WO2019053814A1 - 作業機械 - Google Patents

作業機械 Download PDF

Info

Publication number
WO2019053814A1
WO2019053814A1 PCT/JP2017/033077 JP2017033077W WO2019053814A1 WO 2019053814 A1 WO2019053814 A1 WO 2019053814A1 JP 2017033077 W JP2017033077 W JP 2017033077W WO 2019053814 A1 WO2019053814 A1 WO 2019053814A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
arm
calculated
hydraulic
velocity
Prior art date
Application number
PCT/JP2017/033077
Other languages
English (en)
French (fr)
Inventor
勝道 伊東
寿身 中野
悠介 鈴木
昭広 楢▲崎▼
輝樹 五十嵐
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to EP17922064.5A priority Critical patent/EP3683364B1/en
Priority to US16/328,398 priority patent/US11001985B2/en
Priority to PCT/JP2017/033077 priority patent/WO2019053814A1/ja
Priority to CN201780049325.0A priority patent/CN109790698B/zh
Priority to KR1020197003398A priority patent/KR102130562B1/ko
Priority to JP2019510390A priority patent/JP6618652B2/ja
Publication of WO2019053814A1 publication Critical patent/WO2019053814A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2033Limiting the movement of frames or implements, e.g. to avoid collision between implements and the cabin
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • E02F9/2207Arrangements for controlling the attitude of actuators, e.g. speed, floating function for reducing or compensating oscillations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2271Actuators and supports therefor and protection therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes

Definitions

  • the present invention relates to a working machine that controls at least one of a plurality of hydraulic actuators according to predetermined conditions when operating an operating device.
  • Machine Control is a technology for improving the working efficiency of a working machine (for example, a hydraulic shovel) including a working device (for example, a front working device) driven by a hydraulic actuator.
  • the MC is a technology for assisting the operator's operation by executing semi-automatic control to operate the working device according to a predetermined condition when the operation device is operated by the operator.
  • Japanese Patent No. 5865510 discloses a technique for MC of a front work device to move a blade edge of a bucket along a reference surface.
  • the estimated speed of the arm cylinder is calculated based on the operating amount of the arm operating lever due to the fall of the weight of the bucket depending on the posture of the front work device.
  • the blade tip of the bucket may not be stabilized and hunting may occur.
  • the viscosity of the working oil is increased when the working machine oil is low temperature, but the actual arm cylinder speed in this case may be slower than the speed estimated from the lever operation amount.
  • FIG. 14 shows an opening area characteristic of an open center bypass type spool of a hydraulic system used for a working machine.
  • the opening area of the open center bypass type spool is the center bypass opening of the flow passage for flowing pressure oil from the pump into the tank, the meter-in opening of the flow passage for supplying pressure oil from the pump to the actuator, and the flow passage from the actuator to the tank There is a meter out opening.
  • SX be the closing point of the center bypass opening.
  • the arm cylinder In the lifting operation, the arm cylinder is driven in the lifting direction with respect to the weight of the front work device, so the pressure on the meter in side is increased by the weight of the front work device. If the operation amount of the arm control lever is small and the stroke amount of the spool is less than SX, pressure oil supplied from the pump is supplied to the arm cylinder through the meter-in opening because the center bypass opening is open, It divides into what flows into a tank through a bypass opening.
  • the pressure oil tends to flow in the direction of light load, when driving the arm cylinder in the lifting direction with respect to the weight of the front work device, when the arm cylinder is not driven in the lifting direction with respect to the weight of the front work device Compared with the above, the load on the arm cylinder is large and the pressure oil does not easily flow to the arm cylinder. As a result, the arm cylinder speed decreases.
  • the actual arm cylinder speed may differ from the speed estimated from the lever operation amount depending on the state of the work machine and the work content, and as a result, the blade edge of the bucket at the time of MC (tip of work device) May become unstable and cause hunting.
  • a working machine that performs such MC is provided with a posture sensor (for example, a potentiometer provided on a pin that connects an arm and a boom) for detecting the posture of the working device.
  • a posture sensor for example, a potentiometer provided on a pin that connects an arm and a boom
  • the arm cylinder speed calculated from the lever operation amount does not fall within the range of the estimated value, but the output of the attitude sensor can be used to understand the actual attitude of the working device, and the arm cylinder calculated from the time change of the output value of the attitude sensor The speed is steadily closer to the actual speed than that calculated from the lever operation amount. Therefore, it is conceivable to perform MC based on the arm cylinder speed calculated from the output value of the attitude sensor.
  • the posture sensor can detect the posture change only after the arm actually starts moving, if MC based on the arm velocity calculated from the output of the posture sensor is executed from the start of the movement of the arm, the actual arm
  • the response of the MC for example, a boom raising command
  • the blade tip position of the bucket may not be stabilized and hunting may occur.
  • An object of the present invention is to provide a working machine in which the speed of a specific hydraulic actuator for driving a working device can be calculated more appropriately, and the behavior of the tip of the working device (for example, the bucket blade edge) in MC is stabilized.
  • the present application includes a plurality of means for solving the above problems, for example, a working device having a plurality of front members, a plurality of hydraulic actuators for driving the plurality of front members, and an operator's operation
  • the operation device for instructing the operation of the plurality of hydraulic actuators
  • the actuator control for controlling at least one of the plurality of hydraulic actuators according to the speed of the plurality of hydraulic actuators and predetermined conditions when operating the operation device
  • Work machine including a control device having a control unit, a posture detection device for detecting a physical quantity related to the posture of a specific front member which is one of the plurality of front members, and an operation amount input from an operator to the operation device Operation amount detection for detecting a physical amount related to the operation amount for the specific front member
  • a first speed calculator configured to calculate a first speed of a specific hydraulic actuator that drives the specific front member among the plurality of hydraulic actuators from the detection value of the operation amount detection device;
  • a second speed calculator configured to calculate a second speed of the specific hydraulic
  • the first speed is calculated as the third speed until the predetermined time of 1 and the second predetermined time which is larger than the first predetermined time from the first predetermined time
  • a velocity calculated from the first velocity and the second velocity is calculated as the third velocity
  • the second velocity is calculated as the third velocity
  • the speed of a specific hydraulic actuator for driving the working device can be calculated more appropriately, and the behavior of the tip end of the working device in the MC can be stabilized.
  • FIG. 7 is a functional block diagram of an MC control unit in FIG. 6; 10 is a flowchart of boom raising control by the boom control unit.
  • FIG. 10 is a functional block diagram of an MC control unit according to a second embodiment.
  • the flowchart which calculates arm cylinder assumption speed of a 2nd embodiment Explanatory drawing of the relationship between arm operation pressure and arm cylinder speed (1st speed, 2nd speed, real speed). The figure which shows the relationship of the cylinder speed with respect to the operation amount of 2nd Embodiment.
  • FIG. 1 is a block diagram of a hydraulic excavator according to a first embodiment of the present invention
  • FIG. 2 is a diagram showing a controller of the hydraulic excavator according to the embodiment of the present invention together with a hydraulic drive
  • FIG. 5 is a detailed view of a front control hydraulic unit 160 in FIG.
  • the hydraulic shovel 1 is configured by an articulated articulated front working device 1A and a vehicle body 1B.
  • the vehicle body 1B includes a lower traveling body 11 traveling by the left and right traveling hydraulic motors 3a (see FIG. 2) and 3b, and an upper swing body 12 attached on the lower traveling body 11 and turning by a turning hydraulic motor 4. .
  • the front work device 1A is configured by connecting a plurality of front members (the boom 8, the arm 9 and the bucket 10) which respectively rotate in the vertical direction.
  • the proximal end of the boom 8 is rotatably supported at the front of the upper swing body 12 via a boom pin.
  • An arm 9 is rotatably connected to the tip of the boom 8 via an arm pin, and a bucket 10 is rotatably connected to the tip of the arm 9 via a bucket pin.
  • the plurality of front members 8, 9, 10 are driven by hydraulic cylinders 5, 6, 7 which are a plurality of hydraulic actuators. Specifically, the boom 8 is driven by the boom cylinder 5, the arm 9 is driven by the arm cylinder 6, and the bucket 10 is driven by the bucket cylinder 7.
  • the boom angle sensor 30 is mounted on the boom pin, the arm angle sensor 31 is mounted on the arm pin, and the bucket link so that the rotation angles ⁇ , ⁇ and ⁇ (see FIG. 5) can be measured.
  • a bucket angle sensor 32 is attached to the upper swing body 12, and a vehicle body tilt angle sensor 33 is attached to the upper swing body 12 to detect the tilt angle ⁇ (see FIG. 5) of the upper swing body 12 (vehicle body 1B) with respect to a reference surface It is done.
  • the angle sensors 30, 31 and 32 of the present embodiment are rotary potentiometers, they can be replaced by inclination angle sensors with respect to a reference plane (for example, horizontal plane), an inertial measurement unit (IMU), or the like.
  • An operating device 47a for operating the traveling right hydraulic motor 3a (lower traveling body 11) having a traveling right lever 23a (FIG. 1) in the driver's cabin provided in the upper revolving superstructure 12;
  • An operating device 47b (FIG. 2) having a left lever 23b (FIG. 1) for operating the traveling left hydraulic motor 3b (lower traveling body 11) and an operation right lever 1a (FIG. 1)
  • Operating devices 45 b and 46 b (FIG. 2) for operating (the upper swing body 12) are installed.
  • the travel right lever 23a, the travel left lever 23b, the operation right lever 1a, and the operation left lever 1b may be collectively referred to as operation levers 1 and 23.
  • the engine 18 mounted on the upper revolving superstructure 12 drives the hydraulic pumps 2 a and 2 b and the pilot pump 48.
  • the hydraulic pumps 2a and 2b are variable displacement pumps whose capacities are controlled by the regulators 2aa and 2ba, and the pilot pump 48 is a fixed displacement pump.
  • the hydraulic pump 2 and the pilot pump 48 suck hydraulic fluid from the tank 200.
  • a shuttle block 162 is provided in the middle of the pilot lines 144, 145, 146, 147, 148 and 149.
  • the hydraulic pressure signals output from the operating devices 45, 46, 47 are also input to the regulators 2aa, 2ba via the shuttle block 162.
  • a hydraulic pressure signal is input to the regulators 2aa and 2ba via the shuttle block 162, and the discharge flow rate of the hydraulic pumps 2a and 2b is controlled according to the hydraulic pressure signal.
  • the pump line 48a which is a discharge pipe of the pilot pump 48, passes through the lock valve 39, and then branches into a plurality of branches to be connected to the valves in the operation devices 45, 46, 47 and the hydraulic unit 160 for front control.
  • the lock valve 39 is an electromagnetic switching valve in this example, and the electromagnetic drive unit is electrically connected to a position detector of a gate lock lever (not shown) disposed in the driver's cab (FIG. 1). The position of the gate lock lever is detected by a position detector, and a signal corresponding to the position of the gate lock lever is input to the lock valve 39 from the position detector.
  • the lock valve 39 When the position of the gate lock lever is in the lock position, the lock valve 39 is closed and the pump line 48a is shut off, and when in the lock release position, the lock valve 39 is opened and the pump line 48a is opened. That is, in the state where the pump line 48a is shut off, the operation by the operating devices 45, 46, 47 is invalidated, and the operation such as turning or digging is prohibited.
  • the operating devices 45, 46, 47 are hydraulic pilot type operating devices, and based on the pressure oil discharged from the pilot pump 48, the operating amounts of the operating levers 1, 23 operated by the operator (for example, levers)
  • a pilot pressure (sometimes referred to as operating pressure) is generated according to the stroke and the operating direction.
  • the pilot pressure thus generated is supplied to the hydraulic drive units 150a to 155b of the corresponding flow control valves 15a to 15f (FIG. 2 or FIG. 3) through the pilot lines 144a to 149b (see FIG. 3). It is used as a control signal for driving the control valves 15a to 15f.
  • the pressure oil discharged from the hydraulic pump 2 passes through the flow control valves 15a, 15b, 15c, 15d, 15e and 15f (see FIG. 2), the traveling right hydraulic motor 3a, the traveling left hydraulic motor 3b, the turning hydraulic motor 4,
  • the boom cylinder 5, the arm cylinder 6 and the bucket cylinder 7 are supplied.
  • the boom cylinder 5, the arm cylinder 6, and the bucket cylinder 7 are expanded and contracted by the supplied pressure oil, and the boom 8, the arm 9, and the bucket 10 are respectively rotated to change the position and posture of the bucket 10.
  • the swing hydraulic motor 4 is rotated by the supplied pressure oil, and the upper swing body 12 swings relative to the lower traveling body 11.
  • the traveling right hydraulic motor 3a and the traveling left hydraulic motor 3b are rotated by the supplied pressure oil, and the lower traveling body 11 travels.
  • the tank 200 is provided with a hydraulic fluid temperature detection device 210 for detecting the temperature of the hydraulic fluid for driving the hydraulic actuator.
  • the hydraulic oil temperature detection device 210 can be installed outside the tank 200, and may be attached, for example, to the inlet line or the outlet line of the tank 200.
  • FIG. 4 is a block diagram of a machine control (MC) system provided in the hydraulic shovel according to the present embodiment.
  • the system of FIG. 4 controls the process of controlling the speeds of the hydraulic cylinders 5, 6, 7 and the front work device 1A based on predetermined conditions when the operating devices 45, 46 are operated by the operator as MC. Run.
  • “automatic control” in which the operation of the work unit 1A is controlled by the computer when the operation unit 45, 46 is not operated is “automatic control", but the operation of the work unit 1A is performed only when the operation unit 45, 46 is operated. May be referred to as "semi-automatic control" controlled by a computer.
  • the digging operation (specifically, at least one instruction of an arm cloud, a bucket cloud, and a bucket dump) is input as the MC of the front work device 1A via the operation devices 45b and 46a, the target surface 60 (see FIG. The position of the tip of the working device 1A is held on the target surface 60 and in the area above it based on the positional relationship between the reference numeral 5) and the tip of the working device 1A (in this embodiment, the tip of the bucket 10).
  • the control signal for example, the boom cylinder 5 is extended to forcibly perform the boom raising operation
  • for forcibly operating at least one of the hydraulic actuators 5, 6, 7 corresponds to the corresponding flow control valve 15a, 15b, Output to 15c.
  • the control point of the front work apparatus 1A at the time of MC is set to the tip of the bucket 10 of the hydraulic shovel (the tip of the work apparatus 1A), but the control point is the tip of the work apparatus 1A. If it is a point, it is changeable besides a bucket toe. For example, the bottom of the bucket 10 and the outermost part of the bucket link 13 can also be selected.
  • the system shown in FIG. 4 is installed in the driver's cab with the working device posture detecting device 50, the target surface setting device 51, the operator operation amount detecting device 52a, and a display capable of displaying the positional relationship between the target surface 60 and the working device 1A.
  • a device for example, a liquid crystal display
  • a controller control device 40 which performs MC control are provided.
  • the working device posture detection device (posture detection device) 50 is configured of a boom angle sensor 30, an arm angle sensor 31, a bucket angle sensor 32, and a vehicle body inclination angle sensor 33. These angle sensors 30, 31, 32, 33 function as attitude sensors for detecting physical quantities related to the attitudes of the boom 8, the arm 9, and the bucket 10, which are a plurality of front members.
  • the target surface setting device 51 is an interface capable of inputting information on the target surface 60 (including position information and tilt angle information of each target surface).
  • the target surface setting device 51 is connected to an external terminal (not shown) which stores three-dimensional data of the target surface defined on the global coordinate system (absolute coordinate system). The operator may manually input the target surface via the target surface setting device 51.
  • the operator operation amount detection device (operation amount detection device) 52a is an operation pressure (first control signal) generated in the pilot lines 144, 145, 146 by the operation of the operation levers 1a, 1b (the operation devices 45a, 45b, 46a) by the operator.
  • the pressure sensors 70a, 70b, 71a, 71b, 72a, 72b are obtained from pressure sensors 70a, 70b, 71a, 71b, 72a, 72b.
  • These pressure sensors 70a, 70b, 71a, 71b, 72a, 72b are provided via operating devices 45a, 45b, 46a for the boom 7 (boom cylinder 5), the arm 8 (arm cylinder 6), and the bucket 9 (bucket cylinder 7). It functions as an operation amount sensor that detects a physical amount related to the operation amount of the operator.
  • the front control hydraulic unit 160 is provided on the pilot lines 144 a and 144 b of the operating device 45 a for the boom 8 and detects a pilot pressure (first control signal) as an operation amount of the operation lever 1 a.
  • Pressure sensors 70a and 70b, an electromagnetic proportional valve 54a connected to the pilot pump 48 via the pump line 148a on the primary port side to reduce and output the pilot pressure from the pilot pump 48, and a pilot of the operating device 45a for the boom 8 Select the high pressure side of the pilot pressure in the pilot line 144a and the control pressure (second control signal) output from the solenoid proportional valve 54a, connected to the line 144a and the secondary port side of the solenoid proportional valve 54a, and select the flow control valve Shuttle valve 82a leading to the hydraulic drive unit 150a of 15a and the operating device 45a for the boom 8 It is installed in the pilot line 144b, and a pilot pressure proportional solenoid valve 54b (the first control signal) reduces to the outputs of the pilot line 144b based on the control signal from the controller 40.
  • the front control hydraulic unit 160 is installed on the pilot lines 145a and 145b for the arm 9, and detects the pilot pressure (first control signal) as an operation amount of the control lever 1b and outputs it to the controller 40 71a, 71b and a solenoid proportional valve 55b installed in the pilot line 145b and reducing and outputting the pilot pressure (first control signal) based on the control signal from the controller 40, installed in the pilot line 145a and controlled
  • An electromagnetic proportional valve 55a is provided which reduces and outputs the pilot pressure (first control signal) in the pilot line 145a based on the control signal from the controller 40.
  • the front control hydraulic unit 160 also detects a pilot pressure (first control signal) as an operation amount of the control lever 1a on the pilot lines 146a and 146b for the bucket 10 and outputs the pressure sensor 72a to the controller 40. , 72b, and solenoid proportional valves 56a and 56b that reduce and output the pilot pressure (first control signal) based on the control signal from the controller 40, and the primary port side is connected to the pilot pump 48 and the pilot pump 48 Select the high pressure side of the solenoid proportional valves 56c and 56d for reducing and outputting the pilot pressure, the pilot pressure in the pilot lines 146a and 146b, and the control pressure output from the solenoid proportional valves 56c and 56d, and The shuttle valves 83a and 83b leading to the hydraulic drive units 152a and 152b It is provided. In FIG. 3, connecting lines between the pressure sensors 70, 71, 72 and the controller 40 are omitted for convenience of drawing.
  • the electromagnetic proportional valves 54b, 55a, 55b, 56a, 56b have the maximum opening degree when not energized, and the opening degree decreases as the current as the control signal from the controller 40 increases.
  • the electromagnetic proportional valves 54a, 56c, 56d have an opening degree of zero when not energized and an opening degree when energized, and the opening degree increases as the current (control signal) from the controller 40 increases.
  • the degree of opening 54, 55, 56 of each solenoid proportional valve corresponds to the control signal from the controller 40.
  • the solenoid proportional valves 54a, 56c, 56d are driven by outputting a control signal from the controller 40, when there is no operator operation of the corresponding operating device 45a, 46a. Since the pilot pressure (second control signal) can also be generated, the boom raising operation, the bucket cloud operation, and the bucket dump operation can be forcibly generated. Similarly, when the solenoid proportional valves 54b, 55a, 55b, 56a and 56b are driven by the controller 40, the pilot pressure (first control signal) generated by the operator operation of the operating devices 45a, 45b and 46a is reduced. The pilot pressure (second control signal) can be generated, and the speed of the boom lowering operation, the arm cloud / dump operation, and the bucket cloud / dump operation can be forcibly reduced from the value of the operator operation.
  • the pilot pressure generated by the operation of the operation devices 45a, 45b, and 46a is referred to as a "first control signal”.
  • the pilot pressure generated by correcting (reducing) the first control signal by driving the solenoid proportional valves 54b, 55a, 55b, 56a, 56b by the controller 40 The pilot pressure generated by driving the solenoid proportional valves 54a, 56c, 56d by the controller 40 and newly generated separately from the first control signal is referred to as a "second control signal".
  • the second control signal is generated when the velocity vector of the control point of work device 1A generated by the first control signal violates a predetermined condition, and the velocity vector of the control point of work device 1A which does not violate the predetermined condition Are generated as control signals for generating
  • the second control signal is prioritized.
  • the first control signal is interrupted by the proportional solenoid valve, and the second control signal is input to the other hydraulic drive. Therefore, of the flow control valves 15a to 15c, one for which the second control signal is calculated is controlled based on the second control signal, and one for which the second control signal is not calculated is based on the first control signal.
  • the MC can also be said to control the flow control valves 15a to 15c based on the second control signal.
  • the controller 40 includes an input unit 91, a central processing unit (CPU) 92 as a processor, a read only memory (ROM) 93 and a random access memory (RAM) 94 as a storage device, and an output unit 95.
  • the input unit 91 includes signals from the angle sensors 30 to 32 and the tilt angle sensor 33, which are the working device posture detection device 50, and a signal from the target surface setting device 51, which is a device for setting the target surface 60.
  • a signal from an operator operation amount detection device 52a which is a pressure sensor (including pressure sensors 70, 71, 72) for detecting an operation amount from the devices 45a, 45b, 46a is input and converted so that the CPU 92 can calculate. .
  • the ROM 93 is a recording medium storing a control program for executing the MC including processing according to the flowchart to be described later and various information etc. necessary for the execution of the flowchart.
  • the CPU 92 is a control program stored in the ROM 93 In accordance with the above, predetermined arithmetic processing is performed on the signals taken in from the input unit 91 and the memories 93 and 94.
  • the output unit 95 generates a signal for output according to the calculation result in the CPU 92 and outputs the signal to the solenoid proportional valves 54 to 56 or the display device 53 to drive and control the hydraulic actuators 5 to 7. Or displays an image of the vehicle body 1B, the bucket 10, the target surface 60, etc. on the screen of the display device 53.
  • controller 40 in FIG. 4 includes semiconductor memories such as the ROM 93 and the RAM 94 as storage devices, any storage device can be substituted in particular.
  • a magnetic storage device such as a hard disk drive may be provided.
  • FIG. 6 is a functional block diagram of the controller 40. As shown in FIG. The controller 40 includes an MC control unit 43, an electromagnetic proportional valve control unit 44, and a display control unit 374.
  • the display control unit 374 controls the display device 53 based on the work device attitude and the target surface output from the MC control unit 43.
  • the display control unit 374 is provided with a display ROM in which a large number of display related data including images and icons of the work device 1A are stored, and the display control unit 374 determines a predetermined value based on the flag included in the input information.
  • the program is read and display control on the display device 53 is performed.
  • FIG. 7 is a functional block diagram of the MC control unit 43 in FIG.
  • the MC control unit 43 includes an operation amount calculation unit 43a, a posture calculation unit 43b, a target surface calculation unit 43c, an arm cylinder first speed calculation unit 43f, an arm cylinder second speed calculation unit 43d, and an arm cylinder third A speed calculation unit 43e and an actuator control unit 81 (a boom control unit 81a and a bucket control unit 81b) are provided.
  • the operation amount calculator 43a calculates the amount of operation of the operation devices 45a, 45b, 46a (the operation levers 1a, 1b) based on the detection value of the operator operation amount detection device 52a. That is, the amount of operation of the operating devices 45a, 45b, 46a can be calculated from the detection values of the pressure sensors 70, 71, 72.
  • pressure sensors 70, 71, 72 for calculating the amount of operation is merely an example, and for example, position sensors (for example, rotary encoders) that detect rotational displacements of the operating levers of the respective operating devices 45a, 45b, 46a.
  • the amount of operation of the operation lever may be detected.
  • the posture calculation unit 43b calculates the posture of the boom 8, the arm 9, and the bucket 10 in the local coordinate system, the posture of the front work device 1A, and the position of the tip of the bucket 10 based on the detection values of the work device posture detection device 50. Do.
  • the attitudes of the boom 8, the arm 9, and the bucket 10 and the attitude of the front working device 1A can be defined on the shovel coordinate system (local coordinate system) of FIG.
  • the shovel coordinate system (XZ coordinate system) shown in FIG. 5 is a coordinate system set to the upper swing body 12 and the base portion of the boom 8 rotatably supported by the upper swing body 12 is an origin, and the upper swing is
  • the Z axis was set vertically in the body 12 and the X axis was set horizontally.
  • the inclination angle of the boom 8 with respect to the X axis is the boom angle ⁇
  • the inclination angle of the arm 9 with respect to the boom 8 is the arm angle ⁇
  • the inclination angle of the bucket tip with respect to the arm is the bucket angle ⁇ .
  • the inclination angle of the vehicle body 1B (upper revolving unit 12) with respect to the horizontal plane (reference plane) is taken as the inclination angle ⁇ .
  • the boom angle ⁇ is detected by the boom angle sensor 30, the arm angle ⁇ is detected by the arm angle sensor 31, the bucket angle ⁇ is detected by the bucket angle sensor 32, and the inclination angle ⁇ is detected by the vehicle body inclination angle sensor 33.
  • the lengths of the boom 8, the arm 9, and the bucket 10 are L1, L2, and L3 respectively as defined in FIG. 5
  • the posture of the working device 1A can be expressed by L1, L2, L3, ⁇ , ⁇ , ⁇ .
  • the target surface calculation unit 43 c calculates the position information of the target surface 60 based on the information from the target surface setting device 51, and stores this in the ROM 93.
  • a cross-sectional shape obtained by cutting a three-dimensional target surface along a plane (working plane of a working machine) along which the working device 1A moves is used as a target surface 60 (two-dimensional target surface).
  • one target surface 60 is shown in the example of FIG. 5, there may be a case where there are a plurality of target surfaces.
  • a method of setting the one closest to the work device 1A as the target surface for example, a method of setting one below the bucket toe as the target surface, or a arbitrarily selected one There is a method to make it a goal surface.
  • the arm cylinder first speed calculation unit 43f calculates the speed of the arm cylinder 6 from the detection value of the operation amount to the arm 9 among the detection values of the operator operation amount detection device 52a, and the calculation result is the arm cylinder third speed calculation unit It is a part to output to 43e.
  • the operation amount calculator 43a calculates the arm operation amount from the detection value of the arm operation amount by the operator operation amount detector 52a
  • the arm cylinder first speed calculator 43f has the operation amount calculator 43a.
  • the speed of the arm cylinder 6 is calculated based on the calculated arm operation amount and the table of FIG. 9 in which the correlation between the arm operation amount and the arm cylinder speed is defined in a one-to-one manner. In the table of FIG. 9, based on the cylinder speed with respect to the operation amount previously obtained by experiment or simulation, the correlation between the operation amount and the speed is defined such that the arm cylinder speed monotonously increases with the increase of the arm operation amount. .
  • the arm 9 is referred to as a "specific front member", and the arm cylinder 6 driving the arm 9 is referred to as a “specific hydraulic actuator”.
  • the speed of the arm cylinder 6 calculated by the arm cylinder first speed calculation unit 43f is referred to as "first speed”.
  • the arm cylinder second speed calculation unit 43d calculates the speed of the arm cylinder 6 from the detection value of the posture of the arm 9 among the detection values of the work device posture detection device 50, and the calculation result is calculated as an arm cylinder third speed calculation unit 43e.
  • the posture calculation unit 43b calculates the posture of the arm 9 from the detection value of the arm 9 by the work apparatus posture detection device 50, and the arm cylinder second speed calculation unit 43d is calculated by the posture calculation unit 43b.
  • the velocity of the arm cylinder 6 is calculated from the time change of the attitude of the arm 9 and the dimension value (described later with reference to FIG. 5A) between the position where the boom 8, the arm 9 and the arm cylinder 6 are connected.
  • the speed of the arm cylinder 6 calculated by the arm cylinder second speed calculator 43d is referred to as a "second speed".
  • the dimension value of the front work device 1A used to calculate the second speed will be described using FIG. 5A.
  • a line segment M2 connecting the connecting point of the boom 8 and the arm 9 and a connecting point of the arm 9 and the arm cylinder 6 and a line M3 connecting the connecting point of the boom 8 and the arm 9 and the connecting point of the boom 8 and the arm cylinder 6 Using the angle F1 between the line segment L1 which is the length of the boom 8 and the line segment M3, the angle F2 between the line segment L2 which is the length of the arm 9 and the line segment M2, and the arm angle ⁇
  • the arm cylinder length M1 is determined by using the cosine theorem with respect to a triangle consisting of line segments M1, M2, and M3.
  • the second velocity of the arm cylinder 6 can be calculated by calculating the time change of the obtained arm cylinder length M1.
  • the arm cylinder third speed calculator 43e calculates the first speed of the arm cylinder 6 calculated by the arm cylinder first speed calculator 43f and the second speed of the arm cylinder 6 calculated by the arm cylinder second speed calculator 43d.
  • the actuator control unit 81 calculates the velocity (referred to as “third velocity”) used as the velocity of the arm cylinder 6 when executing MC, and outputs the calculation result to the actuator control unit 81. It is a part. Details of the arm cylinder third speed calculator 43e when calculating the third speed will be described later with reference to FIG.
  • the boom control unit 81a and the bucket control unit 81b configure an actuator control unit 81 that controls at least one of the plurality of hydraulic actuators 5, 6, 7 according to predetermined conditions when operating the operation devices 45a, 45b, 46a. .
  • the actuator control unit 81 calculates target pilot pressures of the flow control valves 15 a, 15 b and 15 c of the hydraulic cylinders 5, 6 and 7, and outputs the calculated target pilot pressure to the solenoid proportional valve control unit 44.
  • the boom control unit 81a operates the operating devices 45a, 45b, 46a at the position of the target surface 60, the attitude of the front work device 1A, the position of the tip of the bucket 10, and the speeds of the hydraulic cylinders 5, 6, 7 Based on the target surface 60 or on top of which the tip of the bucket 10 (control point) is positioned to execute MC to control the operation of the boom cylinder 5 (boom 8).
  • the boom control unit 81 a calculates the target pilot pressure of the flow control valve 15 a of the boom cylinder 5. Details of the MC by the boom control unit 81a will be described later with reference to FIG.
  • the bucket control unit 81b is a portion for executing bucket angle control by the MC when operating the operation devices 45a, 45b, 46a. Specifically, when the distance between the target surface 60 and the tip of the bucket 10 is equal to or less than a predetermined value, the bucket cylinder 7 (bucket 7) is set such that the angle ⁇ of the bucket 10 with respect to the target surface 60 becomes a preset target surface bucket angle ⁇ TGT. MC (bucket angle control) for controlling the operation of 10) is executed. The bucket control unit 81 b calculates a target pilot pressure of the flow control valve 15 c of the bucket cylinder 7.
  • the solenoid proportional valve control unit 44 calculates a command to each of the solenoid proportional valves 54 to 56 based on the target pilot pressure to each of the flow rate control valves 15a, 15b, 15c output from the actuator control unit 81.
  • the pilot pressure (first control signal) based on the operator operation matches the target pilot pressure calculated by the actuator control unit 81, the current value (command value) to the corresponding solenoid proportional valves 54 to 56 Becomes zero, and the corresponding solenoid proportional valves 54 to 56 are not operated.
  • FIG. 11 is a flowchart showing how the arm cylinder third speed calculator 43 e calculates the third speed of the arm cylinder 6.
  • the arm cylinder third speed calculator 43e repeatedly executes the flow of FIG. 11 at a predetermined control cycle, and in the following description, the control cycle is also referred to as a step.
  • the subject in the following description of FIG. 11 is the arm cylinder third speed calculator 43e.
  • the threshold Pit is a constant for determining whether or not the arm 9 is operated. If the arm operation amount is larger than the threshold Pit, it is determined that the arm operation is performed, and the process proceeds to S610. If the arm operation amount is less than the threshold Pit, it is determined that the arm operation is not performed, and the process proceeds to S690.
  • the weighted proportion Wact of the second speed Vama is calculated from the count time t of the timer calculated in S620 or S630 and the table of FIG.
  • the weighting ratio Wact is a function determined by the count time t of the timer as shown in FIG. 12, and the weighting ratio Wact may be referred to as a “second weighting function” in this document.
  • FIG. 17 is an explanatory view schematically showing a relationship between an example of t0 and t1 and the first velocity, the second velocity and the actual velocity of the arm cylinder 6. As shown in FIG. When the arm operating pressure is rapidly increased from zero as shown in the upper diagram in FIG. 17, the first velocity, second velocity and actual velocity (true value) of the arm cylinder 6 change as in the lower diagram in FIG. Do.
  • the first speed is calculated from the arm operation pressure (operation amount) and the table of FIG. 9 as described above, it changes at substantially the same timing as the change in arm operation pressure.
  • the second velocity is calculated based on the actual posture change of the arm 9 as described above, so it changes as shown in the figure after the actual velocity and becomes a value that can be identified as the actual velocity at time t0. Reach.
  • the time required for the second speed to be considered to coincide with the value of the actual speed after the start of the lever operation is set to t0.
  • t1 is a time longer than t0, and even if the third speed gradually changes from the first speed to the second speed from t0 to t1, the operation of the bucket toe does not give the operator a sense of discomfort
  • the necessary and sufficient time is set to t1.
  • t0 and t1 can be set to values as small as possible that the boom response (MC response) can be secured (for example, each of t0 and t1 can be set to a value of 2 seconds or less).
  • the weighted proportion West of the arm cylinder first speed Vame is calculated from the weighted proportion Wact of the arm cylinder second speed calculated in S660.
  • the weighting ratio West may be referred to as a “first weighting function”.
  • FIG. 8 is a flowchart of the MC executed by the boom control unit 81a. The process is started when the operating devices 45a, 45b and 46a are operated by the operator.
  • the boom control unit 81a acquires the speeds of the hydraulic cylinders 5, 6, and 7.
  • the speeds of the boom cylinder 5 and the bucket cylinder 7 are obtained by calculating the speeds of the boom cylinder 5 and the bucket cylinder 7 based on the operation amounts for the boom 8 and the bucket 10 calculated by the operation amount calculation unit 43a.
  • the cylinder speed corresponding to the operation amount determined in advance by experiment or simulation is set as a table, and the speeds of the boom cylinder 5 and the bucket cylinder 7 are calculated accordingly.
  • the third velocity Vams calculated by the arm cylinder third velocity calculating unit 43e based on the flow of FIG.
  • the boom control unit 81a operates the tip of the bucket operated by the operator based on the operation speeds of the hydraulic cylinders 5, 6, 7 acquired in S410 and the attitude of the work device 1A calculated by the attitude calculation unit 43b ( Calculate the velocity vector B of the toe).
  • the boom control unit 81a determines the target surface to be controlled from the bucket tip from the position (coordinates) of the tip of the bucket 10 calculated by the posture calculation unit 43b and the straight line including the target surface 60 stored in the ROM 93.
  • the distance D up to 60 is calculated.
  • the lower limit value ay of the lower limit side of the component perpendicular to the target surface 60 of the velocity vector of the bucket tip is calculated.
  • the boom control unit 81a acquires a component by which is perpendicular to the target surface 60 in the velocity vector B of the bucket tip by the operator operation calculated in S420.
  • the boom control unit 81a determines whether the limit value ay calculated in S430 is 0 or more.
  • xy coordinates are set. In the xy coordinates, the x axis is parallel to the target surface 60 and positive in the right direction in the drawing, and the y axis is perpendicular to the target surface 60 and positive in the upper direction in the drawing.
  • the vertical component by and the limit value ay are negative, and the horizontal component bx and the horizontal component cx and the vertical component cy are positive. And it is clear from FIG.
  • the boom control unit 81a determines whether or not the vertical component by of the velocity vector B at the toe of the operator's operation is 0 or more. A positive by indicates that the vertical component by of the velocity vector B is upward, and a negative by indicates that the vertical component by of the velocity vector B is downward. If it is determined in S460 that the vertical component by is greater than or equal to 0 (ie, if the vertical component by is upward), the process proceeds to S470, and if the vertical component by is less than 0, the process proceeds to S500.
  • the boom control unit 81a compares the limit value ay with the absolute value of the vertical component by, and proceeds to S500 if the absolute value of the limit value ay is greater than or equal to the absolute value of the vertical component by. On the other hand, if the absolute value of the limit value ay is less than the absolute value of the vertical component by, the process proceeds to S530.
  • the boom control unit 81a determines whether or not the vertical component by of the velocity vector B at the toe of the operator's operation is 0 or more. If it is determined in S480 that the vertical component by is greater than or equal to 0 (ie, if the vertical component by is upward), the process proceeds to S530, and if the vertical component by is less than 0, the process proceeds to S490.
  • the boom control unit 81a compares the limit value ay with the absolute value of the vertical component by, and proceeds to S530 if the absolute value of the limit value ay is greater than or equal to the absolute value of the vertical component by. On the other hand, if the absolute value of the limit value ay is less than the absolute value of the vertical component by, the process proceeds to S500.
  • the boom control unit 81a sets the speed vector C to zero.
  • the boom control unit 81a calculates the target speeds of the hydraulic cylinders 5, 6, 7 based on the target speed vector T (ty, tx) determined in S520 or S540.
  • the target is achieved by adding the velocity vector C generated by the operation of the boom 8 by machine control to the velocity vector B. Realize the velocity vector T.
  • the boom control unit 81a sets the target pilot pressure to the flow control valves 15a, 15b, 15c of the hydraulic cylinders 5, 6, 7 based on the target speeds of the cylinders 5, 6, 7 calculated in S550.
  • the boom control unit 81a outputs the target pilot pressure to the flow control valves 15a, 15b, 15c of the hydraulic cylinders 5, 6, 7 to the solenoid proportional valve control unit 44.
  • the solenoid proportional valve control unit 44 controls the solenoid proportional valves 54, 55, and 56 such that the target pilot pressure acts on the flow control valves 15a, 15b, and 15c of the hydraulic cylinders 5, 6, and 7, and thereby the work device Drilling by 1A is performed.
  • the proportional solenoid valve 55c is controlled so that the tip of the bucket 10 does not enter the target surface 60, and the raising operation of the boom 8 Is done automatically.
  • the boom control (forced boom raising control) by the boom control unit 81a and the bucket control (bucket angle control) by the bucket control unit 81b are executed as MC
  • the distance between the bucket 10 and the target surface 60 is
  • the boom control according to D may be executed as MC.
  • time t0 and time t1 in FIG. 12 are as small as possible (for example, a value of 2 seconds or less) in which the boom response (MC response) can be secured, from the state S1 after the start of the arm cloud operation It is assumed that transition to state S2 is after time t1.
  • a command is output from the boom control unit 81a to the solenoid valve 54a based on the flow of FIG. Control (MC) is executed.
  • the arm cylinder third speed calculator 43e The first velocity is output to the actuator control unit 81 as the velocity of the arm cylinder 6 based on the control flow of FIG.
  • the actuator control unit 81 (boom control unit 81a) calculates the bucket tip speed B while using the first speed as the speed of the arm cylinder 6, and MC is activated as needed based on the flow of FIG.
  • the toe of the bucket 10 is held on or above the target surface 60.
  • the arm cylinder third speed calculator 43e The second speed is output to the actuator control unit 81 as the speed of the arm cylinder 6 based on the control flow of (11).
  • the actuator control unit 81 (boom control unit 81a) calculates the bucket tip speed B while using the second speed as the speed of the arm cylinder 6, and MC is activated as needed based on the flow of FIG.
  • the toe of the bucket 10 is held on or above the target surface 60.
  • MC can be performed at a speed close to the actual speed, so the behavior of the toe can be stabilized. .
  • the second speed calculated based on the actual posture change is used as compared with the case where the first speed is always used as the speed of the arm cylinder at the time of MC.
  • MC can be stabilized because it is less susceptible to changes in load pressure, posture, oil temperature, etc.
  • the posture sensor can detect a change in posture after the arm actually starts moving, it has been mentioned that the response of the MC to the start of the movement of the arm may be delayed. However, even if the operator makes a sudden change in the operation amount of the arm operation lever even if the arm does not start moving, the actual arm cylinder speed may change earlier than the response of the attitude sensor, so the arm starts moving Similarly, the arm speed calculated from the output of the posture sensor may deviate from the actual arm speed. The present embodiment addresses this point.
  • FIG. 15 is a functional block diagram of the MC control unit 43A of the second embodiment.
  • the MC control unit 43A of this embodiment is different from that of the first embodiment, and inputs the detection value detected by the hydraulic oil temperature detection device 210 to the arm cylinder first speed calculation unit 43f. The detected value is used for the correction of the first speed.
  • the control flow of the arm cylinder third speed calculator 43e is different from that of the first embodiment.
  • the other parts are the same as in the first embodiment, and the description will be omitted.
  • the present embodiment will be described in detail.
  • FIG. 16 is a flowchart showing how the arm cylinder third speed calculator 43 e of the second embodiment calculates the third speed of the arm cylinder 6. As in the first embodiment, the arm cylinder third speed calculator 43e repeatedly executes the flow of FIG. 16 at a predetermined control cycle, and the same processing as that of FIG. The subject in the following description of FIG. 16 is the arm cylinder third speed calculator 43e.
  • the threshold dPit can be determined by the following method.
  • ⁇ About threshold dPit> When the operating speed of arm 9 changes rapidly due to the operation of the operator (when the time change of the operating speed of arm 9 is large), the detection response performance of working device attitude detection device 50 determines the actual arm cylinder speed (true In some cases, a deviation may occur between the value) and the second speed calculated by the arm cylinder second speed calculator 43d. It is assumed that the time change amount of the operation speed of the arm 9 causing this deviation is equal to or more than the threshold value dWam.
  • the working device posture detection device 50 causes a response delay, and if less than the threshold dWam, the working device posture detection device 50 has the time of the operating speed of the arm 9 The amount of change can be sufficiently followed.
  • the change amount of the arm operation amount (equivalent to the arm operation pressure) at which the time change amount of the operation speed of the arm 9 becomes the threshold value dWam is obtained in advance by experiment or simulation and is set as the threshold value dPit. .
  • step S720 the count time t of the timer is advanced by the control cycle, and the process proceeds to step S640.
  • the arm operation is considered to be continuing from one step before (that is, the first In the same manner as when YES is determined in S610 of the embodiment), the timer count time t is advanced by the control cycle in S620, and the process proceeds to S640.
  • the arm cylinder first speed calculator 43f acquires the first speed Vame calculated in consideration of the detection value of the hydraulic oil temperature detection device 210.
  • the arm cylinder first speed calculating unit 43f has the table of FIG. 18 in which the arm operating amount calculated by the operating amount calculating unit 43a and the correlation between the arm operating amount and the arm cylinder speed are defined, and the hydraulic oil temperature detection device 210 The first velocity of the arm cylinder 6 is calculated based on the detected value (the detected temperature Tt).
  • the correlation between the amount of operation and the speed is defined so that the arm cylinder speed monotonously increases with the increase in the amount of arm operation.
  • FIG. 18 shows that when the temperature Tt detected by the hydraulic fluid temperature detection device 210 is less than or equal to the predetermined value Tt0, the arm cylinder speed is increased according to the increase of the deviation .DELTA.Tt between the detected temperature Tt of the hydraulic fluid temperature detection device 210 and the predetermined value Tt0. It is corrected to decrease.
  • FIG. 18 shows functions used when the temperatures detected by the hydraulic oil temperature detection device 210 are Tt0, Tt1, Tt2 and Tt3 (where Tt3 ⁇ Tt2 ⁇ Tt1 ⁇ Tt0).
  • the speed of the arm cylinder 6 decreases in accordance with the increase of the deviation ⁇ Tt from the predetermined value Tt0.
  • the arm cylinder first speed calculator 43f calculates a speed smaller than the speed calculated from the table in FIG. 9 and the arm operation amount calculated by the operation amount calculator 43a as the first speed Vame.
  • the processing after S660 is the same as the processing in FIG.
  • the arm cylinder third speed calculating unit 43e performs the timer at S630 via the processing of S720 and S730 in FIG. It resets and outputs the first speed to the actuator control unit 81 as the speed of the arm cylinder 6.
  • the first speed tends to be faster than the actual speed of the arm, the response of the boom raising control by the MC is secured, so that the behavior of the toe can be stabilized.
  • the arm cylinder third speed calculator 43e passes the process of S720 and S730 in FIG.
  • the count time t is advanced by the control cycle, and the process proceeds to S640.
  • the arm cylinder third speed calculator 43e outputs the third speed corresponding to the count time t to the actuator controller 81.
  • the arm cylinder third velocity calculator 43e calculates the first velocity Vame, the second velocity Vama, and the weighted ratio Wact, West based on the control flow of FIG.
  • the arm cylinder third speed calculator 43e When the count time t is t1 or more, the arm cylinder third speed calculator 43e outputs the second speed as the speed of the arm cylinder 6 to the actuator controller 81 based on the control flow of FIG. As described above, if MC is performed using the second speed as the speed of the arm cylinder 6 during the operation of the arm 9, MC can be performed at a speed close to the actual speed, so the behavior of the toe can be stabilized. .
  • the boom raising operation amount is appropriately set to calculate the estimated speed of the arm cylinder based on the detection result of the hydraulic oil temperature detection device 210 It can be calculated.
  • MC can be stabilized because it is less susceptible to changes in load pressure, posture, oil temperature, etc.
  • the times t0 and t1 are fixed values in the second embodiment, the values of the times t0 and t1 may be variable according to the amount of change in the arm operation amount.
  • the weighted ratio Wact of the second velocity Vama is calculated from the count time t of the timer and the table of FIG. 12, but it is determined NO in S610.
  • the table to be used is made different between the case (when it is determined that the arm operation has started) and when it is determined NO in S730 (when the change amount of the arm operation amount is determined to be equal to or greater than the threshold dPit) Also good. That is, if it is determined NO in S730, a table different from the table of FIG. 12 may be used.
  • the arm cylinder first speed calculating unit 43f performs the first speed correction process based on the hydraulic oil temperature, but this process can be omitted from the present embodiment, and is also added to the first embodiment. It is possible.
  • the posture information of the shovel may be calculated not by the angle sensor but by the cylinder stroke sensor.
  • the hydraulic pilot shovel has been described as an example, the electric lever shovel may be configured to control the command current generated from the electric lever.
  • the method of calculating the velocity vector of the front work apparatus 1A may be obtained from the angular velocity calculated by differentiating the angles of the boom 8 and the bucket 10, not the pilot pressure by the operator operation.
  • the components of the controller 40 described above and the functions and execution processes of the components are realized by hardware (for example, designing logic for executing each function with an integrated circuit). Also good.
  • the configuration according to the controller 40 may be a program (software) in which each function according to the configuration of the controller 40 is realized by being read and executed by an arithmetic processing unit (for example, a CPU).
  • the information related to the program can be stored in, for example, a semiconductor memory (flash memory, SSD, etc.), a magnetic storage device (hard disk drive, etc.), a recording medium (magnetic disk, optical disc, etc.), and the like.
  • the present invention is not limited to the above-described embodiments, and includes various modifications within the scope of the present invention.
  • the present invention is not limited to the one provided with all the configurations described in each of the above-described embodiments, and includes one in which a part of the configuration is deleted.
  • part of the configuration according to an embodiment can be added to or replaced with the configuration according to another embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

油圧ショベルの制御コントローラ(40)に,アームシリンダ(6)の第1速度を操作量検出装置(52a)の検出値から算出する第1速度演算部(43f)と,アームシリンダ(6)の第2速度を前記姿勢検出装置(50)の検出値から算出する第2速度演算部(43d)と,MCを実行するアクチュエータ制御部(81)でアームシリンダ(6)の速度として利用される第3速度を算出する第3速度演算部(43e)とを備える。第3速度演算部は,操作量検出装置にてアーム(9)に対する操作が入力されたことが検出されてから所定時間t0までの間,第1速度を第3速度として算出し,所定時間t0からt1までの間,第1速度と第2速度から算出される速度を第3速度として算出し,所定時間t1以降は,第2速度を第3速度として算出する。

Description

作業機械
 本発明は,操作装置の操作時に,予め定めた条件に従って複数の油圧アクチュエータの少なくとも1つを制御する作業機械に関する。
 油圧アクチュエータで駆動される作業装置(例えばフロント作業装置)を備える作業機械(例えば油圧ショベル)の作業効率を向上する技術としてマシンコントロール(Machine Control:MC)がある。MCは,操作装置がオペレータに操作された場合に,予め定めた条件に従って作業装置を動作させる半自動制御を実行することでオペレータの操作支援を行う技術である。
 例えば特許第5865510号公報には,バケットの刃先を基準面に沿って移動させるようにフロント作業装置をMCする技術が開示されている。この文献では,アーム操作レバーの操作量が少ない場合,フロント作業装置の姿勢に依ってはバケットの自重落下に起因して,アーム操作レバーの操作量に基づいて算出されるアームシリンダの推定速度よりも実際のアームシリンダ速度が大きくなり,このような状況でアームシリンダの推定速度に基づくMCを実行すると,バケットの刃先が安定せずハンチングが生じる可能性があることを課題として挙げている。そして,この文献は,アーム操作レバーの操作量が所定量未満の場合には,アーム操作レバーの操作量を基に算出される速度よりも大きい速度をバケットの自重落下を加味したアームシリンダの推定速度として算出し,その推定速度に基づいてMCを行うことで上記の課題の解決を図っている。
特許第5865510号公報
 特許文献1の技術のようにアームシリンダの推定速度の算出時にバケットの自重落下を考慮すると,その推定速度がアームシリンダの実速度に近づくので,MC中のハンチング発生を防止できる。しかし,アーム操作レバーの操作量に基づくアームシリンダの推定速度と実速度の乖離はバケットの自重落下のみに起因するものではなく,特許文献1のようにバケットの自重落下を考慮してアームシリンダの速度を推定するだけではハンチング発生防止の対策として不充分である。
 例えば,作業機械の作動油が低温時には作動油の粘度が大きくなるが,この場合の実際のアームシリンダ速度はレバー操作量から推定される速度よりも遅くなる場合がある。
 また,例えば,図13のような作業機械よりも下側にある斜面の土砂を掻き均す,いわゆる切上げ作業の場合,主に自重に抗してフロント作業装置(例えばバケット)を持ち上げる方向にアームシリンダを駆動することになる。このため,特許文献1のようにアームシリンダの駆動に関するフロント作業装置(アーム,バケット)の自重の影響でアームシリンダ速度が想定よりも速くなる場合は少ない。むしろ,フロント作業装置の自重を持ち上げる方向に駆動する影響で実際のアームのシリンダ速度は推定速度よりも遅くなる場合がある。以下この場合の詳細を説明する。
 図14に作業機械に用いられる油圧システムのうち,オープンセンタバイパス方式のスプールの開口面積特性を示す。オープンセンタバイパス方式のスプールの開口面積はポンプからの圧油をタンクに流す流路のセンタバイパス開口,ポンプからの圧油をアクチュエータに供給する流路のメータイン開口,アクチュエータからタンクへ流す流路のメータアウト開口がある。センタバイパス開口の閉じきり点をSXとする。ここで,切上げ作業のようにフロント作業装置の自重に対して持ち上げる方向にアームシリンダを駆動した場合の圧油の流れを説明する。切上げ作業では,フロント作業装置の自重に対して持ち上げる方向にアームシリンダを駆動するので,フロント作業装置の自重によりメータイン側の圧力が上昇している。アーム操作レバーの操作量が少なくスプールのストローク量がSX未満の場合,センタバイパス開口が開いているため,ポンプから供給される圧油はメータイン開口を通ってアームシリンダへ供給されるものと,センタバイパス開口を通ってタンクへ流れるものに分かれる。圧油は負荷が軽い方向に流れやすい特性があるため,フロント作業装置の自重に対して持ち上げる方向にアームシリンダを駆動する場合,フロント作業装置の自重に対して持ち上げる方向にアームシリンダを駆動しない場合と比べてアームシリンダの負荷が大きくなり,アームシリンダへ圧油が流れにくくなる。結果としてアームシリンダ速度が遅くなる。
 以上のように,作業機械の状態や作業内容によっては実際のアームシリンダ速度がレバー操作量から推定される速度と異なる場合があり,結果としてMCをする際のバケットの刃先(作業装置の先端)が安定せずハンチングを起こしてしまう可能性がある。
 一方,このようなMCを行う作業機械には作業装置の姿勢を検出するための姿勢センサ(例えば,アームとブームを連結するピンに設けられたポテンショメータ)が備えられている。レバー操作量から演算されるアームシリンダ速度はあくまで推定値の域をでないが,姿勢センサの出力からは作業装置の実際の姿勢を把握でき,姿勢センサの出力値の時間変化から算出されるアームシリンダ速度はレバー操作量から算出されるものよりも定常的には実際の速度に近い。そこで,この姿勢センサの出力値から算出したアームシリンダ速度をもとにMCを実施することが考えられる。しかし,この場合も次の課題がある。
 姿勢センサはアームが実際に動き始めてからはじめてその姿勢変化を検出可能になるものであるため,姿勢センサの出力から算出したアーム速度に基づくMCをアームの動き始めから実施した場合,実際のアームの動き始めに対してMCの応答(例えば,ブーム上げ指令)が遅れてしまい,バケットの刃先位置が安定せずハンチングが生じる可能性がある。
 なお,ここではアームシリンダの速度を例示して課題を説明したが,作業装置を駆動する他の油圧アクチュエータの速度についても同じ課題が当て嵌まる。
 本発明の目的は,作業装置を駆動する特定の油圧アクチュエータの速度をより適切に算出でき,MCにおける作業装置の先端(例えばバケット刃先)の挙動が安定化した作業機械を提供することにある。
 本願は上記課題を解決する手段を複数含んでいるが,その一例を挙げるならば,複数のフロント部材を有する作業装置と,前記複数のフロント部材を駆動する複数の油圧アクチュエータと,オペレータの操作に応じて前記複数の油圧アクチュエータの動作を指示する操作装置と,前記操作装置の操作時に,前記複数の油圧アクチュエータの速度と予め定めた条件に従って前記複数の油圧アクチュエータの少なくとも1つを制御するアクチュエータ制御部を有する制御装置とを備える作業機械において,前記複数のフロント部材の1つである特定フロント部材の姿勢に関する物理量を検出する姿勢検出装置と,オペレータから前記操作装置に入力される操作量のうち前記特定フロント部材に対する操作量に関する物理量を検出する操作量検出装置とを備え,前記制御装置は,前記複数の油圧アクチュエータのうち前記特定フロント部材を駆動する特定油圧アクチュエータの第1速度を前記操作量検出装置の検出値から算出する第1速度演算部と,前記特定油圧アクチュエータの第2速度を前記姿勢検出装置の検出値から算出する第2速度演算部と,前記アクチュエータ制御部で前記特定油圧アクチュエータの速度として利用される第3速度を前記第1速度と前記第2速度に基づいて算出する第3速度演算部とを備え,前記第3速度演算部は,前記操作量検出装置にて前記特定フロント部材に対する操作が入力されたことが検出されてから第1の所定時間までの間,前記第1速度を前記第3速度として算出し,前記第1の所定時間から前記第1の所定時間よりも大きな第2の所定時間までの間,前記第1速度と前記第2速度から算出される速度を前記第3速度として算出し,前記第2の所定時間以降,前記第2速度を前記第3速度として算出するものとする。
 本発明によれば,作業装置を駆動する特定の油圧アクチュエータの速度をより適切に算出でき,MCにおける作業装置の先端先の挙動を安定化できる。
油圧ショベルの構成図。 油圧ショベルの制御コントローラを油圧駆動装置と共に示す図。 フロント制御用油圧ユニットの詳細図。 油圧ショベルの制御コントローラのハードウェア構成図。 図1の油圧ショベルにおける座標系および目標面を示す図。 アームシリンダの第2速度の算出に利用するフロント作業装置1Aの寸法値の説明図。 図1の油圧ショベルの制御コントローラの機能ブロック図。 図6中のMC制御部の機能ブロック図。 ブーム制御部によるブーム上げ制御のフローチャート。 操作量に対するシリンダ速度の関係を示す図。 バケット爪先速度の垂直成分の制限値ayと距離Dとの関係を示す図。 アームシリンダ想定速度を算出するフローチャート。 重み付割合Wactの時間変化を示す図。 切上げ作業の説明図。 センタバイパス式スプールのスプールストロークに対する開口面積を示す図。 第2実施形態のMC制御部の機能ブロック図。 第2実施形態のアームシリンダ想定速度を算出するフローチャート。 アーム操作圧とアームシリンダ速度(第1速度,第2速度,実速度)の関係の説明図。 第2実施形態の操作量に対するシリンダ速度の関係を示す図。
 以下,本発明の実施形態について図面を用いて説明する。なお,以下では,作業装置の先端の作業具(アタッチメント)としてバケット10を備える油圧ショベルを例示するが,バケット以外のアタッチメントを備える作業機械で本発明を適用しても構わない。さらに,複数のフロント部材(アタッチメント,アーム,ブーム等)を連結して構成される多関節型の作業装置を有するものであれば油圧ショベル以外の作業機械への適用も可能である。
 また,本稿では,或る形状を示す用語(例えば,目標面,設計面等)とともに用いられる「上」,「上方」又は「下方」という語の意味に関し,「上」は当該或る形状の「表面」を意味し,「上方」は当該或る形状の「表面より高い位置」を意味し,「下方」は当該或る形状の「表面より低い位置」を意味することとする。また,以下の説明では,同一の構成要素が複数存在する場合,符号(数字)の末尾にアルファベットを付すことがあるが,当該アルファベットを省略して当該複数の構成要素をまとめて表記することがある。例えば,2つのポンプ2a,2b,が存在するとき,これらをまとめてポンプ2と表記することがある。
 <第1実施形態>
 <基本構成>
 図1は本発明の第1の実施形態に係る油圧ショベルの構成図であり,図2は本発明の実施形態に係る油圧ショベルの制御コントローラを油圧駆動装置と共に示す図であり,図3は図2中のフロント制御用油圧ユニット160の詳細図である。
 図1において,油圧ショベル1は,多関節型のフロント作業装置1Aと,車体1Bで構成されている。車体1Bは,左右の走行油圧モータ3a(図2参照),3bにより走行する下部走行体11と,下部走行体11の上に取り付けられ,旋回油圧モータ4により旋回する上部旋回体12とからなる。
 フロント作業装置1Aは,垂直方向にそれぞれ回動する複数のフロント部材(ブーム8,アーム9及びバケット10)を連結して構成されている。ブーム8の基端は上部旋回体12の前部においてブームピンを介して回動可能に支持されている。ブーム8の先端にはアームピンを介してアーム9が回動可能に連結されており,アーム9の先端にはバケットピンを介してバケット10が回動可能に連結されている。これら複数のフロント部材8,9,10は複数の油圧アクチュエータである油圧シリンダ5,6,7によって駆動される。具体的には,ブーム8はブームシリンダ5によって駆動され,アーム9はアームシリンダ6によって駆動され,バケット10はバケットシリンダ7によって駆動される。
 ブーム8,アーム9,バケット10の姿勢に関する物理量である回動角度α,β,γ(図5参照)を測定可能なように,ブームピンにブーム角度センサ30,アームピンにアーム角度センサ31,バケットリンク13にバケット角度センサ32が取付けられ,上部旋回体12には基準面(例えば水平面)に対する上部旋回体12(車体1B)の傾斜角θ(図5参照)を検出する車体傾斜角センサ33が取付けられている。なお,本実施形態の角度センサ30,31,32はロータリポテンショメータであるが,それぞれ基準面(例えば水平面)に対する傾斜角センサや慣性計測装置(IMU)などに代替可能である。
 上部旋回体12に設けられた運転室内には,走行右レバー23a(図1)を有し走行右油圧モータ3a(下部走行体11)を操作するための操作装置47a(図2)と,走行左レバー23b(図1)を有し走行左油圧モータ3b(下部走行体11)を操作するための操作装置47b(図2)と,操作右レバー1a(図1)を共有しブームシリンダ5(ブーム8)及びバケットシリンダ7(バケット10)を操作するための操作装置45a,46a(図2)と,操作左レバー1b(図1)を共有しアームシリンダ6(アーム9)及び旋回油圧モータ4(上部旋回体12)を操作するための操作装置45b,46b(図2)が設置されている。以下では,走行右レバー23a,走行左レバー23b,操作右レバー1aおよび操作左レバー1bを操作レバー1,23と総称することがある。
 上部旋回体12に搭載された原動機であるエンジン18は,油圧ポンプ2a,2bとパイロットポンプ48を駆動する。油圧ポンプ2a,2bはレギュレータ2aa,2baによって容量が制御される可変容量型ポンプであり,パイロットポンプ48は固定容量型ポンプである。油圧ポンプ2およびパイロットポンプ48はタンク200より作動油を吸引する。本実施形態においては,図2に示すように,パイロットライン144,145,146,147,148,149の途中にシャトルブロック162が設けられている。操作装置45,46,47から出力された油圧信号が,このシャトルブロック162を介してレギュレータ2aa,2baにも入力される。シャトルブロック162の詳細構成は省略するが,油圧信号がシャトルブロック162を介してレギュレータ2aa,2baに入力されており,油圧ポンプ2a,2bの吐出流量が当該油圧信号に応じて制御される。
 パイロットポンプ48の吐出配管であるポンプライン48aはロック弁39を通った後,複数に分岐して操作装置45,46,47,フロント制御用油圧ユニット160内の各弁に接続している。ロック弁39は本例では電磁切換弁であり,その電磁駆動部は運転室(図1)に配置されたゲートロックレバー(不図示)の位置検出器と電気的に接続している。ゲートロックレバーのポジションは位置検出器で検出され,その位置検出器からロック弁39に対してゲートロックレバーのポジションに応じた信号が入力される。ゲートロックレバーのポジションがロック位置にあればロック弁39が閉じてポンプライン48aが遮断され,ロック解除位置にあればロック弁39が開いてポンプライン48aが開通する。つまり,ポンプライン48aが遮断された状態では操作装置45,46,47による操作が無効化され,旋回,掘削等の動作が禁止される。
 操作装置45,46,47は,油圧パイロット方式の操作装置であり,パイロットポンプ48から吐出される圧油をもとに,それぞれオペレータにより操作される操作レバー1,23の操作量(例えば,レバーストローク)と操作方向に応じたパイロット圧(操作圧と称することもある)を発生する。このように発生したパイロット圧は,対応する流量制御弁15a~15f(図2または図3)の油圧駆動部150a~155bにパイロットライン144a~149b(図3参照)を介して供給され,これら流量制御弁15a~15fを駆動する制御信号として利用される。
 油圧ポンプ2から吐出された圧油は,流量制御弁15a,15b,15c,15d,15e,15f(図2参照)を介して走行右油圧モータ3a,走行左油圧モータ3b,旋回油圧モータ4,ブームシリンダ5,アームシリンダ6,バケットシリンダ7に供給される。供給された圧油によってブームシリンダ5,アームシリンダ6,バケットシリンダ7が伸縮して,ブーム8,アーム9,バケット10がそれぞれ回動し,バケット10の位置及び姿勢が変化する。また,供給された圧油によって旋回油圧モータ4が回転して,下部走行体11に対して上部旋回体12が旋回する。そして,供給された圧油によって走行右油圧モータ3a,走行左油圧モータ3bが回転して,下部走行体11が走行する。
 タンク200は油圧アクチュエータを駆動するための作動油の油温を検出するための作動油温検出装置210を備えている。作動油温検出装置210はタンク200の外にも設置することができ,例えばタンク200の入口管路または出口管路に取り付けても良い。
 図4は本実施形態に係る油圧ショベルが備えるマシンコントロール(MC)システムの構成図である。図4のシステムは,MCとして,操作装置45,46がオペレータに操作されたとき,各油圧シリンダ5,6,7の速度とフロント作業装置1Aを予め定められた条件に基づいて制御する処理を実行する。本稿ではマシンコントロール(MC)を,操作装置45,46の非操作時に作業装置1Aの動作をコンピュータにより制御する「自動制御」に対して,操作装置45,46の操作時にのみ作業装置1Aの動作をコンピュータにより制御する「半自動制御」と称することがある。次に本実施形態におけるMCの詳細を説明する。
 フロント作業装置1AのMCとしては,操作装置45b,46aを介して掘削操作(具体的には,アームクラウド,バケットクラウド及びバケットダンプの少なくとも1つの指示)が入力された場合,目標面60(図5参照)と作業装置1Aの先端(本実施形態ではバケット10の爪先とする)の位置関係に基づいて,作業装置1Aの先端の位置が目標面60上及びその上方の領域内に保持されるように油圧アクチュエータ5,6,7のうち少なくとも1つを強制的に動作させる制御信号(例えば,ブームシリンダ5を伸ばして強制的にブーム上げ動作を行う)を該当する流量制御弁15a,15b,15cに出力する。
 このMCによりバケット10の爪先が目標面60の下方に侵入することが防止されるので,オペレータの技量の程度に関わらず目標面60に沿った掘削が可能となる。なお,本実施形態では,MC時のフロント作業装置1Aの制御点を,油圧ショベルのバケット10の爪先(作業装置1Aの先端)に設定しているが,制御点は作業装置1Aの先端部分の点であればバケット爪先以外にも変更可能である。例えば,バケット10の底面や,バケットリンク13の最外部も選択可能である。
 図4のシステムは,作業装置姿勢検出装置50と,目標面設定装置51と,オペレータ操作量検出装置52aと,運転室内に設置され,目標面60と作業装置1Aの位置関係が表示可能な表示装置(例えば液晶ディスプレイ)53と,MC制御を司る制御コントローラ(制御装置)40とを備えている。
 作業装置姿勢検出装置(姿勢検出装置)50は,ブーム角度センサ30,アーム角度センサ31,バケット角度センサ32,車体傾斜角センサ33から構成される。これらの角度センサ30,31,32,33は複数のフロント部材であるブーム8,アーム9,バケット10の姿勢に関する物理量を検出する姿勢センサとして機能している。
 目標面設定装置51は,目標面60に関する情報(各目標面の位置情報や傾斜角度情報を含む)を入力可能なインターフェースである。目標面設定装置51は,グローバル座標系(絶対座標系)上に規定された目標面の3次元データを格納した外部端末(図示せず)と接続されている。なお,目標面設定装置51を介した目標面の入力は,オペレータが手動で行っても良い。
 オペレータ操作量検出装置(操作量検出装置)52aは,オペレータによる操作レバー1a,1b(操作装置45a,45b,46a)の操作によってパイロットライン144,145,146に生じる操作圧(第1制御信号)を取得する圧力センサ70a,70b,71a,71b,72a,72bから構成される。これらの圧力センサ70a,70b,71a,71b,72a,72bは,ブーム7(ブームシリンダ5),アーム8(アームシリンダ6),バケット9(バケットシリンダ7)に対する操作装置45a,45b,46aを介したオペレータの操作量に関する物理量を検出する操作量センサとして機能している。
 <フロント制御用油圧ユニット160>
 図3に示すように,フロント制御用油圧ユニット160は,ブーム8用の操作装置45aのパイロットライン144a,144bに設けられ,操作レバー1aの操作量としてパイロット圧(第1制御信号)を検出する圧力センサ70a,70bと,一次ポート側がポンプライン148aを介してパイロットポンプ48に接続されパイロットポンプ48からのパイロット圧を減圧して出力する電磁比例弁54aと,ブーム8用の操作装置45aのパイロットライン144aと電磁比例弁54aの二次ポート側に接続され,パイロットライン144a内のパイロット圧と電磁比例弁54aから出力される制御圧(第2制御信号)の高圧側を選択し,流量制御弁15aの油圧駆動部150aに導くシャトル弁82aと,ブーム8用の操作装置45aのパイロットライン144bに設置され,制御コントローラ40からの制御信号を基にパイロットライン144b内のパイロット圧(第1制御信号)を低減して出力する電磁比例弁54bを備えている。
 また,フロント制御用油圧ユニット160は,アーム9用のパイロットライン145a,145bに設置され,操作レバー1bの操作量としてパイロット圧(第1制御信号)を検出して制御コントローラ40に出力する圧力センサ71a,71bと,パイロットライン145bに設置され,制御コントローラ40からの制御信号を基にパイロット圧(第1制御信号)を低減して出力する電磁比例弁55bと,パイロットライン145aに設置され,制御コントローラ40からの制御信号を基にパイロットライン145a内のパイロット圧(第1制御信号)を低減して出力する電磁比例弁55aが設けられている。
 また,フロント制御用油圧ユニット160は,バケット10用のパイロットライン146a,146bには,操作レバー1aの操作量としてパイロット圧(第1制御信号)を検出して制御コントローラ40に出力する圧力センサ72a,72bと,制御コントローラ40からの制御信号を基にパイロット圧(第1制御信号)を低減して出力する電磁比例弁56a,56bと,一次ポート側がパイロットポンプ48に接続されパイロットポンプ48からのパイロット圧を減圧して出力する電磁比例弁56c,56dと,パイロットライン146a,146b内のパイロット圧と電磁比例弁56c,56dから出力される制御圧の高圧側を選択し,流量制御弁15cの油圧駆動部152a,152bに導くシャトル弁83a,83bとがそれぞれ設けられている。なお,図3では,圧力センサ70,71,72と制御コントローラ40との接続線は紙面の都合上省略している。
 電磁比例弁54b,55a,55b,56a,56bは,非通電時には開度が最大で,制御コントローラ40からの制御信号である電流を増大させるほど開度は小さくなる。一方,電磁比例弁54a,56c,56dは,非通電時には開度をゼロ,通電時に開度を有し,制御コントローラ40からの電流(制御信号)を増大させるほど開度は大きくなる。このように各電磁比例弁の開度54,55,56は制御コントローラ40からの制御信号に応じたものとなる。
 上記のように構成される制御用油圧ユニット160において,制御コントローラ40から制御信号を出力して電磁比例弁54a,56c,56dを駆動すると,対応する操作装置45a,46aのオペレータ操作が無い場合にもパイロット圧(第2制御信号)を発生できるので,ブーム上げ動作,バケットクラウド動作,バケットダンプ動作を強制的に発生できる。また,これと同様に制御コントローラ40により電磁比例弁54b,55a,55b,56a,56bを駆動すると,操作装置45a,45b,46aのオペレータ操作により発生したパイロット圧(第1制御信号)を減じたパイロット圧(第2制御信号)を発生することができ,ブーム下げ動作,アームクラウド/ダンプ動作,バケットクラウド/ダンプ動作の速度をオペレータ操作の値から強制的に低減できる。
 本稿では,流量制御弁15a~15cに対する制御信号のうち,操作装置45a,45b,46aの操作によって発生したパイロット圧を「第1制御信号」と称する。そして,流量制御弁15a~15cに対する制御信号のうち,制御コントローラ40で電磁比例弁54b,55a,55b,56a,56bを駆動して第1制御信号を補正(低減)して生成したパイロット圧と,制御コントローラ40で電磁比例弁54a,56c,56dを駆動して第1制御信号とは別に新たに生成したパイロット圧を「第2制御信号」と称する。
 第2制御信号は,第1制御信号によって発生される作業装置1Aの制御点の速度ベクトルが所定の条件に反するときに生成され,当該所定の条件に反しない作業装置1Aの制御点の速度ベクトルを発生させる制御信号として生成される。なお,同一の流量制御弁15a~15cにおける一方の油圧駆動部に対して第1制御信号が,他方の油圧駆動部に対して第2制御信号が生成される場合は,第2制御信号を優先的に油圧駆動部に作用させるものとし,第1制御信号を電磁比例弁で遮断し,第2制御信号を当該他方の油圧駆動部に入力する。したがって,流量制御弁15a~15cのうち第2制御信号が演算されたものについては第2制御信号を基に制御され,第2制御信号が演算されなかったものについては第1制御信号を基に制御され,第1及び第2制御信号の双方が発生しなかったものについては制御(駆動)されないことになる。上記のように第1制御信号と第2制御信号を定義すると,MCは,第2制御信号に基づく流量制御弁15a~15cの制御ということもできる。
 <制御コントローラ40>
 図4において制御コントローラ40は,入力部91と,プロセッサである中央処理装置(CPU)92と,記憶装置であるリードオンリーメモリ(ROM)93及びランダムアクセスメモリ(RAM)94と,出力部95とを有している。入力部91は,作業装置姿勢検出装置50である角度センサ30~32及び傾斜角センサ33からの信号と,目標面60を設定するための装置である目標面設定装置51からの信号と,操作装置45a,45b,46aからの操作量を検出する圧力センサ(圧力センサ70,71,72を含む)であるオペレータ操作量検出装置52aからの信号を入力し,CPU92が演算可能なように変換する。ROM93は,後述するフローチャートに係る処理を含めMCを実行するための制御プログラムと,当該フローチャートの実行に必要な各種情報等が記憶された記録媒体であり,CPU92は,ROM93に記憶された制御プログラムに従って入力部91及びメモリ93,94から取り入れた信号に対して所定の演算処理を行う。出力部95は,CPU92での演算結果に応じた出力用の信号を作成し,その信号を電磁比例弁54~56または表示装置53に出力することで,油圧アクチュエータ5~7を駆動・制御したり,車体1B,バケット10及び目標面60等の画像を表示装置53の画面上に表示させたりする。
 なお,図4の制御コントローラ40は,記憶装置としてROM93及びRAM94という半導体メモリを備えているが,記憶装置であれば特に代替可能であり,例えばハードディスクドライブ等の磁気記憶装置を備えても良い。
 図6は,制御コントローラ40の機能ブロック図である。制御コントローラ40は,MC制御部43と,電磁比例弁制御部44と,表示制御部374を備えている。
 表示制御部374は,MC制御部43から出力される作業装置姿勢及び目標面を基に表示装置53を制御する部分である。表示制御部374には,作業装置1Aの画像及びアイコンを含む表示関連データが多数格納されている表示ROMが備えられており,表示制御部374が,入力情報に含まれるフラグに基づいて所定のプログラムを読み出すとともに,表示装置53における表示制御をする。
 図7は図6中のMC制御部43の機能ブロック図である。MC制御部43は,操作量演算部43aと,姿勢演算部43bと,目標面演算部43cと,アームシリンダ第1速度演算部43fと,アームシリンダ第2速度演算部43dと,アームシリンダ第3速度演算部43eと,アクチュエータ制御部81(ブーム制御部81a及びバケット制御部81b)とを備えている。
 操作量演算部43aは,オペレータ操作量検出装置52aの検出値を基に操作装置45a,45b,46a(操作レバー1a,1b)の操作量を算出する。すなわち,操作装置45a,45b,46aの操作量は圧力センサ70,71,72の検出値から算出できる。
 なお,操作量の算出に圧力センサ70,71,72を利用することは一例に過ぎず,例えば各操作装置45a,45b,46aの操作レバーの回転変位を検出する位置センサ(例えば,ロータリーエンコーダ)で当該操作レバーの操作量を検出しても良い。
 姿勢演算部43bは,作業装置姿勢検出装置50の検出値に基づき,ローカル座標系におけるブーム8,アーム9及びバケット10の姿勢と,フロント作業装置1Aの姿勢と,バケット10の爪先の位置を演算する。
 ブーム8,アーム9及びバケット10の姿勢とフロント作業装置1Aの姿勢は図5のショベル座標系(ローカル座標系)上に定義できる。図5のショベル座標系(XZ座標系)は,上部旋回体12に設定された座標系であり,上部旋回体12に回動可能に支持されているブーム8の基底部を原点とし,上部旋回体12における垂直方向にZ軸,水平方向にX軸を設定した。X軸に対するブーム8の傾斜角をブーム角α,ブーム8に対するアーム9の傾斜角をアーム角β,アームに対するバケット爪先の傾斜角をバケット角γとした。水平面(基準面)に対する車体1B(上部旋回体12)の傾斜角を傾斜角θとした。ブーム角αはブーム角度センサ30により,アーム角βはアーム角度センサ31により,バケット角γはバケット角度センサ32により,傾斜角θは車体傾斜角センサ33により検出される。図5中に規定したようにブーム8,アーム9,バケット10の長さをそれぞれL1,L2,L3とすると,ショベル座標系におけるバケット爪先位置の座標,ブーム8,アーム9及びバケット10の姿勢および作業装置1Aの姿勢はL1,L2,L3,α,β,γで表現できる。
 目標面演算部43cは,目標面設定装置51からの情報に基づき目標面60の位置情報を演算し,これをROM93内に記憶する。本実施形態では,図5に示すように,3次元の目標面を作業装置1Aが移動する平面(作業機の動作平面)で切断した断面形状を目標面60(2次元の目標面)として利用する。
 なお,図5の例では目標面60は1つだが,目標面が複数存在する場合もある。目標面が複数存在する場合には,例えば,作業装置1Aから最も近いものを目標面と設定する方法や,バケット爪先の下方に位置するものを目標面とする方法や,任意に選択したものを目標面とする方法等がある。
 アームシリンダ第1速度演算部43fは,オペレータ操作量検出装置52aの検出値のうちアーム9に対する操作量の検出値からアームシリンダ6の速度を算出し,その演算結果をアームシリンダ第3速度演算部43eに出力する部分である。本実施形態では,操作量演算部43aがオペレータ操作量検出装置52aによるアーム操作量の検出値からアーム操作量を算出しており,アームシリンダ第1速度演算部43fは,操作量演算部43aが算出したアーム操作量と,アーム操作量とアームシリンダ速度の相関関係が一対一で規定された図9のテーブルとを基にアームシリンダ6の速度を算出している。図9のテーブルでは,あらかじめ実験やシミュレーションで求めた操作量に対するシリンダ速度に基づいて,アーム操作量の増加とともにアームシリンダ速度が単調に増加するように操作量と速度の相関関係が規定されている。
 本稿では,フロント作業装置1Aを構成する3つのフロント部材8,9,10のうちアーム9を「特定フロント部材」と称し,そのアーム9を駆動するアームシリンダ6を「特定油圧アクチュエータ」と称す。そして,アームシリンダ第1速度演算部43fで算出されるアームシリンダ6の速度を「第1速度」と称する。
 アームシリンダ第2速度演算部43dは,作業装置姿勢検出装置50の検出値のうちアーム9の姿勢の検出値からアームシリンダ6の速度を算出し,その演算結果をアームシリンダ第3速度演算部43eに出力する部分である。本実施形態では,姿勢演算部43bが作業装置姿勢検出装置50によるアーム9の検出値からアーム9の姿勢を算出しており,アームシリンダ第2速度演算部43dは,姿勢演算部43bが算出したアーム9の姿勢の時間変化と,ブーム8,アーム9,アームシリンダ6がそれぞれ接続されている位置間の寸法値(図5Aを用いて後述)とからアームシリンダ6の速度を算出している。本稿では,アームシリンダ第2速度演算部43dで算出されるアームシリンダ6の速度を「第2速度」と称する。
 第2速度の算出に用いるフロント作業装置1Aの寸法値について図5Aを用いて説明する。まず,ブーム8とアーム9の接続点とアーム9とアームシリンダ6の接続点を結ぶ線分M2と,ブーム8とアーム9の接続点とブーム8とアームシリンダ6の接続点を結ぶ線分M3と,ブーム8の長さである線分L1と線分M3のなす角F1と,アーム9の長さである線分L2と線分M2のなす角F2と,アーム角βとを用いて,線分M1,M2,M3からなる三角形について余弦定理を用いることでアームシリンダ長さM1を求める。さらに,求められたアームシリンダ長さM1の時間変化を算出することでアームシリンダ6の第2速度が算出できる。
 アームシリンダ第3速度演算部43eは,アームシリンダ第1速度演算部43fで演算されたアームシリンダ6の第1速度と,アームシリンダ第2速度演算部43dで演算されたアームシリンダ6の第2速度とに基づいて,アクチュエータ制御部81がMCを実行する際にアームシリンダ6の速度として利用される速度(「第3速度」と称する)を算出し,その演算結果をアクチュエータ制御部81へ出力する部分である。アームシリンダ第3速度演算部43eが第3速度を算出する際の詳細については図11を用いて後述する。
 ブーム制御部81aとバケット制御部81bは,操作装置45a,45b,46aの操作時に,予め定めた条件に従って複数の油圧アクチュエータ5,6,7の少なくとも1つを制御するアクチュエータ制御部81を構成する。アクチュエータ制御部81は,各油圧シリンダ5,6,7の流量制御弁15a,15b,15cの目標パイロット圧を演算し,その演算した目標パイロット圧を電磁比例弁制御部44に出力する。
 ブーム制御部81aは,操作装置45a,45b,46aの操作時に,目標面60の位置と,フロント作業装置1Aの姿勢及びバケット10の爪先の位置と,各油圧シリンダ5,6,7の速度とに基づいて,目標面60上またはその上方にバケット10の爪先(制御点)が位置するようにブームシリンダ5(ブーム8)の動作を制御するMCを実行するための部分である。ブーム制御部81aでは,ブームシリンダ5の流量制御弁15aの目標パイロット圧が演算される。ブーム制御部81aによるMCの詳細は図8を用いて後述する。
 バケット制御部81bは,操作装置45a,45b,46aの操作時に,MCによるバケット角度制御を実行するための部分である。具体的には,目標面60とバケット10の爪先の距離が所定値以下のとき,目標面60に対するバケット10の角度θが予め設定した対目標面バケット角度θTGTとなるようにバケットシリンダ7(バケット10)の動作を制御するMC(バケット角度制御)が実行される。バケット制御部81bでは,バケットシリンダ7の流量制御弁15cの目標パイロット圧が演算される。
 電磁比例弁制御部44は,アクチュエータ制御部81から出力される各流量制御弁15a,15b,15cへの目標パイロット圧を基に,各電磁比例弁54~56への指令を演算する。なお,オペレータ操作に基づくパイロット圧(第1制御信号)と,アクチュエータ制御部81で算出された目標パイロット圧が一致する場合には,該当する電磁比例弁54~56への電流値(指令値)はゼロとなり,該当する電磁比例弁54~56の動作は行われない。
 <アームシリンダ第3速度演算部43eによる第3速度算出のフロー>
 図11にアームシリンダ第3速度演算部43eがアームシリンダ6の第3速度を算出するフローチャート図を示す。アームシリンダ第3速度演算部43eは図11のフローを所定の制御周期で繰り返し実行し,以下の説明では制御周期をステップとも称している。なお,以下の図11の説明における主語はアームシリンダ第3速度演算部43eである。
 S600では,操作量演算部43aで演算された現在のアーム操作量が閾値Pitより大きいかを判定する。ここで閾値Pitはアーム9が操作されたか否かを判定するための定数である。アーム操作量が閾値Pitより大きい場合アーム操作がなされたと判定しS610に進み,アーム操作量が閾値Pit以下の場合アーム操作がなされていないと判定し,S690へ進む。
 S610では,1ステップ前のアーム操作量が閾値Pitより大きいかを判定する。S610でYESの場合,1ステップ前からアーム操作が継続しているとみなしてS620でタイマーのカウント時間tを制御周期分だけ進めて,S640へ進む。一方,S610でNOの場合,今回のステップからアーム操作が開始したとみなしてS630でタイマーのカウント時間tをリセット,すなわちt=0として,S640へ進む。
 S640では,アームシリンダ第2速度演算部43dで算出した第2速度Vamaを取得し,S650へ進む。
 S650では,アームシリンダ第1速度演算部43fで算出した第1速度Vameを取得し,S660へ進む。
 S660では,S620またはS630で算出されたタイマーのカウント時間tと図12のテーブルから第2速度Vamaの重み付割合Wactを算出する。重み付割合Wactは図12に示すようにタイマーのカウント時間tで決まる関数であり,本稿では重み付割合Wactを「第2の重み付関数」と称することがある。図12において,t=0~t0の間ではWactは0で一定であり,t=t0~t1の間ではWactはカウント時間tの増加に応じて0から1まで単調増加し,t=t1以降ではWactは1で一定となる。
 本稿では,t0を「第1の所定時間」,t1を「第2の所定時間」と称することがある。t0及びt1は,作業装置姿勢検出装置50の応答遅れを考慮した値を選定し設定し,例えば次のように設定できる。図17は,t0,t1の一例と,アームシリンダ6の第1速度,第2速度及び実速度との関係を模式的に示した説明図である。図17における上の図のようにアーム操作圧をゼロから急激に増加させると,アームシリンダ6の第1速度,第2速度及び実速度(真値)は図17における下の図のように変化する。すなわち,第1速度は,既述の通りアーム操作圧(操作量)と図9のテーブルから算出されるため,アーム操作圧の変化とほぼ同じタイミングで変化する。しかし,実際はオペレータがレバーを操作してからアームシリンダ6が動き出すまでには応答遅れがあるため,実速度は第1速度に遅れて図のように変化する。そして,第2速度は,既述の通りアーム9の実際の姿勢変化を基に算出されるため,実速度に遅れて図のように変化し,時間t0でようやく実速度と同定し得る値に達する。上記の事情を鑑みて,本実施形態では,レバー操作を開始してから第2速度と実速度の値が一致するとみなし得るまでに要する時間をt0に設定している。そして,t1はt0よりも大きな時間とし,t0からt1に至るまでの間に第3速度が第1速度から第2速度に徐々に遷移してもバケット爪先の動作がオペレータに違和感を与えないような必要十分な時間をt1に設定している。t0およびt1はブームの応答(MCの応答)が確保できる可能な限り小さい値に設定できる(例えば,t0およびt1はそれぞれ2秒以下の値に設定できる)。
 S670では,S660で算出したアームシリンダ第2速度の重み付割合Wactからアームシリンダ第1速度Vameの重み付割合Westを算出する。本稿では重み付割合Westを「第1の重み付関数」と称することがある。重み付割合Westは,West=1-Wactにて算出する。すなわち,t=0~t0の間ではWestは1で一定であり,t=t0~t1の間ではWestはカウント時間tの増加に応じて1から0まで単調減少し,t=t1以降ではWestは0で一定となる。
 S680では,アームシリンダ第3速度VamsをVams=Vama×Wact+Vame×Westとして出力する。すなわち,第1の重み付関数Westを第1速度Vameに乗じた値と,第2の重み付関数Wactを第2速度Vamaに乗じた値との和を第3速度として算出し,その演算結果をアクチュエータ制御部81に出力する。
 ところで,S600でNoと判定された場合,S600にてアーム操作がなされていないとみなして,S690にてアームシリンダ第3速度Vams=0を出力する。
 <ブーム制御部81aによるブーム上げ制御のフロー>
 本実施の形態の制御コントローラ40は,ブーム制御部81aによるブーム上げ制御をMCとして実行する。このブーム制御部81aによるブーム上げ制御のフローを図8に示す。図8はブーム制御部81aで実行されるMCのフローチャートであり,操作装置45a,45b,46aがオペレータにより操作されると処理が開始される。
 S410では,ブーム制御部81aは各油圧シリンダ5,6,7の速度を取得する。まず,ブームシリンダ5とバケットシリンダ7の速度については,操作量演算部43aで演算されたブーム8とバケット10に対する操作量を基にブームシリンダ5とバケットシリンダ7の速度を演算して取得する。具体的には,前述の図9と同様にあらかじめ実験やシミュレーションで求めた操作量に対するシリンダ速度をテーブルとして設定し,これに従ってブームシリンダ5とバケットシリンダ7の速度を算出する。一方,アームシリンダ6の速度については,アームシリンダ第3速度演算部43eが前述の図11のフローに基づいて算出した第3速度Vamsをアームシリンダ6の速度として取得する。
 S420では,ブーム制御部81aは,S410で取得した各油圧シリンダ5,6,7の動作速度と,姿勢演算部43bで演算された作業装置1Aの姿勢とを基に,オペレータ操作によるバケット先端(爪先)の速度ベクトルBを演算する。
 S430では,ブーム制御部81aは,姿勢演算部43bで演算したバケット10の爪先の位置(座標)と,ROM93に記憶された目標面60を含む直線の距離から,バケット先端から制御対象の目標面60までの距離D(図5参照)を算出する。そして,距離Dと図10のグラフを基にバケット先端の速度ベクトルの目標面60に垂直な成分の下限側の制限値ayを算出する。
 S440では,ブーム制御部81aは,S420で算出したオペレータ操作によるバケット先端の速度ベクトルBにおいて,目標面60に垂直な成分byを取得する。
 S450では,ブーム制御部81aは,S430で算出した制限値ayが0以上か否かを判定する。なお,図8の右上に示したようにxy座標を設定する。当該xy座標では,x軸は目標面60と平行で図中右方向を正とし,y軸は目標面60に垂直で図中上方向を正とする。図8中の凡例では垂直成分by及び制限値ayは負であり,水平成分bx及び水平成分cx及び垂直成分cyは正である。そして,図10から明らかであるが,制限値ayが0のときは距離Dが0,すなわち爪先が目標面60上に位置する場合であり,制限値ayが正のときは距離Dが負,すなわち爪先が目標面60より下方に位置する場合であり,制限値ayが負のときは距離Dが正,すなわち爪先が目標面60より上方に位置する場合である。S450で制限値ayが0以上と判定された場合(すなわち,爪先が目標面60上またはその下方に位置する場合)にはS460に進み,制限値ayが0未満の場合にはS480に進む。
 S460では,ブーム制御部81aは,オペレータ操作による爪先の速度ベクトルBの垂直成分byが0以上か否かを判定する。byが正の場合は速度ベクトルBの垂直成分byが上向きであることを示し,byが負の場合は速度ベクトルBの垂直成分byが下向きであることを示す。S460で垂直成分byが0以上と判定された場合(すなわち,垂直成分byが上向きの場合)にはS470に進み,垂直成分byが0未満の場合にはS500に進む。
 S470では,ブーム制御部81aは,制限値ayと垂直成分byの絶対値を比較し,制限値ayの絶対値が垂直成分byの絶対値以上の場合にはS500に進む。一方,制限値ayの絶対値が垂直成分byの絶対値未満の場合にはS530に進む。
 S500では,ブーム制御部81aは,マシンコントロールによるブーム8の動作で発生すべきバケット先端の速度ベクトルCの目標面60に垂直な成分cyを算出する式として「cy=ay-by」を選択し,その式とS430の制限値ayとS440の垂直成分byを基に垂直成分cyを算出する。そして,算出した垂直成分cyを出力可能な速度ベクトルCを算出し,その水平成分をcxとする(S510)。
 S520では,目標速度ベクトルTを算出する。目標速度ベクトルTの目標面60に垂直な成分をty,水平な成分txとすると,それぞれ「ty=by+cy,tx=bx+cx」と表すことができる。これにS500の式(cy=ay-by)を代入すると目標速度ベクトルTは結局「ty=ay,tx=bx+cx」となる。つまり,S520に至った場合の目標速度ベクトルの垂直成分tyは制限値ayに制限され,マシンコントロールによる強制ブーム上げが発動される。
 S480では,ブーム制御部81aは,オペレータ操作による爪先の速度ベクトルBの垂直成分byが0以上か否かを判定する。S480で垂直成分byが0以上と判定された場合(すなわち,垂直成分byが上向きの場合)にはS530に進み,垂直成分byが0未満の場合にはS490に進む。
 S490では,ブーム制御部81aは,制限値ayと垂直成分byの絶対値を比較し,制限値ayの絶対値が垂直成分byの絶対値以上の場合にはS530に進む。一方,制限値ayの絶対値が垂直成分byの絶対値未満の場合にはS500に進む。
 S530に至った場合,マシンコントロールでブーム8を動作させる必要が無いので,ブーム制御部81aは,速度ベクトルCをゼロとする。この場合,目標速度ベクトルTは,S520で利用した式(ty=by+cy,tx=bx+cx)に基づくと「ty=by,tx=bx」となり,オペレータ操作による速度ベクトルBと一致する(S540)。
 S550では,ブーム制御部81aは,S520またはS540で決定した目標速度ベクトルT(ty,tx)を基に各油圧シリンダ5,6,7の目標速度を演算する。なお,上記説明から明らかであるが,図8の場合に目標速度ベクトルTが速度ベクトルBに一致しないときには,マシンコントロールによるブーム8の動作で発生する速度ベクトルCを速度ベクトルBに加えることで目標速度ベクトルTを実現する。
 S560では,ブーム制御部81aは,S550で算出された各シリンダ5,6,7の目標速度を基に各油圧シリンダ5,6,7の流量制御弁15a,15b,15cへの目標パイロット圧を演算する。
 S590では,ブーム制御部81aは,各油圧シリンダ5,6,7の流量制御弁15a,15b,15cへの目標パイロット圧を電磁比例弁制御部44に出力する。
 電磁比例弁制御部44は,各油圧シリンダ5,6,7の流量制御弁15a,15b,15cに目標パイロット圧が作用するように電磁比例弁54,55,56を制御し,これにより作業装置1Aによる掘削が行われる。例えば,オペレータが操作装置45bを操作して,アームクラウド動作によって水平掘削を行う場合には,バケット10の先端が目標面60に侵入しないように電磁比例弁55cが制御され,ブーム8の上げ動作が自動的に行われる。
 なお,本実施形態では,ブーム制御部81aによるブーム制御(強制ブーム上げ制御)と,バケット制御部81bによるバケット制御(バケット角度制御)がMCとして実行されるが,バケット10と目標面60の距離Dに応じたブーム制御をMCとして実行しても良い。
 <動作・効果>
 上記のように構成される油圧ショベルの動作について図13を利用して説明する。ここでは,アーム回動中心を通過する水平面とアーム9のなす角をアーム角度φとし,アームクラウド操作を入力して切り上げ作業を開始する状態S1(図13:アーム角度φ1≦90度)から,切り上げ作業の途中段階である状態S2(図13:アーム角度φ2>90度)に遷移する場合のオペレータ操作と,制御コントローラ40(ブーム制御部81a)によるMCについて説明する。
 ここで,図12の時間t0および時間t1はブームの応答(MCの応答)が確保できる可能な限り小さい値(例えば,2秒以下の値)であるため,アームクラウド操作の開始後に状態S1から状態S2に遷移するのは時間t1以降であるとする。図13の状態S1から状態S2の間,オペレータはアーム9のクラウド操作を行う。アーム9のクラウド操作によりバケット10が目標面60の下方に侵入すると判断されるときには,図8のフローに基づいてブーム制御部81aから電磁弁54aに指令が出力され,強制的にブーム8を上昇させる制御(MC)が実行される。
 (1)アームクラウド開始からの経過時間がt0未満の場合
 まず,オペレータがアーム9のクラウド操作を開始してからの経過時間がt0未満の場合は,アームシリンダ第3速度演算部43eは図11の制御フローに基づいてアームシリンダ6の速度として第1速度をアクチュエータ制御部81に出力する。このとき,アクチュエータ制御部81(ブーム制御部81a)は,アームシリンダ6の速度として第1速度を利用しながらバケット先端速度Bを算出し,図8のフローに基づいて必要に応じてMCが発動され,これによりバケット10の爪先が目標面60の上またはその上方に保持される。このようにアーム9の始動時のアームシリンダ6の速度として第1速度を利用してMCを行うと,第1速度は実際のアームの速度より速くなる傾向があるものの(図17参照),MCによるブーム上げ制御の応答性は確保されるので,爪先の挙動を安定させることができる。
 (2)アームクラウド開始からの経過時間がt0以後かつt1未満の場合
 次に,オペレータがアーム9のクラウド操作を開始してからの経過時間がt0以後かつt1未満の場合は,アームシリンダ第3速度演算部43eは図11の制御フローに基づいて第1速度Vame及び第2速度Vama及び重み付割合Wact,Westから算出される第3速度Vams(Vams=Vama×Wact+Vame×West)をアームシリンダ6の速度としてアクチュエータ制御部81に出力する。これによりアクチュエータ制御部81(ブーム制御部81a)でアームシリンダ6の速度として利用される速度は,時間の経過とともに第1速度から徐々に第2速度にシフトするので,第1速度から第2速度に突然変化する場合と比較してバケット爪先の挙動が突然変化することが防止され,その結果オペレータが爪先の挙動に違和感をおぼえることを防止できる。
 (3)アームクラウド開始からの経過時間がt1以後の場合
 最後に,オペレータがアーム9のクラウド操作を開始してからの経過時間がt1以後の場合は,アームシリンダ第3速度演算部43eは図11の制御フローに基づいてアームシリンダ6の速度として第2速度をアクチュエータ制御部81に出力する。このとき,アクチュエータ制御部81(ブーム制御部81a)は,アームシリンダ6の速度として第2速度を利用しながらバケット先端速度Bを算出し,図8のフローに基づいて必要に応じてMCが発動され,これによりバケット10の爪先が目標面60の上またはその上方に保持される。このようにアーム9の動作中のアームシリンダ6の速度として第2速度を利用してMCを行うと,実速度に近い速度でMCを行うことができるので,爪先の挙動を安定させることができる。
 特に,時間t1以後で状態S2のようにアーム角度φが90度以下の状態でMCが実行される場合は,アーム9より先のフロント作業装置(アーム9およびバケット10)の自重により実際のアームシリンダ速度は第1速度よりも小さくなってしまう。しかし,本実施形態によれば,図11の制御フローにより,時間t1以降は,実際の姿勢変化に基づいて算出される第2速度をアームシリンダの速度としてMCが行われるので適切なブーム上げ指令を出力でき,MCの精度を向上できる。
 つまり,本実施形態によれば,MC時のアームシリンダの速度として第1速度を常に利用していた場合と比較して,実際の姿勢変化に基づいて算出される第2速度を利用することで,負荷圧や姿勢,油温等の変化の影響を受けにくくなるため,MCを安定させることができる。
 <第2実施形態>
 次に本発明の第2実施形態について説明する。 
 まず,本実施形態が解決しようとする主たる課題を説明する。第1実施形態では,姿勢センサはアームが実際に動き始めてからその姿勢変化を検出可能となるため,アームの動き始めに対してMCの応答が遅れる可能性がある点を挙げた。しかし,アームの動き始め以外であっても,オペレータがアーム操作レバーの操作量を急変させた場合には,姿勢センサの応答よりも早く実際のアームシリンダ速度が変化し得るので,アームの動き始めと同様に姿勢センサの出力から算出したアーム速度は実際のアーム速度と乖離し得る。本実施形態はこの点の解決を図ったものである。
 図15は第2実施形態のMC制御部43Aの機能ブロック図である。この図に示すように,本実施形態のMC制御部43Aは,第1実施形態のものと異なり,作動油温検出装置210で検出された検出値をアームシリンダ第1速度演算部43fに入力しており,その検出値を第1速度の補正に利用している。また,アームシリンダ第3速度演算部43eの制御フローが第1実施形態と異なっている。その他の部分については第1実施形態と同じであり説明は省略する。以下,本実施形態について詳説する。
 <アームシリンダ第3速度演算部43eによる第3速度算出のフロー>
 図16に第2実施形態のアームシリンダ第3速度演算部43eがアームシリンダ6の第3速度を算出するフローチャート図を示す。第1実施形態と同様に,アームシリンダ第3速度演算部43eは図16のフローを所定の制御周期で繰り返し実行し,図11と同じ処理には同じ符号を付して説明を省略する。なお,以下の図16の説明における主語はアームシリンダ第3速度演算部43eである。
 S720では,操作量演算部43aで演算された現在と1ステップ前のアーム操作量の変化量が閾値dPitよりも大きいかを判定する。ここで,閾値dPitは次の方法にて決定することができる。
 <閾値dPitについて>
 オペレータの操作によってアーム9の動作速度が急速に変化したとき(アーム9の動作速度の時間変化量が大きいとき)に,作業装置姿勢検出装置50の検出応答性能により,実際のアームシリンダ速度(真値)とアームシリンダ第2速度演算部43dで演算した第2速度とで乖離が生じる場合がある。この乖離が生じるアーム9の動作速度の時間変化量が閾値dWam以上であるとする。すなわち,アーム9の動作速度の時間変化量が閾値dWam以上であれば作業装置姿勢検出装置50は応答遅れが生じ,閾値dWam未満であれば作業装置姿勢検出装置50はアーム9の動作速度の時間変化量に対して十分追従できる。
 本実施形態では,アーム9の動作速度の時間変化量が閾値dWamとなるアーム操作量(アーム操作圧と等価)の変化量をあらかじめ実験やシミュレーションにて求め,これを閾値dPitとして設定している。
 S720でYESと判定された場合(現在と1ステップ前のアーム操作量の変化量が閾値dPitよりも大きいと判定された場合),1ステップ前から今回のステップでアーム9の動作速度が急速に変化しているとみなして,S730で1ステップ前と2ステップ前のアーム操作量の変化量が閾値dPitよりも大きいかを判定する。
 S730でYESと判定された場合(1ステップ前と2ステップ前のアーム操作量の変化量が閾値dPitよりも大きいと判定された場合),アーム9の動作速度が急速に変化している状態が継続しているとみなして,S620でタイマーのカウント時間tを制御周期分だけ進めて,S640へ進む。
 S730でNOと判定された場合(1ステップ前と2ステップ前のアーム操作量の変化量が閾値dPit以下と判定された場合),アーム9の動作速度の急速な変化が今回のステップで開始したとみなして,S630でタイマーのカウント時間tをリセット,すなわちt=0として,S640へ進む。
 S720でNOと判定された場合(現在と1ステップ前のアーム操作量の変化量が閾値dPit以下と判定された場合),1ステップ前からアーム操作が継続しているとみなして(すなわち第1実施形態のS610でYESと判定された場合と同じに扱われる),S620でタイマーのカウント時間tを制御周期分だけ進めて,S640へ進む。
 S640では,アームシリンダ第2速度演算部43dで算出した第2速度Vamaを取得し,S770へ進む。
 S770では,アームシリンダ第1速度演算部43fが作動油温検出装置210の検出値を考慮して算出した第1速度Vameを取得する。
 <作動油温による第1速度の補正処理>
 ここで本実施形態のアームシリンダ第1速度演算部43fの第1速度の演算処理について説明する。アームシリンダ第1速度演算部43fは,操作量演算部43aが算出したアーム操作量と,アーム操作量とアームシリンダ速度の相関関係が規定された図18のテーブルと,作動油温検出装置210の検出値(検出温度Tt)とを基にアームシリンダ6の第1速度を算出している。図18のテーブルでは,図9同様,アーム操作量の増加とともにアームシリンダ速度が単調に増加するように操作量と速度の相関関係が規定されている。図18のテーブルは,作動油温検出装置210の検出温度Ttが所定値Tt0以下の場合,作動油温検出装置210の検出温度Ttと所定値Tt0の偏差ΔTtの増加に応じてアームシリンダ速度が減少するように補正される。図18には,作動油温検出装置210の検出温度がTt0,Tt1,Tt2,Tt3(但し,Tt3<Tt2<Tt1<Tt0)のときに利用される関数を示した。このように,作動油温検出装置210によって検出された油温Ttが所定値Tt0以下の場合,所定値Tt0との偏差ΔTtの増加に応じてアームシリンダ6の速度が小さくなることを加味して,アームシリンダ第1速度演算部43fは,図9のテーブルと操作量演算部43aが算出したアーム操作量から算出される速度よりも小さい速度を第1速度Vameとして算出する。
 S660以降の処理は図11の処理と同じなので説明は省略する。
 <動作・効果>
 上記のように構成される油圧ショベルにおいて,オペレータがアーム操作中にアーム操作量を急変させると,アームシリンダ第3速度演算部43eは図16のS720,730の処理を経由してS630でタイマーをリセットし,アームシリンダ6の速度として第1速度をアクチュエータ制御部81に出力する。これにより,第1速度は実際のアームの速度より速くなる傾向があるものの,MCによるブーム上げ制御の応答性は確保されるので,爪先の挙動を安定させることができる。
 レバー操作量の変化量が継続してdPitを越えている場合には,次の制御周期で,アームシリンダ第3速度演算部43eは図16のS720,730の処理を経由してS620でタイマーのカウント時間tを制御周期分だけ進めて,S640へ進む。S640以降の処理ではアームシリンダ第3速度演算部43eはカウント時間tに応じた第3速度をアクチュエータ制御部81に出力する。
 カウント時間tがt0以上かつt1未満の場合,アームシリンダ第3速度演算部43eは図16の制御フローに基づいて第1速度Vame及び第2速度Vama及び重み付割合Wact,Westから算出される第3速度Vams(Vams=Vama×Wact+Vame×West)をアームシリンダ6の速度としてアクチュエータ制御部81に出力する。
 カウント時間tがt1以上の場合,アームシリンダ第3速度演算部43eは図16の制御フローに基づいて第2速度をアームシリンダ6の速度としてアクチュエータ制御部81に出力する。このようにアーム9の動作中のアームシリンダ6の速度として第2速度を利用してMCを行うと,実速度に近い速度でMCを行うことができるので,爪先の挙動を安定させることができる。
 また,作動油温が低温で油圧アクチュエータの速度が低下する場合であっても,作動油温検出装置210の検出結果に基づいてアームシリンダの推定速度を算出するため,ブーム上げ操作量を適切に算出できる。
 したがって,本実施形態においても,MC時のアームシリンダの速度として第1速度を常に利用していた場合と比較して,実際の姿勢変化に基づいて算出される第2速度を利用することで,負荷圧や姿勢,油温等の変化の影響を受けにくくなるため,MCを安定させることができる。
 <その他>
 上記第2実施形態では時間t0,t1を固定の値としているが,アーム操作量の変化量に応じて時間t0,t1の値を可変としても良い。
 また,第2実施形態のS660では,第1実施形態と同様に,タイマーのカウント時間tと図12のテーブルから第2速度Vamaの重み付割合Wactを算出するが,S610でNOと判定された場合(アーム操作が開始したと判定された場合)と,S730でNOと判定された場合(アーム操作量の変化量が閾値dPit以上と判定された場合)とで,利用するテーブルを異ならせても良い。すなわち,S730でNOと判定された場合は,図12のテーブルと異なるテーブルを利用しても良い。
 第2実施形態では,アームシリンダ第1速度演算部43fにおいて作動油温による第1速度の補正処理を行ったが,この処理は本実施形態から省略可能であり,また第1実施形態にも追加可能である。
 上記の各実施形態ではブーム8,アーム9,バケット10の角度を検出する角度センサを用いたが,角度センサではなくシリンダストロークセンサによりショベルの姿勢情報を算出するとしても良い。また,油圧パイロット式のショベルを例として説明したが,電気レバー式のショベルであれば電気レバーから生成される指令電流を制御するような構成としても良い。フロント作業装置1Aの速度ベクトルの算出方法について,オペレータ操作によるパイロット圧ではなく,ブーム8,バケット10の角度を微分することで算出される角速度から求めても良い。
 上記の各実施形態では,アームを特定フロント部材,アームシリンダを特定油圧アクチュエータとして,アーム操作開始からの時間やアームの急動作開始からの時間に応じてアームシリンダの速度を算出するプロセスを変更したが,操作量から算出される速度の精度や姿勢検出装置の応答性の課題は,アーム以外のフロント部材であるブームやバケットにも該当する。したがって, 特定フロント部材と特定油圧アクチュエータは,ブーム8とブームシリンダ5や,バケット10とバケットシリンダ7にも変更可能である。
 上記の制御コントローラ40に係る各構成や当該各構成の機能及び実行処理等は,それらの一部又は全部をハードウェア(例えば各機能を実行するロジックを集積回路で設計する等)で実現しても良い。また,上記の制御コントローラ40に係る構成は,演算処理装置(例えばCPU)によって読み出し・実行されることで当該制御コントローラ40の構成に係る各機能が実現されるプログラム(ソフトウェア)としてもよい。当該プログラムに係る情報は,例えば,半導体メモリ(フラッシュメモリ,SSD等),磁気記憶装置(ハードディスクドライブ等)及び記録媒体(磁気ディスク,光ディスク等)等に記憶することができる。
 本発明は,上記の各実施形態に限定されるものではなく,その要旨を逸脱しない範囲内の様々な変形例が含まれる。例えば,本発明は,上記の各実施形態で説明した全ての構成を備えるものに限定されず,その構成の一部を削除したものも含まれる。また,ある実施形態に係る構成の一部を,他の実施形態に係る構成に追加又は置換することが可能である。
 1A…フロント作業装置,8…ブーム,9…アーム,10…バケット,30…ブーム角度センサ,31…アーム角度センサ,32…バケット角度センサ,40…制御コントローラ(制御装置),43…MC制御部,43a…操作量演算部,43b…姿勢演算部,43c…目標面演算部,43d…アームシリンダ第2速度演算部,43e…アームシリンダ第3速度演算部,43f…アームシリンダ第1速度演算部,44…電磁比例弁制御部,45…操作装置(ブーム,アーム),46…操作装置(バケット,旋回),50…作業装置姿勢検出装置(姿勢検出装置),51…目標面設定装置,52a…オペレータ操作量検出装置(操作量検出装置),53…表示装置,54,55,56…電磁比例弁,81…アクチュエータ制御部,81a…ブーム制御部,81b…バケット制御部,210…作動油温検出装置

Claims (5)

  1.  複数のフロント部材を有する作業装置と,
     前記複数のフロント部材を駆動する複数の油圧アクチュエータと,
     オペレータの操作に応じて前記複数の油圧アクチュエータの動作を指示する操作装置と,
     前記操作装置の操作時に,前記複数の油圧アクチュエータの速度と予め定めた条件に従って前記複数の油圧アクチュエータの少なくとも1つを制御するアクチュエータ制御部を有する制御装置とを備える作業機械において,
     前記複数のフロント部材の1つである特定フロント部材の姿勢に関する物理量を検出する姿勢検出装置と,
     オペレータから前記操作装置に入力される操作量のうち前記特定フロント部材に対する操作量に関する物理量を検出する操作量検出装置とを備え,
     前記制御装置は,
      前記複数の油圧アクチュエータのうち前記特定フロント部材を駆動する特定油圧アクチュエータの第1速度を前記操作量検出装置の検出値から算出する第1速度演算部と,
      前記特定油圧アクチュエータの第2速度を前記姿勢検出装置の検出値から算出する第2速度演算部と,
      前記アクチュエータ制御部で前記特定油圧アクチュエータの速度として利用される第3速度を前記第1速度と前記第2速度に基づいて算出する第3速度演算部とを備え,
     前記第3速度演算部は,
      前記操作量検出装置にて前記特定フロント部材に対する操作が入力されたことが検出されてから第1の所定時間までの間,前記第1速度を前記第3速度として算出し,
      前記第1の所定時間から前記第1の所定時間よりも大きな第2の所定時間までの間,前記第1速度と前記第2速度から算出される速度を前記第3速度として算出し,
      前記第2の所定時間以降,前記第2速度を前記第3速度として算出する
     ことを特徴とする作業機械。
  2.  請求項1の作業機械において,
     前記第3速度演算部は,前記第1の所定時間から前記第2の所定時間までの間,時間の増加に応じて値が減少する第1の重み付関数を前記第1速度に乗じた値と,時間の増加に応じて値が増加する第2の重み付関数を前記第2速度に乗じた値との和を前記第3速度として算出する
     ことを特徴とする作業機械。
  3.  請求項1の作業機械において,
     前記第3速度演算部は,
      前記操作量検出装置にて前記特定フロント部材に対する操作量の変化量が所定量以上であることが検出されてから第3の所定時間までの間,前記第1速度を前記第3速度として算出し,
      前記第3の所定時間から前記第3の所定時間よりも大きな第4の所定時間までの間,前記第1速度と前記第2速度から算出される速度を前記第3速度として算出し,
      前記第4の所定時間以降,前記第2速度を前記第3速度として算出する
     ことを特徴とする作業機械。
  4.  請求項1の作業機械において,
     前記特定油圧アクチュエータを駆動するための作動油温を検出する作動油温検出装置をさらに備え,
     前記第1速度演算部は,前記作動油温検出装置によって検出された油温が所定値以下の場合,前記操作量検出装置の検出値から算出される速度よりも小さい速度を前記第1速度として算出する
     ことを特徴とする作業機械。
  5.  請求項1の作業機械において,
     前記特定フロント部材はアームであり,
     前記特定油圧アクチュエータは前記アームを駆動するアームシリンダである
     ことを特徴とする作業機械。
PCT/JP2017/033077 2017-09-13 2017-09-13 作業機械 WO2019053814A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17922064.5A EP3683364B1 (en) 2017-09-13 2017-09-13 Work machinery
US16/328,398 US11001985B2 (en) 2017-09-13 2017-09-13 Work machine
PCT/JP2017/033077 WO2019053814A1 (ja) 2017-09-13 2017-09-13 作業機械
CN201780049325.0A CN109790698B (zh) 2017-09-13 2017-09-13 作业机械
KR1020197003398A KR102130562B1 (ko) 2017-09-13 2017-09-13 작업 기계
JP2019510390A JP6618652B2 (ja) 2017-09-13 2017-09-13 作業機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/033077 WO2019053814A1 (ja) 2017-09-13 2017-09-13 作業機械

Publications (1)

Publication Number Publication Date
WO2019053814A1 true WO2019053814A1 (ja) 2019-03-21

Family

ID=65722583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033077 WO2019053814A1 (ja) 2017-09-13 2017-09-13 作業機械

Country Status (6)

Country Link
US (1) US11001985B2 (ja)
EP (1) EP3683364B1 (ja)
JP (1) JP6618652B2 (ja)
KR (1) KR102130562B1 (ja)
CN (1) CN109790698B (ja)
WO (1) WO2019053814A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021025258A (ja) * 2019-08-01 2021-02-22 住友重機械工業株式会社 ショベル
JP2021055427A (ja) * 2019-09-30 2021-04-08 日立建機株式会社 建設機械
WO2022201905A1 (ja) 2021-03-26 2022-09-29 日立建機株式会社 作業機械

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3450634B1 (en) 2017-08-30 2021-03-03 Topcon Positioning Systems, Inc. Method and apparatus for machine operator command attenuation
JP6912356B2 (ja) * 2017-11-13 2021-08-04 日立建機株式会社 建設機械
EP3783155B1 (en) * 2018-04-17 2022-12-14 Hitachi Construction Machinery Co., Ltd. Work machine
WO2020101006A1 (ja) * 2018-11-14 2020-05-22 住友重機械工業株式会社 ショベル、ショベルの制御装置
JP7252762B2 (ja) * 2019-01-08 2023-04-05 日立建機株式会社 作業機械
US11828040B2 (en) * 2019-09-27 2023-11-28 Topcon Positioning Systems, Inc. Method and apparatus for mitigating machine operator command delay
JP7149917B2 (ja) * 2019-09-30 2022-10-07 日立建機株式会社 作業機械

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02176023A (ja) * 1988-12-27 1990-07-09 Komatsu Ltd 建設機械のバケット刃先深さ制御装置
JPH09273502A (ja) * 1996-04-01 1997-10-21 Sumitomo Constr Mach Co Ltd 建設機械のハンチング防止回路
JP5865510B2 (ja) 2014-09-10 2016-02-17 株式会社小松製作所 作業車両および作業車両の制御方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2566745B2 (ja) * 1994-04-29 1996-12-25 三星重工業株式会社 電子制御油圧掘削機の自動平坦作業方法
US5960378A (en) * 1995-08-14 1999-09-28 Hitachi Construction Machinery Co., Ltd. Excavation area setting system for area limiting excavation control in construction machines
JP3811190B2 (ja) * 1997-06-20 2006-08-16 日立建機株式会社 建設機械の領域制限掘削制御装置
JP4444884B2 (ja) 2005-06-28 2010-03-31 日立建機株式会社 建設機械および建設機械に用いられる制御装置
US7530225B2 (en) * 2006-05-23 2009-05-12 Volvo Construction Equipment Holding Sweden Ab Apparatus for increasing operation speed of boom on excavators
US9119348B2 (en) * 2010-03-29 2015-09-01 Deere & Company Tractor-implement control system and method
JP6244459B2 (ja) * 2014-06-26 2017-12-06 日立建機株式会社 作業機械
WO2015025986A1 (ja) * 2014-09-10 2015-02-26 株式会社小松製作所 作業車両
JP6291394B2 (ja) * 2014-10-02 2018-03-14 日立建機株式会社 作業機械の油圧駆動システム
JP6692568B2 (ja) * 2015-01-06 2020-05-13 住友重機械工業株式会社 建設機械
US9834905B2 (en) * 2015-09-25 2017-12-05 Komatsu Ltd. Work machine control device, work machine, and work machine control method
WO2016111384A1 (ja) * 2016-02-29 2016-07-14 株式会社小松製作所 作業機械の制御装置、作業機械及び作業機械の制御方法
WO2016186219A1 (ja) * 2016-05-31 2016-11-24 株式会社小松製作所 建設機械の制御システム、建設機械、及び建設機械の制御方法
JP6564739B2 (ja) * 2016-06-30 2019-08-21 日立建機株式会社 作業機械

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02176023A (ja) * 1988-12-27 1990-07-09 Komatsu Ltd 建設機械のバケット刃先深さ制御装置
JPH09273502A (ja) * 1996-04-01 1997-10-21 Sumitomo Constr Mach Co Ltd 建設機械のハンチング防止回路
JP5865510B2 (ja) 2014-09-10 2016-02-17 株式会社小松製作所 作業車両および作業車両の制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3683364A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021025258A (ja) * 2019-08-01 2021-02-22 住友重機械工業株式会社 ショベル
JP7412918B2 (ja) 2019-08-01 2024-01-15 住友重機械工業株式会社 ショベル
JP2021055427A (ja) * 2019-09-30 2021-04-08 日立建機株式会社 建設機械
JP7083326B2 (ja) 2019-09-30 2022-06-10 日立建機株式会社 建設機械
WO2022201905A1 (ja) 2021-03-26 2022-09-29 日立建機株式会社 作業機械
KR20230051283A (ko) 2021-03-26 2023-04-17 히다찌 겐끼 가부시키가이샤 작업 기계

Also Published As

Publication number Publication date
EP3683364A1 (en) 2020-07-22
US11001985B2 (en) 2021-05-11
KR20190034220A (ko) 2019-04-01
KR102130562B1 (ko) 2020-07-06
EP3683364B1 (en) 2022-08-03
CN109790698A (zh) 2019-05-21
JP6618652B2 (ja) 2019-12-11
CN109790698B (zh) 2021-04-23
US20200157768A1 (en) 2020-05-21
EP3683364A4 (en) 2021-05-12
JPWO2019053814A1 (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
JP6618652B2 (ja) 作業機械
US11053661B2 (en) Work machine
JP6889806B2 (ja) 作業機械
JP6889579B2 (ja) 作業機械
KR102154581B1 (ko) 작업 기계
JP6860329B2 (ja) 作業機械
KR20200028993A (ko) 작업 기계
KR102588223B1 (ko) 작업 기계
WO2020179346A1 (ja) 作業機械
JP7096425B2 (ja) 作業機械
WO2023053900A1 (ja) 作業機械
JP7269411B2 (ja) 作業機械
WO2020065739A1 (ja) 作業機械
WO2021065952A1 (ja) 作業機械
JP7083326B2 (ja) 建設機械

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20197003398

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019510390

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017922064

Country of ref document: EP

Effective date: 20200414