3차원의 목표면과 작업기(1A)가 이동하는 평면(작업기의 동작 평면)이 교차하는 교선을 목표면(60)(작업기(1A)가 이동하는 2차원 평면 상의 목표선)으로서 이용한다.
모드 판정부(43n)는, 자세 연산부(43b)와 목표면 연산부(43c)의 연산 결과로부터 구해지는 버킷 클로 끝과 목표면(60)의 위치 관계와, 조작량 연산부(43a)로부터 입력되는 조작 장치(45b, 46a)의 조작 내용을 기초로, 제어 신호 연산부(43X)에서 행해지는 제어 신호 연산 처리의 모드를 판정한다. 제어 신호 연산 모드에는, 오퍼레이터에 의한 붐 내림 조작을 머신 컨트롤에 의해 감속하는 「붐 내림 감속 모드」와, 머신 컨트롤보다 목표면(60)의 위 또는 그의 상방에 버킷(10)이 위치하도록 붐(8)을 동작시키는 「붐 올림·내림 모드」가 있다. 모드 판정부(43n)에 의한 모드 판정 처리의 구체적 내용에 대해서는 도 11을 사용하여 후술하고, 당해 2개의 모드에서의 제어 신호 연산 처리(파일럿압 연산 처리)의 구체적 내용에 대해서도 도 12, 14를 사용하여 후술한다. 또한, 도 7 중의 모드 판정부(43n)에는, 제어선이 접속되어 있지 않지만, 조작량 연산부(43a), 자세 연산부(43b), 목표면 연산부(43c) 및 제어 신호 연산부(43X)와 접속되어 있는 것으로 한다.
보정 정도 연산부(43m)는, 개입 강도 입력 장치(96)로부터 입력되는 스틱부의 경도 방향 및 경도량(조작 방향 및 조작량)에 관한 정보에 기초하여, 오퍼레이터 조작에 대한 머신 컨트롤의 개입 강도의 보정량을 산출한다. 보정 정도 연산부(43m)는, 스틱부의 경도량(조작량)에 비례하여 개입 강도의 보정량의 수치를 산출하고 있다. 개입 강도의 보정량의 부호는, 개입 강도가 강해지는 안쪽 방향으로 스틱부가 경도된 경우, 양(+)으로 하고, 개입 강도가 약해지는 앞쪽 방향으로 경도된 경우, 음(-)으로 한다. 본 실시 형태에 있어서의 개입 강도의 보정량은, 정과 부마다 10단계로 하지만, 이것은 일례에 지나지 않고 단계수를 임의로 증감해도 된다. 또한, 개입 강도의 보정량의 부호를 양음 중 한쪽으로 한정해도 된다. 그 때, 입력 장치(96)의 스틱부의 경도 방향을 제한해도 된다.
실린더 속도 연산부(43d)는, 조작량 연산부(43a)에서 연산된 조작량(제1 제어 신호)을 기초로 각 유압 실린더(5, 6, 7)의 동작 속도(실린더 속도)를 연산한다. 각 유압 실린더(5, 6, 7)의 동작 속도는, 조작량 연산부(43a)에서 연산된 조작량과, 유량 제어 밸브(15a, 15b, 15c)의 특성과, 각 유압 실린더(5, 6, 7)의 단면적과, 유압 펌프(2)의 용량(틸팅각)과 회전수를 곱하여 얻어지는 펌프 유량(토출량) 등으로부터 산출할 수 있다.
버킷 선단 속도 연산부(43e)는, 실린더 속도 연산부(43d)에서 연산된 각 유압 실린더(5, 6, 7)의 동작 속도와, 자세 연산부(43b)에서 연산된 작업기(1A)의 자세를 기초로, 오퍼레이터 조작(제1 제어 신호)에 의한 버킷 선단(클로 끝)의 속도 벡터 B를 연산한다. 버킷 선단의 속도 벡터 B는, 목표면 연산부(43c)로부터 입력되는 목표면(60)의 정보를 기초로, 목표면(60)에 수평인 성분 bx와 수직인 성분 by로 분해할 수 있다.
목표 버킷 선단 속도 연산부(43f)는, 버킷 선단(클로 끝)의 목표 속도 벡터 T를 연산한다. 그 때문에, 목표 버킷 선단 속도 연산부(43f)는, 먼저, 버킷 선단으로부터 제어 대상의 목표면(60)까지의 거리 D(도 5 참조)와 도 9의 그래프를 기초로 버킷 선단의 속도 벡터의 목표면(60)에 수직인 성분의 하한 제한값 ay를 산출한다. 이하, 하한 제한값 ay의 「하한」을 생략하여 「제한값 ay」라고 칭한다. 제한값 ay는, 버킷 선단의 속도 벡터에 있어서의 목표면(60)의 상방으로부터 목표면(60)을 향하는 수직 방향 성분의 크기 최댓값이라고도 바꾸어 말할 수 있다. 제한값 ay의 계산은, 도 9에 나타내는 바와 같은 제한값 ay와 거리 D의 관계를 정의한 함수 또는 테이블 등의 형식으로 제어 컨트롤러(40)의 ROM(기억 장치)(93)에 기억해 두고, 이 관계를 적절히 판독하여 행한다. 거리 D는, 자세 연산부(43b)에서 연산한 버킷(10)의 클로 끝의 위치(좌표)와, ROM(93)에 기억된 목표면(60)을 포함하는 직선의 거리로부터 산출할 수 있다. 도 9의 그래프에서는, 제한값 ay는, 거리 D마다 설정되어 있고, 또한, 거리 D가 제로에 가까워질수록 그 절댓값은 작아지도록 설정되어 있다. 개입 강도 입력 장치(96)의 스틱부가 초기 위치에 있는 경우에는 도 9의 그래프를 기초로 제한값 ay가 결정된다. 또한, 제한값 ay와 거리 D의 관계는, 거리 D의 증가와 함께 제한값 ay가 단조 감소하는 특성을 갖는 것이 바람직하지만, 도 9에 나타낸 것으로 한정되지 않는다. 예를 들어, 거리 D가 양의 소정값 이상 또는 음의 소정값 이하로 제한값 ay가 개별의 소정값으로 유지되도록 해도 되고, 제한값 ay와 거리 D의 관계를 곡선으로 정의해도 된다.
다음에 목표 버킷 선단 속도 연산부(43f)는, 보정 정도 연산부(43m)로부터 입력되는 개입 강도의 보정량을 기초로 제한값 ay와 거리 D의 관계를 변화시키고, 이것에 의해 동일한 거리 D에 있어서의 제한값 ay를 개입 강도의 보정량에 따라 변화시킨다. 구체적으로는, 개입 강도 입력 장치(96)의 스틱부가 안쪽 방향(일 방향)으로 조작되면, 목표 버킷 선단 속도 연산부(43f)는, 거리 D별 제한값 ay를, 각각 초기 위치의 값 이상의 값으로 변화시킨다(즉 초기 위치의 상태보다도 머신 컨트롤이 개입하는 정도가 커지는 방향으로 변화한다). 반대로, 개입 강도 입력 장치(96)가 앞쪽 방향(타 방향)으로 조작되면, 목표 버킷 선단 속도 연산부(43f)는, 거리 D별 제한값 ay를, 각각 초기 위치의 값 이하의 값으로 변화시킨다(즉, 초기 위치의 상태보다도 머신 컨트롤이 개입하는 정도가 작아지는 방향으로 변화한다). 본 실시 형태의 제한값 ay는, 개입 강도(입력 장치(96)의 경도 방향 및 경도량으로부터 산출되는 보정량으로 보정한 개입 강도)에 따라 도 10의 그래프와 같이 변화한다. 제한값 ay는, 개입 강도가 양인 경우, 개입 강도의 크기의 증가와 함께 커지도록 보정되고, 개입 강도가 음인 경우, 개입 강도의 크기 증가와 함께 작아지도록 보정된다. 도 10의 예에서는, 양의 개입 강도에서의 제한값 ay의 분포를 V자형으로 하고, 음의 개입 강도에서의 분포를 역 V자형으로 하였다. 또한, 도 10에서는 개입 강도의 보정량이 -10, -5, 0, +5, +10인 5단계의 그래프를 나타내고 있지만, 말할 필요도 없이 다른 단계의 그래프도 기억되어 있다. 또한, 도 10의 예에서는 각 개입 강도의 제한값 ay를 원점을 통과하는 직선 또는 꺾은선 상에 분포시켰지만, 원점을 통과하는 곡선상으로 분포시켜도 된다. 또한, 도 9를 경유하지 않고 도 10으로부터 제한값 ay를 직접 산출해도 된다.
또한 목표 버킷 선단 속도 연산부(43f)는, 버킷 선단의 속도 벡터 B의 목표면(60)에 수직인 성분 by를 취득하고, 이 수직 성분 by와 제한값 ay의 양음과 절댓값의 대소 관계를 기초로, 머신 컨트롤에 의한 붐(8)의 동작에서 발생해야 할 버킷 선단의 속도 벡터 C의 목표면(60)에 수직인 성분 cy를 산출하기 위하여 필요한 식을 선택한다(식의 선택 과정에 대해서는 도 12, 14 등을 사용하여 후술한다). 그리고, 그 선택한 식으로부터 수직 성분 cy를 산출하고, 그 수직 성분 cy를 발생시킬 때 붐에 허용되는 동작으로부터 수평 성분 cx를 산출함과 함께, 속도 벡터 B, C와 제한값 ay로부터 목표 속도 벡터 T를 산출한다. 이하에서는, 목표 속도 벡터 T에 있어서 목표면(60)에 수직인 성분을 ty, 수평인 성분을 tx라고 하고, 목표 벡터 T의 도출 과정에 대해서도 도 12, 14 등을 사용하여 후술한다.
목표 실린더 속도 연산부(43g)는, 목표 버킷 선단 속도 연산부(43f)에서 산출된 목표 속도 벡터 T(tx,ty)를 기초로 각 유압 실린더(5, 6, 7)의 목표 속도를 연산한다. 본 실시 형태에서는, 목표 속도 벡터 T를, 오퍼레이터 조작에 의한 속도 벡터 B와, 머신 컨트롤에 의한 속도 벡터 C의 합으로 정의하고 있으므로, 붐 실린더(5)의 목표 속도는 속도 벡터 C로부터 연산할 수 있다. 이에 의해, 버킷 선단의 목표 속도 벡터 T는, 각 유압 실린더(5, 6, 7)를 목표 속도로 동작시켰을 때 버킷 선단에 나타나는 속도 벡터의 합성값이 된다.
목표 파일럿압 연산부(43h)는, 목표 실린더 속도 연산부(43g)에서 산출된 각 실린더(5, 6, 7)의 목표 속도를 기초로 각 유압 실린더(5, 6, 7)의 유량 제어 밸브(15a, 15b, 15c)에 대한 목표 파일럿압을 연산한다. 그리고, 연산한 각 유압 실린더(5, 6, 7)의 목표 파일럿압을 전자 비례 밸브 제어부(44)에 출력한다.
전자 비례 밸브 제어부(44)는, 목표 파일럿압 연산부(43h)에서 산출된 각 유량 제어 밸브(15a, 15b, 15c)에 대한 목표 파일럿압을 기초로, 각 전자 비례 밸브(54 내지 56)에 대한 명령을 연산한다.
또한, 오퍼레이터 조작에 기초하는 파일럿압(제1 제어 신호)과, 목표 파일럿압 연산부(43h)에서 산출된 목표 파일럿압이 일치하는 경우에는, 해당하는 전자 비례 밸브(54 내지 56)에 대한 전류값(명령값)은 제로가 되고, 해당하는 전자 비례 밸브(54 내지 56)의 동작은 행해지지 않는다.
<머신 컨트롤의 흐름도>
[모드 판정 처리]
도 11은 제어 컨트롤러(40)의 모드 판정부(43n)에서 실행되는 모드 판정 처리의 흐름도이다. 이 흐름도는, 유압 셔블(1)의 전원이 ON인 사이, 소정의 제어 주기로 반복된다. 도 11의 흐름도가 개시되면, 모드 판정부(43n)는, 먼저 S110에서, 조작량 연산부(43a)로부터의 입력을 기초로 오퍼레이터에 의한 암 클라우드 조작이 없는지 여부를 판정한다. 여기서 암 클라우드 조작이 없는 경우에는 S112로 진행된다. 한편, 암 클라우드 조작이 있는 경우에는 S118로 진행되고, 도 14에 나타내는 붐 올림·내림 모드를 제어 신호 연산부(43X)에서 실행한다.
S112에서는, 모드 판정부(43n)는, 조작량 연산부(43a)로부터의 입력을 기초로 오퍼레이터에 의한 붐 내림 조작이 있는지 여부를 판정한다. 여기서 붐 내림 조작이 있는 경우에는 S114로 진행된다. 한편, 붐 내림 조작이 없는 경우에는 S118로 진행되어 붐 올림·내림 모드를 제어 신호 연산부(43X)에서 실행한다.
S114에서는, 모드 판정부(43n)는, 자세 연산부(43b)로부터 입력되는 작업기(1A)의 자세와, 목표면 연산부(43c)로부터 입력되는 목표면(60)의 위치 정보를 기초로, 버킷 클로 끝이 목표면(60)의 위 또는 상방에 있는지 여부를 판정한다. 여기서 클로 끝이 목표면(60)의 위 또는 상방에 있는 경우에는 S116로 진행되고, 도 12에 나타내는 붐 내림 감속 모드를 제어 신호 연산부(43X)에서 실행한다. 한편, 클로 끝이 목표면(60)의 하방에 있는 경우에는 S118로 진행되어 붐 올림·내림 모드를 제어 신호 연산부(43X)에서 실행한다.
S116 또는 S118이 종료되어 소정의 제어 주기가 경과하면, S110으로 되돌아가서 마찬가지의 처리를 반복한다.
[붐 내림 감속 모드]
도 12는 제어 컨트롤러(40)의 제어 신호 연산부(43X)에서 실행되는 붐 내림 감속 모드(도 11의 S116)의 흐름도이다. 도 11의 흐름도에 있어서 S116에 도달하면, 제어 신호 연산부(43X)는 도 12의 흐름도를 개시한다.
S410에서는, 실린더 속도 연산부(43d)는, 조작량 연산부(43a)에서 연산된 조작량을 기초로 각 유압 실린더(5, 6, 7)의 동작 속도(실린더 속도)를 연산한다.
S420에서는, 버킷 선단 속도 연산부(43e)는, 실린더 속도 연산부(43d)에서 연산된 각 유압 실린더(5, 6, 7)의 동작 속도와, 자세 연산부(43b)에서 연산된 작업기(1A)의 자세를 기초로, 오퍼레이터 조작에 의한 버킷 선단(클로 끝)의 속도 벡터 B를 연산한다.
S430에서는, 버킷 선단 속도 연산부(43e)는, 자세 연산부(43b)에서 연산한 버킷(10)의 클로 끝의 위치(좌표)와, ROM(93)에 기억된 목표면(60)을 포함하는 직선의 거리로부터, 버킷 선단으로부터 제어 대상의 목표면(60)까지의 거리 D(도 5 참조)를 산출한다. 그리고, 거리 D와 도 9의 그래프를 기초로 버킷 선단의 속도 벡터의 목표면(60)에 수직인 성분의 제한값 ay를 산출한다. 또한, 보정 정도 연산부(43m)로부터 입력되는 개입 강도의 보정량과, 도 10의 그래프와, 거리 D를 기초로 제한값 ay를 산출한다. 또한, 도 11의 흐름도에서 붐 내림 감속 모드가 선택된 경우에는 거리 D는 양(+)이며, 그 경우, 도 10으로부터 제한값 ay는 음(-)이 된다.
S440에서는, 버킷 선단 속도 연산부(43e)는, S420에서 산출한 오퍼레이터 조작에 의한 버킷 선단의 속도 벡터 B에 있어서, 목표면(60)에 수직인 성분 by를 취득한다.
S470에서는, 목표 버킷 선단 속도 연산부(43f)는, 제한값 ay와 수직 성분 by의 절댓값을 비교하여, 제한값 ay의 절댓값이 수직 성분 by의 절댓값 이상인 경우에는 S600으로 진행된다. 한편, 제한값 ay의 절댓값이 수직 성분 by의 절댓값 미만인 경우에는 S610으로 진행된다.
S600으로 진행된 경우, 속도 벡터 B에 있어서의 수직 성분 by의 크기는 제한값 ay의 크기 이하이므로, 머신 컨트롤에 의해 속도 벡터 B를 감속할 필요가 없다. 즉, S600에 도달한 경우의 목표 속도 벡터 T는, 오퍼레이터 조작에 의한 속도 벡터 B와 일치한다. 따라서, 목표 속도 벡터 T의 목표면(60)에 수직인 성분을 ty, 수평인 성분 tx라 하면, 각각 「ty=by, tx=bx」라고 나타낼 수 있다.
한편, S610으로 진행된 경우, 속도 벡터 B에 있어서의 수직 성분 by의 크기는 제한값 ay의 크기를 초과하므로, 머신 컨트롤에 의해 속도 벡터 B의 수직 성분을 제한값 ay까지 감속시켜야 한다. 그래서, 목표 버킷 선단 속도 연산부(43f)는, 목표 속도 벡터 T의 수직 성분 ty를 ay로 한다(S610). 그리고, 머신 컨트롤에 의한 붐 내림의 감속으로 제한값 ay를 출력 가능한 속도 벡터 A를 산출하여, 그 수평 성분 (ax)를 목표 속도 벡터 T의 수평 성분 tx로 한다(S620). S610, 620의 결과로부터 목표 속도 벡터 T는 결국 「ty=ay, tx=ax」가 된다(S630).
또한, 상기 S610 내지 S630은, 머신 컨트롤의 결과의 버킷 선단의 속도 벡터의 방향을, 오퍼레이터의 조작에 의한 속도 벡터의 방향에 맞출 경우의 처리이다. 이 외에 머신 컨트롤에서는 목표면에 평행한 방향의 속도 성분에 개입하지 않는 방식도 생각할 수 있다. 이 경우, S610 및 S620은 생략하고, S630에서 ty=ay, tx=bx로 한다.
S550에서는, 목표 실린더 속도 연산부(43g)는, S600 또는 S630에서 결정한 목표 속도 벡터 T(ty,tx)를 기초로 각 유압 실린더(5, 7)의 목표 속도를 연산한다. 목표 속도 벡터 T의 수직 성분 ty가 ay에서 수평 성분 tx가 ax일 때(즉 S630을 통과했을 때), 본 실시 형태에서는, 암 및 버킷의 동작(조작)에 대하여는 머신 컨트롤을 개입시키지 않고, 붐 내림의 동작에 대하여 머신 컨트롤을 개입시켜서 목표 속도 벡터 T를 실현하도록 설정되어 있다. 즉, 이때, 붐(8)의 유량 제어 밸브(15a)에 대해서는 제2 제어 신호가 연산되지만, 암(9) 및 버킷(10)의 유량 제어 밸브(15b, 15c)에 대해서는 제2 제어 신호는 연산되지 않는다.
S560에서는, 목표 파일럿압 연산부(43h)는, S550에서 산출된 각 실린더(5, 7)의 목표 속도를 기초로 각 유압 실린더(5, 7)의 유량 제어 밸브(15a, 15c)에 대한 목표 파일럿압을 연산한다.
S590에서는, 목표 파일럿압 연산부(43h)는, 각 유압 실린더(5, 7)의 유량 제어 밸브(15a, 15c)에 대한 목표 파일럿압을 전자 비례 밸브 제어부(44)에 출력한다. 전자 비례 밸브 제어부(44)는, 각 유압 실린더(5, 7)의 유량 제어 밸브(15a, 15c)에 목표 파일럿압이 작용하도록 전자 비례 밸브(54, 56)를 제어하고, 이에 의해 비탈면 다지기 작업을 포함하는 붐 내림 동작이 행해진다. 특히, S630을 경유한 경우에는 목표 속도 벡터의 수직 성분 ty가 제한값 ay로 제한되고, 머신 컨트롤에 의한 붐 내림의 감속이 발동된다.
상기와 같이 구성된 유압 셔블(1)을 사용하여 비탈면 다지기 작업(수평면의 다지기 동작)을 행한 경우의 동작을, 도 13을 사용하여 설명한다. 도 13의 (a)는 개입 강도가 초기 위치의 동작이고, 도 13의 (b)는 개입 강도를 작게 한 경우(예를 들어 -5)의 동작이다. 어느 경우도 시각 T1에서 오퍼레이터가 붐 내림 조작을 행하고 있고, 붐(8)이 내려감으로써, 목표면(60)과의 거리 D가 작아진다. 그 후, 시각 T2에서 거리가 D1일 때 속도 벡터 B의 수직 성분 by가 제한값 ay에 도달했다고 하면, 시각 T2부터 머신 컨트롤에 의해 붐 내림 속도가 제한되어, 시각 T3에서 목표면(60)과의 거리 D가 0이 되면 붐 내림 파일럿압이 0이 된다.
개입 강도가 초기 위치의 값(기준값)인 경우, 도 13의 (a)에 나타내는 바와 같이, 붐 내림 속도가 제한되기 시작하는 거리 D1이 상대적으로 크고, 거리 D의 변화율이 상대적으로 작다. 이 경우, 3단째의 그래프에 나타내는 바와 같이, 붐 내림 속도의 명령값과 실제의 값과의 괴리가 작고, 버킷(10)은 원활하게 목표면(60)에 도달한다. 그 때문에, 시각 T3 직후의 붐 로드압의 상승도가 작다.
한편, 개입 강도를 초기 위치의 값보다도 작게 한 경우, 도 13의 (b)에 나타내는 바와 같이, 붐 내림 속도가 제한되기 시작하는 거리 D1이 상대적으로 작아지고, 거리 D의 변화율이 상대적으로 커진다. 이 경우, 붐 내림 속도의 명령값과 실제의 값의 괴리가 크고, 목표면(60)에 도달하기 직전의 붐 내림 속도가 도 13의 (a)의 경우와 비교하여 크다. 그 때문에, 목표면(60)에 충돌하면서 버킷(10)이 정지하고, 시각 T3 직후의 붐 로드압의 상승도가 도 13의 (a)의 경우와 비교하여 커진다.
즉, 도 12의 흐름도에 따라서 제어되는 셔블에 있어서는, 개입 강도 입력 장치(96)의 앞쪽 방향의 경도량을 변화시킴으로써 거리 D별 제한값 ay를 초기 위치의 값보다 작게 하면, 머신 컨트롤 ON/OFF 스위치(17)가 ON인 상태여도 붐 내림에 의해 버킷(10)으로 목표면(60)을 압박할 수 있다(즉, 비탈면 다지기를 할 수 있다). 또한, 그 때의 압박력은 개입 강도 입력 장치(96)의 앞쪽 방향의 경도량을 변화시킴으로써 조정할 수 있다. 또한, 개입 강도 입력 장치(96)를 이용하여 머신 컨트롤의 개입 강도를 오퍼레이터의 기량이나 기호에 맞춰서 조절하면, 공정수나 정신적 부담의 경감 효과를 발휘할 수 있다.
[붐 올림·내림 모드]
도 14는 제어 컨트롤러(40)의 제어 신호 연산부(43X)에서 실행되는 붐 올림·내림 모드(도 11의 S118)의 흐름도이다. 도 11의 흐름도에 있어서 S118에 도달하면, 제어 신호 연산부(43X)는 도 14의 흐름도를 개시한다. 이하에서는, 도 12와 동일한 처리에 대해서는 설명을 생략하고, S450의 설명부터 시작한다.
S450에서는, 목표 버킷 선단 속도 연산부(43f)는, S430에서 산출한 제한값 ay가 0 이상인지 여부를 판정한다. 또한, 도 14의 우측 상단에 나타내는 바와 같이 xy 좌표를 설정한다. 당해 xy 좌표에서는, x축은 목표면(60)과 평행하고 도면 중 우측 방향을 양으로 하고, y축은 목표면(60)에 수직으로 도면 중 상측 방향을 양으로 한다. 도 14 중의 범례에서는 수직 성분 by 및 제한값 ay는 음이며, 수평 성분 bx 및 수평 성분 cx 및 수직 성분 cy는 양이다. 그리고, 도 9, 10으로부터 명백하지만, 제한값 ay가 0일 때는 거리 D가 0, 즉 클로 끝이 목표면(60) 위에 위치하는 경우이며, 제한값 ay가 양일 때는 거리 D가 음, 즉 클로 끝이 목표면(60)보다 하방에 위치하는 경우이며, 제한값 ay가 음일 때는 거리 D가 양, 즉 클로 끝이 목표면(60)보다 상방에 위치하는 경우이다. S450에서 제한값 ay가 0 이상이라고 판정된 경우(즉, 클로 끝이 목표면(60) 위 또는 그 하방에 위치하는 경우)에는 S460으로 진행되고, 제한값 ay가 0 미만인 경우에는 S480으로 진행된다.
S460에서는, 목표 버킷 선단 속도 연산부(43f)는, 오퍼레이터 조작에 의한 클로 끝의 속도 벡터 B의 수직 성분 by가 0 이상인지 여부를 판정한다. by가 양인 경우는 속도 벡터 B의 수직 성분 by가 상향 추세인 것을 나타내고, by가 음인 경우는 속도 벡터 B의 수직 성분 by가 하향 추세인 것을 나타낸다. S460에서 수직 성분 by가 0 이상이라고 판정된 경우(즉, 수직 성분 by가 상향 추세인 경우)에는 S470으로 진행되고, 수직 성분 by가 0 미만인 경우에는 S500으로 진행된다.
S470에서는, 목표 버킷 선단 속도 연산부(43f)는, 제한값 ay와 수직 성분 by의 절댓값을 비교하여, 제한값 ay의 절댓값이 수직 성분 by의 절댓값 이상인 경우에는 S500으로 진행된다. 한편, 제한값 ay의 절댓값이 수직 성분 by의 절댓값 미만인 경우에는 S530으로 진행된다.
S500에서는, 목표 버킷 선단 속도 연산부(43f)는, 머신 컨트롤에 의한 붐(8)의 동작으로 발생해야 할 버킷 선단의 속도 벡터 C의 목표면(60)에 수직인 성분 cy를 산출하는 식으로서 「cy=ay-by」를 선택하여, 그 식과 S430의 제한값 ay와 S440의 수직 성분 by를 기초로 수직 성분 cy를 산출한다. 그리고, 산출한 수직 성분 cy를 붐(8)의 동작만으로 출력 가능한 붐(8)의 속도 벡터 C를 그 시점의 프론트 작업기(1A)의 자세와 수직 성분 cy에 기초하여 산출하고, 그 수평 성분을 cx로 한다(S510).
S520에서는, 목표 속도 벡터 T를 산출한다. 목표 속도 벡터 T의 목표면(60)에 수직인 성분을 ty, 수평인 성분 tx로 하면, 각각 「ty=by+cy, tx=bx+cx」라고 나타낼 수 있다. 이것에 S500의 식(cy=ay-by)을 대입하면 목표 속도 벡터 T는 결국 「ty=ay, tx=bx+cx」가 된다. 즉, S520에 도달한 경우의 목표 속도 벡터의 수직 성분 ty는 제한값 ay로 제한되어, 머신 컨트롤에 의한 강제 붐 올림이 발동된다.
S480에서는, 목표 버킷 선단 속도 연산부(43f)는, 오퍼레이터 조작에 의한 클로 끝의 속도 벡터 B의 수직 성분 by가 0 이상인지 여부를 판정한다. S480에서 수직 성분 by가 0이상이라고 판정된 경우(즉, 수직 성분 by가 상승 추세인 경우)에는 S530으로 진행되고, 수직 성분 by가 0 미만인 경우에는 S490으로 진행된다.
S490에서는, 목표 버킷 선단 속도 연산부(43f)는, 제한값 ay와 수직 성분 by의 절댓값을 비교하여, 제한값 ay의 절댓값이 수직 성분 by의 절댓값 이상인 경우에는 S530으로 진행된다. 한편, 제한값 ay의 절댓값이 수직 성분 by의 절댓값 미만인 경우에는 S500으로 진행된다.
S530에 도달한 경우, 머신 컨트롤로 붐(8)을 동작시킬 필요가 없으므로, 목표 버킷 선단 속도 연산부(43f)는, 속도 벡터 C를 제로로 한다. 이 경우, 목표 속도 벡터 T는, S520에서 이용한 식(ty=by+cy, tx=bx+cx)에 기초하면 「ty=by, tx=bx」가 되어, 오퍼레이터 조작에 의한 속도 벡터 B와 일치한다(S540).
S550에서는, 목표 실린더 속도 연산부(43g)는, S520 또는 S540에서 결정한 목표 속도 벡터 T(ty,tx)를 기초로 각 유압 실린더(5, 6, 7)의 목표 속도를 연산한다. 또한, 상기 설명으로부터 명백하지만, 도 14의 경우에 목표 속도 벡터 T가 속도 벡터 B에 일치하지 않을 때는, 머신 컨트롤에 의한 붐(8)의 동작으로 발생하는 속도 벡터 C를 속도 벡터 B에 가함으로써 목표 속도 벡터 T를 실현한다.
S560에서는, 목표 파일럿압 연산부(43h)는, S550에서 산출된 각 실린더(5, 6, 7)의 목표 속도를 기초로 각 유압 실린더(5, 6, 7)의 유량 제어 밸브(15a, 15b, 15c)에 대한 목표 파일럿압을 연산한다.
S590에서는, 목표 파일럿압 연산부(43h)는, 각 유압 실린더(5, 6, 7)의 유량 제어 밸브(15a, 15b, 15c)에 대한 목표 파일럿압을 전자 비례 밸브 제어부(44)에 출력한다. 전자 비례 밸브 제어부(44)는, 각 유압 실린더(5, 6, 7)의 유량 제어 밸브(15a, 15b, 15c)에 목표 파일럿압이 작용하도록 전자 비례 밸브(54, 55, 56)를 제어하고, 이에 의해 작업기(1A)에 의한 굴삭이 행해진다. 예를 들어, 오퍼레이터가 조작 장치(45b)를 조작하여, 암 클라우드 동작에 의해 수평 굴삭을 행하는 경우에는, 버킷(10)의 선단이 목표면(60)에 침입하지 않도록 전자 비례 밸브(55c)가 제어되고, 붐(8)의 올림 동작이 자동적으로 행해진다.
또한, 여기에서는 설명을 간략화하기 위해서, S480에서 "예"의 경우에 S530으로 진행되도록 구성했지만, S530 대신에 S500으로 진행되도록 구성을 변경해도 된다. 이렇게 구성하면, 암(9)의 자세가 대략 수직이 되는 위치로부터 더 암 클라우드 조작을 하면 머신 컨트롤에 의한 강제 붐 내림이 발동하여 목표면(60)에 따른 굴삭이 행해지게 되므로, 목표면(60)에 따른 굴삭 거리를 길게 할 수 있다. 또한, 도 14의 흐름도에서는 강제 붐 올림을 행하는 경우의 예를 들었지만, 굴삭 정밀도 향상을 위하여, 머신 컨트롤에 암(9)의 속도를 필요에 따라서 감속시키는 제어를 추가해도 된다. 또한, 버킷(10)의 목표면(60)에 대한 각도 B가 일정값이 되어, 고르기 작업이 용이하게 되게, 전자 비례 밸브(56c, 56d)를 제어하여 버킷(10)의 각도가 원하는 각도로 유지되는 제어를 추가해도 된다.
도 14의 흐름도에 따라서 제어되는 셔블에 있어서도, 개입 강도 입력 장치(96)를 이용하여 머신 컨트롤의 개입 강도를 오퍼레이터의 기량이나 기호에 맞춰 조절하면, 공정수나 정신적 부담의 경감 효과를 발휘할 수 있다.
<개입 강도와 제한값 ay와 거리 D의 관계의 변형예>
개입 강도와 제한값 ay와 거리 D의 관계는, 도 10에 나타내기는 하였지만 그 밖에도, 예를 들어 도 16이나 도 17에 나타낸 것이 이용 가능하다.
도 16의 예는, 속도 벡터 B의 목표면(60)에 수직인 성분 by에 제한이 걸리는 거리 D의 범위가 결정되어 있는 패턴이며, 개입 강도의 변화에 따라 그 범위도 변화되도록 설정되어 있다. 이렇게 설정하면, by에 제한이 걸리는 범위를 직접적으로 변경할 수 있다. 또한, 표시 장치(53)의 표시부(375)에 by에 제한이 걸리는 거리를 표시하면, by에 제한이 걸리는 범위를 오퍼레이터가 직감적으로 이해하기 쉽다는 장점도 있다.
도 17의 예는, 도 16과 마찬가지로 속도 벡터 B의 목표면(60)에 수직인 성분 by에 제한이 걸리는 거리 D의 범위가 결정되어 있는 패턴인데, 개입 강도의 변화에 따라 그 범위는 변화하지 않지만 제한값이 변화되도록 설정되어 있다. 이렇게 설정하면, by에 제한이 걸리기 시작하는 제한값을 직접적으로 변경할 수 있다.
<개입 강도 입력 장치(96)의 변형예>
도 18a, b, c는, 머신 컨트롤 ON/OFF 스위치(17)를 구비하고, 개입 강도 입력 장치(96)(입력 장치)로서도 기능하는 조작 레버(1a)의 구성도이다. 도 18a는 조작 레버(1a)의 상면도, 도 18b는 그 측면도, 도 18c는 그 전방면도이다.
도(18)의 조작 레버(1a)는, 도 18a에 나타내는 바와 같이 레버축의 둘레 방향으로 좌우로 회전 가능하게 구성되어 있고, 그 회전 방향 및 회전량(조작 방향 및 조작량)을 개입 강도로서 제어 컨트롤러(40)(머신 컨트롤부(43))에 출력하고 있다. 이렇게 조작 레버(1a)를 구성하면, 오퍼레이터가 스스로 조정하고 있는 개입 강도는, 목시가 아닌, 조작 레버(1a)를 조작한 손의 비틀기 구체로 파악할 수 있으므로, 원하는 압박력을 유지하면서 비탈면 다지기 작업을 행하는 것이 용이하다. 또한, 작업 중, 조작 레버(1a)로부터 손을 떼지 않고 개입 강도를 조절할 수 있으므로, 작업 효율의 저하를 방지할 수 있다.
또한, 도 8 및 도 18에 예시한 입력 장치(96)는, 직선 조작형의 가변 저항기 등으로 구성할 수 있다. 가변 저항기에는 디텐트 등을 마련하여, 연속적으로 자유로운 개입 강도로 설정할 수 있음과 함께, 일정한 강도로 용이하게 설정할 수 있도록 해도 된다.
<효과>
상기의 실시 형태의 효과에 대하여 정리한다.
(1) 상기의 실시 형태에서는, 복수의 유압 액추에이터(5, 6, 7)에 의해 구동되는 작업기(1A)와, 오퍼레이터의 조작에 따라 프론트 작업기(1A)의 동작을 지시하는 조작 장치(45a, 45b, 46c)와, 조작 장치(45a, 45b, 46c)의 조작 시에, 미리 정한 조건에 따라 프론트 작업기(1A)를 동작시키는 머신 컨트롤을 실행하는 머신 컨트롤부(43)를 갖는 제어 컨트롤러(40)를 구비하는 유압 셔블(1)에 있어서, 오퍼레이터에 의해 조작되는 개입 강도 입력 장치(96)를 구비하고, 제어 컨트롤러(40)는, 개입 강도 입력 장치(96)의 조작량에 기초하여, 조작 장치(45a, 45b, 46c)의 조작으로 지시되는 프론트 작업기(1A)의 동작에 머신 컨트롤이 개입하는 정도의 대소를 나타내는 개입 강도의 보정량을 산출하는 보정 정도 연산부(43m)를 더 구비하고, 머신 컨트롤부(43)는, 보정 정도 연산부(43m)에서 산출된 보정량에 기초하여 보정된 개입 강도로, 조작 장치(45a, 45b, 46c)의 조작으로 지시되는 프론트 작업기(1A)의 동작에 머신 컨트롤을 개입시키는 것으로 하였다.
이렇게 오퍼레이터 조작에 대한 머신 컨트롤의 개입 강도(작업기(1A)의 선단의 속도 벡터 B에 관한 제한값)를 변경 가능하게 구성한 경우, 개입 강도 입력 장치(96)를 이용하여 개입 강도를 초기 위치의 값보다도 작은 범위로 조절함으로써, 목표면(60)에 충돌할 때의 붐 내림 속도를 조절할 수 있고, 이에 의해 비탈면 다지기 시의 압박력을 조정할 수 있다. 또한, 오퍼레이터가 스스로 조정하고 있는 개입 강도는, 목시가 아닌, 개입 강도 입력 장치(96)를 조작했을 때의 손가락의 연장 상태 등의 체감으로 파악할 수 있으므로, 원하는 압박력을 유지하면서 비탈면 다지기 작업을 행하는 것이 용이하다.
또한, 종래의 머신 컨트롤 기능(영역 제한 제어 기능)을 탑재한 셔블에서는, 목표면을 초과하는 작업기의 움직임은 억제되기 때문에, 머신 컨트롤 실행 중에 버킷(10)으로 목표면을 압박할 수 없다. 이 때문에, 머신 컨트롤을 사용하면서, (A) 어떤 1 스트로크로 중처리의 굴삭 동작, (B) 비탈면 다지기에 의한 다지기 동작, (C) 다음의 1 스트로크로 마무리의 굴삭 동작, (D) 설계 시공면에 대한 셔블의 평행 이동이라는 4종류로 이루어지는 일련의 동작을 반복하는 장면에 있어서는, (B)의 비탈면 다지기 때마다 머신 컨트롤을 OFF로 할 필요가 있다. 또한, 그 후, 머신 컨트롤에 의한 (C)의 마무리 작업이 행해지기 때문에, 비탈면 다지기 작업에서 일단 OFF로 한 머신 컨트롤 기능을 ON으로 해야 하고, 이 일련의 전환 조작이 오퍼레이터의 부담이 된다.
그러나, 본 실시 형태와 같이 조작 레버(1a)에 개입 강도 입력 장치(96)를 마련하면, 개입 강도 입력 장치(96)로 개입 강도를 작게 함으로써 조작 레버(1a, 1b)로부터 손을 떼지 않고 머신 컨트롤 기능을 실질적으로 OFF로 할 수 있다. 이에 의해, 상기와 같은 일련의 동작 중에 비탈면 다지기 등으로 머신 컨트롤을 일시적으로 OFF로 하는 것이 용이해져, 오퍼레이터의 부담을 경감할 수 있음과 함께 작업 효율을 향상시킬 수 있다.
또한, 오퍼레이터 조작에 의해 버킷(10)의 클로 끝을 목표면(60) 위에 항상 정확하게 이동시키는 것은 어렵지만, 머신 컨트롤에서 규정되는 동작보다도 빠르게 목표면(60)에 가까운 위치까지 버킷(10)의 클로 끝을 이동시키는 것이 가능한 기량이 높은 오퍼레이터는 실제로 존재한다. 이러한 종류의 오퍼레이터에 비하여, 다른 오퍼레이터와 마찬가지의 설정으로 머신 컨트롤이 개입하면, 작업 속도가 저하되어서 작업 공정수가 증대될 가능성이 있다. 그리고, 오퍼레이터에게 있어서는, 자신이 의도한 조작에 대하여 쓸데 없는 개입이 들어감으로써 정신적인 짜증남이 발생해 버려, 이것이 작업 시의 피로를 증대시키는 등의 문제를 발생시키는 경우가 있다. 그러나, 본 실시 형태와 같이 개입 강도 입력 장치(96)를 마련하면, 오퍼레이터의 기량이나 기호에 맞춰 개입 강도를 조절할 수 있으므로, 공정수 증대나 정신적 부담을 발생시키지 않고 연속하여 작업을 행할 수 있다.
(2) 특히, 상기의 실시 형태에서는, 개입 강도 입력 장치(96)는, 초기 위치를 기준으로 한 안쪽 방향(일 방향)과 앞쪽 방향(타 방향)으로 조작 가능하고, 입력 장치(96)가 안쪽 방향으로 조작되면, 제한값 ay는, 초기 위치의 상태보다도 머신 컨트롤이 개입하는 정도가 커지는 방향으로 변화하고, 입력 장치(96)가 앞쪽 방향으로 조작되면, 제한값 ay는, 초기 위치의 상태보다도 머신 컨트롤이 개입하는 정도가 작아지는 방향으로 변화하기로 하였다. 이에 의해, 개입 강도의 조정 폭이 넓어지므로, 보다 오퍼레이터의 기량이나 기호에 맞춘 개입 강도의 조절이 가능하다.
(3) 또한, 상기의 실시 형태에서는, 개입 강도 입력 장치(96)는, 작업 중에 오퍼레이터의 손이 놓이는 조작 레버(1a, 1b)에 마련되어 있다. 이에 의해, 오퍼레이터는, 작업 중, 조작 레버(1a, 1b)로부터 손을 떼지 않고 개입 강도를 조절할 수 있으므로, 작업 효율의 저하를 방지할 수 있다.
(4) 또한, 상기의 실시 형태에서는, 개입 강도 입력 장치(96)에 의한 제한값 ay의 변화의 정도(개입 강도의 정도)가 표시 장치(53)의 표시부(395)에 표시되도록 되어 있다. 이에 의해, 표시 장치(53)의 표시 화면에 시선을 돌림으로써 오퍼레이터는 현재의 개입 강도를 용이하게 파악할 수 있다.
<부기>
상기에서는, 머신 컨트롤을 따르는 미리 정한 조건으로서, 오퍼레이터 조작(제1 제어 신호)에 의해 발생되는 작업기(1A)의 선단의 속도 벡터 B에 관해서, 작업기(1A)의 선단의 속도 벡터의 목표면(60)에 대한 수직 성분의 크기 제한값 ay를 설정하고, 이것을 개입 강도 입력 장치(96)의 조작으로 변경 가능하게 구성했지만, 이것 이외의 제한값(조건)을 속도 벡터 B의 크기나 방향에 마련하여, 마찬가지로 개입 강도 입력 장치(96)의 조작으로 당해 제한값을 변경 가능하게 구성해도 된다. 이 경우, 오퍼레이터 조작에 의해 발생되는 작업기(1A)의 선단의 속도 벡터 B가 당해 제한값을 초과할 때, 당해 제한값을 초과하지 않는 작업기(1A)의 선단의 속도 벡터를 발생시키는 제2 제어 신호를 유량 제어 밸브(15a, 15b, 15c) 중 적어도 하나에 대하여 연산하는 것으로 한다.
상기에서는, 제한값 ay를 결정했지만, 거리 D가 제로에 가까워질수록 작아지는 1 이하의 값에 버킷 선단의 속도 벡터의 수직 성분을 곱한 값을 산출하고, 그 산출값에 기초하여 유압 액추에이터(5, 6, 7)(유량 제어 밸브(15a, 15b, 15c))를 제어하도록 구성해도 된다.
도 12의 흐름도에서는, 버킷 선단의 속도 벡터 B를 기준으로 하여 제어를 행했지만, 버킷(10)의 속도를 고려에서 제외하기 때문에, 암(9)의 선단 속도 벡터를 기준으로 하여 제어를 행해도 된다.
또한, 도 12의 붐 내림 감속 모드와 도 14의 붐 올림/내림 모드 2개의 모드를 실행 가능하게 제어 컨트롤러(40)를 구성했지만, 어느 쪽인가 한쪽의 모드를 실행 가능하게 제어 컨트롤러(40)를 구성해도 된다. 이 경우, 모드 판정부(43n) 및 이에 의해 도 11의 일련의 처리는 불필요해질 수 있다.
상기에서는, 개입 강도 입력 장치(96)에 의해 제한값 ay를 변경하여 개입 강도를 변경 가능하게 구성했지만, 제한값 ay는 도 9인채로 하고, 목표 파일럿압 연산부(43h)로부터 출력되는 제2 제어 신호에 보정을 가함으로써 개입 강도를 변경 가능하게 구성해도 된다.
상기의 제어 컨트롤러(40)에 관한 각 구성이나 당해 각 구성의 기능 및 실행 처리 등은, 그들의 일부 또는 전부를 하드웨어(예를 들어 각 기능을 실행하는 로직을 집적 회로에서 설계하는 등)로 실현해도 된다. 또한, 상기의 제어 컨트롤러(40)에 관한 구성은, 연산 처리 장치(예를 들어 CPU)에 의해 판독·실행됨으로써 당해 제어 컨트롤러(40)의 구성에 관한 각 기능이 실현되는 프로그램(소프트웨어)으로 해도 된다. 당해 프로그램에 관한 정보는, 예를 들어 반도체 메모리(플래시 메모리, SSD 등), 자기 기억 장치(하드디스크 드라이브 등) 및 기록 매체(자기 디스크, 광 디스크 등) 등에 기억시킬 수 있다.
1A: 프론트 작업기
8: 붐
9: 암
10: 버킷
17: 머신 컨트롤 ON/OFF 스위치
30: 붐 각도 센서
31: 암 각도 센서
32: 버킷 각도 센서
40: 제어 컨트롤러(제어 장치)
43: 머신 컨트롤부
43a: 조작량 연산부
43b: 자세 연산부
43c: 목표면 연산부
43d: 실린더 속도 연산부
43e: 버킷 선단 속도 연산부
43f: 목표 버킷 선단 속도 연산부
43g: 목표 실린더 속도 연산부
43h: 목표 파일럿압 연산부
43n: 모드 판정부
43m: 보정 정도 연산부
44: 전자 비례 밸브 제어부
45: 조작 장치(붐, 암)
46: 조작 장치(버킷, 선회)
47: 조작 장치(주행)
50: 작업기 자세 검출 장치
51: 목표면 설정 장치
52a, 52b: 오퍼레이터 조작 검출 장치
53: 표시 장치
54, 55, 56: 전자 비례 밸브
96: 개입 강도 입력 장치(입력 장치)
374: 표시 제어부
395: 개입 강도 표시부

Claims (6)

  1. 복수의 유압 액추에이터에 의해 구동되는 작업기와,
    오퍼레이터의 조작에 따라 상기 작업기의 동작을 지시하는 조작 장치와,
    상기 조작 장치의 조작 시에, 미리 정한 조건에 따라 상기 작업기를 동작시키는 머신 컨트롤을 실행하는 머신 컨트롤부를 갖는 제어 장치를 구비하는 작업 기계에 있어서,
    오퍼레이터에 의해 조작되는 개입 강도 입력 장치를 구비하고,
    상기 제어 장치는, 상기 개입 강도 입력 장치의 조작량에 기초하여, 상기 조작 장치의 조작으로 지시되는 상기 작업기의 동작에 상기 머신 컨트롤이 개입하는 정도의 대소를 나타내는 개입 강도의 보정량을 산출하는 보정 정도 연산부를 더 구비하고,
    상기 머신 컨트롤부는, 상기 보정 정도 연산부에서 산출된 상기 보정량에 기초하여 보정된 개입 강도로, 상기 조작 장치의 조작으로 지시되는 상기 작업기의 동작에 상기 머신 컨트롤을 개입시키는 것을 특징으로 하는 작업 기계.
  2. 제1항에 있어서,
    상기 미리 정한 조건에는, 상기 작업기의 선단으로부터 임의의 목표면까지의 목표면 거리가 소정값 이하일 때 상기 머신 컨트롤이 실행되는 것이 규정되어 있고,
    상기 소정값은, 상기 개입 강도에 따라 변화하는 것을 특징으로 하는 작업 기계.
  3. 제1항에 있어서,
    상기 미리 정한 조건으로서, 상기 작업기의 선단의 속도 벡터의 임의의 목표면에 대한 수직 성분의 크기 제한값이 규정되어 있고,
    상기 제한값은, 상기 작업기의 선단으로부터 상기 목표면까지의 목표면 거리마다 설정되어 있고,
    상기 머신 컨트롤부는, 상기 조작 장치의 조작에 의해 발생되는 상기 속도 벡터의 상기 수직 성분의 크기가 상기 제한값을 초과할 때, 상기 속도 벡터의 상기 수직 성분의 크기가 상기 제한값으로 유지되도록 상기 머신 컨트롤을 실행하고,
    상기 목표면 거리별 상기 제한값은, 상기 개입 강도에 따라 변화하는 것을 특징으로 하는 작업 기계.
  4. 제1항에 있어서,
    상기 개입 강도 입력 장치는, 초기 위치를 기준으로 한 일 방향과 타 방향 중 적어도 한쪽으로 조작 가능하고,
    상기 개입 강도 입력 장치가 상기 일 방향으로 조작되면, 상기 개입 강도는, 상기 초기 위치의 상태보다도 상기 머신 컨트롤이 개입하는 정도가 커지는 방향으로 변화하고,
    상기 개입 강도 입력 장치가 상기 타 방향으로 조작되면, 상기 개입 강도는, 상기 초기 위치의 상태보다도 상기 머신 컨트롤이 개입하는 정도가 작아지는 방향으로 변화하는 것을 특징으로 하는 작업 기계.
  5. 제1항에 있어서,
    상기 조작 장치는, 오퍼레이터의 손이 놓이는 파지부를 갖고,
    상기 개입 강도 입력 장치는, 상기 파지부에 마련되어 있는 것을 특징으로 하는 작업 기계.
  6. 제1항에 있어서,
    상기 개입 강도 입력 장치에 의한 상기 개입 강도의 정도가 표시되는 표시 장치를 더 구비하는 것을 특징으로 하는 작업 기계.
KR1020197006476A 2017-03-21 2017-11-15 작업 기계 KR102154581B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2017-055060 2017-03-21
JP2017055060A JP6581136B2 (ja) 2017-03-21 2017-03-21 作業機械
PCT/JP2017/041134 WO2018173361A1 (ja) 2017-03-21 2017-11-15 作業機械

Publications (2)

Publication Number Publication Date
KR20190034648A KR20190034648A (ko) 2019-04-02
KR102154581B1 true KR102154581B1 (ko) 2020-09-10

Family

ID=63585987

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197006476A KR102154581B1 (ko) 2017-03-21 2017-11-15 작업 기계

Country Status (6)

Country Link
US (1) US11261578B2 (ko)
EP (1) EP3604684B1 (ko)
JP (1) JP6581136B2 (ko)
KR (1) KR102154581B1 (ko)
CN (1) CN109689978B (ko)
WO (1) WO2018173361A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10995472B2 (en) * 2018-01-30 2021-05-04 Caterpillar Trimble Control Technologies Llc Grading mode integration
JP7245141B2 (ja) * 2019-09-30 2023-03-23 日立建機株式会社 油圧ショベル
WO2021065384A1 (ja) * 2019-09-30 2021-04-08 日立建機株式会社 作業機械
US20230091185A1 (en) * 2021-01-27 2023-03-23 Hitachi Construction Machinery Co., Ltd. Hydraulic excavator
JPWO2022210613A1 (ko) * 2021-03-30 2022-10-06
CN113152550B (zh) * 2021-04-07 2022-12-20 柳州柳工挖掘机有限公司 操作模式控制系统及方法和挖掘机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320846A (ja) 2004-04-05 2005-11-17 Hitachi Constr Mach Co Ltd 建設機械の操作装置
JP2006144349A (ja) 2004-11-18 2006-06-08 Hitachi Constr Mach Co Ltd 建設機械の安全装置
JP2007303128A (ja) 2006-05-10 2007-11-22 Hitachi Constr Mach Co Ltd 建設機械
JP2011157789A (ja) 2010-02-03 2011-08-18 Sumitomo Heavy Ind Ltd 建設機械
WO2016035898A1 (ja) 2015-09-25 2016-03-10 株式会社小松製作所 作業機械の制御装置、作業機械、及び作業機械の制御方法
JP2017053160A (ja) 2015-09-10 2017-03-16 日立建機株式会社 建設機械

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07290545A (ja) * 1994-04-25 1995-11-07 Toyo Mach & Metal Co Ltd 成形機の運転条件設定方法
JP3056254B2 (ja) * 1994-04-28 2000-06-26 日立建機株式会社 建設機械の領域制限掘削制御装置
JP3133919B2 (ja) * 1995-05-22 2001-02-13 日立建機株式会社 建設機械の領域制限掘削制御装置
JP3497950B2 (ja) * 1996-06-27 2004-02-16 日立建機株式会社 建設機械の領域制限掘削制御装置
KR100353566B1 (ko) * 1997-02-13 2003-01-06 히다치 겡키 가부시키 가이샤 유압셔블의경사면굴삭제어장치,목표경사면설정장치및경사면굴삭형성방법
CN1078287C (zh) * 1997-06-20 2002-01-23 日立建机株式会社 建筑机械的范围限制挖掘控制装置
JPH11210015A (ja) * 1998-01-27 1999-08-03 Hitachi Constr Mach Co Ltd 建設機械の軌跡制御装置及びその操作装置
JP3056254U (ja) 1998-07-28 1999-02-12 泰範 中西 木工ボンド及びマヨネーズの抽出容器
US6282453B1 (en) * 1998-12-02 2001-08-28 Caterpillar Inc. Method for controlling a work implement to prevent interference with a work machine
CL2012000933A1 (es) * 2011-04-14 2014-07-25 Harnischfeger Tech Inc Un metodo y una pala de cable para la generacion de un trayecto ideal, comprende: un motor de oscilacion, un motor de izaje, un motor de avance, un cucharon para excavar y vaciar materiales y, posicionar la pala por medio de la operacion del motor de izaje, el motor de avance y el motor de oscilacion y; un controlador que incluye un modulo generador de un trayecto ideal.
US9598845B2 (en) * 2014-06-04 2017-03-21 Komatsu Ltd. Posture computing apparatus for work machine, work machine, and posture computation method for work machine
KR101668199B1 (ko) * 2014-09-10 2016-10-20 가부시키가이샤 고마쓰 세이사쿠쇼 작업 차량
JP6703942B2 (ja) * 2016-03-17 2020-06-03 株式会社小松製作所 作業車両の制御システム、制御方法、及び作業車両

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320846A (ja) 2004-04-05 2005-11-17 Hitachi Constr Mach Co Ltd 建設機械の操作装置
JP2006144349A (ja) 2004-11-18 2006-06-08 Hitachi Constr Mach Co Ltd 建設機械の安全装置
JP2007303128A (ja) 2006-05-10 2007-11-22 Hitachi Constr Mach Co Ltd 建設機械
JP2011157789A (ja) 2010-02-03 2011-08-18 Sumitomo Heavy Ind Ltd 建設機械
JP2017053160A (ja) 2015-09-10 2017-03-16 日立建機株式会社 建設機械
WO2016035898A1 (ja) 2015-09-25 2016-03-10 株式会社小松製作所 作業機械の制御装置、作業機械、及び作業機械の制御方法

Also Published As

Publication number Publication date
US11261578B2 (en) 2022-03-01
EP3604684B1 (en) 2022-04-27
KR20190034648A (ko) 2019-04-02
EP3604684A1 (en) 2020-02-05
EP3604684A4 (en) 2021-02-17
CN109689978B (zh) 2021-11-02
JP6581136B2 (ja) 2019-09-25
US20200224383A1 (en) 2020-07-16
CN109689978A (zh) 2019-04-26
JP2018155077A (ja) 2018-10-04
WO2018173361A1 (ja) 2018-09-27

Similar Documents

Publication Publication Date Title
KR102154581B1 (ko) 작업 기계
US11053661B2 (en) Work machine
KR102189225B1 (ko) 작업 기계
JP6633464B2 (ja) 作業機械
KR102024701B1 (ko) 작업 기계
KR102388111B1 (ko) 작업 기계
JP6860329B2 (ja) 作業機械
JP6889579B2 (ja) 作業機械
KR102314498B1 (ko) 작업 기계
KR102414027B1 (ko) 작업 기계
EP3951070B1 (en) Work machine
WO2020065739A1 (ja) 作業機械
CN113474514B (zh) 作业机械

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right