WO2019201353A1 - 一种获得无铅压电材料的方法、相应无铅压电材料 - Google Patents

一种获得无铅压电材料的方法、相应无铅压电材料 Download PDF

Info

Publication number
WO2019201353A1
WO2019201353A1 PCT/CN2019/083695 CN2019083695W WO2019201353A1 WO 2019201353 A1 WO2019201353 A1 WO 2019201353A1 CN 2019083695 W CN2019083695 W CN 2019083695W WO 2019201353 A1 WO2019201353 A1 WO 2019201353A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
phase boundary
phase
free piezoelectric
piezoelectric material
Prior art date
Application number
PCT/CN2019/083695
Other languages
English (en)
French (fr)
Inventor
任晓兵
任帅
郝彦双
方敏侠
Original Assignee
西安交通大学
国立研究开发法人物质·材料研究机构
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学, 国立研究开发法人物质·材料研究机构 filed Critical 西安交通大学
Priority to JP2020558490A priority Critical patent/JP7462275B2/ja
Priority to EP19788532.0A priority patent/EP3786136A4/en
Priority to CN201980027113.1A priority patent/CN112469682B/zh
Publication of WO2019201353A1 publication Critical patent/WO2019201353A1/zh
Priority to US17/076,521 priority patent/US20220037584A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/097Forming inorganic materials by sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8536Alkaline earth metal based oxides, e.g. barium titanates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3

Definitions

  • the present disclosure relates to the field of piezoelectric materials, and more particularly to a method of obtaining a lead-free piezoelectric material, a corresponding lead-free piezoelectric material.
  • Piezoelectric materials are the core materials in various electronic components such as sensors, controllers, brakes, and transducers because of their ability to convert mechanical energy and electrical energy. Therefore, such materials play an important role in the fields of information technology, optoelectronic technology, precision control technology, and remote sensing imaging technology.
  • PZT lead zirconate titanate
  • PZT lead zirconate titanate
  • the present disclosure provides a method of obtaining a lead-free piezoelectric material, the method comprising:
  • Step S100 adjusting a T/O phase boundary of the first lead-free piezoelectric material:
  • the T/O phase boundary between the tetragonal phase T and the orthogonal phase O is adjusted to be near room temperature by doping;
  • step S200 the C/T phase boundary and the O/R phase boundary are further adjusted:
  • Step S300 obtaining a second lead-free piezoelectric material: in the process of the C/T phase boundary and the O/R phase boundary approaching the T/O phase boundary, obtaining a plurality of different piezoelectric constants d 33 and different Curie temperatures Tc The second lead-free piezoelectric material.
  • the present disclosure also provides a lead-free piezoelectric material characterized by:
  • the T/O phase boundary between the tetragonal phase T and the orthogonal phase O of the lead-free piezoelectric material is located near room temperature;
  • the different degrees of phase boundary are associated with different piezoelectric constants d 33 and different Curie temperatures T c of the lead-free piezoelectric material.
  • the present disclosure also provides a process for preparing a lead-free piezoelectric material for preparing the lead-free piezoelectric material, the method comprising:
  • Step T001 selecting raw materials according to the corresponding chemical formula and formulating the ingredients
  • Step T002 preparing the lead-free piezoelectric material by using a conventional solid phase ceramic sintering preparation process.
  • the present disclosure also provides a method of obtaining a lead-free piezoelectric material, the method comprising:
  • Step S101 adjusting a T/O phase boundary of the first lead-free piezoelectric material:
  • the T/O phase boundary between the tetragonal phase T and the orthogonal phase O is adjusted to be near the service temperature of the material by doping;
  • Step S201 further adjusting the C/T phase boundary and the O/R phase boundary:
  • the C/T phase boundary between the cubic paraelectric phase C and the tetragonal phase T, and the O/R phase boundary between the orthogonal phase O and the rhombohedral phase R are adjusted to make the C/T phase boundary and
  • the O/R phase boundary is close to the T/O phase boundary, and the phase boundary is close to:
  • the C/T phase boundary and the O/R phase boundary, as well as the T/O phase boundary, are not explicitly concentrated at one point, nor are they concealed at one point;
  • Step S301 obtaining a second lead-free piezoelectric material:
  • the present disclosure also provides a rigid piezoelectric ceramic characterized by:
  • the hard piezoelectric ceramic is obtained based on the method for obtaining a lead-free piezoelectric material.
  • the present disclosure also provides a rigid piezoelectric ceramic characterized by:
  • the rigid piezoelectric ceramic is obtained based on the lead-free piezoelectric material.
  • the present disclosure also provides a high energy converter, characterized in that:
  • the high energy converter employs the rigid piezoelectric ceramic.
  • the present disclosure also provides a soft piezoelectric ceramic characterized by:
  • the soft piezoelectric ceramic is obtained based on the method for obtaining a lead-free piezoelectric material.
  • the present disclosure also provides a soft piezoelectric ceramic characterized by:
  • the soft piezoelectric ceramic is obtained based on the lead-free piezoelectric material.
  • the present disclosure also provides a sensor characterized in that:
  • the sensor employs the soft piezoelectric ceramic.
  • the present disclosure also provides a brake characterized by:
  • the brake uses the soft piezoelectric ceramic.
  • the present disclosure also provides an electronic component characterized by:
  • the electronic component employs the rigid piezoelectric ceramic, and/or the soft piezoelectric ceramic.
  • the present disclosure also provides an electronic device, characterized in that:
  • the electronic device employs the rigid piezoelectric ceramic, and/or the soft piezoelectric ceramic.
  • the present disclosure has the following features:
  • the present disclosure can utilize the existing piezoelectric material preparation process, and the existing production line can prepare the lead-free piezoelectric material of the present disclosure with almost no improvement, even the sintering temperature is lower, and the energy saving and environmental protection are more.
  • 1A is a schematic view showing a comparison of piezoelectric properties (room temperature piezoelectric constant d 33 ) and Curie temperature (T C ) of a PZT series and other lead-free piezoelectric ceramics in the prior art according to an embodiment of the present disclosure;
  • 1B is a schematic view showing a comparison between a dielectric constant ( ⁇ ) and a Curie temperature (T C ) of a PZT series and other lead-free piezoelectric ceramics in the prior art according to an embodiment of the present disclosure;
  • 1C is a schematic diagram of thermal cycling stability of a piezoelectric constant near a T-O phase boundary in an embodiment of the present disclosure
  • 1D is a schematic diagram showing temperature stability of a piezoelectric constant in an embodiment of the present disclosure
  • 1E is a schematic view showing a comparison of an electrostrain curve of a commercial piezoelectric ceramic PZT-5H according to an embodiment of the present disclosure
  • 1F is a schematic view showing the stability of various indexes such as piezoelectric constant, dielectric constant, dielectric loss, and phase angle in a humidity environment (water immersion test) according to an embodiment of the present disclosure
  • 2A is a phase diagram of an NP-xSb/yCZ system in an embodiment of the present disclosure
  • 2B is a schematic diagram of identifying cubic, tetragonal, orthogonal, and rhombohedral phases by in-situ XRD (200) crystal plane peaks at different temperatures in an embodiment of the present disclosure
  • 2C is a graph showing a dielectric constant as a function of temperature as a component of CZ content increases in an embodiment of the present disclosure
  • 2D is a schematic diagram showing the microscopic domain structure of NP-6Sb/0CZ, NP-6Sb/5CZ and NP-6Sb/6.5CZ at room temperature in one embodiment of the present disclosure
  • 3A is a three-dimensional contour map of a piezoelectric coefficient in a composition and a temperature space in an embodiment of the present disclosure
  • 3B is a schematic diagram showing changes in piezoelectric coefficient, dielectric constant, maximum polarization, remanent polarization, and coercive field at room temperature according to changes in CZ composition in an embodiment of the present disclosure
  • 3C is a schematic diagram showing a change trend of phase transition hysteresis with changes in CZ composition in an embodiment of the present disclosure
  • 4A is a phase diagram of a BT-xBCS system in an embodiment of the present disclosure
  • 4B is a contour plot of the piezoelectric properties of the BT-xBCS system in the composition and temperature space in an embodiment of the present disclosure
  • 4C is a phase diagram of a BT-xBMN system in an embodiment of the present disclosure.
  • 4D is a contour plot of the piezoelectric properties of the BT-xBMN system in the composition and temperature space in an embodiment of the present disclosure
  • 4E is a schematic diagram of 3-dimensional free energy of a system with dominant MCP in an embodiment of the present disclosure
  • FIG. 6 is a graph showing a relative dielectric constant ⁇ r of a lead-free piezoelectric ceramic at 10 kHz as a function of temperature in an embodiment of the present disclosure
  • FIG. 7 is a graph showing a relative dielectric constant ⁇ r of a lead-free piezoelectric ceramic at 10 kHz as a function of temperature in an embodiment of the present disclosure
  • FIG. 8 is a graph showing a relative dielectric constant ⁇ r of a lead-free piezoelectric ceramic at 10 kHz as a function of temperature in an embodiment of the present disclosure
  • FIG. 9 is a graph showing a relative dielectric constant ⁇ r of a lead-free piezoelectric ceramic at 10 kHz as a function of temperature in an embodiment of the present disclosure
  • FIG. 10 is a graph showing a relative dielectric constant ⁇ r of a lead-free piezoelectric ceramic at 10 kHz as a function of temperature in an embodiment of the present disclosure
  • Figure 11 is a schematic view showing the thermal stability of a lead-free piezoelectric ceramic in an embodiment of the present disclosure.
  • a method of obtaining a lead-free piezoelectric material comprising:
  • Step S100 adjusting a T/O phase boundary of the first lead-free piezoelectric material:
  • the T/O phase boundary between the tetragonal phase T and the orthogonal phase O is adjusted to be near room temperature by doping;
  • step S200 the C/T phase boundary and the O/R phase boundary are further adjusted:
  • the C/T phase boundary between the cubic paraelectric phase C and the tetragonal phase T, and the O/R phase boundary between the orthogonal phase O and the rhombohedral phase R are adjusted to make the C/T phase boundary and The O/R phase boundary is close to the T/O phase boundary;
  • Step S300 obtaining a second lead-free piezoelectric material: in the process of the C/T phase boundary and the O/R phase boundary approaching the T/O phase boundary, obtaining a plurality of different piezoelectric constants d 33 and different Curie temperatures Tc The second lead-free piezoelectric material.
  • the C/T phase boundary and the O/R phase boundary are closer to the T/O phase boundary, and further includes the following situation:
  • the C/T phase boundary and the O/R phase boundary, as well as the T/O phase boundary, are not explicitly concentrated at one point, nor are they concealed at one point.
  • the inventors have found that four different phase structures in the system gradually approach one point (referred to as a multi-phase coexistence point, which may be referred to as MCP), which is more advantageous for achieving high voltage power. Performance, high Curie temperature for the purpose of lead-free piezoelectric materials.
  • the multi-phase coexistence point described in this embodiment refers to linear extrapolation of the C/T phase boundary and the O/R phase boundary and the T/O phase boundary, which tend to converge at one point. It should be noted that the three phase boundaries of the C/T phase boundary and the O/R phase boundary and the T/O phase boundary are directly concentrated at one point, which may be called a dominant convergence at a point, which is marked as dominant.
  • the C/T phase boundary and the O/R phase boundary are finally brought closer to the T/O phase boundary, even if the different phase structures do not approach one point (ie, The three phase boundaries, C/T phase boundary and O/R phase boundary, and T/O phase boundary, are not explicitly concentrated at one point, nor are they concealed at a point), and can still obtain high-voltage electrical performance.
  • Lead-free piezoelectric materials with high Curie temperature but different phase structures tend to be closer to the point of achieving lead-free piezoelectric materials with high-voltage electrical properties and high Curie temperatures.
  • the first lead-free piezoelectric material comprises: a lead-free piezoelectric ceramic having a crystal type of a perovskite structure. It will be apparent that this embodiment provides a class of materials for the selection of the first lead-free piezoelectric material.
  • FIG. 1 shows the excellent overall performance of the novel lead-free piezoelectric system NP-xSb/yCZ obtained according to the above embodiment.
  • (A) compares the piezoelectric properties (room temperature piezoelectric coefficient d 33 ) and Curie temperature (T C ) of the NP-xSb/yCZ series, the commercial PZT series, and other lead-free piezoelectric ceramic series.
  • BT barium titanate
  • BNT refers to potassium sodium titanate
  • KNN refers to sodium citrate.
  • the commercial PZT series has both high d 33 and high T C , and its comprehensive performance is unachievable by current lead-free piezoelectric ceramics, while the new lead-free piezoelectric material series NP-xSb/yCZ is integrated. Performance comparable to the PZT series;
  • (D) shows the temperature stability of the piezoelectric constant of the NP-xSb/yCZ series.
  • NP-6Sb/0CZ can maintain a piezoelectric constant of about 270pC/N at 20°C to 290°C.
  • the piezoelectric constant of NP-6Sb/3CZ can be stable at 20°C to 200°C ( ⁇ 400pC/N), while NP
  • the piezoelectric constant of -6Sb/5CZ can also maintain a very high piezoelectric constant (400-600pC/N) over a wide temperature range, 20 ° C to 140 ° C;
  • (E) shows the results of comparison of the electro-strain curves of the key components of the present disclosure with the commercial piezoelectric ceramic PZT-5H.
  • the piezoelectric coefficient d33* of PZT-5H reaches 830 pm/V, but the piezoelectric loss is large, up to 27%; while the NP-Sb/CZ series has higher piezoelectric coefficient and lower piezoelectric loss.
  • the piezoelectric coefficient d33* of NP-6Sb/5CZ is as high as 860pm/V, and the piezoelectric loss is only 16%; while the piezoelectric coefficient d33* of NP-6Sb/5.5CZ is as high as 980pm/V, and the piezoelectric loss is only 14%. %;
  • the present disclosure further discloses a lead-free piezoelectric ceramic system which has properties comparable to the entire PZT family in both piezoelectric properties and Curie temperature, and piezoelectric properties are also achieved.
  • the ceramic series is a perovskite structure which can be obtained by a conventional solid phase sintering method.
  • the chemical formula is:
  • NP-xSb/yCZ For convenience, hereinafter referred to as NP-xSb/yCZ; wherein NP means lead-free, and x% and y% represent the content of elemental bismuth (Sb) and chemical composition of calcium zirconate (CaZrO3), respectively.
  • composition point NP-6Sb/5CZ has a high piezoelectric constant d 33 (up to 630 pC/N) and a high Curie temperature T C (up to 155 ° C), achieving a performance range of soft PZT.
  • the production line of the PZT ceramic series can be used for mass production, which facilitates the replacement of piezoelectric ceramics at a lower cost.
  • multiphase coexistence point also referred to as “close to multiphase (coexistence) point”.
  • phase diagrams, crystal structures, dielectric properties, and microstructures of the NP-xSb/yCZ system wherein:
  • (A) is a phase diagram of the NP-xSb/yCZ system, and its marked features are that the cubic, tetragonal, orthogonal, and rhombohedral phases gradually aggregate;
  • (B) is to identify cubic, tetragonal, orthogonal and rhombohedral phases by in-situ XRD (200) crystal plane peaks at different temperatures;
  • (C) shows a curve of dielectric constant as a function of temperature as the CZ content component increases
  • (D) is the microscopic domain structure of NP-6Sb/0CZ, NP-6Sb/5CZ and NP-6Sb/6.5CZ at room temperature; all brightfield TEM images are obtained in the 001 direction of the electron beam.
  • CZ content With the increase of CZ content, the ferroelectric domain gradually changed from a large ferroelectric domain (0CZ) to a hierarchical ferroelectric domain structure (5CZ), which eventually became a typical relaxation ferroelectric nanodomain structure. (6.5CZ).
  • the typical characteristics of the phase diagram of the system are that the cubic paraelectric phase (C), the tetragonal phase (T), the orthogonal phase (O), and the rhombohedral phase (R) gradually increase with increasing x and y. Close, and the three phase boundaries also tend to a multi-phase coexistence point at the beginning. However, for this system, the trend toward the multi-phase coexistence point (also referred to as polyphase point) is due to the relaxation of ferroelectrics.
  • the phase boundary closeness described in the present disclosure further includes: a C/T phase boundary and an O/R phase boundary, and the T/O phase boundary neither converges explicitly at one point, nor does it implicitly converge at a point. .
  • the following article for further explanation.
  • NP-6Sb/5.5CZ having a hierarchical ferroelectric domain structure has the highest d 33 in the series up to 670 pC/N.
  • Figure 3 shows the trend of piezoelectric, dielectric, ferroelectric properties and phase transition hysteresis in the process of cubic, tetragonal, orthogonal and rhombohedral phase transitions approaching convergence.
  • (A) is a three-dimensional contour map of the piezoelectric coefficient in the composition and temperature space.
  • the piezoelectric coefficient gradually increases along the T/O phase boundary with the cubic, tetragonal, orthogonal and rhombohedral phase transitions, and finally reaches a maximum value of about 670 pC/N. After that, the system enters the relaxed ferroelectric region and thus loses ferroelectricity, so its piezoelectric coefficient decreases rapidly. At the same time, it can be seen that a very high piezoelectric constant is exhibited in a component-temperature region near the maximum piezoelectric constant. This suggests that the system has relatively good composition and temperature stability;
  • (B) shows the piezoelectric coefficient, dielectric constant, maximum polarization, remanent polarization and coercive field at room temperature as a function of CZ composition. It can be seen that as the cubic, tetragonal, orthogonal and rhombohedral phase transitions are closer to convergence, the piezoelectric coefficient of the system, the dielectric constant gradually increases, and reaches the highest value before entering the relaxed ferroelectric region; The intensity of the remnant remains substantially unchanged until it enters the relaxed ferroelectric region, and the coercive field gradually decreases, and rises slightly after the system enters the relaxed ferroelectric region. In summary, near 5.5 CZ, the system exhibits the highest dielectric constant, maximum polarization and remanent polarization, and the smallest coercive field, which are consistent with the highest piezoelectric constant;
  • phase transition hysteresis is a tendency of the phase transition hysteresis as a function of the CZ component. It can be seen that the phase transition lag gradually decreases as the cubic, tetragonal, orthogonal and rhombohedral phase transitions approach convergence, indicating that the energy barrier of the ferroelectric phase transition in the system is gradually weakening, so The transition is easier.
  • the present disclosure recites that the first lead-free piezoelectric material includes a lead-free piezoelectric ceramic having a crystal type of a perovskite structure, and the second lead-free piezoelectric material includes a lithium potassium niobate base.
  • the present disclosure is not in fact limited to the specific system and type of material. This will be explained in detail later.
  • the piezoelectric coefficient d 33 maintains a high d 33 value of 400 pC/N or more over a wide range of components (2 ⁇ y ⁇ 6) and in the temperature range (for NP-6Sb/5CZ, which has a Tc of 155 ° C and a d 33 of 400 pC/N or more in the range of -40 ° C to 150 ° C).
  • This important feature of the system ensures that its piezoelectric coefficient d33 can maintain a high value over a wide range of temperatures and compositions, indicating that the entire system becomes quite "soft" in the region close to the multiphase coexistence point MCP.
  • the relaxation ferroelectrics destroy the ferroelectricity of the system because its piezoelectric coefficient rapidly decreases and disappears as the system enters the relaxed ferroelectric region. Therefore, a soft PZT-like performance (d 33 >600 pC/N) can occur at the boundary closest to the MCP but not yet becoming a relaxed ferroelectric, such as NP-6Sb/5CZ.
  • Fig. 3B in addition to the piezoelectric coefficient d 33 , the dielectric and ferroelectric properties of the system increase rapidly as the C/T/O/R phase boundary gradually gathers.
  • the room temperature d 33 of the system doubles from 305 pC/N to 670 pC/N, which is even higher than the well-known PZT-5H (d33-590 pC/N).
  • y>6 the system enters the relaxation ferroelectric region, and its d33 also decreases rapidly.
  • the room temperature dielectric constant of the system is the highest value ⁇ ( ⁇ 4600), the spontaneous polarization maximum value Pm ( ⁇ 24 ⁇ C/cm2), the residual polarization maximum value Pr ( ⁇ 17 ⁇ C/cm2), and The coercive field minimum Ec ( ⁇ 5 kV/cm) appears near y ( ⁇ 5.5).
  • the present disclosure is in another embodiment
  • Another lead-free piezoelectric system was designed: BaTiO3-x(Ba0.5Ca0.5)SnO3 (abbreviated as BT-BCS).
  • (A) is a phase diagram of a BaTiO3-x(Ba0.5Ca0.5)SnO3(BT-xBCS) system with dominant MCP.
  • (B) is a contour plot of the piezoelectric properties of the BT-xBCS system in the composition and temperature space. It can be seen that as the four phases approach, the piezoelectric constant gradually increases along the T/O phase boundary, and an unprecedented ultra-high d 33 is obtained near the multi-phase coexistence point, reaching 1120 pC/N. This is the highest value of all piezoelectric ceramics reported so far;
  • (C) is a phase diagram of a BaTiO 3 -xBa(Mg 1/3 Nb 2/3 )O 3 (BT-xBMN) system with recessive MCP.
  • BT-xBMN BaTiO 3 -xBa(Mg 1/3 Nb 2/3 )O 3
  • the cubic, tetragonal, orthogonal, and rhombohedral phase transitions are still merging closer together, but before converging to a multiphase coexistence point, the system has entered the relaxed ferroelectric region. Therefore, the type of system represented by the phase diagram is actually no dominant MCP, but only has a recessive MCP obtained by linearly extending the phase boundary;
  • (D) is a contour plot of the piezoelectric properties of the BT-xBMN system in the composition and temperature space. Similar to the phase diagram with dominant MCP, as the four phases approach, the piezoelectric constant of the system increases gradually along the T/O phase boundary. However, unlike the system with dominant MCP, its piezoelectric constant decreases rapidly as the system enters the relaxation ferroelectric region, so its maximum value of d33 appears near the boundary of the ferroelectric/relaxation ferroelectric, instead of At the recessive MCP;
  • (E) shows a 3-dimensional free energy diagram of a system with dominant MCP.
  • (i) shows the isotropic Landau free energy at the MCP.
  • (ii) shows that the free energy near the MCP exhibits weak anisotropy.
  • (iii) shows that the free energy away from the MCP exhibits strong anisotropy.
  • FT, FO, and FR represent the free energies of the tetragonal T, the orthogonal O, and the rhombohedral R phase, respectively.
  • R1 and R2 represent two different rhombohedral domains, respectively.
  • the system has an MCP and the MCP is not blocked by relaxation ferroelectrics (Fig. 4A).
  • the BT-BCS system with MCP shows very interesting results: as the system continues to approach the MCP, its d 33 has been increasing, and an unprecedented d 33 value of up to 1120 pC/N has appeared in the vicinity of the MCP.
  • the inventors need to point out that even if the doping does not tend to multiphase coexistence point MCP, but only: adjust the C/T between the cubic paraelectric phase C and the tetragonal phase T.
  • a plurality of second lead-free piezoelectric materials having different piezoelectric constants d 33 and different Curie temperatures Tc can still be obtained.
  • the present disclosure designs another lead-free piezoelectric system: BaTiO 3 -xBa (Mg 1/3 Nb) 2/3 ) O 3 (abbreviated as BT-BMN) (Fig. 4C).
  • BT-BMN lead-free piezoelectric system
  • the MCP of this system is blocked by relaxation ferroelectrics.
  • the system showed similar results to NP-xSb/yCZ, ie its piezoelectricity increased continuously as it approached the MCP and rapidly decreased after entering the relaxed ferroelectric region.
  • d 33 ( ⁇ 500 pC/N) occurs at the boundary component BT-6MN of the ferroelectric/relaxed ferroelectric. This is completely consistent with the case of NP-xSb/yCZ in Fig. 3A. It is clear that the "close to MCP" method is extremely effective for improving piezoelectricity regardless of whether MCP is blocked by relaxation ferroelectrics. It can be seen that even in the case where the MCP is blocked by the relaxation ferroelectric, such as NP-xSb/yCZ, the method is still effective, and thus this is an important design for obtaining a new high-performance piezoelectric material. method. The physical mechanism behind the material design method is illustrated in detail below by Figure 4E; it can be found that the physical mechanism is universal and independent of the particular material system.
  • the phase change energy barrier and domain inversion energy barrier gradually increase, but still remain at a lower level, and its freedom Tiny undulations appear on the surface, as shown in Figure 4E(ii). Due to the carrying effect of MCP, that is, the large piezoelectricity does not only appear at the MCP, but also in the wide range of components and temperature range near the MCP, the corresponding d 33 value of the above components remains at a high level of 500-600 pC/N. Level.
  • the domain boundary energy is also small, which explains why the observed domain is the hierarchical structure shown in Fig. 2D (5CZ) (26).
  • the phase boundary energy barrier and the domain inversion energy barrier become very large, and the free energy surface has a large direct direction.
  • the opposite sex, as shown in Figure 4E(iii) has its corresponding d 33 down to 300-400 pC/N. Due to the high anisotropy of the free energy, the corresponding domain boundary energy is also high, resulting in the appearance of larger domains as shown in Fig.
  • the present disclosure successfully obtained a novel lead-free piezoelectric system of NP-xSb/yCZ.
  • the system covers the d 33 -T C performance range of the entire PZT family, including soft PZT.
  • the second lead-free piezoelectric material comprises:
  • Lithium potassium silicate ternary system lead-free piezoelectric ceramics Lithium potassium silicate ternary system lead-free piezoelectric ceramics. It will be readily understood that this set of embodiments is intended to define a particular class of lead-free piezoelectric materials to be obtained.
  • the temperature is selected from about 20 ° C to about 30 ° C in the vicinity of the room temperature. Or more broadly, in other embodiments, the temperature is selected from about 10 ° C to about 40 ° C in the vicinity of room temperature. Obviously, whether it is about 20 ° C - 30 ° C or about 10 ° C - 40 ° C, this is to facilitate the production of lead-free piezoelectric materials in the corresponding temperature range, which involves the working temperature or service temperature of the material. See below for details.
  • the above NP-xSb/yCZ new lead-free piezoelectric system and the BT-BCS and BT-BMN lead-free piezoelectric systems are only three cases obtained by using the material design method described in the present disclosure.
  • the description of the physical mechanism behind the above methods is readily understood, and the method of the present disclosure is universal in lead-free piezoelectric systems such as KNN-based, BT-based, etc., and does not depend on a particular lead-free piezoelectric material system. Therefore, the material design method of the present disclosure is independent of the specific lead-free piezoelectric material system and should not be limited by the specific piezoelectric material system described above.
  • the T/O phase boundary between the tetragonal phase T and the orthogonal phase O is adjusted to a certain temperature by doping, and the certain temperature may be Covering a wide range of -20 ° C to 40 ° C; in order to introduce new concepts as little as possible, the present disclosure sometimes also classifies -20 ° C - 40 ° C as near room temperature, that is, expands the range of room temperature;
  • step S100 for the first lead-free piezoelectric material, the T/O phase boundary between the tetragonal phase T and the orthogonal phase O is adjusted to a certain temperature vicinity by doping, A certain temperature can cover above 40 ° C, or below -20 ° C, as long as the first lead-free piezoelectric material can meet the service temperature (also called working temperature) above 40 ° C or below -20 ° C;
  • the embodiments disclosed in the present disclosure are not only universal, but also independent of a particular lead-free piezoelectric material system, and are not limited by the certain temperature.
  • the reason why the certain temperature is selected at room temperature, or -20 ° C - 40 ° C or above, is because the T/O phase boundary of the different first lead-free piezoelectric materials may have different corresponding
  • the temperature range is to enable the lead-free piezoelectric material ultimately obtained by the embodiments of the present disclosure to meet the user's demand for its service temperature.
  • the present disclosure also discloses a method of obtaining a lead-free piezoelectric material, the method comprising:
  • Step S101 adjusting a T/O phase boundary of the first lead-free piezoelectric material:
  • the T/O phase boundary between the tetragonal phase T and the orthogonal phase O is adjusted to be near the service temperature of the material by doping;
  • Step S201 further adjusting the C/T phase boundary and the O/R phase boundary:
  • the C/T phase boundary between the cubic paraelectric phase C and the tetragonal phase T, and the O/R phase boundary between the orthogonal phase O and the rhombohedral phase R are adjusted to make the C/T phase boundary and
  • the O/R phase boundary is close to the T/O phase boundary, and the phase boundary is close to:
  • the C/T phase boundary and the O/R phase boundary, and the T/O phase boundary tend to converge at one point, but cannot converge at that point;
  • the C/T phase boundary and the O/R phase boundary, as well as the T/O phase boundary, are not explicitly concentrated at one point, nor are they concealed at one point;
  • Step S301 obtaining a second lead-free piezoelectric material:
  • the vicinity of the service temperature includes the following ones: -20 ° C to 40 ° C, 40 ° C or higher, -20 ° C or lower.
  • the second lead-free piezoelectric material comprises: a lithium potassium niobate-based ternary lead-free piezoelectric ceramic, or a barium titanate-based ternary lead-free piezoelectric ceramic.
  • composition of the second lead-free piezoelectric material is:
  • the lead-free piezoelectric ceramic obtaining method of the present disclosure and the lithium potassium silicate ternary lead-free piezoelectric ceramic and the barium titanate ternary system obtained by the method are lead-free.
  • the piezoelectric ceramics are further described, and it is to be noted that the examples are only used to further illustrate the present disclosure, but are not to be construed as limiting the scope of the disclosure, and those skilled in the art can The principle is to make some non-essential improvements and adjustments in light of the above disclosure.
  • Analytically pure sodium carbonate, potassium carbonate, lithium carbonate, antimony pentoxide, antimony trioxide, antimony oxide and zirconium oxide are used as raw materials, and each raw material is accurately weighed by weight percentage;
  • the prepared raw material is used as a ball milling medium with anhydrous ethanol, and is ball milled for 8-12 hours by a planetary ball mill, and then dried to obtain a mixed dry powder, and the obtained mixed dry powder is preheated at 850-1000 ° C for 3-6 hours;
  • anhydrous ethanol is used as a ball milling medium, and ball milling is performed again by a planetary ball mill for 6-10 hours, followed by drying to obtain a dry powder;
  • the granulated powder is pressed into a small round piece of a diameter of 8 mm and a thickness of 1 to 3 mm by a die;
  • the small disc after debinding is sintered at 1060-1160 ° C for 3-10 hours to obtain a ceramic sheet
  • the silver-plated ceramic sheet is polarized for 30-60 minutes at room temperature in an electric field of 3-4 kV/mm in a silicone oil;
  • the relative dielectric constant ⁇ r of 0.99 (K0.48Na0.52)0.96Li0.04Nb1-xSbxO3-0.01Bi0.5K0.5ZrO3 lead-free piezoelectric ceramics at 10 kHz is shown in Fig. 5. It can be seen that after the incorporation of Sb, the Curie temperature Tc of the system gradually decreases, and the T/O phase transition temperature decreases slightly; therefore, the C/T phase boundary and the T/O phase boundary are close to each other.
  • the value is:
  • composition of the present embodiment is one to ten sintering at different temperatures, polarization in different holding time and different temperature silicone oil, and electrical properties of lead-free piezoelectric ceramics obtained by IEEE standard test, as shown in Table 4.
  • the content of the barium titanate-based ternary lead-free piezoelectric ceramic represented by the general formula (1-xy)BaTiO 3 -x(Ba 0.5 Ca 0.5 )SnO 3 -yBa(Mg 1/3 Nb 2/3 )O 3 Ingredients
  • the formula 2 is: 0.97BaTiO 3 -0.03 (Ba 0.5 Ca 0.5 )SnO 3 ;
  • the relative dielectric constant ⁇ r of the (Ba 0.5 Ca 0.5 )SnO 3 lead-free piezoelectric ceramic at 10 kHz is shown in Fig. 9 . It can be seen that when BaTiO3 is doped with (Ba0.5Ca0.5)SnO3, the dielectric constant at Tc increases with the content of (Ba0.5Ca0.5)SnO3x, and is in four phases. The point component reaches a maximum value; after that, the dielectric constant at Tc gradually decreases as x further increases. This trend is also consistent with the trend of the piezoelectric constant as a function of composition in Figure 4B.
  • composition of the present embodiment is one to eight sintered at different temperatures, polarized in different time and different temperatures of silicone oil, and the electrical properties of lead-free piezoelectric ceramics obtained by IEEE standard test, as shown in Table 7.
  • the content of the barium titanate-based ternary lead-free piezoelectric ceramic represented by the general formula (1-xy)BaTiO 3 -x(Ba 0.5 Ca 0.5 )SnO 3 -yBa(Mg 1/3 Nb 2/3 )O 3 Ingredients
  • the formula 1 is: 0.98BaTiO 3 -0.02Ba(Mg 1/3 Nb 2/3 )O 3 ;
  • the formula 2 is: 0.97BaTiO 3 -0.03Ba(Mg 1/3 Nb 2/3 )O 3 ;
  • the formula 4 is: 0.95BaTiO 3 -0.05Ba(Mg 1/3 Nb 2/3 )O 3 ;
  • compositions of the present invention are sintered at different temperatures, the polarization of the different holding time and the temperature of the silicone oil, and the electrical properties of the lead-free piezoelectric ceramics obtained by the IEEE standard test, as shown in Table 8.
  • the piezoelectric constant is the highest piezoelectric constant ever available in lead-free piezoelectric ceramics, and is also a lead-free piezoelectric ceramic having properties comparable to those of the PZT series.
  • the ceramic series d 33 can reach the range of 190-670pC /N, its Tc range of 410 ° C -130 ° C, can meet the application of piezoelectric ceramics under various complex conditions (such as high temperature, high frequency, etc.), so it has a very high practical value.
  • the above embodiment can also obtain another barium titanate-based ternary lead-free piezoelectric ceramic, and under the temperature changing condition, the series of ceramics has the highest piezoelectric constant so far:
  • the ceramic can be used in some applications where the piezoelectric performance is extremely high but there is little requirement for the Curie temperature.
  • composition of the second lead-free piezoelectric material is:
  • the piezoelectric constant d 33 ranges from 190 pC/N to 670 pC/N.
  • the Curie temperature Tc ranges from 130 ° C to 410 ° C.
  • the Curie temperature Tc ranges from 290 ° C to 410 ° C
  • the temperature difference between the C/T phase boundary and the T/O phase boundary is between 270 ° C and 350 ° C
  • the range of d 33 is 190 pC. /N-330pC/N.
  • the range of Tc is between 200 ° C and 290 ° C
  • the temperature difference between the C/T phase boundary and the T/O phase boundary is between 180 ° C and 270 ° C
  • the range of d 33 is 310 pC / N - 460pC/N.
  • composition of the second lead-free piezoelectric material is one of the following:
  • the range of Tc is between 130 ° C and 200 ° C
  • the temperature difference between the C/T phase boundary and the T/O phase boundary is between 110 ° C and 180 ° C
  • the range of d 33 is 460 pC / N - 670pC/N.
  • composition of the second lead-free piezoelectric material is one of the following:
  • the second lead-free piezoelectric material comprises: a barium titanate-based ternary lead-free piezoelectric ceramic.
  • composition formula of the second lead-free piezoelectric material is:
  • the piezoelectric constant d 33 ranges from 300 pC/N to 1120 pC/N.
  • the Curie temperature Tc ranges from 0 °C to 100 °C.
  • the components of the second lead-free piezoelectric material are:
  • the present disclosure also correspondingly discloses a lead-free piezoelectric material, wherein:
  • lead-free piezoelectric materials of different properties can be obtained by phase-to-bound.
  • the close-up includes the following situations:
  • the C/T phase boundary and the O/R phase boundary, as well as the T/O phase boundary, tend to converge at one point.
  • the lead-free piezoelectric material comprises:
  • a lead-free piezoelectric ceramic having a crystal type of perovskite structure having a crystal type of perovskite structure.
  • the lead-free piezoelectric material comprises:
  • Lithium potassium silicate ternary system lead-free piezoelectric ceramics Lithium potassium silicate ternary system lead-free piezoelectric ceramics.
  • the temperature is around 20 ° C to 30 ° C. More preferably, in a wider temperature range, the temperature around 10 ° C to 40 ° C can be selected. It can be understood that this is to obtain a lead-free piezoelectric material for application near room temperature.
  • the component of the lead-free piezoelectric material has the following formula:
  • the piezoelectric constant d 33 ranges from 190 pC/N to 670 pC/N.
  • the Curie temperature Tc ranges from 130 °C to 410 °C.
  • the Curie temperature Tc ranges from 290 ° C to 410 ° C
  • the temperature difference between the C/T phase boundary and the T/O phase boundary is between 270 ° C and 350 ° C, and its d 33
  • the range is 190pC/N-330pC/N.
  • the component of the lead-free piezoelectric material is one of the following:
  • the temperature difference between the C/T phase boundary and the T/O phase boundary is between 180 ° C and 270 ° C
  • the d 33 ranges from 310 pC. /N-460pC/N.
  • the component of the lead-free piezoelectric material is one of the following:
  • the temperature difference between the C/T phase boundary and the T/O phase boundary is between 110 ° C and 180 ° C
  • the d 33 ranges from 460 pC. /N-670pC/N.
  • the component of the lead-free piezoelectric material is one of the following:
  • the lead-free piezoelectric material comprises: a barium titanate-based ternary lead-free piezoelectric ceramic.
  • the component of the lead-free piezoelectric material has the following formula:
  • the piezoelectric constant d 33 ranges from 300 pC/N to 1120 pC/N.
  • the Curie temperature Tc ranges from 0 °C to 100 °C.
  • the present disclosure also discloses, in another embodiment, a process for preparing a lead-free piezoelectric material for preparing the lead-free piezoelectric material described above, the method comprising:
  • Step T001 selecting raw materials according to the corresponding chemical formula and formulating the ingredients
  • Step T002 preparing the lead-free piezoelectric material by using a conventional solid phase ceramic sintering preparation process.
  • the raw material is selected from the group consisting of sodium carbonate, potassium carbonate, lithium carbonate, antimony pentoxide, antimony trioxide, antimony oxide, zirconium oxide, magnesium oxide, tin oxide, calcium carbonate, barium carbonate and carbonic acid. barium. More preferably, the feedstock is of analytical grade.
  • a rigid piezoelectric ceramic is disclosed, which is obtained based on the obtaining method of the present disclosure.
  • a rigid piezoelectric ceramic is disclosed that is obtained based on the lead-free piezoelectric material of the present disclosure.
  • a high energy converter that employs the rigid piezoelectric ceramics described in the present disclosure.
  • a soft piezoelectric ceramic is disclosed, which is obtained based on the obtaining method of the present disclosure.
  • a soft piezoelectric ceramic is disclosed, which is obtained based on the lead-free piezoelectric material of the present disclosure.
  • a sensor that employs the flexible piezoelectric ceramic of the present disclosure
  • a brake is disclosed that employs the flexible piezoelectric ceramic of the present disclosure.
  • an electronic component that employs the rigid piezoelectric ceramic and/or employs the soft piezoelectric ceramic.
  • an electronic device that employs the rigid piezoelectric ceramic and/or employs the soft piezoelectric ceramic.

Abstract

一种获得无铅压电材料的方法及相应的无铅压电材料,方法包括:通过掺杂将四方相T与正交相O之间的T/O相界调整至室温附近进而调整第一无铅压电材料的T/O相界:进一步通过掺杂,调整立方顺电相C与四方相T之间的C/T相界、以及正交相O与菱方相R之间的O/R相界,以使得C/T相界和O/R相界向T/O相界靠拢以调整C/T相界和O/R相界;获得第二无铅压电材料,在C/T相界和O/R相界向T/O相界靠拢的过程中,获得多种不同压电常数d 33、不同居里温度T c的第二无铅压电材料。

Description

一种获得无铅压电材料的方法、相应无铅压电材料
相关申请交叉引用
本申请要求2018年4月21日提交至中华人民共和国国家知识产权局(CNIPA)的申请号为201810364324.1,名称为“一种获得无铅压电材料的方法、相应无铅压电材料”的中国在先申请的权益,通过引用将上述申请的全部内容并入本申请。
技术领域
本公开涉及压电材料领域,特别是一种获得无铅压电材料的方法、相应无铅压电材料。
背景技术
压电材料因其具有能实现机械能与电能之间互相转化的功能,而成为传感器、控制器、制动器以及换能器等各种电子元器件中的核心材料。因此,这类材料在信息技术、光电子技术、精密控制技术、遥感成像技术等领域具有举足轻重的地位和作用。
自上世纪60年代以来,锆钛酸铅(PZT)陶瓷材料因其优异的压电性能,一直主导着压电材料的商业应用,作为一种关键智能材料支撑起了众多的重要智能技术。但是,此类材料含铅量高,在被广泛应用的同时,也带来了严重的环境污染和生态危害,并威胁着人类的健康。随着人类对环境保护的日益重视,世界各国目前已经广泛立法禁止或限制含铅材料在电子产业中的应用。
因此,锆钛酸铅(PZT)在世界范围内面临被立法禁止使用的窘境。然而,一个可完全替代锆钛酸铅(PZT)的无铅压电材料体系却仍然没有开发出来。这一状况给压电技术领域蒙上了日益加深的阴影。
发明内容
针对上述部分问题,本公开提供了一种获得无铅压电材料的方法,所述方法包括:
步骤S100,调整第一无铅压电材料的T/O相界:
针对第一无铅压电材料,通过掺杂将其四方相T与正交相O之间的T/O相界调整至室温附近;
步骤S200,进一步调整C/T相界和O/R相界:
进一步通过掺杂,调整立方顺电相C与四方相T之间的C/T相界、以及正交相O与菱方相R之间的O/R相界,以使得C/T相界和O/R相界向T/O相界靠拢;
步骤S300,获得第二无铅压电材料:在C/T相界和O/R相界向T/O相界靠拢的过程中,获得多种不同压电常数d 33、不同居里温度Tc的第二无铅压电材料。
此外,本公开还提供了一种无铅压电材料,其特征在于:
所述无铅压电材料的四方相T与正交相O之间的T/O相界位于室温附近;
且所述无铅压电材料的立方顺电相C与四方相T之间的C/T相界、以及正交相O与菱方相R之间的O/R相界,均处于向T/O相界靠拢的状态;其中:
相界靠拢的不同程度,与所述无铅压电材料的不同压电常数d 33、不同居里温度T c关联。
此外,本公开还提供了一种无铅压电材料的制备工艺,其用于制备所述的无铅压电材料,所述方法包括:
步骤T001:按照相应的化学通式选择原料并进行配料;
步骤T002:采用传统固相陶瓷烧结制备工艺制备所述无铅压电材料。
此外,本公开还提供了一种获得无铅压电材料的方法,所述方法包括:
步骤S101,调整第一无铅压电材料的T/O相界:
针对第一无铅压电材料,通过掺杂将其四方相T与正交相O之间的T/O相界调整至材料服役温度附近;
步骤S201,进一步调整C/T相界和O/R相界:
进一步通过掺杂,调整立方顺电相C与四方相T之间的C/T相界、以及正交相O与菱方相R之间的O/R相界,以使得C/T相界和O/R相界向T/O相界靠拢,所述相界靠拢包括:
C/T相界和O/R相界、以及T/O相界趋于汇聚于一点,但无法汇聚于该点;或者
C/T相界和O/R相界、以及T/O相界既不显性地汇聚于一点,也不隐性地汇聚于一点;
步骤S301,获得第二无铅压电材料:
在C/T相界和O/R相界向T/O相界靠拢的过程中,获得第二无铅压电材料。
此外,本公开还提供了一种硬性压电陶瓷,其特征在于:
所述硬性压电陶瓷,基于所述获得无铅压电材料的方法获得。
此外,本公开还提供了一种硬性压电陶瓷,其特征在于:
所述硬性压电陶瓷,基于所述无铅压电材料获得。
此外,本公开还提供了一种高能转换器,其特征在于:
所述高能转换器采用所述的硬性压电陶瓷。
此外,本公开还提供了一种软性压电陶瓷,其特征在于:
所述软性压电陶瓷,基于所述获得无铅压电材料的方法获得。
此外,本公开还提供了一种软性压电陶瓷,其特征在于:
所述软性压电陶瓷,基于所述无铅压电材料获得。
此外,本公开还提供了一种传感器,其特征在于:
所述传感器采用所述软性压电陶瓷。
此外,本公开还提供了一种制动器,其特征在于:
所述制动器采用所述软性压电陶瓷。
此外,本公开还提供了一种电子元件,其特征在于:
所述电子元件采用所述硬性压电陶瓷,和/或所述软性压电陶瓷。
此外,本公开还提供了一种电子设备,其特征在于:
所述电子设备采用所述硬性压电陶瓷,和/或所述软性压电陶瓷。
本公开具有如下特点:
首先,依据本公开所述获得无铅压电材料的方法,能够获得相当数量的、不同性能的、高压电常数的无铅压电材料,甚至在各种应用场景下都有望完全取代锆钛酸铅(PZT);
其次,本公开可以利用现有的压电材料的制备工艺,现有的生产线几乎不用改进就可以制备本公开所述的无铅压电材料,甚至烧结的温度更低,更加节能环保。
附图说明
图1A为本公开一个实施例与现有技术中PZT系列以及其他无铅压电陶瓷系列的压电性能(室温压电常数d 33)和居里温度(T C)的对比示意图;
图1B为本公开一个实施例与现有技术中PZT系列以及其他无铅压电陶瓷系列的介电常数(ε)和居里温度(T C)的对比示意图;
图1C为本公开一个实施例中压电常数在T-O相界附近的热循环稳定性示意图;
图1D为本公开一个实施例中压电常数的温度稳定性示意图;
图1E为本公开一个实施例与商用压电陶瓷PZT-5H的电致应变曲线的对比示意图;
图1F为本公开一个实施例中压电常数、介电常数、介电损耗以及相角等各项指标在湿度环境(浸水实验)下稳定性的示意图;
图2A为本公开一个实施例中NP-xSb/yCZ体系的相图;
图2B为本公开一个实施例中通过不同温度的原位XRD(200)晶面峰鉴别出立方、四方、正交和菱方相的示意图;
图2C为本公开一个实施例中随着CZ含量成分的增多,介电常数随温度变化的曲线;
图2D为本公开一个实施例中,室温下,NP-6Sb/0CZ、NP-6Sb/5CZ和NP-6Sb/6.5CZ的微观畴结构示意图;
图3A为本公开一个实施例中,压电系数在成分和温度空间的三维等高线图;
图3B为本公开一个实施例中,随CZ成分的变化,室温下的压电系数,介电常数,最大极化强度,剩余极化强度和矫顽场的变化趋势示意图;
图3C为本公开一个实施例中,随CZ成分的变化,相变滞后的变化趋势示意图;
图4A为本公开一个实施例中BT-xBCS体系的相图;
图4B为本公开一个实施例中BT-xBCS体系的压电性能在成分和温度空间的等高线图;
图4C为本公开一个实施例中BT-xBMN体系的相图;
图4D为本公开一个实施例中BT-xBMN体系的压电性能在成分和温度空间的等高线图;
图4E为本公开一个实施例中具有显性MCP的体系的3维自由能示意图;
图5为本公开一个实施例中无铅压电陶瓷在10kHz下的相对介电常数ε r随温度的变化曲线;
图6为本公开一个实施例中无铅压电陶瓷在10kHz下的相对介电常数ε r随温度的变化曲线;
图7为本公开一个实施例中无铅压电陶瓷在10kHz下的相对介电常数ε r随温度的变化曲线;
图8为本公开一个实施例中无铅压电陶瓷在10kHz下的相对介电常数ε r随温度的变化曲线;
图9为本公开一个实施例中无铅压电陶瓷在10kHz下的相对介电常数ε r随温度的变化曲线;
图10为本公开一个实施例中无铅压电陶瓷在10kHz下的相对介电常数ε r随温度的变化曲线;
图11为本公开一个实施例中无铅压电陶瓷的热稳定性示意图。
具体实施方式
以下结合各附图,进一步详细描述各实施例。
在一个实施例中,公开了一种获得无铅压电材料的方法,所述方法包括:
步骤S100,调整第一无铅压电材料的T/O相界:
针对第一无铅压电材料,通过掺杂将其四方相T与正交相O之间的T/O相界调整至室温附近;
步骤S200,进一步调整C/T相界和O/R相界:
进一步通过掺杂,调整立方顺电相C与四方相T之间的C/T相界、以及正交相O与菱方相R之间的O/R相界,以使得C/T相界和O/R相界向T/O相界靠拢;
步骤S300,获得第二无铅压电材料:在C/T相界和O/R相界向T/O相界靠拢的过程中,获得多种不同压电常数d 33、不同居里温度Tc的第二无铅压电材料。
对于该实施例而言,其体现了本公开的原理。发明人在研究中发现,对于普遍存在四个不同相的无铅压电材料体系,其存在:立方顺电相(C)、四方铁电相(T)、正交铁电相(O)和菱方铁电相(R)的事实。本公开通过掺杂调整各个相结构的稳定性,当体系中的四种不同的相结构逐渐靠拢时,极易获得高的压电常数、高的居里温度的无铅压电材料。由于压电常数和居里温度两个指标呈现相反趋势的特性,最终获得的某些无铅压电材料有偏向于高的压电常数的,也有偏向于高的居里温度的。因此,本实施例在C/T相界和O/R相界向T/O相界靠拢的过程中,获得多种不同压电常数d 33、不同居里温度Tc的第二无铅压电材料,从而满足各种应用场景的需要。容易理解,本实施例的第二无铅压电材料是基于第一无铅压电材料掺杂而来。
在另一个实施例中,更优的,所述步骤S200中,所述C/T相界和O/R相界向T/O相界靠拢进一步包括如下情形:
C/T相界和O/R相界、以及T/O相界趋于汇聚于一点;或者
C/T相界和O/R相界、以及T/O相界既不显性地汇聚于一点,也不隐性地汇聚于一点。
对于该实施例而言,发明人发现:体系中的四种不同的相结构逐渐趋近于一点(称其为多相共存点,不妨记为MCP),此时更加有利于实现获得高压电性能、高居里温度的无铅压电材料的目的。本实施例所述的多相共存点,是指将C/T相界和O/R相界、以及T/O相界这三条相界线性外推后,其趋于汇聚于一点。需要说明的是:C/T相界和O/R相界、以及T/O相界这三条相界直接汇聚于一点, 不妨称之为显性地汇聚于一点,该点记为显性的MCP;而C/T相界和O/R相界、以及T/O相界这三条相界线性外推后,其趋于汇聚于一点,不妨称之为隐性地汇聚于一点,该点记为隐性的MCP。
此外,只要遵循上述第一个实施例的方法,最终使得所述C/T相界和O/R相界向T/O相界靠拢,即使不同的相结构并不趋近于一点(即,C/T相界和O/R相界、以及T/O相界这三条相界,既不显性地汇聚于一点,也不隐性地汇聚于一点),也依然能够获得高压电性能、高居里温度的无铅压电材料,只是,不同的相结构趋近于一点更加有利于实现获得高压电性能、高居里温度的无铅压电材料的目的。详见后文通过能垒和相关图文对此作进一步说明说明。
在另一个实施例中,所述第一无铅压电材料包括:晶体类型为钙钛矿结构的无铅压电陶瓷。显然,该实施例对第一无铅压电材料的选择给出了一类材料。
对前文多个实施例而言,其与现有技术的对比非常鲜明:尽管对无铅压电材料已经进行了广泛的研究并取得了一些可喜的进展,但一种可以在压电性能与居里温度上同时媲美锆钛酸铅PZT的无铅压电材料系列却仍然没有被找到,参见图1。更关键的是,没有任何无铅材料可以媲美被誉为“王冠上的明珠”的软性PZT(d 33高达600pC/N,同时T C在130~190℃之间)。由于没有可替代的无铅压电陶瓷,目前整个压电材料产业都蒙上了一层日益加深的阴影。
具体的,就图1而言,图1显示了根据上述实施例所获得的新型无铅压电体系NP-xSb/yCZ的优异的综合性能。
其中,对于图1中的1A至1F:
(A)中对比了NP-xSb/yCZ系列、商用PZT系列以及其他无铅压电陶瓷系列的压电性能(室温压电系数d 33)和居里温度(T C)。其中,BT代指钛酸钡,BNT代指钛酸钠钾,KNN代指铌酸钠钾。如(A)所示,商用PZT系列同时具有高d 33和高T C,其综合性能是目前无铅压电陶瓷所无法达到的,而新型无铅压电材料系列NP-xSb/yCZ是综合性能可与PZT系列媲美的体系;
(B)中,就NP-xSb/yCZ系列、PZT系列及其他无铅压电体系的室温介电常数与居里温度TC的关系进行了对比。与(A)类似,在(B)中,NP-xSb/yCZ系列仍然显示出了与PZT系列媲美的性能;
(C)以NP-6Sb/5.5CZ为例,显示了NP-xSb/yCZ系列的压电常数在T-O相 界附近的热循环稳定性。该材料的T-O相变温度为10℃。当材料在-50℃到80℃之间循环1000圈后,材料仍然保存了极高的压电常数,达550pC/N,因此显示出了极好的热循环稳定性;
(D)显示了NP-xSb/yCZ系列的压电常数的温度稳定性。NP-6Sb/0CZ能在20℃到290℃始终保持约270pC/N的压电常数,NP-6Sb/3CZ的压电常数能在20℃到200℃保持稳定(~400pC/N),而NP-6Sb/5CZ的压电常数同样能在一个宽的温度范围,20℃到140℃,保持极高的压电常数(400-600pC/N);
(E)展示了本公开中关键成分与商用压电陶瓷PZT-5H的电致应变曲线的对比结果。PZT-5H的压电系数d33*达到830pm/V,但压电损耗较大,达27%;而NP-Sb/CZ系列具有更高的压电系数和更低的压电损耗。其中,NP-6Sb/5CZ的压电系数d33*高达860pm/V,而压电损耗只有16%;而NP-6Sb/5.5CZ的压电系数d33*高达980pm/V,而压电损耗只有14%;
(F)以NP-6Sb/5CZ和NP-6Sb/5.5CZ为例,展示了NP-xSb/yCZ系列的各项性能,包括压电常数、介电常数、介电损耗和相角等,在湿度环境下的优秀的稳定性。在长达一个月的浸水实验中,各项性能均保持稳定。
在另外的实施例中,本公开中进一步揭示了一个无铅压电陶瓷体系,该体系在压电性能与居里温度两方面都具有与整个PZT家族相媲美的性能,而且压电性能也达到了软性PZT的高度。该陶瓷系列是一种钙钛矿结构,可通过传统的固相烧结法获得,化学式为:
(99-y)[(K 0.48Na 0.52) 0.96Li 0.04Nb 1-x/100Sb x/100O 3]-1[(Bi 0.5K 0.5)ZrO 3]-yCaZrO 3
为方便起见,下文中缩写为NP-xSb/yCZ;其中NP表示无铅,x%和y%分别表示了元素锑(Sb)和化学组成锆酸钙(CaZrO3)的含量。
表1 NP-xSb/yCZ系列的压电系数(d 33)、介电常数(ε)、机电耦合系数(k p)、介电损耗(tanδ)和居里温度(T C)值跟商用PZT的比较。其中,部分数据的参考文献:T.R.Shrout,S.J.Zhang,Lead-free piezoelectric ceramics:Alternatives for PZT?.J.Electroceram.19,111-124(2007)
Figure PCTCN2019083695-appb-000001
Figure PCTCN2019083695-appb-000002
加*数据来源于 http://www.sparklerceramics.com/piezoelectricproperties.html,加**数据来源于 http://www.ultrasonic-resonators.org/misc/references/articles/Berlincourt_′Properties_of_Morgan_Ele ctro_Ceramic_Ceramics′_(Morgan_Technical_Publication_TP-226).pdf。
可见,该体系在d 33-T C性能图中能近乎完全覆盖PZT家族的整个性能区间。而且,成分点NP-6Sb/5CZ兼具高的压电常数d 33(达630pC/N)和高的居里温度T C(达155℃),达到了软性PZT的性能范围。
在图1B中,NP-xSb/yCZ的室温介电常数与居里温度之间的依赖关系也可以与PZT媲美,且远高于其他的无铅压电体系,例如钛酸钡和钛酸铋钠等。因此,新体系NP-xSb/yCZ在压电性能、铁电性能两方面都与PZT非常相似,显示出了替代PZT的巨大潜力。
同时,该体系还表现出了良好的热循环稳定性(图1C),温度稳定性(图1D)以及湿度不敏感性(见图1F)。从表1可以发现,该NP-xSb/yCZ无铅压电陶瓷体系的各项性能能够与不同的商用PZT(从软性PZT到硬性PZT)媲美,因此为整个PZT家族提供了有效的替代材料。而且,该系列陶瓷的制备工艺条件与PZT相似(见表2):
表2
NP系列和PZT系列样品制备条件的相似性,
参考文献:G.H.Haertling,Ferroelectric ceramics:History and technology.J.Am.Ceram.Soc.82,797-818(1999)
Figure PCTCN2019083695-appb-000003
Figure PCTCN2019083695-appb-000004
故,可使用PZT陶瓷系列的生产线来实现大规模生产,从而有利于以较低的成本实现压电陶瓷的更新换代。
综上,所有上述优良性质保证了本公开所述的NP-xSb/yCZ是一个非常可行的替代整个PZT家族的材料体系。
综合来看,该体系正是优选上述提及的“多相共存点”(也称“趋近多相(共存)点”)的实施例而设计获得的。
参见图2A至2D,其示出了NP-xSb/yCZ体系的相图、晶体结构、介电性能和微观结构,其中:
(A)为NP-xSb/yCZ体系的相图,其显明的特征是立方、四方、正交和菱方相逐渐汇聚;
(B)是通过不同温度的原位XRD(200)晶面峰鉴别出立方、四方、正交和菱方相;
(C)显示出随着CZ含量成分的增多,介电常数随温度变化的曲线;
(D)为室温下,NP-6Sb/0CZ、NP-6Sb/5CZ和NP-6Sb/6.5CZ的微观畴结构;所有的明场TEM图片都是在电子束沿001方向得到的。随着CZ含量成分的增多,铁电畴逐渐从巨大的铁电畴(0CZ)变成了层级状的铁电畴结构(5CZ),最终变成了典型的弛豫铁电体的纳米畴结构(6.5CZ)。
具体的,参见图2A,该体系相图的典型特征是立方顺电相(C)、四方相(T)、正交相(O)和菱方相(R)随着x和y的增加而逐渐接近,且三条相界一开始也同时趋向于一个多相共存点,然而,对于该体系,这一趋近多相共存点(也可简称为多相点)的趋势由于弛豫铁电体的出现(y>6)而中断了,因此多相共存点在该体系中实际上不能达到(不妨称作“隐藏的多相共存点”或者简称为“隐藏的多相点”或“隐性的MCP”,与其相对的概念则可称为“显性的MCP”),这充分说明了如下几点:
其一,本公开所述的靠拢包括:C/T相界和O/R相界、以及T/O相界趋于汇聚于一点,但无法汇聚于该点(即所述隐藏的多相点或隐性的MCP)的情形,可参见前文所述的隐性地汇聚于一点;
其二,无论不同的相结构是否能够显性或隐性的汇聚于一点,还是既不能显 性也不能隐性地汇聚于一点,只要遵循本公开的方法,最终使得所述C/T相界和O/R相界向T/O相界靠拢,都能够获得高压电性能、高居里温度的无铅压电材料;只是,当不同的相结构能够显性或隐性的汇聚于一点时,这更加有利于获得高压电性能、高居里温度的无铅压电材料。也就是说,本公开所述的相界靠拢还包括:C/T相界和O/R相界、以及T/O相界既不显性地汇聚于一点,也不隐性地汇聚于一点。具体的,详见后文通过能垒对此作进一步的说明。
需要说明的是,通过将三条相界线性外推,可确定“隐藏的多相共存点”在y=9附近。如图2B所示的原位XRD结果证明了四种不同的相的存在。三条相界是通过介电常数随温度变化曲线上的拐点获得的,参见图2C及表2。
如图2D所示,随着锆酸钙含量y的增加,三条相界彼此逐渐接近,而室温附近的畴的微观结构也呈现出有趣的变化:从y=0处(d 33=305pC/N)的巨大的铁电畴变成了在y=5处(d 33=630pC/N)的层级状的铁电畴结构,最终变成了y=6.5处(d 33=55pC/N)典型的弛豫铁电体的纳米畴结构。由此可见,畴的形态与压电性有清晰的对应关系。在所有的压电体系中,包括含铅和无铅压电体系,层级状铁电畴形态均被认为是高性能压电材料的典型特征。本公开中,具有层级状铁电畴结构的NP-6Sb/5.5CZ具有该系列中最高的d 33,可达670pC/N。
图3则示出了压电、介电、铁电性质和相变滞后在立方、四方、正交和菱方相变逐渐靠近汇聚的过程中的变化趋势,其中:
(A)为压电系数在成分和温度空间的三维等高线图。压电系数随着立方、四方、正交和菱方相变逐渐汇聚而沿着T/O相界逐渐上升,并最终达到最大值,约670pC/N。之后,体系进入弛豫铁电体区域,并因此失去铁电性,故其压电系数随之迅速降低。同时,可以看到,在压电常数最大值附近的一片成分-温度区域里,都显示出了极高的压电常数。这一点暗示了该体系具有相对优良的成分和温度稳定性;
(B)显示了随CZ成分的变化,室温下的压电系数,介电常数,最大极化强度,剩余极化强度和矫顽场的变化趋势。可以看到,随着立方、四方、正交和菱方相变逐渐靠近汇聚,体系的压电系数,介电常数逐渐增加,并在进入弛豫铁电体区域前达到最高值;而最大极化强度,剩余极化强度基本保持不变,直至进入弛豫铁电体区域后迅速下降;而矫顽场逐渐减小,并在体系进入弛豫铁电体区域后略 微上升。总之,在5.5CZ附近,体系显示出了最高的介电常数、最大极化强度和剩余极化强度,以及最小的矫顽场,这些性质与最高的压电常数是相符合的;
(C)为随CZ成分的变化,相变滞后的变化趋势。可以看到,相变滞后随着立方、四方、正交和菱方相变逐渐靠近汇聚而逐渐减小,预示着体系中的铁电相变的能垒在逐渐减弱,因此各个相之间的转变更加容易。
上述铁电相变的能垒的逐渐减弱正是本公开所阐述的获得无铅压电材料的方法背后的物理机制:对于本公开所揭示的方法,能垒的逐渐减弱会导致铁电相之间的相互转变逐渐变得容易,有利于获得高的压电性能。显然,本公开所阐述的获得无铅压电材料的方法具有普适性,与材料的具体体系和类型无关,事实上,也与T/O相界所对应的温度无关,后文将会对此进一步描述。
也就是说,虽然本公开列举了所述第一无铅压电材料包括晶体类型为钙钛矿结构的无铅压电陶瓷,和所述第二无铅压电材料包括铌酸锂钾钠基三元系无铅压电陶瓷或钛酸钡基三元系无铅压电陶瓷的情形,但是本公开事实上并不限于材料的具体体系和类型。关于这一点,后文也会详细说明。
具体的,如图3A所示,NP-6Sb/yCZ体系的压电系数d 33与C/T/O/R相界的汇聚趋势之间有很强的联系。随着CZ含量y的增加,这三条相界逐渐汇聚。与此同时,压电系数d 33的值从305pC/N(y=0)一直增长到670pC/N(y=5.5),随后,该体系进入弛豫铁电体区域(y>6),其压电系数d 33也随之迅速降低至0。值得注意的是,随着三条相界的逐渐聚拢,压电系数d 33在很宽的成分范围(2<y<6),和温度范围内保持400pC/N以上的高d 33值(如对于NP-6Sb/5CZ,其Tc=155℃,其d 33可在-40℃-150℃范围内保持400pC/N以上)。该体系的这个重要特征保证了其压电系数d33可以在很宽的温度和成分范围内保持较高的值,说明整个体系在靠近多相共存点MCP的区域变得相当的“软”。然而,弛豫铁电体破坏了体系的铁电性,因为随着体系进入弛豫铁电体区域,其压电系数迅速降低并消失。因此,在最靠近MCP但还没有变成弛豫铁电体的边界,如NP-6Sb/5CZ,才能出现类似软性PZT的性能(d 33>600pC/N)。
图3B中,除了压电系数d 33,该体系的介电及铁电性能也随着C/T/O/R相界的逐渐聚拢而迅速提高。随着CZ含量y从0增加到5.5,该体系的室温d 33增加了一倍,从305pC/N增加到670pC/N,这个值甚至高于著名的PZT-5H (d33~590pC/N),但当y>6时,该体系进入弛豫铁电体区域,其d33也随之迅速降低。与d33随成分的变化类似,该体系的室温介电系数最高值ε(~4600),自发极化最大值Pm(~24μC/cm2),剩余极化最大值Pr(~17μC/cm2),以及矫顽场最小值Ec(~5kV/cm)都出现在y(~5.5)附近。
C/T/O/R三个相界随y增加而逐渐向多相共存点(MCP)聚拢过程中,C-T、T-O和O-R相变的热滞(相变热滞的定义见附图S3)逐渐变小,并在隐藏的多相共存点(MCP)附近趋近于零,如图3C所示。但由于在y=6附近弛豫铁电体的形成,其相变热滞的缩小趋势被阻挡,而没有真正的消失。相变热滞的逐渐消失显示这三个一级相变在趋近多相共存点MCP时趋向于转变成连续相变(8)。这说明,四个相之间的能垒在靠近多相共存点MCP时逐渐消失。根据前文所述的本公开背后的物理机制,如果没有弛豫铁电体的阻挡,在多相共存点MCP附近可以获得比670pC/N还要高得多的性能。
为了进一步验证如下假设:关于多相共存点MCP可以形成超高d 33以及MCP在这方面的提携效应可在靠近MCP处形成500~600pC/N的高d 33区域,本公开在另外的实施例中设计了另外一个无铅压电体系:BaTiO3-x(Ba0.5Ca0.5)SnO3(缩写为BT-BCS)。
图4A-4E为具有显性的MCP和具有隐性的MCP的两个压电体系的压电性能增强效应的对比,其中:
(A)为有显性的MCP的BaTiO3-x(Ba0.5Ca0.5)SnO3(BT-xBCS)体系的相图。图中,立方、四方、正交和菱方相变逐渐靠近并汇聚到了一个多相共存点;
(B)为BT-xBCS体系的压电性能在成分和温度空间的等高线图。可以看到,随着四个相的靠近,压电常数沿着T/O相界逐渐增加,并在多相共存点附近获得了前所未有的超高的d 33,可达1120pC/N。这是目前报道的所有压电陶瓷中的最高值;
(C)为具有隐性MCP的BaTiO 3-xBa(Mg 1/3Nb 2/3)O 3(BT-xBMN)体系的相图。图中,立方、四方、正交和菱方相变仍然在逐渐相互靠近汇聚,但是在汇聚到一个多相共存点之前,体系已经进入了弛豫铁电体区域。因此,该相图所代表的一类体系实际上是没有显性MCP的,而只具有一个相界线性延长所获得的隐性的MCP;
(D)为BT-xBMN体系的压电性能在成分和温度空间的等高线图。与具有显性MCP的相图相似,随着四个相的靠近,该体系的压电常数沿着T/O相界也在逐渐增加。但是,与具有显性MCP的体系不同,其压电常数随着体系进入弛豫铁电体区域而迅速降低,故其d33最大值出现在铁电/弛豫铁电体的边界附近,而不是在隐性的MCP处;
(E)显示了有显性MCP的体系的3维自由能示意图。(i)示出了MCP处的各向同性的朗道自由能。(ii)示出了MCP附近处自由能表现出弱各向异性。(iii)示出了远离MCP处自由能表现出强各向异性。FT、FO、FR分别代表四方T、正交O、和菱方R相的自由能。R1和R2分别代表2个不同的菱方畴。
具体的,参见图4A,该体系具有一个MCP,并且该MCP并没有被弛豫铁电体阻挡(图4A)。具有MCP的BT-BCS体系显示了非常有趣的结果:随着体系不断接近MCP,其d 33一直增长,并在MCP附近出现了前所未有的高达1120pC/N的d 33值,这一结果是迄今为止在包括含铅体系在内的所有多晶压电陶瓷中报道过的最高值。值得注意的是,具有500pC/N以上的高d 33值的区域可以扩展到很宽的成分范围(6<x<11),这是由于MCP的提携效应,在下文我们会进一步解释该效应。因此,在MCP处的超高d 33值以及MCP附近压电性能的极大提升都进一步证明MCP确实是性能显著提高的一个有利因素。
然而,正如本公开通过能垒所作的解释,发明人需要指出的是,即使不通过掺杂趋于多相共存点MCP,而仅仅:调整立方顺电相C与四方相T之间的C/T相界、以及正交相O与菱方相R之间的O/R相界,以使得C/T相界和O/R相界向T/O相界靠拢;在C/T相界和O/R相界向T/O相界靠拢的过程中,依然可以获得多种不同压电常数d 33、不同居里温度Tc的第二无铅压电材料。
为了进一步模拟类似于NP-xSb/yCZ体系中MCP被弛豫铁电体阻断而“隐藏”的情况,本公开设计了另一个无铅压电体系:BaTiO 3-xBa(Mg 1/3Nb 2/3)O 3(缩写为BT-BMN)(图4C)。该体系的MCP被弛豫铁电体阻断。有趣的是,该体系出现了与NP-xSb/yCZ类似的结果,即其压电性在接近MCP的过程中不断增加,并在进入弛豫铁电体区域后迅速降低。d 33的最大值(~500pC/N)出现在铁电体/弛豫铁电体的交界成分BT-6MN处。这与图3A中的NP-xSb/yCZ的情况完全一致。很明显,无论MCP是否被弛豫铁电体阻断,“接近MCP”的方法对于提高 压电性来说都是极其有效的。由此可见,即便是对于MCP被弛豫铁电体阻断的情况,如NP-xSb/yCZ,该方法依然有效,因而这是一种可以有效的设计、获得新型高性能压电材料的重要方法。下面通过图4E详细阐述了该材料设计方法背后的物理机制;可以发现,该物理机制具有普适性,与特定的材料体系无关。
在MCP处,C、T、O和R四个相之间的相平衡关系导致自由能曲面是各向同性的,即C/T/O/R四个相之间及相之间的畴是没有能垒的,如图4E(i)所示。这也可以看作是体系自由度的消失。据此,可以解释MCP附近的超高d 33值(>1100pC/N),如图4B所示。当成分稍微偏离MCP时,如NP-6Sb/4~5.5CZ、BT-9BCS以及BT-6BMN,相变能垒及畴翻转能垒逐渐增大,但仍然保持在一个较低的水平,其自由能曲面上则出现微小起伏,如图4E(ii)所示。由于MCP的提携效应,即大压电性不止出现在MCP处,也出现在MCP附近的很宽成分范围及温度范围内,上述成分相应的d 33值仍保持在500-600pC/N的较高水平。由于此时自由能的各向异性很小,因此其畴界能也很小,这也就解释了为什么观察到的畴是图2D(5CZ)所示的层级结构的(26)。当成分离MCP很远时,如NP-6Sb/0~2CZ、BT-3BCS和BT-2BMN,相界能垒及畴翻转能垒变得非常大,其自由能曲面上则出现较大的各向异性,如图4E(iii)所示,其相应的d 33则下降到300-400pC/N。由于自由能的高各向异性,其相应的畴界能也很高,从而导致出现如图2D(0CZ)所示的较大的畴。在图3A和图4D中,弛豫铁电体阻断了MCP(及其伴随的超高d 33)的出现,d 33的最高值(500-600pC/N)出现在铁电相与弛豫铁电体的交界处。上述理论分析证明前文所述各实施例所体现的新方法是获得高性能压电材料的有效方法,越是大压电性,越出现在MCP附近。
综上,本公开成功地获得了NP-xSb/yCZ这一新型无铅压电体系。该体系覆盖了包括软PZT在内的整个PZT家族的d 33-T C性能范围。
在另外的实施例中,所述第二无铅压电材料包括:
铌酸锂钾钠基三元系无铅压电陶瓷。容易理解的,本组实施例意在限定具体的一类、要获得的无铅压电材料。
在另外的实施例中,所述室温附近选择20℃-30℃左右。或者更宽泛的,在另外的实施例中,所述室温附近选择10℃-40℃左右。显然,无论是20℃-30℃左右还是10℃-40℃左右,这都是为了有利于获得对应温度范围下工作的无铅压 电材料,这涉及材料的工作温度或服役温度。详见后文。最后,需要说明的是,上述NP-xSb/yCZ新型无铅压电体系以及BT-BCS、BT-BMN无铅压电体系只是利用本公开所阐述的材料设计方法获得的三个案例,通过对上述方法背后的物理机理的描述,容易理解,本公开的方法在诸如KNN基、BT基等无铅压电体系中具有普适性,并不依赖于特定的无铅压电材料体系。因此,本公开的材料设计方法与具体的无铅压电材料体系无关,不应受到上述具体的压电材料体系的限制。更进一步的,步骤S100中,针对第一无铅压电材料,通过掺杂将其四方相T与正交相O之间的T/O相界调整至某一温度附近,所述某一温度也不局限于室温。参见图4C,其T/O相界可以调整至材料服役温度附近(服役温度,也称工作温度),例如图4C中的:-20℃-20℃左右。那么,结合本公开的其他实施例、室温附近选择10℃-40℃左右的情况,以及前文所述本公开的实施例背后的物理机理,能够理解:
其一,步骤S100中,针对第一无铅压电材料,通过掺杂将其四方相T与正交相O之间的T/O相界调整至某一温度附近,所述某一温度可以覆盖到-20℃-40℃这一较宽范围;为了尽量少的引入新的概念,本公开有时也将-20℃-40℃归为室温附近,即扩大室温的范围;
其二,更进一步的,步骤S100中,针对第一无铅压电材料,通过掺杂将其四方相T与正交相O之间的T/O相界调整至某一温度附近,所述某一温度可以覆盖到40℃以上、或者-20℃以下,只要第一无铅压电材料能够满足40℃以上或者-20℃以下的服役温度(也称工作温度)即可;
其三,本公开所揭示的实施例不仅具有普适性,并不依赖于特定的无铅压电材料体系,而且并不受限于所述某一温度的限制。之所以所述某一温度选择室温、或者-20℃-40℃或者40℃以上均可,一方面是因为不同的第一无铅压电材料的T/O相界会有其所对应的不同温度范围,另一方面则是为了使得通过本公开的实施例最终获得的无铅压电材料能够满足用户对其服役温度的需求。
由此,本公开还公开了一种获得无铅压电材料的方法,所述方法包括:
步骤S101,调整第一无铅压电材料的T/O相界:
针对第一无铅压电材料,通过掺杂将其四方相T与正交相O之间的T/O相界调整至材料服役温度附近;
步骤S201,进一步调整C/T相界和O/R相界:
进一步通过掺杂,调整立方顺电相C与四方相T之间的C/T相界、以及正交相O与菱方相R之间的O/R相界,以使得C/T相界和O/R相界向T/O相界靠拢,所述相界靠拢包括:
C/T相界和O/R相界、以及T/O相界趋于汇聚于一点,但无法汇聚于该点;或者
C/T相界和O/R相界、以及T/O相界既不显性地汇聚于一点,也不隐性地汇聚于一点;
步骤S301,获得第二无铅压电材料:
在C/T相界和O/R相界向T/O相界靠拢的过程中,获得第二无铅压电材料。
在另一个实施例中,
所述服役温度附近包括如下一种:-20℃~40℃、40℃以上、-20℃以下。
在另一个实施例中,
所述第二无铅压电材料包括:铌酸锂钾钠基三元系无铅压电陶瓷,或钛酸钡基三元系无铅压电陶瓷。
在另一个实施例中,所述第二无铅压电材料的组分通式为:
(1-m-n)[(K 0.5-yNa 0.5+y) 0.96Li 0.04Nb 1-xSb xO 3]-m[(Bi 0.5(Na zK 1-z) 0.5ZrO 3]-nAZrO 3表示,式中0≤m≤0.02,0≤n≤0.1,0≤x≤0.07,0≤y≤0.1,z=0、1,A表示选自下列的二价金属离子之一或者其组合:Ca、Mg、Ba;或者
(1-x-y)BaTiO 3-x(Ba 0.5Ca 0.5)SnO 3-yBa(Mg 1/3Nb 2/3)O 3,式中0≤x≤0.2,0≤y≤0.1。
在另外的实施例中,将对本公开所述无铅压电陶瓷获得方法及通过该方法所获得的铌酸锂钾钠基三元系无铅压电陶瓷和钛酸钡基三元系无铅压电陶瓷作进一步描述,有必要在此指出的是所述实例只是用于对本公开的进一步说明,但不应理解为是对本公开保护范围的任何限制,所属领域的技术人员可以基于本公开的原理,根据上述本公开内容作出一些非本质性的改进和调整。
以下实施例中,给出了不同组分的铌酸锂钾钠基三元系无铅压电陶瓷以及钛酸钡基三元系无铅压电陶瓷在具体制备工艺条件下所得到的d 33、Tc、ε r、tanδ和kp等性能参数:
A组实施例
按照通式:
(1-m-n)[(K0.5-yNa0.5+y)0.96Li0.04Nb1-xSbxO3]-m[(Bi0.5(NazK1-z)0.5ZrO3]-nAZrO3表示的铌酸锂钾钠基三元系无铅压电陶瓷含量进行配料;
当x=0,y=0.02,z=0,m=0.01,n=0时,
其配方一为:0.99(K0.48Na0.52)0.96Li0.04NbO3-0.01Bi0.5K0.5ZrO3;
当x=0.02,y=0.02,z=0,m=0.01,n=0时,
其配方二为:
0.99(K0.48Na0.52)0.96Li0.04Nb0.98Sb0.02O3-0.01Bi0.5K0.5ZrO3;
当x=0.03,y=0.02,z=0,m=0.01,n=0时,
其配方三为:
0.99(K0.48Na0.52)0.96Li0.04Nb0.97Sb0.03O3-0.01Bi0.5K0.5ZrO3;
当x=0.04,y=0.02,z=0,m=0.01,n=0时,
其配方四为:
0.99(K0.48Na0.52)0.96Li0.04Nb0.96Sb0.04O3-0.01Bi0.5K0.5ZrO3;
当x=0.05,y=0.02,z=0,m=0.01,n=0时,
其配方五为:
0.99(K0.48Na0.52)0.96Li0.04Nb0.95Sb0.05O3-0.01Bi0.5K0.5ZrO3;
当x=0.06,y=0.02,z=0,m=0.01,n=0时,
其配方六为:
0.99(K0.48Na0.52)0.96Li0.04Nb0.94Sb0.06O3-0.01Bi0.5K0.5ZrO3;
对该组实施例,其中配方一到六的制备:
以分析纯的碳酸钠、碳酸钾、碳酸锂、五氧化二铌、三氧化二锑、氧化铋和氧化锆为原料,将各原料按重量百分比准确称量;
将配制好的原料以无水乙醇作为球磨介质,用行星球磨机进行8-12小时的球磨混料,之后烘干得到混合干粉,将所得混合干粉在850-1000℃保温3-6小时预烧;
所得粉体破碎后,以无水乙醇作为球磨介质,再次用行星球磨机进行6-10小时的球磨,之后烘干得到干粉;
在所得干粉中加入5-10wt%的聚乙烯醇水溶液造粒;
将造粒后的粉体利用模具压制成直径为8mm,厚度为1~3mm的小圆片并排胶;
将排胶后的小圆片在1060-1160℃之间保温3-10小时烧结,得到陶瓷片;
将烧结所得陶瓷片被上银电极;
被上银的陶瓷片在室温下在硅油中应用电场为3-4kV/mm电压下极化30-60分钟;
极化完成后,即得到高压电常数和高居里温度的铌酸锂钾钠基三元系无铅压电陶瓷;
将其在空气中静置24小时,然后采用IEEE标准进行电学性能测量。
本组实施例制备的当x=0,0.02,0.03,0.04,0.05为变化取值时,y=0.02,z=0,m=0.01,n=0为固定取值时的:
0.99(K0.48Na0.52)0.96Li0.04Nb1-xSbxO3-0.01Bi0.5K0.5ZrO3无铅压电陶瓷在10kHz下的相对介电常数εr随温度的变化曲线如图5所示。可以看出,在掺入Sb之后,体系的居里温度Tc逐渐下降,而T/O相变温度略微下降;因此,C/T相界与T/O相界在相互靠近。
本组实施例配方一到六在不同温度下烧结、不同保温时间和不同温度的硅油中极化,以及用IEEE标准测试所得无铅压电陶瓷的电学性能等,见表3所示。
表3在室温条件下,配方一到六的无铅压电陶瓷的相关性能
Figure PCTCN2019083695-appb-000005
B组实施例
按照通式:
(1-m-n)[(K 0.5-yNa 0.5+y) 0.96Li 0.04Nb 1-xSb xO 3]-m[(Bi 0.5(Na zK 1-z) 0.5ZrO 3]-nAZrO 3表示的铌酸锂钾钠基三元系无铅压电陶瓷含量进行配料;
当A=Ca,x=0.06,y=0.02,z=0,m=0.01,n=0.02时,
其配方一为:
0.97(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.02CaZrO 3
当A=Ca,x=0.06,y=0.02,z=0,m=0.01,n=0.03时,
其配方二为:
0.96(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.03CaZrO 3
当A=Ca,x=0.06,y=0.02,z=0,m=0.01,n=0.04时,
其配方三为:
0.95(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.04CaZrO 3
当A=Ca,x=0.06,y=0.02,z=0,m=0.01,n=0.045时,
其配方四为:
0.945(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.045CaZrO 3
当A=Ca,x=0.06,y=0.02,z=0,m=0.01,n=0.05时,
其配方五为:
0.94(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.05CaZrO 3
当A=Ca,x=0.06,y=0.02,z=0,m=0.01,n=0.055时,
其配方六为:
0.935(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.055CaZrO 3
当A=Ca,x=0.06,y=0.02,z=0,m=0.01,n=0.06时,
其配方七为:
0.93(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.06CaZrO 3
当A=Ca,x=0.06,y=0.02,z=0,m=0.01,n=0.065时,
其配方八为:
0.925(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.065CaZrO 3
当A=Ca,x=0.06,y=0.02,z=0,m=0.01,n=0.07时,
其配方九为:
0.92(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.07CaZrO 3
当A=Ca,x=0.06,y=0.02,z=0,m=0.01,n=0.08时,
其配方十为:
0.91(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.08CaZrO 3
当A=Ca,x=0.06,y=0.02,z=0,m=0.01,n=0.1时,
其配方十一为:
0.89(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.1CaZrO 3
当A=Ca,x=0.06,y=0.02,z=0,m=0.01,n=0.15时,
其配方十二为:
0.84(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.15CaZrO 3
对于该组实施例,配方一到十二的制备:以分析纯的碳酸钠、碳酸钾、碳酸锂、五氧化二铌、三氧化二锑、氧化铋、氧化锆和碳酸钙为原料,将各原料按重量百分比准确称量;后续实验工艺同A组实施例。
本组实施例制备的当n=0,0.02,0.04,0.055,0.06,0.065,0.08为变化取值时,A=Ca,x=0.06,y=0.02,z=0,m=0.01为固定取值时的:
(0.99-n)(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-nCaZrO 3无铅压电陶瓷在10kHz下的相对介电常数ε r随温度的变化曲线如图6所示。可以看出,在掺入CaZrO3之后,在Tc处的介电常数逐渐升高。但当CaZrO3的含量n大于0.06后,Tc处的介电常数迅速下降,说明体系进入到了弛豫铁电体区域,因而迅速丧失了铁电性。
本组实施例制备的当n=0.05,0.055为变化取值时,A=Ca,x=0.06,y=0.02,z=0,m=0.01为固定取值时的:
(0.99-n)(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-nCaZrO 3无铅压电陶瓷的温度循环稳定性示意图,如图11所示。可以看出,该陶瓷在-55℃到80℃之间循环1000次后仅仅损失了10%的性能,可与商用陶瓷PZT-5H媲美。
本组实施例制备的当n=0.055,A=Ca,x=0.06,y=0.02,z=0,m=0.01时的:
(0.99-n)(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-nCaZrO 3无铅压电陶瓷的热稳定性示意图,如图12所示。可以看出,该陶瓷在室温到120℃范围内,保持了90%的性能,显示出优异的热稳定性。
本组实施例配方一到十在不同温度下烧结、不同保温时间和不同温度的硅油中极化,以及用IEEE标准测试所得无铅压电陶瓷的电学性能等,见表4所示。
表4在室温条件下,配方一到十二的无铅压电陶瓷的相关性能
(其中,“/”表示没有数据)
Figure PCTCN2019083695-appb-000006
C组实施例
按照通式:
(1-m-n)[(K 0.5-yNa 0.5+y) 0.96Li 0.04Nb 1-xSb xO 3]-m[(Bi 0.5(Na zK 1-z) 0.5ZrO 3]-nAZrO 3表示的铌酸锂钾钠基三元系无铅压电陶瓷含量进行配料;
当A=Sr,x=0.06,y=0.02,z=1,m=0.01,n=0.00时,
其配方一为:0.99(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3
当A=Sr,x=0.06,y=0.02,z=1,m=0.01,n=0.02时,
其配方二为:
0.97(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-0.02SrZrO 3
当A=Sr,x=0.06,y=0.02,z=1,m=0.01,n=0.03时,
其配方三为:
0.96(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-0.03SrZrO 3
当A=Sr,x=0.06,y=0.02,z=1,m=0.01,n=0.04时,
其配方四为:
0.95(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-0.04SrZrO 3
当A=Sr,x=0.06,y=0.02,z=1,m=0.01,n=0.045时,
其配方五为:
0.945(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-0.045SrZrO 3
当A=Sr,x=0.06,y=0.02,z=1,m=0.01,n=0.05时,
其配方六为:
0.94(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-0.05SrZrO 3
当A=Sr,x=0.06,y=0.02,z=1,m=0.01,n=0.055时,
其配方七为:
0.935(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-0.055SrZrO 3
当A=Sr,x=0.06,y=0.02,z=1,m=0.01,n=0.06时,
其配方八为:
0.93(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-0.06SrZrO 3
当A=Sr,x=0.06,y=0.02,z=1,m=0.01,n=0.065时,
其配方九为:
0.925(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-0.065SrZrO 3
当A=Sr,x=0.06,y=0.02,z=1,m=0.01,n=0.07时,
其配方十为:
0.92(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-0.07SrZrO 3
当A=Sr,x=0.06,y=0.02,z=1,m=0.01,n=0.08时,
其配方十一为:
0.91(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-0.08SrZrO 3
当A=Sr,x=0.06,y=0.02,z=1,m=0.01,n=0.1时,
其配方十二为:
0.89(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-0.1SrZrO 3
当A=Sr,x=0.06,y=0.02,z=1,m=0.01,n=0.15时,
其配方十三为:
0.84(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-0.15SrZrO 3
配方一到十三的制备:以分析纯的碳酸钠、碳酸钾、碳酸锂、五氧化二铌、三氧化二锑、氧化铋、氧化锆和碳酸锶为原料,将各原料按重量百分比准确称量;后续实验工艺同A组实施例。
本组实施例制备的当n=0,0.02,0.03,0.04,0.045,0.05,0.055,0.06,0.065,0.07,0.08,0.1,0.15为变化取值时,A=Sr,x=0.06,y=0.02,z=1,m=0.01为 固定取值时的(0.99-n)(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-nSrZrO 3无铅压电陶瓷在10kHz下的相对介电常数ε r随温度的变化曲线如图7所示。可以看出,当变量A为元素Sr且z=1时,随着SrZrO3含量的增加,其介电常数的表现与前文实施例中变量A为元素Ca且z=0的结果相似。
本组实施例配方一到十三在不同温度下烧结、不同保温时间和不同温度的硅油中极化,以及用IEEE标准测试所得无铅压电陶瓷的电学性能等,见表5所示。
表5在室温条件下,配方一到十三的无铅压电陶瓷的相关性能
Figure PCTCN2019083695-appb-000007
D组实施例
按照通式:
(1-m-n)[(K 0.5-yNa 0.5+y) 0.96Li 0.04Nb 1-xSb xO 3]-m[(Bi 0.5(Na zK 1-z) 0.5ZrO 3]-nAZrO 3表示的铌酸锂钾钠基三元系无铅压电陶瓷含量进行配料;
当A=Ba,x=0.06,y=0.02,z=1,m=0.01,n=0.02时,
其配方一为:
0.97(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-0.02BaZrO 3
当A=Ba,x=0.06,y=0.02,z=1,m=0.01,n=0.03时,
其配方二为:
0.96(K 0.48Na 0.52) 0.96Li 0.04Nb 0.945b 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-0.03BaZrO 3
当A=Ba,x=0.06,y=0.02,z=1,m=0.01,n=0.04时,
其配方三为:
0.95(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-0.04BaZrO 3
当A=Ba,x=0.06,y=0.02,z=1,m=0.01,n=0.045时,
其配方四为:
0.945(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-0.045BaZrO 3
当A=Ba,x=0.06,y=0.02,z=1,m=0.01,n=0.05时,
其配方五为:
0.94(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-0.05BaZrO 3
当A=Ba,x=0.06,y=0.02,z=1,m=0.01,n=0.055时,
其配方六为:
0.935(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-0.055BaZrO 3
当A=Ba,x=0.06,y=0.02,z=1,m=0.01,n=0.06时,
其配方七为:
0.93(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-0.06BaZrO 3
当A=Ba,x=0.06,y=0.02,z=1,m=0.01,n=0.065时,
其配方八为:
0.925(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-0.065BaZrO 3
当A=Ba,x=0.06,y=0.02,z=1,m=0.01,n=0.07时,
其配方九为:
0.92(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-0.07BaZrO 3
当A=Ba,x=0.06,y=0.02,z=1,m=0.01,n=0.08时,
其配方十为:
0.91(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-0.08BaZrO 3
当A=Ba,x=0.06,y=0.02,z=1,m=0.01,n=0.1时,
其配方十一为:
0.89(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-0.1BaZrO 3
当A=Ba,x=0.06,y=0.02,z=1,m=0.01,n=0.12时,
其配方十二为:
0.84(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-0.12BaZrO 3
配方一到十二的制备:以分析纯的碳酸钠、碳酸钾、碳酸锂、五氧化二铌、 三氧化二锑、氧化铋、氧化锆和碳酸钡为原料,将各原料按重量百分比准确称量;后续实验工艺同A组实施例。
本组实施例制备的当n=0.02,0.03,0.04,0.05,0.055,0.06为变化取值时,A=Ba,x=0.06,y=0.02,z=1,m=0.01为固定取值时的:
(0.99-n)(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5Na 0.5ZrO 3-nBaZrO 3无铅压电陶瓷在10kHz下的相对介电常数ε r随温度的变化曲线如图8所示。可以看出,变量A为元素Ba且z=0,其结果也与上述图6-7的结果相似。因此,这充分说明,本公开所揭示的方法在铌酸钾钠基无铅压电陶瓷中具有普遍性。
本组实施例的上述配方在不同温度下烧结、不同保温时间和不同温度的硅油中极化,以及用IEEE标准测试所得无铅压电陶瓷的电学性能等,见表6所示。
表6在室温条件下,上述配方的无铅压电陶瓷的相关性能
Figure PCTCN2019083695-appb-000008
E组实施例
按照通式(1-x-y)BaTiO 3-x(Ba 0.5Ca 0.5)SnO 3-yBa(Mg 1/3Nb 2/3)O 3表示的钛酸钡基三元系无铅压电陶瓷含量进行配料;
当x=0,y=0时,
其配方一为:BaTiO 3
当x=0.03,y=0时,
其配方二为:0.97BaTiO 3-0.03(Ba 0.5Ca 0.5)SnO 3
当x=0.06,y=0时,
其配方三为:0.94BaTiO 3-0.06(Ba 0.5Ca 0.5)SnO 3
当x=0.09,y=0时,
其配方四为:0.91BaTiO 3-0.09(Ba 0.5Ca 0.5)SnO 3
当x=0.11,y=0时,
其配方五为:0.89BaTiO 3-0.11(Ba 0.5Ca 0.5)SnO 3
当x=0.12,y=0时,
其配方六为:0.88BaTiO 3-0.12(Ba 0.5Ca 0.5)SnO 3
当x=0.16,y=0时,
其配方七为:0.84BaTiO 3-0.16(Ba 0.5Ca 0.5)SnO 3
当x=0.20,y=0时,
其配方八为:0.8BaTiO 3-0.2(Ba 0.5Ca 0.5)SnO 3
配方一到八的制备:以分析纯的碳酸钡、碳酸钙、二氧化钛和二氧化锡为原料,将各原料按重量百分比准确称量;后续实验工艺同A组实施例。
本组实施例制备的当x=0,0.03,0.06,0.09,0.11,0.12,0.14,0.16,0.2为变化取值时,y=0为固定取值时的(1-x)BaTiO 3-x(Ba 0.5Ca 0.5)SnO 3无铅压电陶瓷在10kHz下的相对介电常数ε r随温度的变化曲线如图9所示。可以看出,当BaTiO3中掺入(Ba0.5Ca0.5)SnO3后,其Tc处的介电常数随着(Ba0.5Ca0.5)SnO3的含量x的增大而增大,并在四相点成分达到最大值;之后,其Tc处的介电常数随x进一步增大而逐渐减小。这一趋势也与图4B中压电常数随成分的变化趋势相一致。
本组实施例配方一到八在不同温度下烧结、不同保温时间和不同温度的硅油中极化,以及用IEEE标准测试所得无铅压电陶瓷的电学性能等,见表7所示。
表7在变温条件下,配方一到八的无铅压电陶瓷的相关性能
Figure PCTCN2019083695-appb-000009
Figure PCTCN2019083695-appb-000010
F组实施例
按照通式(1-x-y)BaTiO 3-x(Ba 0.5Ca 0.5)SnO 3-yBa(Mg 1/3Nb 2/3)O 3表示的钛酸钡基三元系无铅压电陶瓷含量进行配料;
当x=0,y=0.02时,
其配方一为:0.98BaTiO 3-0.02Ba(Mg 1/3Nb 2/3)O 3
当x=0,y=0.03时,
其配方二为:0.97BaTiO 3-0.03Ba(Mg 1/3Nb 2/3)O 3
当x=0,y=0.04时,
其配方三为:0.96BaTiO 3-0.04Ba(Mg 1/3Nb 2/3)O 3
当x=0,y=0.05时,
其配方四为:0.95BaTiO 3-0.05Ba(Mg 1/3Nb 2/3)O 3
当x=0,y=0.06时,
其配方五为:0.94BaTiO 3-0.06Ba(Mg 1/3Nb 2/3)O 3
当x=0,y=0.07时,
其配方六为:0.93BaTiO 3-0.07Ba(Mg 1/3Nb 2/3)O 3
当x=0,y=0.08时,
其配方七为:0.92BaTiO 3-0.08Ba(Mg 1/3Nb 2/3)O 3
配方一到七的制备:以分析纯的碳酸钡、氧化镁、二氧化钛和五氧化二铌为原料,将各原料按重量百分比准确称量;后续实验工艺同A组实施例。
本组实施例制备的当y=0.02,0.03,0.04,0.05,0.06,0.07,0.08为变化取值时,x=0为固定取值时的(1-y)BaTiO 3-yBa(Mg 1/3Nb 2/3)O 3无铅压电陶瓷在10kHz下的相对介电常数ε r随温度的变化曲线如图10所示。可以看出,在BaTiO3中掺入(Ba0.5Ca0.5)SnO3后,其Tc处的介电常数会随着Ba(Mg1/3Nb2/3)O3的含量y的增大而增大,之后随着体系进入弛豫铁电体区域而迅速减小。因此,Tc处的介电常数的最大值出现在铁电体/弛豫铁电体的边界成分附近。
本组实施例配方一到七在不同温度下烧结、不同保温时间和不同温度的硅油中极化,以及用IEEE标准测试所得无铅压电陶瓷的电学性能等,见表8所示。
表8在变温条件下,配方一到七的无铅压电陶瓷的相关性能
Figure PCTCN2019083695-appb-000011
以上各组配方及其实施例再次说明,本公开提供了一种获得具有高压电常数和高居里温度的无铅压电陶瓷的方法。从上述表中所列结果可以看到,其压电常数是无铅压电陶瓷中迄今为止具有的最高压电常数,也是性能与PZT系列相当的无铅压电陶瓷。
此外,也说明,根据化学通式:
(1-m-n)[(K 0.5-yNa 0.5+y) 0.96Li 0.04Nb 1-xSb xO 3]-m[(Bi 0.5(Na zK 1-z) 0.5ZrO 3]-nAZrO 3,当A=Ca,x=0.06,y=0.02,z=0,m=0.01,n=0.05时,所得到的铌酸锂钾钠基三元系无铅压电陶瓷的压电常数d 33可高达~630pC/N,平面机电耦合系数k p可达63%,居里温度Tc可达155℃;可完全取代商业用软性PZT陶瓷。而该陶瓷系列的d 33的范围可达190-670pC/N,其Tc的范围可达410℃-130℃,可满足压电陶瓷在各种复杂条件(例如高温,高频等)下的应用,因此具有极高的实用价值。
当x取0.11,y取0时,上述实施例还能够获得另一种钛酸钡基三元系无铅压电陶瓷,且在变温条件下,该系列陶瓷具有迄今为止最高的压电常数:
0.89BaTiO 3-0.11(Ba 0.5Ca 0.5)SnO 3、居里温度36℃时,具有d 33=1120pC/N。就该情形而言,该陶瓷可以用于某些对压电性能要求极高但对居里温度几乎没有要求的场合。
根据本说明书所揭示的内容,对于所述通式(1-x-y)BaTiO 3-x(Ba 0.5Ca 0.5)SnO 3-yBa(Mg 1/3Nb 2/3)O 3,详见前文E组实施例和F组实施例,只要x、y满足0≤x≤0.2,0≤y≤0.1,就能得到相应的、符合本公开目的的无铅压电材料。
在另外的实施例中,所述第二无铅压电材料的组分通式为:
(1-m-n)[(K 0.5-yNa 0.5+y) 0.96Li 0.04Nb 1-xSb xO 3]-m[(Bi 0.5(Na zK 1-z) 0.5ZrO 3]-nAZrO 3,式中0≤m≤0.02,0≤n≤0.1,0≤x≤0.07,0≤y≤0.1,z=0、1,A表示选自下列的二价金属离子之一或者其组合:Ca、Mg、Ba。
更进一步的,压电常数d 33范围为190pC/N-670pC/N。
更进一步的,居里温度Tc范围为130℃-410℃。
更进一步的,当居里温度Tc的范围在290℃-410℃时,C/T相界与T/O相界间的温度差在270℃-350℃之间,其d 33的范围为190pC/N-330pC/N。
此外,在另外的实施例中,所述第二无铅压电材料的组分为以下之一:
0.99(K 0.48Na 0.52) 0.96Li 0.04NbO 3-0.01Bi 0.5K 0.5ZrO 3,或
0.99(K 0.48Na 0.52) 0.96Li 0.04Nb 0.97Sb 0.03O 3-0.01Bi 0.5K 0.5ZrO 3,或
0.99(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3
更进一步的,当Tc的范围在200℃-290℃时,C/T相界与T/O相界间的温度差在180℃-270℃之间,其d 33的范围在310pC/N-460pC/N。
此外,在另外的实施例中,所述第二无铅压电材料的组分为以下之一:
0.97(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.02CaZrO 3,或
0.96(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.03CaZrO 3
更进一步的,当Tc的范围在130℃-200℃时,C/T相界与T/O相界间的温度差在110℃-180℃之间,其d 33的范围在460pC/N-670pC/N。
此外,在另外的实施例中,所述第二无铅压电材料的组分为以下之一:
0.95(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.04CaZrO 3,或
0.94(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.05CaZrO 3,或
0.935(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.055CaZrO 3
在另外的实施例中,如前所述,所述第二无铅压电材料包括:钛酸钡基三元系无铅压电陶瓷。
更进一步的,所述第二无铅压电材料的组分通式为:
(1-x-y)BaTiO3-x(Ba0.5Ca0.5)SnO3-yBa(Mg1/3Nb2/3)O3,式中0≤x≤0.2,0≤y≤0.1。
更进一步的,压电常数d 33的范围在300pC/N-1120pC/N。
更进一步的,居里温度Tc的范围在0℃-100℃。
更进一步的,所述第二无铅压电材料的组分为:
0.89BaTiO 3-0.11(Ba 0.5Ca 0.5)SnO 3;如前文所述,钛酸钡基三元系无铅压电陶瓷0.89BaTiO 3-0.11(Ba 0.5Ca 0.5)SnO 3,在变温条件下,使得该系列陶瓷具有迄今为止最高的压电常数:d 33=1120pC/N。就该情形而言,该陶瓷可以用于某些对压电性能要求极高但对居里温度几乎没有要求的场合。
根据本说明书所揭示的内容,对于所述通式(1-x-y)BaTiO 3-x(Ba 0.5Ca 0.5)SnO 3-yBa(Mg 1/3Nb 2/3)O 3,只要x、y满足0≤x≤0.2,0≤y≤0.1,就能得到相应的、符合本公开目的的无铅压电材料。
除此以外,依据前文所述的方法,本公开还相应的揭示了一种无铅压电材料,其中:
所述无铅压电材料的四方相T与正交相O之间的T/O相界位于室温附近;
且所述无铅压电材料的立方顺电相C与四方相T之间的C/T相界、以及正交相O与菱方相R之间的O/R相界,均处于向T/O相界靠拢的状态;其中:
相界靠拢的不同程度,与所述无铅压电材料的不同压电常数d 33、不同居里温度Tc关联。
如前文所述,通过相界靠拢可获得不同性能的无铅压电材料。
更优的,所述靠拢包括如下情形:
C/T相界和O/R相界、以及T/O相界趋于汇聚于一点。
更优的,所述无铅压电材料包括:
晶体类型为钙钛矿结构的无铅压电陶瓷。
更优的,所述无铅压电材料包括:
铌酸锂钾钠基三元系无铅压电陶瓷。
更优的,所述室温附近选择20℃-30℃左右。更优的,在更加宽泛的温度范围内,所述室温附近可以选择10℃-40℃左右。能够理解,这是为了获得室温附近应用的无铅压电材料。
在另一个实施例中,所述无铅压电材料的组分通式为:
(1-m-n)[(K 0.5-yNa 0.5+y) 0.96Li 0.04Nb 1-xSb xO 3]-m[(Bi 0.5(Na zK 1-z) 0.5ZrO 3]-nAZrO 3表示,式中0≤m≤0.02,0≤n≤0.1,0≤x≤0.07,0≤y≤0.1,z=0、1,A表示选自下列的二价金属离子之一或者其组合:Ca、Mg、Ba。
在另一个实施例中,压电常数d 33范围为190pC/N-670pC/N。
在另一个实施例中,居里温度Tc范围为130℃-410℃。
在另一个实施例中,当居里温度Tc的范围在290℃-410℃时,C/T相界与T/O相界间的温度差在270℃-350℃之间,其d 33的范围为190pC/N-330pC/N。
在另一个实施例中,,所述无铅压电材料的组分为以下之一:
0.99(K 0.48Na 0.52) 0.96Li 0.04NbO 3-0.01Bi 0.5K 0.5ZrO 3,或
0.99(K 0.48Na 0.52) 0.96Li 0.04Nb 0.97Sb 0.03O 3-0.01Bi 0.5K 0.5ZrO 3,或
0.99(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3
在另一个实施例中,当Tc的范围在200℃-290℃时,C/T相界与T/O相界间的温度差在180℃-270℃之间,其d 33的范围在310pC/N-460pC/N。
在另一个实施例中,所述无铅压电材料的组分为以下之一:
0.97(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.02CaZrO 3,或
0.96(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.03CaZrO 3
在另一个实施例中,当Tc的范围在130℃-200℃时,C/T相界与T/O相界间的温度差在110℃-180℃之间,其d 33的范围在460pC/N-670pC/N。
在另一个实施例中,所述无铅压电材料的组分为以下之一:
0.95(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.04CaZrO 3,或
0.94(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.05CaZrO 3,或
0.935(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.055CaZrO 3
在另一个实施例中,所述无铅压电材料包括:钛酸钡基三元系无铅压电陶瓷。
在另一个实施例中,所述无铅压电材料的组分通式为:
(1-x-y)BaTiO 3-x(Ba 0.5Ca 0.5)SnO 3-yBa(Mg 1/3Nb 2/3)O 3,式中0≤x≤0.2,0≤y≤0.1。
在另一个实施例中,压电常数d 33的范围在300pC/N-1120pC/N。
在另一个实施例中,居里温度Tc的范围在0℃-100℃。
在另一个实施例中,对于所述通式(1-x-y)BaTiO 3-x(Ba 0.5Ca 0.5)SnO 3-yBa(Mg 1/3Nb 2/3)O 3,当x取0.11,y取0时,所述无铅压电材料的组分为:
0.89BaTiO 3-0.11(Ba 0.5Ca 0.5)SnO 3;如前文所述,钛酸钡基三元系无铅压电陶 瓷0.89BaTiO 3-0.11(Ba 0.5Ca 0.5)SnO 3,在变温条件下,使得该系列陶瓷具有迄今为止最高的压电常数:d 33=1120pC/N。就该情形而言,该陶瓷可以用于某些对压电性能要求极高但对居里温度几乎没有要求的场合。
根据本说明书所揭示的内容,对于所述通式(1-x-y)BaTiO 3-x(Ba 0.5Ca 0.5)SnO 3-yBa(Mg 1/3Nb 2/3)O 3,只要x、y满足0≤x≤0.2,0≤y≤0.1,就能得到相应的、符合本公开目的的无铅压电材料。
此外,本公开还在另一个实施例中揭示了一种无铅压电材料的制备工艺,其用于制备前文所述的无铅压电材料,所述方法包括:
步骤T001:按照相应的化学通式选择原料并进行配料;
步骤T002:采用传统固相陶瓷烧结制备工艺制备所述无铅压电材料。
优选的,所述原料从如下中进行选择:碳酸钠、碳酸钾、碳酸锂、五氧化二铌、三氧化二锑、氧化铋、氧化锆、氧化镁、氧化锡、碳酸钙、碳酸锶和碳酸钡。更优选的,所述原料为分析纯级别的。
此外,在另一个实施例中,公开了一种硬性压电陶瓷,所述硬性压电陶瓷,基于本公开所述获得方法来获得。
此外,在另一个实施例中,公开了一种硬性压电陶瓷,所述硬性压电陶瓷,基于本公开所述无铅压电材料获得。
此外,在另一个实施例中,公开了一种高能转换器,所述高能转换器采用本公开所述的硬性压电陶瓷。
此外,在另一个实施例中,公开了一种软性压电陶瓷,所述软性压电陶瓷,基于本公开所述获得方法获得。
此外,在另一个实施例中,公开了一种软性压电陶瓷,所述软性压电陶瓷,基于本公开所述无铅压电材料获得。
此外,在另一个实施例中,公开了一种传感器,所述传感器采用本公开所述软性压电陶瓷;
以及在另一个实施例中,公开了一种制动器,所述制动器采用本公开所述软性压电陶瓷。
另外,在另一个实施例中,还公开了一种电子元件,所述电子元件采用所述硬性压电陶瓷,和/或采用所述软性压电陶瓷。
另外,在另一个实施例中,还公开了一种电子设备,所述电子设备采用所述硬性压电陶瓷,和/或采用所述软性压电陶瓷。
本说明书中每个实施例采用采用递进的方式描述,重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
以上对本公开所提供的获得无铅压电材料的方法、相应无铅压电材料、制备工艺、硬性压电陶瓷、软性压电陶瓷、高能转换器、传感器、制动器、电子元件、以及电子设备均进行了详细介绍,本公开中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (60)

  1. 一种获得无铅压电材料的方法,所述方法包括:
    步骤S100,调整第一无铅压电材料的T/O相界:
    针对第一无铅压电材料,通过掺杂将其四方相T与正交相O之间的T/O相界调整至室温附近;
    步骤S200,进一步调整C/T相界和O/R相界:
    进一步通过掺杂,调整立方顺电相C与四方相T之间的C/T相界、以及正交相O与菱方相R之间的O/R相界,以使得C/T相界和O/R相界向T/O相界靠拢;
    步骤S300,获得第二无铅压电材料:
    在C/T相界和O/R相界向T/O相界靠拢的过程中,获得多种不同压电常数d 33、不同居里温度Tc的第二无铅压电材料。
  2. 根据权利要求1所述的方法,其特征在于,所述步骤S200中,所述C/T相界和O/R相界向T/O相界靠拢进一步包括如下情形:
    C/T相界和O/R相界、以及T/O相界趋于汇聚于一点;或者
    C/T相界和O/R相界、以及T/O相界既不显性地汇聚于一点,也不隐性地汇聚于一点。
  3. 根据权利要求1所述的方法,其特征在于,所述第一无铅压电材料包括:
    晶体类型为钙钛矿结构的无铅压电陶瓷。
  4. 根据权利要求1所述的方法,其特征在于,所述第二无铅压电材料包括:
    铌酸锂钾钠基三元系无铅压电陶瓷。
  5. 根据权利要求1所述的方法,其特征在于:
    所述室温附近选择20℃-30℃左右。
  6. 根据权利要求1所述的方法,其特征在于:
    所述室温附近选择10℃-40℃左右。
  7. 根据权利要求4所述的方法,其特征在于,所述第二无铅压电材料的组分通式为:
    (1-m-n)[(K 0.5-yNa 0.5+y) 0.96Li 0.04Nb 1-xSb xO 3]-m[(Bi 0.5(Na zK 1-z) 0.5ZrO 3]-nAZrO 3表示,式中0≤m≤0.02,0≤n≤0.1,0≤x≤0.07,0≤y≤0.1,z=0、1,A表示选自下列的二价金属离子之一或者其组合:Ca、Mg、Ba。
  8. 根据权利要求7所述的方法,其特征在于:
    压电常数d 33范围为190pC/N-670pC/N。
  9. 根据权利要求7所述的方法,其特征在于:
    居里温度Tc范围为130℃-410℃。
  10. 根据权利要求7所述的方法,其特征在于:
    当居里温度Tc的范围在290℃-410℃时,C/T相界与T/O相界间的温度差在270℃-350℃之间,其d 33的范围为190pC/N-330pC/N。
  11. 根据权利要求4所述的方法,其特征在于,所述第二无铅压电材料的组分为以下之一:
    0.99(K 0.48Na 0.52) 0.96Li 0.04NbO 3-0.01Bi 0.5K 0.5ZrO 3,或
    0.99(K 0.48Na 0.52) 0.96Li 0.04Nb 0.97Sb 0.03O 3-0.01Bi 0.5K 0.5ZrO 3,或
    0.99(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3
  12. 根据权利要求7所述的方法,其特征在于:
    当Tc的范围在200℃-290℃时,C/T相界与T/O相界间的温度差在180℃-270℃之间,其d 33的范围在310pC/N-460pC/N。
  13. 根据权利要求4所述的方法,其特征在于,所述第二无铅压电材料的组分为以下之一:
    0.97(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.02CaZrO 3,或
    0.96(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.03CaZrO 3
  14. 根据权利要求7所述的方法,其特征在于:
    当Tc的范围在130℃-200℃时,C/T相界与T/O相界间的温度差在110℃-180℃之间,其d 33的范围在460pC/N-670pC/N。
  15. 根据权利要求4所述的方法,其特征在于,所述第二无铅压电材料的组分为以下之一:
    0.95(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.04CaZrO 3,或
    0.94(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.05CaZrO 3,或
    0.935(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.055CaZrO 3
  16. 根据权利要求1所述的方法,其特征在于:
    所述室温附近覆盖:-20℃~40℃左右、或者-20℃以下、或者40℃以上。
  17. 根据权利要求16所述的方法,其特征在于,所述第二无铅压电材料包括:钛酸钡基三元系无铅压电陶瓷。
  18. 根据权利要求16所述的方法,其特征在于,所述第二无铅压电材料的组分通式为:
    (1-x-y)BaTiO 3-x(Ba 0.5Ca 0.5)SnO 3-yBa(Mg 1/3Nb 2/3)O 3,式中0≤x≤0.2,0≤y≤0.1。
  19. 根据权利要求16所述的方法,其特征在于:
    压电常数d 33的范围在300pC/N-1120pC/N。
  20. 根据权利要求16所述的方法,其特征在于:
    居里温度Tc的范围在0℃-100℃。
  21. 根据权利要求16所述的方法,其特征在于,所述第二无铅压电材料的组分为:
    0.89BaTiO 3-0.11(Ba 0.5Ca 0.5)SnO 3
  22. 一种根据权利要求1所述的方法而获得的无铅压电材料,其特征在于:
    所述无铅压电材料的四方相T与正交相O之间的T/O相界位于室温附近;
    且所述无铅压电材料的立方顺电相C与四方相T之间的C/T相界、以及正交相O与菱方相R之间的O/R相界,均处于向T/O相界靠拢的状态;其中:
    相界靠拢的不同程度,与所述无铅压电材料的不同压电常数d 33、不同居里温度Tc关联。
  23. 根据权利要求22所述的无铅压电材料,其特征在于,所述靠拢包括如下情形:
    C/T相界和O/R相界、以及T/O相界趋于汇聚于一点;或者
    C/T相界和O/R相界、以及T/O相界既不显性地汇聚于一点,也不隐性地汇聚于一点。
  24. 根据权利要求22所述的无铅压电材料,其特征在于,所述无铅压电材料包括:
    晶体类型为钙钛矿结构的无铅压电陶瓷。
  25. 根据权利要求22所述的无铅压电材料,其特征在于,所述无铅压电材料包括:
    铌酸锂钾钠基三元系无铅压电陶瓷。
  26. 根据权利要求25所述的无铅压电材料,其特征在于,所述无铅压电材料的组分通式为:
    (1-m-n)[(K 0.5-yNa 0.5+y) 0.96Li 0.04Nb 1-xSb xO 3]-m[(Bi 0.5(Na zK 1-z) 0.5ZrO 3]-nAZrO 3表示,式中0≤m≤0.02,0≤n≤0.1,0≤x≤0.07,0≤y≤0.1,z=0、1,A表示选自下列的二价金属离子之一或者其组合:Ca、Mg、Ba。
  27. 根据权利要求26所述的无铅压电材料,其特征在于:
    压电常数d 33范围为190pC/N-670pC/N。
  28. 根据权利要求26所述的无铅压电材料,其特征在于:
    居里温度Tc范围为130℃-410℃。
  29. 根据权利要求26所述的无铅压电材料,其特征在于:
    当居里温度Tc的范围在290℃-410℃时,C/T相界与T/O相界间的温度差在270℃-350℃之间,其d 33的范围为190pC/N-330pC/N。
  30. 根据权利要求25所述的无铅压电材料,其特征在于,所述无铅压电材料的组分为以下之一:
    0.99(K 0.48Na 0.52) 0.96Li 0.04NbO 3-0.01Bi 0.5K 0.5ZrO 3,或
    0.99(K 0.48Na 0.52) 0.96Li 0.04Nb 0.97Sb 0.03O 3-0.01Bi 0.5K 0.5ZrO 3,或
    0.99(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3
  31. 根据权利要求26所述的无铅压电材料,其特征在于:
    当Tc的范围在200℃-290℃时,C/T相界与T/O相界间的温度差在180℃-270℃之间,其d 33的范围在310pC/N-460pC/N。
  32. 根据权利要求25所述的无铅压电材料,其特征在于,所述无铅压电材料的组分为以下之一:
    0.97(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.02CaZrO 3,或
    0.96(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.03CaZrO 3
  33. 根据权利要求26所述的无铅压电材料,其特征在于:
    当Tc的范围在130℃-200℃时,C/T相界与T/O相界间的温度差在110℃-180℃之间,其d 33的范围在460pC/N-670pC/N。
  34. 根据权利要求25所述的无铅压电材料,其特征在于,所述无铅压电材料的组分为以下之一:
    0.95(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.04CaZrO 3,或
    0.94(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.05CaZrO 3,或
    0.935(K 0.48Na 0.52) 0.96Li 0.04Nb 0.94Sb 0.06O 3-0.01Bi 0.5K 0.5ZrO 3-0.055CaZrO 3
  35. 根据权利要求22所述的无铅压电材料,其特征在于,所述无铅压电材料包括:钛酸钡基三元系无铅压电陶瓷。
  36. 根据权利要求35所述的无铅压电材料,其特征在于,所述无铅压电材料的组分通式为:
    (1-x-y)BaTiO 3-x(Ba 0.5Ca 0.5)SnO 3-yBa(Mg 1/3Nb 2/3)O 3,式中0≤x≤0.2,0≤y≤0.1。
  37. 根据权利要求36所述的无铅压电材料,其特征在于:
    压电常数d 33的范围在300pC/N-1120pC/N。
  38. 根据权利要求36所述的无铅压电材料,其特征在于:
    居里温度Tc的范围在0℃-100℃。
  39. 根据权利要求37所述的无铅压电材料,其特征在于,所述无铅压电材料的组分为:
    0.89BaTiO 3-0.11(Ba 0.5Ca 0.5)SnO 3
  40. 一种无铅压电材料的制备工艺,其用于制备权利要求26-34,36-39中任一所述的无铅压电材料,所述方法包括:
    步骤T001:按照相应的化学通式选择原料并进行配料;
    步骤T002:采用传统固相陶瓷烧结制备工艺制备所述无铅压电材料。
  41. 根据权利要求40所述的制备工艺,其特征在于:
    所述原料从如下中进行选择:碳酸钠、碳酸钾、碳酸锂、五氧化二铌、三氧化二锑、氧化铋、氧化锆、氧化镁、氧化锡、碳酸钙、碳酸锶和碳酸钡。
  42. 一种硬性压电陶瓷,其特征在于:
    所述硬性压电陶瓷,基于权利要求1-39中任一所述的方法获得。
  43. 一种高能转换器,其特征在于:
    所述高能转换器采用权利要求42所述的硬性压电陶瓷。
  44. 一种软性压电陶瓷,其特征在于:
    所述软性压电陶瓷,基于权利要求1-39中任一所述的方法获得。
  45. 一种传感器,其特征在于:
    所述传感器采用权利要求44所述的软性压电陶瓷。
  46. 一种制动器,其特征在于:
    所述制动器采用权利要求44所述的软性压电陶瓷。
  47. 一种电子元件,其特征在于:
    所述电子元件采用如下硬性压电陶瓷之一:权利要求42的硬性压电陶瓷,和/或采用如下软性压电陶瓷:权利要求44的软性压电陶瓷。
  48. 一种电子设备,其特征在于:
    所述电子设备采用如下硬性压电陶瓷之一:权利要求42的硬性压电陶瓷,和/或采用如下软性压电陶瓷:权利要求44的软性压电陶瓷。
  49. 一种获得无铅压电材料的方法,所述方法包括:
    步骤S101,调整第一无铅压电材料的T/O相界:
    针对第一无铅压电材料,通过掺杂将其四方相T与正交相O之间的T/O相界调整至材料服役温度附近;
    步骤S201,进一步调整C/T相界和O/R相界:
    进一步通过掺杂,调整立方顺电相C与四方相T之间的C/T相界、以及正交相O与菱方相R之间的O/R相界,以使得C/T相界和O/R相界向T/O相界靠拢,所述相界靠拢包括:
    C/T相界和O/R相界、以及T/O相界趋于汇聚于一点,但无法汇聚于该点;或者
    C/T相界和O/R相界、以及T/O相界既不显性地汇聚于一点,也不隐性地汇聚于一点;
    步骤S301,获得第二无铅压电材料:
    在C/T相界和O/R相界向T/O相界靠拢的过程中,获得第二无铅压电材料。
  50. 根据权利要求49所述的方法,其特征在于,
    所述服役温度附近包括如下任意一种:-20℃~40℃、40℃以上、-20℃以下。
  51. 根据权利要求49所述的方法,其特征在于,所述第二无铅压电材料包括:铌酸锂钾钠基三元系无铅压电陶瓷,或钛酸钡基三元系无铅压电陶瓷。
  52. 根据权利要求49所述的方法,其特征在于,所述第二无铅压电材料的组分通式为:
    (1-m-n)[(K 0.5-yNa 0.5+y) 0.96Li 0.04Nb 1-xSb xO 3]-m[(Bi 0.5(Na zK 1-z) 0.5ZrO 3]-nAZrO 3表示,式中0≤m≤0.02,0≤n≤0.1,0≤x≤0.07,0≤y≤0.1,z=0、1,A表示选自下列的二价金属离子之一或者其组合:Ca、Mg、Ba;或者
    (1-x-y)BaTiO 3-x(Ba 0.5Ca 0.5)SnO 3-yBa(Mg 1/3Nb 2/3)O 3,式中0≤x≤0.2,0≤y≤0.1。
  53. 一种无铅压电材料,其特征在于,所述无铅压电材料基于权利要求49-52中任一方法获得。
  54. 一种硬性压电陶瓷,其特征在于:
    所述硬性压电陶瓷,基于权利要求49-52中任一所述的方法获得。
  55. 一种高能转换器,其特征在于:
    所述高能转换器采用权利要求54所述的硬性压电陶瓷。
  56. 一种软性压电陶瓷,其特征在于:
    所述软性压电陶瓷,基于权利要求49-52中任一所述的方法获得。
  57. 一种传感器,其特征在于:
    所述传感器采用权利要求56所述的软性压电陶瓷。
  58. 一种制动器,其特征在于:
    所述制动器采用权利要求56所述的软性压电陶瓷。
  59. 一种电子元件,其特征在于:
    所述电子元件采用如下硬性压电陶瓷:权利要求54的硬性压电陶瓷,和/或采用如下软性压电陶瓷:权利要求56的软性压电陶瓷。
  60. 一种电子设备,其特征在于:
    所述电子设备采用如下硬性压电陶瓷:权利要求54的硬性压电陶瓷,和/或采用如下软性压电陶瓷:权利要求56的软性压电陶瓷。
PCT/CN2019/083695 2018-04-21 2019-04-22 一种获得无铅压电材料的方法、相应无铅压电材料 WO2019201353A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020558490A JP7462275B2 (ja) 2018-04-21 2019-04-22 鉛フリー圧電材料の取得方法、対応する鉛フリー圧電材料
EP19788532.0A EP3786136A4 (en) 2018-04-21 2019-04-22 PROCESS FOR OBTAINING A LEAD-FREE PIEZOELECTRIC MATERIAL AND CORRESPONDING LEAD-FREE PIEZOELECTRIC MATERIAL
CN201980027113.1A CN112469682B (zh) 2018-04-21 2019-04-22 一种获得无铅压电材料的方法、相应无铅压电材料
US17/076,521 US20220037584A1 (en) 2018-04-21 2020-10-21 Method for Obtaining Lead-free Piezoelectric Materials and Corresponding Lead-free Piezoelectric Materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810364324 2018-04-21
CN201810364324.1 2018-04-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/076,521 Continuation US20220037584A1 (en) 2018-04-21 2020-10-21 Method for Obtaining Lead-free Piezoelectric Materials and Corresponding Lead-free Piezoelectric Materials

Publications (1)

Publication Number Publication Date
WO2019201353A1 true WO2019201353A1 (zh) 2019-10-24

Family

ID=68239729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083695 WO2019201353A1 (zh) 2018-04-21 2019-04-22 一种获得无铅压电材料的方法、相应无铅压电材料

Country Status (5)

Country Link
US (1) US20220037584A1 (zh)
EP (1) EP3786136A4 (zh)
JP (1) JP7462275B2 (zh)
CN (1) CN112469682B (zh)
WO (1) WO2019201353A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111900246A (zh) * 2020-08-06 2020-11-06 清华大学 一种铌酸锂钠基无铅压电陶瓷的极化方法
CN111925209A (zh) * 2020-08-10 2020-11-13 国网河南省电力公司电力科学研究院 一种无铅声振压电换能材料及其制备方法
CN114988871A (zh) * 2022-05-16 2022-09-02 清华大学 一种铌酸钾钠基无铅压电陶瓷及其制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114409401A (zh) * 2022-01-21 2022-04-29 广东奥迪威传感科技股份有限公司 铌酸钾钠系压电陶瓷及其制备方法、电子设备
CN116283273A (zh) * 2022-12-07 2023-06-23 贵州大学 一种无铅压电陶瓷材料及其制备方法
CN116444270A (zh) * 2023-03-13 2023-07-18 国网智能电网研究院有限公司 一种高压电性能和高介电性能弛豫铁电陶瓷的制备方法
CN116768623A (zh) * 2023-06-13 2023-09-19 同济大学 具有温度稳定性的铌酸钾钠基织构压电陶瓷及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204336A (ja) * 2006-02-03 2007-08-16 Denso Corp 鉛フリー圧電セラミックス
US20070228318A1 (en) * 2006-03-31 2007-10-04 Fujifilm Corporation Piezoelectric ceramic and method of manufacturing the same
CN103613379A (zh) * 2013-11-04 2014-03-05 西安交通大学 一种高性能无铅压电陶瓷及其制备工艺
CN107098699A (zh) * 2017-03-28 2017-08-29 同济大学 宽烧结温区及宽组分调节的无铅压电织构陶瓷及制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526833B1 (en) * 2000-03-13 2003-03-04 Massachusetts Institute Of Technology Rhombohedral-phase barium titanate as a piezoelectric transducer
JP4631246B2 (ja) 2002-03-20 2011-02-16 株式会社豊田中央研究所 圧電磁器組成物及びその製造方法並びに圧電素子及び誘電素子
JP2006236810A (ja) * 2005-02-25 2006-09-07 Ngk Insulators Ltd 発光装置
CN101376594A (zh) * 2007-08-30 2009-03-04 香港理工大学 铌锑酸钠钾系无铅压电陶瓷组合物
CN101182203A (zh) * 2007-11-27 2008-05-21 山东大学 钛酸钡基压电陶瓷材料及其制备方法与应用
CN101798218B (zh) * 2010-03-18 2012-05-23 西安交通大学 一种锆钛酸钡和铌酸钾钠复合的无铅压电厚膜的制备方法
CN101863661B (zh) * 2010-06-04 2016-01-06 中国科学院上海硅酸盐研究所 织构化铌酸钾钠基无铅压电陶瓷的制备方法
CN101935215A (zh) * 2010-09-07 2011-01-05 聊城大学 具有良好温度稳定性的铌酸钾钠锂基无铅压电陶瓷复合物
JP5934927B2 (ja) * 2012-05-10 2016-06-15 本多電子株式会社 圧電磁器組成物
CN103288450B (zh) * 2013-05-24 2014-10-01 四川大学 铌酸钾钠-锆钛酸铋钾/锂系无铅压电陶瓷
CN103482977A (zh) * 2013-09-02 2014-01-01 四川大学 高压电常数铌锑酸钾钠-锆酸铋钠钾无铅压电陶瓷及制备方法
CN103601493B (zh) * 2013-10-15 2015-09-30 陕西科技大学 一种knn-ls无铅压电陶瓷及其制备方法
CN105732032A (zh) 2016-01-19 2016-07-06 上海交通大学 高致密度的铌锑酸钾钠锂-锆酸铋钠钙二元系无铅压电陶瓷及其制备方法
CN107098701B (zh) * 2017-04-27 2020-09-08 成都信息工程大学 铌酸钾钠锂-锆酸铋钠钾-钪酸铋三元系无铅压电陶瓷

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204336A (ja) * 2006-02-03 2007-08-16 Denso Corp 鉛フリー圧電セラミックス
US20070228318A1 (en) * 2006-03-31 2007-10-04 Fujifilm Corporation Piezoelectric ceramic and method of manufacturing the same
CN103613379A (zh) * 2013-11-04 2014-03-05 西安交通大学 一种高性能无铅压电陶瓷及其制备工艺
CN107098699A (zh) * 2017-03-28 2017-08-29 同济大学 宽烧结温区及宽组分调节的无铅压电织构陶瓷及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3786136A4 *
YAO, YONGGANG ET AL.: "Relationship Between Phase Coexistence and Properties in Piezoelectric Materials", MATERIALS CHINA, vol. 33, no. 1, 31 January 2014 (2014-01-31), pages 32 - 38, XP055643412, DOI: 10.7502/j.issn.1674-3962.2014.01.06 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111900246A (zh) * 2020-08-06 2020-11-06 清华大学 一种铌酸锂钠基无铅压电陶瓷的极化方法
CN111925209A (zh) * 2020-08-10 2020-11-13 国网河南省电力公司电力科学研究院 一种无铅声振压电换能材料及其制备方法
CN114988871A (zh) * 2022-05-16 2022-09-02 清华大学 一种铌酸钾钠基无铅压电陶瓷及其制备方法和应用
CN114988871B (zh) * 2022-05-16 2023-07-14 清华大学 温度稳定型铌酸钾钠基无铅压电陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
EP3786136A4 (en) 2021-06-16
JP2021522144A (ja) 2021-08-30
EP3786136A1 (en) 2021-03-03
JP7462275B2 (ja) 2024-04-05
CN112469682A (zh) 2021-03-09
US20220037584A1 (en) 2022-02-03
CN112469682B (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
WO2019201353A1 (zh) 一种获得无铅压电材料的方法、相应无铅压电材料
Liu et al. Ultrahigh energy density and improved discharged efficiency in bismuth sodium titanate based relaxor ferroelectrics with A-site vacancy
Praveen et al. Effect of poling process on piezoelectric properties of sol–gel derived BZT–BCT ceramics
Wang et al. High electrostrain with high Curie temperature in BiFeO3-BaTiO3-based ceramics
Yang et al. High piezoelectric properties of BaTiO3–xLiF ceramics sintered at low temperatures
Yan et al. High-performance lead-free ferroelectric BZT–BCT and its application in energy fields
Bai et al. Phase transition behavior and enhanced electromechanical properties in (Ba0. 85Ca0. 15)(ZrxTi1− x) O3 lead-free piezoceramics
Hao et al. Phase transitions, relaxor behavior, and electrical properties in (1− x)(Bi0. 5Na0. 5) TiO3–x (K0. 5Na0. 5) NbO3 lead-free piezoceramics
Cen et al. A high temperature stable piezoelectric strain of KNN-based ceramics
Wang et al. Preparation of KNN based lead-free piezoelectric ceramics via composition designing and two-step sintering
Khan et al. Enhancing piezoelectric coefficient with high Curie temperature in BiAlO3-modified BiFeO3–BaTiO3 lead-free ceramics
Lin et al. Ferroelectric and piezoelectric properties of Bi0. 5Na0. 5TiO3–SrTiO3–Bi0. 5Li0. 5TiO3 lead-free ceramics
Shang et al. Effect of configuration entropy on dielectric relaxor, ferroelectric properties of high-entropy (NaBiBa) x (SrCa)(1-3 x)/2TiO3 ceramics
Tokay et al. A review of potassium sodium niobate and bismuth sodium titanate based lead free piezoceramics
Merselmiz et al. Design of lead-free BCZT-based ceramics with enhanced piezoelectric energy harvesting performances
Liu et al. Effects of antiferroelectric substitution on the structure and ferroelectric properties of a complex perovskite solid solution
Yan et al. Enhanced piezoelectric activity around orthorhombic-tetragonal phase boundary in multielement codoping BaTiO3
Amu-Darko et al. Relaxor ferroelectric and dielectric properties of (1–x) Ba (Zr0. 1Ti0. 9) O3–xBa (Mg1/3Ta2/3) O3 ceramics
Karakaya et al. Enhanced room temperature energy storage density of Bi (Li1/3Ti2/3) O3 substituted Bi0. 5Na0. 5TiO3–BaTiO3 ceramics
Al-Aaraji et al. Progress In Lead Free-Relaxor Ferroelectrics For Energy Storage Applications.
Kuanar et al. An elementary survey on structural, electrical, and optical properties of perovskite materials.
Liu et al. Composition design and electrical properties of (K0. 48Na0. 52) NbO3-xLiSbO3}-y {(Bi0. 5Na0. 5)(Zr1-zSnz) O3} ceramics
Baraskar et al. Improved ferroelectric, piezoelectric and electrostrictive properties of dense BaTiO3 ceramic
Zhang et al. A new low-temperature firable 0.95 Pb (ZrxTi1-x) O3-0.05 Bi (Mn1/2Ti1/2) O3 ceramic for high-power applications
Athikesavan et al. Evaluation of the structure and electrical properties of (1− x) Bi 0. 5 (Na 0. 8 0 K 0. 2 0) 0. 5 TiO3–x LiNbO3 ceramic composite for piezoelectric sensor applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788532

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558490

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019788532

Country of ref document: EP

Effective date: 20201123