CN116283273A - 一种无铅压电陶瓷材料及其制备方法 - Google Patents

一种无铅压电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN116283273A
CN116283273A CN202211562188.XA CN202211562188A CN116283273A CN 116283273 A CN116283273 A CN 116283273A CN 202211562188 A CN202211562188 A CN 202211562188A CN 116283273 A CN116283273 A CN 116283273A
Authority
CN
China
Prior art keywords
ceramic
ceramic material
piezoelectric ceramic
bczt
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211562188.XA
Other languages
English (en)
Other versions
CN116283273B (zh
Inventor
郑德一
毛润钰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou University
Original Assignee
Guizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou University filed Critical Guizhou University
Priority to CN202211562188.XA priority Critical patent/CN116283273B/zh
Publication of CN116283273A publication Critical patent/CN116283273A/zh
Application granted granted Critical
Publication of CN116283273B publication Critical patent/CN116283273B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • C04B2235/3249Zirconates or hafnates, e.g. zircon containing also titanium oxide or titanates, e.g. lead zirconate titanate (PZT)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种无铅压电陶瓷材料及其制备方法,涉及电子陶瓷材料技术领域,其技术方案要点是:电陶瓷材料(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3+x Y3++x Nb5+;0<x≤0.2mol%,制备方法包括以下步骤:S1:选取碳酸钡、碳酸钙、二氧化锆、二氧化钛、氧化钇和五氧化二铌作为原材料;S2:将原材料进行烘干并称重;S3:将干燥后的原材料在乙醇中与ZrO2球一起球磨;S4:将干燥后的粉末再一次进行干燥,然后进行预煅烧;S5:将得到的粉末在20MPa下压成直径12毫米,厚度1.1毫米的圆盘;S6:使用石蜡作为粘结剂,粘结剂燃烧后,将样品放在1400℃空气中烧结4小时即得。通过两种元素掺杂,烧结后在陶瓷内生成了具有良好铁电性和铁磁性的双钙钛矿结构Ba2YNbO6物相,使该陶瓷材料获得了良好的压电性和居里温度。

Description

一种无铅压电陶瓷材料及其制备方法
技术领域
本发明涉及电子陶瓷材料技术领域,更具体地说,它涉及一种无铅压电陶瓷材料及其制备方法。
背景技术
近年来,无铅压电材料如K0.5Na0.5NbO3(KNN)-、Bi0.5Na0.5TiO3(BNT)-、BaTiO3(BT)-基陶瓷成为研究热点。在现有的陶瓷体系中,BCZT陶瓷是一种典型的BT基无铅压电陶瓷。由于其相对较高的压电常数、较低的损耗、中等的介电常数和较高的密度,被广泛认为是无铅压电陶瓷的候选材料之一。然而,目前的性能还不足以完全取代铅基压电陶瓷的实际应用。为了取代铅基压电陶瓷,提高压电性能迫在眉睫。提高BCZT陶瓷压电性能的方法有很多,如化合物引入和元素掺杂[7]。例如在BCZT中引入新的钙钛矿相(BNT)会导致晶格畸变并改善陶瓷的压电性能(例如d33=450p.m./V),但居里温度从82℃下降到约70℃。元素掺杂也可以改善压电陶瓷的压电性能,但会降低其居里温度[10-14]。例如,BCZT-xTm3+陶瓷在x=0.5%(d33=532pC/N)时获得了较优异的压电性。但其居里温度仅为74℃,远低于纯BCZT陶瓷(Tc=85℃)。
基于上述问题,申请人发明了一种新的无铅压电陶瓷材料及其制备方法。
发明内容
本发明的目的是提供一种无铅压电陶瓷材料及其制备方法,该材料解决了背景技术中提到的技术问题。
本发明的上述技术目的是通过以下技术方案得以实现的:一种无铅压电陶瓷材料,由以下化学式表示:
(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3+x Y3++x Nb5+
其中,x为原子百分比,0<x≤0.2mol%。
本发明还提供了一种无铅压电陶瓷材料的制备方法,具体包括以下步骤:
S1:选取碳酸钡、碳酸钙、二氧化锆、二氧化钛、氧化钇和五氧化铌作为原材料;
S2:将原材料进行烘干并称重;
S3:将干燥后的原材料在乙醇中与ZrO2球一起球磨;
S4:将干燥后的粉末再一次进行干燥,然后进行预煅烧;
S5:将得到的粉末在20MPa下压成直径12毫米,厚度1.1毫米的圆盘;
S6:使用石蜡作为粘结剂,粘结剂燃烧后,将样品放在1400℃空气中烧结4小时即得无铅压电陶瓷材料。
进一步的,所述S2中烘干温度为100℃,干燥时间为12h。
进一步的,所述S3中球磨时间为24h。
进一步的,所述S4中干燥温度为1200℃,预煅烧时间为2h。
综上所述,本发明具有的有益效果是该陶瓷材料引入了双钙钛矿结构Ba2YNbO6,获得了良好的电性能和居里温度。在掺杂量x=0.1mol%时,综合电性能和居里温度达到最优。压电常数(d33)为667pC/N、室温下的介电常数(εr)为5600,机电耦合系数(kp)为56%,介电损耗(tanδ)为2.2%,剩余极化强度(Pr)为12.6μC/cm2,居里温度(Tc)达到93℃左右。相较于未掺杂的BCZT陶瓷的性能(d33=330pC/N,εr=3150,kp=44%tanδ=2.9%,Pr=8.1μC/cm2,(Tc=81℃),所有BCZT-x(Nb+Y)陶瓷的性能均有增强,其中BCZT-0.1mol%(Nb+Y)陶瓷的电性能和居里温度最佳。
附图说明
图1是本发明实施例1中BCZT和BCZT-x(Nb+Y)样品的XPS结果图;
图2是本发明实施例1中BCZT-x(Nb+Y)o1s结合态的XPS光谱;
图3是本发明实施例1中BCZT-x(Nb+Y)陶瓷的x射线衍射图;
图4是本发明实施例1中x=0.1mol%样品的同步XRD Rietveld细化结果;
图5是本发明实施例1中BCZT-x(Nb+Y)陶瓷的介电常数和损耗随温度的函数关系;
图6是本发明实施例1中所有样品的相变温度图;
图7是本发明实施例1中BCZT-x(Nb+Y)陶瓷的SEM图像;
图8是本发明实施例1中陶瓷的粒度分布图;
图9是本发明实施例1中x=0.1mol%样品陶瓷的TEM图像;
图10是本发明实施例1中BCZT和BCZT-x(Nb+Y)的相对密度和体积密度之间的关系图;
图11是本发明实施例1中陶瓷平均晶粒尺寸柱状图;
图12是本发明实施例1中BCZT-x(Nb+Y)陶瓷在3kV,10Hz,室温条件下的P-E磁滞回线;
图13(b)是本发明实施例1中矫顽力场(Ec)和剩余极化率(Pr)随x的变化折线图;
图13(c)是本发明实施例1中压电常数(d33)和机电耦合系数(kp)随x的变化折线图;
图13(d)是本发明实施例1中介电常数(εr)和介质损耗(tanδ)随x的变化折线图;
图14是本发明实施例1中BCZT基压电陶瓷中压电常数(d33)和居里温度(Tc)的比较图;
图15是本发明实施例1中频率为100Hz、1kHz、10kHz、100kHz的BCZT-x(Nb+Y)的温度依赖性介电常数。
具体实施方式
以下结合附图1-15对本发明作进一步详细说明。
实施例1:一种无铅压电瓷材料,由以下化学式表示:
(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3+x Y3++x Nb5+
其中,x为原子百分比,0<x≤0.2mol%。
本实施例中,通过X射线衍射(XRD,Model Panalytical/X’pert-pro,Holland)对陶瓷样品的相结构进行了表征。使用ps-9030光电子能谱仪进行1~1000eV的X射线光电子能谱(XPS)分析。使用场发射扫描电子显微镜(FESEM)(SUPRA 40,德国Zeiss)对陶瓷样品的微观结构进行扫描。为了测试BCZT-x(Nb+Y)陶瓷的电性能,在陶瓷的两个表面涂上银膏,并在700℃下烧结30min。
在硅油浴中施加3.0kV/mm的直流电场,在30℃下极化30min。用准静态d33测定仪(ZJ-3AN,Chain)测量压电系数(d33)。采用UX21型电子振荡器谐振和反谐振技术计算1kHz下的机电耦合系数(kp)。使用TH2618B型电容测试仪测量介电损耗(kp)和电容(Cp),然后计算室温下的介电常数(εr)。用阻抗分析仪(型号WK6500B,英国)测量了作为温度函数的介电常数。测量温度范围为20~200℃,频率为100Hz、1kHz、10kHz、100kHz、1MHz。使用RadiantPrecision PremierLC铁电测试仪(Radiant Technologies Inc,Albuquerque,NM)在3kV,10Hz和室温下测量了陶瓷样品的铁电滞后环(P-E)。
XPS缺陷化学分析
图1进行了XPS测量以研究Y和Nb离子共掺杂对BCZT陶瓷纳米粒子中的电子结构和电子态密度的影响。这些测量证实存在Ba,Ca,Zr,Ti,Y,Nb和O峰。然而,所有的光谱也显示碳的C1s峰。该峰被认为是校准样品中存在的元素结合能的参考峰。从Ba 3d条带可以明显看出未反应的BaCO3化合物的存在。在777.9eV和779.4eV处的峰分别对应于BaTiO3和BaCO3中的钡。Ba 3d5/2峰由778eV处的钛酸盐谱线和779.3eV处的碳酸盐谱线组成。类似地,在91-94.5eV时,钛酸盐和碳酸盐在95.5-97.3eV时的Ba 4d呈双重态。
对于BCZT样品,在778eV附近观察到Ba 3d5/2峰,在91.55eV附近观察到Ba 4d双峰。Ti(2p)光谱由2p1/2和2p3/2电子组成,分别发生在451eV和461eV附近。这证实了BCZT粒子在纯相中的形成,并排除了任何二次相形成的可能性。而BCZT-x(Nb+Y)样品在153eV附近出现了一个Y 3d的峰,推测Y离子已经扩散到Ba晶格中。同时,205eV附近Nb 3d的出现,支持了Nb离子在Ti中的扩散。因此,Ba 3d5/2峰和Ti 2p峰消失,而Y 3d和Nb 3d峰出现,这表明Y和Nb促进了反应,进入了BCZT的晶格,占据了Ba和Ti的位置。所以初步认为有Ba2Y2O5或Ba2Nb2O7的生成。然后,通过氧元素分析进一步论证了Y和Nb对BCZT相组成和结构的作用机制。
为了确定BCZT中的氧空位浓度是否受到Y和Nb掺杂的限制,我们测量了纯BCZT和BCZT-0.1%(Nb+Y)的XPS。O 1s结合态的XPS谱如图2所示。该曲线可拟合为以529eV和532eV为中心的两个峰值。529eV处的峰对应于晶格氧,而531eV处的峰对应于氧空位。峰下面积表示氧空位浓度。从图2可以看出,当0.1%Y3+掺杂到BCZT中时,氧空位的相对密度增加。当BCZT中掺杂0.1mol%Nb5+时,氧空位的相对密度略有下降。这一结果无疑表明,在BCZT中掺杂Y引入了氧空位,而Nb抑制了氧空位浓度。在ABO3中,离子半径较小的a位点离子M3+/M2+可能占据两个位点。占据b位时,Ti4+和M3+离子之间的电荷差降低了b位的库仑力,从而形成氧空位和吸收带。根据容差因子原理,
Figure BDA0003985152210000061
(其中,rA、rB、rO分别为A位阳离子、B位阳离子和氧阴离子的离子半径),A位被大离子占据[r(Rn+)>0.094nm],B位被小离子占据[r(Rn+)<0.0087nm)]。BCZT-x(Nb+Y)陶瓷系统,
Figure BDA0003985152210000062
Figure BDA0003985152210000071
由于r(Ti4 +)<r(Y3+)<r(Ba2+),Y是一种两性掺杂剂,既可以占据A位点,也可以占据B位点,Y3+可以先取代B位点,然后在B位点饱和后再取代a位点。因此,当掺杂量较低(x=0.1%)时,低价态Y3+首先占据B位,产生氧空位进行离子电荷补偿,如公式(1)所示,导致氧空位浓度增加。以同样的方式,高价位Nb5+作为供体占据B位点,并由电子进行电补偿,如方程式(2)所示,使氧空位浓度降低。当Y和Nb共掺杂时,整体氧空位浓度变化不大,如图3-图6所示。
Figure BDA0003985152210000072
Figure BDA0003985152210000073
从以上的观察可以得出结论,所有的样品都是纯的,即没有不纯的化合物或二次相。此外,当x≤0.1%时,Y3+离子占据B位,Nb5+离子占据b位,进一步提出有Ba2Y2O5或Ba2Nb2O7的生成。而当Y浓度较高时,即x≥0.2%时,Y3+离子只占据A位,导致氧空位减少。
相结构
图3中a1显示了在1400℃烧结的不同掺杂量的BCZT-x(Nb+Y)陶瓷的X射线衍射(XRD)图案。具有R(pdf#85-0368)、O(pdf#81-2200)和T(pdf#05-0626)对称性的BaTiO3的标准衍射峰用垂直线表示以供比较。从图3中可以观察到,所有陶瓷样品均具有均一的峰和典型的钙钛矿结构,表明Ba2+、Ca2+、Ti4+、Zr4+、Y3+和Nb5+被并入氧八面体晶格中,形成稳定的钙钛矿结构。同时,图3中a1显示在30和64附近有两个不属于BCZT的峰。通过Jade Conduct物相检索分析,发现这两个峰与PDF卡(PDF#24-1144)相匹配,并证实为钡钇铌氧化物(Ba2YbNbO6)。放大后将其他峰与标准PDF卡(pdf#24-1144)进行比对,结果一致。由于峰强度较弱在图中表现不明显,这里只放大了30°和64°左右的峰,如图3中的a3所示。
x=0.1mol%样品的同步辐射XRD Rietveld精化结果显示于图4中。用固定的背景、同步加速器仪器信息和峰型对XRD图谱进行拟合,得到晶格参数、相分数、细化参数和原子占比,见表1。
表1晶格参数、相分数、细化参数和原子占比
Figure BDA0003985152210000081
通过Rietveld细化结果确认了三种相结构的共存,进一步得到了O、R、T的相分数。图5显示了BCZT-x(Nb+Y)陶瓷的εr和tanδ随5khz温度变化的函数关系,相变温度如图6所示。从εr-T和tanδ-T曲线的异常峰可以清晰地观察到两种相变,分别代表Rhombohedral-Orthogonal(R-O)和Orthogonal-Tetragonal(O-T)相变。x=0.1mol%样品的介电常数和损耗的温度依赖性如图6中的c2所示,可以看出,三相的分布与Rietveld精化的结果一致。室温下形态相边界(MPB)的存在导致极化各向异性消失,能量分布平坦,从而促进了T相的(001)T和R相的(111)R之间的极化旋转。最终产生了高压电性能和高介电常数。此外,XRD分析发现陶瓷中形成一种新相钇铌酸钡(Ba2YNbO6,匹配PDF卡(PDF#24-1042),Ba2YNbO6是典型的立方系晶体双钙钛矿氧化物,Y3+和Nb5+离子分别排列在氧八面体的中心。双钙钛矿氧化物具有铁磁性、铁电性、超导特性等物理性质,有利于提升压电性能。
压电陶瓷的性能也可以通过微观形貌分析来反映。BCZT-x(Nb+Y)陶瓷的表面形貌示于图7中。可以清楚地看到,平均晶粒尺寸随着掺杂量x的增加而减小,这一现象可以解释为Nb5+和Y3+可以抑制BCZT晶粒的生长。随着x的增大,晶界受到挤压,晶粒变得越来越致密(见图7和图11)。值得注意的是,当x=0.3%时,籽粒发育异常,产生新籽粒。这可能是由于ABO3结构的溶液限制。当掺杂量超过ABO3的溶液极限时,会析出含有Y3+和Nb5+的晶粒,抑制了晶粒的生长。也就是说,在烧结过程中,钛容易在晶界富集形成杂质相(如BaTi2O5、BaTi3O7)。在冷却过程中,杂质相被转化回BaTiO3,然后产生大量的氧空位和钡空位。氧空位倾向于在晶界而不是晶内积聚。晶界氧空位的良好热稳定性被认为阻碍了晶界生长。
使用TEM测量来检查x=0.1%陶瓷以探索畴和晶体结构(参见图9)。图9中c1是靠近晶界的测量区域,本实施例选择了A所示区域进行放大。所选区域电子衍射(SAED)示于图9的c2中。图9的c2中的规则原子排列图解说明烧结BCZT-0.1%Y-0.1%Nb的良好结晶度。高分辨率晶面排列如图9的c3所示,插图中标记的0.404nm和0.283nm的晶格间距分别对应(011)O和(110)R晶面,证明了O相和R相共存。图9的c4和c5是快速傅里叶变换(FFT)图像,显示了电子衍射点的规则排列,证明该陶瓷是典型的单晶。
陶瓷的密度与晶粒大小和孔隙密切相关。图10为Y和Nb共掺杂陶瓷样品的体积密度。当掺0.3%Nb5+和0.3%Y3+时,陶瓷的密度可达96.7%。密度的增加可能是由于晶粒的生长和增殖,使得Y和Nb共掺杂陶瓷样品的孔隙减少,晶胞体积增大。
宏观密度测试、微观SEM和TEM分析共同表明,适当的Y3+和Nb5+共掺杂可以使试样结构更致密,晶粒生长更好,微观排列更规则,有利于晶界迁移,促进致密微观组织的形成,为宏观电性能的改善提供了重要依据。
电学性能
图12为BCZT-x(Nb+Y)陶瓷在3kV,10Hz,室温条件下的P-E磁滞回线。如图13的b所示,随着Y和Nb离子的引入,矫顽力场(Ec)和剩余极化率(Pr)发生变化。可以观察到,Pr在x=0.1%时达到最大值,然后随着Y和Nb离子含量的进一步增加而降低。
这一现象可以用以下几点来解释。首先,自发极化可以沿着三个相提供的所有可能的方向进行切换,从而导致Pr的增加。其次,随着双钙钛矿结构Ba2YNbO6的引入,获得了更丰富和更致密的晶粒。较大的晶粒尺寸有利于畴壁的旋转,高密度有利于获得高偶极极化,从而提高了的铁电性能。这些都是一开始铁电性能增加的原因。此外,还可以看到当x>0.1mol%时,Pr值随着x的减小而减小。第一个原因是Zr4+/Ti4+被Nb5+离子取代,导致B位的氧空位形成缺陷偶极子,阻碍了铁电畴壁的运动。同时,这种固定效应会破坏高掺杂时的铁电性质,导致剩余极化强度的降低。另一个原因是晶粒细化引起的畴壁增加。因此,0.1mol%Y和Nb离子适合掺杂。
BCZT-x(Nb+Y)陶瓷的压电和介电特性随Y和Nb离子含量的函数示于图13的c和d中。可以发现,压电常数(d33)、介电常数(εr)和机电耦合系数(kp)具有相似的变化趋势,随掺杂元素的加入先增大后减小,在x=0.1%时达到最大值。介质损耗(tanδ)随Y/Nb的加入先减小后增大。未掺杂的BCZT陶瓷的d33为330pC/N,通过掺杂Y和Nb离子,所有BCZT-x(Nb+Y)陶瓷的d33均有增强。BCZT-0.1mol%(Nb+Y)陶瓷的d33值最高,为667pC/N,提高了97%,超出了普通元素掺杂的范围。
x=0.1mol%时,d33=667±20pC/N,kp=58%,影响压电变化趋势的主要因素有:
(1)双钙钛矿结构Ba2YNbO6的引入改善了显微组织。对于表面形貌,压电陶瓷的压电性能与晶粒尺寸(GS)和相对密度(RD)密切相关。当GS较小时,更多的晶界与较小的畴壁之间会出现强烈的耦合现象,导致畴重定向和畴壁运动困难,从而降低了压电性。结合SEM结果,可以认为GS是导致x>0.1mol%陶瓷的压电性降低的原因之一。同时,0.1mol%陶瓷获得了较高的RD,有利于提高压电性能。
(2)晶体结构。根据先前的分析,在所有的陶瓷中都得到了MPB。众所周知,由于晶体取向的数量较少,单相结构的畴转换和运动比多相结构更难,而多相结构具有更多的自发极化方向。这也是所有陶瓷获得良好压电性的主要原因(d33=667±20pC/N,kp=52%)。
为了研究陶瓷样品的相结构随温度的变化,我们测量了频率为100Hz、1kHz、10kHz、100kHz的BCZT-x(Nb+Y)的温度依赖性介电常数。如图15所示。在BCZT陶瓷中同时掺杂0.10mol%Y3+和Nb5+时,样品的居里温度(TC)上升到92.1℃。TC的增加表明该陶瓷在室温下使用时的稳定性有所提高。掺杂剂能有效促进晶粒的生长,有利于晶粒内部应力的释放,从而提高TC然而,掺杂剂会增加阳离子空位的浓度,从而降低氧八面体的稳定性结果表明,随着Y3+和Nb5+共掺杂量的增加,TC略有下降。与未掺杂的BCZT陶瓷相比,Y3+和Nb5+共掺杂陶瓷的TC升高。值得注意的是,如图15的f3和f4所示,当x=0.1%和x=0.2%时,在0-40℃下ROT三相结构共存,这也解释了这两组样品具有优异的电学性能。
此外,通过对比近年来BaTiO3基陶瓷的压电进展,可以发现本实施例中BCZT-x(Nb+Y)陶瓷获得了良好的压电性和TC。综上所述,在x=0.1mol%时,陶瓷样品的电学性能达到最佳水平,其中d33=667pC/N,kp=0.58,εr=5656,tanδ=0.022,Pr=12.8μC/cm2,EC=2.17kV/cm。
实施例2:一种无铅压电瓷材料的制备方法,具体包括以下步骤:
S1:选取碳酸钡、碳酸钙、二氧化锆、二氧化钛、氧化钇和五氧化铌作为原材料;
S2:将原材料进行烘干并称重;
S3:将干燥后的原材料在乙醇中与ZrO2球一起球磨;
S4:将干燥后的粉末再一次进行干燥,然后进行预煅烧;
S5:将得到的粉末在20MPa下压成直径12毫米,厚度1.1毫米的圆盘;
S6:使用石蜡作为粘结剂,粘结剂燃烧后,将样品放在1400℃空气中烧结4小时即得无铅压电陶瓷材料。
本实施例优选的,S2中烘干温度为100℃,干燥时间为12h。
本实施例优选的,S3中球磨时间为24h。
本实施例优选的,S4中干燥温度为1200℃,预煅烧时间为2h。
本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。

Claims (5)

1.一种无铅压电陶瓷材料,其特征是:由以下化学式表示:
(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3+x Y3++x Nb5+
其中,x为原子百分比,0<x≤0.2mol%。
2.根据权利要求1所述的一种无铅压电陶瓷材料的制备方法,其特征是:具体包括以下步骤:
S1:选取碳酸钡、碳酸钙、二氧化锆、二氧化钛、氧化钇和五氧化铌作为原材料;
S2:将原材料进行烘干并称重;
S3:将干燥后的原材料在乙醇中与ZrO2球一起球磨;
S4:将干燥后的粉末再一次进行干燥,然后进行预煅烧;
S5:将得到的粉末在20MPa下压成直径12毫米,厚度1.1毫米的圆盘;
S6:使用石蜡作为粘结剂,粘结剂燃烧后,将样品放在1400℃空气中烧结4小时即得无铅压电陶瓷材料。
3.根据权利要求2所述的一种无铅压电陶瓷材料的制备方法,其特征是:所述S2中烘干温度为100℃,干燥时间为12h。
4.根据权利要求2所述的一种无铅压电陶瓷材料的制备方法,其特征是:所述S3中球磨时间为24h。
5.根据权利要求2所述的一种无铅压电陶瓷材料的制备方法,其特征是:所述S4中干燥温度为1200℃,预煅烧时间为2h。
CN202211562188.XA 2022-12-07 2022-12-07 一种无铅压电陶瓷材料及其制备方法 Active CN116283273B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211562188.XA CN116283273B (zh) 2022-12-07 2022-12-07 一种无铅压电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211562188.XA CN116283273B (zh) 2022-12-07 2022-12-07 一种无铅压电陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN116283273A true CN116283273A (zh) 2023-06-23
CN116283273B CN116283273B (zh) 2024-06-25

Family

ID=86798411

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211562188.XA Active CN116283273B (zh) 2022-12-07 2022-12-07 一种无铅压电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116283273B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173473A (ja) * 2008-01-22 2009-08-06 Panasonic Corp 誘電体磁器組成物とこれを用いた積層セラミックコンデンサの製造方法
KR20100011373A (ko) * 2008-07-25 2010-02-03 삼성전기주식회사 유전체 조성물 및 이로부터 제조된 세라믹 전자 부품
US20110318583A1 (en) * 2009-03-12 2011-12-29 Hanwha Chemical Corporation Fine Barium Titanate Powder
CN102875141A (zh) * 2012-09-19 2013-01-16 北京工业大学 一种Nb掺杂的YBCO超导薄膜及制备方法
CN103373849A (zh) * 2013-07-09 2013-10-30 贵州大学 一种氧化铌掺杂的锆钛酸钡钙无铅压电陶瓷粉体材料
US20170288128A1 (en) * 2016-03-29 2017-10-05 Tdk Corporation Piezoelectric ceramic sputtering target, lead-free piezoelectric thin film and piezoelectric thin film element using the same
CN107324803A (zh) * 2017-07-17 2017-11-07 陕西师范大学 一种共沉淀制备锆钛酸钡钙无铅压电陶瓷材料的方法
US20220037584A1 (en) * 2018-04-21 2022-02-03 Xi'an Jiaotong University Method for Obtaining Lead-free Piezoelectric Materials and Corresponding Lead-free Piezoelectric Materials

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173473A (ja) * 2008-01-22 2009-08-06 Panasonic Corp 誘電体磁器組成物とこれを用いた積層セラミックコンデンサの製造方法
KR20100011373A (ko) * 2008-07-25 2010-02-03 삼성전기주식회사 유전체 조성물 및 이로부터 제조된 세라믹 전자 부품
US20110318583A1 (en) * 2009-03-12 2011-12-29 Hanwha Chemical Corporation Fine Barium Titanate Powder
CN102875141A (zh) * 2012-09-19 2013-01-16 北京工业大学 一种Nb掺杂的YBCO超导薄膜及制备方法
CN103373849A (zh) * 2013-07-09 2013-10-30 贵州大学 一种氧化铌掺杂的锆钛酸钡钙无铅压电陶瓷粉体材料
US20170288128A1 (en) * 2016-03-29 2017-10-05 Tdk Corporation Piezoelectric ceramic sputtering target, lead-free piezoelectric thin film and piezoelectric thin film element using the same
CN107324803A (zh) * 2017-07-17 2017-11-07 陕西师范大学 一种共沉淀制备锆钛酸钡钙无铅压电陶瓷材料的方法
US20220037584A1 (en) * 2018-04-21 2022-02-03 Xi'an Jiaotong University Method for Obtaining Lead-free Piezoelectric Materials and Corresponding Lead-free Piezoelectric Materials

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LIQIANG HE等: "Large piezoelectric coefficient with enhanced thermal stability in Nb5+-doped Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics", CERAMICS INTERNATIONAL, pages 3236 - 3241 *
RUNYU MAO等: "Yttrium and Niobium Elements Co-Doping and the Formation of Double Perovskite Structure Ba2YNbO6 in BCZT", MATERIALS, 29 May 2023 (2023-05-29), pages 1 - 15 *
WAN Q. CAO等: "Dielectric Properties of Y2O3 and Nb2O5 Co-Doped Barium Titanate Ceramics", JAPANESE JOURNAL OF APPLIED PHYSICS, pages 1 - 5 *
XIAOFANG WANG等: "Phase evolution and enhanced electrical properties of (Ba0.85Ca0.15−x Y x )(Zr0.1Ti0.9)O3 lead-free ceramics", J MATER SCI: MATER ELECTRON, pages 5217 - 5225 *

Also Published As

Publication number Publication date
CN116283273B (zh) 2024-06-25

Similar Documents

Publication Publication Date Title
Zhang et al. Enhanced energy storage performances of CaTiO3-based ceramic through A-site Sm3+ doping and A-site vacancy
Wang et al. (Bi1/2Na1/2) TiO3–Ba (Cu1/2W1/2) O3 Lead‐Free Piezoelectric Ceramics
Yuan et al. High-temperature stable dielectrics in Mn-modified (1-x) Bi 0.5 Na 0.5 TiO 3-xCaTiO 3 ceramics
Wang et al. An effective approach to achieve high energy storage density and efficiency in BNT-based ceramics by doping AgNbO 3
Ferrarelli et al. Ferroelectric, electrical, and structural properties of Dy and Sc co-doped BaTiO 3
JP2007031219A (ja) チタン酸ビスマスナトリウム−ジルコニウムチタン酸バリウム系無鉛圧電セラミック及びその製造方法
Luo et al. Wide temperature range of stable dielectric properties in relaxor BaTiO3-based ceramics by co-doping synergistic engineering
Chen et al. Microstructure, dielectric and ferroelectric properties of (1− x) BaTiO 3–x BiYbO 3 ceramics fabricated by conventional and microwave sintering methods
Chawla et al. Understanding Phase Segregation Using Rietveld Analysis and the Dielectric, Ferroelectric Properties of Ba (1− x) Ca x TiO 3 Solid Solutions
Mahani et al. Structure and Dielectric Studies of Sn 4+/Er 3+ co-doped BaTiO 3 Nano-Powders.
Shang et al. Tailoring Curie temperature and dielectric properties by changing the doping sites of Y ions in (Ba, Ca)(Zr, Ti) O3 ceramics
Shu et al. Effects of BNT precursor prepared by molten salt method on BCZT-based lead-free piezoelectric ceramics
Tang et al. Ultra-high piezoelectric properties and ultra-high Curie temperature of Li/Ce-doped La 2 Ti 2 O 7 ceramics
KR20130086093A (ko) 무연 압전 세라믹스 조성물
CN116283273B (zh) 一种无铅压电陶瓷材料及其制备方法
Zhou et al. Effects of Mn doping and sintering condition on the microstructure, dielectric, and energy storage properties of Ba0. 8Sr0. 2TiO3 ceramics
Cernea et al. Electrical investigations of holmium-doped BaTiO 3 derived from sol-gel combustion
Deshpande et al. Characterization of barium titanate: BaTiO 3 (BT) ceramics prepared from sol-gel derived BT powders
CN115093215A (zh) 一种Sr+Sb共掺杂TiO2基巨介电陶瓷、制备方法及其应用
KR20230099465A (ko) 고온 유전 특성이 안정한 무연 유전체 세라믹스 조성물 및 그의 제조방법
Yu-De Li et al. Dielectric properties and microstructures of (CaxSr1-x) ZrO3 ceramics
Lei et al. Excellent electrical properties and high Curie temperature of the V 2 O 5-modified Pb (Sc 1/2 Nb 1/2) O 3–Pb (Mg 1/3 Nb 2/3) O 3–PbTiO 3 ferroelectric crystal
Curecheriu et al. Dielectric properties of the BaTi0. 85Zr0. 15O3 ceramics prepared by different techniques
Ding et al. Dielectric properties and relaxor behavior of La-doped Ba0. 5Sr0. 5TiO3 ceramics sintered in nitrogen atmosphere
Lather et al. CuO: V2O5 driven alterations in dielectric, ferroelectric and structural properties of Barium Zirconate Titanate ceramics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant