CN107324803A - 一种共沉淀制备锆钛酸钡钙无铅压电陶瓷材料的方法 - Google Patents

一种共沉淀制备锆钛酸钡钙无铅压电陶瓷材料的方法 Download PDF

Info

Publication number
CN107324803A
CN107324803A CN201710580226.7A CN201710580226A CN107324803A CN 107324803 A CN107324803 A CN 107324803A CN 201710580226 A CN201710580226 A CN 201710580226A CN 107324803 A CN107324803 A CN 107324803A
Authority
CN
China
Prior art keywords
zirconate titanate
calcium zirconate
burning
free piezoceramic
piezoceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710580226.7A
Other languages
English (en)
Inventor
杨祖培
陈晓芳
晁小练
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201710580226.7A priority Critical patent/CN107324803A/zh
Publication of CN107324803A publication Critical patent/CN107324803A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种共沉淀制备锆钛酸钡钙无铅压电陶瓷材料的方法,该方法以醋酸钡、醋酸钙、硝酸锆、四氯化钛为原料,氢氧化钠或氢氧化钾为沉淀剂,先制备高纯度、颗粒均一、活性较高的锆钛酸钡钙前驱粉体,然后将前驱粉体经过预烧、造粒、压片、排胶、烧结,得到锆钛酸钡钙无铅压电陶瓷材料。本发明采用共沉淀法制备陶瓷材料的预烧粉,不仅工艺简单,成本廉价,而且整个过程中不易引入杂质,制备的预烧粉纯度高、分散均匀、形貌均一,且活性比较高,降低了预烧温度,同时还能降低陶瓷材料的烧结温度,解决了传统固相法机械混合不均匀、易引入杂质、合成温度高等问题。

Description

一种共沉淀制备锆钛酸钡钙无铅压电陶瓷材料的方法
技术领域
本发明属于陶瓷材料技术领域,具体涉及到一种高纯度、颗粒均一、活性较高的锆钛酸钡钙无铅压电陶瓷材料的制备方法。
背景技术
BaTiO3(BT)是最早研究的一类无铅压电陶瓷材料,在PbZrO3-PbTiO3被发现之前曾得到广泛的应用,但是由于其居里温度和压电性能均较低,因此限制了它的使用。近十年来,人们在以BaTiO3为基础,通过离子取代、添加新组元、改进制备工艺的方法对BT材料进行探索,使陶瓷材料作为压电材料,取得了重要的研究进展。2009年,BT基压电陶瓷的发展再次取得了重要突破,(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3(BCZT)被成功制备,并在其MPB处测得压电系数d33高达620pC/N,压电性可与铅基相媲美。
BCZT陶瓷材料作为一种有代表性的无铅压铁电材料,在MLCC应用方面有着举足轻重的作用。BCZT陶瓷材料通常采用固相法制备,最大的问题就是预烧温度(相关文献报道的预烧温度大都在1250℃以上)和烧结温度(1450℃~1500℃)高。除此之外,在固相法制备的过程中存在易引入杂质以及组分偏离的问题,而且得到的粉体分散性不好,这直接影响着陶瓷颗粒的均一性及陶瓷的性能。为了避免上述问题,越来越多的学者开始研究湿化学法,目的是在低温下制备出高纯、均一的BCZT粉体。其中就有关于水热法合成BCZT陶瓷材料的报道,相比于固相法,反应温度明显降低,可在300℃以下直接得到所需粉体,但是水热法存在反应条件苛刻、操作困难、反应具有一定的危险性等缺点。
发明内容
本发明所要解决的技术问题在于克服现有BCZT陶瓷材料制备方法存在的缺点,为BCZT无铅压电陶瓷材料提供一种预烧温度和烧结温度较低且陶瓷粉体形貌均一、分散程度好的制备方法。
解决上述技术问题所采用的技术方案由下述步骤组成:
1、将醋酸钡与醋酸钙按摩尔比为85:15完全溶解于蒸馏水中,得到A位前驱液;将硝酸锆与四氯化钛按摩尔比为1:9完全溶解于蒸馏水中,得到B位前驱液;然后按照醋酸钡、醋酸钙的总摩尔量与硝酸锆、四氯化钛的总摩尔量之比为1.2~1.3:1,先将B位前驱液逐滴加到6~10mol/L沉淀剂的水溶液中,常温充分搅拌均匀,然后逐滴加入A位前驱液,滴加完后常温搅拌均匀,再升温至75~95℃,恒温搅拌反应3~5小时,反应完后常温陈化12~24小时,用去离子水离心洗涤至上清液为中性,抽滤,滤饼经干燥、研磨后,得到前驱粉体。
2、将前驱粉体置于氧化铝坩埚内,用玛瑙棒轻轻压实,加盖,在850~950℃保温3~5小时进行预烧,预烧完后冷却至室温,得到(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3预烧粉。
3、将(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3预烧粉进行造粒、压片、排胶后,在1240~1400℃下恒温烧结4~7小时,得到锆钛酸钡钙无铅压电陶瓷材料。
上述步骤1中,所述的沉淀剂为KOH或NaOH,优选沉淀剂的摩尔量为醋酸钡、醋酸钙、硝酸锆、四氯化钛总摩尔量的26~43倍。
上述步骤2中,优选在900℃保温4小时进行预烧。
上述步骤3中,优选在1320℃下恒温烧结6小时。
本发明采用共沉淀法制备BCZT陶瓷材料的预烧粉,不仅工艺简单,成本廉价,而且整个过程中不易引入杂质,制备的预烧粉纯度高、分散均匀、形貌均一,且活性比较高,降低了预烧温度,同时还能降低陶瓷材料的烧结温度,解决了传统固相法机械混合不均匀、易引入杂质导致产物纯度不高、粉体活性不高以及合成温度高等问题。
附图说明
图1是实施例1和2以及对比例1和2制备的预烧粉的XRD图。
图2是实施例1制备的预烧粉的SEM图。
图3是实施例1制备的预烧粉的TEM图。
图4是对比例1烧结后所得材料的SEM图。
图5是实施例1制备的锆钛酸钡钙无铅压电陶瓷材料的SEM图。
图6是实施例2制备的锆钛酸钡钙无铅压电陶瓷材料的SEM图。
图7是对比例2制备的陶瓷材料的SEM图。
图8是实施例1和2制备的锆钛酸钡钙无铅压电陶瓷材料以及对比例2制备的陶瓷材料在10kHz的介电常数随温度的变化关系图。
图9是实施例1和2制备的锆钛酸钡钙无铅压电陶瓷材料以及对比例2制备的陶瓷材料在30kV/cm的电滞回线图。
图10是实施例1制备的锆钛酸钡钙无铅压电陶瓷材料在70kV/cm的电滞回线图。
具体实施方式
为更好地理解本发明,下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
1、将2.7941g(10.83mmol)纯度为99%的Ba(CH3COO)2、0.3416g(1.9mmol)纯度为98%的Ca(CH3COO)2·H2O完全溶解于100mL蒸馏水中,得到A位前驱液;将0.4316g(1mmol)纯度为99%的Zr(NO3)4·5H2O、1.7420g(9mmol)TiCl4完全溶解于100mL蒸馏水中,得到B位前驱液;将B位前驱液逐滴滴加到100mL8mol/L NaOH水溶液中,常温充分搅拌均匀,然后逐滴加入A位前驱液,滴加完后常温搅拌均匀,再升温至90℃,恒温搅拌反应4小时,反应完后常温陈化24小时,用去离子水离心洗涤至上清液为中性,抽滤,滤饼在60℃干燥后,用研钵研磨,过160目筛,得到前驱粉体。
2、将步骤1所得前驱粉体置于氧化铝坩埚内,用玛瑙棒轻轻压实,加盖,在900℃保温4小时进行预烧,预烧完后自然冷却至室温,用研钵研磨,过160目筛,得到(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3预烧粉。
3、向(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3预烧粉中加入质量分数为5%聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为预烧粉质量的50%,造粒,过120目筛,制成球状粉粒;将球状粉粒放入直径为11.5mm的不锈钢模具内,用60MPa的压力将其压制成圆柱状坯件;将圆柱状坯件放在氧化锆平板上并置于氧化铝密闭匣钵中,用380分钟升温至500℃,保温2小时,自然冷却到室温;将圆柱状坯件以10℃/分钟的升温速率升温至1000℃,再以3℃/分钟的升温速率升温至1320℃,恒温烧结6小时,然后以2℃/分钟的降温速率降至室温,得到锆钛酸钡钙无铅压电陶瓷材料。
实施例2
本实施例的步骤1中,将2.6471g(10.2mmol)纯度为99%的Ba(CH3COO)2、0.3236g(1.8mmol)纯度为98%的Ca(CH3COO)2·H2O完全溶解于100mL蒸馏水中,得到A位前驱液;将0.4316g(1mmol)纯度为99%的Zr(NO3)4·5H2O、1.7420g(9mmol)TiCl4完全溶解于100mL蒸馏水中,得到B位前驱液;其他步骤与实施例1相同,得到锆钛酸钡钙无铅压电陶瓷材料。
对比例1
将2.1930g(8.5mmol)纯度为99%的Ba(CH3COO)2、0.2697g(1.5mmol)纯度为98%的Ca(CH3COO)2·H2O完全溶解于100mL蒸馏水中,得到A位前驱液;将0.4316g(1mmol)纯度为99%的Zr(NO3)4·5H2O、1.7420g(9mmol)TiCl4完全溶解于100mL蒸馏水中,得到B位前驱液;该步骤的其他步骤与实施例1的步骤1相同,得到前驱粉体。将所得前驱粉体按照实施例1的方法进行预烧、造粒、压片、排胶、烧结,发现烧结后样品不能成瓷。
对比例2
将3.0883g(12mmol)纯度为99%的Ba(CH3COO)2、0.3775g(2.1mmol)纯度为98%的Ca(CH3COO)2·H2O完全溶解于100mL蒸馏水中,得到A位前驱液;将0.4316g(1mmol)纯度为99%的Zr(NO3)4·5H2O、1.7420g(9mmol)TiCl4完全溶解于100mL蒸馏水中,得到B位前驱液;其他步骤与实施例1相同,制备成陶瓷材料。
分别采取X-射线衍射仪和扫描电镜、透射电镜对实施例1和2以及对比例1和2得到的预烧粉和陶瓷材料进行表征,结果见图1~7。由图1可见,所得预烧粉均为纯钙钛矿结构,且无第二相存在。由图2和3可见,所得预烧粉均为完整的单个晶粒,且分散性较好,晶粒间界限分明,晶粒呈球形、大小均一,粒径在500nm左右。在对比例1中,采用共沉淀法,完全按照(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3的化学计量比无法制备成陶瓷材料,所得样品无法观察到完整的晶粒(见图4);在实施例1和2中,醋酸钡、醋酸钙的总摩尔量与硝酸锆、四氯化钛的总摩尔量之比为1.2:1和1.3:1时,所得陶瓷材料呈现致密且大小均匀性好的微观形貌,陶瓷致密且颗粒大小均匀性好,陶瓷晶粒尺寸在10μm左右(见图5和6),通过EDS能谱验证得出实施例1和2所制备的陶瓷材料符合(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3化学计量比;而对比例2中,醋酸钡、醋酸钙的总摩尔量与硝酸锆、四氯化钛的总摩尔量之比为1.4:1时,所得陶瓷材料不符合(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3化学计量比且呈现出异常的陶瓷晶粒(见图7)。
将实施例1和2制备的锆钛酸钡钙无铅压电陶瓷材料以及对比例2制备的陶瓷材料分别选取其中一个样品表面依次用320目、800目、1500目的砂纸抛光至0.4~0.6mm厚,然后在陶瓷上下表面分别涂覆厚度为0.02mm的银浆,置于电阻炉中840℃保温30分钟,采用LCR测试仪对其介电性能进行测试,结果见图8~10。从图8~10可见,对比例2制备的陶瓷材料的居里温度严重偏离现有文献报道的(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3陶瓷材料的居里温度(93℃左右)且电滞回线不饱和,而本发明实施例1和2制备的陶瓷材料的居里温度与文献报道基本相同,且陶瓷呈现饱和的电滞回线,其中实施例1制备的陶瓷材料的最大介电常数为9250、居里温度为95℃、剩余极化强度为5.59μC/cm2、矫顽场为2.74kV/cm、储能密度为0.17J/cm3、储能效率为61%,经测试该陶瓷的压电常数为200pC/N。

Claims (5)

1.一种共沉淀制备锆钛酸钡钙无铅压电陶瓷材料的方法,所述陶瓷材料的化学式为(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3,其特征在于该陶瓷材料的制备方法由下述步骤组成:
(1)将醋酸钡与醋酸钙按摩尔比为85:15完全溶解于蒸馏水中,得到A位前驱液;将硝酸锆与四氯化钛按摩尔比为1:9完全溶解于蒸馏水中,得到B位前驱液;然后按照醋酸钡、醋酸钙的总摩尔量与硝酸锆、四氯化钛的总摩尔量之比为1.2~1.3:1,先将B位前驱液逐滴加到6~10mol/L沉淀剂的水溶液中,常温充分搅拌均匀,然后逐滴加入A位前驱液,滴加完后常温搅拌均匀,再升温至75~95℃,恒温搅拌反应3~5小时,反应完后常温陈化12~24小时,用去离子水离心洗涤至上清液为中性,抽滤,滤饼经干燥、研磨后,得到前驱粉体;
(2)将前驱粉体置于氧化铝坩埚内,用玛瑙棒轻轻压实,加盖,在850~950℃保温3~5小时进行预烧,预烧完后冷却至室温,得到(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3预烧粉;
(3)将(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3预烧粉进行造粒、压片、排胶后,在1240~1400℃下恒温烧结4~7小时,得到锆钛酸钡钙无铅压电陶瓷材料。
2.根据权利要求1所述的共沉淀制备锆钛酸钡钙无铅压电陶瓷材料的方法,其特征在于:在步骤(1)中,所述的沉淀剂为氢氧化钠或氢氧化钾。
3.根据权利要求1或2所述的共沉淀制备锆钛酸钡钙无铅压电陶瓷材料的方法,其特征在于:在步骤(1)中,所述沉淀剂的摩尔量为醋酸钡、醋酸钙、硝酸锆、四氯化钛总摩尔量的26~43倍。
4.根据权利要求1所述的共沉淀制备锆钛酸钡钙无铅压电陶瓷材料的方法,其特征在于:所述步骤(2)中,在900℃保温4小时进行预烧。
5.根据权利要求1所述的共沉淀制备锆钛酸钡钙无铅压电陶瓷材料的方法,其特征在于:所述步骤(3)中,在1320℃下恒温烧结6小时。
CN201710580226.7A 2017-07-17 2017-07-17 一种共沉淀制备锆钛酸钡钙无铅压电陶瓷材料的方法 Pending CN107324803A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710580226.7A CN107324803A (zh) 2017-07-17 2017-07-17 一种共沉淀制备锆钛酸钡钙无铅压电陶瓷材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710580226.7A CN107324803A (zh) 2017-07-17 2017-07-17 一种共沉淀制备锆钛酸钡钙无铅压电陶瓷材料的方法

Publications (1)

Publication Number Publication Date
CN107324803A true CN107324803A (zh) 2017-11-07

Family

ID=60227162

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710580226.7A Pending CN107324803A (zh) 2017-07-17 2017-07-17 一种共沉淀制备锆钛酸钡钙无铅压电陶瓷材料的方法

Country Status (1)

Country Link
CN (1) CN107324803A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112661508A (zh) * 2021-01-20 2021-04-16 西北大学 一种低烧高储能锆钛酸锶钡基陶瓷材料及其制备方法
CN116283273A (zh) * 2022-12-07 2023-06-23 贵州大学 一种无铅压电陶瓷材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101717261A (zh) * 2009-11-18 2010-06-02 广东风华高新科技股份有限公司 一种钙钛矿粉体的制备方法及所得的物质
CN102515753A (zh) * 2011-12-05 2012-06-27 天津师范大学 一种制备高压电系数锆钛酸钙钡无铅压电陶瓷的方法
CN104761260A (zh) * 2015-03-18 2015-07-08 中国科学院福建物质结构研究所 一种(BaxCa1-x)(TiyM1-y)O3体系压电陶瓷材料及其制备方法
CN105503184A (zh) * 2015-12-08 2016-04-20 武汉理工大学 一种锆钛酸钡钙压电陶瓷粉体的制备方法
CN105849049A (zh) * 2013-11-19 2016-08-10 堺化学工业株式会社 钛酸钡粉体的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101717261A (zh) * 2009-11-18 2010-06-02 广东风华高新科技股份有限公司 一种钙钛矿粉体的制备方法及所得的物质
CN102515753A (zh) * 2011-12-05 2012-06-27 天津师范大学 一种制备高压电系数锆钛酸钙钡无铅压电陶瓷的方法
CN105849049A (zh) * 2013-11-19 2016-08-10 堺化学工业株式会社 钛酸钡粉体的制造方法
CN104761260A (zh) * 2015-03-18 2015-07-08 中国科学院福建物质结构研究所 一种(BaxCa1-x)(TiyM1-y)O3体系压电陶瓷材料及其制备方法
CN105503184A (zh) * 2015-12-08 2016-04-20 武汉理工大学 一种锆钛酸钡钙压电陶瓷粉体的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112661508A (zh) * 2021-01-20 2021-04-16 西北大学 一种低烧高储能锆钛酸锶钡基陶瓷材料及其制备方法
CN116283273A (zh) * 2022-12-07 2023-06-23 贵州大学 一种无铅压电陶瓷材料及其制备方法

Similar Documents

Publication Publication Date Title
KR101588509B1 (ko) 니오브산나트륨 분말, 니오브산나트륨 분말의 제조 방법, 판형상 입자, 판형상 입자의 제조 방법, 및 배향성 세라믹의 제조 방법
WO2010116972A1 (ja) ニオブ酸アルカリ金属塩粒子の製造方法、およびニオブ酸アルカリ金属塩粒子
WO2001064600A1 (en) Method for fabrication of lead based perovskite materials
JP3154509B2 (ja) チタン酸バリウムおよびその製造方法
Fernández et al. In situ sol–gel co-synthesis under controlled pH and microwave sintering of PZT/CoFe2O4 magnetoelectric composite ceramics
CN106810235A (zh) 铁酸铋‑钛酸铅‑钛酸钡三元体系高温压电陶瓷及其制备方法
Guiffard et al. Low temperature synthesis of stoichiometric and homogeneous lead zirconate titanate powder by oxalate and hydroxide coprecipitation
CN111747740B (zh) 钐离子掺杂锆钛酸铅基高性能压电陶瓷及其制备方法
Jiten et al. (Na0. 5K0. 5) NbO3 nanocrystalline powders produced by high energy ball milling and corresponding ceramics
Abothu et al. Processing of Pb (Zr0. 52Ti0. 48) O3 (PZT) ceramics from microwave and conventional hydrothermal powders
CN103449520B (zh) 一种棒状五氧化二铌模板晶粒及其制备方法
JP3608599B2 (ja) チタン酸バリウム系半導体磁器
CN103373849A (zh) 一种氧化铌掺杂的锆钛酸钡钙无铅压电陶瓷粉体材料
KR20030059189A (ko) 유전성 바륨 티타네이트 입자의 제조
CN106518058B (zh) 一种由钛酸铋钾和氧化锌构成的无铅复合铁电陶瓷及制备
CN107324803A (zh) 一种共沉淀制备锆钛酸钡钙无铅压电陶瓷材料的方法
JP6508766B2 (ja) 誘電体セラミックス粒子および誘電体セラミックス
CN105254295B (zh) 一种钕掺杂钛酸钡纳米陶瓷粉体的制备方法
CN104446445A (zh) 一种单分散钛酸钡纳米粉体的制备方法
CN114988872B (zh) 一种锆酸钙粉体在铌酸钾钠基压电陶瓷的应用
CN106478089A (zh) 一种择优取向性BaTiO3/SrTiO3纳米复合陶瓷的制备方法
CN101269974B (zh) 用于制备织构层状结构的钙钛矿系陶瓷纳米粉体合成方法
CN102584230B (zh) 一种高压电系数、高电致应变低温烧结的压电陶瓷材料及其制备方法
Perumal et al. Structural, dielectric, piezoelectric and ferroelectric properties of lead-free (1-x) Na0. 5 Bi0. 5 TiO3-xBaTiO3 (x= 0.00, 0.04, 0.06, 0.08) ceramic
JPH0745883A (ja) 圧電磁器組成物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171107