WO2019180798A1 - 建設機械 - Google Patents

建設機械 Download PDF

Info

Publication number
WO2019180798A1
WO2019180798A1 PCT/JP2018/010908 JP2018010908W WO2019180798A1 WO 2019180798 A1 WO2019180798 A1 WO 2019180798A1 JP 2018010908 W JP2018010908 W JP 2018010908W WO 2019180798 A1 WO2019180798 A1 WO 2019180798A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic pump
displacement
operation amount
boom
arm
Prior art date
Application number
PCT/JP2018/010908
Other languages
English (en)
French (fr)
Inventor
亮平 山下
和繁 森
井村 進也
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to JP2019546406A priority Critical patent/JP6782851B2/ja
Priority to PCT/JP2018/010908 priority patent/WO2019180798A1/ja
Priority to EP18907473.5A priority patent/EP3608548B1/en
Priority to CN201880013697.2A priority patent/CN110506165B/zh
Priority to US16/490,982 priority patent/US11230819B2/en
Priority to KR1020197024496A priority patent/KR102171498B1/ko
Publication of WO2019180798A1 publication Critical patent/WO2019180798A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/436Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like for keeping the dipper in the horizontal position, e.g. self-levelling
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • E02F9/2242Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/226Safety arrangements, e.g. hydraulic driven fans, preventing cavitation, leakage, overheating
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2271Actuators and supports therefor and protection therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/167Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load using pilot pressure to sense the demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/3059Assemblies of multiple valves having multiple valves for multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3116Neutral or centre positions the pump port being open in the centre position, e.g. so-called open centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6652Control of the pressure source, e.g. control of the swash plate angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6654Flow rate control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/78Control of multiple output members

Definitions

  • the present invention relates to a construction machine such as a hydraulic excavator, and more particularly to a construction machine that drives a plurality of hydraulic actuators with a variable displacement hydraulic pump.
  • a construction machine such as a hydraulic excavator generally includes a hydraulic pump, a hydraulic actuator driven by pressure oil discharged from the hydraulic pump, and a flow rate control valve that controls supply and discharge of pressure oil to and from the hydraulic actuator.
  • Patent Document 1 discloses a conventional technique of a hydraulic pump control device that controls a flow rate of a hydraulic pump that drives a plurality of hydraulic actuators.
  • Patent Document 1 discloses a variable displacement hydraulic pump, a variable volume hydraulic pump's extra volume variable mechanism, a regulator that controls the amount of tilt of the variable volume hydraulic variable mechanism, and a plurality of hydraulic actuators driven by the hydraulic pump. And each control valve for controlling the drive of each hydraulic actuator, each operation amount detector for detecting the operation amount of each control valve, and each operation detected by each operation amount detector An optimum maximum tilt amount is set for each tilt amount of the variable volume mechanism and the hydraulic actuator corresponding to each tilt amount according to each amount, and the detected value of each manipulated variable detector is A controller for controlling the regulator by inputting and outputting the tilt amount according to each detected value, and the controller An extraction unit that is provided for each hydraulic actuator and extracts the tilt amount corresponding to the detection value of the corresponding operation amount detector, and a maximum that selects the maximum value among the tilt amounts extracted by each of the extraction units.
  • a hydraulic pump control device comprising a value selection means is described.
  • Some construction machines such as hydraulic excavators are equipped with a two-pump hydraulic drive.
  • this two-pump hydraulic drive device in the horizontal pulling operation in which the arm pulling operation and the boom raising operation are performed simultaneously, one hydraulic pump (first hydraulic pump) mainly supplies pressure oil to the boom cylinder, and the other hydraulic pressure A pump (second hydraulic pump) mainly supplies pressure oil to the arm cylinder.
  • first hydraulic pump mainly supplies pressure oil to the boom cylinder
  • second hydraulic pump mainly supplies pressure oil to the arm cylinder.
  • the arm pulling operation amount is kept at the maximum from the start to the end of the operation, while the boom raising operation amount is kept at the maximum in the first half of the operation and gradually decreases in the second half of the operation.
  • the displacement (tilt amount) of the first hydraulic pump is the maximum of the target displacement of the first hydraulic pump based on the boom raising operation amount and the target displacement of the first hydraulic pump based on the arm pulling operation amount.
  • the displacement of the second hydraulic pump is controlled according to the value, and the maximum displacement of the target displacement of the second hydraulic pump based on the boom raising operation amount and the target displacement of the second hydraulic pump based on the arm pulling operation amount It is controlled according to.
  • the displacement volume of the second hydraulic pump is the maximum value of the maximum displacement volume of the second hydraulic pump based on the boom lifting operation amount and the maximum displacement volume of the second hydraulic pump based on the arm pulling operation amount in the first half of the horizontal pulling operation.
  • the boom raising operation amount decreases, and the maximum displacement volume of the second hydraulic pump based on the arm pulling operation amount is obtained.
  • the displacement of the first hydraulic pump is the maximum value of the maximum displacement of the first hydraulic pump based on the boom lifting operation amount and the maximum displacement of the first hydraulic pump based on the arm pulling operation amount in the first half of the horizontal pulling operation.
  • the boom raising operation amount decreases, and the maximum displacement volume of the first hydraulic pump based on the arm pulling operation amount is obtained.
  • the amount of tilting of the first hydraulic pump that mainly supplies pressure oil to the boom cylinder becomes excessive despite the decrease in the boom raising operation amount, and the first hydraulic pump If the discharge pressure increases excessively, the energy efficiency may decrease.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a construction machine capable of improving energy efficiency in a horizontal pulling operation in which an arm pulling operation and a boom raising operation are performed simultaneously. is there.
  • the present invention provides a vehicle body, a boom attached to the vehicle body so as to be pivotable in the vertical direction, and an arm attached to a tip portion of the boom so as to be pivotable in the vertical direction or the front-back direction.
  • a boom operating device for instructing the operation of the boom, an arm operating device for instructing the operation of the arm, the boom operating device, and the arm.
  • a construction machine comprising: an operation amount detection device that detects an operation amount of a system operation device; and a controller that controls the first regulator and the second regulator according to the operation amounts of the boom operation device and the arm operation device,
  • a pressure detection device configured to detect a discharge pressure of the second hydraulic pump; and the controller is configured to perform a target displacement of the second hydraulic pump and an arm pulling operation of the arm operation device based on a boom raising operation amount of the boom operation device.
  • the second regulator is controlled in accordance with a maximum value of the target displacement of the second hydraulic pump based on the amount, and the boom raising operation amount is less than a predetermined operation amount, or the second hydraulic pump
  • the target displacement volume of the first hydraulic pump based on the boom raising operation amount The first regulator is controlled in accordance with a maximum value of the target displacement of the first hydraulic pump based on the arm pulling operation amount, the boom raising operation amount is greater than or equal to the predetermined operation amount, and the second hydraulic pressure
  • the first regulator is controlled only in accordance with the target displacement of the first hydraulic pump based on the boom raising operation amount.
  • the displacement volume of the first hydraulic pump that mainly supplies pressure oil to the boom cylinder is the boom raising operation amount. Decreases with decreasing. Thereby, since the discharge pressure of the first hydraulic pump does not increase excessively, energy efficiency can be improved.
  • the discharge pressure of the hydraulic pump that mainly supplies the pressure oil to the boom cylinder is not excessively increased, so that energy efficiency is improved. It becomes possible to do.
  • FIG. 1 is a side view of a hydraulic excavator as an example of a construction machine according to an embodiment of the present invention. It is a schematic block diagram of the hydraulic drive device mounted in the hydraulic shovel shown in FIG. It is a figure which shows typically the relationship between the spool stroke (pilot pressure) of the flow control valve shown in FIG. 2, and the opening area of each throttle. It is a figure which shows typically the change of the arm pulling operation amount at the time of performing horizontal pulling operation, and a boom raising operation amount. It is a functional block diagram of a controller in the 1st example of the present invention. It is a functional block diagram of the 1st regulator control part which the controller in the 1st Example of this invention has.
  • FIG. 1 is a side view of a hydraulic excavator according to an embodiment of the present invention.
  • a hydraulic excavator 200 includes a lower traveling body 201, an upper swing body 202 that constitutes a vehicle body together with the lower traveling body 201, and a front work device 203.
  • the lower traveling body 201 has left and right crawler type traveling devices 204 and 205 (only one side is shown), and is driven by left and right traveling motors 7 and 8 (only one side is shown).
  • the upper turning body 202 is mounted on the lower traveling body 201 so as to be turnable, and is turned by the turning motor 6.
  • the front work device 203 is attached to the front portion of the upper swing body 202 so as to be rotatable in the vertical direction.
  • the upper swinging body 202 is provided with a cabin (operating room) 206, and operating devices such as operating lever devices 17 and 18 (see FIG. 2), which will be described later, and a traveling operating pedal device (not shown) are arranged in the cabin 206. ing.
  • the front work device 203 includes a boom 207 attached to the front portion of the upper swing body 202 so as to be rotatable in the vertical direction, and an arm 208 connected to the tip portion of the boom 207 so as to be rotatable in the vertical direction and the front-rear direction.
  • the bucket 209 is connected to the tip of the arm 208 so as to be pivotable in the vertical or front-rear direction, the boom cylinder 3 as a hydraulic actuator for driving the boom 207, and the arm cylinder 4 as a hydraulic actuator for driving the arm 208.
  • a bucket cylinder 5 as a hydraulic actuator for driving the bucket 209.
  • the boom 207 rotates in the vertical direction with respect to the upper swing body 202 by expansion and contraction of the boom cylinder 3, the arm 208 rotates in the vertical and longitudinal directions with respect to the boom 207 by expansion and contraction of the arm cylinder 4, and the bucket 209 As the cylinder 5 expands and contracts, it rotates up and down and back and forth with respect to the arm 208.
  • FIG. 2 is a schematic configuration diagram of a hydraulic drive device mounted on the hydraulic excavator 200 shown in FIG.
  • a part of the parts related to the operation of the hydraulic actuators other than the boom cylinder 3 and the arm cylinder 4 is omitted.
  • a hydraulic drive device 300 includes an engine 50 as a prime mover, variable displacement first and second hydraulic pumps 1 and 2 driven by the engine 50, a boom cylinder 3, an arm cylinder 4, The bucket cylinder 5, the swing motor 6, the left and right traveling motors 7 and 8, the boom flow rate control valves 9 and 10 for supplying and discharging pressure oil from the boom cylinder 3, and the supply and discharge of pressure oil from the arm cylinder 4 are controlled.
  • the first hydraulic pump 1 includes a flow rate control valve for controlling supply and discharge of pressure oil to the travel motor 7 from the upstream side, a flow rate control valve for controlling supply and discharge of pressure oil to the bucket cylinder 5, and a boom.
  • a boom flow rate control valve 9 for controlling supply / discharge of pressure oil to / from the cylinder 3 and an arm flow rate control valve 12 for controlling supply / discharge of pressure oil to / from the arm cylinder 4 are sequentially connected to the bucket cylinder 5. After the flow rate control valve for controlling the supply and discharge of the pressure oil to the tandem, parallel connection is made.
  • the second hydraulic pump 2 includes a flow rate control valve for controlling supply / discharge of pressure oil to the swing motor 6 from the upstream side, and an arm flow rate control for controlling supply / discharge of pressure oil to the arm cylinder 4.
  • Valve 11 boom flow rate control valve 10 for controlling supply / discharge of pressure oil to / from boom cylinder 3, flow rate control valve for controlling supply / discharge of pressure oil to / from attachment, supply of pressure oil to traveling motor 8
  • a flow control valve for controlling the exhaust is connected in tandem and parallel.
  • the first regulator 60a includes a tilt control piston 61a that drives the displacement displacement variable member 1a, and a proportional solenoid valve 62a that generates an operation pressure of the tilt control piston 61a in accordance with a command current input from the controller 30.
  • the second regulator 60b includes a tilt control piston 61b that drives the displacement variable member 2a, and a proportional solenoid valve 62b that generates an operation pressure of the tilt control piston 61b in accordance with a command current input from the controller 60. And have.
  • the boom flow control valves 9 and 10 are provided with a pilot pressure (boom raising pilot pressure BMU) output from the boom operating lever device 17 when the operating lever (boom operating lever) 17a of the boom operating lever device 17 is operated to the boom raising side. ) To the left in the figure.
  • BMU pilot pressure
  • the oil discharged from the first and second hydraulic pumps 1 and 2 is supplied to the bottom side of the boom cylinder 3, and the oil discharged from the rod side of the boom cylinder 3 is returned to the tank. Decompresses.
  • the boom flow control valves 9 and 10 are driven rightward in the figure by the pilot pressure (boom lowering pilot pressure BMD) output from the boom operating lever device 17 when the boom operating lever 17a is operated to the boom lowering side.
  • BMD pilot pressure
  • the oil discharged from the first and second hydraulic pumps 1 and 2 is supplied to the rod side of the boom cylinder 3, and the oil discharged from the bottom side of the boom cylinder 3 is returned to the tank. Degenerate operation.
  • the arm flow control valves 11 and 12 are pilot pressures (arm pulling pilot pressure AMC) output from the arm operating lever device 18 when the operating lever (arm operating lever) 18a of the arm operating lever device 18 is operated to the boom pulling side. ) To the right in the figure.
  • the oil discharged from the first and second hydraulic pumps 1 and 2 is supplied to the bottom side of the arm cylinder 4, and the oil discharged from the rod side of the arm cylinder 4 is returned to the tank. Decompresses.
  • the arm flow control valves 11 and 12 are driven in the left direction in the figure by a pilot pressure (arm pushing pilot pressure AMD) output from the arm operating lever device 18 when the arm operating lever 18a is operated to the arm pushing side.
  • a pilot pressure arm pushing pilot pressure AMD
  • the oil discharged from the first and second hydraulic pumps 1 and 2 is supplied to the rod side of the arm cylinder 4, and the oil discharged from the bottom side of the arm cylinder 4 is returned to the tank. Degenerate operation.
  • a pressure sensor 19 that detects the boom raising pilot pressure BMU is provided on the pilot line that guides the boom raising pilot pressure BMU output from the boom operation lever device 17 to each pressure receiving portion on the left side of the boom flow control valves 9 and 10.
  • a pressure sensor 20 for detecting the boom lowering pilot pressure BMD is provided on the pilot line that guides the boom lowering pilot pressure BMD output from the boom operating lever device 17 to each pressure receiving portion on the right side of the boom flow control valves 9 and 10 in the figure. It has been.
  • a pressure sensor 21 for detecting the arm pulling pilot pressure AMC is provided on a pilot line that guides the arm pulling pilot pressure AMC output from the arm operation lever device 18 to each pressure receiving portion on the right side of the arm flow control valves 11 and 12 in the drawing.
  • a pressure sensor 22 for detecting the arm pushing pilot pressure AMD is provided on the pilot line for guiding the arm pushing pilot pressure AMD output from the arm operating lever device 18 to each pressure receiving portion on the left side of the arm flow control valves 11 and 12 in the figure. It has been.
  • a pressure sensor 23 that detects the discharge pressure of the second hydraulic pump 2 is provided in the pressure oil supply line to which the discharge oil of the second hydraulic pump 2 is supplied.
  • the controller 30 inputs the detection signals (pilot pressure) of the pressure sensors 19, 20, 21, and 22 and the detection signal of the pressure sensor 23 (discharge pressure of the second hydraulic pump 2), performs a predetermined calculation process, and performs the first calculation process.
  • the command current is output to the proportional solenoid valves 62a and 62b of the second regulators 60a and 60b.
  • the hydraulic circuit shown in FIG. 2 is a system called an open center type.
  • the relationship between the spool strokes of the flow control valves 9, 10, 11 and 12 and the opening area of each throttle is set as shown in FIG. 3 and 4 and the flow rate of pressure oil returned to the tank from the first and second hydraulic pumps 1 and 2 through the center bypass passage (hereinafter referred to as bleed).
  • bleed center bypass passage
  • Off flow rate is controlled according to the stroke of the spool, that is, the operation amount (lever operation amount) of the operation levers 17a and 18a.
  • FIG. 4 shows changes in the arm pulling operation amount and the boom raising operation amount in the horizontal pulling operation.
  • the arm pulling operation and boom raising operation have the maximum amount of operation (section A), but the arm pulling operation amount remains the maximum to keep the bucket toe height constant as the arm is retracted.
  • the boom raising operation amount gradually decreases (B section).
  • both the arm pulling operation amount and the boom raising operation amount are maximum, so that the target displacement volumes of the first and second hydraulic pumps 1 and 2 are both maximum values.
  • the pressure oil discharged from the second hydraulic pump 2 is all supplied to the arm cylinder 4 because the load pressure of the arm cylinder 4 is lower than the load pressure of the boom cylinder 3, but is discharged from the first hydraulic pump 1. Most of the pressure oil is supplied to the boom cylinder 3 and part of it is supplied to the arm cylinder 4 by the action of the throttle 16 provided in the parallel flow path 15.
  • the target displacement volume of the first and second hydraulic pumps 1 and 2 becomes the maximum value as in the A section.
  • the pressure oil discharged from the second hydraulic pump 2 is all supplied to the arm cylinder 4 in the same manner as in the section A, but the pressure oil discharged from the first hydraulic pump 1 reduces the boom raising operation amount.
  • the center bypass throttle of the boom flow control valve 9 is opened, so that the flow rate supplied to the boom cylinder 3 is reduced, and the reduced flow rate (that is, the bleed-off flow rate) is a tandem flow branched from the center bypass flow channel 13. It is supplied to the arm cylinder 4 via the path 14.
  • the opening area of the center bypass throttle of the boom flow control valve 9 is set to be relatively large (broken line in FIG. 3)
  • the bleed-off flow rate at the intermediate position is also relatively large.
  • the operating speed of the arm cylinder 4 is increased, and the working efficiency can be improved.
  • the opening area of the center bypass throttle of the boom flow control valve 9 is set to be relatively small (solid line in FIG. 3) in order to reduce the loss due to the bleed-off flow rate in operations other than horizontal pulling.
  • the discharge pressure of the first hydraulic pump 1 is higher than in the above case.
  • the hydraulic excavator 200 according to the present embodiment includes the controller 30 described in the following examples, so that the energy efficiency in the horizontal pulling operation can be improved.
  • FIG. 5 is a functional block diagram of the controller 30 in the first embodiment of the present invention.
  • the controller 30 includes a first regulator control unit 30a that controls the first regulator 60a and a second regulator control unit 30b that controls the second regulator 60b.
  • the first regulator control unit 30a inputs pilot pressures Pi1, Pi2,..., Pin and discharge pressure P2 of the second hydraulic pump 2 input from the operating device including the operating lever devices 17 and 18, and performs a predetermined calculation. Processing is performed to output a command current Ia to the proportional solenoid valve 62a of the first regulator 60a.
  • the second regulator control unit 30b receives the pilot pressures Pi1, Pi2,..., Pin input from the operation devices including the operation lever devices 17 and 18, and performs a predetermined calculation process, and the second regulator 60b.
  • the command current Ib is output to the proportional solenoid valve 62b.
  • FIG. 6 is a functional block diagram showing details of the first regulator control unit 30a.
  • the first regulator control unit 30a includes displacement volume conversion units 311, 312, ..., 31n, displacement volume limiting unit 70, maximum value selection unit 36a, and command current conversion unit 37a.
  • the displacement volume limiting unit 70 includes an operation determination unit 32, a pressure determination unit 33, a maximum value selection unit 34, and a multiplication unit 35.
  • the displacement displacement conversion unit 311 stores a target displacement characteristic of the first hydraulic pump 1 with respect to the pilot pressure Pi1, and converts the input pilot pressure Pi1 into a target displacement volume Qa1 and outputs it.
  • the displacement conversion unit 312 stores a target displacement characteristic of the first hydraulic pump 1 with respect to the pilot pressure Pi2, and converts the input pilot pressure Pi2 into a target displacement Qa2 and outputs it.
  • the displacement conversion unit 31n stores the target displacement characteristics of the first hydraulic pump 1 with respect to the other pilot pressure Pin, converts the input pilot pressure Pin into a displacement volume Qan, and outputs the displacement.
  • the pilot pressure Pi1 will be described as the boom raising pilot pressure BMU
  • the pilot pressure Pi2 will be described as the arm pulling pilot pressure AMC.
  • the operation determination unit 32 outputs 1 when the pilot pressure Pi1 (boom raising operation amount) is less than a threshold value (predetermined operation amount) at which it is determined that the boom raising operation is performed, and outputs 0 when it is equal to or higher than the threshold value.
  • the pressure determination unit 33 outputs 0 when the discharge pressure P2 of the second hydraulic pump 2 is less than a threshold (predetermined pressure) at which it is determined that an operation with high load such as excavation is being performed, and 1 when the discharge pressure P2 is greater than or equal to the threshold.
  • the maximum value selection unit 34 selects the maximum value among the output value of the operation determination unit 32 and the output value of the pressure determination unit 33 and outputs the maximum value to the multiplication unit 35.
  • the multiplication unit 35 multiplies the output value of the maximum value selection unit 34 and the output value of the displacement volume conversion unit 312 and outputs the result to the maximum value selection unit 36a.
  • the target displacement of the first hydraulic pump 1 based on the arm pulling operation amount Pi2 is achieved. Since the volume Qa2 is not input to the maximum value selection unit 36a, the first regulator 60b is controlled only according to the target displacement volume Qa1 of the first hydraulic pump 1 based on the boom raising operation amount Pi1.
  • the maximum value selection unit 36a selects the maximum value among the output values Qa1, Qa2,..., Qan of the displacement volume conversion units 311, 312,. It outputs to the current conversion part 37a.
  • the command current conversion unit 37a outputs a command current Ia corresponding to the output value of the maximum value selection unit 36a to the proportional solenoid valve 62a of the first regulator 60a.
  • FIG. 7 is a functional block diagram showing details of the second regulator control unit 30b.
  • the second regulator control unit 30b includes displacement volume conversion units 381, 382,..., 38n, a maximum value selection unit 36b, and a command current conversion unit 37b.
  • the displacement displacement conversion unit 381 stores a target displacement volume characteristic of the second hydraulic pump 2 with respect to the pilot pressure Pi1, and converts the input pilot pressure Pi1 into a displacement volume Qb1 and outputs the displacement.
  • the displacement converting unit 382 stores the target displacement characteristic of the second hydraulic pump 2 with respect to the pilot pressure Pi2, and converts the input pilot pressure Pi2 into the displacement volume Qb2 and outputs the displacement.
  • the displacement volume conversion unit 38n stores a target displacement characteristic of the second hydraulic pump 2 with respect to the other pilot pressure Pin, converts the input pilot pressure Pin into a displacement volume Qbn, and outputs the displacement.
  • the maximum value selection unit 36b selects the maximum value among the output values Qb1, Qb2,..., Qbn of the displacement volume conversion units 381, 382,..., 38n and outputs them to the command current conversion unit 37b. .
  • the command current conversion unit 37b outputs a command current Ib corresponding to the output value of the maximum value selection unit 36b to the proportional solenoid valve 62b of the second regulator 60b.
  • the boom raising pilot pressure BMU is applied to the pressure receiving portion on the left side of the boom flow control valves 9 and 10 in the drawing.
  • the arm pulling pilot pressure AMC acts on the pressure receiving portion on the left side of the arm flow control valves 11 and 12 in the figure.
  • the pilot pressure is detected by the pressure sensors 19 and 21, and detection signals are input to the controller 30 as Pi1 and Pi2.
  • the discharge pressure of the second hydraulic pump 2 is also input to the controller 30 as the detection signal P2 of the pressure sensor 23.
  • target displacement volumes Qa 1 and Qa 2 of the first hydraulic pump 1 corresponding to the pilot pressures Pi 1 and Pi 2 are output from displacement displacement conversion units 311 and 312, respectively, while hydraulic actuators other than the boom cylinder 3 and the arm cylinder 4 are output.
  • the displacement displacement converting unit 31n outputs the minimum value of the target displacement volume. Since the boom raising operation is performed and the boom raising pilot pressure Pi1 exceeds the threshold value, the output value of the operation determination unit 32 is zero.
  • the output value of the pressure determination unit 33 becomes zero.
  • the output value of the maximum value selection unit 34 since the output value of the maximum value selection unit 34 is also 0, the multiplication unit 35 multiplies the target displacement volume Qa2 by 0. Therefore, the target displacement Qa1 corresponding to the pilot pressure Pi1 is output from the maximum value selector 36.
  • FIG. 8 shows a change in displacement volume of the first and second hydraulic pumps 1 and 2 when the horizontal pulling operation is performed in the present embodiment.
  • the displacement volume of both the first and second hydraulic pumps 1 and 2 is the maximum value, as in the prior art.
  • the displacement volume of the second hydraulic pump 2 remains at the maximum value, while the displacement volume of the first hydraulic pump 1 decreases according to the pilot pressure Pi1 (solid line in the figure). This is because in the first regulator control unit 30a (see FIG. 6), the input to the maximum value selection unit 36a of the target displacement volume Qa2 based on the arm pulling operation amount Pi2 is limited by the displacement volume limiting unit 70.
  • a hydraulic excavator 200 is provided with vehicle bodies 201 and 202, a boom 207 attached to the vehicle bodies 201 and 202 so as to be rotatable in the vertical direction, and can be pivoted in the vertical and front-rear directions at the tip of the boom 207.
  • Attached arm 208 variable displacement type first and second hydraulic pumps 1, 2 and first and second regulators 60a, 60b for adjusting the displacement of each of first and second hydraulic pumps 1, 2;
  • a boom cylinder 3 that is supplied with at least the discharge oil of the first hydraulic pump 1 to drive the boom 207; an arm cylinder 4 that is supplied with at least the discharge oil of the second hydraulic pump 2 to drive the arm 208;
  • Boom operating device 17 for instructing the operation
  • arm operating device 18 for instructing the operation of arm 208, boom operating device 17 and arm operating device.
  • Operation amount detection devices 19, 20, 21, and 22 that detect the operation amount of the device 18, and a controller 30 that controls the first and second regulators 60 a and 60 b according to the operation amounts of the boom operation device 17 and the arm operation device 18.
  • a pressure detection device 23 for detecting the discharge pressure of the second hydraulic pump 2 and the controller 30 controls the target displacement volume Qb1 and arm operation of the second hydraulic pump 2 based on the boom raising operation amount Pi1 of the boom operation device 17.
  • the second regulator 60b is controlled according to the maximum value of the target displacement volume Qb2 of the second hydraulic pump 2 based on the arm pulling operation amount Pi2 of the device 18, and the boom raising operation amount Pi1 is less than the predetermined operation amount
  • the discharge pressure P2 of the second hydraulic pump 2 is equal to or higher than a predetermined pressure, the first hydraulic pressure based on the boom raising operation amount Pi1.
  • the first regulator 60a is controlled according to the maximum value of the target displacement volume Qa2 of the first hydraulic pump 1 based on the target displacement volume Qa1 of the pump 1 and the arm pulling operation amount Pi2, and the boom raising operation amount Pi1 is set to the predetermined amount.
  • the operation amount is equal to or greater than the operation amount and the discharge pressure P2 of the second hydraulic pump 2 is less than the predetermined pressure
  • the first regulator 60a depends only on the target displacement volume Qa1 of the first hydraulic pump 1 based on the boom raising operation amount Pi1. To control.
  • the first regulator 60 a controls the operation pressure of the tilt control piston 61 a that drives the displacement variable member 1 a of the first hydraulic pump 1 and the command current Ia input from the controller 30.
  • the controller 30 has a proportional solenoid valve 62a to be generated, and the controller 30 converts the boom raising operation amount Pi1 into a target displacement volume Qa1 of the first hydraulic pump 1 and outputs it, and an arm pulling operation amount.
  • the second displacement displacement conversion unit 312 that converts Pi2 into the target displacement volume Qa2 of the first hydraulic pump 1 and outputs the result, and the boom raising operation amount Pi1 is less than the predetermined operation amount, or the second hydraulic pump 2
  • the output value Qa2 of the second displacement volume conversion unit 312 is output as it is, and the boom
  • the displacement volume limiting unit 70 that outputs 0 and the first displacement displacement converting unit 311 Output value Qa1 and the maximum value selection unit 36a for selecting and outputting the maximum value among the output values of the displacement limiter 70, and the command current Ia based on the output value of the maximum value selection unit 36a to the proportional solenoid valve 62a.
  • a command current converter 37a for outputting.
  • the first hydraulic pump 1 that mainly supplies pressure oil to the boom cylinder 3 in the horizontal pulling operation in which the arm pulling operation and the boom raising operation are performed simultaneously.
  • the displacement volume decreases as the boom raising operation amount Pi1 decreases.
  • the discharge pressure of the first hydraulic pump 1 does not increase excessively, and energy efficiency can be improved.
  • FIG. 9 is a functional block diagram of the first regulator control unit 30a included in the controller 30 according to the second embodiment of the present invention.
  • the difference from the first embodiment is that the first regulator control unit 30a has a gain generation unit 38, a subtraction unit 39, a comparison unit 40, a multiplication unit 41, and an addition unit. 42.
  • the gain generation unit 38 outputs a numerical value in the range of 0 to 1 according to the boom raising operation amount Pi1.
  • generation part 38 in a present Example is comprised so that the gain proportional to boom raising operation amount Pi1 may be output.
  • the subtraction unit 39 outputs a difference value ⁇ Q obtained by subtracting the target displacement volume Qa1 corresponding to the boom raising operation amount from the target displacement volume Qa2 corresponding to the arm pulling operation amount Pi2.
  • the comparison unit 40 compares the difference value ⁇ Q with a predetermined threshold, outputs the difference value ⁇ Q as it is when the difference value ⁇ Q is equal to or greater than the threshold, and outputs 0 when the difference value ⁇ Q is less than the threshold.
  • the multiplication unit 41 multiplies the output value of the gain generation unit 38 and the output value of the comparison unit 40, and the addition unit 42 adds the output value of the multiplication unit 41 to the target displacement volume Qa1 and outputs it to the maximum value selection unit 36a. .
  • the displacement converting units 311 and 312 respond to the boom raising operation amount and the arm pulling operation amount.
  • the target displacements Qa1 and Qa2 are output, and a numerical value corresponding to the pilot pressure Pi1 is output from the gain generator 38.
  • FIG. 10 shows a change in displacement volume of the first and second hydraulic pumps 1 and 2 when the horizontal pulling operation is performed in the present embodiment.
  • the displacement volume of both the first and second hydraulic pumps 1 and 2 becomes the maximum value as in the first embodiment (see FIG. 8).
  • the displacement volume of the second hydraulic pump 2 remains at the maximum value, while the displacement volume of the first hydraulic pump 1 increases compared to the first embodiment (broken line in the figure).
  • the characteristic of the displacement displacement conversion unit 311 corresponding to the boom raising operation is generally set in consideration of operations other than the horizontal pulling operation. Therefore, in the first embodiment, when the boom raising operation and the arm pulling operation are performed at the same time, the boom raising speed may be lower than when the boom raising operation is performed alone.
  • the difference value ⁇ Q obtained by subtracting the target displacement volume Qa1 corresponding to the boom raising operation amount from the target displacement volume Qa2 corresponding to the arm pulling operation amount and the gain multiplied value corresponding to the boom raising operation amount are set as the target.
  • the controller 30 subtracts the target displacement volume Qa1 of the first hydraulic pump 1 based on the boom raising operation amount Pi1 from the target displacement volume Qa2 of the first hydraulic pump 1 based on the arm pulling operation amount Pi2. Is equal to or greater than a predetermined threshold value, the product of the gain based on the boom raising operation amount Pi1 and the difference value ⁇ Q is added to the target displacement Qa1 of the first hydraulic pump 1 based on the boom raising operation amount Pi1.
  • the controller 30 calculates and outputs a gain corresponding to the boom raising operation amount Pi1, and the output value Qa1 of the first displacement displacement conversion unit 311 from the output value Qa2 of the second displacement displacement conversion unit 312.
  • a subtractor 39 that outputs a difference value ⁇ Q obtained by subtracting the difference value, and outputs the difference value ⁇ Q as it is when the difference value ⁇ Q is equal to or greater than a predetermined threshold value, and sets 0 when the difference value ⁇ Q is less than the predetermined threshold value.
  • an adding unit 42 for adding values.
  • the characteristics of the operating speed of the boom cylinder 3 with respect to the boom raising operation amount are made uniform between when the arm pulling operation is performed and when it is not performed. can do. Thereby, work efficiency can be improved, preventing the fall of energy efficiency in leveling operation.
  • Example of this invention was explained in full detail, this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. It is also possible to add a part of the configuration of another embodiment to the configuration of a certain embodiment, and delete a part of the configuration of a certain embodiment or replace it with a part of another embodiment. Is possible.
  • SYMBOLS 1 ... 1st hydraulic pump, 1a ... Displacement volume variable member, 2 ... 2nd hydraulic pump, 2a ... Displacement volume variable member, 3 ... Boom cylinder, 4 ... Arm cylinder, 5 ... Bucket cylinder, 6 ... Swing motor, 7, DESCRIPTION OF SYMBOLS 8 ... Traveling motor, 9, 10 ... Boom flow control valve, 11, 12 ... Arm flow control valve, 13 ... Center bypass flow path, 14 ... Tandem flow path, 15 ... Parallel flow path, 16 ... Restriction, 17 ... Boom operation Lever device (boom operation device), 17a ... boom operation lever, 18 ... arm operation lever device (arm operation device), 18a ...
  • proportional solenoid valve, 70 ... push away Volume restricting section 200 ... hydraulic excavator (construction machine), 201 ... lower traveling body (vehicle body), 202 ... upper turning body (vehicle body), 203 ... front working device, 204, 205 ... crawler traveling device, 206 ... cabin, 207 ... Boom, 208 ... Arm, 209 ... Bucket, 300 ... Hydraulic drive, 311 ... Push volume conversion unit (first displacement volume conversion unit), 312 ... Push Only the volume conversion unit (second displacement conversion unit), 31n ... displacement converting unit, 381,382,38n ... displacement converting unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

アーム引き操作とブーム上げ操作を同時に行う水平引き操作において、エネルギー効率を向上することができる建設機械を提供する。コントローラ(30)は、ブーム操作装置(17)のブーム上げ操作量(Pi1)が所定の操作量未満である場合、または第2油圧ポンプ(2)の吐出圧(P2)が所定の圧力以上である場合は、ブーム上げ操作量(Pi1)に基づく第1油圧ポンプ(1)の目標押しのけ容積(Qa1)とアーム操作装置(18)のアーム引き操作量(Pi2)に基づく第1油圧ポンプ(1)の目標押しのけ容積(Qa2)のうちの最大値に応じて第1レギュレータ(60a)を制御し、ブーム上げ操作量(Pi1)が前記所定の操作量以上でかつ第2油圧ポンプ(2)の吐出圧(P2)が前記所定の圧力未満である場合は、ブーム上げ操作量(Pi1)に基づく第1油圧ポンプ(1)の目標押しのけ容積(Qa1)のみに応じて第1レギュレータ(60a)を制御する。

Description

建設機械
 本発明は、油圧ショベル等の建設機械に関し、特に、可変容量型の油圧ポンプで複数の油圧アクチュエータを駆動する建設機械に関する。
 油圧ショベル等の建設機械は、一般に、油圧ポンプと、この油圧ポンプから吐出される圧油により駆動される油圧アクチュエータと、この油圧アクチュエータに対する圧油の給排を制御する流量制御弁とを備えている。複数の油圧アクチュエータを駆動する油圧ポンプの流量制御を行う油圧ポンプ制御装置の従来技術を開示するものとして、例えば特許文献1がある。
 特許文献1には、可変容量油圧ポンプと、この可変容量油圧ポンプのおしのけ容積可変機構と、このおしのけ容積可変機構の傾転量を制御するレギュレータと、前記油圧ポンプにより駆動される複数の油圧アクチュエータと、これら各油圧アクチュエータの駆動を制御する各制御弁とを備えたものにおいて、前記各制御弁の操作量を検出する各操作量検出器と、これら各操作量検出器で検出される各操作量のそれぞれに応じた前記おしのけ容積可変機構の各傾転量およびこれら傾転量のそれぞれについて対応する油圧アクチュエータに最適な最大傾転量が設定されるとともに前記各操作量検出器の検出値を入力しこれら各検出値に応じた前記傾転量を出力して前記レギュレータを制御するコントローラとを設け、前記コントローラは、前記各油圧アクチュエータ毎に設けられ対応する前記操作量検出器の検出値に応じた前記傾転量を抽出する抽出手段と、これら各抽出手段で抽出された傾転量のうちの最大値を選択する最大値選択手段とを備えていることを特徴とする油圧ポンプ制御装置が記載されている。
特開平7-119709号公報
 油圧ショベル等の建設機械には、2ポンプ式の油圧駆動装置を搭載したものがある。この2ポンプ式の油圧駆動装置では、アーム引き操作とブーム上げ操作を同時に行う水平引き操作において、一方の油圧ポンプ(第1油圧ポンプ)が主にブームシリンダに圧油を供給し、他方の油圧ポンプ(第2油圧ポンプ)が主にアームシリンダに圧油を供給する。このような油圧駆動装置に特許文献1に記載の油圧ポンプ制御装置を適用した場合、以下のような課題が生じる。
 水平引き操作では、操作開始から操作終了にかけてアーム引き操作量が最大に保たれる一方で、ブーム上げ操作量は操作前半で最大に保たれ、操作後半で徐々に低下する。ここで、第1油圧ポンプの押しのけ容積(傾転量)は、ブーム上げ操作量に基づく第1油圧ポンプの目標押しのけ容積とアーム引き操作量に基づく第1油圧ポンプの目標押しのけ容積のうちの最大値に応じて制御され、第2油圧ポンプの押しのけ容積は、ブーム上げ操作量に基づく第2油圧ポンプの目標押しのけ容積とアーム引き操作量に基づく第2油圧ポンプの目標押しのけ容積のうちの最大値に応じて制御される。
 従って、第2油圧ポンプの押しのけ容積は、水平引き操作の前半では、ブーム上げ操作量に基づく第2油圧ポンプの最大押しのけ容積とアーム引き操作量に基づく第2油圧ポンプの最大押しのけ容積の最大値となり、水平引き操作の後半では、ブーム上げ操作量が低下することにより、アーム引き操作量に基づく第2油圧ポンプの最大押しのけ容積となる。
 一方、第1油圧ポンプの押しのけ容積は、水平引き操作の前半では、ブーム上げ操作量に基づく第1油圧ポンプの最大押しのけ容積とアーム引き操作量に基づく第1油圧ポンプの最大押しのけ容積の最大値となり、水平引き操作の後半では、ブーム上げ操作量が低下することにより、アーム引き操作量に基づく第1油圧ポンプの最大押しのけ容積となる。その結果、水平引き操作の後半では、ブーム上げ操作量が低下しているにも関わらず、主にブームシリンダに圧油を供給する第1油圧ポンプの傾転量が過大となり、第1油圧ポンプの吐出圧が過度に上昇することにより、エネルギー効率が低下する恐れがある。
 本発明は、上記の課題に鑑みてなされたものであり、その目的は、アーム引き操作とブーム上げ操作を同時に行う水平引き操作において、エネルギー効率を向上することができる建設機械を提供することにある。
 上記目的を達成するために、本発明は、車体と、前記車体に上下方向に回動可能に取り付けられたブームと、前記ブームの先端部に上下または前後方向に回動可能に取り付けられたアームと、可変容量型の第1油圧ポンプおよび第2油圧ポンプと、前記第1油圧ポンプおよび第2油圧ポンプの押しのけ容積を調整する第1レギュレータおよび第2レギュレータと、前記第1油圧ポンプおよび前記第2油圧ポンプから吐出される圧油が供給されて前記ブームを駆動するブームシリンダと、前記第1油圧ポンプおよび前記第2油圧ポンプから吐出される圧油が供給されて前記アームを駆動するアームシリンダと、前記ブームの動作を指示するブーム操作装置と、前記アームの動作を指示するアーム操作装置と、前記ブーム操作装置および前記アーム操作装置の操作量を検出する操作量検出装置と、前記ブーム操作装置および前記アーム操作装置の操作量に応じて前記第1レギュレータおよび第2レギュレータを制御するコントローラとを備えた建設機械において、前記第2油圧ポンプの吐出圧を検出する圧力検出装置を備え、前記コントローラは、前記ブーム操作装置のブーム上げ操作量に基づく前記第2油圧ポンプの目標押しのけ容積と前記アーム操作装置のアーム引き操作量に基づく前記第2油圧ポンプの目標押しのけ容積のうちの最大値に応じて前記第2レギュレータを制御し、前記ブーム上げ操作量が所定の操作量未満である場合、または前記第2油圧ポンプの吐出圧が所定の圧力以上である場合は、前記ブーム上げ操作量に基づく前記第1油圧ポンプの目標押しのけ容積と前記アーム引き操作量に基づく前記第1油圧ポンプの目標押しのけ容積のうちの最大値に応じて前記第1レギュレータを制御し、前記ブーム上げ操作量が前記所定の操作量以上でかつ前記第2油圧ポンプの吐出圧が前記所定の圧力未満である場合は、前記ブーム上げ操作量に基づく前記第1油圧ポンプの目標押しのけ容積のみに応じて前記第1レギュレータを制御するものとする。
 以上のように構成した本発明によれば、アーム引き操作とブーム上げ操作を同時に行う水平引き操作において、主にブームシリンダに圧油を供給する第1油圧ポンプの押しのけ容積がブーム上げ操作量の低下に応じて減少する。これにより、第1油圧ポンプの吐出圧が過度に上昇することが無くなるため、エネルギー効率を向上することが可能となる。
 本発明によれば、アーム引き操作とブーム上げ操作を同時に行う水平引き操作において、主にブームシリンダに圧油を供給する油圧ポンプの吐出圧が過度に上昇することが無くなるため、エネルギー効率を向上することが可能となる。
本発明の実施の形態に係る建設機械の一例としての油圧ショベルの側面図である。 図1に示す油圧ショベルに搭載された油圧駆動装置の概略構成図である。 図2に示す流量制御弁のスプールストローク(パイロット圧)と各絞りの開口面積との関係を模式的に示す図である。 水平引き操作を行った場合のアーム引き操作量とブーム上げ操作量の変化を模式的に示す図である。 本発明の第1の実施例におけるコントローラの機能ブロック図である。 本発明の第1の実施例におけるコントローラが有する第1レギュレータ制御部の機能ブロック図である。 本発明の第1の実施例におけるコントローラが有する第2レギュレータ制御部の機能ブロック図である。 本発明の第1の実施例において水平引き操作を行った場合の第1および第2油圧ポンプの押しのけ容積の変化を模式的に示す図である。 本発明の第2の実施例におけるコントローラが有する第1レギュレータ制御部の機能ブロック図である。 本発明の第2の実施例において水平引き操作を行った場合の第1および第2油圧ポンプの押しのけ容積の変化を模式的に示す図である。
 以下、本発明の実施の形態に係る建設機械として油圧ショベルを例に挙げ、図面を参照して説明する。なお、各図中、同等の部材には同一の符号を付し、重複した説明は適宜省略する。
 図1は、本発明の実施の形態に係る油圧ショベルの側面図である。
 図1において、油圧ショベル200は、下部走行体201と、下部走行体201と共に車体を構成する上部旋回体202と、フロント作業装置203とを備えている。下部走行体201は左右のクローラ式走行装置204,205(片側のみ図示)を有し、左右の走行モータ7,8(片側のみ図示)により駆動される。上部旋回体202は下部走行体201上に旋回可能に搭載され、旋回モータ6により旋回駆動される。フロント作業装置203は上部旋回体202の前部に上下方向に回動可能に取り付けられている。上部旋回体202にはキャビン(運転室)206が備えられ、キャビン206内には後述する操作レバー装置17,18(図2参照)や図示しない走行用の操作ペダル装置等の操作装置が配置されている。
 フロント作業装置203は、上部旋回体202の前部に上下方向に回動可能に取り付けられたブーム207と、このブーム207の先端部に上下または前後方向に回動可能に連結されたアーム208と、このアーム208の先端部に上下または前後方向に回動可能に連結されたバケット209と、ブーム207を駆動する油圧アクチュエータとしてのブームシリンダ3と、アーム208を駆動する油圧アクチュエータとしてのアームシリンダ4と、バケット209を駆動する油圧アクチュエータとしてのバケットシリンダ5とを備えている。ブーム207はブームシリンダ3の伸縮により上部旋回体202に対して上下方向に回動し、アーム208はアームシリンダ4の伸縮によりブーム207に対して上下、前後方向に回動し、バケット209はバケットシリンダ5の伸縮によりアーム208に対して上下、前後方向に回動する。
 図2は、図1に示す油圧ショベル200に搭載された油圧駆動装置の概略構成図である。なお、説明の簡略化のため、ブームシリンダ3およびアームシリンダ4以外の油圧アクチュエータの操作に関わる部分の図示を一部省略している。
 図2において、油圧駆動装置300は、原動機としてのエンジン50と、エンジン50によって駆動される可変用容量型の第1および第2油圧ポンプ1,2と、ブームシリンダ3と、アームシリンダ4と、バケットシリンダ5と、旋回モータ6と、左右の走行モータ7,8と、ブームシリンダ3の圧油を給排するブーム流量制御弁9,10と、アームシリンダ4の圧油の給排を制御するアーム流量制御弁11,12と、ブームシリンダ3またはアームシリンダ4以外の油圧アクチュエータの圧油の給排を制御する他の流量制御弁と、ブームシリンダ3の操作を指示するパイロット式のブーム操作レバー装置17と、アームシリンダ4の操作を指示するパイロット式のアーム操作レバー装置18と、第1および第2油圧ポンプ1,2がそれぞれ有する押しのけ容積可変部材(斜板)1a,2aの傾転量(押しのけ容積)をそれぞれ調整する第1および第2レギュレータ60a,60bと、第1および第2レギュレータ60a,60bを制御するコントローラ30とを備えている。
 第1油圧ポンプ1には、上流側から走行モータ7への圧油の給排を制御するための流量制御弁、バケットシリンダ5への圧油の給排を制御するための流量制御弁、ブームシリンダ3への圧油の給排を制御するためのブーム流量制御弁9、アームシリンダ4への圧油の給排を制御するためのアーム流量制御弁12が順に接続されていて、バケットシリンダ5への圧油の給排を制御するための流量制御弁以降はタンデム・パラレル接続されている。
 また、第2油圧ポンプ2には、上流側から旋回モータ6への圧油の給排を制御するための流量制御弁、アームシリンダ4への圧油の給排を制御するためのアーム流量制御弁11、ブームシリンダ3への圧油の給排を制御するためのブーム流量制御弁10、アタッチメントへの圧油の給排を制御するための流量制御弁、走行モータ8への圧油の給排を制御するための流量制御弁が順にタンデム・パラレル接続されている。
 第1レギュレータ60aは、押しのけ容積可変部材1aを駆動する傾転制御ピストン61aと、コントローラ30から入力される指令電流に応じて傾転制御ピストン61aの操作圧を生成する比例電磁弁62aとを有する。同様に、第2レギュレータ60bは、押しのけ容積可変部材2aを駆動する傾転制御ピストン61bと、コントローラ60から入力される指令電流に応じて傾転制御ピストン61bの操作圧を生成する比例電磁弁62bとを有する。
 ブーム流量制御弁9,10は、ブーム操作レバー装置17の操作レバー(ブーム操作レバー)17aがブーム上げ側に操作されたときにブーム操作レバー装置17から出力されるパイロット圧(ブーム上げパイロット圧BMU)によって図示左方向に駆動される。これにより、第1および第2油圧ポンプ1,2の吐出油がブームシリンダ3のボトム側に供給されると共に、ブームシリンダ3のロッド側から排出される油がタンクに戻され、ブームシリンダ3が伸長動作する。
 また、ブーム流量制御弁9,10は、ブーム操作レバー17aがブーム下げ側に操作されたときにブーム操作レバー装置17から出力されるパイロット圧(ブーム下げパイロット圧BMD)によって図示右方向に駆動される。これにより、第1および第2油圧ポンプ1,2の吐出油がブームシリンダ3のロッド側に供給されると共に、ブームシリンダ3のボトム側から排出される油がタンクに戻され、ブームシリンダ3が縮退動作する。
 アーム流量制御弁11,12は、アーム操作レバー装置18の操作レバー(アーム操作レバー)18aがブーム引き側に操作されたときにアーム操作レバー装置18から出力されるパイロット圧(アーム引きパイロット圧AMC)によって図示右方向に駆動される。これにより、第1および第2油圧ポンプ1,2の吐出油がアームシリンダ4のボトム側に供給されると共に、アームシリンダ4のロッド側から排出される油がタンクに戻され、アームシリンダ4が伸長動作する。
 また、アーム流量制御弁11,12は、アーム操作レバー18aがアーム押し側に操作されたときにアーム操作レバー装置18から出力されるパイロット圧(アーム押しパイロット圧AMD)によって図示左方向に駆動される。これにより、第1および第2油圧ポンプ1,2の吐出油がアームシリンダ4のロッド側に供給されると共に、アームシリンダ4のボトム側から排出される油がタンクに戻され、アームシリンダ4が縮退動作する。
 ブーム操作レバー装置17から出力されるブーム上げパイロット圧BMUをブーム流量制御弁9,10の図示左側の各受圧部に導くパイロットラインには、ブーム上げパイロット圧BMUを検出する圧力センサ19が設けられ、ブーム操作レバー装置17から出力されるブーム下げパイロット圧BMDをブーム流量制御弁9,10の図示右側の各受圧部に導くパイロットラインには、ブーム下げパイロット圧BMDを検出する圧力センサ20が設けられている。
 アーム操作レバー装置18から出力されるアーム引きパイロット圧AMCをアーム流量制御弁11,12の図示右側の各受圧部に導くパイロットラインには、アーム引きパイロット圧AMCを検出する圧力センサ21が設けられ、アーム操作レバー装置18から出力されるアーム押しパイロット圧AMDをアーム流量制御弁11,12の図示左側の各受圧部に導くパイロットラインには、アーム押しパイロット圧AMDを検出する圧力センサ22が設けられている。
 第2油圧ポンプ2の吐出油が供給される圧油供給ラインには、第2油圧ポンプ2の吐出圧を検出する圧力センサ23が設けられている。
 コントローラ30は、圧力センサ19,20,21,22の検出信号(パイロット圧)および圧力センサ23の検出信号(第2油圧ポンプ2の吐出圧)を入力して所定の演算処理を行い、第1および第2レギュレータ60a,60bの比例電磁弁62a,62bに指令電流を出力する。
 図2に示す油圧回路は、オープンセンタ型と呼ばれる方式である。この方式では、流量制御弁9,10,11,12のスプールのストロークと各絞りの開口面積の関係を図3のように設定することで、第1および第2油圧ポンプ1,2から油圧アクチュエータ3,4に供給される圧油の流量(以下、メータイン流量という)と、第1および第2油圧ポンプ1,2からセンタバイパス流路を介してタンクに戻される圧油の流量(以下、ブリードオフ流量という)をスプールのストローク、すなわち操作レバー17a,18aの操作量(レバー操作量)に応じて制御する。
 例えば、操作レバー17a,18aが中立位置の場合にはセンタバイパス絞りのみが開いているため、すべての圧油がタンクに戻される。中間位置の場合にはセンタバイパス絞りとメータイン絞りの両方が開いているため、一部の圧油がタンクに戻される一方、残りの圧油が油圧アクチュエータ3,4に供給される。最大位置の場合にはメータイン絞りのみが開いているため、すべての圧油が油圧アクチュエータ3,4に供給される。
 ここで、アーム引き操作とブーム上げ操作を同時に行う(以下、水平引き操作という)場合を想定する。水平引き操作におけるアーム引き操作量とブーム上げ操作量の変化を図4に示す。操作開始直後はアーム引き操作、ブーム上げ操作共に操作量は最大(A区間)であるが、アームが引き込まれるにつれてバケットの爪先の高さを一定に保つため、アーム引き操作量は最大のままであるのに対し,ブーム上げ操作量は次第に減少する(B区間)。
 A区間では、アーム引き操作量、ブーム上げ操作量共に最大であるため、第1および第2油圧ポンプ1,2の目標押しのけ容積はいずれも最大値となる。第2油圧ポンプ2から吐出される圧油は、ブームシリンダ3の負荷圧よりもアームシリンダ4の負荷圧が低いので、全てアームシリンダ4に供給されるが、第1油圧ポンプ1から吐出される圧油は、パラレル流路15に設けた絞り16の作用により、大半がブームシリンダ3に供給され、一部がアームシリンダ4に供給される。
 これに対し、B区間ではアーム引き操作量が最大のままであるため、A区間と同様に第1および第2油圧ポンプ1,2の目標押しのけ容積はいずれも最大値となる。第2油圧ポンプ2から吐出される圧油が全てアームシリンダ4に供給されるのもA区間と同様であるが、第1油圧ポンプ1から吐出される圧油は、ブーム上げ操作量の減少に伴ってブーム流量制御弁9のセンタバイパス絞りが開くことにより、ブームシリンダ3に供給される流量は減少し、減少分の流量(すなわち、ブリードオフ流量)はセンタバイパス流路13から分岐したタンデム流路14を介してアームシリンダ4に供給される。
 ブーム流量制御弁9のセンタバイパス絞りの開口面積が比較的大きく設定(図3中の破線)されている場合、中間位置におけるブリードオフ流量も比較的多いので、ブーム上げ操作量の減少に応じてアームシリンダ4の作動速度が増加し、作業効率を向上させることができる。
 一方で、例えば水平引き以外の操作でのブリードオフ流量による損失を低減することを目的として、ブーム流量制御弁9のセンタバイパス絞りの開口面積が比較的小さく設定(図3中の実線)されている場合、水平引き操作において第1油圧ポンプ1の目標押しのけ容積は最大値のままであるので、第1油圧ポンプ1の吐出圧が上記の場合よりも上昇する。この結果、ブリードオフ流量による損失が増加して燃費が悪化する恐れがある。本実施の形態に係る油圧ショベル200は、以下の実施例で説明するコントローラ30を備えたことにより、水平引き操作におけるエネルギー効率を向上することができる。
 図5は、本発明の第1の実施例におけるコントローラ30の機能ブロック図である。
 図5において、コントローラ30は、第1レギュレータ60aを制御する第1レギュレータ制御部30aと、第2レギュレータ60bを制御する第2レギュレータ制御部30bとを有する。第1レギュレータ制御部30aは、操作レバー装置17,18を含む操作装置から入力されるパイロット圧Pi1,Pi2,・・・,Pinおよび第2油圧ポンプ2の吐出圧P2を入力して所定の演算処理を行い、第1レギュレータ60aの比例電磁弁62aに指令電流Iaを出力する。一方、第2レギュレータ制御部30bは、操作レバー装置17,18を含む操作装置から入力されるパイロット圧Pi1,Pi2,・・・,Pinを入力して所定の演算処理を行い、第2レギュレータ60bの比例電磁弁62bに指令電流Ibを出力する。
 図6は、第1レギュレータ制御部30aの詳細を示す機能ブロック図である。
 図6において、第1レギュレータ制御部30aは、押しのけ容積変換部311,312,・・・,31nと、押しのけ容積制限部70と、最大値選択部36aと、指令電流変換部37aとを有する。押しのけ容積制限部70は、操作判定部32と、圧力判定部33と、最大値選択部34と、乗算部35とを有する。
 押しのけ容積変換部311は、パイロット圧Pi1に対する第1油圧ポンプ1の目標押しのけ容積特性を記憶しており、入力されたパイロット圧Pi1を目標押しのけ容積Qa1に変換して出力する。押しのけ容積変換部312は、パイロット圧Pi2に対する第1油圧ポンプ1の目標押しのけ容積特性を記憶しており、入力されたパイロット圧Pi2を目標押しのけ容積Qa2に変換して出力する。押しのけ容積変換部31nは、その他のパイロット圧Pinに対する第1油圧ポンプ1の目標押しのけ容積特性を記憶しており、入力されたパイロット圧Pinを押しのけ容積Qanに変換して出力する。以下、パイロット圧Pi1をブーム上げパイロット圧BMUとし、パイロット圧Pi2をアーム引きパイロット圧AMCとして説明する。
 操作判定部32は、パイロット圧Pi1(ブーム上げ操作量)がブーム上げ操作が行われていると判定される閾値(所定の操作量)未満では1を出力し、閾値以上では0を出力する。圧力判定部33は、第2油圧ポンプ2の吐出圧P2が掘削等の負荷が高い作業が行われていると判定される閾値(所定の圧力)未満では0を出力し、閾値以上では1を出力する。最大値選択部34は、操作判定部32の出力値と圧力判定部33の出力値のうちの最大値を選択し、乗算部35に出力する。乗算部35は、最大値選択部34の出力値と押しのけ容積変換部312の出力値とを乗算し、最大値選択部36aに出力する。これにより、ブーム上げ操作量Pi1が所定の操作量以上でかつ第2油圧ポンプ2の吐出圧P2が所定の圧力未満である場合は、アーム引き操作量Pi2に基づく第1油圧ポンプ1の目標押しのけ容積Qa2が最大値選択部36aに入力されないため、ブーム上げ操作量Pi1に基づく第1油圧ポンプ1の目標押しのけ容積Qa1のみに応じて第1レギュレータ60bが制御される。
 最大値選択部36aは、押しのけ容積変換部311,312,・・・,31nの各出力値Qa1,Qa2,・・・,Qanと乗算部35の出力値のうちの最大値を選択し、指令電流変換部37aに出力する。指令電流変換部37aは、最大値選択部36aの出力値に応じた指令電流Iaを第1レギュレータ60aの比例電磁弁62aに出力する。
 図7は、第2レギュレータ制御部30bの詳細を示す機能ブロック図である。
 図7において、第2レギュレータ制御部30bは、押しのけ容積変換部381,382,・・・,38nと、最大値選択部36bと、指令電流変換部37bとを有する。
 押しのけ容積変換部381は、パイロット圧Pi1に対する第2油圧ポンプ2の目標押しのけ容積特性を記憶しており、入力されたパイロット圧Pi1を押しのけ容積Qb1に変換して出力する。押しのけ容積変換部382は、パイロット圧Pi2に対する第2油圧ポンプ2の目標押しのけ容積特性を記憶しており、入力されたパイロット圧Pi2を押しのけ容積Qb2に変換して出力する。押しのけ容積変換部38nは、その他のパイロット圧Pinに対する第2油圧ポンプ2の目標押しのけ容積特性を記憶しており、入力されたパイロット圧Pinを押しのけ容積Qbnに変換して出力する。
 最大値選択部36bは、押しのけ容積変換部381,382,・・・,38nの各出力値Qb1,Qb2,・・・,Qbnのうちの最大値を選択し、指令電流変換部37bに出力する。指令電流変換部37bは、最大値選択部36bの出力値に応じた指令電流Ibを第2レギュレータ60bの比例電磁弁62bに出力する。
 次に、本実施例における油圧駆動装置300(図2参照)の動作について説明する。
 油圧ショベル200のオペレータがブーム操作レバー17aをブーム上げ方向に操作し、かつアーム操作レバー18aをアーム引き方向に操作すると、ブーム流量制御弁9,10の図示左側の受圧部にブーム上げパイロット圧BMUが作用し、アーム流量制御弁11,12の図示左側の受圧部にアーム引きパイロット圧AMCが作用する。このときパイロット圧は圧力センサ19,21で検出され、検出信号がPi1,Pi2としてコントローラ30に入力される。また、第2油圧ポンプ2の吐出圧も圧力センサ23の検出信号P2としてコントローラ30に入力される。
 コントローラ30では、パイロット圧Pi1,Pi2に応じた第1油圧ポンプ1の目標押しのけ容積Qa1,Qa2が押しのけ容積変換部311,312からそれぞれ出力される一方、ブームシリンダ3およびアームシリンダ4以外の油圧アクチュエータが操作されていないため、押しのけ容積変換部31nからは目標押しのけ容積の最小値が出力される。ブーム上げ操作が行われており、ブーム上げパイロット圧Pi1は閾値を上回るため、操作判定部32の出力値は0となる。また、掘削等の負荷が高い作業が行われておらず、第2油圧ポンプ2の吐出圧P2は閾値を下回るため、圧力判定部33の出力値は0となる。その結果、最大値選択部34の出力値も0となるので、乗算部35では目標押しのけ容積Qa2に0が乗算される。従って、最大値選択部36からはパイロット圧Pi1に応じた目標押しのけ容積Qa1が出力される。
 本実施例において水平引き操作を行った場合の第1および第2油圧ポンプ1,2の押しのけ容積の変化を図8に示す。操作開始直後のA区間において、第1および第2油圧ポンプ1,2共に押しのけ容積が最大値となるのは従来技術と同様である。これに対し、B区間では第2油圧ポンプ2の押しのけ容積は最大値のままである一方、第1油圧ポンプ1の押しのけ容積はパイロット圧Pi1に応じて減少する(図中の実線)。これは、第1レギュレータ制御部30a(図6参照)において、アーム引き操作量Pi2に基づく目標押しのけ容積Qa2の最大値選択部36aへの入力が押しのけ容積制限部70によって制限されるためである。
 本実施例に係る油圧ショベル200は、車体201,202と、車体201,202に上下方向に回動可能に取り付けられたブーム207と、ブーム207の先端部に上下または前後方向に回動可能に取り付けられたアーム208と、可変容量型の第1および第2油圧ポンプ1,2と、第1および第2油圧ポンプ1,2の各押しのけ容積を調整する第1および第2レギュレータ60a,60bと、少なくとも第1油圧ポンプ1の吐出油が供給されてブーム207を駆動するブームシリンダ3と、少なくとも第2油圧ポンプ2の吐出油が供給されてアーム208を駆動するアームシリンダ4と、ブーム207の動作を指示するブーム操作装置17と、アーム208の動作を指示するアーム操作装置18と、ブーム操作装置17およびアーム操作装置18の操作量を検出する操作量検出装置19,20,21,22と、ブーム操作装置17およびアーム操作装置18の操作量に応じて第1および第2レギュレータ60a,60bを制御するコントローラ30と、第2油圧ポンプ2の吐出圧を検出する圧力検出装置23とを備え、コントローラ30は、ブーム操作装置17のブーム上げ操作量Pi1に基づく第2油圧ポンプ2の目標押しのけ容積Qb1とアーム操作装置18のアーム引き操作量Pi2に基づく第2油圧ポンプ2の目標押しのけ容積Qb2のうちの最大値に応じて第2レギュレータ60bを制御し、ブーム上げ操作量Pi1が所定の操作量未満である場合、または第2油圧ポンプ2の吐出圧P2が所定の圧力以上である場合は、ブーム上げ操作量Pi1に基づく第1油圧ポンプ1の目標押しのけ容積Qa1とアーム引き操作量Pi2に基づく第1油圧ポンプ1の目標押しのけ容積Qa2のうちの最大値に応じて第1レギュレータ60aを制御し、ブーム上げ操作量Pi1が前記所定の操作量以上でかつ第2油圧ポンプ2の吐出圧P2が前記所定の圧力未満である場合は、ブーム上げ操作量Pi1に基づく第1油圧ポンプ1の目標押しのけ容積Qa1のみに応じて第1レギュレータ60aを制御する。
 また、第1レギュレータ60aは、第1油圧ポンプ1の押しのけ容積可変部材1aを駆動する傾転制御ピストン61aと、コントローラ30から入力される指令電流Iaに応じて傾転制御ピストン61aの操作圧を生成する比例電磁弁62aとを有し、コントローラ30は、ブーム上げ操作量Pi1を第1油圧ポンプ1の目標押しのけ容積Qa1に変換して出力する第1押しのけ容積変換部311と、アーム引き操作量Pi2を第1油圧ポンプ1の目標押しのけ容積Qa2に変換して出力する第2押しのけ容積変換部312と、ブーム上げ操作量Pi1が前記所定の操作量未満である場合、または第2油圧ポンプ2の吐出圧P2が前記所定の圧力以上である場合は、第2押しのけ容積変換部312の出力値Qa2をそのまま出力し、ブーム上げ操作量Pi1が前記所定の操作量以上でかつ第2油圧ポンプ2の吐出圧P2が前記所定の圧力未満である場合は0を出力する押しのけ容積制限部70と、第1押しのけ容積変換部311の出力値Qa1と押しのけ容積制限部70の出力値のうちの最大値を選択して出力する最大値選択部36aと、最大値選択部36aの出力値に基づく指令電流Iaを比例電磁弁62aに出力する指令電流変換部37aとを有する。
 以上のように構成した本実施例に係る油圧ショベル200によれば、アーム引き操作とブーム上げ操作を同時に行う水平引き操作において、主にブームシリンダ3に圧油を供給する第1油圧ポンプ1の押しのけ容積がブーム上げ操作量Pi1の低下に応じて減少する。これにより、第1油圧ポンプ1の吐出圧が過度に上昇することが無くなるため、エネルギー効率を向上することが可能となる。
 図9は、本発明の第2の実施例におけるコントローラ30が有する第1レギュレータ制御部30aの機能ブロック図である。図9において、第1の実施例(図6参照)との相違点は、第1レギュレータ制御部30aがゲイン生成部38と、減算部39と、比較部40と、乗算部41と、加算部42とを更に有している点である。
 ゲイン生成部38はブーム上げ操作量Pi1に応じて0から1の範囲の数値を出力する。なお、本実施例におけるゲイン生成部38は、ブーム上げ操作量Pi1に比例したゲインを出力するように構成されている。減算部39はアーム引き操作量Pi2に応じた目標押しのけ容積Qa2からブーム上げ操作量に応じた目標押しのけ容積Qa1を減算した差分値ΔQを出力する。比較部40は差分値ΔQと所定の閾値とを比較し、差分値ΔQが閾値以上のときは差分値ΔQをそのまま出力し、差分値ΔQが閾値未満のときは0を出力する。乗算部41はゲイン生成部38の出力値と比較部40の出力値とを乗算し、加算部42は目標押しのけ容積Qa1に乗算部41の出力値を加算し、最大値選択部36aに出力する。
 以下、本実施例における油圧駆動装置300(図2参照)の動作について説明する。
 油圧ショベル200のオペレータがブーム操作レバー17aをブーム上げ方向に操作し、かつアーム操作レバー18aをアーム引き方向に操作すると、押しのけ容積変換部311,312からブーム上げ操作量とアーム引き操作量に応じた目標押しのけ容積Qa1,Qa2がそれぞれ出力され、ゲイン生成部38からはパイロット圧Pi1に応じた数値が出力される。
 図8中のA区間では減算部39の出力値は0となるので、比較部40および乗算部41の出力値も0となり、加算部42からは目標押しのけ容積Qa1がそのまま出力される。一方で、B区間では減算部39の出力値ΔQは0よりも大きくなり、閾値を上回ると比較部40から差分値ΔQが出力されるので、加算部42からは目標押しのけ容積Qa1に差分値ΔQとゲイン生成部38の出力値との積を加算した値が出力される。
 本実施例において水平引き操作を行った場合の第1および第2油圧ポンプ1,2の押しのけ容積の変化を図10に示す。操作開始直後のA区間において、第1および第2油圧ポンプ1,2共に押しのけ容積が最大値となるのは、第1の実施例(図8参照)と同様である。これに対し、B区間では第2油圧ポンプ2の押しのけ容積は最大値のままである一方、第1油圧ポンプ1の押しのけ容積は第1の実施例(図中の破線)よりも増加する。
 ここで、ブーム上げ操作に対応した押しのけ容積変換部311の特性は水平引き操作以外の操作も考慮して設定されるのが一般的である。そのため、第1の実施例では、ブーム上げ操作とアーム引き操作を同時に行った場合に、ブーム上げ操作を単独で行った場合よりもブーム上げ速度が低下する恐れがある。一方、本実施例では、アーム引き操作量に応じた目標押しのけ容積Qa2からブーム上げ操作量に応じた目標押しのけ容積Qa1を減算した差分値ΔQとブーム上げ操作量に応じたゲインの乗算値を目標押しのけ容積Qa1に加算することにより、ブーム上げ操作量に対するブームシリンダ3の作動速度の特性をアーム引き操作が行われた場合とそうでない場合とで均一にすることができる。
 本実施例では、コントローラ30は、アーム引き操作量Pi2に基づく第1油圧ポンプ1の目標押しのけ容積Qa2からブーム上げ操作量Pi1に基づく第1油圧ポンプ1の目標押しのけ容積Qa1を減算した差分値ΔQが所定の閾値以上である場合に、ブーム上げ操作量Pi1に基づくゲインと差分値ΔQとの乗算値をブーム上げ操作量Pi1に基づく第1油圧ポンプ1の目標押しのけ容積Qa1に加算する。
 また、コントローラ30は、ブーム上げ操作量Pi1に応じたゲインを算出して出力するゲイン生成部38と、第2押しのけ容積変換部312の出力値Qa2から第1押しのけ容積変換部311の出力値Qa1を減算した差分値ΔQを出力する減算部39と、差分値ΔQが所定の閾値以上である場合に差分値ΔQをそのまま出力し、差分値ΔQが前記所定の閾値値未満である場合に0を出力する比較部40と、ゲイン生成部38の出力値と比較部40の出力値とを乗算して出力する乗算部41と、第1押しのけ容積変換部311の出力値Qa1に乗算部41の出力値を加算する加算部42とを有する。
 以上のように構成した本実施例に係る油圧ショベル200によれば、アーム引き操作量に応じた目標押しのけ容積Qa2からブーム上げ操作量に応じた目標押しのけ容積Qa1を減算した差分値ΔQとブーム上げ操作量に応じたゲインの乗算値を目標押しのけ容積Qa1に加算することにより、ブーム上げ操作量に対するブームシリンダ3の作動速度の特性をアーム引き操作が行われた場合とそうでない場合とで均一にすることができる。これにより、水平引き操作においてエネルギー効率の低下を防ぎつつ、作業効率を向上することができる。
 以上、本発明の実施例について詳述したが、本発明は、上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成に他の実施例の構成の一部を加えることも可能であり、ある実施例の構成の一部を削除し、あるいは、他の実施例の一部と置き換えることも可能である。
 1…第1油圧ポンプ、1a…押しのけ容積可変部材、2…第2油圧ポンプ、2a…押しのけ容積可変部材、3…ブームシリンダ、4…アームシリンダ、5…バケットシリンダ、6…旋回モータ、7,8…走行モータ、9,10…ブーム流量制御弁、11,12…アーム流量制御弁、13…センタバイパス流路、14…タンデム流路、15…パラレル流路、16…絞り、17…ブーム操作レバー装置(ブーム操作装置)、17a…ブーム操作レバー、18…アーム操作レバー装置(アーム操作装置)、18a…アーム操作レバー、19,20,21,22…圧力センサ(操作量検出装置)、23…圧力センサ(圧力検出装置)、30…コントローラ、30a…第1レギュレータ制御部、30b…第2レギュレータ制御部、32…操作判定部、33…圧力判定部、34…最大値選択部、35…乗算部、36a,36b…最大値選択部、37a,37b…指令電流変換部、38…ゲイン生成部、39…減算部、40…比較部、50…エンジン(原動機)、60a…第1レギュレータ、61a…傾転制御ピストン、62a…比例電磁弁、60b…第2レギュレータ、61b…傾転制御ピストン、62b…比例電磁弁、70…押しのけ容積制限部、200…油圧ショベル(建設機械)、201…下部走行体(車体)、202…上部旋回体(車体)、203…フロント作業装置、204,205…クローラ式走行装置、206…キャビン、207…ブーム、208…アーム、209…バケット、300…油圧駆動装置、311…押しのけ容積変換部(第1押しのけ容積変換部)、312…押しのけ容積変換部(第2押しのけ容積変換部)、31n…押しのけ容積変換部、381,382,38n…押しのけ容積変換部。

Claims (4)

  1.  車体と、
     前記車体に上下方向に回動可能に取り付けられたブームと、
     前記ブームの先端部に上下または前後方向に回動可能に取り付けられたアームと、
     可変容量型の第1油圧ポンプおよび第2油圧ポンプと、
     前記第1油圧ポンプおよび第2油圧ポンプの押しのけ容積を調整する第1レギュレータおよび第2レギュレータと、
     前記第1油圧ポンプおよび前記第2油圧ポンプから吐出される圧油が供給されて前記ブームを駆動するブームシリンダと、
     前記第1油圧ポンプおよび前記第2油圧ポンプから吐出される圧油が供給されて前記アームを駆動するアームシリンダと、
     前記ブームの動作を指示するブーム操作装置と、
     前記アームの動作を指示するアーム操作装置と、
     前記ブーム操作装置および前記アーム操作装置の操作量を検出する操作量検出装置と、
     前記ブーム操作装置および前記アーム操作装置の操作量に応じて前記第1レギュレータおよび第2レギュレータを制御するコントローラとを備えた建設機械において、
     前記第2油圧ポンプの吐出圧を検出する圧力検出装置を備え、
     前記コントローラは、
     前記ブーム操作装置のブーム上げ操作量に基づく前記第2油圧ポンプの目標押しのけ容積と前記アーム操作装置のアーム引き操作量に基づく前記第2油圧ポンプの目標押しのけ容積のうちの最大値に応じて前記第2レギュレータを制御し、
     前記ブーム上げ操作量が所定の操作量未満である場合、または前記第2油圧ポンプの吐出圧が所定の圧力以上である場合は、前記ブーム上げ操作量に基づく前記第1油圧ポンプの目標押しのけ容積と前記アーム引き操作量に基づく前記第1油圧ポンプの目標押しのけ容積のうちの最大値に応じて前記第1レギュレータを制御し、
     前記ブーム上げ操作量が前記所定の操作量以上でかつ前記第2油圧ポンプの吐出圧が前記所定の圧力未満である場合は、前記ブーム上げ操作量に基づく前記第1油圧ポンプの目標押しのけ容積のみに応じて前記第1レギュレータを制御する
     ことを特徴とする建設機械。
  2.  請求項1に記載の建設機械において、
     前記コントローラは、前記アーム引き操作量に基づく前記第1油圧ポンプの目標押しのけ容積から前記ブーム上げ操作量に基づく前記第1油圧ポンプの目標押しのけ容積を減算した差分値が所定の閾値以上である場合に、前記ブーム上げ操作量に基づくゲインと前記差分値との乗算値を前記ブーム上げ操作量に基づく前記第1油圧ポンプの目標押しのけ容積に加算する
     ことを特徴とする建設機械。
  3.  請求項1に記載の建設機械において、
     前記第1レギュレータは、前記第1油圧ポンプの押しのけ容積可変部材を駆動する傾転制御ピストンと、前記コントローラから入力される指令電流に応じて前記傾転制御ピストンの操作圧を生成する比例電磁弁とを有し、
     前記コントローラは、
     前記ブーム上げ操作量を前記第1油圧ポンプの目標押しのけ容積に変換して出力する第1押しのけ容積変換部と、
     前記アーム引き操作量を前記第1油圧ポンプの目標押しのけ容積に変換して出力する第2押しのけ容積変換部と、
     前記ブーム上げ操作量が前記所定の操作量未満である場合、または前記第2油圧ポンプの吐出圧が前記所定の圧力以上である場合は、前記第2押しのけ容積変換部の出力値をそのまま出力し、前記ブーム上げ操作量が前記所定の操作量以上でかつ前記第2油圧ポンプの吐出圧が前記所定の圧力未満である場合は0を出力する押しのけ容積制限部と、
     前記第1押しのけ容積変換部の出力値と前記押しのけ容積制限部の出力値のうちの最大値を選択して出力する最大値選択部と、
     前記最大値選択部の出力値に基づく指令電流を前記比例電磁弁に出力する指令電流変換部とを有する
     ことを特徴とする建設機械。
  4.  請求項3に記載の建設機械において、
     前記コントローラは、
     前記ブーム上げ操作量に応じたゲインを算出して出力するゲイン生成部と、
     前記第2押しのけ容積変換部の出力値から前記第1押しのけ容積変換部の出力値を減算した差分値を出力する減算部と、
     前記差分値が所定の閾値以上である場合に前記差分値をそのまま出力し、前記差分値が前記所定の閾値値未満である場合に0を出力する比較部と、
     前記ゲイン生成部の出力値と前記比較部の出力値とを乗算して出力する乗算部と、
     前記第1押しのけ容積変換部の出力値に前記乗算部の出力値を加算する加算部とを有する
     ことを特徴とする建設機械。
PCT/JP2018/010908 2018-03-19 2018-03-19 建設機械 WO2019180798A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019546406A JP6782851B2 (ja) 2018-03-19 2018-03-19 建設機械
PCT/JP2018/010908 WO2019180798A1 (ja) 2018-03-19 2018-03-19 建設機械
EP18907473.5A EP3608548B1 (en) 2018-03-19 2018-03-19 Construction machine
CN201880013697.2A CN110506165B (zh) 2018-03-19 2018-03-19 工程机械
US16/490,982 US11230819B2 (en) 2018-03-19 2018-03-19 Construction machine
KR1020197024496A KR102171498B1 (ko) 2018-03-19 2018-03-19 건설 기계

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/010908 WO2019180798A1 (ja) 2018-03-19 2018-03-19 建設機械

Publications (1)

Publication Number Publication Date
WO2019180798A1 true WO2019180798A1 (ja) 2019-09-26

Family

ID=67986053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010908 WO2019180798A1 (ja) 2018-03-19 2018-03-19 建設機械

Country Status (6)

Country Link
US (1) US11230819B2 (ja)
EP (1) EP3608548B1 (ja)
JP (1) JP6782851B2 (ja)
KR (1) KR102171498B1 (ja)
CN (1) CN110506165B (ja)
WO (1) WO2019180798A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021055423A (ja) * 2019-09-30 2021-04-08 日立建機株式会社 作業機械

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119709A (ja) 1993-10-28 1995-05-09 Hitachi Constr Mach Co Ltd 油圧ポンプ制御装置
JP2013181287A (ja) * 2012-02-29 2013-09-12 Sumitomo (Shi) Construction Machinery Co Ltd 建設機械

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2716607B2 (ja) * 1991-09-09 1998-02-18 日立建機株式会社 建設機械の油圧回路
JP5388787B2 (ja) * 2009-10-15 2014-01-15 日立建機株式会社 作業機械の油圧システム
JP2011226104A (ja) * 2010-04-16 2011-11-10 Hitachi Constr Mach Co Ltd 長尺フロントの動力異常停止時降下装置と降下方法
CN102140807B (zh) * 2011-01-11 2012-05-23 徐州徐工挖掘机械有限公司 一种提高挖掘机挖掘操纵特性和平整作业特性的方法
JP5572586B2 (ja) * 2011-05-19 2014-08-13 日立建機株式会社 作業機械の油圧駆動装置
JP5687150B2 (ja) * 2011-07-25 2015-03-18 日立建機株式会社 建設機械
JP6053828B2 (ja) * 2013-01-08 2016-12-27 日立建機株式会社 作業機械の油圧システム
JP6220227B2 (ja) * 2013-10-31 2017-10-25 川崎重工業株式会社 油圧ショベル駆動システム
CN106460877B (zh) * 2014-05-19 2019-05-10 住友重机械工业株式会社 挖土机及其控制方法
JP6212009B2 (ja) * 2014-09-12 2017-10-11 日立建機株式会社 作業機械の油圧制御装置
EP3219857B1 (en) * 2014-11-10 2023-06-28 Sumitomo (S.H.I.) Construction Machinery Co., Ltd. Work machine
JP6545609B2 (ja) * 2015-12-04 2019-07-17 日立建機株式会社 油圧建設機械の制御装置
JP6797015B2 (ja) * 2016-12-22 2020-12-09 川崎重工業株式会社 油圧ショベル駆動システム
JP6941517B2 (ja) * 2017-09-15 2021-09-29 川崎重工業株式会社 建設機械の油圧駆動システム
CN107489671B (zh) * 2017-09-15 2019-06-25 太原理工大学 混合动力工程机械多执行器控制系统
JP6450487B1 (ja) * 2018-05-15 2019-01-09 川崎重工業株式会社 油圧ショベル駆動システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119709A (ja) 1993-10-28 1995-05-09 Hitachi Constr Mach Co Ltd 油圧ポンプ制御装置
JP2013181287A (ja) * 2012-02-29 2013-09-12 Sumitomo (Shi) Construction Machinery Co Ltd 建設機械

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021055423A (ja) * 2019-09-30 2021-04-08 日立建機株式会社 作業機械
WO2021065952A1 (ja) * 2019-09-30 2021-04-08 日立建機株式会社 作業機械
KR20210115009A (ko) * 2019-09-30 2021-09-24 히다찌 겐끼 가부시키가이샤 작업 기계
CN113474514A (zh) * 2019-09-30 2021-10-01 日立建机株式会社 作业机械
JP7149917B2 (ja) 2019-09-30 2022-10-07 日立建機株式会社 作業機械
KR102491288B1 (ko) 2019-09-30 2023-01-26 히다찌 겐끼 가부시키가이샤 작업 기계

Also Published As

Publication number Publication date
EP3608548A1 (en) 2020-02-12
CN110506165B (zh) 2021-01-08
EP3608548B1 (en) 2023-10-25
KR20190111075A (ko) 2019-10-01
JPWO2019180798A1 (ja) 2020-04-23
US20210324602A1 (en) 2021-10-21
US11230819B2 (en) 2022-01-25
EP3608548A4 (en) 2021-03-10
JP6782851B2 (ja) 2020-11-11
CN110506165A (zh) 2019-11-26
KR102171498B1 (ko) 2020-10-29

Similar Documents

Publication Publication Date Title
US9051712B2 (en) Hydraulic system for working machine
JP5383537B2 (ja) 油圧システムのポンプ制御装置
JP6467515B2 (ja) 建設機械
US10301793B2 (en) Hydraulic drive system for work machine
US20170067226A1 (en) Hydraulic Driving System for Construction Machine
CN114555957A (zh) 再生装置、具备该再生装置的液压驱动系统及其控制装置
JP6782852B2 (ja) 建設機械
WO2019180798A1 (ja) 建設機械
US11098462B2 (en) Construction machine
JP2005256895A (ja) 作業用油圧シリンダの駆動制御装置および油圧ショベル
KR20220129089A (ko) 건설 기계
KR20230045078A (ko) 작업 기계
JP2013249900A (ja) 油圧駆動回路

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20197024496

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019546406

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018907473

Country of ref document: EP

Effective date: 20190826

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE